

[image: Oracle Utilities Network Management System]

	
[image: logobar.png]

	

Oracle Utilities Network Management System

Adapters Guide

Release 1.11.0

E24669-01

July 2011

Oracle Utilities Network Management System Adapters Guide, Release 1.11.0

E24669-01

Copyright (c) 1991, 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software or software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Please read through this guide thoroughly before beginning an installation or configuration of any supported adapters for the Oracle Utilities Network Management System.

Audience

This document is intended for the administrator and the engineers responsible for installing and configuring Oracle Utilities Network Management System adapters.

Related Documents

	
•

	

Oracle Utilities Network Management System Installation Guide

	
•

	

Oracle Utilities Network Management System Configuration Guide

	
•

	

Oracle Utilities Network Management System User’s Guide

Conventions

The following text conventions are used in this document:

	

Convention

	

Meaning

	

boldface

	

Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	

italic

	

Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	

monospace

	

Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Common Terminology

The following terms and acronyms are used in one or more adapter descriptions.

	

CIS

	

Customer Information System

	

DTD

	

Document type definition, used to define XML documents

	

Generic IVR Adapter

	

A Unix application that generally executes on the OMS server
machine. It supports the Trouble Call, Event Status, Affected
Customers, Callback Request and Callback Response Data Flows.

	

HA

	

High availability, where Oracle Utilities Network Management System is configured with a pair of redundant servers. This is usually in the form of a hardware cluster and a shared drive that contains the database.

	

Isis

	

Clients access services and tools through a central concurrency
management and messaging system called Isis. Isis is a real-time
implementation of message oriented middleware and comprises the
backbone of the system, providing access to the server for each
client and the communication required between tools and services.
Isis delivers the organized information to the client applications.

	

IVR

	

Interactive Voice Response system

	

JMService

	

Job Management Service. The Oracle Utilities Network Management System call processing and outage prediction engine.

	

MQSeries

	

A queue-based messaging system developed by IBM. This system has been renamed to WebSphere MQ.

	

NMS

	

Oracle Utilities Network Management System

	

ODService

	

Object Directory Service. ODService improves performance of the
Oracle Utilities Network Management System by caching large
amounts of device information that is likely to be requested by
applications. This caching allows the requests to be handled very
quickly without directly accessing the database.

	

OMS

	

Outage Management System

	

SCADA

	

Supervisory Control and Data Acquisition system

	

SMService

	

System Monitor Service. SMService monitors the core processes in the system, essentially the services and interfaces.

	

XML

	

Extensible Markup Language

	

XML Schema

	

An XML standard for defining XML documents

	

XSL

	

XML Style Sheet, used to reformat XML documents

Generic IVR Adapter

This chapter includes the following topics:

	
•

	

Introduction

	
•

	

Supported Application Data Flows

	
•

	

Interaction Diagram

	
•

	

Data Flow Details

	
•

	

Adapter Installation

	
•

	

Software Configuration

	
•

	

SRS Rules Configuration

	
•

	

Database Schema

	
•

	

Terminology

Introduction

The purpose of this document is to provide an administration guide for the Oracle Utilities Network Management System Generic IVR Adapter. This document will discuss the required process for installing and configuring the Oracle Utilities Network Management System Generic IVR Adapter to run with various applications. This adapter has the following attributes:

	
•

	

It is one of the adapters and tools that Oracle offers for integration with other product suites. It is a Unix application that generally executes on the Oracle Utilities Network Management System services server and is monitored through SMService.

	
•

	

It has the ability to accept trouble calls from an external application and provide that external application with updates about existing outages.

	
•

	

It can submit callback requests to an external application and receive callback responses from the external application.

	
•

	

It can communicate with several external applications, such as Interactive Voice Response (IVR) systems, Customer Information System (CIS) and Callback applications.

Supported Application Data Flows

IVR Data Flows with Oracle Utilities Network Management System

The following are the Data Flows between an IVR system and Oracle Utilities Network Management System using the Generic IVR Adapter

	
•

	

Creation of trouble calls from the IVR system to Oracle Utilities Network Management System

	
•

	

Callback request information from Oracle Utilities Network Management System to the IVR system

	
•

	

Callback response information from the IVR system to Oracle Utilities Network Management System

Supported Application Data Flows

IVR Data Flows with Oracle Utilities Network Management System

The following are the Data Flows between an IVR system and Oracle Utilities Network Management System using the Generic IVR Adapter

	
•

	

Creation of trouble calls from the IVR system to Oracle Utilities Network Management System

	
•

	

Callback request information from Oracle Utilities Network Management System to the IVR system

	
•

	

Callback response information from the IVR system to Oracle Utilities Network Management System

CIS Data Flows with Oracle Utilities Network Management System

The following are the Data Flows between a CIS and Oracle Utilities Network Management System using the Generic IVR Adapter

	
•

	

Creation of trouble calls from the CIS application to Oracle Utilities Network Management System

Callbacks Application Data Flows with Oracle Utilities Network Management System

The following are the Data Flows between a Callback application and Oracle Utilities Network Management System using the Generic IVR Adapter

	
•

	

Callback request information from Oracle Utilities Network Management System to the Callback application

	
•

	

Callback response information from Callback application to Oracle Utilities Network Management System

Interaction Diagram

Below is a diagram of the interaction between Oracle Utilities Network Management System and various external applications via the Generic IVR Adapter.

[image:]

Note: In this document, it is assumed that the Generic IVR Adapter's tables and stored procedures would reside in the database used by Oracle Utilities Network Management System.

Data Flow Details

Overview

This section discusses in detail the data flows that are relevant to the Generic IVR Adapter. The data flows generally involve bilateral database tables that are populated or polled by the adapter or stored procedures that access internal NMS tables directly. The adapter data flows are turned on through command line switches, but the actual data transfer may be affected through the use of stored procedures.

The pk_ccb package is a standard set of NMS stored procedures that are defined in the product_pk_ccb_head.sql and product_pk_ccb_body.sql files. They can be used to help support an interface to an external Customer Information System (CIS) or any external system that needs to submit trouble calls to NMS or retrieve outage information from NMS based on search criteria. The pk_ccb stored procedures for inserting trouble call data into NMS or retrieving outage information from NMS are noted in this document as being part of the pk_ccb package; other stored procedures (i.e., those not explicitely called out as part of the pk_ccb package) are generally defined in the pk_ivr_interface package.

Data Flow Details

Overview

This section discusses in detail the data flows that are relevant to the Generic IVR Adapter. The data flows generally involve bilateral database tables that are populated or polled by the adapter or stored procedures that access internal NMS tables directly. The adapter data flows are turned on through command line switches, but the actual data transfer may be affected through the use of stored procedures.

The pk_ccb package is a standard set of NMS stored procedures that are defined in the product_pk_ccb_head.sql and product_pk_ccb_body.sql files. They can be used to help support an interface to an external Customer Information System (CIS) or any external system that needs to submit trouble calls to NMS or retrieve outage information from NMS based on search criteria. The pk_ccb stored procedures for inserting trouble call data into NMS or retrieving outage information from NMS are noted in this document as being part of the pk_ccb package; other stored procedures (i.e., those not explicitely called out as part of the pk_ccb package) are generally defined in the pk_ivr_interface package.

Trouble Calls

New trouble calls need to be sent to Oracle Utilities Network Management System to apply the outage analysis algorithm to predict the outage device. The Generic IVR Adapter provides the submit_call stored procedure to pass trouble call information from the external application to Oracle Utilities Network Management System.

Data Flow Characteristics

The following are characteristics of the Trouble Calls Data Flow

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLS. For schema information, see
TROUBLE_CALLS Table Schema
.

	

Stored Procedure

	

submit_call

For stored procedure parameter information, see
pk_ccb.submit_call
.

	

Direction

	

external application to Oracle Utilities Network Management System

	

Generic IVR Adapter Data Retrieval Frequency to Oracle Utilities Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application invokes the submit_call stored procedure to submit a trouble call.

	
2.

	

The submit_call stored procedure inserts the trouble call in the TROUBLE_CALLS table. Upon insertion, the TROUBLE_CALLS.CALL_STATUS field will be set to 'N' signifying a new trouble call.

	
3.

	

The Generic IVR Adapter polls a configurable number of new records from the TROUBLE_CALLS table within a configurable poll period. The TROUBLE_CALLS.CALL_STATUS field is updated to 'I' (in progress) signifying that the trouble call is in the process of being submitted to the NMS Job Management Service (JMService).

	
4.

	

Once processed, the retrieved records are submitted to NMS' JMService so the outage analysis algorithms could be used for the submitted trouble calls. The TROUBLE_CALLS.CALL_STATUS field is updated to 'C' (complete) signifying the trouble call has been successfully submitted from the external application to NMS.

Below is a summary of the information required to submit a trouble call via the pk_ccb.submit_call stored procedure.

If no numeric trouble code is provided, the default trouble code, which is generally a 1 followed by however many zeros are necessary to satisify the project defined trouble code, will be used. The length of the trouble code is defined by the number of distinct "group_order" entries in the srs_trouble_codes table.

Note that the pr_trouble_calls stored procedure is also provided for backward compatibility to accomplish essentially the same goal - inserting a trouble call record into the trouble_calls table.

The pk_ccb.submit_call stored procedure is used to submit:

	
•

	

 Trouble calls for a particular customer (known premise/service point). This includes entering the meeting time for job site appointments when there needs to be a planned outage to perform non-utility work at a location, such as tree removal near a power line or house painting.

	
•

	

Fuzzy calls

When a fuzzy call is created at least one of the following call identifiers must be provided:

	
•

	

The caller's name

	
•

	

The caller's phone number

	
•

	

The caller's ID (i.e., 911 reference ID provided by the caller (911)).

	
•

	

Location must also be provided. A Location can be:

	
•

	

a street intersection (provide two street names) or

	
•

	

a street segment (provide a block number and a street name)

	
•

	

City and State are optional

Trouble Calls

New trouble calls need to be sent to Oracle Utilities Network Management System to apply the outage analysis algorithm to predict the outage device. The Generic IVR Adapter provides the submit_call stored procedure to pass trouble call information from the external application to Oracle Utilities Network Management System.

Data Flow Characteristics

The following are characteristics of the Trouble Calls Data Flow

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLS. For schema information, see
TROUBLE_CALLS Table Schema
.

	

Stored Procedure

	

submit_call

For stored procedure parameter information, see
pk_ccb.submit_call
.

	

Direction

	

external application to Oracle Utilities Network Management System

	

Generic IVR Adapter Data Retrieval Frequency to Oracle Utilities Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application invokes the submit_call stored procedure to submit a trouble call.

	
2.

	

The submit_call stored procedure inserts the trouble call in the TROUBLE_CALLS table. Upon insertion, the TROUBLE_CALLS.CALL_STATUS field will be set to 'N' signifying a new trouble call.

	
3.

	

The Generic IVR Adapter polls a configurable number of new records from the TROUBLE_CALLS table within a configurable poll period. The TROUBLE_CALLS.CALL_STATUS field is updated to 'I' (in progress) signifying that the trouble call is in the process of being submitted to the NMS Job Management Service (JMService).

	
4.

	

Once processed, the retrieved records are submitted to NMS' JMService so the outage analysis algorithms could be used for the submitted trouble calls. The TROUBLE_CALLS.CALL_STATUS field is updated to 'C' (complete) signifying the trouble call has been successfully submitted from the external application to NMS.

Below is a summary of the information required to submit a trouble call via the pk_ccb.submit_call stored procedure.

If no numeric trouble code is provided, the default trouble code, which is generally a 1 followed by however many zeros are necessary to satisify the project defined trouble code, will be used. The length of the trouble code is defined by the number of distinct "group_order" entries in the srs_trouble_codes table.

Note that the pr_trouble_calls stored procedure is also provided for backward compatibility to accomplish essentially the same goal - inserting a trouble call record into the trouble_calls table.

The pk_ccb.submit_call stored procedure is used to submit:

	
•

	

 Trouble calls for a particular customer (known premise/service point). This includes entering the meeting time for job site appointments when there needs to be a planned outage to perform non-utility work at a location, such as tree removal near a power line or house painting.

	
•

	

Fuzzy calls

When a fuzzy call is created at least one of the following call identifiers must be provided:

	
•

	

The caller's name

	
•

	

The caller's phone number

	
•

	

The caller's ID (i.e., 911 reference ID provided by the caller (911)).

	
•

	

Location must also be provided. A Location can be:

	
•

	

a street intersection (provide two street names) or

	
•

	

a street segment (provide a block number and a street name)

	
•

	

City and State are optional

Trouble Calls

New trouble calls need to be sent to Oracle Utilities Network Management System to apply the outage analysis algorithm to predict the outage device. The Generic IVR Adapter provides the submit_call stored procedure to pass trouble call information from the external application to Oracle Utilities Network Management System.

Data Flow Characteristics

The following are characteristics of the Trouble Calls Data Flow

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLS. For schema information, see
TROUBLE_CALLS Table Schema
.

	

Stored Procedure

	

submit_call

For stored procedure parameter information, see
pk_ccb.submit_call
.

	

Direction

	

external application to Oracle Utilities Network Management System

	

Generic IVR Adapter Data Retrieval Frequency to Oracle Utilities Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application invokes the submit_call stored procedure to submit a trouble call.

	
2.

	

The submit_call stored procedure inserts the trouble call in the TROUBLE_CALLS table. Upon insertion, the TROUBLE_CALLS.CALL_STATUS field will be set to 'N' signifying a new trouble call.

	
3.

	

The Generic IVR Adapter polls a configurable number of new records from the TROUBLE_CALLS table within a configurable poll period. The TROUBLE_CALLS.CALL_STATUS field is updated to 'I' (in progress) signifying that the trouble call is in the process of being submitted to the NMS Job Management Service (JMService).

	
4.

	

Once processed, the retrieved records are submitted to NMS' JMService so the outage analysis algorithms could be used for the submitted trouble calls. The TROUBLE_CALLS.CALL_STATUS field is updated to 'C' (complete) signifying the trouble call has been successfully submitted from the external application to NMS.

Below is a summary of the information required to submit a trouble call via the pk_ccb.submit_call stored procedure.

If no numeric trouble code is provided, the default trouble code, which is generally a 1 followed by however many zeros are necessary to satisify the project defined trouble code, will be used. The length of the trouble code is defined by the number of distinct "group_order" entries in the srs_trouble_codes table.

Note that the pr_trouble_calls stored procedure is also provided for backward compatibility to accomplish essentially the same goal - inserting a trouble call record into the trouble_calls table.

The pk_ccb.submit_call stored procedure is used to submit:

	
•

	

 Trouble calls for a particular customer (known premise/service point). This includes entering the meeting time for job site appointments when there needs to be a planned outage to perform non-utility work at a location, such as tree removal near a power line or house painting.

	
•

	

Fuzzy calls

When a fuzzy call is created at least one of the following call identifiers must be provided:

	
•

	

The caller's name

	
•

	

The caller's phone number

	
•

	

The caller's ID (i.e., 911 reference ID provided by the caller (911)).

	
•

	

Location must also be provided. A Location can be:

	
•

	

a street intersection (provide two street names) or

	
•

	

a street segment (provide a block number and a street name)

	
•

	

City and State are optional

Callback Requests

A customer may request that he/she be called back as soon as the outage that he/she reported has been restored. The Generic IVR Adapter provides the stored procedure pr_trouble_callback_requests to be used by an external application that is managing the callback process. This procedure returns a list of calls where the customer has requested a callback.

Data Flow Characteristics

The following are characteristics for the Callback Request Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information, see
TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_requests. For stored procedure parameter information, see
pr_trouble_callback_requests Stored Procedure

	

Direction

	

Oracle Utilities Network Management System to external application

	

Generic IVR Adapter Data Retrieval Frequency from Oracle Utilities Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

When an outage with a corresponding callback request is restored, Oracle Utilities Network Management System builds a callback list.

	
2.

	

From the list, callback requests could be assigned to callback agents or to the external application, either in a manual (using Oracle Utilities Network Management System Web Callbacks) or an automated manner (via SRS rules).

	
3.

	

The Generic IVR Adapter retrieves all callback requests assigned to the external application and inserts the callback requests to the TROUBLE_CALLBACKS table. The PROCESS_STATUS field of the callback request in the table would be set to 'N' signifying that the callback request is new. The CALLBACK_DONE field of the callback request in the table would be set to 'N' signifying that the callback has not yet been done.

	
4.

	

The Generic IVR Adapter provides the pr_trouble_callback_requests stored procedure, which picks new callback requests from the TROUBLE_CALLBACKS table.

	
5.

	

The external application could use the pr_trouble_callback_requests stored procedure to pick new callback requests. Callback requests that were picked are marked with a PROCESS_STATUS field equal to ‘I’ (callback response in progress) on the TROUBLE_CALLBACKS table.

Callback Requests

A customer may request that he/she be called back as soon as the outage that he/she reported has been restored. The Generic IVR Adapter provides the stored procedure pr_trouble_callback_requests to be used by an external application that is managing the callback process. This procedure returns a list of calls where the customer has requested a callback.

Data Flow Characteristics

The following are characteristics for the Callback Request Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information, see
TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_requests. For stored procedure parameter information, see
pr_trouble_callback_requests Stored Procedure

	

Direction

	

Oracle Utilities Network Management System to external application

	

Generic IVR Adapter Data Retrieval Frequency from Oracle Utilities Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

When an outage with a corresponding callback request is restored, Oracle Utilities Network Management System builds a callback list.

	
2.

	

From the list, callback requests could be assigned to callback agents or to the external application, either in a manual (using Oracle Utilities Network Management System Web Callbacks) or an automated manner (via SRS rules).

	
3.

	

The Generic IVR Adapter retrieves all callback requests assigned to the external application and inserts the callback requests to the TROUBLE_CALLBACKS table. The PROCESS_STATUS field of the callback request in the table would be set to 'N' signifying that the callback request is new. The CALLBACK_DONE field of the callback request in the table would be set to 'N' signifying that the callback has not yet been done.

	
4.

	

The Generic IVR Adapter provides the pr_trouble_callback_requests stored procedure, which picks new callback requests from the TROUBLE_CALLBACKS table.

	
5.

	

The external application could use the pr_trouble_callback_requests stored procedure to pick new callback requests. Callback requests that were picked are marked with a PROCESS_STATUS field equal to ‘I’ (callback response in progress) on the TROUBLE_CALLBACKS table.

Callback Requests

A customer may request that he/she be called back as soon as the outage that he/she reported has been restored. The Generic IVR Adapter provides the stored procedure pr_trouble_callback_requests to be used by an external application that is managing the callback process. This procedure returns a list of calls where the customer has requested a callback.

Data Flow Characteristics

The following are characteristics for the Callback Request Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information, see
TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_requests. For stored procedure parameter information, see
pr_trouble_callback_requests Stored Procedure

	

Direction

	

Oracle Utilities Network Management System to external application

	

Generic IVR Adapter Data Retrieval Frequency from Oracle Utilities Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

When an outage with a corresponding callback request is restored, Oracle Utilities Network Management System builds a callback list.

	
2.

	

From the list, callback requests could be assigned to callback agents or to the external application, either in a manual (using Oracle Utilities Network Management System Web Callbacks) or an automated manner (via SRS rules).

	
3.

	

The Generic IVR Adapter retrieves all callback requests assigned to the external application and inserts the callback requests to the TROUBLE_CALLBACKS table. The PROCESS_STATUS field of the callback request in the table would be set to 'N' signifying that the callback request is new. The CALLBACK_DONE field of the callback request in the table would be set to 'N' signifying that the callback has not yet been done.

	
4.

	

The Generic IVR Adapter provides the pr_trouble_callback_requests stored procedure, which picks new callback requests from the TROUBLE_CALLBACKS table.

	
5.

	

The external application could use the pr_trouble_callback_requests stored procedure to pick new callback requests. Callback requests that were picked are marked with a PROCESS_STATUS field equal to ‘I’ (callback response in progress) on the TROUBLE_CALLBACKS table.

Callback Request Notes

Once an outage event or a non-outage event is restored, callbacks are generated if the call is marked for a callback. All events have a restoration, either explicit or implicit, so any event can generate a callback. Also, in the event that the customer called multiple times, the customer will receive multiple callbacks if he requested a callback on each call. JMService gathers every call associated with an event, without filtering duplicate callers. Every call that is marked for callback will receive a callback.

Callback Responses

The external application calls the customer to confirm if power has been restored or not. The result of this call is passed from the external application to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

Data Flow Characteristics

The following are characteristics of the Callback Responses Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information,
see

TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_responses. For stored procedure
parameter information, see

pr_trouble_callback_requests Stored Procedure
.

	

Direction

	

external application to Oracle Utilities Network
Management System

	

Generic IVR Adapter Data Update
Frequency to Oracle Utilities
Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application calls the customer to confirm if power has been restored. The result of this call is passed back to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

	
2.

	

The stored procedure uses the incident number and premise ID combination (or the external ID and premise ID combination if the first combination is not provided) to identify a callback record in the TROUBLE_CALLBACKS table that would be receiving a response.

	
3.

	

The stored procedure updates the identified callback in the TROUBLE_CALLBACKS table by updating the following fields:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
4.

	

The Oracle Utilities Network Management System Generic IVR Adapter queries the TROUBLE_CALLBACKS table for new callback responses received and sends this information to Oracle Utilities Network Management System.

	
5.

	

In Oracle Utilities Network Management System, the callback could get completed or cancelled or a new event (with the original call information) will be created, depending on the callback response.

Callback Response Notes

When a callback is made and no response from customer is received, a callback time will still be recorded. Any callback time that is submitted with a status is propagated, even if the status is no reply from the customer. It is understood in this case to be the last attempted callback. Also, when a nested outage is found, the new call and event are backdated to the original outage time.

Note: NMS does not track callback history.

Callback Responses

The external application calls the customer to confirm if power has been restored or not. The result of this call is passed from the external application to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

Data Flow Characteristics

The following are characteristics of the Callback Responses Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information,
see

TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_responses. For stored procedure
parameter information, see

pr_trouble_callback_requests Stored Procedure
.

	

Direction

	

external application to Oracle Utilities Network
Management System

	

Generic IVR Adapter Data Update
Frequency to Oracle Utilities
Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application calls the customer to confirm if power has been restored. The result of this call is passed back to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

	
2.

	

The stored procedure uses the incident number and premise ID combination (or the external ID and premise ID combination if the first combination is not provided) to identify a callback record in the TROUBLE_CALLBACKS table that would be receiving a response.

	
3.

	

The stored procedure updates the identified callback in the TROUBLE_CALLBACKS table by updating the following fields:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
4.

	

The Oracle Utilities Network Management System Generic IVR Adapter queries the TROUBLE_CALLBACKS table for new callback responses received and sends this information to Oracle Utilities Network Management System.

	
5.

	

In Oracle Utilities Network Management System, the callback could get completed or cancelled or a new event (with the original call information) will be created, depending on the callback response.

Callback Response Notes

When a callback is made and no response from customer is received, a callback time will still be recorded. Any callback time that is submitted with a status is propagated, even if the status is no reply from the customer. It is understood in this case to be the last attempted callback. Also, when a nested outage is found, the new call and event are backdated to the original outage time.

Note: NMS does not track callback history.

Callback Responses

The external application calls the customer to confirm if power has been restored or not. The result of this call is passed from the external application to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

Data Flow Characteristics

The following are characteristics of the Callback Responses Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information,
see

TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_responses. For stored procedure
parameter information, see

pr_trouble_callback_requests Stored Procedure
.

	

Direction

	

external application to Oracle Utilities Network
Management System

	

Generic IVR Adapter Data Update
Frequency to Oracle Utilities
Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application calls the customer to confirm if power has been restored. The result of this call is passed back to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

	
2.

	

The stored procedure uses the incident number and premise ID combination (or the external ID and premise ID combination if the first combination is not provided) to identify a callback record in the TROUBLE_CALLBACKS table that would be receiving a response.

	
3.

	

The stored procedure updates the identified callback in the TROUBLE_CALLBACKS table by updating the following fields:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
4.

	

The Oracle Utilities Network Management System Generic IVR Adapter queries the TROUBLE_CALLBACKS table for new callback responses received and sends this information to Oracle Utilities Network Management System.

	
5.

	

In Oracle Utilities Network Management System, the callback could get completed or cancelled or a new event (with the original call information) will be created, depending on the callback response.

Callback Response Notes

When a callback is made and no response from customer is received, a callback time will still be recorded. Any callback time that is submitted with a status is propagated, even if the status is no reply from the customer. It is understood in this case to be the last attempted callback. Also, when a nested outage is found, the new call and event are backdated to the original outage time.

Note: NMS does not track callback history.

Callback Responses

The external application calls the customer to confirm if power has been restored or not. The result of this call is passed from the external application to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

Data Flow Characteristics

The following are characteristics of the Callback Responses Data Flow:

	

Characteristics

	

Value

	

Table

	

TROUBLE_CALLBACKS. For schema information,
see

TROUBLE_CALLBACKS Table Schema
.

	

Stored Procedure

	

pr_trouble_callback_responses. For stored procedure
parameter information, see

pr_trouble_callback_requests Stored Procedure
.

	

Direction

	

external application to Oracle Utilities Network
Management System

	

Generic IVR Adapter Data Update
Frequency to Oracle Utilities
Network Management System

	

Periodic (configurable)

Data Flow Steps

	
1.

	

The external application calls the customer to confirm if power has been restored. The result of this call is passed back to Oracle Utilities Network Management System via the pr_trouble_callback_responses stored procedure.

	
2.

	

The stored procedure uses the incident number and premise ID combination (or the external ID and premise ID combination if the first combination is not provided) to identify a callback record in the TROUBLE_CALLBACKS table that would be receiving a response.

	
3.

	

The stored procedure updates the identified callback in the TROUBLE_CALLBACKS table by updating the following fields:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
4.

	

The Oracle Utilities Network Management System Generic IVR Adapter queries the TROUBLE_CALLBACKS table for new callback responses received and sends this information to Oracle Utilities Network Management System.

	
5.

	

In Oracle Utilities Network Management System, the callback could get completed or cancelled or a new event (with the original call information) will be created, depending on the callback response.

Callback Response Notes

When a callback is made and no response from customer is received, a callback time will still be recorded. Any callback time that is submitted with a status is propagated, even if the status is no reply from the customer. It is understood in this case to be the last attempted callback. Also, when a nested outage is found, the new call and event are backdated to the original outage time.

Note: NMS does not track callback history.

Adapter Installation

This section describes how to install the Oracle Utilities Network Management System Generic IVR Adapter.

Ensure that the Generic IVR Adapter is installed.

	
•

	

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/lib/libIVRAdapter.so

	
•

	

$CES_HOME/bin/IVRAdapter

	
•

	

$CES_HOME/bin/ces_ivr_gateway.ces

	
•

	

$CES_HOME/sql/product_retain_ivr_interface.sql

	
•

	

$CES_HOME/sql/product_ivr_interface_head.sql

	
•

	

$CES_HOME/sql/product_ivr_interface_body.plb

	
•

	

$CES_HOME/bin/troubleCallCreate

	
•

	

$CES_HOME/bin/ivrCallPerPoll.ces

	
•

	

$CES_HOME/bin/ivrPollPeriod.ces

Setup the Generic IVR Adapter System Variables

Include the following variables in the system variables definition:

	

Variable

	

Value

	

IVR_RDBMS_HOST

	

same as $RDBMS_HOST defined in the system

	

IVR_ORACLE_SID

	

same as $ORACLE_SID defined in the system

Note that this is setup in the .nmsrc file located in the $NMS_HOME (and configured by running config_nmsrc.pl). After the setup of the system variables, make sure that the .nmsrc is rerun or a new terminal is opened. The above setup assumes that the database where the Generic IVR Adapter tables and stored procedures would reside would be the same database used by the Oracle Utilities Network Management System environment.

Note also that the IVR RDBMS can be setup to be a completely separate RDBMS from the production RDBMS instance (hence these environment variables). This option may be considered if a project wants to maintain separation between the call taking process and the call processing process. With a separate RDBMS instance trouble calls can still be captured even if the production NMS RDBMS instance is down - for example. This is considered an advanced form of configuration and generaly requires certain tables be replicated between the two RDBMS instances to guarantee calls can still be properly captured when the NMS RDBMS is down. Please consult Oracle support or your project engineer for more information if this type of configuration is desired.

Configure Adapter to run as NMS System Service

Configure the Generic IVR Adapter to run as an Oracle Utilities Network Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic IVR Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic IVR Adapter. Search for IVRAdapter in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order for the Generic IVR Adapter to be properly monitored by SMService. See the following section for details on command line options for the Generic IVR Adapter.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

IVRAdapter Command Line Options

The section below lists the possible command line options for the Generic IVR Adapter. This section also introduces a tool that randomly creates trouble calls, along with its command line options. Performance tuning and high-level diagnostic messages that could be used on the Generic IVR Adapter will be discussed in this section as well.

The Generic IVR Adapter provides various command line options that enables Data Flows and configures Data Flow behavior. The following enumerates the command line options of the Generic IVR Adapter.

IVRAdapter -help

 -troublecall

 -omscbreq

 -omscbresp

 -cleantable

 -debug [0-2]

 -callperpoll NUMBERCALLS

 -pollperiod SECONDS

 -docustquery

 -cbreqinterval SECONDS

 -cbrespinterval SECONDS

 -cleaninterval HOURS

 -keepdbinfo DAYS

 -cbagent AGENTNAME

 [-cbAny | -cbLast]

This section groups the Generic IVR Adapter command line options under the context of the Data Flow or Data Flows it is associated to.

Generic IVR Adapter Generic Command Line Options

The following are the Generic IVR Adapter command line options that are independent from any Data Flow:

	

Option

	

Usage

	

Description

	

help

	

IVRAdapter -help

	

Displays the available command line options

	

debug

	

IVRAdapter -debug LEVEL(where LEVEL is 0, 1 or 2)

	

Runs gateway in debug mode. Associated number represents the debug level range from 0 to 2.

Trouble Call Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Trouble Calls Data Flow. For more information, see
Trouble Calls
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

troublecall

	

IVRAdapter - troublecall

	

Enables the Trouble Calls Data Flow.

Note : This option must be enabled for CC&B - NMS integration.

	

	

	

callperpoll

	

IVRAdapter - callperpoll NUMBERCALLS(where NUMBERCALLS is an integer)

	

Specifies the number of calls processed in the TROUBLE_CALLS table per poll of information.

	

troublecall

	

100 calls per poll of information

	

pollperiod

	

IVRAdapter - pollperiod SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls or queries from the TROUBLE_CALLS table

	

troublecall

	

a 6 second interval between two successive polls

	

docustquery

	

IVRAdapter - docustquery

	

If this option is selected, not all fields in the TROUBLE_CALLS table are directly fed to JMService. Instead, some of the fields would come from the CES_CUSTOMERS table.

Note : This option should not be used in combination with the CC&B - NMS integration.

	

troublecall

	

Callback Requests Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Requests Data Flow. For more information, see
Callback Requests
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbreq

	

IVRAdapter -omscbreq

	

Enables the Callback Requests Data Flow

	

	

	

cbreqinterval

	

IVRAdapter - cbreqinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the list of callback requests

	

omscbreq

	

a 5 second interval between two successive polls.

	

cbAny

	

IVRAdapter -cbAny

	

Callback is submitted to IVR if requested by the customer during any call.

	

omscbreq

	

	

cbLast

	

IVRAdapter -cbLast

	

Callback is submitted to IVR if requested by the customer during the last call.

	

omscbreq

	

Callback Responses Data Flow Command Line Options

The following are the Generic IVR Adapter command line options that are related to the Callback Responses Data Flow. For more information, see
Callback Responses
.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

omscbresp

	

IVRAdapter - omscbresp

	

Enables the Callback Responses Data Flow

	

	

	

cbrespinterval

	

IVRAdapter - cbrespinterval SECONDS(where SECONDS is an integer)

	

Specifies the interval (in seconds) between two successive polls from the TROUBLE_CALLBACKS table for received callback responses

	

omscbresp

	

a 5 second interval between two successive polls.

Command Line Options Used by Multiple Data Flows

The following are the Generic IVR Adapter command line options that are related to multiple Data Flows. On the ‘Depends On’ section, the term ‘any option that enables a Data Flow’ would pertain to either one of the following command line options: ‘troublecall’, ‘omscbreq’ and ‘omscbresp’.

	

Option

	

Usage

	

Description

	

Depends On

	

Default Value

	

cleantable

	

IVRAdapter - cleantable

	

Could be used for any of the five Data Flows. A flag that allows the Generic IVR Adapter to remove some completed records from its tables.

	

any option that enables a Data Flow

	

	

cleaninterval

	

IVRAdapter - cleaninterval HOURS(where HOURS is an integer)

	

Could be used for any of the five Data Flows.Specifies the interval (in HOURS) between two successive attempts to delete old (i.e., completed) records from the Oracle Utilities Network Management System Generic IVR Adapter tables.

	

Cleantable and any option that enables a Data Flow

	

1 hour between to successive delete attempts

	

keepdbinfo

	

IVRAdapter - keepdbinfo DAYS(where DAYS is an integer)

	

Could be used for any of the five Data Flows.Completed records on the Generic IVR Adapter tables older than the specified number of days will be deleted. Certain criteria apply on which records of the Oracle Utilities Network Management System Generic IVR Adapter tables are removed and how the records are aged.

	

Cleantable and any option that enables a Data Flow

	

 3 days

	

cbagent

	

IVRAdapter -cbagent AGENTNAME (where AGENTNAME is a string)

	

Could be used for the Callback Requests and Callback Responses Data Flows.

The agent name that the Generic IVR Adapter uses in retrieving calls from the callback list. Valid agent names are located in CES_USER and ENV_ACCESS tables. The agent name used should be an external agent, as indicated in the CES_USER table.

	

omscbreq or omscbresp

	

IVR

For the keepdbinfo command line options, a record that starts aging on a given day, say 9:00 p.m. would be considered one day old at 9:00 p.m. the next day (and not 12:00 a.m., which is just 3 hourse from the time the record started aging).

troubleCallCreate Tool Command Line Options

Random trouble calls could be created and passed to the Generic IVR Adapter using the troubleCallCreate tool. The troubleCallCreate tool inserts entries to the TROUBLE_CALLS table. From here, the Generic IVR Adapter (through the Trouble Calls Data Flow) could fetch the new records from this table and pass this information to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device.

Note : It is important for the Generic IVR Adapter System Variables to be setup to run the troubleCallCreate tool. For more information, see Setup the Generic IVR Adapter System Variables.

The following are the command line options for the troubleCallCreate tool:

	

Option

	

Usage

	

Description

	

Default Value

	

help

	

troubleCallCreate -help

	

Displays the available command line
options

	

	

debug

	

troubleCallCreate -debug

	

Runs this tool in debug mode,
defaulting the debug level to 2.

	

Defaults to debug
level 2

	

totalcalls

	

troubleCallCreate -totalcalls
NUMBEROFCALLS

(where
NUMBEROFCALLS is an
integer)

	

Specifies the number of trouble calls to
be created

	

	

troublecall

	

troubleCallCreate -
troublecall

	

Creates one trouble call

	

troubleCallCreate tool on testing Trouble Calls Data Flow

As the troubleCallCreate tool randomly creates trouble calls, this tool could be used to test the
Trouble Calls Data Flow. For more information about this Data Flow, see

Trouble Calls
.

The troubleCallCreate tool uses the CES_CUSTOMERS table to retrieve some customer
information that would be used as entries in the TROUBLE_CALLS table. The tool always begins
querying the CES_CUSTOMERS table starting from the first row, each time it is invoked.

When multiple trouble calls would be created (using the ‘totalcalls’ command line option), the
troubleCallCreate tool would place a different permutation of trouble code bits for each trouble
call in the TROUBLE_CALLS table.

After running the troubleCallCreate tool, the results could be verified using the following database
tables:

	
•

	

The TR OUBLE_CALLS table is populated with a new trouble call record (or with a certain
number of trouble calls, assuming that the ‘totalcalls’ command line option was used).

	
•

	

As the Generic IVR Adapter runs (using the Trouble Calls Data Flow), the INCIDENTS
table is populated with new records.

Note: The number of new records in the INCIDENTS table is less than or equal to the total number of new trouble calls in the TROUBLE_CALLS table, as Oracle Utilities Network Management System outage analysis algorithms allow grouping of calls based on various criteria.

troubleCallCreate tool on testing Callback Requests Data Flow

The Callback Requests Data Flow could be tested as well using the troubleCallCreate tool, since all
trouble calls generated by such tool requires callback. For more information about this Data Flow,
see

Data Flow Details
.

	
•

	

For a generated trouble call, if part of the trouble code is described to be 'Power On', no
record in the TROUBLE_CALLBACKS table will be generated even if the event is restored.

Load the Generic IVR Adapter Database Tables and Stored Procedures

	
•

	

The ces_ivr_gateway.ces script is responsible for loading various SQL files responsible for creating the Generic IVR Adapter tables and stored procedures. The ces_ivr_gateway.ces script could call some or all of the following scripts depending on how it was invoked:

	
•

	

product_retain_ivr_interface.sql - responsible for dropping and recreating the Generic IVR Adapter tables.

	
•

	

product_ivr_interface_head.sql - responsible for loading the Generic IVR Adapter stored procedure head.

	
•

	

product_ivr_interface_body.plb - responsible for loading the Generic IVR Adapter stored procedure body.

	
•

	

To create the Generic IVR Adapter tables and stored procedure, run the following command:

 ces_ivr_gateway.ces -offline

Note: The command above recreates the Generic IVR Adapter table by dropping and creating it, therefore wiping out the contents of the Generic IVR Adapter tables.

	
•

	

To create the Generic IVR Adapter stored procedure without dropping and recreating the Generic IVR Adapter tables, run the following command:

 ces_ivr_gateway.ces

Software Configuration

This section is intended to help the user configure the Generic IVR Adapter that was installed on the previous section. This includes the default configuration used, and the modifications to the base configurations that need to be done in order to customize the adapter's behavior.

Overview

This section will discuss how to map pieces of trouble call information sent by the external application to specific database fields within Oracle Utilities Network Management System via the Trouble Call Mapping Properties Configuration file. Moreover, this section will discuss various SRS rules that could be used for the Generic IVR Adapter.

Trouble Call Mapping Configuration

The fields of the Generic IVR Adapter's TROUBLE_CALLS table could be mapped with the fields of Oracle Utilities Network Management System' INCIDENTS and JOBS table. This is done through column matching of TROUBLE_CALLS fields with JMS Input String (JMS.h), which is the standard product column and user-defined configuration through SRS_RULES.

For more information about the Generic IVR Adapter's TROUBLE_CALLS table, see
TROUBLE_CALLS Table Schema

.

Mapping to the Base Fields in Oracle Utilities Network Management System Tables

The following table explains how the base fields of the INCIDENTS and the JOBS tables of Oracle Utilities Network Management System are mapped with the fields of the TROUBLE_CALLS table of the Generic IVR Adapter.

Below is a description of each column

	
•

	

The JMS Input String (first column) is the standard product column found in JMS.h, which is used to create calls with the JMS::sendJMSinput() API, within the Oracle Utilities Network Management System.

	
•

	

The ‘Description’ column (second column) describes the content of the field.

	
•

	

The ‘Mapping to Oracle Utilities Network Management System Tables’ column (third column) identifies to what fields of the INCIDENTS table or the JOBS table a given JMS Input String is tied up to. In this column, INC.<database field name> indicates that the field name is part of the INCIDENTS table; JOBS.<database field name> indicates that the field name is part of the JOBS table.

	
•

	

The ‘Mapping to TROUBLE_CALLS table’ column (fourth column) identifies the TROUBLE_CALLS table column the JMS Input String is currently mapped to.

	

JMS Input String

	

Description

	

Mapping to System Tables

	

Mapping to TROUBLE_CALLS table

	

ADDR_BUILDING

	

Customer building address. The building number portion of the street address of the customer.

	

INC.ADDR_BUILDING

	

 ADDR_BUILDING

	

ADDR_CITY

	

Customer city. The city or city/ state portion of the address of the customer.

	

INC.ADDR_CITY

	

 ADDR_CITY

	

ADDR_CROSS_ STREET

	

Intersection cross street name. Name of the second cross street should be in ADDR_STREET field.

	

INC.ADDR_CROSS_STREET

	

ADDR_CROSS_ STREET

	

ADDR_STREET

	

Customer street address. The full street address of the customer.

	

INC.ADDRESS

JOBS.ADDR_STREET

	

ADDR_STREET

	

ALTERNATE_PHONE

	

Alternative contact number. Alternate phone number for contacting the customer.

	

INC.ALTERNATE_PHONE

	

ALTERNATE_PHONE

	

APPT_RANGE

	

Appointment Range.

	

INC.APPT_RANGE

	

APPT_RANGE

	

APPT_TIME

	

Time of appointment.

	

INC.APPT_TIME

	

APPT_TIME

	

APPT_TYPE

	

Type of appointment.

	

INC.APPT_TYPE

	

APPT_TYPE

	

CALL_TIME

	

Input time of call. The input time of the incident. If not provided, the current time will be used.

	

INC.INPUT_TIME

	

CALL_TIME

	

CALL_TYPE

	

Type of call.

	

INC.TYPE

	

CALL_TYPE

	

CALLBACK_LATE

	

Callback late indicator. Indicates that it is OK to call back the customer beyond a defined ‘late’ time. This information is only stored in Oracle Utilities Network Management System. No other action is taken by Oracle Utilities Network Management System.

	

INC.CALLBACK_LATE

	

CALLBACK_LATE

	

CALLBACK_REQUEST

	

Indicates either a callback is requested or not.

	

INC.CALLBACK_REQUEST

	

CALLBACK_REQUEST

	

CALLBACK_TIME

	

Time callback requested. Time for which callback or a follow-up call was requested.

	

INC.CALLBACK_TIME

	

CALLBACK_TIME

	

CHECK_CUTOFF

	

Check cutoff customer indicator. If set to Y, check if the customer is disconnected, using the CES_DISCONNECTS table. If the customer is disconnected, the call will not be saved, an error will be returned and the VERIFY_DISCONNECTS table will be populated.

	

	

CHECK_CUTOFF

	

CID_ALIAS

	

Not used.

	

	

CID_ALIAS

	

CLUE

	

Indicates if call is clue if set to Y.

	

INC.CLUE

	

CLUE

	

COMBINE_PRI

	

Total priority of call.

	

	

COMBINE_PRI

	

COMMENT

	

Call-taker Comments. Comments provided by the customer or call-taker about the incident.

	

INC.OP_COMMENT

	

CALL_COMMENT

	

CUST_CALL_CANCEL

	

Call cancel indicator.

	

INC.CALL_CANCEL

	

CUST_CALL_CANCEL

	

CUST_CRITICAL

	

Critical customer indicator. This is added to the critical C count of the outage.

	

INC.CRITICAL_CUST

	

 CUST_CRITICAL

	

CUST_DEVICE_ALIAS

	

The name of the device to which the customer is connected. This must be the alias of the device handle provided with CUST_DEVICE_CLS and CUST_DEVICE_IDX. If not provided, the service will query ODService to get this information, incurring a performance penalty in call processing.

	

INC.OBJECT

	

CUST_DEVICE_ALIAS

	

CUST_DEVICE_CLS

	

Customer device class. The class part of the handle for the device to which the customer is connected. If CUST_ID is provided, but the device is not, JMService will look up the customer device in the CES_CUSTOMERS table. If the provided device is a supply node, it will be put in SUPPLY_CLS & SUPPLY_IDX and the first stage device will be put in H_CLS & H_IDX.

	

INC.H_CLS

	

 CUST_DEVICE_CLS

	

CUST_DEVICE_IDX

	

Customer device index. The index part of the handle for the device to which the customer is connected. See CUST_DEVICE_CLS above.

	

INC.H_IDX

	

CUST_DEVICE_IDX

	

CUST_DEVICE_NCG

	

NCG of customer device.

	

INC.NCG

	

CUST_DEVICE_NCG

	

CUST_DEVICE_ PARTITION

	

Partition of customer device.

	

INC.PARTITION

	

CUST_DEVICE_PARTI TION

	

CUST_FIRST_NAME

	

Customer first name. The first name of the customer. If CUST_FIRST_NAME and CUST_LAST_NAME are both provided, they will be appended together with a space. The concatenated customer first and last name (with a space in the middle) may not be larger than 75 characters. This may be used for the full name of the customer if CUST_LAST_NAME is omitted.

	

INC.CUSTOMER_NAME

JOBS.CUSTOMER_NAME

	

CUST_FIRST_NAME

	

CUST_ID

	

Unique identifier of a customer record in NMS. See CUST_DEVICE_CLS above.

	

INC.CID

	

CUST_ID

	

CUST_INTERSECT_ CLS

	

Intersecting device class.

	

	

CUST_INTERSECT_ CLS

	

CUST_INTERSECT_ IDX

	

Intersecting device index.

	

	

CUST_INTERSECT_ IDX

	

CUST_INTERSECT_ NCG

	

Intersecting NCG.

	

	

CUST_INTERSECT_ NCG

	

CUST_INTR_X

	

Intersecting X coordinate. X coordinate used for intersection grouping. See
streetXsectionOffset SRS Rule
 for more information.

	

	

CUST_INTR_X

	

CUST_INTR_Y

	

Intersecting Y coordinate. Y coordinate used for intersection grouping. See
streetXsectionOffset SRS Rule
 for more information.

	

	

 CUST_INTR_Y

	

CUST_KEY

	

Customer account number.

	

INC.ACCOUNT_NUM

	

CUST_KEY

	

CUST_LAST_NAME

	

The last name of the customer. See CUST_FIRST_NAME above.

	

INC.CUSTOMER_NAME

JOBS.CUSTOMER_NAME

	

 CUST_LAST_NAME

	

CUST_LIFE_SUPPORT

	

Life support customer. If set to ‘Y’, indicates a life support customer. This is added to the critical K count of the outage.

	

INC.LIFE_SUPPORT

	

CUST_LIFE_SUPPORT

	

CUST_ORDER_NUM

	

Customer order number. Not used in the Oracle Utilities Network Management System.

	

INC.ORDER_NUMBER

	

CUST_ORDER_NUM

	

CUST_PHONE

	

Customer phone number. The non-area code portion of the customer phone number. If both CUST_PHONE and CUST_PHONE_AREA are provided, they will be appended according to the customerPhoneParentheses SRS rule. The concatenated customer phone number and area (including parentheses) may not be larger than 32 characters. This field may be used for the full customer phone number if CUST_PHONE_AREA is omitted. See
customerPhoneParentheses SRS Rule
 for more information.

	

INC.CUSTOMER_PHONE

JOBS.CUSTOMER_PHONE

	

CUST_PHONE

	

CUST_PHONE_AREA

	

Customer phone area code. The area code portion of the customer phone number. See CUST_PHONE above.

	

INC.CUSTOMER_PHONE

JOBS.CUSTOMER_PHONE

	

 CUST_PHOHE_AREA

	

CUST_PHONE_ UPDATE

	

Whether to update customer phone. If set to Y, the customer phone number will be updated in the CUSTOMER_PHONE_OVERRIDE table.

	

	

CUST_PHONE_ UPDATE

	

CUST_PRIORITY

	

Customer priority. This string is used to determine the critical customer type and priority of the customer.

	

INC.CUSTOMER_TYPE

	

CUST_PRIORITY

	

CUST_STATUS

	

Condition status of call.

	

	

CUST_STATUS

	

CUST_TROUBLE_ CODE

	

Customer complaint. The customer complaint (trouble code). This is a required field and must correspond with values in the SRS_TROUBLE_CODES table.

	

INC.COMPLAINT

	

CUST_TROUBLE_ CODE

	

CUST_TROUBLE_ QUEUE

	

Customer trouble queue.

	

INC.TROUBLE_QUEUE

JOBS.TROUBLE_QUEUE

	

CUST_TROUBLE_ QUEUE

	

DRV_INST

	

Driving instructions.

	

INC.DRV_INSTR1

	

 DRV_INST

	

EXTERNAL_ID

	

Unique call identifier. The unique identifier for the incident.

	

INC.EXTERNAL_ID

JOBS.EXTERNAL_ID

	

EXTERNAL_ID

	

FUZZY_NCG_CLS

	

Fuzzy control zone class.

	

	

FUZZY_NCG_CLS

	

FUZZY_NCG_IDX

	

Fuzzy control zone index.

	

	

FUZZY_NCG_IDX

	

GENERAL_AREA

	

General Area. Not Used in the Oracle Utilities Network Management System.

	

INC.GENERAL_AREA

	

 GENERAL_AREA

	

GROUP_BY_NAME

	

Fuzzy control zone name.

	

	

GROUP_BY_NAME

	

GROUPABLE

	

If set to Y, the call is groupable.

	

INC.GROUPABLE

	

GROUPABLE

	

MEET_TIME

	

Time of customer meet. If provided, meet created will be a future meet for the given time. Otherwise, if a meet is created it will be a critical meet. MEET_TYPE must be provided to create a meet.

	

INC.MEET_TIME

	

 MEET_TIME

	

MEET_TYPE

	

Customer meet type. If set to 1, a new meet will be created. If set to 2, an existing meet will be rescheduled. If set to 3, an existing meet will be canceled. If any other value is provided, no meet will be created. May be used in conjunction with MEET_TIME.

	

INC.MEET_CODE

	

 MEET_TYPE

	

METER_ID

	

Customer meter number.

	

INC.METER_ID

	

 METER_ID

	

POWER_UP

	

Power-up call. Used for power- up messages from CellNet. Used for AMR.

	

	

 POWER_UP

	

RELATED_EVT_APP

	

Related event application.

	

	

RELATED_EVT_APP

	

RELATED_EVT_CLS

	

Related event class.

	

INC. RELATED_CLS

	

RELATED_EVT_CLS

	

RELATED_EVT_IDX

	

Related event index.

	

INC. RELATED_IDX

	

RELATED_EVT_IDX

	

REPORTED_ERT

	

Est rest time reported to caller.

	

INC. REPORTED_EST_REST_TIME

	

REPORTED_ERT

	

SHORT_DESC

	

Short description of trouble.

	

INC.SHORT_DESC

	

SHORT_DESC

	

TROUBLE_LOC

	

Incident's trouble location.

	

INC.TROUBLE_LOC

	

TROUBLE_LOC

	

UPDATE_EXISTING_ INC

	

Whether to update an existing incident. If set to 1, then JMService will replace an existing incident for the same customer with the values passed in this call.

	

	

UPDATE_EXISTING_ INC

	

USER_NAME

	

Call-taker user name. The name of the call-taker or interface that created the call.

	

INC.USER_NAME

	

USER_NAME

	

X_REF

	

Customer X coordinate. X coordinate of customer or customer device.

	

INC.X_COORD

	

 X_REF

	

Y_REF

	

Customer Y coordinate. Y coordinate of customer or customer device.

	

INC.Y_COORD

	

 Y_REF

During initialization of IVRAdapter, TROUBLE_CALLS column are matched with the standard product column (JMS.h). If TROUBLE_CALLS field does not match, error will be logged and IVRAdapter will exit.

The following are some exceptions when matching TROUBLE_CALLS columns with JMS Input String:

	
•

	

TROUBLE_CALLS.CALL_COMMENT - JMS Input String COMMENT

	
•

	

TROUBLE_CALLS.CALL_STATUS - special column in TROUBLE_CALLS table that indicates that the call is new (N) or already processed (C).

	
•

	

TROUBLE_CALLS.SUPPLY_ID - if this column exists, it replaces the value of TROUBLE_CALLS. CUST_DEVICE_IDX and TROUBLE_CALLS. CUST_DEVICE_CLS is set to 994.

Trouble Call Mapping Configuration

The fields of the Generic IVR Adapter's TROUBLE_CALLS table could be mapped with the fields of Oracle Utilities Network Management System' INCIDENTS and JOBS table. This is done through column matching of TROUBLE_CALLS fields with JMS Input String (JMS.h), which is the standard product column and user-defined configuration through SRS_RULES.

For more information about the Generic IVR Adapter's TROUBLE_CALLS table, see
TROUBLE_CALLS Table Schema

.

Mapping to the Base Fields in Oracle Utilities Network Management System Tables

The following table explains how the base fields of the INCIDENTS and the JOBS tables of Oracle Utilities Network Management System are mapped with the fields of the TROUBLE_CALLS table of the Generic IVR Adapter.

Below is a description of each column

	
•

	

The JMS Input String (first column) is the standard product column found in JMS.h, which is used to create calls with the JMS::sendJMSinput() API, within the Oracle Utilities Network Management System.

	
•

	

The ‘Description’ column (second column) describes the content of the field.

	
•

	

The ‘Mapping to Oracle Utilities Network Management System Tables’ column (third column) identifies to what fields of the INCIDENTS table or the JOBS table a given JMS Input String is tied up to. In this column, INC.<database field name> indicates that the field name is part of the INCIDENTS table; JOBS.<database field name> indicates that the field name is part of the JOBS table.

	
•

	

The ‘Mapping to TROUBLE_CALLS table’ column (fourth column) identifies the TROUBLE_CALLS table column the JMS Input String is currently mapped to.

	

JMS Input String

	

Description

	

Mapping to System Tables

	

Mapping to TROUBLE_CALLS table

	

ADDR_BUILDING

	

Customer building address. The building number portion of the street address of the customer.

	

INC.ADDR_BUILDING

	

 ADDR_BUILDING

	

ADDR_CITY

	

Customer city. The city or city/ state portion of the address of the customer.

	

INC.ADDR_CITY

	

 ADDR_CITY

	

ADDR_CROSS_ STREET

	

Intersection cross street name. Name of the second cross street should be in ADDR_STREET field.

	

INC.ADDR_CROSS_STREET

	

ADDR_CROSS_ STREET

	

ADDR_STREET

	

Customer street address. The full street address of the customer.

	

INC.ADDRESS

JOBS.ADDR_STREET

	

ADDR_STREET

	

ALTERNATE_PHONE

	

Alternative contact number. Alternate phone number for contacting the customer.

	

INC.ALTERNATE_PHONE

	

ALTERNATE_PHONE

	

APPT_RANGE

	

Appointment Range.

	

INC.APPT_RANGE

	

APPT_RANGE

	

APPT_TIME

	

Time of appointment.

	

INC.APPT_TIME

	

APPT_TIME

	

APPT_TYPE

	

Type of appointment.

	

INC.APPT_TYPE

	

APPT_TYPE

	

CALL_TIME

	

Input time of call. The input time of the incident. If not provided, the current time will be used.

	

INC.INPUT_TIME

	

CALL_TIME

	

CALL_TYPE

	

Type of call.

	

INC.TYPE

	

CALL_TYPE

	

CALLBACK_LATE

	

Callback late indicator. Indicates that it is OK to call back the customer beyond a defined ‘late’ time. This information is only stored in Oracle Utilities Network Management System. No other action is taken by Oracle Utilities Network Management System.

	

INC.CALLBACK_LATE

	

CALLBACK_LATE

	

CALLBACK_REQUEST

	

Indicates either a callback is requested or not.

	

INC.CALLBACK_REQUEST

	

CALLBACK_REQUEST

	

CALLBACK_TIME

	

Time callback requested. Time for which callback or a follow-up call was requested.

	

INC.CALLBACK_TIME

	

CALLBACK_TIME

	

CHECK_CUTOFF

	

Check cutoff customer indicator. If set to Y, check if the customer is disconnected, using the CES_DISCONNECTS table. If the customer is disconnected, the call will not be saved, an error will be returned and the VERIFY_DISCONNECTS table will be populated.

	

	

CHECK_CUTOFF

	

CID_ALIAS

	

Not used.

	

	

CID_ALIAS

	

CLUE

	

Indicates if call is clue if set to Y.

	

INC.CLUE

	

CLUE

	

COMBINE_PRI

	

Total priority of call.

	

	

COMBINE_PRI

	

COMMENT

	

Call-taker Comments. Comments provided by the customer or call-taker about the incident.

	

INC.OP_COMMENT

	

CALL_COMMENT

	

CUST_CALL_CANCEL

	

Call cancel indicator.

	

INC.CALL_CANCEL

	

CUST_CALL_CANCEL

	

CUST_CRITICAL

	

Critical customer indicator. This is added to the critical C count of the outage.

	

INC.CRITICAL_CUST

	

 CUST_CRITICAL

	

CUST_DEVICE_ALIAS

	

The name of the device to which the customer is connected. This must be the alias of the device handle provided with CUST_DEVICE_CLS and CUST_DEVICE_IDX. If not provided, the service will query ODService to get this information, incurring a performance penalty in call processing.

	

INC.OBJECT

	

CUST_DEVICE_ALIAS

	

CUST_DEVICE_CLS

	

Customer device class. The class part of the handle for the device to which the customer is connected. If CUST_ID is provided, but the device is not, JMService will look up the customer device in the CES_CUSTOMERS table. If the provided device is a supply node, it will be put in SUPPLY_CLS & SUPPLY_IDX and the first stage device will be put in H_CLS & H_IDX.

	

INC.H_CLS

	

 CUST_DEVICE_CLS

	

CUST_DEVICE_IDX

	

Customer device index. The index part of the handle for the device to which the customer is connected. See CUST_DEVICE_CLS above.

	

INC.H_IDX

	

CUST_DEVICE_IDX

	

CUST_DEVICE_NCG

	

NCG of customer device.

	

INC.NCG

	

CUST_DEVICE_NCG

	

CUST_DEVICE_ PARTITION

	

Partition of customer device.

	

INC.PARTITION

	

CUST_DEVICE_PARTI TION

	

CUST_FIRST_NAME

	

Customer first name. The first name of the customer. If CUST_FIRST_NAME and CUST_LAST_NAME are both provided, they will be appended together with a space. The concatenated customer first and last name (with a space in the middle) may not be larger than 75 characters. This may be used for the full name of the customer if CUST_LAST_NAME is omitted.

	

INC.CUSTOMER_NAME

JOBS.CUSTOMER_NAME

	

CUST_FIRST_NAME

	

CUST_ID

	

Unique identifier of a customer record in NMS. See CUST_DEVICE_CLS above.

	

INC.CID

	

CUST_ID

	

CUST_INTERSECT_ CLS

	

Intersecting device class.

	

	

CUST_INTERSECT_ CLS

	

CUST_INTERSECT_ IDX

	

Intersecting device index.

	

	

CUST_INTERSECT_ IDX

	

CUST_INTERSECT_ NCG

	

Intersecting NCG.

	

	

CUST_INTERSECT_ NCG

	

CUST_INTR_X

	

Intersecting X coordinate. X coordinate used for intersection grouping. See
streetXsectionOffset SRS Rule
 for more information.

	

	

CUST_INTR_X

	

CUST_INTR_Y

	

Intersecting Y coordinate. Y coordinate used for intersection grouping. See
streetXsectionOffset SRS Rule
 for more information.

	

	

 CUST_INTR_Y

	

CUST_KEY

	

Customer account number.

	

INC.ACCOUNT_NUM

	

CUST_KEY

	

CUST_LAST_NAME

	

The last name of the customer. See CUST_FIRST_NAME above.

	

INC.CUSTOMER_NAME

JOBS.CUSTOMER_NAME

	

 CUST_LAST_NAME

	

CUST_LIFE_SUPPORT

	

Life support customer. If set to ‘Y’, indicates a life support customer. This is added to the critical K count of the outage.

	

INC.LIFE_SUPPORT

	

CUST_LIFE_SUPPORT

	

CUST_ORDER_NUM

	

Customer order number. Not used in the Oracle Utilities Network Management System.

	

INC.ORDER_NUMBER

	

CUST_ORDER_NUM

	

CUST_PHONE

	

Customer phone number. The non-area code portion of the customer phone number. If both CUST_PHONE and CUST_PHONE_AREA are provided, they will be appended according to the customerPhoneParentheses SRS rule. The concatenated customer phone number and area (including parentheses) may not be larger than 32 characters. This field may be used for the full customer phone number if CUST_PHONE_AREA is omitted. See
customerPhoneParentheses SRS Rule
 for more information.

	

INC.CUSTOMER_PHONE

JOBS.CUSTOMER_PHONE

	

CUST_PHONE

	

CUST_PHONE_AREA

	

Customer phone area code. The area code portion of the customer phone number. See CUST_PHONE above.

	

INC.CUSTOMER_PHONE

JOBS.CUSTOMER_PHONE

	

 CUST_PHOHE_AREA

	

CUST_PHONE_ UPDATE

	

Whether to update customer phone. If set to Y, the customer phone number will be updated in the CUSTOMER_PHONE_OVERRIDE table.

	

	

CUST_PHONE_ UPDATE

	

CUST_PRIORITY

	

Customer priority. This string is used to determine the critical customer type and priority of the customer.

	

INC.CUSTOMER_TYPE

	

CUST_PRIORITY

	

CUST_STATUS

	

Condition status of call.

	

	

CUST_STATUS

	

CUST_TROUBLE_ CODE

	

Customer complaint. The customer complaint (trouble code). This is a required field and must correspond with values in the SRS_TROUBLE_CODES table.

	

INC.COMPLAINT

	

CUST_TROUBLE_ CODE

	

CUST_TROUBLE_ QUEUE

	

Customer trouble queue.

	

INC.TROUBLE_QUEUE

JOBS.TROUBLE_QUEUE

	

CUST_TROUBLE_ QUEUE

	

DRV_INST

	

Driving instructions.

	

INC.DRV_INSTR1

	

 DRV_INST

	

EXTERNAL_ID

	

Unique call identifier. The unique identifier for the incident.

	

INC.EXTERNAL_ID

JOBS.EXTERNAL_ID

	

EXTERNAL_ID

	

FUZZY_NCG_CLS

	

Fuzzy control zone class.

	

	

FUZZY_NCG_CLS

	

FUZZY_NCG_IDX

	

Fuzzy control zone index.

	

	

FUZZY_NCG_IDX

	

GENERAL_AREA

	

General Area. Not Used in the Oracle Utilities Network Management System.

	

INC.GENERAL_AREA

	

 GENERAL_AREA

	

GROUP_BY_NAME

	

Fuzzy control zone name.

	

	

GROUP_BY_NAME

	

GROUPABLE

	

If set to Y, the call is groupable.

	

INC.GROUPABLE

	

GROUPABLE

	

MEET_TIME

	

Time of customer meet. If provided, meet created will be a future meet for the given time. Otherwise, if a meet is created it will be a critical meet. MEET_TYPE must be provided to create a meet.

	

INC.MEET_TIME

	

 MEET_TIME

	

MEET_TYPE

	

Customer meet type. If set to 1, a new meet will be created. If set to 2, an existing meet will be rescheduled. If set to 3, an existing meet will be canceled. If any other value is provided, no meet will be created. May be used in conjunction with MEET_TIME.

	

INC.MEET_CODE

	

 MEET_TYPE

	

METER_ID

	

Customer meter number.

	

INC.METER_ID

	

 METER_ID

	

POWER_UP

	

Power-up call. Used for power- up messages from CellNet. Used for AMR.

	

	

 POWER_UP

	

RELATED_EVT_APP

	

Related event application.

	

	

RELATED_EVT_APP

	

RELATED_EVT_CLS

	

Related event class.

	

INC. RELATED_CLS

	

RELATED_EVT_CLS

	

RELATED_EVT_IDX

	

Related event index.

	

INC. RELATED_IDX

	

RELATED_EVT_IDX

	

REPORTED_ERT

	

Est rest time reported to caller.

	

INC. REPORTED_EST_REST_TIME

	

REPORTED_ERT

	

SHORT_DESC

	

Short description of trouble.

	

INC.SHORT_DESC

	

SHORT_DESC

	

TROUBLE_LOC

	

Incident's trouble location.

	

INC.TROUBLE_LOC

	

TROUBLE_LOC

	

UPDATE_EXISTING_ INC

	

Whether to update an existing incident. If set to 1, then JMService will replace an existing incident for the same customer with the values passed in this call.

	

	

UPDATE_EXISTING_ INC

	

USER_NAME

	

Call-taker user name. The name of the call-taker or interface that created the call.

	

INC.USER_NAME

	

USER_NAME

	

X_REF

	

Customer X coordinate. X coordinate of customer or customer device.

	

INC.X_COORD

	

 X_REF

	

Y_REF

	

Customer Y coordinate. Y coordinate of customer or customer device.

	

INC.Y_COORD

	

 Y_REF

During initialization of IVRAdapter, TROUBLE_CALLS column are matched with the standard product column (JMS.h). If TROUBLE_CALLS field does not match, error will be logged and IVRAdapter will exit.

The following are some exceptions when matching TROUBLE_CALLS columns with JMS Input String:

	
•

	

TROUBLE_CALLS.CALL_COMMENT - JMS Input String COMMENT

	
•

	

TROUBLE_CALLS.CALL_STATUS - special column in TROUBLE_CALLS table that indicates that the call is new (N) or already processed (C).

	
•

	

TROUBLE_CALLS.SUPPLY_ID - if this column exists, it replaces the value of TROUBLE_CALLS. CUST_DEVICE_IDX and TROUBLE_CALLS. CUST_DEVICE_CLS is set to 994.

Mapping to Customer-Defined Fields in Oracle Utilities Network Management System's INCIDENTS table

A configurable TROUBLE_CALLS column can also be done through SRS_RULES.

The following are the steps to map a new field in the TROUBLE_CALLS table with a new field in the INCIDENTS table:

	
1.

	

Change the TROUBLE_CALLS table schema to include the customized field, for instance, TC_FIELD_ONE.

	
2.

	

Change the INCIDENTS table schema to include a new field that will be mapped to TC_FIELD_ONE. For instance the new field on the INCIDENTS table would be INC_FIELD_ONE.

	
3.

	

Create a new SRS Rule that maps the ‘201’ (TROUBLE_CALLS reserve name) with the new field in the INCIDENTS table, INC_FIELD_ONE. See the
Map Customer-Defined Fields in the INCIDENTS Table
 SRS rule for more information.

	
4.

	

Restart JMService and the Generic IVR Adapter.

Note: Before considering the option of introducing new fields in the TROUBLE_CALLS table and the INCIDENTS table, it is advisable to discuss such option with your Project Engineer.

Trouble Callback Mapping Configuration

IVR Adapter allows arbitrary information from the PICKLIST_INFO_UPD_TR table to be included into callback request. Columns CB_DETAIL1, CB_DETAIL2, CB_DETAIL3 and CB_DETAIL4 in the TROUBLE_CALLBACKS database table are used for this purpose. Database table IVR_ADAPTER_CONFIG is used to define if/how these columns should be populated.

	

Field Name

	

Nullable

	

Data Type

	

Description

	

CONFIG_ITEM

	

N

	

VARCHAR2(32)

	

Column name in the TROUBLE_CALLBACKS database table, which should be populated from the PICKLIST_INFO_UPD_TR table. Valid values are

	

CONFIG_VALUE

	

N

	

VARCHAR2(32)

	

Column name in the PICKLIST_INFO_UPD_TR table, which should be used as the data source.

SRS Rules Configuration

The following are SRS rules that could be used with the Generic IVR Adapter. These SRS rules can be included in the <project>_srs_rules.sql file.

Map Customer-Defined Fields in the INCIDENTS Table

Oracle Utilities Network Management System and the Generic IVR Adapter provides a mechanism to receive additional trouble call information from the external application and have this information stored in a new customer-defined field in the INCIDENTS table of Oracle Utilities Network Management System.

The configurable TROUBLE_CALLS column name has special names ‘201’, ‘202’, up to ‘209’ to serve this purpose. Normally, a regular column name in TROUBLE_CALLS like CALL_COMMENT or COMMENT in JMS Input String is tied to a specific field of the INCIDENTS table by default. For this case, it's the OP_COMMENT field. A special name like ‘201’ could be mapped to a new field in the INCIDENTS table by using an SRS rule. The table below details how an SRS rule could be used to do this mapping. An SRS rule like this has to be used for each mapping. See
Map Customer-Defined Fields in the INCIDENTS Table
 for more information.

	

Field Name

	

Value

	

SET_NAME

	

‘config_incident’

	

INCIDENT_TYPE

	

‘customer_defined’

	

RULE_NAME

	

the name of the new column in the INCIDENTS table

	

RULE_VALUE_1

	

‘str’, ‘date’, ‘int’, ‘float’

‘str’ is for strings, ‘date’ is for dates, ‘int’ is for integers, and ‘float’ is for floats. This represents the data type of the new column.

	

RULE_VALUE_2

	

An integer, representing the value of the SRS input configuration item specifying this field -- must have a value of 200 or greater

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

callbackInterfaceEnabled SRS Rule

If set to ‘yes’ then SRS APIs for manipulating callback information will become available. It has to be set to ‘yes’ for Web Callback GUI to operate. This rule holds outage information in JMService memory on a special data structure until this time expires OR all customer callbacks for the outage are complete.

	

Field Name

	

Value

	

SET_NAME

	

‘config’

	

INCIDENT_TYPE

	

‘any’

	

RULE_VALUE_1

	

‘yes’ or ‘no’ (default: ‘no’)

	

RULE_VALUE_2

	

0 (not used)

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

useExternalCause SRS Rule

If set to ‘yes’ then the IVR Adapter’s callback requests data flow will include the cause code when it populates the TROUBLE_CALLBACKS table. The cause code value will be taken from JOBS.CAUSE.

	

Field Name

	

Value

	

SET_NAME

	

‘config’

	

INCIDENT_TYPE

	

‘any’

	

RULE_VALUE_1

	

‘yes’ or ‘no’ (default: ‘yes’)

	

RULE_VALUE_2

	

0 (not used)

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

customerPhoneParentheses SRS Rule

If rule_value_1 set to ‘yes’, parentheses will be added to customer call phone numbers in the following format: (AREA)NUMBER. Otherwise, the number and area will be concatenated together without parentheses.

	

Field Name

	

Value

	

SET_NAME

	

‘config’

	

INCIDENT_TYPE

	

‘any’

	

RULE_VALUE_1

	

‘yes’ or ‘no’ (Default: ‘yes’)

	

RULE_VALUE_2

	

0 (not used)

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

defaultCallbackAgent SRS Rule

Specifies username of the default callback agent. All new callbacks will be automatically assigned to this agent. If this rule is not set then new callbacks will be left unassigned.

Note: This rule only takes effect if the rule callbackInterfaceEnabled set to ‘yes’. See
callbackInterfaceEnabled SRS Rule
 for more information. The agent name used should be considered as an external agent in the CES_USER and ENV_ACCESS tables. Also, it is recommended that ‘IVR’ be used as a value of RULE_VALUE_1, as this is the default callback agent name that the Generic IVR Adapter uses when the adapter runs.

	

Field Name

	

Value

	

SET_NAME

	

‘config’

	

INCIDENT_TYPE

	

‘any’

	

RULE_VALUE_1

	

callback agent username

	

RULE_VALUE_2

	

0 (not used)

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

callbackFeederTimeout SRS Rule

The maximum time allowed (in minutes) between the current time and the restoration time of a resolution in callback module before the resolution is deemed too old to remain or be loaded into the callback module. This rule holds outage info in JMService memory in a special data structure until this time expires OR all customer callbacks for the outage are complete.

If this rule is set to 0 then resolutions will be kept in JMService until all callbacks are completed.

Note: This rule must be used in conjunction with the
callbackInterfaceEnabled SRS Rule
.

	

Field Name

	

Value

	

INCIDENT_TYPE

	

‘flowControlGeneral’

	

RULE_VALUE_1

	

"" (not used)

	

RULE_VALUE_2

	

An integer, representing a number of minutes
(Default: 2880 --
48 hours)

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

streetXsectionOffset SRS Rule

Specifies the size of the maximum bounding rectangle to be used in grouping street intersection fuzzy calls to supply nodes. The rectangle will be the area where:

 x E [xsection_x - THIS RULE VALUE, xsection_x + THIS RULE VALUE]

 and

 y E [xsection_y - THIS RULE VALUE, xsection_y + THIS RULE VALUE]

This is an integer. Check your world coordinate system for a reasonable integer value.

This rule is used once for each rectangle desired (i.e., multiple instances of this rule may exist in a single rule set). For example, a larger rectangle size may be desired in a rural control zone and a smaller rectangle in an urban control zone.

	

Field Name

	

Value

	

RULE_VALUE_1

	

‘‘ (not used)

	

RULE_VALUE_2

	

integer (Default: none)

	

RULE_VALUE_INTEGER_1

	

0 (not used)

	

RULE_VALUE_INTEGER_2

	

0 (not used)

	

RULE_VALUE_INTEGER_3

	

0 (not used)

	

RULE_VALUE_INTEGER_4

	

0 (not used)

	

RULE_VALUE_INTEGER_5

	

0 (not used)

	

NCG_CLS

	

integer, representing ncg_cls of desired
applicable control zone level

	

NCG_IDX

	

integer, representing ncg_idx of desired
applicable control zone level

Generic IVR Adapter Trouble Call Performance

The maximum rate at which the Generic IVR Adapter injects trouble calls into the Oracle Utilities Network Management System is initially determined using the -callperpoll and -pollperiod command line parameters in the system.dat file. If these parameters are not set, the Generic IVR Adapter will, by default, retrieve a maximum of 100 trouble calls from the TROUBLE_CALLS table every six seconds and send these calls into the MMM via JMService. This corresponds to a maximum hourly call rate of 60,000 calls per hour.

If it is necessary to change this call rate while the adapter is running, two scripts are provided: ivrCallPerPoll.ces and ivrPollPeriod.ces. These scripts may be used to adjust the number of calls retrieved during each poll cycle and the period between poll cycles while the adapter is running.

Note : If the adapter is restarted, these parameters (and the corresponding call rate) will revert to the command line parameters specified in the system.dat file (or the default values if no command line options are specified).

	

Command

	

Usage

	

Description

	

ivrCallPerPoll.ces

	

ivrCallPerPoll.ces
NUM_CALLS_PER_POLL

	

Changes the number of calls retrieved from the
TROUBLE_CALLS table during one poll cycle.

	

	

IvrPollPeriod.ces

	

IvrPollPeriod.ces
NUM_SECONDS

	

Changes the period between poll cycles where
calls are retrieved from the TROUBLE_CALLS
table and submitted to JMService.

	

Generic IVR Adapter Troubleshooting

This section identifies high-level messages that could be sent to the Generic IVR Adapter using
the Action command for troubleshooting purposes.

	

Command

	

Usage

	

Description

	

report

	

Action -services
any.IVRGateway report

	

Reports back if the Generic IVR Adapter has
started.

	

	

stop

	

Action -services
any.IVRGateway stop

	

Stops the Generic IVR Adapter

	

	

debug

	

Action -services
any.IVRGateway debug
LEVEL

(where LEVEL is 0, 1 or 2)

	

Sets the Generic IVR Adapter’s debug level

	

	

cleantable

	

Action -services
any.IVRGateway cleantable

	

Toggles the ‘cleantable’ command line option.
Instructs if the Generic IVR Adapter should
remove some records from its tables or not.

	

Note: It is important that the Generic IVR Adapter is already included in the System Data file to run high-level messages properly. For more information, see
Configure Adapter to run as NMS System Service
.

Database Schema

Overview

The following section defines in detail the schema of each database tables used by the Generic IVR Adapter. These Generic IVR Adapter tables however are not captured by performance mart. Moreover, this section defines the parameters used by the Generic IVR Adapter's stored procedures.

Database Schema

Overview

The following section defines in detail the schema of each database tables used by the Generic IVR Adapter. These Generic IVR Adapter tables however are not captured by performance mart. Moreover, this section defines the parameters used by the Generic IVR Adapter's stored procedures.

Database Table Schema

TROUBLE_CALLS Table Schema

The TROUBLE_CALLS table stores the trouble calls that are submitted by the external application. The Generic IVR Adapter polls this table and submits new trouble call records to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device. The external application indirectly inserts records to the TROUBLE_CALLS table by invoking the pr_trouble_calls stored procedure. See
pr_trouble_calls Stored Procedure
 for more information.

Each field of the TROUBLE_CALLS table is matched with SRSinput field. The mapping is configurable. A column names are directly tied up to a specific field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System.

In effect, each field in the TROUBLE_CALLS table is mapped (and the mapping is configurable) to a particular field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System. For more information, see
Trouble Call Mapping Configuration
.

In the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table. Field names prefixed by 'JOBS.' would come from the JOBS table. Field names prefixed by 'CC.' would come from the CES_CUSTOMERS table.

	

Field Name

	

Nullable

	

Data Type

	

Description (JMS Input String reference)

	

ADDR_BUILDING

	

Y

	

VARCHAR2(10)

	

Customer building address. Refer to

ADDR_BUILDING
 for more information.

Map to INC.ADDR_BUILDING

	

ADDR_CITY

	

Y

	

VARCHAR2(45)

	

Customer City/State. Refer to

ADDR_CITY
 for more information.

Maps to INC.ADDR_CITY

	

ADDR_CROSS_STREET

	

Y

	

VARCHAR2(255)

	

Intersection cross street name.

Maps to INC.ADDR_CROSS_STREET.

	

ADDR_STREET

	

Y

	

VARCHAR2(255)

	

Customer address. Refer to

ADDR_STREET
 for more information.

Maps to INC.ADDRESS and
JOBS.ADDR_STREET

	

ALTERNATE_PHONE

	

Y

	

VARCHAR2(32)

	

Alternative contact number. Refer to

ALTERNATE_PHONE
 for more information.

Maps to INC.ALTERNATE_PHONE

	

APPT_RANGE

	

Y

	

NUMBER

	

Appointment Range. Refer to

APPT_RANGE
 for more information.

Maps to INC.APPT_RANGE.

	

APPT_TIME

	

Y

	

DATE

	

Time of appointment. Refer to

APPT_TIME
 for more information.

Maps to INC.APPT_TIME.

	

APPT_TYPE

	

Y

	

VARCHAR2(16)

	

Type of appointment. Refer to

APPT_TYPE
 for more information.

Maps to INC.APPT_TYPE.

	

CALL_COMMENT

	

Y

	

VARCHAR2(255)

	

Customer Comment. Refer to

COMMENT
 Property Name for more information.

Maps to INC.OP_COMMENT.

	

CALL_ID

	

Y

	

VARCHAR2(16)

	

Not used.

	

CALL_STATUS

	

Y

	

VARCHAR2(1)

	

Status of the trouble call in the
TROUBLE_CALLS table. The Generic IVR
Adapter uses this internally to identify the status
of this trouble call.

The possible values are as follows:

 ‘N’ - New trouble call

 ‘I’ - The Generic IVR Adapter is in the process
of submitting this trouble call to Oracle Utilities
Network Management System

 ‘C’ - Trouble call submission to Oracle Utilities
Network Management System is completed.

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. Records with
CALL_STATUS field = 'C' will be purged.

	

CALL_TIME

	

N

	

DATE

	

Input time of call. Refer to

CALL_TIME
 for more information.

Maps to INC.INPUT_TIME

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. The TROUBLE_CALL
record is 'aged' based on the system date/time
and the CALL_TIME field. Any record older
than a predefined number of days will be
removed. See

keepdbinfo
 for more information.

	

CALL_TYPE

	

Y

	

VARCHAR2(8)

	

Type of call. Refer to

CALL_TYPE
 for more information.

Maps to INC.TYPE

	

CALLBACK_LATE

	

Y

	

VARCHAR2(1)

	

Callback late indicator. Refer to

CALLBACK_LATE
 for more information.

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is already
late.

 ‘N’ - It is not OK to call back when it is already
late.

If no value was supplied, this field will default to
'N'.

This information is only passed from the external
application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_REQUEST

	

Y

	

NUMBER

	

Callback request indicator. Refer to

CALLBACK_REQUEST
 for more information.

The possible values are as follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Maps to INC.CALLBACK_REQUEST

	

CALLBACK_TIME

	

Y

	

DATE

	

Callback Before Time. Refer to

CALLBACK_TIME
 for more information.

Maps to INC.CALLBACK_TIME

	

CHECK_CUTOFF

	

Y

	

VARCHAR2(1)

	

Check cut-off customer indicator. Refer to

CHECK_CUTOFF
 for more information.

The possible values are as follows:

 ‘Y’ - check if the customer is disconnected

 ‘N’ - do not perform checking.

	

CLUE

	

Y

	

NUMBER

	

Indicates if call is clue if set to Y. Refer to

CLUE
 for more information.

Maps to INC.CLUE

	

COMBINE_PRI

	

Y

	

NUMBER

	

Total priority of call. Refer to

COMBINE_PRI
 for more information.

	

CUST_CALL_CANCEL

	

Y

	

VARCHAR2(1)

	

Call cancel indicator. Refer to

CUST_CALL_CANCEL
 for more information.

Maps to INC.CALL_CANCEL

	

CUST_CRITICAL

	

Y

	

VARCHAR2(1)

	

Critical customer indicator. This is added to the
critical C count of the outage. Refer to

CUST_CRITICAL
 for more information.

Maps to INC.CRITICAL_CUST

	

CUST_DEVICE_ALIAS

	

Y

	

VARCHAR2(32)

	

Customer Device Alias. Refer to

CUST_DEVICE_ALIAS
 for more information.

Maps to INC.OBJECT

	

 CUST_DEVICE_CLS

	

Y

	

NUMBER

	

Corresponding CC.H_CLS field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_DEVICE_CLS
 for more information.

Maps to INC.H_CLS

	

 CUST_DEVICE_IDX

	

Y

	

NUMBER

	

Corresponding CC.H_IDX field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_DEVICE_IDX
 for more information.

Maps to INC.H_IDX

	

CUST_DEVICE_NCG

	

Y

	

NUMBER

	

NCG of customer device. Refer to

CUST_DEVICE_NCG
 for more information.

Maps to INC.NCG

	

CUST_DEVICE_PARTITION

	

Y

	

NUMBER

	

Partition of customer device. Refer to

CUST_DEVICE_ PARTITION
 for more information.

Maps to INC.PARTITION

	

CUST_FIRST_NAME

	

Y

	

VARCHAR2(75)

	

Customer Name. Refer to

CUST_FIRST_NAME
 for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

	

CUST_ID

	

Y

	

VARCHAR2(64)

	

Unique customer record identifier. Maps to
INC.CID.

	

CUST_INTERSECT_CLS

	

Y

	

NUMBER

	

Intersecting device class. Refer to

CUST_INTERSECT_ CLS
 for more information.

	

CUST_INTERSECT_IDX

	

Y

	

NUMBER

	

Intersecting device index. Refer to

CUST_INTERSECT_ IDX
 for more information.

	

CUST_INTERSECT_NCG

	

Y

	

NUMBER

	

Intersecting NCG. Refer to

CUST_INTERSECT_ NCG
 for more information.

	

CUST_INTR_X

	

Y

	

NUMBER

	

Intersecting X coordinate. X coordinate used for
intersection grouping.

	

CUST_INTR_Y

	

Y

	

NUMBER

	

Intersecting Y coordinate.Y coordinate used for
intersection grouping.

	

CUST_KEY

	

Y

	

VARCHAR2(16)

	

Corresponding CC.ACCOUNT_NUMBER field
for the given CC.SERV_LOC_ID. This field
does not have a corresponding input parameter in
the pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_KEY
 for more information.

Maps to INC.ACCOUNT_NUM

	

CUST_LAST_NAME

	

Y

	

VARCHAR2(75)

	

The last name of the customer. Refer to

CUST_LAST_NAME
 for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

	

CUST_LIFE_SUPPORT

	

Y

	

VARCHAR2(1)

	

Life support customer. Refer to

CUST_LIFE_SUPPORT
 for more information.

Maps to INC.LIFE_SUPPORT

	

CUST_ORDER_NUM

	

Y

	

VARCHAR2(16)

	

Customer order number. Refer to

CUST_ORDER_NUM
 for more information.

Maps to INC.ORDER_NUMBER

	

CUST_PHONE

	

Y

	

VARCHAR2(32)

	

Customer phone number. Refer to

CUST_PHONE
 for more information.

Maps to INC.CUSTOMER_PHONE and
JOBS.CUSTOMER_PHONE

	

CUST_PHONE_AREA

	

Y

	

VARCHAR2(8)

	

Customer phone area code. Refer to

CUST_PHONE_AREA
 for more information.

Maps to INC.CUSTOMER_PHONE and

JOBS.CUSTOMER_PHONE

	

CUST_PHONE_UPDATE

	

Y

	

VARCHAR2(1)

	

Whether to update customer phone. Refer to

CUST_PHONE_ UPDATE
 for more information.

	

CUST_PRIORITY

	

Y

	

VARCHAR2(4)

	

Customer Priority. Refer to

CUST_PRIORITY
 for more information.

This is defined by customer and needs to be an
integer string.

Maps to INC.CUSTOMER_TYPE

	

CUST_STATUS

	

Y

	

NUMBER

	

Condition status of call.

	

CUST_TROUBLE_CODE

	

N

	

VARCHAR2(10)

	

Trouble code or customer complaint. Refer to

CUST_TROUBLE_ CODE
 for more information.

This is the trouble or complaint that the customer
reports when making a call. The trouble code
determines the priority of the incident.

Trouble code mapping setup in Oracle Utilities
Network Management System should be
synchronized with the trouble code mapping
setup on the external application. This is to
ensure that the trouble code sent from the
external application is interpreted similarly when
the trouble code is received by Oracle Utilities
Network Management System.

Maps to INC.COMPLAINT

	

CUST_TROUBLE_QUEUE

	

Y

	

VARCHAR2(10)

	

Customer trouble queue. Refer to

CUST_TROUBLE_ QUEUE
 for more information.

This field contains the name of the work group
queue that the event has been referred to.

Maps to INC.TROUBLE_QUEUE and
JOBS.TROUBLE_QUEUE

	

DRV_INST

	

Y

	

VARCHAR2(180)

	

Driving instructions.

Maps to INC.DRV_INSTR1

	

EXTERNAL_ID

	

N

	

VARCHAR2(16)

	

External ID. Refer to

EXTERNAL_ID
 for more information

If it is used, its value should be unique.

Maps to INC.EXTERNAL_ID and

JOBS.EXTERNAL_ID

	

FUZZY_NCG_CLS

	

Y

	

NUMBER

	

Fuzzy control zone class.

	

FUZZY_NCG_IDX

	

Y

	

NUMBER

	

Fuzzy control zone index.

	

GENERAL_AREA

	

Y

	

VARCHAR2(32)

	

General Area. Not Used in the SPL OMS System.

Maps to INC.GENERAL_AREA

	

GROUP_BY_NAME

	

Y

	

VARCHAR2(127)

	

Fuzzy control zone name.

	

GROUPABLE

	

Y

	

NUMBER

	

Indicates if call is groupable if set to 1.

Maps to INC.GROUPABLE

	

MEET_TIME

	

Y

	

DATE

	

Time of customer meet. Refer to

MEET_TIME
 for more information.

Maps to INC.MEET_TIME

	

MEET_TYPE

	

Y

	

NUMBER

	

Customer meet type. Refer to

MEET_TYPE
 for more information.

Maps to INC.MEET_CODE

	

METER_ID

	

Y

	

VARCHAR2(32)

	

Customer meter number.

Maps to INC.METER_ID

	

RELATED_EVT_APP

	

Y

	

NUMBER

	

Related event application.

	

RELATED_EVT_CLS

	

Y

	

NUMBER

	

Related event class.

Maps to INC. RELATED_CLS

	

RELATED_EVT_IDX

	

Y

	

NUMBER

	

Related event index.

Maps to INC. RELATED_IDX

	

REPORTED_ERT

	

Y

	

DATE

	

Estimated restoration time reported to caller.

Maps to INC. REPORTED_EST_REST_TIME

	

SHORT_DESC

	

Y

	

VARCHAR2(128)

	

Trouble short description.

Maps to INC.SHORT_DESC

	

TROUBLE_LOC

	

Y

	

VARCHAR2(255)

	

Incident's trouble location.

Maps to INC.TROUBLE_LOC

	

UPDATE_EXISTING_INC

	

Y

	

NUMBER

	

Whether to update an existing incident. Refer to

UPDATE_EXISTING_ INC
 for more information.

	

USER_NAME

	

Y

	

VARCHAR2(32)

	

Call-taker user name. Refer to

USER_NAME
 for more information.

Maps to INC.USER_NAME

	

X_REF

	

Y

	

NUMBER

	

Customer X coordinate. Refer to

X_REF
 for more information.

Maps to INC.X_COORD

	

 Y_REF

	

Y

	

NUMBER

	

Customer Y coordinate. Refer to

Y_REF
 for more information.

Maps to INC.Y_COORD

TROUBLE_CALLBACKS Table Schema

The TROUBLE_CALLBACKS table contains callback request information that has to be reported to the external application. The table also stores the corresponding callback response received from the external application. The Generic IVR Adapter directly inserts new callback requests to the said table. It also directly picks up processed callbacks from the same table. The external application is provided two stored procedures for indirectly reading and updating callback information from the table.

From the table below, on the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table.

	

Column Name

	

Nullable

	

Data Type

	

Description

	

EVENT_CLS

	

Y

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.EVENT_CLS.

	

EVENT_IDX

	

Y

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.EVENT_IDX.

	

INCIDENT_NUMB

	

N

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.NUMB.

	

PREMISE_ID

	

N

	

VARCHAR2(50)

	

Populated by the Callback Requests Data Flow
from INC.ACCOUNT_NUM.

	

CUSTOMER_NAME

	

Y

	

VARCHAR2(75)

	

Populated by the Callback Requests Data Flow
from INC.CUSTOMER_NAME.

	

CUSTOMER_PHONE

	

Y

	

VARCHAR2(38)

	

Populated by the Callback Requests Data Flow
from INC.CUSTOMER_PHONE.

	

CUSTOMER_ADDRESS

	

Y

	

VARCHAR2(255)

	

Populated by the Callback Requests Data Flow
by concatenating INC.ADDR_BUILDING,
INC.ADDRESS and INC.ADDR_CITY

	

ALTERNATE_PHONE

	

Y

	

VARCHAR2(38)

	

Populated by the Callback Requests Data Flow
from INC.ALTERNATE_PHONE.

	

TROUBLE_CODE

	

Y

	

VARCHAR2(32)

	

Populated by the Callback Requests Data Flow
from INC.COMPLAINT.

This is the trouble code (e.g., '10000000') of the
incident rather than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

Y

	

VARCHAR2(128)

	

Populated by the Callback Requests Data Flow
from INC.SHORT_DESC

This is the clue (e.g., 'Out') of the incident rather
than the trouble code (e.g., '10000000'). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

Y

	

VARCHAR2(255)

	

Populated by the Callback Requests Data Flow
from INC.OP_COMMENT.

	

INCIDENT_TIME

	

Y

	

DATE

	

Populated by the Callback Requests Data Flow
from INC.INPUT_TIME.

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. The TROUBLE_CALLBACKS table
record is 'aged' based on the system date/time
and the INCIDENT_TIME field. Any record
older than a predefined number of days will be
removed. See

keepdbinfo
 for more information.

	

EXTERNAL_ID

	

Y

	

VARCHAR2(16)

	

Populated by the Callback Requests Data Flow
from INC.EXTERNAL_ID.

	

CALLBACK_STATUS

	

Y

	

VARCHAR2(10)

	

Initially populated by the Callback Requests
Data Flow as NULL;

The field is repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to get a response

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
A remapped value is placed in
INC.CALLBACK_STATUS.

	

CALLBACK_TIME

	

Y

	

DATE

	

Initially populated by the Callback Requests
Data Flow as NULL;

The field could be repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The stored procedure defaults this
field to the system date if no information was
supplied by the external application.

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
The value is placed in INC.CB_CALL_TIME.

	

CALL_TAKER_ID

	

Y

	

VARCHAR2(32)

	

Populated by the Callback Requests Data Flow
from INC.USER_NAME.

	

CALLBACK_LATE

	

Y

	

VARCHAR2(1)

	

Populated by the Callback Requests Data Flow
from INC.CALLBACK_LATE

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is
already late.

 ‘N’ - It is not OK to call back when it is already
late.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_LATE_TIME

	

Y

	

DATE

	

Populated by the Callback Requests Data Flow
from INC.CALLBACK_TIME.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_REASON

	

Y

	

VARCHAR2(100)

	

This is used by the Generic IVR Adapter to
indicate the source of the callback request. This
will default to 'OMS'.

	

PROCESS_STATUS

	

Y

	

VARCHAR2(1)

	

Initially populated by the Callback Requests
Data Flow as 'N', signifying that the record is a
new callback

Once the record was fetched by the external
application (using pr_trouble_callback_requests
stored procedure), the field is automatically
updated by the stored procedure to 'I' signifying
that the external system is currently processing
the callback response.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'C', signifying
that the external application has completed the
processing of the callback response.

This field is internally maintained by the Generic
IVR Adapter. Below is a list of valid values for
this field.

 'N' - New Callback

 'I' - In Processing Of Callback Response

 'C' - Completed The Processing Of Callback
Response

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with PROCESS_STATUS
field = 'C' will be purged.

	

CALLBACK_DONE

	

Y

	

VARCHAR2(1)

	

Initially populated by the Callback Requests
Data Flow as 'N', signifying that the callback is
not yet done.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'Y', signifying
that the callback has been done.

Below is a list of valid values for this field.

 'N' - Callback Has Not Been Done

 'Y' - Callback Has Been Done

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with CALLBACK_DONE
field = 'Y' will be purged.

	

CAUSE_CODE

	

Y

	

VARCHAR2(32)

	

This is used to relay back to customers the cause
of an outage when a callback is performed.

Populated by the Callback Requests Data Flow
from JOBS.CAUSE when the useExternalCause
rule is set to ‘yes’ in the SRS_RULES.

	

OUTAGE_DURATION

	

Y

	

NUMBER

	

Outage duration in seconds.

Populated by the Callback Requests Data with
the difference between
JOBS.RESTORE_TIME and
JOBS.BEGIN_TIME.

	

CUSTOMER_COUNT

	

Y

	

NUMBER

	

Populated by the Callback Requests Data Flow
from INC.USER_NAME.

	

CB_DETAIL_1

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_2

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_3

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_4

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

Database Table Schema

TROUBLE_CALLS Table Schema

The TROUBLE_CALLS table stores the trouble calls that are submitted by the external application. The Generic IVR Adapter polls this table and submits new trouble call records to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device. The external application indirectly inserts records to the TROUBLE_CALLS table by invoking the pr_trouble_calls stored procedure. See
pr_trouble_calls Stored Procedure
 for more information.

Each field of the TROUBLE_CALLS table is matched with SRSinput field. The mapping is configurable. A column names are directly tied up to a specific field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System.

In effect, each field in the TROUBLE_CALLS table is mapped (and the mapping is configurable) to a particular field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System. For more information, see
Trouble Call Mapping Configuration
.

In the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table. Field names prefixed by 'JOBS.' would come from the JOBS table. Field names prefixed by 'CC.' would come from the CES_CUSTOMERS table.

	

Field Name

	

Nullable

	

Data Type

	

Description (JMS Input String reference)

	

ADDR_BUILDING

	

Y

	

VARCHAR2(10)

	

Customer building address. Refer to

ADDR_BUILDING
 for more information.

Map to INC.ADDR_BUILDING

	

ADDR_CITY

	

Y

	

VARCHAR2(45)

	

Customer City/State. Refer to

ADDR_CITY
 for more information.

Maps to INC.ADDR_CITY

	

ADDR_CROSS_STREET

	

Y

	

VARCHAR2(255)

	

Intersection cross street name.

Maps to INC.ADDR_CROSS_STREET.

	

ADDR_STREET

	

Y

	

VARCHAR2(255)

	

Customer address. Refer to

ADDR_STREET
 for more information.

Maps to INC.ADDRESS and
JOBS.ADDR_STREET

	

ALTERNATE_PHONE

	

Y

	

VARCHAR2(32)

	

Alternative contact number. Refer to

ALTERNATE_PHONE
 for more information.

Maps to INC.ALTERNATE_PHONE

	

APPT_RANGE

	

Y

	

NUMBER

	

Appointment Range. Refer to

APPT_RANGE
 for more information.

Maps to INC.APPT_RANGE.

	

APPT_TIME

	

Y

	

DATE

	

Time of appointment. Refer to

APPT_TIME
 for more information.

Maps to INC.APPT_TIME.

	

APPT_TYPE

	

Y

	

VARCHAR2(16)

	

Type of appointment. Refer to

APPT_TYPE
 for more information.

Maps to INC.APPT_TYPE.

	

CALL_COMMENT

	

Y

	

VARCHAR2(255)

	

Customer Comment. Refer to

COMMENT
 Property Name for more information.

Maps to INC.OP_COMMENT.

	

CALL_ID

	

Y

	

VARCHAR2(16)

	

Not used.

	

CALL_STATUS

	

Y

	

VARCHAR2(1)

	

Status of the trouble call in the
TROUBLE_CALLS table. The Generic IVR
Adapter uses this internally to identify the status
of this trouble call.

The possible values are as follows:

 ‘N’ - New trouble call

 ‘I’ - The Generic IVR Adapter is in the process
of submitting this trouble call to Oracle Utilities
Network Management System

 ‘C’ - Trouble call submission to Oracle Utilities
Network Management System is completed.

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. Records with
CALL_STATUS field = 'C' will be purged.

	

CALL_TIME

	

N

	

DATE

	

Input time of call. Refer to

CALL_TIME
 for more information.

Maps to INC.INPUT_TIME

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. The TROUBLE_CALL
record is 'aged' based on the system date/time
and the CALL_TIME field. Any record older
than a predefined number of days will be
removed. See

keepdbinfo
 for more information.

	

CALL_TYPE

	

Y

	

VARCHAR2(8)

	

Type of call. Refer to

CALL_TYPE
 for more information.

Maps to INC.TYPE

	

CALLBACK_LATE

	

Y

	

VARCHAR2(1)

	

Callback late indicator. Refer to

CALLBACK_LATE
 for more information.

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is already
late.

 ‘N’ - It is not OK to call back when it is already
late.

If no value was supplied, this field will default to
'N'.

This information is only passed from the external
application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_REQUEST

	

Y

	

NUMBER

	

Callback request indicator. Refer to

CALLBACK_REQUEST
 for more information.

The possible values are as follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Maps to INC.CALLBACK_REQUEST

	

CALLBACK_TIME

	

Y

	

DATE

	

Callback Before Time. Refer to

CALLBACK_TIME
 for more information.

Maps to INC.CALLBACK_TIME

	

CHECK_CUTOFF

	

Y

	

VARCHAR2(1)

	

Check cut-off customer indicator. Refer to

CHECK_CUTOFF
 for more information.

The possible values are as follows:

 ‘Y’ - check if the customer is disconnected

 ‘N’ - do not perform checking.

	

CLUE

	

Y

	

NUMBER

	

Indicates if call is clue if set to Y. Refer to

CLUE
 for more information.

Maps to INC.CLUE

	

COMBINE_PRI

	

Y

	

NUMBER

	

Total priority of call. Refer to

COMBINE_PRI
 for more information.

	

CUST_CALL_CANCEL

	

Y

	

VARCHAR2(1)

	

Call cancel indicator. Refer to

CUST_CALL_CANCEL
 for more information.

Maps to INC.CALL_CANCEL

	

CUST_CRITICAL

	

Y

	

VARCHAR2(1)

	

Critical customer indicator. This is added to the
critical C count of the outage. Refer to

CUST_CRITICAL
 for more information.

Maps to INC.CRITICAL_CUST

	

CUST_DEVICE_ALIAS

	

Y

	

VARCHAR2(32)

	

Customer Device Alias. Refer to

CUST_DEVICE_ALIAS
 for more information.

Maps to INC.OBJECT

	

 CUST_DEVICE_CLS

	

Y

	

NUMBER

	

Corresponding CC.H_CLS field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_DEVICE_CLS
 for more information.

Maps to INC.H_CLS

	

 CUST_DEVICE_IDX

	

Y

	

NUMBER

	

Corresponding CC.H_IDX field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_DEVICE_IDX
 for more information.

Maps to INC.H_IDX

	

CUST_DEVICE_NCG

	

Y

	

NUMBER

	

NCG of customer device. Refer to

CUST_DEVICE_NCG
 for more information.

Maps to INC.NCG

	

CUST_DEVICE_PARTITION

	

Y

	

NUMBER

	

Partition of customer device. Refer to

CUST_DEVICE_ PARTITION
 for more information.

Maps to INC.PARTITION

	

CUST_FIRST_NAME

	

Y

	

VARCHAR2(75)

	

Customer Name. Refer to

CUST_FIRST_NAME
 for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

	

CUST_ID

	

Y

	

VARCHAR2(64)

	

Unique customer record identifier. Maps to
INC.CID.

	

CUST_INTERSECT_CLS

	

Y

	

NUMBER

	

Intersecting device class. Refer to

CUST_INTERSECT_ CLS
 for more information.

	

CUST_INTERSECT_IDX

	

Y

	

NUMBER

	

Intersecting device index. Refer to

CUST_INTERSECT_ IDX
 for more information.

	

CUST_INTERSECT_NCG

	

Y

	

NUMBER

	

Intersecting NCG. Refer to

CUST_INTERSECT_ NCG
 for more information.

	

CUST_INTR_X

	

Y

	

NUMBER

	

Intersecting X coordinate. X coordinate used for
intersection grouping.

	

CUST_INTR_Y

	

Y

	

NUMBER

	

Intersecting Y coordinate.Y coordinate used for
intersection grouping.

	

CUST_KEY

	

Y

	

VARCHAR2(16)

	

Corresponding CC.ACCOUNT_NUMBER field
for the given CC.SERV_LOC_ID. This field
does not have a corresponding input parameter in
the pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_KEY
 for more information.

Maps to INC.ACCOUNT_NUM

	

CUST_LAST_NAME

	

Y

	

VARCHAR2(75)

	

The last name of the customer. Refer to

CUST_LAST_NAME
 for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

	

CUST_LIFE_SUPPORT

	

Y

	

VARCHAR2(1)

	

Life support customer. Refer to

CUST_LIFE_SUPPORT
 for more information.

Maps to INC.LIFE_SUPPORT

	

CUST_ORDER_NUM

	

Y

	

VARCHAR2(16)

	

Customer order number. Refer to

CUST_ORDER_NUM
 for more information.

Maps to INC.ORDER_NUMBER

	

CUST_PHONE

	

Y

	

VARCHAR2(32)

	

Customer phone number. Refer to

CUST_PHONE
 for more information.

Maps to INC.CUSTOMER_PHONE and
JOBS.CUSTOMER_PHONE

	

CUST_PHONE_AREA

	

Y

	

VARCHAR2(8)

	

Customer phone area code. Refer to

CUST_PHONE_AREA
 for more information.

Maps to INC.CUSTOMER_PHONE and

JOBS.CUSTOMER_PHONE

	

CUST_PHONE_UPDATE

	

Y

	

VARCHAR2(1)

	

Whether to update customer phone. Refer to

CUST_PHONE_ UPDATE
 for more information.

	

CUST_PRIORITY

	

Y

	

VARCHAR2(4)

	

Customer Priority. Refer to

CUST_PRIORITY
 for more information.

This is defined by customer and needs to be an
integer string.

Maps to INC.CUSTOMER_TYPE

	

CUST_STATUS

	

Y

	

NUMBER

	

Condition status of call.

	

CUST_TROUBLE_CODE

	

N

	

VARCHAR2(10)

	

Trouble code or customer complaint. Refer to

CUST_TROUBLE_ CODE
 for more information.

This is the trouble or complaint that the customer
reports when making a call. The trouble code
determines the priority of the incident.

Trouble code mapping setup in Oracle Utilities
Network Management System should be
synchronized with the trouble code mapping
setup on the external application. This is to
ensure that the trouble code sent from the
external application is interpreted similarly when
the trouble code is received by Oracle Utilities
Network Management System.

Maps to INC.COMPLAINT

	

CUST_TROUBLE_QUEUE

	

Y

	

VARCHAR2(10)

	

Customer trouble queue. Refer to

CUST_TROUBLE_ QUEUE
 for more information.

This field contains the name of the work group
queue that the event has been referred to.

Maps to INC.TROUBLE_QUEUE and
JOBS.TROUBLE_QUEUE

	

DRV_INST

	

Y

	

VARCHAR2(180)

	

Driving instructions.

Maps to INC.DRV_INSTR1

	

EXTERNAL_ID

	

N

	

VARCHAR2(16)

	

External ID. Refer to

EXTERNAL_ID
 for more information

If it is used, its value should be unique.

Maps to INC.EXTERNAL_ID and

JOBS.EXTERNAL_ID

	

FUZZY_NCG_CLS

	

Y

	

NUMBER

	

Fuzzy control zone class.

	

FUZZY_NCG_IDX

	

Y

	

NUMBER

	

Fuzzy control zone index.

	

GENERAL_AREA

	

Y

	

VARCHAR2(32)

	

General Area. Not Used in the SPL OMS System.

Maps to INC.GENERAL_AREA

	

GROUP_BY_NAME

	

Y

	

VARCHAR2(127)

	

Fuzzy control zone name.

	

GROUPABLE

	

Y

	

NUMBER

	

Indicates if call is groupable if set to 1.

Maps to INC.GROUPABLE

	

MEET_TIME

	

Y

	

DATE

	

Time of customer meet. Refer to

MEET_TIME
 for more information.

Maps to INC.MEET_TIME

	

MEET_TYPE

	

Y

	

NUMBER

	

Customer meet type. Refer to

MEET_TYPE
 for more information.

Maps to INC.MEET_CODE

	

METER_ID

	

Y

	

VARCHAR2(32)

	

Customer meter number.

Maps to INC.METER_ID

	

RELATED_EVT_APP

	

Y

	

NUMBER

	

Related event application.

	

RELATED_EVT_CLS

	

Y

	

NUMBER

	

Related event class.

Maps to INC. RELATED_CLS

	

RELATED_EVT_IDX

	

Y

	

NUMBER

	

Related event index.

Maps to INC. RELATED_IDX

	

REPORTED_ERT

	

Y

	

DATE

	

Estimated restoration time reported to caller.

Maps to INC. REPORTED_EST_REST_TIME

	

SHORT_DESC

	

Y

	

VARCHAR2(128)

	

Trouble short description.

Maps to INC.SHORT_DESC

	

TROUBLE_LOC

	

Y

	

VARCHAR2(255)

	

Incident's trouble location.

Maps to INC.TROUBLE_LOC

	

UPDATE_EXISTING_INC

	

Y

	

NUMBER

	

Whether to update an existing incident. Refer to

UPDATE_EXISTING_ INC
 for more information.

	

USER_NAME

	

Y

	

VARCHAR2(32)

	

Call-taker user name. Refer to

USER_NAME
 for more information.

Maps to INC.USER_NAME

	

X_REF

	

Y

	

NUMBER

	

Customer X coordinate. Refer to

X_REF
 for more information.

Maps to INC.X_COORD

	

 Y_REF

	

Y

	

NUMBER

	

Customer Y coordinate. Refer to

Y_REF
 for more information.

Maps to INC.Y_COORD

TROUBLE_CALLBACKS Table Schema

The TROUBLE_CALLBACKS table contains callback request information that has to be reported to the external application. The table also stores the corresponding callback response received from the external application. The Generic IVR Adapter directly inserts new callback requests to the said table. It also directly picks up processed callbacks from the same table. The external application is provided two stored procedures for indirectly reading and updating callback information from the table.

From the table below, on the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table.

	

Column Name

	

Nullable

	

Data Type

	

Description

	

EVENT_CLS

	

Y

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.EVENT_CLS.

	

EVENT_IDX

	

Y

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.EVENT_IDX.

	

INCIDENT_NUMB

	

N

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.NUMB.

	

PREMISE_ID

	

N

	

VARCHAR2(50)

	

Populated by the Callback Requests Data Flow
from INC.ACCOUNT_NUM.

	

CUSTOMER_NAME

	

Y

	

VARCHAR2(75)

	

Populated by the Callback Requests Data Flow
from INC.CUSTOMER_NAME.

	

CUSTOMER_PHONE

	

Y

	

VARCHAR2(38)

	

Populated by the Callback Requests Data Flow
from INC.CUSTOMER_PHONE.

	

CUSTOMER_ADDRESS

	

Y

	

VARCHAR2(255)

	

Populated by the Callback Requests Data Flow
by concatenating INC.ADDR_BUILDING,
INC.ADDRESS and INC.ADDR_CITY

	

ALTERNATE_PHONE

	

Y

	

VARCHAR2(38)

	

Populated by the Callback Requests Data Flow
from INC.ALTERNATE_PHONE.

	

TROUBLE_CODE

	

Y

	

VARCHAR2(32)

	

Populated by the Callback Requests Data Flow
from INC.COMPLAINT.

This is the trouble code (e.g., '10000000') of the
incident rather than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

Y

	

VARCHAR2(128)

	

Populated by the Callback Requests Data Flow
from INC.SHORT_DESC

This is the clue (e.g., 'Out') of the incident rather
than the trouble code (e.g., '10000000'). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

Y

	

VARCHAR2(255)

	

Populated by the Callback Requests Data Flow
from INC.OP_COMMENT.

	

INCIDENT_TIME

	

Y

	

DATE

	

Populated by the Callback Requests Data Flow
from INC.INPUT_TIME.

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. The TROUBLE_CALLBACKS table
record is 'aged' based on the system date/time
and the INCIDENT_TIME field. Any record
older than a predefined number of days will be
removed. See

keepdbinfo
 for more information.

	

EXTERNAL_ID

	

Y

	

VARCHAR2(16)

	

Populated by the Callback Requests Data Flow
from INC.EXTERNAL_ID.

	

CALLBACK_STATUS

	

Y

	

VARCHAR2(10)

	

Initially populated by the Callback Requests
Data Flow as NULL;

The field is repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to get a response

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
A remapped value is placed in
INC.CALLBACK_STATUS.

	

CALLBACK_TIME

	

Y

	

DATE

	

Initially populated by the Callback Requests
Data Flow as NULL;

The field could be repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The stored procedure defaults this
field to the system date if no information was
supplied by the external application.

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
The value is placed in INC.CB_CALL_TIME.

	

CALL_TAKER_ID

	

Y

	

VARCHAR2(32)

	

Populated by the Callback Requests Data Flow
from INC.USER_NAME.

	

CALLBACK_LATE

	

Y

	

VARCHAR2(1)

	

Populated by the Callback Requests Data Flow
from INC.CALLBACK_LATE

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is
already late.

 ‘N’ - It is not OK to call back when it is already
late.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_LATE_TIME

	

Y

	

DATE

	

Populated by the Callback Requests Data Flow
from INC.CALLBACK_TIME.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_REASON

	

Y

	

VARCHAR2(100)

	

This is used by the Generic IVR Adapter to
indicate the source of the callback request. This
will default to 'OMS'.

	

PROCESS_STATUS

	

Y

	

VARCHAR2(1)

	

Initially populated by the Callback Requests
Data Flow as 'N', signifying that the record is a
new callback

Once the record was fetched by the external
application (using pr_trouble_callback_requests
stored procedure), the field is automatically
updated by the stored procedure to 'I' signifying
that the external system is currently processing
the callback response.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'C', signifying
that the external application has completed the
processing of the callback response.

This field is internally maintained by the Generic
IVR Adapter. Below is a list of valid values for
this field.

 'N' - New Callback

 'I' - In Processing Of Callback Response

 'C' - Completed The Processing Of Callback
Response

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with PROCESS_STATUS
field = 'C' will be purged.

	

CALLBACK_DONE

	

Y

	

VARCHAR2(1)

	

Initially populated by the Callback Requests
Data Flow as 'N', signifying that the callback is
not yet done.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'Y', signifying
that the callback has been done.

Below is a list of valid values for this field.

 'N' - Callback Has Not Been Done

 'Y' - Callback Has Been Done

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with CALLBACK_DONE
field = 'Y' will be purged.

	

CAUSE_CODE

	

Y

	

VARCHAR2(32)

	

This is used to relay back to customers the cause
of an outage when a callback is performed.

Populated by the Callback Requests Data Flow
from JOBS.CAUSE when the useExternalCause
rule is set to ‘yes’ in the SRS_RULES.

	

OUTAGE_DURATION

	

Y

	

NUMBER

	

Outage duration in seconds.

Populated by the Callback Requests Data with
the difference between
JOBS.RESTORE_TIME and
JOBS.BEGIN_TIME.

	

CUSTOMER_COUNT

	

Y

	

NUMBER

	

Populated by the Callback Requests Data Flow
from INC.USER_NAME.

	

CB_DETAIL_1

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_2

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_3

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_4

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

Database Table Schema

TROUBLE_CALLS Table Schema

The TROUBLE_CALLS table stores the trouble calls that are submitted by the external application. The Generic IVR Adapter polls this table and submits new trouble call records to Oracle Utilities Network Management System, so Oracle Utilities Network Management System could apply the outage analysis algorithm to predict the outage device. The external application indirectly inserts records to the TROUBLE_CALLS table by invoking the pr_trouble_calls stored procedure. See
pr_trouble_calls Stored Procedure
 for more information.

Each field of the TROUBLE_CALLS table is matched with SRSinput field. The mapping is configurable. A column names are directly tied up to a specific field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System.

In effect, each field in the TROUBLE_CALLS table is mapped (and the mapping is configurable) to a particular field of the INCIDENTS table or the JOBS table of Oracle Utilities Network Management System. For more information, see
Trouble Call Mapping Configuration
.

In the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table. Field names prefixed by 'JOBS.' would come from the JOBS table. Field names prefixed by 'CC.' would come from the CES_CUSTOMERS table.

	

Field Name

	

Nullable

	

Data Type

	

Description (JMS Input String reference)

	

ADDR_BUILDING

	

Y

	

VARCHAR2(10)

	

Customer building address. Refer to

ADDR_BUILDING
 for more information.

Map to INC.ADDR_BUILDING

	

ADDR_CITY

	

Y

	

VARCHAR2(45)

	

Customer City/State. Refer to

ADDR_CITY
 for more information.

Maps to INC.ADDR_CITY

	

ADDR_CROSS_STREET

	

Y

	

VARCHAR2(255)

	

Intersection cross street name.

Maps to INC.ADDR_CROSS_STREET.

	

ADDR_STREET

	

Y

	

VARCHAR2(255)

	

Customer address. Refer to

ADDR_STREET
 for more information.

Maps to INC.ADDRESS and
JOBS.ADDR_STREET

	

ALTERNATE_PHONE

	

Y

	

VARCHAR2(32)

	

Alternative contact number. Refer to

ALTERNATE_PHONE
 for more information.

Maps to INC.ALTERNATE_PHONE

	

APPT_RANGE

	

Y

	

NUMBER

	

Appointment Range. Refer to

APPT_RANGE
 for more information.

Maps to INC.APPT_RANGE.

	

APPT_TIME

	

Y

	

DATE

	

Time of appointment. Refer to

APPT_TIME
 for more information.

Maps to INC.APPT_TIME.

	

APPT_TYPE

	

Y

	

VARCHAR2(16)

	

Type of appointment. Refer to

APPT_TYPE
 for more information.

Maps to INC.APPT_TYPE.

	

CALL_COMMENT

	

Y

	

VARCHAR2(255)

	

Customer Comment. Refer to

COMMENT
 Property Name for more information.

Maps to INC.OP_COMMENT.

	

CALL_ID

	

Y

	

VARCHAR2(16)

	

Not used.

	

CALL_STATUS

	

Y

	

VARCHAR2(1)

	

Status of the trouble call in the
TROUBLE_CALLS table. The Generic IVR
Adapter uses this internally to identify the status
of this trouble call.

The possible values are as follows:

 ‘N’ - New trouble call

 ‘I’ - The Generic IVR Adapter is in the process
of submitting this trouble call to Oracle Utilities
Network Management System

 ‘C’ - Trouble call submission to Oracle Utilities
Network Management System is completed.

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. Records with
CALL_STATUS field = 'C' will be purged.

	

CALL_TIME

	

N

	

DATE

	

Input time of call. Refer to

CALL_TIME
 for more information.

Maps to INC.INPUT_TIME

The Generic IVR Adapter uses this field as one
of the criteria in purging the TROUBLE_CALLS
table for 'old' records. The TROUBLE_CALL
record is 'aged' based on the system date/time
and the CALL_TIME field. Any record older
than a predefined number of days will be
removed. See

keepdbinfo
 for more information.

	

CALL_TYPE

	

Y

	

VARCHAR2(8)

	

Type of call. Refer to

CALL_TYPE
 for more information.

Maps to INC.TYPE

	

CALLBACK_LATE

	

Y

	

VARCHAR2(1)

	

Callback late indicator. Refer to

CALLBACK_LATE
 for more information.

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is already
late.

 ‘N’ - It is not OK to call back when it is already
late.

If no value was supplied, this field will default to
'N'.

This information is only passed from the external
application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_REQUEST

	

Y

	

NUMBER

	

Callback request indicator. Refer to

CALLBACK_REQUEST
 for more information.

The possible values are as follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Maps to INC.CALLBACK_REQUEST

	

CALLBACK_TIME

	

Y

	

DATE

	

Callback Before Time. Refer to

CALLBACK_TIME
 for more information.

Maps to INC.CALLBACK_TIME

	

CHECK_CUTOFF

	

Y

	

VARCHAR2(1)

	

Check cut-off customer indicator. Refer to

CHECK_CUTOFF
 for more information.

The possible values are as follows:

 ‘Y’ - check if the customer is disconnected

 ‘N’ - do not perform checking.

	

CLUE

	

Y

	

NUMBER

	

Indicates if call is clue if set to Y. Refer to

CLUE
 for more information.

Maps to INC.CLUE

	

COMBINE_PRI

	

Y

	

NUMBER

	

Total priority of call. Refer to

COMBINE_PRI
 for more information.

	

CUST_CALL_CANCEL

	

Y

	

VARCHAR2(1)

	

Call cancel indicator. Refer to

CUST_CALL_CANCEL
 for more information.

Maps to INC.CALL_CANCEL

	

CUST_CRITICAL

	

Y

	

VARCHAR2(1)

	

Critical customer indicator. This is added to the
critical C count of the outage. Refer to

CUST_CRITICAL
 for more information.

Maps to INC.CRITICAL_CUST

	

CUST_DEVICE_ALIAS

	

Y

	

VARCHAR2(32)

	

Customer Device Alias. Refer to

CUST_DEVICE_ALIAS
 for more information.

Maps to INC.OBJECT

	

 CUST_DEVICE_CLS

	

Y

	

NUMBER

	

Corresponding CC.H_CLS field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_DEVICE_CLS
 for more information.

Maps to INC.H_CLS

	

 CUST_DEVICE_IDX

	

Y

	

NUMBER

	

Corresponding CC.H_IDX field for the given
CC.SERV_LOC_ID. This field does not have a
corresponding input parameter in the
pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_DEVICE_IDX
 for more information.

Maps to INC.H_IDX

	

CUST_DEVICE_NCG

	

Y

	

NUMBER

	

NCG of customer device. Refer to

CUST_DEVICE_NCG
 for more information.

Maps to INC.NCG

	

CUST_DEVICE_PARTITION

	

Y

	

NUMBER

	

Partition of customer device. Refer to

CUST_DEVICE_ PARTITION
 for more information.

Maps to INC.PARTITION

	

CUST_FIRST_NAME

	

Y

	

VARCHAR2(75)

	

Customer Name. Refer to

CUST_FIRST_NAME
 for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

	

CUST_ID

	

Y

	

VARCHAR2(64)

	

Unique customer record identifier. Maps to
INC.CID.

	

CUST_INTERSECT_CLS

	

Y

	

NUMBER

	

Intersecting device class. Refer to

CUST_INTERSECT_ CLS
 for more information.

	

CUST_INTERSECT_IDX

	

Y

	

NUMBER

	

Intersecting device index. Refer to

CUST_INTERSECT_ IDX
 for more information.

	

CUST_INTERSECT_NCG

	

Y

	

NUMBER

	

Intersecting NCG. Refer to

CUST_INTERSECT_ NCG
 for more information.

	

CUST_INTR_X

	

Y

	

NUMBER

	

Intersecting X coordinate. X coordinate used for
intersection grouping.

	

CUST_INTR_Y

	

Y

	

NUMBER

	

Intersecting Y coordinate.Y coordinate used for
intersection grouping.

	

CUST_KEY

	

Y

	

VARCHAR2(16)

	

Corresponding CC.ACCOUNT_NUMBER field
for the given CC.SERV_LOC_ID. This field
does not have a corresponding input parameter in
the pr_trouble_calls stored procedure. The stored
procedure itself populates this field. Refer to

CUST_KEY
 for more information.

Maps to INC.ACCOUNT_NUM

	

CUST_LAST_NAME

	

Y

	

VARCHAR2(75)

	

The last name of the customer. Refer to

CUST_LAST_NAME
 for more information.

Maps to INC.CUSTOMER_NAME and

JOBS.CUSTOMER_NAME

	

CUST_LIFE_SUPPORT

	

Y

	

VARCHAR2(1)

	

Life support customer. Refer to

CUST_LIFE_SUPPORT
 for more information.

Maps to INC.LIFE_SUPPORT

	

CUST_ORDER_NUM

	

Y

	

VARCHAR2(16)

	

Customer order number. Refer to

CUST_ORDER_NUM
 for more information.

Maps to INC.ORDER_NUMBER

	

CUST_PHONE

	

Y

	

VARCHAR2(32)

	

Customer phone number. Refer to

CUST_PHONE
 for more information.

Maps to INC.CUSTOMER_PHONE and
JOBS.CUSTOMER_PHONE

	

CUST_PHONE_AREA

	

Y

	

VARCHAR2(8)

	

Customer phone area code. Refer to

CUST_PHONE_AREA
 for more information.

Maps to INC.CUSTOMER_PHONE and

JOBS.CUSTOMER_PHONE

	

CUST_PHONE_UPDATE

	

Y

	

VARCHAR2(1)

	

Whether to update customer phone. Refer to

CUST_PHONE_ UPDATE
 for more information.

	

CUST_PRIORITY

	

Y

	

VARCHAR2(4)

	

Customer Priority. Refer to

CUST_PRIORITY
 for more information.

This is defined by customer and needs to be an
integer string.

Maps to INC.CUSTOMER_TYPE

	

CUST_STATUS

	

Y

	

NUMBER

	

Condition status of call.

	

CUST_TROUBLE_CODE

	

N

	

VARCHAR2(10)

	

Trouble code or customer complaint. Refer to

CUST_TROUBLE_ CODE
 for more information.

This is the trouble or complaint that the customer
reports when making a call. The trouble code
determines the priority of the incident.

Trouble code mapping setup in Oracle Utilities
Network Management System should be
synchronized with the trouble code mapping
setup on the external application. This is to
ensure that the trouble code sent from the
external application is interpreted similarly when
the trouble code is received by Oracle Utilities
Network Management System.

Maps to INC.COMPLAINT

	

CUST_TROUBLE_QUEUE

	

Y

	

VARCHAR2(10)

	

Customer trouble queue. Refer to

CUST_TROUBLE_ QUEUE
 for more information.

This field contains the name of the work group
queue that the event has been referred to.

Maps to INC.TROUBLE_QUEUE and
JOBS.TROUBLE_QUEUE

	

DRV_INST

	

Y

	

VARCHAR2(180)

	

Driving instructions.

Maps to INC.DRV_INSTR1

	

EXTERNAL_ID

	

N

	

VARCHAR2(16)

	

External ID. Refer to

EXTERNAL_ID
 for more information

If it is used, its value should be unique.

Maps to INC.EXTERNAL_ID and

JOBS.EXTERNAL_ID

	

FUZZY_NCG_CLS

	

Y

	

NUMBER

	

Fuzzy control zone class.

	

FUZZY_NCG_IDX

	

Y

	

NUMBER

	

Fuzzy control zone index.

	

GENERAL_AREA

	

Y

	

VARCHAR2(32)

	

General Area. Not Used in the SPL OMS System.

Maps to INC.GENERAL_AREA

	

GROUP_BY_NAME

	

Y

	

VARCHAR2(127)

	

Fuzzy control zone name.

	

GROUPABLE

	

Y

	

NUMBER

	

Indicates if call is groupable if set to 1.

Maps to INC.GROUPABLE

	

MEET_TIME

	

Y

	

DATE

	

Time of customer meet. Refer to

MEET_TIME
 for more information.

Maps to INC.MEET_TIME

	

MEET_TYPE

	

Y

	

NUMBER

	

Customer meet type. Refer to

MEET_TYPE
 for more information.

Maps to INC.MEET_CODE

	

METER_ID

	

Y

	

VARCHAR2(32)

	

Customer meter number.

Maps to INC.METER_ID

	

RELATED_EVT_APP

	

Y

	

NUMBER

	

Related event application.

	

RELATED_EVT_CLS

	

Y

	

NUMBER

	

Related event class.

Maps to INC. RELATED_CLS

	

RELATED_EVT_IDX

	

Y

	

NUMBER

	

Related event index.

Maps to INC. RELATED_IDX

	

REPORTED_ERT

	

Y

	

DATE

	

Estimated restoration time reported to caller.

Maps to INC. REPORTED_EST_REST_TIME

	

SHORT_DESC

	

Y

	

VARCHAR2(128)

	

Trouble short description.

Maps to INC.SHORT_DESC

	

TROUBLE_LOC

	

Y

	

VARCHAR2(255)

	

Incident's trouble location.

Maps to INC.TROUBLE_LOC

	

UPDATE_EXISTING_INC

	

Y

	

NUMBER

	

Whether to update an existing incident. Refer to

UPDATE_EXISTING_ INC
 for more information.

	

USER_NAME

	

Y

	

VARCHAR2(32)

	

Call-taker user name. Refer to

USER_NAME
 for more information.

Maps to INC.USER_NAME

	

X_REF

	

Y

	

NUMBER

	

Customer X coordinate. Refer to

X_REF
 for more information.

Maps to INC.X_COORD

	

 Y_REF

	

Y

	

NUMBER

	

Customer Y coordinate. Refer to

Y_REF
 for more information.

Maps to INC.Y_COORD

TROUBLE_CALLBACKS Table Schema

The TROUBLE_CALLBACKS table contains callback request information that has to be reported to the external application. The table also stores the corresponding callback response received from the external application. The Generic IVR Adapter directly inserts new callback requests to the said table. It also directly picks up processed callbacks from the same table. The external application is provided two stored procedures for indirectly reading and updating callback information from the table.

From the table below, on the 'Description' column, take note that field names prefixed with 'INC.' would come from the INCIDENTS table.

	

Column Name

	

Nullable

	

Data Type

	

Description

	

EVENT_CLS

	

Y

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.EVENT_CLS.

	

EVENT_IDX

	

Y

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.EVENT_IDX.

	

INCIDENT_NUMB

	

N

	

NUMBER(38)

	

Populated by the Callback Requests Data Flow
from INC.NUMB.

	

PREMISE_ID

	

N

	

VARCHAR2(50)

	

Populated by the Callback Requests Data Flow
from INC.ACCOUNT_NUM.

	

CUSTOMER_NAME

	

Y

	

VARCHAR2(75)

	

Populated by the Callback Requests Data Flow
from INC.CUSTOMER_NAME.

	

CUSTOMER_PHONE

	

Y

	

VARCHAR2(38)

	

Populated by the Callback Requests Data Flow
from INC.CUSTOMER_PHONE.

	

CUSTOMER_ADDRESS

	

Y

	

VARCHAR2(255)

	

Populated by the Callback Requests Data Flow
by concatenating INC.ADDR_BUILDING,
INC.ADDRESS and INC.ADDR_CITY

	

ALTERNATE_PHONE

	

Y

	

VARCHAR2(38)

	

Populated by the Callback Requests Data Flow
from INC.ALTERNATE_PHONE.

	

TROUBLE_CODE

	

Y

	

VARCHAR2(32)

	

Populated by the Callback Requests Data Flow
from INC.COMPLAINT.

This is the trouble code (e.g., '10000000') of the
incident rather than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

Y

	

VARCHAR2(128)

	

Populated by the Callback Requests Data Flow
from INC.SHORT_DESC

This is the clue (e.g., 'Out') of the incident rather
than the trouble code (e.g., '10000000'). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

Y

	

VARCHAR2(255)

	

Populated by the Callback Requests Data Flow
from INC.OP_COMMENT.

	

INCIDENT_TIME

	

Y

	

DATE

	

Populated by the Callback Requests Data Flow
from INC.INPUT_TIME.

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. The TROUBLE_CALLBACKS table
record is 'aged' based on the system date/time
and the INCIDENT_TIME field. Any record
older than a predefined number of days will be
removed. See

keepdbinfo
 for more information.

	

EXTERNAL_ID

	

Y

	

VARCHAR2(16)

	

Populated by the Callback Requests Data Flow
from INC.EXTERNAL_ID.

	

CALLBACK_STATUS

	

Y

	

VARCHAR2(10)

	

Initially populated by the Callback Requests
Data Flow as NULL;

The field is repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to get a response

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
A remapped value is placed in
INC.CALLBACK_STATUS.

	

CALLBACK_TIME

	

Y

	

DATE

	

Initially populated by the Callback Requests
Data Flow as NULL;

The field could be repopulated by the external
application (using
pr_trouble_callback_responses stored
procedure). The stored procedure defaults this
field to the system date if no information was
supplied by the external application.

The Callback Response Data Flow is
responsible for sending the updated value to
Oracle Utilities Network Management System.
The value is placed in INC.CB_CALL_TIME.

	

CALL_TAKER_ID

	

Y

	

VARCHAR2(32)

	

Populated by the Callback Requests Data Flow
from INC.USER_NAME.

	

CALLBACK_LATE

	

Y

	

VARCHAR2(1)

	

Populated by the Callback Requests Data Flow
from INC.CALLBACK_LATE

The possible values are as follows:

 ‘Y’ - It is OK to call back even when it is
already late.

 ‘N’ - It is not OK to call back when it is already
late.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_LATE_TIME

	

Y

	

DATE

	

Populated by the Callback Requests Data Flow
from INC.CALLBACK_TIME.

This information is only passed from the
external application to Oracle Utilities Network
Management System (using the Trouble Calls
Data Flow), and back to the external application
(using the Callback Requests Data Flow). No
other action is taken.

	

CALLBACK_REASON

	

Y

	

VARCHAR2(100)

	

This is used by the Generic IVR Adapter to
indicate the source of the callback request. This
will default to 'OMS'.

	

PROCESS_STATUS

	

Y

	

VARCHAR2(1)

	

Initially populated by the Callback Requests
Data Flow as 'N', signifying that the record is a
new callback

Once the record was fetched by the external
application (using pr_trouble_callback_requests
stored procedure), the field is automatically
updated by the stored procedure to 'I' signifying
that the external system is currently processing
the callback response.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'C', signifying
that the external application has completed the
processing of the callback response.

This field is internally maintained by the Generic
IVR Adapter. Below is a list of valid values for
this field.

 'N' - New Callback

 'I' - In Processing Of Callback Response

 'C' - Completed The Processing Of Callback
Response

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with PROCESS_STATUS
field = 'C' will be purged.

	

CALLBACK_DONE

	

Y

	

VARCHAR2(1)

	

Initially populated by the Callback Requests
Data Flow as 'N', signifying that the callback is
not yet done.

As soon as the external application successfully
returns the callback response to the Generic
IVR Adapter (using
pr_trouble_callback_responses stored
procedure), the field is updated to 'Y', signifying
that the callback has been done.

Below is a list of valid values for this field.

 'N' - Callback Has Not Been Done

 'Y' - Callback Has Been Done

The Generic IVR Adapter uses this field as one
of the criteria in purging the
TROUBLE_CALLBACKS table for 'old'
records. Records with CALLBACK_DONE
field = 'Y' will be purged.

	

CAUSE_CODE

	

Y

	

VARCHAR2(32)

	

This is used to relay back to customers the cause
of an outage when a callback is performed.

Populated by the Callback Requests Data Flow
from JOBS.CAUSE when the useExternalCause
rule is set to ‘yes’ in the SRS_RULES.

	

OUTAGE_DURATION

	

Y

	

NUMBER

	

Outage duration in seconds.

Populated by the Callback Requests Data with
the difference between
JOBS.RESTORE_TIME and
JOBS.BEGIN_TIME.

	

CUSTOMER_COUNT

	

Y

	

NUMBER

	

Populated by the Callback Requests Data Flow
from INC.USER_NAME.

	

CB_DETAIL_1

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_2

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_3

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

	

CB_DETAIL_4

	

Y

	

VARCHAR2(80)

	

Populated by the Callback Requests Data Flow
from a column in the
PICKLIST_INFO_UPD_TR database table.
Column name is configured in the
IVR_ADAPTER_CONFIG database table.

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Stored Procedure Parameters

pk_ccb.submit_call

Data structures and parameters of the PK_CCB.SUBMIT_CALL stored procedure:

SUBTYPE udf_field IS VARCHAR2(256);

TYPE input_call_rec IS RECORD (

 call_source_id VARCHAR2(3),

 service_point_id trouble_calls.cust_id%TYPE,

 external_id trouble_calls.external_id%TYPE,

 account_number trouble_calls.cust_key%TYPE,

 trouble_code trouble_calls.cust_trouble_code%TYPE,

 first_name trouble_calls.cust_first_name%TYPE,

 last_name trouble_calls.cust_last_name%TYPE,

 phone trouble_calls.cust_phone%TYPE,

 phone_area trouble_calls.cust_phone_area%TYPE,

 alt_phone trouble_calls.alternate_phone%TYPE,

 priority trouble_calls.cust_priority%TYPE,

 critical_flag trouble_calls.cust_critical%TYPE,

 life_support_flag trouble_calls.cust_life_support%TYPE,

 call_id trouble_calls.general_area%TYPE,

 call_time trouble_calls.call_time%TYPE,

 call_comment trouble_calls.call_comment%TYPE,

 call_taker trouble_calls.usename%TYPE,

 call_type trouble_calls.call_type%TYPE,

 addr_building trouble_calls.addr_building%TYPE,

 addr_street trouble_calls.addr_street%TYPE,

 addr_cross_street trouble_calls.addr_street%TYPE,

 addr_city_state trouble_calls.addr_city%TYPE,

 drive_instr trouble_calls.drv_inst%TYPE,

 meet_time trouble_calls.meet_time%TYPE,

 meet_type trouble_calls.meet_type%TYPE,

 group_by_name trouble_calls.group_by_name%TYPE,

 device_id trouble_calls.cust_device_alias%TYPE,

 meter_id trouble_calls.meter_id%TYPE,

 trouble_queue trouble_calls.cust_trouble_queue%TYPE,

 trouble_location trouble_calls.trouble_loc%TYPE,

 x_coord trouble_calls.x_ref%TYPE,

 y_coord trouble_calls.y_ref%TYPE,

 appt_type trouble_calls.appt_type%TYPE,

 appt_time trouble_calls.appt_time%TYPE,

 appt_range trouble_calls.appt_range%TYPE,

 callback_flag trouble_calls.callback_request%TYPE,

 callback_before_time trouble_calls.callback_time%TYPE,

 callback_late_flag trouble_calls.callback_late%TYPE,

 intersection_cls trouble_calls.cust_device_cls%TYPE,

 intersection_idx trouble_calls.cust_device_idx%TYPE,

 cancel_flag trouble_calls.cust_call_cancel%TYPE,

 update_flag trouble_calls.update_existing_inc%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

-- new/updated trouble call

PROCEDURE submit_call (

 p_call IN input_call_rec,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.SUBMIT_CALL stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_call.call_source_id

	

VARCHAR2(2)

	

Id unique to the call capture mechanism (always set to 2 for CCB, 3 for IVR - for example), Value will be prefixed to p_call.external_id field in this stored procedure. Used to allow NMS to maintain unique call ids (incidents.external_id) across multiple call taking systems submitting independent (overlapping) sets of external_ids. Generally an integer (to better support Interactive Voice Response systems) - but can be project specific.

	

p_call.service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_call.external_id

	

VARCHAR2(16)

	

Call external id unique ID from call capture system (CCB) To ensure uniqueness a given NMS implementation needs to agree on a fixed length field (12 characters for example).

	

p_call. account_number

	

VARCHAR2(30)

	

Customer account number.

	

p_call.trouble_code

	

VARCHAR2(32)

	

Call trouble code. Integer passed as a string - each character (0-9) indicates a specific selection (or 0 for non-selection) from each of 1 to 32 different trouble call categories. Project configurable.

	

p_call.first_name

	

VARCHAR2(75)

	

Customer first name or full name (if customer name is passed in a single field).

	

p_call.last_name

	

VARCHAR2(75)

	

Customer last name.

	

p_call.phone

	

VARCHAR2(32)

	

Customer phone number.

	

p_call.phone_area

	

VARCHAR2(8)

	

Customer phone area code.

	

p_call.alt_phone

	

VARCHAR2(32)

	

Alternative/callback phone number.

	

p_call.priority

	

VARCHAR2(4)

	

Almost always an integer - lower values are higher priority - project specific. Normally same as ces_customers.priority but can be modified on input to increase call priority. Interpreted via call_quality table where set_name='crit_tot' - Bob/Andrei? Confirm

	

p_call.critical_flag

	

VARCHAR2(1)

	

Critical customer (Y/N)

	

p_call.life_support_flag

	

VARCHAR2(1)

	

Life support flag (Y/N).

	

p_call.call_id

	

VARCHAR2(32)

	

Call identifier (for example, 911 call id) - mapped to general_area

	

p_call.call_time

	

DATE

	

Call capture time from external call capture system

	

p_call.call_comment

	

VARCHAR2(255)

	

Comments

	

p_call.call_taker

	

VARCHAR2(32)

	

Call taker id.

	

p_call.call_type

	

VARCHAR2(8)

	

Call type.

	

CC&B should leave this field empty.

	

	

	

p_call.addr_building

	

VARCHAR2(10)

	

Building/block number.

	

p_call.addr_street

	

VARCHAR2(255)

	

Street address or name of the first intersection street.

	

p_call.addr_cross_street

	

VARCHAR2(255)

	

Name of the second intersection (cross) street.

	

p_call.addr_city_state

	

VARCHAR2(45)

	

City and (optionally) state.

	

p_call.drive_instr

	

VARCHAR2(180)

	

Driving instructions.

	

p_call.meet_time

	

DATE

	

Meet time.

	

p_call.meet_type

	

NUMBER

	

Meet action code.

Possible values:

	
•

	

0 - for non-meet calls

	
•

	

1 - create new meet

	
•

	

2 - reschedule existing meet

	
•

	

3- cancel existing meet

	

p_call.group_by_name

	

VARCHAR2(127)

	

Optional control zone name for fuzzy calls.

	

p_call.device_id

	

VARCHAR2(32)

	

Device alias.

	

p_call.meter_id

	

VARCHAR2(32)

	

Meter number.

	

p_call.trouble_queue

	

VARCHAR2(10)

	

Trouble queue (Tree Trimming, Underground, etc)

	

p_call.trouble_location

	

VARCHAR2(255)

	

Trouble location.

	

p_call.x_coord

	

NUMBER

	

X coordinate in the NMS electrical network model coordinate system (generally NOT lat/long). If not provided JMService will default to the coordinates for the supply_node from the point_coordinates table.

	

p_call.y_coord

	

NUMBER

	

Y coordinate - match for X coordinate above.

	

p_call.appt_type

	

NUMBER

	

Appointment type.

	

p_call.appt_time

	

DATE

	

Appointment time.

	

p_call.appt_range

	

NUMBER

	

Appointment time window in minutes.

	

p_call.callback_flag

	

NUMBER

	

Callback request flag.

	
•

	

0 - callback has not been requested

	
•

	

1- callback has been requested.

	

p_call.callback_before_t ime

	

DATE

	

Callback requested before this time.

	

p_call.callback_late_flag

	

VARCHAR2(1)

	

Callback late ok flag (Y/N)

	

p_call.intersection_cls

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_d is null interpreted as att_street_intersection.h_cls. Used to help identify an intersection (when paired with p_call.intersection_idx)

	

p_call.intersection_idx

	

NUMBER

	

If p_call.service_point_id is NOT null this field is ignored. If not null and p_call.service_point_id is null interpreted as att_street_intersection.h_idx - to help identify an intersection (when paired with p_call.intersection_cls).

	

p_call.cancel_flag

	

VARCHAR2(1)

	

Call cancel flag (Y/N).

	

p_call.update_flag

	

NUMBER

	

If 0 then this is a new call, otherwise this is an update to an existing call.

	

p_call.udf1

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf2

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf3

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf4

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_call.udf5

	

VARCHAR2(255)

	

User-defined call field 1.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VARCHAR2(200)

	

Internal error message.

pk_ccb.job_history

Stored procedure PK_CCB.JOB_HISTORY allows caller to retrieve list of jobs matching passed in search condition.

The following types of search conditions are supported:

	
•

	

Search for specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for jobs at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy jobs by external id, call identifier, caller name or caller phone.

	
•

	

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

CREATE OR REPLACE TYPE customer_search_obj AS OBJECT (

 serv_point_id VARCHAR2(64),

 premise_id NUMBER,

 account_number VARCHAR2(30)

)

CREATE OR REPLACE TYPE location_search_obj AS OBJECT (

 city VARCHAR2(200),

 state VARCHAR2(30),

 street1 VARCHAR2(200),

 street2 VARCHAR2(200),

 block_number NUMBER

)

CREATE OR REPLACE TYPE fuzzy_search_obj AS OBJECT (

 external_id VARCHAR2(200),

 call_id VARCHAR2(200),

 caller_name VARCHAR2(200),

 caller_phone VARCHAR2(200)

)

CREATE OR REPLACE TYPE custom_search_obj AS OBJECT (

 field1 VARCHAR2(200),

 field2 VARCHAR2(200),

 field3 VARCHAR2(200),

 field4 VARCHAR2(200),

 field5 VARCHAR2(200)

)

TYPE nms_cursor IS REF CURSOR;

-- Get job history.

PROCEDURE job_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_jobs OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

Description of the parameters of the PK_CCB.JOB_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_cust.serv_point_i d

	

VARCHAR2(64)

	

Service point id.

	

p_cust.premise_id

	

VARCHAR2(16)

	

Service location (premise id).

	

p_cust.account_nu mber

	

VARCHAR2(30)

	

Customer account number.

	

p_loc.city

	

VARCHAR2(200)

	

City.

	

p_loc.state

	

VARCHAR2(30)

	

State.

	

p_loc.street1

	

VARCHAR2(200)

	

Street name. This field is used in both street intersection search and street segment search.

	

p_loc.street2

	

VARCHAR2(200)

	

Second street name for street intersection search.

	

p_loc.block_numbe r

	

NUMBER

	

Block number for street segment search.

	

p_fuzzy.external_id

	

VARCHAR2(200)

	

Call external id.

	

p_fuzzy.call_id

	

VARCHAR2(200)

	

Call identifier (for example, id for 911 calls).

	

p_fuzzy.caller_nam e

	

VARCHAR2(200)

	

Caller name.

	

p_fuzzy.caller_phon e

	

VARCHAR2(200)

	

Caller phone number.

	

p_custom.xxx

	

	

Implementation-defined search parameters.

	

p_cmp_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

	

p_jobs

	

nms_cursor

	

Returned jobs information.

	

p_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

p_err_msg

	

VERCHAR2(200)

	

Internal error message.

For each returned job the following information is included.

job history record

TYPE job_rec IS RECORD (

 serv_point_id ces_customers.id%TYPE,

 event_idx jobs.event_idx%TYPE,

 begin_time jobs.begin_time%TYPE,

 est_rest_time jobs.est_rest_time%TYPE,

 est_rest_time_source jobs.est_source%TYPE,

 restore_time jobs.restore_time%TYPE,

 cust_out jobs.num_cust_out%TYPE,

 comments jobs.operator_comment%TYPE,

 alarm_state jobs.alarm_state%TYPE,

 trouble_location jobs.trouble_location%TYPE,

 status jobs.status%TYPE,

 device_class jobs.devcls_name%TYPE,

 trouble_code jobs.trouble_code%TYPE,

 feeder_name jobs.feeder_name%TYPE,

 cause jobs.cause%TYPE,

 description jobs.description%TYPE,

 referral_group jobs.referral_group%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

event_idx

	

NUMBER

	

Event index.

	

begin_time

	

DATE

	

Outage begin time.

	

est_rest_time

	

DATE

	

Estimated restoration time (ERT).

	

est_rest_time_sour ce

	

VARCHAR2(1)

	

ERT source.

Possible values:

	
•

	

N - no ERT

	
•

	

I - Initial ERT

	
•

	

C - manually entered ERT (from crew or NMS operator)

	
•

	

S - ERT calculated by Storm Management

	
•

	

O - ERT calculated by Storm Management (crew on-site)

	
•

	

P - Non-publisher ERT

	
•

	

G - ERT override is in effect

	
•

	

D - ERT delay is in effect

	

restore_time

	

DATE

	

Outage restoration time.

	

cust_out

	

NUMBER

	

Number of customers affected by the outage.

	

comments

	

VARCHAR2(255)

	

Operator's comment. Note some customers increase this to max allowed (4k).

	

alarm_state

	

VARCHAR2(32)

	

Outage state.

	

trouble_location

	

VARCHAR2(255)

	

	

status

	

NUMBER

	

Job type.

Possible values:

	
•

	

0 - Fuzzy outage.

	
•

	

1 - Probable/predicted service outage.

	
•

	

2 - Probable/predicted device outage.

	
•

	

3 - Real service outage.

	
•

	

4 - Real device outage.

	
•

	

7 - Non-outage.

	
•

	

8 - Critical meet.

	
•

	

9 - Future meet.

	
•

	

10 - Confirmed service outage.

	
•

	

11 - Confirmed secondary outage.

	
•

	

13 - Probable/predicted momentary outage.

	
•

	

14 - Real momentary outage.

	
•

	

15 - Planned outage.

	
•

	

16 - Non-electric event.

	
•

	

17 - Master switching job.

	
•

	

18 - Fault current event.

	

device_class

	

VARCHAR2(32)

	

Outage device class name (e.g., fuse)

	

trouble_code

	

VARCHAR2(128)

	

Trouble code.

	

feeder_name

	

VARCHAR2(32)

	

Feeder name.

	

cause

	

VARCHAR2(32)

	

Outage cause.

	

description

	

VARCHAR2(128)

	

Job description.

	

referral_group

	

VARCHAR2(32)

	

Referral group.

	

udf1

	

VARCHAR2(255)

	

Job user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Job user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Job user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Job user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Job user-defined field 5.

pk_ccb.call_history

Stored procedure PK_CCB.CALL_HISTORY will allow caller to retrieve list of calls matching search condition.

Following types of search conditions will be supported:

	
•

	

Search for calls for a specific customer by service point id, premise id or account number.

	
•

	

Location-based search. Search for calls at or nearby specified location. Location can be street intersection or street segment (block).

	
•

	

Fuzzy outage search. Search for fuzzy calls by external id, call identifier, caller name or caller phone.

Custom search. To use custom search the stored procedure has to be modified by the project. Additional search parameters are passed in the 'p_custom' field.

PROCEDURE call_history (

 p_cust IN customer_search_obj,

 p_loc IN location_search_obj,

 p_fuzzy IN fuzzy_search_obj,

 p_custom IN custom_search_obj,

 p_num_days IN NUMBER,

 p_calls OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2

);

For each returned call the following information is included.

-- call history record

TYPE call_rec IS RECORD (

 external_id incidents.external_id%TYPE,

 call_id incidents.general_area%TYPE,

 serv_point_id incidents.cid%TYPE,

 call_time incidents.input_time%TYPE,

 address incidents.address%TYPE,

 short_desc incidents.short_desc%TYPE,

 comments incidents.op_comment%TYPE,

 call_taker incidents.user_name%TYPE,

 cust_name incidents.customer_name%TYPE,

 status incidents.active%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

external_id

	

VARCHAR2(16)

	

Call external id.

	

call_id

	

VARCHAR2(32)

	

Call identifier (for example, id for 911 calls).

	

serv_point_id

	

VARCHAR2(64)

	

Service point id.

	

call_time

	

DATE

	

Call time.

	

Address

	

VARCHAR2(255)

	

Address for the call.

	

short_desc

	

VARCHAR2(256)

	

Trouble code.

	

Comments

	

VARCHAR2(255)

	

Comments.

	

call_taker

	

VARCHAR2(32)

	

Call taker id.

	

cust_name

	

VARCHAR2(75)

	

Customer/caller name.

	

Status

	

VARCHAR2(1)

	

Call status. Possible values (other values can exist in NMS but they would not be returned by this procedure):"Y - active call "N - inactive/restored call "C - canceled call "E - call belongs to canceled job

	

udf1

	

VARCHAR2(255)

	

Call user-defined field 1.

	

udf2

	

VARCHAR2(255)

	

Call user-defined field 2.

	

udf3

	

VARCHAR2(255)

	

Call user-defined field 3.

	

udf4

	

VARCHAR2(255)

	

Call user-defined field 4.

	

udf5

	

VARCHAR2(255)

	

Call user-defined field 5.

pk_ccb.outage_history

Planned Outage History

New stored procedure PK_CCB.SWITCHING_HISTORY will be created. It will return list of current, future and optionally past switching plans affecting given service point.

PROCEDURE switching_history (

 p_serv_point_id IN VARCHAR2,

 p_custom IN custom_search_obj,

 p_sw_plans OUT nms_cursor,

 p_err_no OUT NUMBER,

 p_err_msg OUT VARCHAR2,

 p_num_days IN NUMBER := 0

);

Description of the parameters of the PK_CCB.SWITCHING_HISTORY stored procedure.

	

Parameter Name

	

Parameter Type

	

Description

	

p_service_point_id

	

VARCHAR2(64)

	

Service point id.

	

p_custom

	

	

Implementation-defined search parameters.

	

P_sw_plans

	

nms_cursor

	

Returned switching plan information.

	

P_err_no

	

NUMBER

	

Error code.

In case of successful execution 0 is returned.

	

P_err_msg

	

VARCHAR2(200)

	

Internal error message.

	

P_num_days

	

NUMBER

	

If greater than 0 then switching plans completed within specified number of days in the past will be returned in addition to current and future switching plans.

For each returned switching plan following information is included.

-- switching plan record

TYPE switching_plan_rec IS RECORD (

 plan_class swman_sheet_cls.switch_sheet_type%TYPE,

 plan_number swman_sheet.switch_sheet_idx%TYPE,

 start_date swman_sheet.start_date%TYPE,

 end_date swman_sheet.finish_date%TYPE,

 state te_valid_states.state_name%TYPE,

 work_district swman_sheet_extn.string_value%TYPE,

 work_location swman_sheet_extn.string_value%TYPE,

 work_description swman_sheet_extn.string_value%TYPE,

 udf1 udf_field,

 udf2 udf_field,

 udf3 udf_field,

 udf4 udf_field,

 udf5 udf_field

);

	

Field Name

	

Field Type

	

Description

	

plan_class

	

VARCHAR2(32)

	

Switching plan type (planned, emergency, ….).

	

plan_number

	

NUMBER

	

Switching plan number.

	

start_date

	

DATE

	

Switching plan start date.

	

end_date

	

DATE

	

Switching plan end date.

	

State

	

VARCHAR2(32)

	

Switching plan state.

	

work_district

	

VARCHAR2(500)

	

	

work_location

	

VARCHAR2(500)

	

	

work_description

	

VARCHAR2(500)

	

pr_trouble_calls Stored Procedure

The Generic IVR Adapter provides the pr_trouble_calls procedure to be used by the external application to insert trouble calls in the TROUBLE_CALLS table. Refer to
Trouble Calls
 for Data Flow details.

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon invoking the stored procedure, the p_premise_id parameter is used to query the CES_CUSTOMERS table (via the SERV_LOC_ID field) to retrieve the ACCOUNT_NUMBER, H_CLS and H_IDX fields of the said table. The value of these fields is placed in the corresponding columns of the TROUBLE_CALLS table.

	
•

	

Other parameter values are inserted to corresponding fields on the TROUBLE_CALL table.

	
•

	

Several TROUBLE_CALLS columns will have default value when no parameter value is supplied.

	
•

	

Should there be an error in the record insert, an Oracle error is returned.

Note : If the given premise id has multiple accounts associated with it, only one account (i.e., the first account) is used.

Below are details about each parameter of the pr_trouble_calls stored procedure. Note that the field name column indicates the corresponding column that is populated in the TROUBLE_CALLS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comment

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

The value is inserted as is.

	

p_trouble_code

	

In

	

VARCHAR2

	

TROUBLE_CODE

	

Defaults to ‘1’ followed by a
certain number of ‘0’. If no
value was supplied. The total
length of the string is the total
number of distinct groups in
the SRS_TROUBLE_CODES
table.

	

p_callback_ind

	

In

	

VARCHAR2

	

CALLBACK_INDICATOR

	

The possible values are as
follows:

 ‘0’ - callback not requested

 ‘1’ - callback requested

Defaults to ‘1’ if no value is
supplied.

 ‘Y’ is translated to ‘1’.

 ‘N’ is translated to ‘0’.

	

p_call_time

	

In

	

DATE

	

CALL_TIME

	

Defaults to the database system
date if no value is supplied

	

p_call_taker_id

	

In

	

VARCHAR2

	

CALL_TAKER_ID

	

The value is inserted as is.

	

p_alternate_phone

	

In

	

VARCHAR2

	

ALTERNATE_PHONE

	

The value is inserted as is.

	

p_customer_comment

	

In

	

VARCHAR2

	

CUSTOMER_COMMENT

	

The value is inserted as is.

	

p_customer_phone

	

In

	

VARCHAR2

	

CUSTOMER_PHONE

	

The value is inserted as is.

	

p_customer_name

	

In

	

VARCHAR2

	

CUSTOMER_NAME

	

The value is inserted as is.

	

p_customer_address

	

In

	

VARCHAR2

	

CUSTOMER_ADDRESS

	

The value is inserted as is.

	

p_customer_city_state

	

In

	

VARCHAR2

	

CUSTOMER_CITY_STATE

	

The value is inserted as is.

	

p_customer_priority

	

In

	

VARCHAR2

	

CUSTOMER_PRIORITY

	

The value is inserted as is.

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

The value is inserted as is.

	

p_device_alias

	

In

	

VARCHAR2

	

DEVICE_ALIAS

	

The value is inserted as is.

	

p_check_cutoff_ind

	

In

	

VARCHAR2

	

CHECK_CUTOFF_IND

	

The possible values are as
follows:

 ‘Y’ - check if the customer is
disconnected

 ‘N’ - do not perform checking.

Defaults to ‘N’ if no value is
supplied

	

p_callback_late_ind

	

In

	

VARCHAR2

	

CALLBACK_LATE_IND

	

The possible values are as
follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

Defaults to ‘N’ if no value is
supplied

	

p_callback_before_time

	

In

	

DATE

	

CALLBACK_BEFORE_TIME

	

The value is inserted as is.

	

p_trouble_queue

	

In

	

VARCHAR2

	

TROUBLE_QUEUE

	

The value is inserted as is.

	

p_meter_id

	

In

	

VARCHAR2

	

METER_ID

	

The value is inserted as is.

	

p_supply_id

	

In

	

NUMBER

	

SUPPLY_ID

	

The value is inserted as is.

	

p_cust_phone_area

	

In

	

VARCHAR2

	

CUST_PHONE_AREA

	

The value is inserted as is.

	

p_cust_last_name

	

In

	

VARCHAR2

	

CUST_LAST_NAME

	

The value is inserted as is.

	

p_general_area

	

In

	

VARCHAR2

	

GENERAL_AREA

	

The value is inserted as is.

	

p_cust_order_num

	

In

	

VARCHAR2

	

CUST_ORDER_NUM

	

The value is inserted as is.

	

p_drv_inst

	

In

	

VARCHAR2

	

DRV_INST

	

The value is inserted as is.

	

p_cust_life_support

	

In

	

VARCHAR2

	

CUST_LIFE_SUPPORT

	

The value is inserted as is.

	

p_cust_call_cancel

	

In

	

VARCHAR2

	

CUST_CALL_CANCEL

	

The value is inserted as is.

	

p_short_desc

	

In

	

VARCHAR2

	

SHORT_DESC

	

The value is inserted as is.

	

p_addr_building

	

In

	

VARCHAR2

	

ADDR_BUILDING

	

The value is inserted as is.

	

p_meet_time

	

In

	

DATE

	

MEET_TIME

	

The value is inserted as is.

	

p_meet_type

	

In

	

NUMBER

	

MEET_TYPE

	

The value is inserted as is.

	

p_groupable

	

In

	

NUMBER

	

GROUPABLE

	

The value is inserted as is.

	

p_clue

	

In

	

NUMBER

	

CLUE

	

The value is inserted as is.

	

p_combine_pri

	

In

	

NUMBER

	

COMBINE_PRI

	

The value is inserted as is.

	

p_cust_status

	

In

	

NUMBER

	

CUST_STATUS

	

The value is inserted as is.

	

p_cust_intr_x

	

In

	

NUMBER

	

CUST_INTR_X

	

The value is inserted as is.

	

p_cust_intr_y

	

In

	

NUMBER

	

CUST_INTR_Y

	

The value is inserted as is.

	

p_cust_intersect_cls

	

In

	

NUMBER

	

CUST_INTERSECT_CLS

	

The value is inserted as is.

	

p_cust_intersect_idx

	

In

	

NUMBER

	

CUST_INTERSECT_IDX

	

The value is inserted as is.

	

p_cust_intersect_ncg

	

In

	

NUMBER

	

CUST_INTERSECT_NCG

	

The value is inserted as is.

	

p_update_existing_inc

	

In

	

NUMBER

	

UPDATE_EXISTING_INC

	

The value is inserted as is.

	

p_fuzzy_ncg_cls

	

In

	

NUMBER

	

FUZZY_NCG_CLS

	

The value is inserted as is.

	

p_fuzzy_ncg_idx

	

In

	

NUMBER

	

FUZZY_NCG_IDX

	

The value is inserted as is.

	

p_group_by_name

	

In

	

VARCHAR2

	

GROUP_BY_NAME

	

The value is inserted as is.

	

p_cust_critical

	

In

	

VARCHAR2

	

CUST_CRITICAL

	

The value is inserted as is.

	

p_related_evt_cls

	

In

	

NUMBER

	

RELATED_EVT_CLS

	

The value is inserted as is.

	

p_related_evt_idx

	

In

	

NUMBER

	

RELATED_EVT_IDX

	

The value is inserted as is.

	

p_related_evt_app

	

In

	

NUMBER

	

RELATED_EVT_APP

	

The value is inserted as is.

	

p_x_ref

	

In

	

NUMBER

	

X_REF

	

The value is inserted as is.

	

p_y_ref

	

In

	

NUMBER

	

Y_REF

	

The value is inserted as is.

	

p_call_type

	

In

	

VARCHAR2

	

CALL_TYPE

	

The value is inserted as is.

	

p_cust_phone_update

	

In

	

VARCHAR2

	

CUST_PHONE_UPDATE

	

The value is inserted as is.

	

p_trouble_loc

	

In

	

VARCHAR2

	

TROUBLE_LOC

	

The value is inserted as is.

	

p_appt_type

	

In

	

VARCHAR2

	

APPT_TYPE

	

The value is inserted as is.

	

p_appt_time

	

In

	

DATE

	

APPT_TIME

	

The value is inserted as is.

	

p_appt_range

	

In

	

NUMBER

	

APPT_RANGE

	

The value is inserted as is.

	

p_cust_device_ncg

	

In

	

NUMBER

	

CUST_DEVICE_NCG

	

The value is inserted as is.

	

p_cust_device_partition

	

In

	

NUMBER

	

CUST_DEVICE_PARTITION

	

The value is inserted as is.

	

p_err_premise_id

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

The erroneous premise ID input parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

VARCHAR2(80)

	

Oracle’s error message.

Note: The pr_trouble_calls stored procedure does not require a call status parameter from the user to insert in the TROUBLE_CALLS stored procedure. Each time the stored procedure inserts trouble calls in the TROUBLE_CALLS table, the CALL_STATUS field is always ‘N’, signifying that it is a new trouble call.

pr_trouble_status Stored Procedure

The Generic IVR Gateway provides the pr_trouble_status stored procedure that queries outage information for a given event handle parameter. The stored procedure pr_direct_trouble_status is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what is done inside the stored procedure:

	
•

	

If a single row was retrieved, the rest of the stored procedure parameters are populated with data retrieved from either the TROUBLE_STATUS table or Oracle Utilities Network Management System tables.

	
•

	

Else, an Oracle error is returned.

Below are details about each parameter of the pr_trouble_status stored procedure. Note that the field name column indicates the corresponding column in the TROUBLE_STATUS table.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_event_class

	

In

	

NUMBER

	

EVENT_CLS

	

Event class input parameter

	

p_in_event_index

	

In

	

NUMBER

	

EVENT_IDX

	

Event index input parameter

	

p_out_event_class

	

Out

	

NUMBER

	

EVENT_CLS

	

Similar to the event class input
parameter

	

p_out_event_index

	

Out

	

NUMBER

	

EVENT_IDX

	

Similar to the event index input
parameter

	

p_outage_status

	

Out

	

VARCHAR2

	

OUTAGE_STATUS

	

This is an abbreviation of the
current state of the event, for
instance, 'NEW', 'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

OUTAGE_START_TIME

	

The time of the lead call of the job.

	

p_first_dispatch_time

	

Out

	

DATE

	

FIRST_DISPATCH_TIME

	

The time the first crew was
dispatched

	

p_est_restore_time

	

Out

	

DATE

	

EST_RESTORE_TIME

	

The last estimate of restoration
time.

	

p_est_restore_time_src

	

Out

	

VARCHAR2

	

EST_RESTORE_TIME_SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management
"published global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future than allowed.

	

p_crew_arrival_time

	

Out

	

DATE

	

CREW_ARRIVAL_TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone,
and the event is completed in the
Event Details window.

	

p_restoration_time

	

Out

	

DATE

	

RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_alias

	

Out

	

VARCHAR2

	

ALIAS

	

The device alias.

	

p_event_type

	

Out

	

VARCHAR2

	

EVENT_TYPE

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

p_feeder_name

	

Out

	

VARCHAR2

	

FEEDER_NAME

	

The name of the feeder.

	

p_cause

	

Out

	

VARCHAR2

	

CAUSE

	

The cause of the outage if SRS Rule
useExternalCause is on.

	

p_num_calls

	

Out

	

NUMBER

	

NUM_CALLS

	

The number of calls.

	

p_num_cust_out

	

Out

	

NUMBER

	

NUM_CUST_OUT

	

The number of customers out.

	

p_err_event_class

	

Out

	

NUMBER

	

	

The erroneous event class input
parameter.

	

p_err_event_index

	

Out

	

NUMBER

	

	

The erroneous event index input
parameter.

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message.

pr_affected_customers Stored Procedure

The Generic IVR Adapter provides the pr_affected_customers stored procedure that tells if a given customer has been a part of an outage. The stored procedure pr_direct_affected_customers is called, which retrieves data directly from the Oracle Utilities Network Management System tables.

Below is a high level description of what occurs inside the stored procedure.

	
•

	

The stored procedure tries to get the latest active event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not part of an active event, the stored procedure tries to get the latest inactive event for the given premise ID. The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_affected_customers stored procedure returns data retrieved from the TROUBLE_AFFECTED_CUSTOMERS table and the pr_trouble_status stored procedure.

	
•

	

If the customer is not involved in any active or inactive events, all output parameters are returned as null for the parameter's corresponding data type.

Parameters

Below are details about each parameter of the pr_affected_customers stored procedure. Take note that the field name column would be field names prefixed with ‘TS.’ if the field name came from the TROUBLE_STATUS table. Field names would be prefixed with ‘TAC.’ if the field name came from the TROUBLE_AFFECTED_CUSTOMERS table. Field names would be prefixed with CC.’ if the field name came from the CES_CUSTOMERS table.

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

	

Premise ID input parameter with a
corresponding entry in
CC.SERV_LOC_ID

	

p_out_premise_id

	

Out

	

VARCHAR2

	

TAC.PREMISE_ID

	

Similar to the Premise ID input
parameter

	

p_account_number

	

Out

	

VARCHAR2

	

TAC.ACCOUNT_NUMBER

	

	

p_customer_name

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_NAME

	

	

p_customer_phone

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_PHONE

	

	

p_customer_address

	

Out

	

VARCHAR2

	

TAC.CUSTOMER_ADDRES
S

	

	

p_supply_node_

index

	

Out

	

NUMBER

	

TAC.SUPPLY_NODE_

IDX

	

	

p_supply_node_

restore_time

	

Out

	

DATE

	

TAC.RESTORE_TIME

	

	

p_event_class

	

Out

	

NUMBER

	

TS.EVENT_CLS

	

The event class of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_event_index

	

Out

	

NUMBER

	

TS.EVENT_IDX

	

The event index of the most recent
active (or most recent inactive) event
retrieved using the premise ID.

	

p_outage_status

	

Out

	

VARCHAR2

	

TS.OUTAGE_STATUS

	

This is an abbreviation of the current
state of the event, for instance, 'NEW',
'ASN', 'CMP', etc.

	

p_outage_start_time

	

Out

	

DATE

	

TS.OUTAGE_START_

TIME

	

The time of the lead call of the job.

	

p_first_dispatch_

time

	

Out

	

DATE

	

TS.FIRST_DISPATCH_

TIME

	

The time the first crew was dispatched

	

p_est_restore_time

	

Out

	

DATE

	

TS.EST_RESTORE_TIME

	

The last estimate of restore time.

	

p_est_restore_time_
src

	

Out

	

VARCHAR2

	

TS.EST_RESTORE_TIME_

SRC

	

The source of the ERT of the event.

Possible values are as follows:

'N' - none (no ERT)

'S' - Storm Management

'P' - Storm Management "non-
published global ERT"

'O' - Storm Management "onsite
ERT"

'G' - Storm Management "published
global ERT"

'D' - Storm Management "published
global ERT delay"

'C' - User-entered (assumed to have
been provided by the crew)

'I' - Initial default ERT

'M' - Storm Management ERT is
further in the future then allowed

	

p_crew_arrival_time

	

Out

	

DATE

	

TS.CREW_ARRIVAL_

TIME

	

The time when the crew arrived on
location

	

p_completion_time

	

Out

	

DATE

	

TS.COMPLETION_TIME

	

The time the event has been
completed. This implies power
restoration, the crew(s) are gone, and
the event is completed in the Event
Details window.

	

p_restoration_time

	

Out

	

DATE

	

TS.RESTORATION_TIME

	

The time that power has been
restored.

	

p_case_note

	

Out

	

VARCHAR2

	

TS.CASE_NOTE

	

Comment

	

p_status

	

Out

	

NUMBER

	

TS.STATUS

	

Condition status

	

p_active

	

Out

	

VARCHAR2

	

TS.ACTIVE

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

pr_trouble_callback_requests Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

From the TROUBLE_CALLBACKS table, a list of new callback requests is created. These are the TROUBLE_CALLBACKS records whose PROCESS_STATUS field is ‘N’ (New) and CALLBACK_DONE field is ‘N’ (No).

	
•

	

The list is captured within the stored procedure as a database cursor and returned to the calling application.

	
•

	

The PROCESS_STATUS field of the records in the list is updated from ‘N’ (New) to ‘I’ (In Progress).

Note: Refer to the Data Flow Steps of the Callback Requests Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameter

	

Parameter

	

Direction

	

Cursor

	

p_callback_requests

	

In/Out

	

CALLBACK_CURSOR

Cursor Definition

Below are the fields of the CALLBACK_CURSOR. Take note that the CALLBACK_CURSOR is defined as a weakly typed cursor.

	

Field Name from the Cursor

	

Data Type

	

Field Name from TROUBLE_CALLBACKS

	

Comments

	

EVENT_CLS

	

NUMBER(38)

	

TCB.EVENT_CLS

	

Event class

	

EVENT_IDX

	

NUMBER(38)

	

TCB.EVENT_IDX

	

Event index

	

INCIDENT_NUMB

	

NUMBER(38)

	

TCB.INCIDENT_NUMB

	

Incident number

	

PREMISE_ID

	

VARCHAR2(50)

	

TCB.PREMISE_ID

	

Premise id

	

CUSTOMER_NAME

	

VARCHAR2(75)

	

TCB.CUSTOMER_NAME

	

Customer name

	

CUSTOMER_PHONE

	

VARCHAR2(38)

	

TCB.CUSTOMER_PHONE

	

Customer phone

	

CUSTOMER_ADDRESS

	

VARCHAR2(255)

	

TCB.CUSTOMER_ADDRESS

	

Customer address

	

ALTERNATE_PHONE

	

VARCHAR2(38)

	

TCB.ALTERNATE_PHONE

	

Customer alternate phone number

	

TROUBLE_CODE

	

VARCHAR2(32)

	

TCB.TROUBLE_CODE

	

This is the trouble code (e.g.,
‘10000000’) of the incident rather
than the clue (e.g., 'Out'). 'Out' is
short for 'All Power Out'.

	

SHORT_DESCRIPTION

	

VARCHAR2(128)

	

TCB.SHORT_DESCRIPTION

	

This is the clue (e.g., 'Out') of the
incident rather than the trouble
code (e.g., ‘10000000’). 'Out' is
short for 'All Power Out'.

	

CUSTOMER_COMMENT

	

VARCHAR2(255)

	

TCB.CUSTOMER_COMMENT

	

Call-taker Comments. Comments
provided by the customer or call-
taker about the incident.

	

INCIDENT_TIME

	

DATE

	

TCB.INCIDENT_TIME

	

Input time of call. The input time of
the incident.

	

EXTERNAL_ID

	

VARCHAR2(16)

	

TCB.EXTERNAL_ID

	

Unique call identifier. The unique
identifier for the incident.

	

CALL_TAKER_ID

	

VARCHAR2(32)

	

TCB.CALL_TAKER_ID

	

Call-taker user name. The name of
the call-taker or interface that
created the call.

	

CALLBACK_LATE

	

VARCHAR2(1)

	

TCB.CALLBACK_LATE

	

The possible values are as follows:

 ‘Y’ - It is OK to call back even
when it is already late.

 ‘N’ - It is not OK to call back
when it is already late.

	

CALLBACK_LATE_TIME

	

DATE

	

TCB.CALLBACK_LATE_TIME

	

	

CALLBACK_REASON

	

VARCHAR2(100)

	

TCB.CALLBACK_REASON

	

This will default to 'OMS'.

	

CAUSE_CODE

	

VARCHAR2(32)

	

TCB.CAUSE_CODE

	

Cause code of the event related to
the callback.

pr_trouble_callback_responses Stored Procedure

Below is a high level description of what is done inside the stored procedure

	
•

	

Upon receiving the input parameter values, the stored procedure verifies if either the p_incident_numb input parameter or the p_external_id input parameter was supplied. If both were supplied, the p_incident_numb parameter takes precedence.

	
•

	

The stored procedure validates if the p_callback_status input parameter has a valid value. The valid values are ‘F’ (not restored), ‘R’ (restored) and ‘N’ (cancel callback).

	
•

	

The stored procedure verifies that there is a unique combination of p_incident_numb and p_premise_id OR a unique combination of p_external_id and p_premise_id on the TROUBLE_CALLBACKS table, whichever among p_incident_numb or p_external_id was supplied.

	
•

	

The TROUBLE_CALLBACKS table is updated for the p_incident_numb and p_premise_id combination OR the p_external_id and p_premise_id combination. The following fields are updated:

	
•

	

The callback's CALLBACK_DONE field to 'Y' signifying that the callback was already done.

	
•

	

The callback's CALLBACK_TIME field with provided p_callback_time stored procedure parameter. CALLBACK_TIME field defaults to the system date if no value was provided.

	
•

	

The callback's CALLBACK_STATUS field with the appropriate callback response code.

	
•

	

Should any of these steps fail, the stored procedure exits and returns the appropriate error.

Note: Refer to the Data Flow Steps of the Callback Response Data Flow on how the TROUBLE_CALLBACKS table is populated.

Parameters

	

Parameter

	

Direction

	

Data Type

	

Field Name

	

Comments

	

p_incident_numb

	

In

	

NUMBER

	

INCIDENT_NUMB

	

Incident Number. Either this or
the p_external_id parameter has
to be supplied

	

p_external_id

	

In

	

VARCHAR2

	

EXTERNAL_ID

	

External Id. Either this or the
p_incident_numb parameter has
to be supplied

	

p_premise_id

	

In

	

VARCHAR2

	

PREMISE_ID

	

Premise Id.

	

p_callback_status

	

In

	

VARCHAR2

	

CALLBACK_STATUS

	

The valid values are as follows:

 'F' - Not Restored Callback

 'R' - Restored Callback

 'N' - Cancel Callback, unable to
get a response

	

p_callback_time

	

In

	

DATE

	

CALLBACK_TIME

	

Defaulted to the system date if
no value was supplied

	

p_err_incident_numb

	

Out

	

NUMBER

	

	

The erroneous incident number
input parameter

	

p_err_external_id

	

Out

	

VARCHAR2

	

	

The erroneous external ID input
parameter

	

p_err_premise_id

	

Out

	

VARCHAR2

	

	

The erroneous premise ID input
parameter

	

p_err_oracle_error

	

Out

	

VARCHAR2

	

	

Oracle’s error message

pr_customer_event_details Stored Procedure

The Generic IVR Gateway provides the pr_customer_event_details stored procedure that gives the event details of an outage given the customer premise using the pr_trouble_status stored procedure. Refer to the data flow detail for
Callback Requests
.

Below is a high level description of what is done inside the stored procedure.

	
•

	

The stored procedure tries to get the latest event for the given premise ID (p_in_premise_id input parameter). The retrieved event handle is used as a parameter for the pr_trouble_status stored procedure. After which, the pr_customer_event_details stored procedure returns the same information returned by pr_trouble_status stored procedure.

Parameters

Below are details about each parameter of the pr_customer_event_details stored procedure.

	

Parameter

	

Direction

	

Data Type

	

Comments

	

p_in_premise_id

	

In

	

VARCHAR2

	

Premise ID input parameter with a corresponding
entry in CES_CUSTOMERS.SERV_LOC_ID

	

p_out_event_class

	

Out

	

NUMBER

	

Event class output parameter

	

p_out_event_index

	

Out

	

NUMBER

	

Event index output parameter

	

p_out_outage_status

	

Out

	

VARCHAR2

	

This is an abbreviation of the current state of the
event, for instance, 'NEW', 'ASN', 'CMP', etc.

	

p_ out_outage_start_time

	

Out

	

DATE

	

The time of the lead call of the job.

	

p_ out_first_dispatch_time

	

Out

	

DATE

	

The time the first crew was dispatched

	

p_ out_est_restore_time

	

Out

	

DATE

	

The last estimate of restoration time.

	

p_ out_est_restore_time_src

	

Out

	

VARCHAR2

	

The source of the ERT of the event.

Possible values are as follows:

 'N' - none (no ERT)

 'S' - Storm Management

 'P' - Storm Management "non-published global
ERT"

 'O' - Storm Management "onsite ERT"

 'G' - Storm Management "published global
ERT"

 D' - Storm Management "published global ERT
delay"

 'C' - User-entered (assumed to have been
provided by the crew)

 'I' - Initial default ERT

 'M' - Storm Management ERT is further in the
future then allowed

	

p_ out_crew_arrival_time

	

Out

	

DATE

	

The time when the crew arrived on location

	

p_ out_completion_time

	

Out

	

DATE

	

The time the event has been completed. This
implies power restoration, the crew(s) are gone,
and the event is completed in the Event Details
window.

	

p_ out_restoration_time

	

Out

	

DATE

	

The time that power has been restored.

	

p_ out_case_note

	

Out

	

VARCHAR2

	

Comment

	

p_ out_status

	

Out

	

NUMBER

	

Condition status

	

p_ out_active

	

Out

	

VARCHAR2

	

Possible values are as follows:

 'Y' - Outage Is Active

 'N' - Outage Is Not Active

	

p_out_alias

	

Out

	

VARCHAR2

	

The device alias.

	

P_out_event_type

	

Out

	

VARCHAR2

	

Possible values are as follows:

OUT

NON

MEET

PLAN

SWP

	

P_out_feeder_name

	

Out

	

VARCHAR2

	

The name of the feeder.

	

P_out_cause

	

Out

	

VARCHAR2

	

The cause of the outage if the SRS Rule useExternalCause is on.

	

P_out_num_calls

	

Out

	

NUMBER

	

The number of calls.

	

P_out_num_cust_out

	

Out

	

NUMBER

	

The number of customers out.

	

P_err_premise_id

	

Out

	

VARCHAR2

	

	

P_err_oracle_error

	

Out

	

VARCHAR2

	

Terminology

The following terms and acronyms are relevant to this specification

	

OMS

	

Outage Management System

	

NMS

	

Network Management System

	

CIS

	

Customer Information System

	

IVR

	

Interactive Voice Response

	

Generic IVR Adapter

	

A Unix application that generally executes on the OMS server
machine. It supports the Trouble Call, Callback Request, and
Callback Response Data Flows.

	

SMService

	

System Monitor Service. SMService monitors the core processes in
the system, essentially the services and interfaces.

	

JMService

	

Job Management Service. The Oracle Utilities Network Management
System call processing and outage prediction engine.

	

ODService

	

Object Directory Service. ODService improves performance of the
Oracle Utilities Network Management System by caching large
amounts of device information that is likely to be requested by
applications. This caching allows the requests to be handled very
quickly without directly accessing the database.

	

Isis

	

Clients access services and tools through a central concurrency
management and messaging system called Isis. Isis is a real-time
implementation of message oriented middleware and comprises the
backbone of the system, providing access to the server for each
client and the communication required between tools and services.
Isis delivers the organized information to the client applications.

SmallWorld GIS Adapter

This chapter describes the Oracle developed Smallworld data adapter. Since both the Oracle Utilities Network Management System and the Smallworld are highly configurable, there are many configuration options for the model build interface, but this document focuses only on the Smallworld Data Adapter. A related document, "Oracle Utilities Network Management System Model Build Interface" exists to provide details of Smallworld - Oracle Utilities Network Management System interface.

Model Build Process Overview

GIS to Oracle Utilities Network Management System integration is a multi-step process that generates an operational topological representation of the existing GIS database for use by the Oracle Utilities Network Management System. This process is referred to as the model build interface. During the model build interface, a single spatial grouping of GIS objects (known as a partition) is processed by the Oracle Utilities Network Management System model build engine before incorporating the partition data into the OMS data model. An electrical circuit (feeder) or polygon feature, such as a service territory boundary, can be used to define a partition. The Oracle Utilities Network Management System model build engine processes partitions in three stages before committing it to the OMS operational data model: 1) GIS data extraction, 2) model pre-processing and 3) data import into Oracle Utilities Network Management System.

The Smallworld Data Adapter extracts geospatial data in Oracle's vendor-neutral model preprocessing file format (MP file). Geospatial data in Smallworld is stored in a number of geographic data and attribute data tables. The GIS stores and renders the geospatial data as a contiguous map. For performance and architectural reasons, Oracle Utilities Network Management System requires GIS data to be brought into the system as smaller chunks referred as partitions.

An electrical circuit (feeder) or polygon feature, such as a service territory boundary could be used to define a partition. Landbase features should be separated from electrical features because this data is inherently different, and because landbase data is typically more static.

Oracle's Smallworld Data Adapter is able to:

	
•

	

Extract the data by predefined partitions.

	
•

	

Extract the electric facility data by the feeder; i.e. when a feeder is extracted, all the devices that take part in forming the feeder (i.e. electrically connected) will be extracted in a single MP file.

	
•

	

Extracts Landbase features by predefined polygon boundary in a single MP file.

In order to minimize the data extraction and model build data volume, the extract is capable of identify the changed partitions since the last data extract operation.

Adapter Documentation

Oracle Utilities Network Management System SmallWorld adapter documentation is included in the SmallWorld adapter release package as a Microsoft Office Word document.

ESRI ArcGIS 9.x Adapter

Adapter Overview

Oracle Utilities Network Management System model interface and the ArcGIS 9.x are highly configurable, there are many configuration options. This document includes a discussion of the choices and alternatives. A related document exists to provide project-specific configuration information.

The Oracle Utilities Network Management System receives data from the ESRI ArcGIS 9.x to populate its topology model and provide graphic views of the electrical network and landbase. This is done as required using the ArcGIS:Oracle Utilities Network Management System interface to keep the Oracle Utilities Network Management System current with the network and landbase being maintained in the GIS.

The interface is one-way: updates from the GIS flow to Oracle Utilities Network Management System for processing. The feedback to the GIS system is typically done using red lining on a map.

Adapter Documentation

Oracle Utilities Network Management System ArcGIS 9.x adapter documentation is included in the ArcGIS 9.x adapter release package as a Microsoft Office Word document.

Intergraph G/Electric Adapter

This chapter includes the following topics:

	
•

	

Introduction

	
•

	

Adapter Capabilities

	
•

	

Programs and Files

	
•

	

Installing the G/Electric Data Adapter

	
•

	

Adapter Configuration

	
•

	

Third Party Products

	
•

	

Executing the Adapter

	
•

	

GIS Data Requirements

	
•

	

Uninstalling the G/Electric Data Adapter

Introduction

GIS to Oracle Utilities Network Management System integration is a multi-step process that generates an operational topological representation of the existing GIS database for use by and display in the Oracle Utilities Network Management System. This process is referred to as the model build. A single spatial grouping of GIS objects (known as a partition) is processed by the Oracle Utilities Network Management System model build engine before incorporating the partition data into the Oracle Utilities Network Management System electrical model. An electrical circuit (feeder) or polygon feature, such as a service territory boundary, can be used to define a partition. The Oracle Utilities Network Management System model build engine processes partitions in three stages before committing it to the Oracle Utilities Network Management System operational electrical model: 1) GIS data extraction, 2) model pre-processing and 3) data import into Oracle Utilities Network Management System.

The G/Electric Adapter extracts geospatial data in Oracle’s vendor-neutral model preprocessing file format (MP file). Geospatial data in G/Electric is stored in a number of geographic data and attribute data tables. The GIS stores and renders the geospatial data as a contiguous map. For performance and architectural reasons, Oracle Utilities Network Management System requires GIS data to be brought into the system as smaller chunks referred as partitions.

An electrical circuit (feeder) or polygon feature, such as a service territory boundary can be used to define a partition. Land base features must be separated from electrical features because this data is inherently different, and because land base data is typically more static.

Oracle’s G/Electric Adapter is able to:

	
•

	

Extract the data by predefined partitions.

	
•

	

Extract the electric facility data by feeder; i.e. when a feeder is extracted, all the devices that take part in forming the feeder (i.e., are electrically connected) will be extracted into a single MP file.

	
•

	

Extracts land base features by predefined polygon boundary in a single MP file.

In order to minimize the data extraction and model build data volume, the extract is capable of identifying the changed partitions since the last data extract operation.

[image:]

Adapter Overview

The Adapter makes use of G/Electric GIS metadata to access the G/Electric GIS features. The Adapter utilizes default values as set in an accompanying Microsoft Access database, which has the same name as the executable (GElec2Oracle) and resides in the same subdirectory. This required database is referred to as the "application configuration" database.

The Adapter can be installed and run on any personal computer with Windows XP or Windows 2000 as the supported platforms.

There are two methods of invoking the Adapter:

	
•

	

Non-interactively by a command line with parameters

	
•

	

Interactively with a Graphical User Interface (GUI)

The program can be launched in non-GUI mode from an operating system command prompt with command line parameters. The user can either use the defaults as set in the application configuration database or override them with passed parameters. As such, the program can be scheduled for "silent" launch as a Windows scheduled task. Note that because this type of launch is "silent" and does not make use of a GUI, feedback is usually not provided to the workstation screen unless an error occurs.

The program can be launched from the workstation desktop or pull down menu. Using the GUI, the user can interactively control what data is extracted, what extract method is to be used, the type of data to extract, and the name of the output directory. The user is also shown a status area, which includes progress bars and messages for monitoring the progress of the overall work order and the specific partition currently being extracted.

The remainder of this document describes the capabilities of the Adapter, how to install and configure it, and how to run it.

Adapter Capabilities

The Adapter is a partition-based tool that extracts objects and features as selected by their geographic location (i.e., based on the feeder name or partition to which they belong).

Optionally, the Adapter can be used to detect changes in a GIS database, thereby automatically flagging partitions for extraction. Automated change detection by the Adapter is based on the G/Electric modification log table where the Adapter attempts to identify changed feeders or partition polygons since the last successful extract (based on creation and modification dates). The change detect functionality is an optional automated mechanism for queuing partitions that contain objects and features that have been either changed, added, or deleted since the last extract.

On extraction, the Adapter retrieves:

	
•

	

Partition details.

	
•

	

Features. For each feature, the following are extracted:

	
•

	

Feature object class and identifier

	
•

	

Connectivity

	
•

	

Geometric (graphic) components including a feature annotation (text) component

	
•

	

Rows and attributes for all the non-graphic components of the feature, including annotation.

The Adapter produces output in a work order folder containing files in Oracle Utilities Network Management System Model Preprocessor (".mp") format and a log file of informational, warning, and error messages.

The details of these topics are discussed below.

Partition Details

The Adapter generates a "partition section" based on the geometry of the selection or tile. It uses the specified feature class as the class name for the partition and an attribute (e.g., "TileID") for the partition’s name.

Feature Extraction

The Adapter generates Add records for each feature. The Add feature records list the feature, its topology, diagram records, and attribute records

Object Identifier

The Adapter uses the feature class name and feature ID to identify an object. For example, "Switch 24". Note the feature ID is unique within the feature class.

Connectivity

The Adapter determines the connected (or networked) objects by analyzing the G/Electric connectivity component. The connectivity (topology) is established using the Node1 and Node2 ID attribute, a unique index number in the connectivity component.

The Oracle Utilities Network Management System AttTopoBuild program uses the GIS provided Port (Node) information to generate topology.

Geometric Information

The Adapter determines the geometry of the object and uses it to extract the coordinates scale, height, angle, and justification of the object.

Coded Value Look Up

In G/Electric there are no coded values, instead it provides the Value List for feature attributes for which user input should be limited to the system provided values. Because there are no coded values in the GIS database, the Adapter does not need to perform any coded value look up.

Names Containing Space Characters

It is possible for GIS feeder names or class user names to contain spaces (e.g., "Overhead Line). However, the Oracle Utilities Network Management System model build process does not recognize or accept class names with spaces, so a conversion must be made.

The accepted convention is that all spaces be substituted with underscores (e.g., "_"). Therefore, if source data class names have spaces in them, the final output model preprocessor (.MP) files will have underscores substituting the spaces. An example would be a class named "Overhead Line". The ADD statement in the extract output file will show the name "Overhead_Line" instead.

Node Reduction

The interface program does not use a node reduction algorithm to reduce the number of nodes.

Partitions with Index Maps

The G/Electric GIS database is a continuous map. For performance reasons, Oracle Utilities Network Management System requires maps to be tiled, each tile corresponding to an Oracle Utilities Network Management System partition.

The electrical features are extracted by using the feeder names associated with a source device or listed in the Connectivity table. All the electric devices taking part in forming a feeder are extracted in single MP file. The Adapter also extracts electrical device owner features such as structure and poles in the same MP file. The feeder name is used to name the extracted MP file.

The spatial data extract requires a GIS polygon feature to extract the data. These polygon partitions can be any size and are not required to be uniform. The optimal sized partition polygon contains less than 5,000 objects (devices, background text, and background graphics). For example, in dense urban areas of the electrical network, smaller size partition polygons can be used. The Adapter can use one of the existing polygon boundary classes or users can define a new Oracle Utilities Network Management System specific polygon boundary class to define the partition polygon.

A unique text attribute (e.g., "GridID") of the polygon partition feature class will be used to name the extracted MP Files that will become the name of the Oracle Utilities Network Management System partition.

Programs and Files

The Oracle Utilities Network Management System G/Electric Data Adapter program, configuration database, help file, and other associated files, are supplied in a standard self-extracting Oracle Utilities Network Management System G/Electric Data Adapter Installer. The following files will be installed in the user-selected installation directory. Default installation directory is "C:\Program Files\OracleTUGBU\Oracle GElectric data Extractor".

	
•

	

Oracle Utilities Network Management System G/Electric Data Adapter Program (GElec2Oracle.exe)

	
•

	

Oracle Utilities Network Management System G/Electric read me file. (readme.rtf)

	
•

	

Oracle_NMS_GElectric_Extractor_User_Guide.pdf

	
•

	

Oracle_NMS_GElectric Extractor Installation Guide.pdf

The following reference files will be copied to the Reference subdirectory under the user-selected installation directory:

	
•

	

Oracle Utilities Network Management System G/Electric Data Adapter On-line Help document (gelec2spl.chm)

	
•

	

Oracle Utilities Network Management System G/Electric Data Adapter Configuration Database (GElec2Oracle.mdb)

	
•

	

Oracle Utilities Network Management System G/Electric Data Adapter custom scrip to create the v_spl_fidfno View object (create_spl_view.sql)

G/Electric Data Adapter Installation Phases

There are four phases to installing the Adapter: application installation, Adapter configuration, Oracle client configuration, and testing:

	
•

	

Install the G/Electric Data Adapter

	
•

	

Populate the Adapter configuration database

	
•

	

Configure the Oracle SQL*Net Client

	
•

	

Test the Adapter

Minimum System Requirements

The PC is required to meet these minimum system requirements to install the G/Electric Data Adapter.

	

Processor

	

Pentium® III 800 MHz minimum

	

Operating system

	

Microsoft Windows 2000 or Microsoft XP

	

Internet Explorer

	

Obtain and install the appropriate language version of Internet Explorer 6.0 or higher prior to installing the G/Electric Adapter. See Note below.

	

RAM

	

256 MB minimum

Note: .NET Support Feature: The G/Electric Data Adapter is a .NET application that requires .NET Framework 1.1. If.NET Framework 1.1 is not installed on the personal computer; the Installer program will display the following warning message: "You can download the .NET Framework from Microsoft download site."

Disk Space Requirements

	

Installation Drive

	

5 MB

	

System Drive

	

Up to 1 MB

Typically C:, where windows\system32 is located

Installing the G/Electric Data Adapter

The Oracle Utilities Network Management System G/Electric Data Adapter Installer automates the tasks that must be performed in order to properly configure and install the Oracle Utilities Network Management System G/Electric Data Adapter.

Obtaining the Software

The adapter setup files are included in the Oracle Utilities Network Management Optional Windows Applications download zip file that can be obtained from the Oracle e*Delivery site. After downloading the zip file, find the appropriate Adapter zip file within the NMS_GIS_Adapters directory and unzip to a location on your Windows server. Application Installation

Application Installation

If a previous version of the Adapter exists on the workstation, remove all the previous versions first. However, be sure to keep a backup copy of the application’s configuration database file for use with the new software. Notices of schema changes for this database can be found in the readme.rtf file in the installation directory.

If this is the first installation, then an empty application configuration database file can be obtained from the installation package. Refer to the section labeled "Adapter Configuration Database" in this document for details on this required file.

Be certain to install the software while logged on to the workstation as a Windows Administrator.

Executing the Adapter Installer

Follow these steps to install the adapter:

	
1.

	

After verifying that the Adapter installation personal computer meets the system requirements, copy the Oracle Utilities Network Management System G/Electric Data Adapter Installer supplied to you by Oracle to the desktop of the personal computer you will be running the installation on. It can be found in the NMS_V1.10.0_Intergraph_GIS_Adapter subdirectory.

	
2.

	

Double-click the setup.exe file to start the installation. After a short time, the initial splash screen will display.

	
3.

	

Follow the on-screen instructions and prompts as required to advance to the next screen. Accept the default values unless they conflict with your system’s configuration (e.g., installation directory). The installation screens are listed below in the order they appear:

	
•

	

Welcome Screen. This screen describes the installation process.

	
•

	

Customer Information Screen. This screen prompts you for your name and your organization’s name.

	
•

	

License Information Screen. This screen displays the license agreement. You must click the I Agree button in order to proceed.

	
•

	

G/Electric Data Adapter Information Screen. This screen displays version information for the adapter.

	
•

	

Select Installation Folder Screen. This screen allows you to specify the installation directory. You can also specify whether the adapter should be available to anyone who uses this computer or only to you.

	
•

	

Confirm Installation Screen. This screen allows you to confirm the information you’ve entered before installation begins. If you need to change anything, use the Back button. Otherwise, click Next to proceed.

	
•

	

Installation Complete Screen. This screen indicates that the installation was successfully completed.

System Changes

The Adapter does not add, modify or remove any of the Windows system DLL in the <windows>\system32 directory.

The Adapter installation program installs SmoothProgressBar.dll in the installation directory of the Adapter.

Following registry keys are created by the Adapter installation program:

HKEY_LOCAL_MACHINE/Software/OracleTUGBU/Oracle Gelectric data Extractor

String Value: Version Data: <Adapter version number>

Executing the Adapter Installer

Follow these steps to install the adapter:

	
1.

	

After verifying that the Adapter installation personal computer meets the system requirements, copy the Oracle Utilities Network Management System G/Electric Data Adapter Installer supplied to you by Oracle to the desktop of the personal computer you will be running the installation on. It can be found in the NMS_V1.10.0_Intergraph_GIS_Adapter subdirectory.

	
2.

	

Double-click the setup.exe file to start the installation. After a short time, the initial splash screen will display.

	
3.

	

Follow the on-screen instructions and prompts as required to advance to the next screen. Accept the default values unless they conflict with your system’s configuration (e.g., installation directory). The installation screens are listed below in the order they appear:

	
•

	

Welcome Screen. This screen describes the installation process.

	
•

	

Customer Information Screen. This screen prompts you for your name and your organization’s name.

	
•

	

License Information Screen. This screen displays the license agreement. You must click the I Agree button in order to proceed.

	
•

	

G/Electric Data Adapter Information Screen. This screen displays version information for the adapter.

	
•

	

Select Installation Folder Screen. This screen allows you to specify the installation directory. You can also specify whether the adapter should be available to anyone who uses this computer or only to you.

	
•

	

Confirm Installation Screen. This screen allows you to confirm the information you’ve entered before installation begins. If you need to change anything, use the Back button. Otherwise, click Next to proceed.

	
•

	

Installation Complete Screen. This screen indicates that the installation was successfully completed.

System Changes

The Adapter does not add, modify or remove any of the Windows system DLL in the <windows>\system32 directory.

The Adapter installation program installs SmoothProgressBar.dll in the installation directory of the Adapter.

Following registry keys are created by the Adapter installation program:

HKEY_LOCAL_MACHINE/Software/OracleTUGBU/Oracle Gelectric data Extractor

String Value: Version Data: <Adapter version number>

Adapter Configuration

The Adapter is configured using tables in a Microsoft Access database, commonly referred to as the "application configuration database". The specific configuration tables, their contents, several examples, and content requirements are in the following Entity Relationship diagram.

[image:]

The following diagram show the G/Electric Metadata Entity Relationship:

[image:]

Defaults Table

The "Defaults" table is used to indicate the default settings for the Adapter. These settings should reflect the most common parameters used for an extract. The Adapter will read only the first row in this table to apply the default settings.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

ExtractDirectory

	

Directory for extracted data output

	

Text(100)

	

Yes

	

Yes

	

UserID

	

G/Electric database user id

	

Text(50)

	

Yes

	

Yes

	

Password

	

G/Electric database user password. (Masked in **** format)

	

Text(50)

	

Yes

	

Yes

	

Server

	

G/Electric database connection configuration string

	

Text(50)

	

Yes

	

Yes

	

ServerDescription

	

GIS Server information

	

Text(100)

	

	

No

	

AreaReportUtilityPath

	

Directory of the AreaReportUtility.exe If the path is not provided or application is not found in the provide path then Adapter will disable the Spatial (landbase) extract.

	

Text(200)

	

	

No

	

ModificationLogTable

	

Name of the G/Electric table where the modifications log is replicated. This value is required only if a table other than the modification log must be queried to check the changed features.

	

Text(50)

	

	

No

	

AreaReportConfig

	

G/Technology configuration name from connection configuration map If the config path is not provided then AreaReportUtility will not execute. The Spatial (landbase) extraction will be disabled.

	

Text(50)

	

	

No

	

ChangeDetect_NonElec tric_FNO

	

Non Electrical Features, that need to be identified & extracted during Change Detect Extraction process.

	

Text(200)

	

	

No

	

GetAnnotationCNO_As Attributes

	

GIS annotation feature component number list (separated by comma), where annotations also need to be extracted as attributes.

	

Text(200)

	

No

	

No

	

IgnoreComponentGeom etry_CNO

	

Allows grouping of all component geometries as one diagram. This can be helpful for linear features like conductors and bus bars. (LIST G3E_CNOs separated by comma).

	

Text(50)

	

No

	

No

Example

	

Column Name

	

Value

	

ExtractDirectory

	

C:\temp

	

UserID

	

Gear

	

Password

Server

	

GearGIS

	

ServerDescription

	

GEAR GIS Database

	

AreaReportUtilityPath

	

c:\program files\ips\gtechnology\program

	

ModificationLogTable

	

ModLog

	

AreaReportConfig

	

GEAR

	

ChangeDetect_NonElectric_FNO

	

208, 209

	

GetAnnotationCNO_AsAttributes

	

45

	

IgnoreComponentGeometry_CNO

	

301

Partition_Reference Table

The "PARTITION_REFERENCE" table is used to identify the partitions (electrical feeders or geographical tiles) to be used for extraction and their appropriate configurations. For example, an electrical feeder is a partition because all the devices that take part in forming a feeder are electrically connected. Similarly all land base features located within a certain polygon can form a land base partition due to their spatial relationship with the polygon (all the features are located WITHIN the polygon which shows a location-based spatial relationship). In essence, a group of features that are related to each other because of spatial or connectivity-based relationships form a partition.

The Adapter uses the PARTITION_REFERENCE data table to identify names of the available partitions in the G/Electric database.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

ExtractMethod

	

Data extract method to indicate whether the Adapter performs a spatial data extract (using polygon area) or a connectivity based circuit data extract (using electric circuit data) or a Detail window based data extract (using Detail window data)

	

Text(10)

	

No

	

Yes

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions). This is the primary key.

	

Text(50)

	

Yes

	

Yes

	

GIS_TableName

	

G/Electric Start Feature’s attribute table name in the database; e.g., BREAKER_N or CONNECTIVITY_N or DETAIL_IND_LB

	

Text(50)

	

No

	

Yes

	

GIS_StartFeatureColumnName

	

Column name from the table specified in the above GIS_TableName parameter. The value from this column will be used to identify each unique partition and output MP files will be named using this value (if values are not unique then use the Where clause to filter out undesired rows) e.g., FEEDER_NO

	

Text(50)

	

No

	

Yes

	

GIS_StartFeature

	

G/Electric feature name that determines the partitions in a partition group (e.g., land base grid class name or head of the circuit for electric feeder data; e.g., breaker) This is not a required attribute if Non-Spatial (Electrical feeders) is provided from another table e.g., CONNECTIVITY. This is also not required for extracting Detail features.

	

Text(50)

	

No

	

No

	

GIS_StartFeatureFNO

	

G/Electric Feature Number of the GIS Start Feature (Only required when GIS_StartFeature is provided)

	

Number(5)

	

No

	

No

	

GIS_StartFeatureColumnANO

	

Unique name column G3E_ANO from G3E_ATTRIBUTES table

	

Text(50)

	

No

	

No

	

GIS_WhereClause

	

Standard SQL Where clause to filter the number of partitions in the provided class, e.g., G3E_FID<10000

	

Text(100)

	

No

	

No

	

MPFileSuffix

	

MP file suffix to distinguish between different partition group MP files

	

Text(3)

	

No

	

No

	

LastExtractDate

	

The last successful data extraction date of the partition (populated by the Adapter). The user can provide From and To date to identify changed partitions. If the user does not populate "From Date" to determine changes, then this date is used as a "From Date" to define the time duration.

	

Date

	

No

	

No

Populate Feeder List Using a Source Feature

When an electric feeder in the G/Electric GIS originates at a particular GIS feature then this feature is considered as a "Source" feature. If all the feeder are associated with a particular "Source" feature (e.g., Breaker) then use following example to populate the Electrical Feeders list in the Adapter

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric Feeder

	

GIS_TableName

	

BREAKER_N

	

GIS_StartFeatureColumnName

	

BREAKER_NUMBER

	

GIS_StartFeature

	

Breaker

	

GIS_StartFeatureFNO

	

300

	

GIS_StartFeatureColumnName

	

3000001

	

GIS_WhereClause

	

	

MPFileSuffix

	

	

LastExtractDate

	

Populate Feeder List Using a Database Table

If all of your electrical feeders do not originate at a particular GIS feature (e.g., Breaker) OR source feature’s attribute value does not populate the CIRCUIT1 and CIRCUIT2 attribute in the CONNECTIVITY table then feeder names should be retrieved using a database table where all feeder names are listed. For example you could use CONNECTIVITY table to identify all the available feeders in the system. In this case you do not need to populate GIS_StartFeature, GIS_StartFeatureFNO and GIS_StartFeatureColumnANO attribute values.

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric_Feeder

	

GIS_TableName

	

CONNECTIVITY_N

	

GIS_StartFeatureColumnName

	

CIRCUIT_1

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

SYSTEM_VOLTAGE=’13.8’

	

MPFileSuffix

	

	

LastExtractDate

	

15 Jun 2005

Populate Detail Window Name Using a database Table

All features within a Detail Window is extracted using the DETAIL_USERNAME attribute within the DETAIL_IND_LB table

	

Column Name

	

Value

	

ExtractMethod

	

Detail

	

PartitionGroupName

	

Detail

	

GIS_TableName

	

DETAIL_IND_LB

	

GIS_StartFeatureColumnName

	

DETAIL_USERNAME

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

	

MPFileSuffix

	

_dt

	

LastExtractDate

	

Populate Spatial (Landbase) Partition List

The Adapter extracts all the landbase and non-electrical data spatially, i.e. using a polygon grid (or tile). You need to provide the Polygon grid feature information in the PartitionReference table to extract the non-electrical data.

	

Column Name

	

Value

	

ExtractMethod

	

Spatial

	

PartitionGroupName

	

Landbase

	

GIS_TableName

	

OMSGRID_N

	

GIS_StartFeatureColumnName

	

GRID_NUMBER

	

GIS_StartFeature

	

OMS_GRID

	

GIS_StartFeatureFNO

	

204

	

GIS_StartFeatureColumnANO

	

2040001

	

GIS_WhereClause

	

GRID_NUMBER<150

	

MPFileSuffix

	

_lb

	

LastExtractDate

	

Partition_Reference Table

The "PARTITION_REFERENCE" table is used to identify the partitions (electrical feeders or geographical tiles) to be used for extraction and their appropriate configurations. For example, an electrical feeder is a partition because all the devices that take part in forming a feeder are electrically connected. Similarly all land base features located within a certain polygon can form a land base partition due to their spatial relationship with the polygon (all the features are located WITHIN the polygon which shows a location-based spatial relationship). In essence, a group of features that are related to each other because of spatial or connectivity-based relationships form a partition.

The Adapter uses the PARTITION_REFERENCE data table to identify names of the available partitions in the G/Electric database.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

ExtractMethod

	

Data extract method to indicate whether the Adapter performs a spatial data extract (using polygon area) or a connectivity based circuit data extract (using electric circuit data) or a Detail window based data extract (using Detail window data)

	

Text(10)

	

No

	

Yes

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions). This is the primary key.

	

Text(50)

	

Yes

	

Yes

	

GIS_TableName

	

G/Electric Start Feature’s attribute table name in the database; e.g., BREAKER_N or CONNECTIVITY_N or DETAIL_IND_LB

	

Text(50)

	

No

	

Yes

	

GIS_StartFeatureColumnName

	

Column name from the table specified in the above GIS_TableName parameter. The value from this column will be used to identify each unique partition and output MP files will be named using this value (if values are not unique then use the Where clause to filter out undesired rows) e.g., FEEDER_NO

	

Text(50)

	

No

	

Yes

	

GIS_StartFeature

	

G/Electric feature name that determines the partitions in a partition group (e.g., land base grid class name or head of the circuit for electric feeder data; e.g., breaker) This is not a required attribute if Non-Spatial (Electrical feeders) is provided from another table e.g., CONNECTIVITY. This is also not required for extracting Detail features.

	

Text(50)

	

No

	

No

	

GIS_StartFeatureFNO

	

G/Electric Feature Number of the GIS Start Feature (Only required when GIS_StartFeature is provided)

	

Number(5)

	

No

	

No

	

GIS_StartFeatureColumnANO

	

Unique name column G3E_ANO from G3E_ATTRIBUTES table

	

Text(50)

	

No

	

No

	

GIS_WhereClause

	

Standard SQL Where clause to filter the number of partitions in the provided class, e.g., G3E_FID<10000

	

Text(100)

	

No

	

No

	

MPFileSuffix

	

MP file suffix to distinguish between different partition group MP files

	

Text(3)

	

No

	

No

	

LastExtractDate

	

The last successful data extraction date of the partition (populated by the Adapter). The user can provide From and To date to identify changed partitions. If the user does not populate "From Date" to determine changes, then this date is used as a "From Date" to define the time duration.

	

Date

	

No

	

No

Populate Feeder List Using a Source Feature

When an electric feeder in the G/Electric GIS originates at a particular GIS feature then this feature is considered as a "Source" feature. If all the feeder are associated with a particular "Source" feature (e.g., Breaker) then use following example to populate the Electrical Feeders list in the Adapter

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric Feeder

	

GIS_TableName

	

BREAKER_N

	

GIS_StartFeatureColumnName

	

BREAKER_NUMBER

	

GIS_StartFeature

	

Breaker

	

GIS_StartFeatureFNO

	

300

	

GIS_StartFeatureColumnName

	

3000001

	

GIS_WhereClause

	

	

MPFileSuffix

	

	

LastExtractDate

	

Populate Feeder List Using a Database Table

If all of your electrical feeders do not originate at a particular GIS feature (e.g., Breaker) OR source feature’s attribute value does not populate the CIRCUIT1 and CIRCUIT2 attribute in the CONNECTIVITY table then feeder names should be retrieved using a database table where all feeder names are listed. For example you could use CONNECTIVITY table to identify all the available feeders in the system. In this case you do not need to populate GIS_StartFeature, GIS_StartFeatureFNO and GIS_StartFeatureColumnANO attribute values.

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric_Feeder

	

GIS_TableName

	

CONNECTIVITY_N

	

GIS_StartFeatureColumnName

	

CIRCUIT_1

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

SYSTEM_VOLTAGE=’13.8’

	

MPFileSuffix

	

	

LastExtractDate

	

15 Jun 2005

Populate Detail Window Name Using a database Table

All features within a Detail Window is extracted using the DETAIL_USERNAME attribute within the DETAIL_IND_LB table

	

Column Name

	

Value

	

ExtractMethod

	

Detail

	

PartitionGroupName

	

Detail

	

GIS_TableName

	

DETAIL_IND_LB

	

GIS_StartFeatureColumnName

	

DETAIL_USERNAME

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

	

MPFileSuffix

	

_dt

	

LastExtractDate

	

Populate Spatial (Landbase) Partition List

The Adapter extracts all the landbase and non-electrical data spatially, i.e. using a polygon grid (or tile). You need to provide the Polygon grid feature information in the PartitionReference table to extract the non-electrical data.

	

Column Name

	

Value

	

ExtractMethod

	

Spatial

	

PartitionGroupName

	

Landbase

	

GIS_TableName

	

OMSGRID_N

	

GIS_StartFeatureColumnName

	

GRID_NUMBER

	

GIS_StartFeature

	

OMS_GRID

	

GIS_StartFeatureFNO

	

204

	

GIS_StartFeatureColumnANO

	

2040001

	

GIS_WhereClause

	

GRID_NUMBER<150

	

MPFileSuffix

	

_lb

	

LastExtractDate

	

Partition_Reference Table

The "PARTITION_REFERENCE" table is used to identify the partitions (electrical feeders or geographical tiles) to be used for extraction and their appropriate configurations. For example, an electrical feeder is a partition because all the devices that take part in forming a feeder are electrically connected. Similarly all land base features located within a certain polygon can form a land base partition due to their spatial relationship with the polygon (all the features are located WITHIN the polygon which shows a location-based spatial relationship). In essence, a group of features that are related to each other because of spatial or connectivity-based relationships form a partition.

The Adapter uses the PARTITION_REFERENCE data table to identify names of the available partitions in the G/Electric database.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

ExtractMethod

	

Data extract method to indicate whether the Adapter performs a spatial data extract (using polygon area) or a connectivity based circuit data extract (using electric circuit data) or a Detail window based data extract (using Detail window data)

	

Text(10)

	

No

	

Yes

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions). This is the primary key.

	

Text(50)

	

Yes

	

Yes

	

GIS_TableName

	

G/Electric Start Feature’s attribute table name in the database; e.g., BREAKER_N or CONNECTIVITY_N or DETAIL_IND_LB

	

Text(50)

	

No

	

Yes

	

GIS_StartFeatureColumnName

	

Column name from the table specified in the above GIS_TableName parameter. The value from this column will be used to identify each unique partition and output MP files will be named using this value (if values are not unique then use the Where clause to filter out undesired rows) e.g., FEEDER_NO

	

Text(50)

	

No

	

Yes

	

GIS_StartFeature

	

G/Electric feature name that determines the partitions in a partition group (e.g., land base grid class name or head of the circuit for electric feeder data; e.g., breaker) This is not a required attribute if Non-Spatial (Electrical feeders) is provided from another table e.g., CONNECTIVITY. This is also not required for extracting Detail features.

	

Text(50)

	

No

	

No

	

GIS_StartFeatureFNO

	

G/Electric Feature Number of the GIS Start Feature (Only required when GIS_StartFeature is provided)

	

Number(5)

	

No

	

No

	

GIS_StartFeatureColumnANO

	

Unique name column G3E_ANO from G3E_ATTRIBUTES table

	

Text(50)

	

No

	

No

	

GIS_WhereClause

	

Standard SQL Where clause to filter the number of partitions in the provided class, e.g., G3E_FID<10000

	

Text(100)

	

No

	

No

	

MPFileSuffix

	

MP file suffix to distinguish between different partition group MP files

	

Text(3)

	

No

	

No

	

LastExtractDate

	

The last successful data extraction date of the partition (populated by the Adapter). The user can provide From and To date to identify changed partitions. If the user does not populate "From Date" to determine changes, then this date is used as a "From Date" to define the time duration.

	

Date

	

No

	

No

Populate Feeder List Using a Source Feature

When an electric feeder in the G/Electric GIS originates at a particular GIS feature then this feature is considered as a "Source" feature. If all the feeder are associated with a particular "Source" feature (e.g., Breaker) then use following example to populate the Electrical Feeders list in the Adapter

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric Feeder

	

GIS_TableName

	

BREAKER_N

	

GIS_StartFeatureColumnName

	

BREAKER_NUMBER

	

GIS_StartFeature

	

Breaker

	

GIS_StartFeatureFNO

	

300

	

GIS_StartFeatureColumnName

	

3000001

	

GIS_WhereClause

	

	

MPFileSuffix

	

	

LastExtractDate

	

Populate Feeder List Using a Database Table

If all of your electrical feeders do not originate at a particular GIS feature (e.g., Breaker) OR source feature’s attribute value does not populate the CIRCUIT1 and CIRCUIT2 attribute in the CONNECTIVITY table then feeder names should be retrieved using a database table where all feeder names are listed. For example you could use CONNECTIVITY table to identify all the available feeders in the system. In this case you do not need to populate GIS_StartFeature, GIS_StartFeatureFNO and GIS_StartFeatureColumnANO attribute values.

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric_Feeder

	

GIS_TableName

	

CONNECTIVITY_N

	

GIS_StartFeatureColumnName

	

CIRCUIT_1

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

SYSTEM_VOLTAGE=’13.8’

	

MPFileSuffix

	

	

LastExtractDate

	

15 Jun 2005

Populate Detail Window Name Using a database Table

All features within a Detail Window is extracted using the DETAIL_USERNAME attribute within the DETAIL_IND_LB table

	

Column Name

	

Value

	

ExtractMethod

	

Detail

	

PartitionGroupName

	

Detail

	

GIS_TableName

	

DETAIL_IND_LB

	

GIS_StartFeatureColumnName

	

DETAIL_USERNAME

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

	

MPFileSuffix

	

_dt

	

LastExtractDate

	

Populate Spatial (Landbase) Partition List

The Adapter extracts all the landbase and non-electrical data spatially, i.e. using a polygon grid (or tile). You need to provide the Polygon grid feature information in the PartitionReference table to extract the non-electrical data.

	

Column Name

	

Value

	

ExtractMethod

	

Spatial

	

PartitionGroupName

	

Landbase

	

GIS_TableName

	

OMSGRID_N

	

GIS_StartFeatureColumnName

	

GRID_NUMBER

	

GIS_StartFeature

	

OMS_GRID

	

GIS_StartFeatureFNO

	

204

	

GIS_StartFeatureColumnANO

	

2040001

	

GIS_WhereClause

	

GRID_NUMBER<150

	

MPFileSuffix

	

_lb

	

LastExtractDate

	

Partition_Reference Table

The "PARTITION_REFERENCE" table is used to identify the partitions (electrical feeders or geographical tiles) to be used for extraction and their appropriate configurations. For example, an electrical feeder is a partition because all the devices that take part in forming a feeder are electrically connected. Similarly all land base features located within a certain polygon can form a land base partition due to their spatial relationship with the polygon (all the features are located WITHIN the polygon which shows a location-based spatial relationship). In essence, a group of features that are related to each other because of spatial or connectivity-based relationships form a partition.

The Adapter uses the PARTITION_REFERENCE data table to identify names of the available partitions in the G/Electric database.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

ExtractMethod

	

Data extract method to indicate whether the Adapter performs a spatial data extract (using polygon area) or a connectivity based circuit data extract (using electric circuit data) or a Detail window based data extract (using Detail window data)

	

Text(10)

	

No

	

Yes

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions). This is the primary key.

	

Text(50)

	

Yes

	

Yes

	

GIS_TableName

	

G/Electric Start Feature’s attribute table name in the database; e.g., BREAKER_N or CONNECTIVITY_N or DETAIL_IND_LB

	

Text(50)

	

No

	

Yes

	

GIS_StartFeatureColumnName

	

Column name from the table specified in the above GIS_TableName parameter. The value from this column will be used to identify each unique partition and output MP files will be named using this value (if values are not unique then use the Where clause to filter out undesired rows) e.g., FEEDER_NO

	

Text(50)

	

No

	

Yes

	

GIS_StartFeature

	

G/Electric feature name that determines the partitions in a partition group (e.g., land base grid class name or head of the circuit for electric feeder data; e.g., breaker) This is not a required attribute if Non-Spatial (Electrical feeders) is provided from another table e.g., CONNECTIVITY. This is also not required for extracting Detail features.

	

Text(50)

	

No

	

No

	

GIS_StartFeatureFNO

	

G/Electric Feature Number of the GIS Start Feature (Only required when GIS_StartFeature is provided)

	

Number(5)

	

No

	

No

	

GIS_StartFeatureColumnANO

	

Unique name column G3E_ANO from G3E_ATTRIBUTES table

	

Text(50)

	

No

	

No

	

GIS_WhereClause

	

Standard SQL Where clause to filter the number of partitions in the provided class, e.g., G3E_FID<10000

	

Text(100)

	

No

	

No

	

MPFileSuffix

	

MP file suffix to distinguish between different partition group MP files

	

Text(3)

	

No

	

No

	

LastExtractDate

	

The last successful data extraction date of the partition (populated by the Adapter). The user can provide From and To date to identify changed partitions. If the user does not populate "From Date" to determine changes, then this date is used as a "From Date" to define the time duration.

	

Date

	

No

	

No

Populate Feeder List Using a Source Feature

When an electric feeder in the G/Electric GIS originates at a particular GIS feature then this feature is considered as a "Source" feature. If all the feeder are associated with a particular "Source" feature (e.g., Breaker) then use following example to populate the Electrical Feeders list in the Adapter

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric Feeder

	

GIS_TableName

	

BREAKER_N

	

GIS_StartFeatureColumnName

	

BREAKER_NUMBER

	

GIS_StartFeature

	

Breaker

	

GIS_StartFeatureFNO

	

300

	

GIS_StartFeatureColumnName

	

3000001

	

GIS_WhereClause

	

	

MPFileSuffix

	

	

LastExtractDate

	

Populate Feeder List Using a Database Table

If all of your electrical feeders do not originate at a particular GIS feature (e.g., Breaker) OR source feature’s attribute value does not populate the CIRCUIT1 and CIRCUIT2 attribute in the CONNECTIVITY table then feeder names should be retrieved using a database table where all feeder names are listed. For example you could use CONNECTIVITY table to identify all the available feeders in the system. In this case you do not need to populate GIS_StartFeature, GIS_StartFeatureFNO and GIS_StartFeatureColumnANO attribute values.

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric_Feeder

	

GIS_TableName

	

CONNECTIVITY_N

	

GIS_StartFeatureColumnName

	

CIRCUIT_1

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

SYSTEM_VOLTAGE=’13.8’

	

MPFileSuffix

	

	

LastExtractDate

	

15 Jun 2005

Populate Detail Window Name Using a database Table

All features within a Detail Window is extracted using the DETAIL_USERNAME attribute within the DETAIL_IND_LB table

	

Column Name

	

Value

	

ExtractMethod

	

Detail

	

PartitionGroupName

	

Detail

	

GIS_TableName

	

DETAIL_IND_LB

	

GIS_StartFeatureColumnName

	

DETAIL_USERNAME

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

	

MPFileSuffix

	

_dt

	

LastExtractDate

	

Populate Spatial (Landbase) Partition List

The Adapter extracts all the landbase and non-electrical data spatially, i.e. using a polygon grid (or tile). You need to provide the Polygon grid feature information in the PartitionReference table to extract the non-electrical data.

	

Column Name

	

Value

	

ExtractMethod

	

Spatial

	

PartitionGroupName

	

Landbase

	

GIS_TableName

	

OMSGRID_N

	

GIS_StartFeatureColumnName

	

GRID_NUMBER

	

GIS_StartFeature

	

OMS_GRID

	

GIS_StartFeatureFNO

	

204

	

GIS_StartFeatureColumnANO

	

2040001

	

GIS_WhereClause

	

GRID_NUMBER<150

	

MPFileSuffix

	

_lb

	

LastExtractDate

	

Partition_Reference Table

The "PARTITION_REFERENCE" table is used to identify the partitions (electrical feeders or geographical tiles) to be used for extraction and their appropriate configurations. For example, an electrical feeder is a partition because all the devices that take part in forming a feeder are electrically connected. Similarly all land base features located within a certain polygon can form a land base partition due to their spatial relationship with the polygon (all the features are located WITHIN the polygon which shows a location-based spatial relationship). In essence, a group of features that are related to each other because of spatial or connectivity-based relationships form a partition.

The Adapter uses the PARTITION_REFERENCE data table to identify names of the available partitions in the G/Electric database.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

ExtractMethod

	

Data extract method to indicate whether the Adapter performs a spatial data extract (using polygon area) or a connectivity based circuit data extract (using electric circuit data) or a Detail window based data extract (using Detail window data)

	

Text(10)

	

No

	

Yes

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions). This is the primary key.

	

Text(50)

	

Yes

	

Yes

	

GIS_TableName

	

G/Electric Start Feature’s attribute table name in the database; e.g., BREAKER_N or CONNECTIVITY_N or DETAIL_IND_LB

	

Text(50)

	

No

	

Yes

	

GIS_StartFeatureColumnName

	

Column name from the table specified in the above GIS_TableName parameter. The value from this column will be used to identify each unique partition and output MP files will be named using this value (if values are not unique then use the Where clause to filter out undesired rows) e.g., FEEDER_NO

	

Text(50)

	

No

	

Yes

	

GIS_StartFeature

	

G/Electric feature name that determines the partitions in a partition group (e.g., land base grid class name or head of the circuit for electric feeder data; e.g., breaker) This is not a required attribute if Non-Spatial (Electrical feeders) is provided from another table e.g., CONNECTIVITY. This is also not required for extracting Detail features.

	

Text(50)

	

No

	

No

	

GIS_StartFeatureFNO

	

G/Electric Feature Number of the GIS Start Feature (Only required when GIS_StartFeature is provided)

	

Number(5)

	

No

	

No

	

GIS_StartFeatureColumnANO

	

Unique name column G3E_ANO from G3E_ATTRIBUTES table

	

Text(50)

	

No

	

No

	

GIS_WhereClause

	

Standard SQL Where clause to filter the number of partitions in the provided class, e.g., G3E_FID<10000

	

Text(100)

	

No

	

No

	

MPFileSuffix

	

MP file suffix to distinguish between different partition group MP files

	

Text(3)

	

No

	

No

	

LastExtractDate

	

The last successful data extraction date of the partition (populated by the Adapter). The user can provide From and To date to identify changed partitions. If the user does not populate "From Date" to determine changes, then this date is used as a "From Date" to define the time duration.

	

Date

	

No

	

No

Populate Feeder List Using a Source Feature

When an electric feeder in the G/Electric GIS originates at a particular GIS feature then this feature is considered as a "Source" feature. If all the feeder are associated with a particular "Source" feature (e.g., Breaker) then use following example to populate the Electrical Feeders list in the Adapter

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric Feeder

	

GIS_TableName

	

BREAKER_N

	

GIS_StartFeatureColumnName

	

BREAKER_NUMBER

	

GIS_StartFeature

	

Breaker

	

GIS_StartFeatureFNO

	

300

	

GIS_StartFeatureColumnName

	

3000001

	

GIS_WhereClause

	

	

MPFileSuffix

	

	

LastExtractDate

	

Populate Feeder List Using a Database Table

If all of your electrical feeders do not originate at a particular GIS feature (e.g., Breaker) OR source feature’s attribute value does not populate the CIRCUIT1 and CIRCUIT2 attribute in the CONNECTIVITY table then feeder names should be retrieved using a database table where all feeder names are listed. For example you could use CONNECTIVITY table to identify all the available feeders in the system. In this case you do not need to populate GIS_StartFeature, GIS_StartFeatureFNO and GIS_StartFeatureColumnANO attribute values.

	

Column Name

	

Value

	

ExtractMethod

	

NonSpatial

	

PartitionGroupName

	

Electric_Feeder

	

GIS_TableName

	

CONNECTIVITY_N

	

GIS_StartFeatureColumnName

	

CIRCUIT_1

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

SYSTEM_VOLTAGE=’13.8’

	

MPFileSuffix

	

	

LastExtractDate

	

15 Jun 2005

Populate Detail Window Name Using a database Table

All features within a Detail Window is extracted using the DETAIL_USERNAME attribute within the DETAIL_IND_LB table

	

Column Name

	

Value

	

ExtractMethod

	

Detail

	

PartitionGroupName

	

Detail

	

GIS_TableName

	

DETAIL_IND_LB

	

GIS_StartFeatureColumnName

	

DETAIL_USERNAME

	

GIS_StartFeature

	

	

GIS_StartFeatureFNO

	

	

GIS_StartFeatureColumnANO

	

	

GIS_WhereClause

	

	

MPFileSuffix

	

_dt

	

LastExtractDate

	

Populate Spatial (Landbase) Partition List

The Adapter extracts all the landbase and non-electrical data spatially, i.e. using a polygon grid (or tile). You need to provide the Polygon grid feature information in the PartitionReference table to extract the non-electrical data.

	

Column Name

	

Value

	

ExtractMethod

	

Spatial

	

PartitionGroupName

	

Landbase

	

GIS_TableName

	

OMSGRID_N

	

GIS_StartFeatureColumnName

	

GRID_NUMBER

	

GIS_StartFeature

	

OMS_GRID

	

GIS_StartFeatureFNO

	

204

	

GIS_StartFeatureColumnANO

	

2040001

	

GIS_WhereClause

	

GRID_NUMBER<150

	

MPFileSuffix

	

_lb

	

LastExtractDate

	

ExcludeFeature Table

The ExcludeFeature" table is used to indicate the G/Electric GIS features that should NOT be extracted by the Adapter.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

G3E_FNO

	

Unique and valid G/Electric G3E_FNO from the G3E_FEATURE table. This is the primary key.

	

Integer

	

Yes

	

Yes

	

FeatureName

	

Feature User Name (Not used by the Adapter. This is for the administrator’s reference.)

	

Text(80)

	

	

Example:

	

Column Name

	

Value

	

G3E_FNO

	

229

	

FeatureName

	

Region

ExcludeComponent Table

The ExcludeComponent" table is used to indicate the G/Electric GIS components that should NOT be extracted by the Adapter. If a feature is listed in the ExcludeFeature table, then listing individual feature components in the ExcludeComponent Table is not required because all the components of the features will be excluded anyway. If a global component (such as Leader Line) needs to be excluded from the data extract, then it should be listed here only once.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

G3E_CNO

	

Unique and valid G/Electric G3E_CNO from the G3E_COMPONENT table. This is the primary key.

	

Integer

	

Yes

	

Yes

	

ComponentName

	

Component User Name (Not used by the Adapter. This is for administrator’s reference)

	

Text(80)

	

	

Example:

	

Column Name

	

Description

	

G3E_CNO

	

33

	

ComponentName

	

Hyperlink Attributes

ExcludeComponent Table

The ExcludeComponent" table is used to indicate the G/Electric GIS components that should NOT be extracted by the Adapter. If a feature is listed in the ExcludeFeature table, then listing individual feature components in the ExcludeComponent Table is not required because all the components of the features will be excluded anyway. If a global component (such as Leader Line) needs to be excluded from the data extract, then it should be listed here only once.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

G3E_CNO

	

Unique and valid G/Electric G3E_CNO from the G3E_COMPONENT table. This is the primary key.

	

Integer

	

Yes

	

Yes

	

ComponentName

	

Component User Name (Not used by the Adapter. This is for administrator’s reference)

	

Text(80)

	

	

Example:

	

Column Name

	

Description

	

G3E_CNO

	

33

	

ComponentName

	

Hyperlink Attributes

PartitionGroupFeature Table

The "PartitionGroupFeature" table is used to specify the spatial "Partition Group Name" to G3E feature relationship. The user can define the spatial PartitionGroupName in the Partition_Reference table and specify which G/Electric features belong to the partition group.

The user can extract grouped GIS features in separate MP files based on the PartitionGroupName. For example, the spatial PartitionGroup named "Street" will be extracted in a separate MP file where features listed in the PartitionGroupFeature table will be extracted.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions) Populated from PartitionReference table

	

Integer

	

Yes

	

Yes

	

G3E_FNO

	

GIS Feature Number of a feature which should be extracted as a part of the PartitionGroup. This is the primary key.

	

Text(80)

	

	

Example:

	

Column Name

	

Description

	

PartitionGroupName

	

Street

	

G3E_FNO

	

182

PartitionGroupFeature Table

The "PartitionGroupFeature" table is used to specify the spatial "Partition Group Name" to G3E feature relationship. The user can define the spatial PartitionGroupName in the Partition_Reference table and specify which G/Electric features belong to the partition group.

The user can extract grouped GIS features in separate MP files based on the PartitionGroupName. For example, the spatial PartitionGroup named "Street" will be extracted in a separate MP file where features listed in the PartitionGroupFeature table will be extracted.

	

Column Name

	

Description

	

Type

	

Unique

	

Required?

	

PartitionGroupName

	

Unique Name of the partitions grouped together (e.g., electric feeder partitions or land base partitions) Populated from PartitionReference table

	

Integer

	

Yes

	

Yes

	

G3E_FNO

	

GIS Feature Number of a feature which should be extracted as a part of the PartitionGroup. This is the primary key.

	

Text(80)

	

	

Example:

	

Column Name

	

Description

	

PartitionGroupName

	

Street

	

G3E_FNO

	

182

V_SPL_FIDFNO View

The G/Electric Adapter requires an Oracle view called V_SPL_FIDFNO in the G/Electric Oracle Database. The system administrator must create the view V_SPL_FIDFNO on the G/Electrical Oracle database server.

The V_SPL_FIDFNO view provides the G3E_FNO (feature number) for every G3E_FID in the G/Electric database. When the Adapter executes the G/Electric’s spatial query application AreaReportUtility to find the features within the specified spatial area, the application returns only the G3E_FID of the features. The V_SPL_FIDFNO view provides the feature number (G3E_FNO) of every G3E_FID (unique feature identifier) in the system, which reduces the overhead of querying each G3E_FID to find the corresponding G3E_FNO.

The system administrator should execute the create_spl_view.sql file on the G/Electric GIS server using the SQL PLUS utility. The create_spl_view.sql file is located in the Reference subdirectory of the Adapter installation directory.

The system administrator should edit the create_spl_view.sql file to make sure that the GIS COMMON component number is correct in the file. The create_spl_view.sql file lists "G3E_CNO=31". If the COMMON component number (G3E_CNO) in your G/Electric GIS database is different, then the G3E_CNO must be replaced with the correct G3E_CNO of the COMMON component

The query result returned by the database should be captured in a text file by using the SQL Plus spool command.

The spooled file should be edited to complete the Create view definition by:

	
•

	

In the beginning of a spooled file add a statement:

	
•

	

Create or Replace View V_SPL_FID_FNO as

	
•

	

After the last union all statement in the spooled file add a statement:

	
•

	

Select G3E_FID, G3E_FNO from COMMON_N;

	
•

	

Execute the spooled file using the Oracle SQL Plus application to create the V_SPL_FIDFNO view.

If the V_SPL_FIDFNO view is not available, then the Adapter will disable the spatial (land base) data extract functionality and only non-spatial extraction (electric feeders) can be carried out.

Third Party Products

The G/Electric Data Adapter requires three third party products. Those products are:

	
•

	

G/Electric GIS Database Server

	
•

	

Microsoft Access to configure the Adapter configuration database

	
•

	

Oracle SQL*NET Client

Oracle Client Configuration

The Adapter requires the Oracle client installed on the machine where the Adapter is installed. The Adapter administrator must configure the Oracle server name using the Oracle Net Configuration Assistant utility. The Oracle server name must be populated in the "Server" column of the Adapter configuration database’s "Default" table.

[image:]

Executing the Adapter

The Adapter can be run either in the background with command line parameters or interactively with a GUI. In any event, ensure the Adapter configuration database file GElec2Oracle.mdb has been customized prior to running the Adapter for the first time.

When the Adapter is launched interactively or in command line mode, it creates the "initialize.log" file in the Adapter installation directory. The log file reports initialization status of the Adapter. Once the Adapter is launched successfully and extraction has started, the "extracting.log" file is created in the Extract Work Order directory.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter Interactively

The G/Electric Data Adapter can be launched from the Windows Start button, Programs, Oracle’s G/Electric Data Adapter. After a few moments, the G/Electric Data Extractor configuration window is displayed.

This window contains four main framed panels:

	
•

	

Change Detection

	
•

	

Data Extraction Parameters

	
•

	

Status panel - Where information on the extraction process is reported to the user.

	
•

	

Work Order Details and the Launch Extract and Cancel buttons.

Debug Mode

The Adapter could be launched with debug mode on to report more detailed reporting of the Adapter activity in initialize.log and extracting.log files. In the debug mode the Adapter writes every detail in the log file, so it is very time consuming. The Adapter should be launched in the debug mode only during the test phase or to identify cause of the Adapter error.

To run the Adapter in debug mode:

	
•

	

Create a new shortcut icon on the desktop of the computer for launching the Adapter software (GElec2Oracle.exe)

	
•

	

In ‘Create Shortcut’ dialog, browse to the Adapter installation directory and select GElec2Oracle.exe. Click Next button to display the ‘Select a Title for the Program’ dialog.

	
•

	

After providing the name for the short cut click Finish button to create the short cut.

	
•

	

Right mouse click on the newly created shortcut on the desktop and select Properties from the displayed menu. The system will display Properties dialog with Shortcut tab selected

	
•

	

In the Target Section for the shortcut, specify the flag -DEBUG at the end of the existing value. For example

	
•

	

Before: C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe

	
•

	

After: "C:\Program Files\OracleTUGBU\Oracle GElectric Data Extractor \GElec2Oracle.exe" -DEBUG (You need to provide double quotes enclosing the Adapter application path but make sure -DEBUG is not typed within the closing double quotes.

	
•

	

Click Apply button to dismiss the Properties dialog.

	
•

	

Launch the Adapter using newly created shortcut. The log files will provide a lot more information.

Data Extraction Parameters Panel

This panel contains the data parameters required for conducting the extraction. In order to extract data partitions, the user needs to select a partition group name and partitions that are part of the desired partition group.

The partition group names are populated using the PartitionGroupName column of the PARTITION_REFERENCE table of the Adapter configuration database. The Adapter finds all the partitions belonging to the defined group by querying the G/Electric database.

Depending on the partition group name chosen by the user, the items (partition names) listed in the "Partitions" list box on the right hand side of the panel will change to reflect the unique partition names associated with the specified partition group.

The user can manually choose which partitions to extract from the partitions list on the right hand side of the GUI. Note that clicking or highlighting a partition on the partitions list will queue it for extraction. Standard Windows Shift-click or Alt-click functionality is employed for multiple selects.

Other tools include the Select All and Unselect All buttons, which will select all the partitions in the queue, or none of them respectively.

Extract Launch Controls

The Adapter displays the extracted data directory path where work order sub-directories will be created. The extract directory path is read from the ExtractDirectory field of the "Defaults" table in the Adapter configuration database.

The extracted data will be extracted in a work order directory created under the default extract directory. The default name for an extract directory is a combination of the system’s current date and time (e.g., 2001Aug30-1256); however this can be overridden by simply changing the contents of the Work Order Name field.

Pressing the Launch Extract button begins the extraction of the selected partitions. Once the extract begins, the Exit button in this panel is replaced with a Cancel button, which - if clicked - will allow the user to interrupt the extract process.

Change Detection Panel

This panel contains information for the change detection functionality of the Adapter. It also displays the G/Electric GIS server information and date of the last data extract for the selected partition group name.

The change detect mechanism identifies the changed partitions over a period of time. The user needs to provide a time range using the "From Date" and "To Date" fields. By default, the Adapter enters the Last_Extract date in the "From Date" and the current Adapter launch date and time in the "To Date" field, but the user can override these default values. If no data extraction has taken place, then the From and To date fields will be populated with the current Adapter launch date and time.

If the user has selected a "Non Spatial" partition group (i.e., electric), then the system will detect the changed feeders between the defined time duration. Similarly, if a user has selects a "Spatial" partition type (e.g., land base), the system will then detect changed land base polygons (partitions) between the defined time duration.

G/Technology provides GIS work order management through the concept of a long-term transaction (LTT), commonly referred to as a Job. It allows GIS users to perform Long Term Transaction (LTT) changes (unapproved) in the database while keeping these changes isolated from other LTTs (users working on the approved, master records and those working on their own, as of yet unapproved, LTTs). These changes can be deletions of and modifications to existing records as well as adding additional records. In this way GIS users can initiate an LTT and perform inserts, updates, and deletes in that LTT.

When changes are complete, the GIS user posts them to the master database by running the "Post Job" command. This ends their isolation from the master and from other GIS users. When this happens, the GIS user's changes become part of the master record, replacing the current master record. The GIS user must be editing the job in order to post it. Once the job is posted, the feature’s LTT_STATUS is set to null.

The Adapter will extract only master database records with the LTT_STATUS of NULL or ‘COPIED" and the change detect routine will use only master database records to identify the changes. The Adapter will not extract any of the LTT data or consider the changes made by the LTT in order to identify the changed partitions.

The Adapter uses the G/Electric facility model’s ModificationLog table to identify the changed or deleted features. The Adapter will use the user-provided time range to identify changed or deleted features, but considers only those features that are specified in PartitionGroupFeature table for the selected partition group name. Based on the changed feature’s location or connectivity, the Adapter will determine the changed partitions. For example, if the partition group is a spatial partition group then a changed polygon will be reported OR if the partition group is a non-spatial (electric) partition, then a changed feeder will be reported.

Executing the "Perform Change Detect" command will automatically queue partitions that contain changed features between the user provided "From" and "To" dates. The change detection process requires intensive database searches and comparisons to identify changed partitions.

To perform Change Detect of Deleted Features, GElectric Adapter, creates a master reference table CONNECTIVITY_SPL, to store all the G3E_FID, CIRCUIT1 & CIRCUIT2, LTT_DATE of all electrical features, in GIS database. The Adaptor uses the CONNECTIVITY_SPL & the modification log table, to identify any deleted features.

Modification Log

If departmental policy or business processes require the GIS administrator to purge the ModificationLog table frequently, quick and easy access to the G/Electric feature modification information is lost. The G/Electric database provides alternate ways to find the added and modified features but deleted feature information will be lost.

If the extract frequency is going to be longer than the ModificationLog table purge frequency, then it is advisable to copy the ModificationLog table in an intermediate table for the Adapter. The Adapter will use the modification log data from this new Adapter-specific table to identify the changed partitions. The table name must be specified in the ModificationLogtable column of the Default table in the Adapter configuration database.

Status Panel

Because the extraction process will take time to complete, its status and progress can be monitored from the panel at the bottom of the GUI. The Overall Progress field displays an estimated extraction progress of all the queued partitions, while the Detail Progress field indicates more detailed extraction progress information, such as the specific partition and feature class currently being extracted.

Launching the Adapter in Batch Mode

The Adapter can be launched in a non-GUI mode from the Windows command line with parameters. However, because this launch method is "silent," no visual feedback will be provided to the workstation screen except for error reports. The user will have to view the output directory in order to determine progress.

The Windows service scheduler can be used to schedule an automatic extract process.

When launching the Adapter in non-GUI mode, only the non-GUI launch flag is required, while all other command line parameters are optional. If a parameter is omitted, the default is assumed. In default mode, the Adapter extracts the electric feeder data.

The command line usage is:

"[install directory]\ GElec2Oracle.exe" -NONGUI [-DEBUG] [-?] [-d dataset] [-r reference] [-p partition] [-w workorder] [-o] [-q queue]

Where:

	

-NONGUI

	

(required) Indicates to launch Adapter in non-GUI mode.

	

-DEBUG

	

Launches the Adapter with Debug mode on.

	

-?

	

Command Line Help

	

-r reference

	

Path of application reference database file if other than the default GElec2Oracle.mdb in the extract install directory (e.g., -r c:\myrefdb.mdb)

	

-p partition

	

Partition type to use; as in PartitionReference table (e.g., -p Electric_Tile)

	

-w workorder

	

Workorder directory to create (e.g., -w Nov20-01)

	

-o

	

Force an Overwrite of existing workorder and version (if existing ones are found)

	

-q queue

	

Method to queue partitions:

ALL - queues all partitions (e.g., -q ALL)

CD - uses change detection to queue (e.g., -q CD) (default)

LIST - user provides a list of partition names to be extracted which are separated by a comma. (If multiple partition types are in provided using -p option where Adapter cannot determine the PartitionGroup of listed partition queue then Adapter will report the warning and terminates.

Output of Adapter

The model preprocessor import files (.MP), the log file, and the work order time stamp file are all placed in a folder with the work order name. This folder will appear in the output directory as designated in the "Defaults" table. If change detection was run, a log file of the process will be placed in the root of the output directory.

Note that if the extract is still in progress or does not complete, the work order time stamp file will not appear in the output directory. The work order time stamp file will only appear if the complete extract finishes successfully. As such, external processes can use its presence as an indicator of a completed extract.

Performance

The non-spatial data extract (i.e., of electric feeders) does not depend upon the GIS’ AreaReportUtility application to find the features located within a polygon partition so these extracts are faster compared with a spatial data extract. The spatial data extract uses G/Electric’s AreaReportUtility application to identify features located within a polygon area.

The number of class components being extracted will dramatically affect the Adapter performance. Therefore, if any of the features components are not required for the Oracle Utilities Network Management System then they should be listed in the ExcludeComponent table. The ExcludeComponent table ensures that feature information will be extracted but components listed in the ExcludeComponent table will not get extracted. For example detailed document, raster, or hyperlink document components are not required for the Oracle Utilities Network Management System. These components should be listed in the ExcludeComponent table.

The time required to perform change detection will vary and is dependent on the number of features that have changed since the last extract. The list of changed features does not provide the partition information, so the Adapter depends upon G/Electric’s AreaReportUtility to identify the spatial polygon (partition) of the changed feature.

Application Process Flows

The following figure shows the G/Electric Adapter user process flow:

The following figure shows the G/Electric Adapter module process flow:

[image:]

The following figure shows the G/Electric Adapter process flow:

[image:]

GIS Data Requirements

Required Data for All Adapter Features

	

Oracle Utilities Network Management System Requirement

	

GIS Source

	

Comments

	

Object type

	

G3E_FNO and G3E_USERNAME, Feature Class and attributes

	

	

Object Unique ID

	

G3E_FID

	

	

Object geometry (point, line, text)

	

Feature Geometry

	

Adapter produces diagram object of type point, line, or text.

	

Points:

(x, y) location

angle,

justification

	

Point Feature Geometry

	

Adapter produces diagram object characteristics of: location, angle, and scale.

	

Lines:

List of coordinates

	

Linear Feature Geometry

	

Adapter produces diagram object characteristics of: location, angle, scale

	

Text:

(x,y) location

angle or endpoint

string

justification

	

Feature Text Component

	

Adapter produces diagram object characteristics of: location, angle, string, and justification.

GIS Data Requirements

Required Data for All Adapter Features

	

Oracle Utilities Network Management System Requirement

	

GIS Source

	

Comments

	

Object type

	

G3E_FNO and G3E_USERNAME, Feature Class and attributes

	

	

Object Unique ID

	

G3E_FID

	

	

Object geometry (point, line, text)

	

Feature Geometry

	

Adapter produces diagram object of type point, line, or text.

	

Points:

(x, y) location

angle,

justification

	

Point Feature Geometry

	

Adapter produces diagram object characteristics of: location, angle, and scale.

	

Lines:

List of coordinates

	

Linear Feature Geometry

	

Adapter produces diagram object characteristics of: location, angle, scale

	

Text:

(x,y) location

angle or endpoint

string

justification

	

Feature Text Component

	

Adapter produces diagram object characteristics of: location, angle, string, and justification.

Optional Data for All Adapter Features

	

Oracle Utilities Network Management System Requirement

	

GIS Source

	

Comments

	

Diagram declutter ranking value

	

N/A

	

Not retrieved

	

(x,y) offset for graphical attributes

	

N/A

	

Not retrieved

	

Diagram groupings for multi-object hide/display

	

N/A

	

Not retrieved

	

Symbology class

	

N/A

	

Not retrieved

	

Scale factor

	

Attribute

	

E.g., urban or rural attribute prescribes a certain scale factor

	

Object location ID

	

Based on Partition

	

Required Attributes for Electrical Objects

	

Oracle Utilities Network Management System Requirement

	

GIS Source

	

Comments

	

Connectivity information

	

NODE1 and NODE2 from CONNECTIVITY component

	

	

Normal status of device

	

NORMAL STATUS from CONNECTIVITY component

	

	

Orientation of the feature - OH or UG

	

ORIENTATION from the CONNECTIVITY component

	

	

Phases for the device (PHASES)

	

PHASE from CONNECTIVITY component

	

	

Voltage level (VOLTS)

	

Voltage from CONNECTIVITY component

	

Optional Attributes for Electrical Objects

	

Oracle Utilities Network Management System Requirement

	

GIS Source

	

Comments

	

Network protection direction

	

N/A

	

	

Operations control authority
zone (NCG)

	

N/A

	

Sample Model Preprocessor File

The main products of the Adapter are the model preprocessor (".mp") files. There is one preprocessor file for each partition.

A sample of a model preprocessor file that contains a partition identifier (feeder 1) and Switch feature (with switch unit and text annotation) is shown below:

ADD Feeder1 {

NAME = Elec1;

COORD_SYSTEM = NAD_1927_StatePlane_Pennsylvania_South_FIPS_3702;

SCALE_FACTOR = 1.0;

Diagram[Feeder] = {

 GEOMETRY ={

 (-2147000000.00000,-2147000000.00000),

 (2147000000.00000,-2147000000.00000),

 (2147000000.00000,2147000000.00000),

 (-2147000000.00000,2147000000.00000),

 (-2147000000.00000,-2147000000.00000);

 };

 };

ADD Primary_Switch 815425 {

 PORT_PORT_A=129493717;

 PORT_PORT_B=129493718;

 DIAGRAM[31303] = {

 HEIGHT = 0;

 ANGLE = 0.3130386;

 SCALE = 0;

 TEXT = "445SWITCH_NUMBER";

 GEOMETRY = {

 (-553069.9375,-20248.82421875)};

};

 DIAGRAM[31302] = {

 HEIGHT = 0;

 ANGLE = 1.747896;

 SCALE = 0;

 GEOMETRY = {

 (-553076.625,-20250.107421875)};

};

 ATTRIBUTE[G3E_FID]="815425";

 ATTRIBUTE[G3E_FNO]="313";

 ATTRIBUTE[FEATURENAME]="Primary Switch";

 ATTRIBUTE[SWITCH_NUMBER]="445";

 ATTRIBUTE[RATING]="600.00";

 ATTRIBUTE[SWITCH_OPERATOR]="MANUAL";

 ATTRIBUTE[SWITCH_TYPE]="AIR BREAK";

 ATTRIBUTE[SWITCH_SUB_TYPE]="Load Break";

 ATTRIBUTE[LTT_ID]="0";

 ATTRIBUTE[MIRROR]="NO";

 ATTRIBUTE[JOB_PLACE_NAME]="MetadataEdit";

 ATTRIBUTE[JOB_PLACE_DATE]="05/14/2004 1:34:57 PM";

 ATTRIBUTE[JOB_MODIFY_NAME]="JC_May20";

 ATTRIBUTE[JOB_MODIFY_DATE]="06/01/2004 2:30:12 PM";

 ATTRIBUTE[STATE]="In Service";

 ATTRIBUTE[ASSET_OWNER]="THESL";

 ATTRIBUTE[IPID]="35503";

 ATTRIBUTE[DISTRICT]="YK";

 ATTRIBUTE[LTT_ID]="0";

 ATTRIBUTE[LTT_DATE]="06/01/2004 2:30:12 PM";

 ATTRIBUTE[LTT_TID]="392702";

 ATTRIBUTE[REGION_NAME]="York";

 ATTRIBUTE[NORMAL_STATUS]="CLOSED";

 ATTRIBUTE[CIRCUIT1]="11-M1";

 ATTRIBUTE[CIRCUIT2]="11-M1";

 ATTRIBUTE[PHASE]="RWB";

 ATTRIBUTE[ORIENTATION]="OH";

 ATTRIBUTE[ACTUAL_STATUS]="CLOSED";

 ATTRIBUTE[STATE]="In Service";

 ATTRIBUTE[SYSTEM_VOLTAGE]="27.6";

 ATTRIBUTE[OPERATING_VOLTAGE]="27.6/16 kV";

 ATTRIBUTE[COLOUR_NO]="1";

 ATTRIBUTE[LTT_ID]="0";

 ATTRIBUTE[FEEDER_FLAG]="NO";

};

Uninstalling the G/Electric Data Adapter

Microsoft Windows 2000

From the Start button, click Settings, then Control Panel. Double-click the Add/Remove Programs Icon. Select the G/Electric Data Adapter application from the program list, and click the Change/Remove button.

Uninstalling the G/Electric Data Adapter

Microsoft Windows 2000

From the Start button, click Settings, then Control Panel. Double-click the Add/Remove Programs Icon. Select the G/Electric Data Adapter application from the program list, and click the Change/Remove button.

Microsoft Windows XP

From the Start button, click Control Panel. Double-click the Add/Remove Programs Icon. Select the G/Electric Data Adapter application from the program list, and click the Remove button.

Generic WebSphere MQ Adapter

This chapter includes the following topics:

	
•

	

Introduction

	
•

	

Hardware and Software Requirements

	
•

	

Functional Description

	
•

	

Adapter Installation

	
•

	

High Availability

	
•

	

Performance

	
•

	

Data Flows

	
•

	

Information Model

	
•

	

Configure Queues for Required Data Flows

Introduction

The purpose of this document is to provide an administration guide of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. This document will discuss the required process for installing and configuring the adapter to run with the appropriate Oracle Utilities Network Management System software.

The Oracle Utilities Network Management System Generic WebSphere MQ Adapter can serve as a data adapter between the Network Management System and a number of external systems, such as a Customer Information System (CIS) or an Interactive Voice Response (IVR) system. Additionally, this adapter could be used with external systems that need to input trouble calls into Network Management System but do not require other sophisticated data flows, such as High Volume Call Applications (HVCA), Automated Meter Reading (AMR), or Work Management Systems (WMS).

This interface depends upon IBM’s WebSphere MQ software as the intermediary repository for information passed between the Network Management System and the external system. This adapter is used only for the communication between IBM’s WebSphere MQ software and the Oracle Utilities Network Management System software suite. With the use of XML as the payload for data transmission, the adapter exchanges data between Oracle Utilities Network Management System and external systems as defined in the Oracle Utilities Network Management System WebSphere MQ XML schema documents. The required configuration of the adapter is described in the sections that follow.

Terminology

The following terms and acronyms are relevant to this specification

	

OMS

	

Outage Management System

	

Network Management System

	

Network Management System

	

SMService

	

System Monitor Service. SMService monitors the core processes in the system, essentially the services and interfaces.

	

JMService

	

Job Management Service. The Oracle Utilities Network Management System call processing and outage prediction engine.

	

MQSeries

	

A queue-based messaging system developed by IBM. This system has been renamed to WebSphere MQ.

	

DTD

	

Document type definition, used to define XML documents

	

XML

	

Extensible Markup Language

	

XSL

	

XML Style Sheet, used to reformat XML documents

	

XML Schema

	

An XML standard for defining XML documents

	

CIS

	

Customer Information System

	

IVR

	

Interactive Voice Response system

	

SCADA

	

Supervisory Control and Data Acquisition system

	

HA

	

High availability, where Oracle Utilities Network Management System is configured with a pair of redundant servers. This is usually in the form of a hardware cluster and a shared drive that contains the database.

Hardware and Software Requirements

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported.

	
•

	

IBM WebSphere MQ messaging product must be installed. Note, however, that the queues may reside on a remote machine.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available.

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

Hardware and Software Requirements

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported.

	
•

	

IBM WebSphere MQ messaging product must be installed. Note, however, that the queues may reside on a remote machine.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available.

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

Hardware and Software Requirements

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported.

	
•

	

IBM WebSphere MQ messaging product must be installed. Note, however, that the queues may reside on a remote machine.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available.

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

Hardware and Software Requirements

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported.

	
•

	

IBM WebSphere MQ messaging product must be installed. Note, however, that the queues may reside on a remote machine.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available.

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

External System Environment

The external system is any system that can exchange information with Oracle Utilities Network Management System through an adapter. The environment of the external system has the following capabilities:

	
•

	

Any operating system which supports IBM WebSphere MQ messaging

	
•

	

IBM WebSphere MQ messaging product

	
•

	

Applications that can request or publish information in a manner which is either directly or indirectly (through a translator) compliant with the XML specifications contained within this document via queues

	
•

	

Queues must be pre-configured

	
•

	

IBM WebSphere MQ Integrator can be used as needed for routing and translation.

Required Installed Software:

The following lists the required software that needs to be installed prior to any configuration of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter.

	
•

	

IBM’s WebSphere MQ

	
•

	

Isis (installed as part of the base Oracle Utilities Network Management System installation)

Note : Isis is the messaging backbone for Oracle Utilities Network Management System and will already be present on any Network Management System servers. If the Generic WebSphere MQ Adapter is to be executed on a separate server than the Network Management System, then that server must also have Isis installed and running. Every server installation must be running the same version of Isis. The CMM_CELL environment variable must be set the same on any servers which are to communicate through Isis.

Functional Description

Context Diagram

Below is a diagram of the interaction between Oracle Utilities Network Management System and various external applications via the Generic WebSphere MQ Adapter.

[image:]

In this document, it is assumed that the Generic WebSphere MQ Adapter’s tables reside in the database used by Oracle Utilities Network Management System.

Functional Description

Context Diagram

Below is a diagram of the interaction between Oracle Utilities Network Management System and various external applications via the Generic WebSphere MQ Adapter.

[image:]

In this document, it is assumed that the Generic WebSphere MQ Adapter’s tables reside in the database used by Oracle Utilities Network Management System.

Adapter Installation

Overview

This section guides the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Adapter Installation

Overview

This section guides the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Generic WebSphere MQ Adapter Installation Verification

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mqseriesgateway

	
•

	

$CES_HOME/bin/ces_mq_gateway.ces

Configure Adapter to Run as NMS System Service

Configure the Generic WebSphere MQ Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mqseriesgateway" in the file and copy those lines to the $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Adapter Command Line Options

	

Command Line Option

	

Arguments

	

Required (Y/N)

	

Description

	

-areasummary

	

	

N

	

Enables the adapter to process area summary requests. The specified control zone level will be used to filter the outage list in the area summary. The default control zone level of 3 will be used when none is specified.

	

-complete

	

Minutes

	

N

	

Specifies how often the interface will save a timestamp which is used for synchronization on restart. The timestamp is used to go back to that timestamp to know how far back to get events on restart.

	

-condition

	

	

N

	

Enables the adapter to process condition data.

	

-connect

	

	

N

	

Enables the adapter to process customer disconnect / reconnect information.

	

-createincident

	

	

N

	

Enables the adapter to process trouble calls.

	

-crewoutagestatus

	

	

	

Enables the adapter to process crew outage status changes.

	

-crewupdate

	

	

N

	

Enables crew assignments & dispatches to be sent.

	

-custdbsname

	

DBService name

	

N

	

Indicates mqseriesgateway to use separate DBService.

	

-custhistory

	

	

N

	

Enables the adapter to process customer outage history information.

	

-custstatus

	

	

N

	

Enables the adapter to process customer outage status information.

	

-customer

	

	

N

	

Enables the adapter to modify the customer model.

	

-custparseonly

	

	

N

	

Indicates that mqseriesgateway will only parse the customer update xml messages without modifying in the database. This is for performance testing purposes.

	

-custsqlbundle

	

	

N

	

Enables the adapter to bundle all sql statements for DELETECREATE/CUSTOMER requests to improve speed.

	

-debug

	

	

N

	

Enables the adapter to write to standard output the debug information.

	

-defaultaccounttype

	

Account Type

	

N

	

Sets the default account type for customer model.

	

-getqueue

	

Queue name

	

N

	

Changes the default get queue name.

	

-help

	

	

N

	

Writes to standard output, the usage of the adapter.

	

-includeincident

	

	

N

	

Places incidents information in <PostSrsOutput_001> message. This option is not recommended, because it will greatly degrade the performance of the adapter.

	

-includepicklistinfo

	

	

N

	

Includes picklist info in the SRS output message if it exists.

	

-nocompleteevent

	

	

N

	

This option should be used with the - synchronize option. It will exclude all complete event from the synchronization messages

	

-nosndlist

	

	

N

	

Removes the supply node list from the <PostSrsOutput_001> and <PostSrsOutputStatus_001> messages to improve performance.

	

-nosndrecache

	

	

N

	

This command line will disable the JMService supply node recache.

	

-outageupdate

	

	

N

	

Enables outage updates to be sent.

	

-putqueue

	

Queue name

	

N

	

Changes the default put queue name.

	

-query

	

	

N

	

Enables the adapter to process query statements to the Operations Database.

	

-queuemanager

	

<string queue manager name>

	

N

	

Enables the adapter to use the defined queue manager name instead of NMS_MGR.

	

-recache

	

<int hours>

	

N

	

Enables the adapter to recache SRSService for the customer model.

	

-recachehour

	

<hours>

	

N

	

This specifies when JMService will re-cache customer info in hours. This will override the -recache option.

	

-recacheminute

	

<minutes>

	

N

	

This specifies when JMService will re-cache customer info in minutes. This will override the -recache option.

	

-requestedcblist

	

	

N

	

Enables the adapter to send restore messages containing a list of customers who requested a callback of a restored device.

	

-sql

	

	

N

	

Enables the adapter to process sql statements to the Operations Database.

	

-srsoutput

	

	

N

	

Enables the adapter to process outage status (Restored, complete, cancelled).

	

-subsetcblist

	

<percent affected> <minimum affected> <maximum affected>

	

N

	

This specifies that the Generic WebSphere MQ Adapter will send an SRSOutput message that contains a callback list of relatively random sampling of customers downstream of the restored device. Default values: percent affected=30%, minimum affected=10, maximum affected=300. Setting the percent affected alone is valid but setting the maximum affected needs all three parameters to be present.

	

-synchronize

	

	

N

	

Sends synchronization messages when the adapter starts. This is only required to capture outage event update messages for events that were completed while the interface was down.

	

-usedeviceid

	

	

N

	

Enables the adapter to process device names instead of supply nodes index or premise identifiers.

	

-usepremiseid

	

	

N

	

Enables the adapter to process premise identifiers instead of supply nodes.

	

-xslpath

	

<string path>

	

N

	

Indicates that Style Sheet Processing is used, and the literal path the directory that contains the .xsl files for the adapter.

The following table lists and describes command line options to support the bulk load for the customer model createSql process.

	

Command Line Option

	

Arguments

	

Required (Y/N)

	

Description

	

-xmlfile

	

<string path>

	

N

	

Indicates the name of the XML file to be used to create the SQL file to produce the customer model.

	

-writetodb

	

<>

	

N

	

Enables the adapter to write the SQL statements directly to the database when generating the SQL file. (Note when this option is used only a small portion of customers should be used because the entire SQL statement is run.

	

-outputfile

	

<string path>

	

N

	

Indicates the name of the SQL file to be produced, containing the SQL to create the customer model.

Optionally, Configure the Adapter to Run with Another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure Adapter to Run as NMS System Service

Configure the Generic WebSphere MQ Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mqseriesgateway" in the file and copy those lines to the $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Adapter Command Line Options

	

Command Line Option

	

Arguments

	

Required (Y/N)

	

Description

	

-areasummary

	

	

N

	

Enables the adapter to process area summary requests. The specified control zone level will be used to filter the outage list in the area summary. The default control zone level of 3 will be used when none is specified.

	

-complete

	

Minutes

	

N

	

Specifies how often the interface will save a timestamp which is used for synchronization on restart. The timestamp is used to go back to that timestamp to know how far back to get events on restart.

	

-condition

	

	

N

	

Enables the adapter to process condition data.

	

-connect

	

	

N

	

Enables the adapter to process customer disconnect / reconnect information.

	

-createincident

	

	

N

	

Enables the adapter to process trouble calls.

	

-crewoutagestatus

	

	

	

Enables the adapter to process crew outage status changes.

	

-crewupdate

	

	

N

	

Enables crew assignments & dispatches to be sent.

	

-custdbsname

	

DBService name

	

N

	

Indicates mqseriesgateway to use separate DBService.

	

-custhistory

	

	

N

	

Enables the adapter to process customer outage history information.

	

-custstatus

	

	

N

	

Enables the adapter to process customer outage status information.

	

-customer

	

	

N

	

Enables the adapter to modify the customer model.

	

-custparseonly

	

	

N

	

Indicates that mqseriesgateway will only parse the customer update xml messages without modifying in the database. This is for performance testing purposes.

	

-custsqlbundle

	

	

N

	

Enables the adapter to bundle all sql statements for DELETECREATE/CUSTOMER requests to improve speed.

	

-debug

	

	

N

	

Enables the adapter to write to standard output the debug information.

	

-defaultaccounttype

	

Account Type

	

N

	

Sets the default account type for customer model.

	

-getqueue

	

Queue name

	

N

	

Changes the default get queue name.

	

-help

	

	

N

	

Writes to standard output, the usage of the adapter.

	

-includeincident

	

	

N

	

Places incidents information in <PostSrsOutput_001> message. This option is not recommended, because it will greatly degrade the performance of the adapter.

	

-includepicklistinfo

	

	

N

	

Includes picklist info in the SRS output message if it exists.

	

-nocompleteevent

	

	

N

	

This option should be used with the - synchronize option. It will exclude all complete event from the synchronization messages

	

-nosndlist

	

	

N

	

Removes the supply node list from the <PostSrsOutput_001> and <PostSrsOutputStatus_001> messages to improve performance.

	

-nosndrecache

	

	

N

	

This command line will disable the JMService supply node recache.

	

-outageupdate

	

	

N

	

Enables outage updates to be sent.

	

-putqueue

	

Queue name

	

N

	

Changes the default put queue name.

	

-query

	

	

N

	

Enables the adapter to process query statements to the Operations Database.

	

-queuemanager

	

<string queue manager name>

	

N

	

Enables the adapter to use the defined queue manager name instead of NMS_MGR.

	

-recache

	

<int hours>

	

N

	

Enables the adapter to recache SRSService for the customer model.

	

-recachehour

	

<hours>

	

N

	

This specifies when JMService will re-cache customer info in hours. This will override the -recache option.

	

-recacheminute

	

<minutes>

	

N

	

This specifies when JMService will re-cache customer info in minutes. This will override the -recache option.

	

-requestedcblist

	

	

N

	

Enables the adapter to send restore messages containing a list of customers who requested a callback of a restored device.

	

-sql

	

	

N

	

Enables the adapter to process sql statements to the Operations Database.

	

-srsoutput

	

	

N

	

Enables the adapter to process outage status (Restored, complete, cancelled).

	

-subsetcblist

	

<percent affected> <minimum affected> <maximum affected>

	

N

	

This specifies that the Generic WebSphere MQ Adapter will send an SRSOutput message that contains a callback list of relatively random sampling of customers downstream of the restored device. Default values: percent affected=30%, minimum affected=10, maximum affected=300. Setting the percent affected alone is valid but setting the maximum affected needs all three parameters to be present.

	

-synchronize

	

	

N

	

Sends synchronization messages when the adapter starts. This is only required to capture outage event update messages for events that were completed while the interface was down.

	

-usedeviceid

	

	

N

	

Enables the adapter to process device names instead of supply nodes index or premise identifiers.

	

-usepremiseid

	

	

N

	

Enables the adapter to process premise identifiers instead of supply nodes.

	

-xslpath

	

<string path>

	

N

	

Indicates that Style Sheet Processing is used, and the literal path the directory that contains the .xsl files for the adapter.

The following table lists and describes command line options to support the bulk load for the customer model createSql process.

	

Command Line Option

	

Arguments

	

Required (Y/N)

	

Description

	

-xmlfile

	

<string path>

	

N

	

Indicates the name of the XML file to be used to create the SQL file to produce the customer model.

	

-writetodb

	

<>

	

N

	

Enables the adapter to write the SQL statements directly to the database when generating the SQL file. (Note when this option is used only a small portion of customers should be used because the entire SQL statement is run.

	

-outputfile

	

<string path>

	

N

	

Indicates the name of the SQL file to be produced, containing the SQL to create the customer model.

Optionally, Configure the Adapter to Run with Another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure Adapter to Run as NMS System Service

Configure the Generic WebSphere MQ Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mqseriesgateway" in the file and copy those lines to the $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Adapter Command Line Options

	

Command Line Option

	

Arguments

	

Required (Y/N)

	

Description

	

-areasummary

	

	

N

	

Enables the adapter to process area summary requests. The specified control zone level will be used to filter the outage list in the area summary. The default control zone level of 3 will be used when none is specified.

	

-complete

	

Minutes

	

N

	

Specifies how often the interface will save a timestamp which is used for synchronization on restart. The timestamp is used to go back to that timestamp to know how far back to get events on restart.

	

-condition

	

	

N

	

Enables the adapter to process condition data.

	

-connect

	

	

N

	

Enables the adapter to process customer disconnect / reconnect information.

	

-createincident

	

	

N

	

Enables the adapter to process trouble calls.

	

-crewoutagestatus

	

	

	

Enables the adapter to process crew outage status changes.

	

-crewupdate

	

	

N

	

Enables crew assignments & dispatches to be sent.

	

-custdbsname

	

DBService name

	

N

	

Indicates mqseriesgateway to use separate DBService.

	

-custhistory

	

	

N

	

Enables the adapter to process customer outage history information.

	

-custstatus

	

	

N

	

Enables the adapter to process customer outage status information.

	

-customer

	

	

N

	

Enables the adapter to modify the customer model.

	

-custparseonly

	

	

N

	

Indicates that mqseriesgateway will only parse the customer update xml messages without modifying in the database. This is for performance testing purposes.

	

-custsqlbundle

	

	

N

	

Enables the adapter to bundle all sql statements for DELETECREATE/CUSTOMER requests to improve speed.

	

-debug

	

	

N

	

Enables the adapter to write to standard output the debug information.

	

-defaultaccounttype

	

Account Type

	

N

	

Sets the default account type for customer model.

	

-getqueue

	

Queue name

	

N

	

Changes the default get queue name.

	

-help

	

	

N

	

Writes to standard output, the usage of the adapter.

	

-includeincident

	

	

N

	

Places incidents information in <PostSrsOutput_001> message. This option is not recommended, because it will greatly degrade the performance of the adapter.

	

-includepicklistinfo

	

	

N

	

Includes picklist info in the SRS output message if it exists.

	

-nocompleteevent

	

	

N

	

This option should be used with the - synchronize option. It will exclude all complete event from the synchronization messages

	

-nosndlist

	

	

N

	

Removes the supply node list from the <PostSrsOutput_001> and <PostSrsOutputStatus_001> messages to improve performance.

	

-nosndrecache

	

	

N

	

This command line will disable the JMService supply node recache.

	

-outageupdate

	

	

N

	

Enables outage updates to be sent.

	

-putqueue

	

Queue name

	

N

	

Changes the default put queue name.

	

-query

	

	

N

	

Enables the adapter to process query statements to the Operations Database.

	

-queuemanager

	

<string queue manager name>

	

N

	

Enables the adapter to use the defined queue manager name instead of NMS_MGR.

	

-recache

	

<int hours>

	

N

	

Enables the adapter to recache SRSService for the customer model.

	

-recachehour

	

<hours>

	

N

	

This specifies when JMService will re-cache customer info in hours. This will override the -recache option.

	

-recacheminute

	

<minutes>

	

N

	

This specifies when JMService will re-cache customer info in minutes. This will override the -recache option.

	

-requestedcblist

	

	

N

	

Enables the adapter to send restore messages containing a list of customers who requested a callback of a restored device.

	

-sql

	

	

N

	

Enables the adapter to process sql statements to the Operations Database.

	

-srsoutput

	

	

N

	

Enables the adapter to process outage status (Restored, complete, cancelled).

	

-subsetcblist

	

<percent affected> <minimum affected> <maximum affected>

	

N

	

This specifies that the Generic WebSphere MQ Adapter will send an SRSOutput message that contains a callback list of relatively random sampling of customers downstream of the restored device. Default values: percent affected=30%, minimum affected=10, maximum affected=300. Setting the percent affected alone is valid but setting the maximum affected needs all three parameters to be present.

	

-synchronize

	

	

N

	

Sends synchronization messages when the adapter starts. This is only required to capture outage event update messages for events that were completed while the interface was down.

	

-usedeviceid

	

	

N

	

Enables the adapter to process device names instead of supply nodes index or premise identifiers.

	

-usepremiseid

	

	

N

	

Enables the adapter to process premise identifiers instead of supply nodes.

	

-xslpath

	

<string path>

	

N

	

Indicates that Style Sheet Processing is used, and the literal path the directory that contains the .xsl files for the adapter.

The following table lists and describes command line options to support the bulk load for the customer model createSql process.

	

Command Line Option

	

Arguments

	

Required (Y/N)

	

Description

	

-xmlfile

	

<string path>

	

N

	

Indicates the name of the XML file to be used to create the SQL file to produce the customer model.

	

-writetodb

	

<>

	

N

	

Enables the adapter to write the SQL statements directly to the database when generating the SQL file. (Note when this option is used only a small portion of customers should be used because the entire SQL statement is run.

	

-outputfile

	

<string path>

	

N

	

Indicates the name of the SQL file to be produced, containing the SQL to create the customer model.

Optionally, Configure the Adapter to Run with Another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

	
•

	

References to "Console Root" throughout this chapter refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

	
1.

	

From WebSphere MQ Explorer tree, select: Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check "Make this the default Queue Manager" (indicating yes)

	
2.

	

Click Next - use default settings (circular logging)

	
3.

	

Click Next - use default settings (start queue manager)

	
4.

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
2.

	

Click OK - use all default settings

	
3.

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
4.

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
5.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
6.

	

Right click on the desired queue to bring up a menu containing selections for "Status" and "Put test message".

Create Server Connection Channel

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
2.

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
3.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
4.

	

Right-click on the SCH1 channel to bring up a menu containing selections for "Status" and "Start" and "Stop".

	
5.

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Configure the WebSphere MQ Server

	
•

	

References to "Console Root" throughout this chapter refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

	
1.

	

From WebSphere MQ Explorer tree, select: Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check "Make this the default Queue Manager" (indicating yes)

	
2.

	

Click Next - use default settings (circular logging)

	
3.

	

Click Next - use default settings (start queue manager)

	
4.

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
2.

	

Click OK - use all default settings

	
3.

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
4.

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
5.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
6.

	

Right click on the desired queue to bring up a menu containing selections for "Status" and "Put test message".

Create Server Connection Channel

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
2.

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
3.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
4.

	

Right-click on the SCH1 channel to bring up a menu containing selections for "Status" and "Start" and "Stop".

	
5.

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Configure the WebSphere MQ Server

	
•

	

References to "Console Root" throughout this chapter refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

	
1.

	

From WebSphere MQ Explorer tree, select: Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check "Make this the default Queue Manager" (indicating yes)

	
2.

	

Click Next - use default settings (circular logging)

	
3.

	

Click Next - use default settings (start queue manager)

	
4.

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
2.

	

Click OK - use all default settings

	
3.

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
4.

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
5.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
6.

	

Right click on the desired queue to bring up a menu containing selections for "Status" and "Put test message".

Create Server Connection Channel

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
2.

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
3.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
4.

	

Right-click on the SCH1 channel to bring up a menu containing selections for "Status" and "Start" and "Stop".

	
5.

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Configure the WebSphere MQ Server

	
•

	

References to "Console Root" throughout this chapter refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

	
1.

	

From WebSphere MQ Explorer tree, select: Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check "Make this the default Queue Manager" (indicating yes)

	
2.

	

Click Next - use default settings (circular logging)

	
3.

	

Click Next - use default settings (start queue manager)

	
4.

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
2.

	

Click OK - use all default settings

	
3.

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
4.

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
5.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
6.

	

Right click on the desired queue to bring up a menu containing selections for "Status" and "Put test message".

Create Server Connection Channel

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
2.

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
3.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
4.

	

Right-click on the SCH1 channel to bring up a menu containing selections for "Status" and "Start" and "Stop".

	
5.

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Configure the WebSphere MQ Server

	
•

	

References to "Console Root" throughout this chapter refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

	
1.

	

From WebSphere MQ Explorer tree, select: Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check "Make this the default Queue Manager" (indicating yes)

	
2.

	

Click Next - use default settings (circular logging)

	
3.

	

Click Next - use default settings (start queue manager)

	
4.

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
2.

	

Click OK - use all default settings

	
3.

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
4.

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
5.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
6.

	

Right click on the desired queue to bring up a menu containing selections for "Status" and "Put test message".

Create Server Connection Channel

	
1.

	

From WebSphere MQ Explorer tree, select:

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
2.

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
3.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
4.

	

Right-click on the SCH1 channel to bring up a menu containing selections for "Status" and "Start" and "Stop".

	
5.

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the Original Default Queue Manager Listener

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
2.

	

Right-click on "listener ==> properties" and stop the listener.

	
3.

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
2.

	

Click the Start button on the General tab.

	
3.

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables.

Examples:

export MQCHLLIB=/users/proj/MQ

export MQCHLTAB=AMQCLCHL.TAB

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection Between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a message from Server to Client (amqsputc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
1.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
2.

	

Paste the following into "Message Data":

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
3.

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Stopping the Original Default Queue Manager Listener

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
2.

	

Right-click on "listener ==> properties" and stop the listener.

	
3.

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
2.

	

Click the Start button on the General tab.

	
3.

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables.

Examples:

export MQCHLLIB=/users/proj/MQ

export MQCHLTAB=AMQCLCHL.TAB

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection Between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a message from Server to Client (amqsputc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
1.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
2.

	

Paste the following into "Message Data":

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
3.

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Stopping the Original Default Queue Manager Listener

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
2.

	

Right-click on "listener ==> properties" and stop the listener.

	
3.

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
2.

	

Click the Start button on the General tab.

	
3.

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables.

Examples:

export MQCHLLIB=/users/proj/MQ

export MQCHLTAB=AMQCLCHL.TAB

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection Between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a message from Server to Client (amqsputc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
1.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
2.

	

Paste the following into "Message Data":

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
3.

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Stopping the Original Default Queue Manager Listener

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
2.

	

Right-click on "listener ==> properties" and stop the listener.

	
3.

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
2.

	

Click the Start button on the General tab.

	
3.

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables.

Examples:

export MQCHLLIB=/users/proj/MQ

export MQCHLTAB=AMQCLCHL.TAB

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection Between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a message from Server to Client (amqsputc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
1.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
2.

	

Paste the following into "Message Data":

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
3.

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Stopping the Original Default Queue Manager Listener

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
2.

	

Right-click on "listener ==> properties" and stop the listener.

	
3.

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
1.

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
2.

	

Click the Start button on the General tab.

	
3.

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables.

Examples:

export MQCHLLIB=/users/proj/MQ

export MQCHLTAB=AMQCLCHL.TAB

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection Between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a message from Server to Client (amqsputc)

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
1.

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
2.

	

Paste the following into "Message Data":

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
3.

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

High Availability

The goal of the Oracle Utilities Network Management System MQ XML adapter redundancy is to provide assured message receipt and delivery between the Oracle Utilities Network Management System services and the WebSphere MQ queues. There are a number of availability approaches that could be utilized, with potentially different approaches being used for each system to be interfaced. The purpose of this section is to describe different availability approaches that can be used with the adapter.

Clustering

One approach for high availability is to utilize WebSphere MQ clustering on Windows where persistent queues would be used. The adapter is then responsible for maintaining connection to InterSys. All messages would be persisted to one physical disk location, where either redundant Oracle Utilities Network Management System Generic WebSphere MQ Adapter would have access to the same message.

Non-Redundant Queue Approach

This would be a classical implementation using WebSphere MQ. A single copy of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter would be used to retrieve information from a single (non-redundant) set of message queues.

This approach is the simplest and most common way to implement WebSphere MQ queues for an application. However, a hard failure of the adapter or its server could result in message losses.

Synchronization Process

In the case in which both adapter servers are down, the Generic WebSphere MQ Adapter provides a synchronization process on startup by specifying -synchronize command line option. This will retrieve all events information from OPS and put them on the queue with topic_type = ‘TRBL_UPDATE’ in <PostSrsOutput_001> message with <srsOutputMsgType>1</srsOutputMsgType> and <description>SYNCHRONIZE</description>. This synchronization can also be triggered again by issuing the following command from the Unix server command prompt:

 Action any.mq* synchronize

The synchronized messages will include the latest status of all active events and completed/ cancelled events in the past N days, where N is the number of days since the adapter was last running.

Troubleshooting

High-level messages are typically used within Oracle Utilities Network Management System to permit one process to control another process. There are no special high-level messages that would be required for this adapter.

Note that doing an Action any.any stop will stop the adapter, which needs to be taken into consideration for administering the adapter when starting and stopping it.

Supported high level messages include the following:

	
•

	

report

	
•

	

debug <debug level>

	
•

	

stop

Example usage: Action any.mqseriesgateway report

Performance

This interface is intended to provide for high performance as needed to process frequent message exchange such as in the case of trouble calls during a storm. In order to provide optimum performance, there are aspects of both implementation and usage. Aspects of usage include:

	
1.

	

Sending multiple trouble calls together in a single message when possible will improve the call volume.

	
2.

	

Providing a valid device identifier (supply node) on each trouble call.

	
3.

	

Avoiding unnecessary queries within Oracle Utilities Network Management System, which might otherwise degrade overall system performance either due to locking, CPU utilization and/or disk access.

	
4.

	

Using a customer account (service account), or premiseId as apposed to the custDeviceIdx with a supply node, will slow down the overall performance of trouble call processing and potentially outage prediction.

The following aspects of implementation can optimize performance:

It is assumed that incoming XML messages are well formed, bypassing the validation step. It is assumed that the sender provided well-formed XML, which was transmitted using reliable communication mechanisms. The actual validation test is whether or not the code that internally parses a message can extract a sufficient set of parameters to make an InterSys request. XML that is not well formed will typically generate an error. It should also be noted that XML validation does not necessarily guarantee valid information provided by an external system. If this generates an error in the adapter, it will be generate an error.

Use of multiple threads within the adapter, permitting parallel processing. This makes it possible to process multiple requests concurrently, providing the potential to increase performance.

Functional Requirements

The purpose of this section is to describe the desired functionality. Key requirements include the following:

	
•

	

Get customer(s) query using fuzzy keys (as through call entry application).

	
•

	

Get customer outage status information, which would indicate whether or not a customer is part of an existing outage.

	
•

	

Get customer outage history, which would provide the available outage history for a customer who may have been part of an old outage event.

	
•

	

Create incident, to send trouble calls to Oracle Utilities Network Management System for outage analysis.

	
•

	

Add, remove, and update condition. One example of possible usage would be to get tags from SCADA for display within Oracle Utilities Network Management System.

	
•

	

Get conditions for a specified device as maintained within Oracle Utilities Network Management System.

	
•

	

Create, Delete, and Update customer information, as might typically be used by a Customer Information System (CIS) to maintain customer information within Oracle Utilities Network Management System. Support a mechanism that will provide a means of generating a large number of customer transactions to initially load the customer model.

	
•

	

Check interface/InterSys status, permitting an external system to see whether or not the adapter is currently active and whether or not Oracle Utilities Network Management System is active.

	
•

	

Report Current outage status to indicate current state of an outage.

	
•

	

Report Crew outage states to indicate crew events that may change the state of an outage in Oracle Utilities Network Management System.

	
•

	

Receive customer disconnect and reconnect indications to identify if the utility has purposely disconnect power or restored power for a customer.

	
•

	

Network trace including planned outage and current feeder request.

	
•

	

SQL Queries and Database transactions to get reports or manipulate specific customer specific tables.

	
•

	

Support for style sheet translation on incoming and outgoing XML messages.

	
•

	

Support for external notification when the status of a device changes such as open or close.

	
•

	

Synchronize outage status between Oracle Utilities Network Management System and external system.

	
•

	

Create area summary list

	
•

	

Create callback list

Design Overview

The general approach is to build an adapter process that passes messaging between the Isis and WebSphere MQ messaging systems. Messages sent and received using WebSphere MQ will be formatted in XML. The types of messaging that will be supported include the following:

	
•

	

Asynchronous publish from Oracle Utilities Network Management System to WebSphere MQ (using ‘fire and forget’ pattern)

	
•

	

Asynchronous publish from WebSphere MQ to Oracle Utilities Network Management System (using ‘fire and forget’ pattern)

	
•

	

Request/reply from WebSphere MQ to Oracle Utilities Network Management System (the requestor can process this either synchronously or asynchronously)

As the Oracle Utilities Network Management System currently supports a large number of messages internally, the principle of this interface is to externalize support for a key subset of those messages through the WebSphere MQ adapter.

Data Flows

Overview

The purpose of this section is to describe the information flows that are relevant to this interface. The details of each of these flows and associated XML formats are provided in the appendices.

All flows are formatted using XML, with specific XML definitions defined as to be consistent with Oracle Utilities Network Management System product direction. XML messages will provide well-formed XML, without a requirement for validation, as validity will be the responsibility of the sender. Consequentially, there is also no requirement for the specification of DTDs or XML Schema definitions. Specific XML requirements are defined in the appendixes of this document.

Data Flows

Overview

The purpose of this section is to describe the information flows that are relevant to this interface. The details of each of these flows and associated XML formats are provided in the appendices.

All flows are formatted using XML, with specific XML definitions defined as to be consistent with Oracle Utilities Network Management System product direction. XML messages will provide well-formed XML, without a requirement for validation, as validity will be the responsibility of the sender. Consequentially, there is also no requirement for the specification of DTDs or XML Schema definitions. Specific XML requirements are defined in the appendixes of this document.

Create Incident

This is an asynchronous input to the adapter to report trouble calls. Internally the JMS::sendJMSinput method is used to send the trouble call to Oracle Utilities Network Management System. This interface supports a variety data that might be input on a trouble call.

This will be sent using an asynchronous fire and forget.

Adapter can also process fuzzy call with street intersection data. This requires att_street_segment and att_street_intersect tables to be populated.

Note: Performance is optimized when the customer supply node is identified.

Get Customer Outage Status

This is a request/reply interface that is used to obtain the current status of a customer. The information returned includes:

	
•

	

Whether or not the customer is part of an existing outage

	
•

	

Estimated restoration time

	
•

	

Whether or not customer is part of a planned outage

This will be processed using an asynchronous inquiry. It should be noted that several queries are required to collect this information, it will degrade overall performance in storm situation.

Get Customer Outage History

This is a request/reply interface that is used to obtain customer call and outage history.

	
•

	

Call history

	
•

	

Outage history

This message will be processed using an asynchronous inquiry. It should be noted that several queries are required to collect this information, it will degrade the overall performance in storm situation. This history is supply based on the current Ops database, and will not get history from any historical database.

Create, Delete, Update, Get Condition

This interface would be used to report tags and other types of conditions. Conditions are objects that describe and manage important information associated with objects that are defined within the Oracle Utilities Network Management System model. Subclasses of the "condition" class include "tag" and "note", or any other configured condition in Oracle Utilities Network Management System.

This message is an asynchronous input to the adapter.

Outage Status

This interface is an asynchronous output from the adapter used to publish SRS output messages. SRS output messages describe creation, update, and closure of information related to outages. If TRBL_ERT_UPDATE message type is configured in the mq_adapter_config table, then global ERT changes from Stormman will trigger <postSrsOutput_001> message with type = 20 to be published for each event. For performance considerations, type = 20 message only has limited information.

Create, Delete, Update, Get Customer

This is an asynchronous input interface used to report updates to the customer data model. These updates may be the addition, modification or deletion of a customer. To get information for an existing customer, the get verb is supported in order to retrieve this information. In the event of an update, only the modified information needs to be supplied. Internally this will use the DBS::sql method to perform updates to the appropriate tables that define the customer data model. It is assumed that CES_CUSTOMER and CUSTOMER_SUM are implemented as views, and the Oracle Utilities Network Management System MultiSpeak-based customer model is utilized.

This interface is implemented in a manner to provide extensions over the capabilities of MultiSpeak, including multiple meters and/or transformers for a service location. The interface uses the internal service point entity to manage these relationships.

Customer update can be configured to use separate DBService by using command line option -
custdbsname <
DBSNAME
> to improve overall performance. This requires the server side to have an instance of DBService reserved for this purpose.

There is a new command line option available -custsqlbundle which will greatly improve the performance for DELETECREATE/CUSTOMER request.

Note: It will be necessary to have JMService update its internal cache periodically. This will be triggered by the adapter nightly by the defined recache period that is supplied to the adapter. The default value is 24 hours and can be changed through -recache <
HOURS
>. Re-cache can also be configured to run at specific hour and minute by specifying -recachehour <
HOUR
> and -recacheminute <
MINUTE
>. These two command line options will override -recache <
HOURS
> option. The recache function can be disabled by using -nosndrecache option.

SQL Transactions

This is an asynchronous input interface is used to send SQL transactions to Oracle Utilities Network Management System. This internally uses the DBS::sql method. This interface is activated by the - sql command line option.

WARNING:
This interface, if activated, is a potential security issue in non-trusted environments, as it would be possible to execute destructive transactions against the Oracle Utilities Network Management System database.

WARNING:
This interface, if activated and used inappropriately, can be a source of system performance degradation or denial of service. This would be the case if long duration transactions were run against the Oracle Utilities Network Management System database, especially if done against key Oracle Utilities Network Management System tables.

SQL Query

This is a request/reply interface that is used to perform an SQL query on Oracle Utilities Network Management System and return the resulting selection set. The DBS::query method is used internally. The returned XML is formatted using appropriate tags, using column names, and row delimiters.

WARNING:
This interface, if activated and used inappropriately, can be a source of system performance degradation or denial of service. This would be the case if long duration queries were run against the Oracle Utilities Network Management System database, especially if done against key Oracle Utilities Network Management System tables.

Status Check

This is a request/reply interface that is used to check the status of the Generic WebSphere MQ Adapter.

Errors

Errors detected will be asynchronously reported on the defined error queue. An error queue will be as define per the reply queue for any out going message. If there is no reply queue, the default queue will be used to supply the error messages to.

Customer Disconnect / Reconnect.

This information flow is implemented as an asynchronous request for disconnecting or reconnecting customers, indicating which customers have had power disconnected or reconnected by the utility. The customers who have been disconnected will not be seen by Oracle Utilities Network Management System call taking applications, as these customers have purposely been disconnected by the utility for payment reasons. In order for these customers to be ignored from call taking applications that will be using the CreateIncident flow defined in this document, the checkCutoff flag for customers that call in should be used for JMService to be notified to check for the disconnected customers. If these systems know that the customers are disconnected, calls for these customers only need to use the checkCutoff flag.

Crew Outage Status Changes

The purpose of this section is to provide crew states that may or may not transition an outage state change in Oracle Utilities Network Management System. Oracle Utilities Network Management System currently provides crew state changes for an outage via a CrewMessage. The CrewMessage contains the following message types for crew messages. Each message type identified below also provides whether or no the message could change the status of the outage.

	

Crew Message Type

	

Classes APIs available in

	

Potentially generates outage state change

	

Description.

	

INVALID

	

None

	

NO

	

Invalid message was sent. Unsupported message for all crew APIs

	

SET_CONST

	

None

	

NO

	

Sets static constant(s) for the Crew class, which will make non-standard functionality of the crew classes be supported.

	

CLEAR_CONST

	

None

	

NO

	

Remove a static constant that has been set. This may make some supported functionality of the crew classes’ disabled.

	

AVAIL_FOR_OP

	

Crew

	

NO

	

	

UNAVAIL_FOR_OP

	

Crew

	

NO

	

	

CREATED

	

Crew

	

NO

	

	

DELETED

	

Crew

	

NO

	

	

EDITED

	

Crew

	

NO

	

	

ACTIVATED

	

Crew

	

NO

	

	

DEACTIVATED

	

Crew

	

NO

	

	

ASSIGNED

	

CrewAssignment

	

YES

	

	

UNASSIGNED

	

CrewAssignment

	

YES

	

	

DISPATCHED

	

CrewDispatch

	

YES

	

	

UNDISPATCHED

	

CrewDispatch

	

YES

	

	

RELOCATE

	

CrewDispatch

	

YES

	

	

AVAILABLE

	

Crew

	

NO

	

	

UNAVAILABLE

	

Crew

	

NO

	

	

ASSIGNMENT_CHANGED

	

CrewAssignment

	

YES

	

	

DISPATCH_CHANGED

	

CrewAssignment

	

YES

	

	

ARRIVED

	

CrewDispatch

	

YES

	

	

UNARRIVED

	

CrewDispatch

	

YES

	

	

TEMP_ZONE_CHANGE

	

Crew

	

NO

	

	

UPDATE_SCHEDULE

	

Crew

	

NO

	

	

SUSPENDED

	

CrewAssignment

	

YES

	

	

CASE_NOTES_INFO_CHA NGED

	

Crew

	

NO

	

	

CREW_REQUEST_ADD

	

CrewRequest

	

NO

	

	

CREW_REQUEST_EDIT

	

CrewRequest

	

NO

	

	

CREW_REQUEST_DELETE

	

CrewRequest

	

NO

	

These changes may affect the status of the outage, or just the status of a crew. Via configuration of the mq_adapter_config table, any crew state change may trigger the creation of a PostSrsOutputStatus_001 XML message. This message will be identical in format to the PostSrsOutput_001 XML message, except that it will be triggered by the configure crew message type as previously defined. If the configuration for the crew message type is made, any queue can be used to put the PostSrsOutputStatus_001 message in.

Note: The crew message may not affect the current state transition of the outage, and may provide redundant data. In order to avoid un-necessary overhead of providing SRSOutput status information for non-required crew states, it is highly recommended that only the minimal crew states that are needed for the outage state changes are used in order to get the PostSrsOutputStatus_001 XML message. This flow will have to go to JMService to regenerate the outage information.

An example for configuring the receipt of a PostSrsOutputStatus_001 is provided below.

INSERT INTO mq_adapter_config VALUES ('OMS_OUTAGE_STATUS', 2,

 'PostSrsOutputStatus_001',

 'DISPATCHED',

 '', '', 1);

In this example, if a message type of "DISPATCHED" is received by the adapter, JMService will (via JMS::getEventInfo()) be requested for the current event status of the outage. The outage status can be retrieved via the Crew with the current outage data; a PostSrsOutputStatus_001 XML message will be generated to send to the OMS_OUTAGE_STATUS queue. Note that any queue can be defined to publish the Outage Status to. This will be configurable based on the number of configuration parameters for the PostSrsOutputStatus_001 XML message. Whichever crew message types should trigger the creation of the XML message, each one (message type and put queue) will need to be identified and defined in the mq_adapter_config table. Please refer to PostSrsOutput_001 XML message for the data content of the PostSrsOutputStatus_001 message.

The purpose of this information flow is to provide crew outage status messages when ever a crew is Dispatched, Un-Dispatched, Assigned, or Un-Assigned from an event. In order to provide the crew outage status change for the events, this flow is required. This will be an asynchronous event that will provide the crew outage status changes to any interface that may require this information.

Sending Crew Updates / Getting Crew (Request / Reply) Information

When an external system needs to get crew details for one Crew, or all Crews, or the Crew needs to be indicated assigned, un-assigned, dispatched, un-dispatched, arrived, available, unavailable, active, in-active, or suspended from an event in or independent from an event in Oracle Utilities Network Management System; the external system will send a crew update message with the event id to Oracle Utilities Network Management System. The VERB of the CrewUpdate_001 XML message will indicate the state or action to be triggered by the message. Creating, deleting and editing crews is also supported by this flow.

Published Crew Information Updates to an External System

When a crew is assigned, un-assigned, dispatched, un-dispatched, arrived, suspended, created, deleted, or edited in Oracle Utilities Network Management System; the system will broadcast this information to any external system that would be interested in receiving this information about the crew.

Network Trace Includes Planned Outage Request and Current Feeder Request

Oracle Utilities Network Management System has the ability to send all supply nodes back for a specific device (planned outage request). Oracle Utilities Network Management System can also send back feeder, substation and control zone information back for a specific supply node (current feeder request). To enable this function, one line needs to be added to MQ_ADAPTER_CONFIG table and specify ‘-connectivitytrace’ command line option:

insert into mq_adapter_config values ('REQUEST_TRACE',3, 'TraceNetwork_001','TraceNetwork_001',null,'REPLY_TRACE',1);

Area Summary

The MQ Adapter will respond to a request for an area summary. The reply message will contain information that is available in the Performance Mart database. A synonym will be created to make this data available in the Ops database. The MQ Series Adapter will query this table and send back the information.

This will be a request/reply data flow. The external system must request an outage summary for the MQ Adapter to send a response. The areas that are to be summarized will exactly match some level(s) as defined in the Performance Mart database. The areas that are returned will be the Area Control Zones with recognized active outages. The control zone level of the included areas can be configured through the command line.

Callback List

The callback list message will use the same body as the Post SRSoutput message. It will have a different noun and verb.

There are two types of callback list. One contains in the incident list all of the callers who have requested a callback. This message will have a verb of REQUESTED and a noun of CALLBACKLIST. The second type of callback list is a relatively random sampling of customers downstream of the restored device. This message will have a verb of SUBSET and a noun of CALLBACKLIST.

There are configurable parameters that will set the maximum and minimum percentage of affected customers who will be included in the SUBSET callback list. The maximumCallbackSample and minimumCallbackSample for the subset callback can be set through the srs_rules table. These parameters will default to 50 and 4 percent respectively if not configured explicitly. Both types of callback lists use the same format found in PostSrsOutput_001.xsd.

Information Model

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads an XML file, with defined customers to create the model. This process (createSql) can be run to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents with in Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

SRS Output and SRS Output Status Message Tags

	

Tag

	

Parent entity

	

Description

	

Type

	

PostSrsOutput

	

PostSrsOutput_001

	

The start of the SRS Output message

	

S

	

PostSrsOutputStatus

	

PostSrsOutputStatus_001

	

The start of the crew outage status message.

	

S

	

srsOutputMsgType

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Type of SRS output message:

1=Create outage condition and alarm

2=Remove outage condition and alarm

3=Change outage condition or alarm

4=Send a fuzzy alarm

5=Create incident

6=Clear incident

7=Priority Call groups to existing DO

8=A Pending Cancel

9=Reschedule Meet or Outage

11=Send an unassigned alarm

12=Remove all "incident" alarms for an event

13=crew has been removed AND the update trouble button on the picklist has been selected

14=update trouble button on the picklist has been selected

15=this message tells the viewer not to display the outage any more

17=the secondary SRS is now up and running

18=clear case note message

20=Estimated assessment/restore time values updated

21=damage report updated or created

22=update callback information

23=Callback is requested for an event

24=AMR interface message

25=AMR interface message

99=Trouble Clear

	

I

	

district

	

PostSrsOutput, PostSrsOutputStatus, outage

	

District name of the outage device

	

S

	

office

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Office name of the outage device

	

S

	

circuit

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Circuit name of the outage device

	

S

	

feeder

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Feeder name of the outage device

	

S

	

Ncg

	

PostSrsOutput, PostSrsOutputStatus, outage

	

ID of the control zone of the outage device

	

I

	

partition

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Partition ID typically identifies the map sheet on which a device is associated

	

I

	

appliedRule

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Rule number used by SRS to determine outage device

	

I

	

numb

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Internal identifier for each outage record

	

I

	

ruleSet

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Name of active rule set used by SRS to process outage

	

S

	

eventCls

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Event class. Class 800 indicates an outage event. Part of the event handle.

	

I

	

eventIdx

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Event index, part of the event handle that uniquely identifies event in conjunction with the eventCls.

	

I

	

eventApp

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Event app, part of the event handle that uniquely identifies event in conjunction with the eventCls and eventIdx.

	

I

	

alarmCls

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Alarm class, part of alarm handle. Used to uniquely identify rows on work agenda

	

I

	

alarmIdx

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Alarm index, part of alarm handle. Used to uniquely identify rows on work agenda

	

I

	

deviceCls

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Class or outage device. Identifies the type of device that failed.

	

I

	

deviceIdx

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used in conjunction with the deviceCls to form the device handle, which uniquely identifies a device.

	

I

	

deviceAlias

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Name of outage device, as defined in the ALIAS_MAPPING table.

	

S

	

deviceApp

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used in conjunction with the deviceCls and deviceIdx to form the device handle, which uniquely identifies a device.

	

device App

	

cause

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Outage cause (TROUBLE_CALL, FAULT_INDICATOR or blank)

	

S

	

description

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Short description based on status

	

S

	

troubleCode

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Entered trouble code or combination from all calls

	

S

	

troubleQueue

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Dispatcher queue for outage

	

S

	

status

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Alarm state name

	

S

	

operatorComment

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Operator entered comment

	

S

	

tags

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Y if tags exist

N if no tags exist

X if tags are not checked

	

C

	

estSource

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Source of estimated restoration time:

C=crew (manually entered)

S=Storm Management (regular)

G=Storm Management globally applied ERT

D=Storm Management globally applied ERT delay

P=Storm Management non-published ERT

O=Storm Management (crew dispatched/ onsite)

M=Storm Management calculated ERT exceeded allowed maximum

I=Initial ERT

N=none

	

C

	

externalId

	

PostSrsOutput, PostSrsOutputStatus

	

Identifier for event supplied by an external system.

	

I

	

crewId

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Crew(s) assigned to outage

	

I

	

firstIncTime

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Time of first reported incident.

	

T

	

firstCrewTime

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Time of first dispatched crew.

	

T

	

crewOnSiteTime

	

PostSrsOutputStatus

	

Time of crew arrival

	

T

	

estRestTime

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Estimated restoration time.

	

T

	

outageTime

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Time the outage began.

	

T

	

jobCompletionTime

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Time outage was completed.

	

T

	

restoreTime

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Time the outage was restored.

	

T

	

srsCondStatus

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Outage status codes:

0=no outage

1=probable service outage

2=probable device outage

3=real service outage

4=real device outage

7=non outage

8=critical meet

9=future meet

10=confirmed service outage

11=confirmed secondary outage

12=additional alarm

13=probable momentary outage

14=real momentary outage

15=planned outage

	

I

	

condPhases

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Bitmask to identify affected phases

	

I

	

customersOut

	

PostSrsOutput,

PostSrsOutputStatus,

outage

	

Number of customers affected by an outage.

	

I

	

srsPriority

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of priority calls, may be redefined by configuration

	

I

	

custCall

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of customers affected by an outage that have called.

	

I

	

priW

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of wire related calls, may be redefined by configuration

	

I

	

priSW

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of service wire related calls, may be redefined by configuration

	

I

	

priP

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of pole problem calls, may be redefined by configuration

	

I

	

priE

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of emergency calls, may be redefined by configuration

	

I

	

custCrit

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of affected critical customers

	

I

	

crit1

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of category 1 customers that called, as determined by configuration

	

I

	

crit2

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of category 2 customers that called, as determined by configuration

	

I

	

crit3

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of category 3 customers that called, determined by configuration

	

I

	

critK

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Affected category K (KEY) customer, may be redefined by configuration

	

I

	

critC

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Affected category C (CRITICAL) customer, may be redefined by configuration

	

I

	

critD

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Affected category D customer, may be redefined by configuration

	

I

	

critTot

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Total number of critical customers, recognizing that a customer is counted only once even though it may belong to more than one category

	

I

	

revenue

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Revenue of the total customers from customer_sum

	

revenu e

	

customerName

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used for fuzzy calls

	

S

	

addrBuilding

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used for fuzzy calls

	

S

	

addrStreet

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used for fuzzy calls

	

S

	

addrCity

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used for fuzzy calls

	

S

	

customerPhone

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Used for fuzzy calls

	

S

	

xRef

	

PostSrsOutput, PostSrsOutputStatus, utage

	

X reference coordinate

	

F

	

yRef

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Y reference coordinate

	

F

	

sheetNum

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Number of switching sheet associated with a planned outage.

	

I

	

dispAddress

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Dispatch address, first incident if probable service outage, feeder name if no incidents or probable device outage

	

S

	

groupType

	

PostSrsOutput, PostSrsOutputStatus, outage

	

GRP is manually grouped, REL if related

	

S

	

hasClue

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Y if one or more incidents for this outage has a clue

	

C

	

ctrlZoneName1

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Control zone name, level 1

	

S

	

ctrlZoneName2

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Control zone name, level 2

	

S

	

ctrlZoneName3

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Control zone name, level 3

	

S

	

ctrlZoneName4

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Control zone name, level 4

	

S

	

ctrlZoneName5

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Control zone name, level 5

	

S

	

ctrlZoneName6

	

PostSrsOutput, PostSrsOutputStatus, outage

	

Control zone name, level 6

	

S

	

devClsName

	

PostSrsOutput, PostSrsOutputStatus, utage

	

Name of class of outage device

	

S

	

AffectedSupplyNodeList

	

PostSrsOutput, PostSrsOutputStatus, outage

	

The affected list of supply nodes

	

S

	

snd

	

AffectedSupplyNodeList

	

The affected supply node.

	

I

	

AffectedDeviceIdList

	

PostSrsOutput, PostSrsOutputStatus

	

The indicator for the device ids for the affected transformers.

	

S

	

devId

	

AffectedDeviceIdList

	

The affected device id for the transformer.

	

S

	

whoCompleted

	

PostSrsOutput, PostSrsOutputStatus, outage

	

The name of the user who completed the outage.

	

S

	

whoResponsible

	

PostSrsOutput, PostSrsOutputStatus, outage

	

The name of the user who is currently responsible for the event.

	

S

	

whoAcknowledged

	

PostSrsOutput, PostSrsOutputStatus, outage

	

The user who acknowledged the event.

	

S

	

AffectedPremiseIdList

	

PostSrsOutput, PostSrsOutputStatus, outage

	

This list is used as an option for systems that cannot have a transformer relationship to a customer. This is a last resort and is highly recommended not to be used because of performance impacts when using this option

	

S

	

premiseId

	

PostSrsOutput, PostSrsOutputStatus, outage

	

The customer’s premise id, or serv_loc_id in the customer model

	

S

	

AffectedDeviceIdList

	

PostSrsOutput, PostSrsOutputStatus

	

	

S

	

devId

	

PostSrsOutput, PostSrsOutputStatus

	

	

S

	

CaseNote

	

PostSrsOutput, PostSrsOutputStatus, Outage

	

	

S

	

caseNoteText

	

CaseNote

	

Text for the case note.

	

s

	

Note: The following tags appear in <PostSrsOutput_001> message only if the ‘-includeincident’ command line option is used. Oracle recommends against using this option.

	

IncidentList

	

PostSrsOutput, PostSrsOutputStatus, outage

	

	

	

Incident

	

IncidentList

	

	

	

incTroubleCode

	

Incident

	

	

S

	

incDevice

	

Incident

	

	

S

	

incAccount

	

Incident

	

	

S

	

incCustDeviceCls

	

Incident

	

	

I

	

incCustDeviceIdx

	

Incident

	

	

I

	

incCustName

	

Incident

	

	

S

	

incAddress

	

Incident

	

	

S

	

incStreet

	

Incident

	

	

S

	

incCity

	

Incident

	

	

S

	

incPhone

	

Incident

	

	

S

	

incIncidentTime

	

Incident

	

	

S

	

incComment

	

Incident

	

	

S

	

incCallbackLate

	

Incident

	

	

S

	

incExternaId

	

Incident

	

	

S

	

incCallCancel

	

Incident

	

	

S

	

incLifeSupport

	

Incident

	

	

S

	

incCustPriority

	

Incident

	

	

S

	

incMeterId

	

Incident

	

	

S

	

incGeneralArea

	

Incident

	

	

S

	

incCustOrderNum

	

Incident

	

	

S

	

incDrvInst

	

Incident

	

	

S

	

incCallbackRequest

	

Incident

	

	

S

	

incCustCritical

	

Incident

	

	

S

	

incAlternatePhone

	

Incident

	

	

S

	

incCserName

	

Incident

	

	

S

	

incXRef

	

Incident

	

	

F

	

incYRef

	

Incident

	

	

F

	

incEventCls

	

Incident

	

	

I

	

incEventIdx

	

Incident

	

	

I

Note: Many values, names and usages are configurable and vary between implementations. The details and description of configuration options are outside the scope of this document.

Note: For performance reasons the type 20(TRBL_ERT_UPDATE) message contains limited information. The available fields are: <srsOutputMsgType>, <eventIdx>, <estRestTime> and <estSource>. Other fields are either NULL or 0.

Customer Message Tags

Refer to the Oracle Utilities Network Management System Customer Data Model specification.

Note: The bulk load of customers can be accomplished by running the createSql.exe file that will create .sql file to be run through ISQL.ces, which will populate the customer model. The createSql file should be provided the following command line options to create the sql. (IE. CreateSql -xmlfile create_customers.sql -outputfile product_customer_data.sql.) The -writetodb command can be provided to write the customers directly through to the database with out having to run ISQL.ces < product_customer_data.sql.

Trouble Call Message Tags

	

Tag

	

Parent

	

Description

	

Incident

	

	

	

troubleCode

	

Incident

	

	

device

	

Incident

	

	

account

	

Incident

	

	

custDeviceCls

	

Incident

	

	

custDeviceIdx

	

Incident

	

	

name

	

Incident

	

	

address

	

Incident

	

	

city

	

Incident

	

	

phone

	

Incident

	

	

incidentTime

	

Incident

	

	

comment

	

Incident

	

	

callbackLate

	

Incident

	

	

externalId

	

Incident

	

	

callCancel

	

Incident

	

Deprecated and project specific

	

lifeSupport

	

Incident

	

	

custNone

	

Incident

	

	

custPriority

	

Incident

	

	

custPhoneArea

	

Incident

	

	

callId

	

Incident

	

	

meterId

	

Incident

	

	

custLastName

	

Incident

	

	

generalArea

	

Incident

	

	

custOrderNum

	

Incident

	

	

drvInst

	

Incident

	

	

addrBuilding

	

Incident

	

	

addrStreet

	

Incident

	

	

addrCity

	

Incident

	

This is also used in fuzzy calls to get a better indication of which intersection point should be used.

	

meetTime

	

Incident

	

	

meetType

	

Incident

	

	

cidAlias

	

Incident

	

	

powerUp

	

Incident

	

	

cancelCall

	

Incident

	

Deprecated and project specific

	

callbackRequest

	

Incident

	

	

callbackTime

	

Incident

	

	

custIntrX

	

Incident

	

	

custIntrY

	

Incident

	

	

updateExistingInc

	

Incident

	

	

custCritical

	

Incident

	

	

alternatePhone

	

Incident

	

	

userName

	

Incident

	

	

checkCutoff

	

Incident

	

	

xRef

	

Incident

	

	

yRef

	

Incident

	

	

custPhoneUpdate

	

Incident

	

	

streetNameA

	

Incident

	

Used to indicate a street name for a fuzzy call

	

streetNameB

	

Incident

	

Used to indicate a street name for a fuzzy call.

	

addressNumber

	

Incident

	

Used for the street number, to find in an address range for it in the range of an intersection point. The street number is <> the range.

	

addrState

	

Incident

	

This is also used in fuzzy calls to get a better indication of which intersection point should be used.

	

addrPostCode

	

Incident

	

This is also used in fuzzy calls to get a better indication of which intersection point should be used.

	

premiseId

	

Incident

	

This is the premiseId (serv_loc_id) for the customer. This XML tag should only be used as a last option if supply node or customer account number cannot be used with a call. This field incurs additional performance issues if used, and is highly recommended not to use it as an option for processing trouble calls.

	

controlZoneName

	

Incident

	

If the control zone name is passed with the call, it will be used to append control zone information with the call to be placed at this control zone within JMService. This would be useful in cases where customers are not yet modeled in Oracle Utilities Network Management System, and calls would want to be placed as close to the lowest control zone as possible.

	

eventCls

	

Incident

	

Related event class. Used for canceling or updating outages.

	

eventIdx

	

Incident

	

Related event index. Used for canceling or updating outages.

Crew Message Tags

	

Tag

	

Parent

	

Description

	

CrewList

	

DATAAREA

	

	

Crew

	

CrewList

	

	

crewId

	

Crew

	

	

crewContact

	

Crew

	

	

crewType

	

Crew

	

	

crewPagerNumber

	

Crew

	

	

crewMobileNumber

	

Crew

	

	

crewMdt

	

Crew

	

	

crewSupervisor

	

Crew

	

	

crewCenter

	

Crew

	

	

controlZone

	

Crew

	

	

crewStatus

	

Crew

	

	

crewVehicleList

	

Crew

	

	

crewVehicle

	

crewVehicleList

	

	

crewVehicleId

	

crewVehicle

	

	

crewVehicleType

	

crewVehicle

	

	

crewActive

	

Crew

	

	

crewAvailable

	

Crew

	

	

crewNcgCls

	

Crew

	

	

crewNcgIdx

	

Crew

	

	

userName

	

Crew

	

	

eventCls

	

Crew

	

	

eventIdx

	

Crew

	

	

crewMemberList

	

Crew

	

	

CrewMember

	

crewMemberList

	

	

crewMemberName

	

CrewMember

	

	

crewMemberTechId

	

CrewMember

	

	

crewMemberType

	

CrewMember

	

Crew Outage Status Changes

Refer to the SRS Output Message tags, as the DATA Content tags will be the same for this flow.

Configure Queues for Required Data Flows

Any data flows to be used require WebSphere queues to be created and configured. The default queues for the supported data flows are listed below. While these queues would need to be created, the base product configuration already supports these data flows.

	
•

	

Create Incident

OMS_TROUBLE_CALL

	
•

	

Get Customer Outage Status

OMS_CUST_STATUS

OMS_CUST_STATUS_REPLY

	
•

	

Get Customer Outage History

OMS_CUST_HISTORY

OMS_CUST_HISTORY_REPLY

	
•

	

Condition Updates and Queries

OMS_CONDITION_DATA

	
•

	

Outage Status

OMS_TROUBLE_CALL_STATUS

	
•

	

Customer Updates and Queries

OMS_CUSTOMER_DATA

OMS_CUSTOMER_DATA_REPLY

	
•

	

SQL Transactions

OMS_SQL

OMS_SQL_REPLY

	
•

	

Adapter Status Check

OMS_GATEWAY_STATUS

	
•

	

SQL Query

OMS_EXECUTE_QUERY

OMS_EXECUTE_QUERY_REPLY

	
•

	

Customer Disconnect / Reconnect

OMS_CUSTOMER_DISCONNECT

OMS_CUSTOMER_DISCONNECT_REPLY

	
•

	

Crew Outage Status Changes

OMS_TROUBLE_CALL_STATUS

	
•

	

Crew Updates / Crew Requests

OMS_UPDATE_CREW

OMS_UPDATE_CREW_REPLY

	
•

	

Published Crew Updates

OMS_TROUBLE_CALL_STATUS

	
•

	

Network Trace

OMS_TRACE_NETWORK

OMS_TRACE_NETWORK_REPLY

	
•

	

Area Summary

OMS_AREA_SUMMARY

OMS_AREA_SUMMARY_REPLY

	
•

	

Callback List

OMS_TROUBLE_CALL_STATUS

MQ_ADAPTER_CONFIG Table Definition

The following is the table definition for the MQ_ADAPTER_CONFIG table that defines the queues that will be used by the adapter. This is a configuration table that is loaded at startup.

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

Name of queue put queue for the reply queue, and for async output queues.

	

Q_type

	

INTEGER

	

Queue type: 1=async input, 2=async output, 3=request/reply

	

topic

	

VARCHAR2(32)

	

Subject matter for queue, specified in terms of document types

	

topic_type

	

VARCHAR2(32)

	

Message types for filtering specific document types.

	

translation

	

VARCHAR2(128)

	

Name of XSL translation to be applied, default=NULL

	

reply

	

VARCHAR2(32)

	

Name of reply queue (needed when qtype=3), but will be overridden if reply queue is specified on a request message

	

total_threads

	

INTEGER

	

Number of threads processing messages. Note: for async output queues the total_number is always set to 1.

The specific information topics to be supported include the following:

	
•

	

PostError_001

	
•

	

PostSrsOutput_001

	
•

	

GetCustomerHistory_001

	
•

	

GetCustomerStatus_001

	
•

	

CreateIncident_001

	
•

	

ExecuteQuery_001

	
•

	

ExecuteTransaction_001

XSL Transformation Files

If XSL transformations are to be used by the interface, these files must be placed in a file directory on the adapter server. The directory path must be supplied on the adapter command line.

Default CES_GET and CES_PUT Queues

CES_PUT and CES_GET queues are the default queues for sending and receiving each kind of Generic WebSphere MQ Adapter message. Both queues needed to be created, but they can be renamed through command line options defined above.

Trigger of Broadcasting Messages

Among information flows discussed in section 4, outage status flow <PostSrsOutput_001> and crew outage status change flow <PostSrsOutputStatus_001> are two broadcasting flows triggered by some actions happened in the Oracle Utilities Network Management System. Generally speaking, <PostSrsOutput_001> message will be generated every time when an internal srsoutput message is broadcasted. <PostSrsOutputStatus_001> message will be generated every time when an internal crew message is broadcasted. But the adapter configuration can selectively broadcast those messages based on the value in the mq_gateway_config.topic_type column which are internal srsoutput message and crew message type values.

Because Oracle Utilities Network Management System is highly configurable, it is pretty hard to define what kind operation to trigger internal srsoutput and crew messages and it is out of the scope of this document. Please reference corresponding SRS document for details of internal srsoutput and crew message.

Generic WebSphere MQ Mobile Adapter

Introduction

This document describes the Generic WebSphere MQ Mobile Adapter that can be used by Oracle Utilities Network Management System customers to exchange data with external mobile data systems using MQSeries messages formatted using XML. The reader is assumed to have a working-level knowledge of Oracle Utilities Network Management System mobile data systems, XML, and MQSeries technologies.

Overview Description

Integration of Oracle Utilities Network Management System to a mobile data system involves the implementation of an adapter process, which exchanges messages with a mobile data system (MDS). The contents of messages sent to the MDS are generated from data obtained from the Oracle Utilities Network Management System services, transformed so that they are suitable for the MDS, and formatted into XML. The contents of messages received from the MDS are extracted from XML, transformed so that they are suitable for Oracle Utilities Network Management System, and sent to the Oracle Utilities Network Management System services.

The current implementation of the adapter supports the exchange of the following types of messages:

	
•

	

Messages sent to the MDS

	
•

	

MDS order creation, update and cancellation messages, triggered by Event updates from Oracle Utilities Network Management System.

	
•

	

Interface communication status verification messages, triggered on a periodic basis.

	
•

	

Messages received from the MDS

	
•

	

MDS order update and completion messages, triggering updates to the corresponding Oracle Utilities Network Management System events.

	
•

	

Crew log on, update and log off messages, triggering Oracle Utilities Network Management System crew creation, update and de-activation.

	
•

	

Crew assignment creation, update and deletion messages, triggering status changes to the corresponding Oracle Utilities Network Management System crews and events.

	
•

	

Interface communication status verification messages, triggering changes to the interface status.

Terminology

The following terms and acronyms are relevant to this specification

	

InterSys

	

The middleware infrastructure which supports Oracle Utilities Network Management System

	

MDS

	

A Mobile Data System, which exchanges data with field crews’ mobile data terminals.

	

MDS Order

	

A document or unit of work on the MDS. Also known under different names, for example Job

	

Event

	

Oracle Utilities Network Management System outage and non-outage events are generated by SRS based on customer calls and changes to the Oracle Utilities Network Management System topology model.

	

SRS

	

Service Reliability System, the service within InterSys which analyzes and manages outages

	

MQSeries

	

A queue-based messaging system developed by IBM.

	

XML

	

Extensible Markup Language

	

DML

	

Dynamic Message Language. This language is used to configure the adapter.

Functional Description

The purpose of this section is to describe the basic functional capabilities of the Generic WebSphere MQ Mobile Adapter, as applied to the integration of Oracle Utilities Network Management System with mobile data systems (MDS). While a high-level graphical description is provided here, detailed descriptions are provided in subsequent sections.

[image:]

Functional Requirements

The key requirements for the current implementation of the Generic WebSphere MQ Mobile Adapter are:

	
•

	

Generation of MDS orders based on Oracle Utilities Network Management System events.

	
•

	

Updates of MDS orders based on changes to Oracle Utilities Network Management System events.

	
•

	

Updates to Oracle Utilities Network Management System events based on updates to MDS orders.

	
•

	

Creation and update of crew information based on changes to crews on the MDS.

	
•

	

The ability to map multiple events to a single MDS order, based on event relationships in Oracle Utilities Network Management System. This allows groups of events to be viewed as single units of work on the MDS. An example of this is multiple events involved in a set of partial restoration steps.

	
•

	

Support for multiple adapters in a High Availability configuration.

	
•

	

The capability to send individual field changes to an order when events change so that there is a minimum usage of the limited bandwidth available to transmit data to and from field crews. This requires storing the data last sent to the MDS so that change detection can be used. This data is saved to the database, so that change detection can be used over an adapter shutdown and restart.

	
•

	

The ability of data from various Oracle Utilities Network Management System sources to be transformed and combined for transmission to the MDS. The data sources include the Oracle Utilities Network Management System services and the database. Data from the Oracle Utilities Network Management System services will be obtained from both asynchronous notification messages and the use of API calls.

	
•

	

The ability of data from the MDS to be transformed and sent to various Oracle Utilities Network Management System destinations, using database updates and API calls.

Hardware and Software Requirements

The purpose of this section is to describe the environment relevant to this interface.

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported

	
•

	

IBM WebSphere MQ 6 messaging product (Note, however, that the queues may reside on a remote machine) must be installed.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

Hardware and Software Requirements

The purpose of this section is to describe the environment relevant to this interface.

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported

	
•

	

IBM WebSphere MQ 6 messaging product (Note, however, that the queues may reside on a remote machine) must be installed.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

Hardware and Software Requirements

The purpose of this section is to describe the environment relevant to this interface.

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported

	
•

	

IBM WebSphere MQ 6 messaging product (Note, however, that the queues may reside on a remote machine) must be installed.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

Hardware and Software Requirements

The purpose of this section is to describe the environment relevant to this interface.

Oracle Utilities Network Management System Environment

The Oracle Utilities Network Management System environment consists of a number of servers that are interconnected using the InterSys messaging system.

Adapter Server

The Generic WebSphere MQ Adapter environment may be resident on the same servers as the Oracle Utilities Network Management System services, or it may be implemented on a separate server. Specifications for a stand-alone adapter server:

	
•

	

All Oracle Utilities Network Management System Unix and Linux operating systems are supported

	
•

	

IBM WebSphere MQ 6 messaging product (Note, however, that the queues may reside on a remote machine) must be installed.

	
•

	

A LAN connection to the Oracle Utilities Network Management System server must be available

	
•

	

Isis must be installed and configured

Depending upon the high availability scheme selected, it would be possible to configure more than one adapter server for redundancy.

Oracle Utilities Network Management System Server

The Oracle Utilities Network Management System server environment is typically deployed on one or more Unix or Linux servers configured with the following:

	
•

	

Unix/Linux operating system

	
•

	

Oracle RDBMS with Oracle Utilities Network Management System model

	
•

	

Oracle Utilities Network Management System service processes

	
•

	

LAN connection to adapter server

	
•

	

Message queues to be used by the MQ/XML Adapter appropriately declared in the defined database configuration table.

	
•

	

Isis

External System Environment

The external system is any system that can exchange information with Oracle Utilities Network Management System through an adapter. The environment of the external system has the following capabilities:

	
•

	

Any operating system which supports IBM WebSphere MQ messaging

	
•

	

IBM WebSphere MQ messaging product

	
•

	

Applications that can request or publish information in a manner which is either directly or indirectly (through a translator) compliant with the XML specifications contained within this document via queues

	
•

	

Queues must be pre-configured

	
•

	

IBM WebSphere MQ Integrator can be used as needed for routing and translation.

Required Installed Software

The following lists the required software that needs to be installed prior to any configuration of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter.

IBM’s WebSphere MQ Version 6

Isis (installed as part of the base Oracle Utilities Network Management System installation)

Note : Isis is the messaging backbone for Oracle Utilities Network Management System and will already be present on any Network Management System servers. If the Generic WebSphere MQ Adapter is to be executed on a separate server than the Network Management System, then that server must also have Isis installed and running. Every server installation must be running the same version of Isis. The CMM_CELL environment variable must be set the same on any servers which are to communicate through Isis.

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Adapter Installation

Overview

This section is used to guide the user in the installation of the Oracle Utilities Network Management System Generic WebSphere MQ Adapter. The following are assumed to be true before the adapter is installed:

	
1.

	

Oracle Utilities Network Management System is installed and functional. This means that database access has been confirmed, as well as Isis message bus communication.

	
2.

	

WebSphere MQ is installed on a machine that is accessible to the Oracle Utilities Network Management System.

Check if the Generic WebSphere MQ Mobile Adapter is installed

Verify that the following files are found in their respective folders

	
•

	

$CES_HOME/bin/mdsgateway

	
•

	

$CES_HOME/bin/ces_mds_gateway.ces

Configure Adapter to run as NMS System Service

Configure the Generic WebSphere MQ Mobile Adapter to run as an Oracle Utilities Network
Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic WebSphere MQ Mobile Adapter as a system service. There are 3 main sections where this service needs to be defined: the service, program and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic WebSphere MQ Adapter. Search for "mdsgateway" in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active.

See the command line options section below for more details on available options. You must restart the system services in order to the Generic WebSphere MQ Mobile Adapter to properly be monitored by SMService.

Note: In setting up $NMS_HOME/etc/system.dat, it is important to note that the examples above were presented only for illustration purposes. Parameters may differ on an actual project setting. Coordinate with your Project Engineer in setting up your system configuration file. Also, take note that in the example above, it is assumed that the Generic WebSphere MQ Mobile Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Generic WebSphere MQ Mobile Adapter Command Line Options

The command line for the Generic WebSphere MQ Mobile Adapter provides the following options:

	
•

	

-debug <level>: Output debug messages to the log from the adapter and all API toolkits.

	
•

	

-dl: Output level zero (fewest) debug messages from the adapter, only, to the log. (Note that this is the letter ‘l’).

	
•

	

-d1 : Output level one and lower debug messages from the adapter, only, to the log. (Note that this is the number ‘1’).

	
•

	

-d2: Output level two and lower debug messages from the adapter, only, to the log.

	
•

	

-d3: Output level three and lower debug messages from the adapter, only, to the log.

	
•

	

-relog <relog time in hours>: The relog period in hours. The log file continues to grow as the adapter runs. This can potentially fill up a disk. To avoid this, the adapter has the facility to close the log file, save it in the logs directory and open a new log file. This can be achieved using the "relog" high level message, and/or by specifying a relog time in this command line option. The default is 24 hours. Specifying a relog period of zero disables periodic relogging.

	
•

	

-dbserver <database server name>: Specify the database server to use. The adapter can be a heavy user the database. To prevent it from having an impact on other users and to prevent other users from having an impact on it, it can be configured to use its own database server. The default is to use the normal DBService. To configure the use of its own database server, use this command line option, and make sure that an instance of DBService is running with the database server name as its -service command line option.

	
•

	

-waitfor <service name>: The name of a service to wait for before beginning initialization. It is highly recommended that the adapter waits for the database server it uses. The default is DBService. If the -dbserver option is used, this option should be set to the name that the instance of DBService has been given in its process_name option. Specifying the empty string as the name disables this feature

	
•

	

-maxwaitfor <time in seconds>: The maximum time to wait for the service the adapter waits for before beginning initialization. If the service does not respond within this time, the adapter exits with a fatal error message. The default is 120 (two minutes).

	
•

	

-dmldir <directory path>: The path of the directory that the configuration files included by the configuration files at the end of the command line. If the adapter is being run as a Service the full path of the directory should be specified, using forward slashes (/) rather than backslashes(\). For example: c:/mdsg/data.

Any other command line arguments are assumed to be file names of configuration files to use. They are processed in the order that they appear in the command line. If the adapter is being run as a Service, the full path name of the files should be specified.

Optionally Configure the Adapter to Run with another Instance of DBService

In $NMS_HOME/etc/system.dat, include the MQDBService as one of the services. Use the TCDBService entries as examples of how to set this up.

Note : If using a separate DBService, you must start the Generic WebSphere MQ Mobile Adapter with the "-custdbsname" command line parameter and use the MQDBService name as the argument.

Configure the WebSphere MQ Server

References to "Console Root" throughout this write-up refer to the highest level in the tree displayed by the WebSphere MQ Explorer GUI.

Create New Queue Manager

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> New ==> Queue Manager

	
•

	

Queue Manager (name) = NMS_MGR.A

	
•

	

Check Make this the default Queue Manager (indicating yes)

	
•

	

Click Next - use default settings (circular logging)

	
•

	

Click Next - use default settings (start queue manager)

	
•

	

Click Next - uncheck "create listener configured for TCP/IP"

Create New Queues (2)

From WebSphere MQ Explorer tree, select:

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.FROMNMS

	
•

	

Click OK - use all default settings

	
•

	

Click Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> New ==> Local Queue

	
•

	

Queue Name = NMS.A.TONMS

	
•

	

Click OK - use all default settings

Note: At this point, the two new queues should be created. Check the status of each queue or put a test message into each queue by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues

This should display a list of queues.

	
•

	

Right click on the desired queue to bring up a menu containing selections for Status and Put test message.

Create Server Connection Channel

	
•

	

From WebSphere MQ Explorer tree, select

	
•

	

Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels ==> New ==> Server Connection Channel

A dialog will display containing tabs for General, Extended, MCA, Exits, and SSL

	
•

	

In the General tab, the Channel Name is SCH1

	
•

	

In the MCA tab, the MCA User ID is the local login userid

	
•

	

Click OK - use all default settings

Note: At this point, the new server connection channel should be created. Check the status of the new server connection channel by doing the following:

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Advanced ==> Channels.

This should display a list of connection channels.

	
•

	

Right click on the SCH1 channel to bring up a menu containing selections for Status and Start and Stop.

	
•

	

Select Start. The new server connection channel should display the message "The request to start the channel was accepted (amq4008)".

Create New Queue Manager Listener Service

The default TCP/IP port for the default Queue Manager listener is 1414. Multiple listeners can be configured, but for simplicity, in this case, the original installation default listener for the default queue manager has been stopped. This frees up port 1414 for use by a new listener.

Stopping the original default Queue Manager Listener

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> (the original default queue
manager name).

This will cause a list of services to be displayed, one of which is the "listener" service.

	
•

	

Right Click on "listener ==> properties" and stop the listener.

	
•

	

Change the startup from Automatic to Manual.

This listener should no longer start-up at reboot.

Create New Queue Manager Listener for New Queue Manager

	
•

	

Select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> New ==> Listener.

This will invoke a dialog to create a new "listener" service. This dialog will have three tabs, General, Recovery, and Parameters.

	
•

	

The Parameters tab port number must be 1414.

	
•

	

The General tab startup type should be "Automatic".

	
•

	

Then press the "start" button on the General tab.

	
•

	

To check the status of the listener, select Console Root ==> WebSphere MQ Services (local) ==> NMS_MGR.A ==> Listener ==> Properties

Configure the MQ Client

Set Environment Variables

	
•

	

The environment configuration file (nms.rc), which is a data file listing Oracle Utilities Network Management System environment settings, should have the following:

export MQSERVER=SCH1/TCP/10.115.3.85

	
•

	

The environment configuration file must also have two variables set to locate the .TAB file for WebSphere MQ. The .TAB must be copied to the MQ client from the MQ server host as specified by these variables. Examples:

 export MQCHLLIB=/users/proj/MQ

 export MQCHLTAB=AMQCLCHL.TAB

	
•

	

To review IBM’s documentation on the MQSERVER environment variable, click on the following URL:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/
com.ibm.mq.csqzal.doc/csqzal10203.htm

	
•

	

View this environment variable (to ensure that it’s correct) by typing in the following command: echo $MQSERVER

Test the Connection between MQ Client and MQ Server

Test the Server Connection Channel (amqscnxc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqscnxc -x 10.115.3.85 -c SCH1 NMS_MGR.A

where:

	
•

	

-x is the IP address of the MQ Server host

	
•

	

-c is the Server Connection Channel Name

	
•

	

the third parameter is the desired Queue Manager Name

Test ‘Putting’ a Message from Server to Client (amqsputc)

	
•

	

On the Unix command line, type in the following command:

 /usr/mqm/samp/bin/amqsputc NMS.A.FROMNMS Sample AMQSPUT0 starttarget queue is NMS.A.FROMNMS

 <MSG-FROM-SVR>VOILA</MSG-FROM-SVR> Sample AMQSPUT0 end

	
•

	

The message should appear in the queue named NMS.A.FROMNMS which can be viewed on the client using the MQ Explorer GUI at:

 Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==>Queues ==> NMS.A.FROMNMS ==> Browse Messages

Test ‘Getting’ a Message on Client from Server (amqsgetc)

	
•

	

First "get" the message just written

/usr/mqm/samp/bin/amqsgetc NMS.A.FROMNMS Sample AMQSGET0 start message <<MSG-FROM-SVR>VOILA</MSG-FROM-SVR>> no more messages Sample AMQSGET0 end

Test ‘Putting’ a Message from Client to Server using WebSphere MQ GUI

	
•

	

Select Console Root ==> WebSphere MQ ==> Queue Managers ==> NMS_MGR.A ==> Queues ==> NMS.A.TONMS ==> Put Test Message

	
•

	

Paste the following into "Message Data":

	
•

	

 <MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>

	
•

	

Click OK.

The following message should be displayed: "The test message was put successfully (amq4016)".

Test ‘Getting’ a Message on Server from Client (amqsgetc)

On the Unix command line:

/usr/mqm/samp/bin/amqsgetc NMS.A.TONMS Sample AMQSGET0 start message <<MSG-FROM-CLNT>VOILA</MSG-FROM-CLNT>> no more messages Sample AMQSGET0 end

Configure Queues for Required Data Flows

All incoming (with respect to NMS) data flows would go through the NMS.A.TONMS queue. All outgoing messages would go through the NMS.A.FROMNMS queue. Additionally, an error queue is intended for all adapter generated error messges.

These queues must be added to the DML configuration with the following parameters:

config_QueueManager_name

config_OutQueue_<id>_name

config_InQueue_<id>_name

where <id> is a unique identifier to differentiate between multiple output or input queues.

Design Overview

The adapter passes data between Oracle Utilities Network Management System and the MDS, transforming the data based on the configuration files and tables. Messages sent and received using MQSeries are formatted in XML. The types of messaging that are supported include the following:

	
•

	

Asynchronous publish from Oracle Utilities Network Management System to MDS (using ‘fire and forget’ pattern)

	
•

	

Asynchronous publish from MDS to Oracle Utilities Network Management System (using ‘fire and forget’ pattern)

	
•

	

Request/reply from Oracle Utilities Network Management System to MDS (the requestor can process this either synchronously or asynchronously)

	
•

	

Request/reply from MDS to Oracle Utilities Network Management System (the requestor can process this either synchronously or asynchronously)

There are a number of mobile data systems produced by various vendors. These systems allow the end customer to specify the contents of orders that are sent to the crews and the various ways that the crews can report on their progress of their work in the field. In addition, crews can request information from the dispatcher and from other systems in the customer’s organization. The number of options and capabilities vary between the mobile data system vendors.

Oracle Utilities Network Management System allows the end customer a large number of options in the kinds of data that are associated with different kinds of objects, including customers, customer calls, outage and non-outage events, field crews, and devices in the network model.

This implies that an adapter that interfaces between Oracle Utilities Network Management System and multiple mobile data systems and multiple implementations of Oracle Utilities Network Management System and the various individual mobile data systems has to be highly configurable.

To meet this challenge, the Oracle Utilities Network Management System WebSphere MQ Mobile Adapter can be configured to perform data manipulations and business logic, for flexibility, and has functions commonly used interfacing between Oracle Utilities Network Management System and mobile data systems hard coded for performance.

Configuration Concepts

The core of the configuration is one or more file(s) written in Dynamic Message Language (dml). This language allows the adapter to dynamically generate XML messages from various data sources, and to process XML messages to distribute the data contained in the message to various data sinks.

DML allows data to be textually transformed and combined, has logic to allow XML elements to be included or ignored, and different InterSys API calls to be made, all depending on the data being processed.

The basic units in dml are known as documents. There are two main types of document:

	
•

	

Output Documents: These instruct the adapter how to generate XML documents to be sent to the MDS. For example, an Output Document is used to generate order create and update messages.

	
•

	

Input Documents: These instruct the adapter how to process the data received in XML documents from the MDS. For example, an Input Document instructs the interface how to process a crew creation message.

One or more dml files are read by the adapter during initialization. The contents of these files are compiled into a hierarchical set of internal data structures. As the various documents are triggered, the internal data structures are used to generate outgoing XML messages and process incoming XML documents.

The details of the syntax and capabilities of dml are described below in paragraph
DML Files
 and in the Appendices.

Output Documents

An Output Document gathers data from various sources, performs all necessary data transformations and logic, and formats the resulting data into XML elements whose tags are specified in the Output Document. The main sources of data are asynchronous InterSys messages, database selections, data cached in the adapter from previous XML documents, both input and output, and InterSys API calls.

 In order to have the resulting XML document generated, the Output Document has to be activated. This activation is known as "triggering" Output Documents. These triggers occur under the following circumstances:

	
•

	

The reception of an InterSys message. For example, an update to an event from SRS could trigger an order update message.

	
•

	

Periodically. For example, an interface status message that produces a reply from the MDS to monitor the state of the connection between the two systems.

	
•

	

By request in another document. For example, an assignment message is received from the MDS, but Oracle Utilities Network Management System has no record of the specified crew. In this case the Input Document processing the assignment message could trigger a query to the MDS, asking it to return the data describing the crew.

	
•

	

When event relationships change. For example when a number of events are grouped manually on the Work Agenda.

Input Documents

Input Documents process data from elements whose tags are specified in the Input Document. Other elements are ignored. Once the data from all tags in the message that the Input Document recognizes are gathered, all necessary data transformations are performed, possibly in conjunction with data from other sources, and the results are passed to various data sinks. The main data sinks are the database, InterSys API calls, and the adapter cache for use in later document processing.

In order for Input Documents to process the appropriate incoming XML documents, Input Documents have selection criteria. These criteria specify one or more of the following conditions that have to be met before the Input Document is used to process the data in the XML document:

	
•

	

The tag and attributes of the XML document’s root element.

	
•

	

One or more element tags that are required to be in the XML document to identify its usage. Optional elements can be processed with the required elements. Facilities are available to set optional elements to default values, or to alter the processing logic depending whether they are present or not.

	
•

	

The queue that the XML document was received on.

Integration with System Services

In order for the various dml documents to access Oracle Utilities Network Management System service objects, a number of facilities are available. They include:

	
•

	

Asynchronous notification messages. For example, SRSoutput messages that describe new or modified events. DML documents can access the data supplied by these messages.

	
•

	

Access to the database. DML documents can read data from the database using select statements, and can write data using insert and update statements.

	
•

	

Access to the service APIs. Service APIs relevant to objects used in interfacing to mobile data systems are available to dml documents using function calls.

Aggregation of Objects

Oracle Utilities Network Management System and mobile data systems perform very distinct functions and, therefore have distinct views of a utility. This leads to different object models. The difference that has the major impact on the integration of the two is what appears to be the same object on each side of the interface: events and orders.

Events are associated with particular devices in the electrical network, while orders describe work to be done in the field. Normally, one event is associated with one order, for example when a customer transformer needs to be replaced because of a fault. However, in more complex situations, this one-to-one relationship no longer applies.

An example of this is the series of steps involved in a partial restoration. A typical scenario is presented below:

	
1.

	

A fault occurs in an underground loop, causing the fuse protecting the loop to blow.

	
2.

	

This results in an outage event on the fuse.

	
3.

	

This generates an order, which is sent to a crew in the field.

	
4.

	

The crew arrives on site and discovers that an underground cable has been cut at the end of the loop opposite from the fuse.

	
5.

	

In order to restore power to as many customers as possible, the crew opens the switch closest to the cut cable, and then replaces the fuse.

	
6.

	

This creates a new outage event associated with the downstream switch.

	
7.

	

The event associated with the fuse remains, but is now in a restored state.

If a one-to-one relationship were maintained between orders and events, there would now be a new order associated with the downstream switch. However, this does not match the view of the crew in the field. The new event is merely part of the work involved in servicing the original order.

To accommodate this, the adapter will aggregate partial restoration events, if the appropriate configuration options are chosen, into what appears as a single event to the dml. The dml can then process the aggregate event into a single order. Similarly, when the dml processes updates to an order sent by the MDS, causing updates to the aggregate event, the adapter applies the updates to all of the aggregated events in Oracle Utilities Network Management System.

Another example is when the Oracle Utilities Network Management System operator wants to group related events, for example when multiple outages occur in an ice storm in a small area, and assign them to a single crew. The adapter can be configured to treat this in the same way as a partial restoration, but this is not necessarily the preference of the customer. Some mobile data systems can group orders into a folder like object. The adapter can provide a trigger to the dml to process the group of associated events appropriately.

Information Flows

The contents of the configuration files are driven by the information flows required for a particular customer.

High Availability

The goal of the Oracle Utilities Network Management System WebSphere MQ Mobile Adapter redundancy is to provide assured message receipt and delivery between the Oracle Utilities Network Management System services and the MDS. This is achieved using Microsoft Windows 2000 Server Clustering with an appropriate IBM MQSeries configuration. Configuring Clustering and MQSeries is not addressed here.

The adapter supports High Availability in the following ways:

	
•

	

Order data is saved to the database so that change detection can continue over a shutdown restart cycle.

	
•

	

The use of the MQSeries syncpoint facilities to preserve input messages that have not been fully processed.

Performance

This interface is intended to provide for high performance needed to process frequent message exchange such as in the case of a high volume of events during a storm. In order to provide optimum performance, there are aspects of both implementation and usage. Aspects of usage include:

	
•

	

Reducing the number of database accesses and API calls required to generate outgoing XML documents and to process incoming XML documents.

	
•

	

Reducing the number of elements that need to be sent and received.

	
•

	

Keeping the number of critical elements that cause XML documents to be sent when they change to as low a number as possible.

	
•

	

Allowing events time to group for as long as possible, before they cause the creation of orders and cancellation of orders for grouped calls. An example of this is to wait until an event is acknowledged before creating the order, and implementing business practices that delays the acknowledgement until the event is ready to be processed by the MDS.

	
•

	

Sending multiple requests and updates from the MDS together in a single message.

Aspects of implementation which optimize performance include:

The assumption that incoming XML messages are well formed, bypassing the validation step. It is assumed that the sender provided well-formed XML, which was transmitted using reliable communication mechanisms. The actual validation test is whether or not the code that internally parses a message can extract a sufficient set of parameters to process an Input Document. XML that is not well formed will typically generate an error. It should also be noted that XML validation does not necessarily guarantee valid information provided by an external system. If this generates an error in the adapter, the error will be logged.

High Level Messages

High-level messages are typically used within Oracle Utilities Network Management System to permit one process to control another process. There are no special high-level messages that would be required for the Generic WebSphere MQ Mobile Adapter.

Note that doing an Action any.any stop will stop the adapter, which needs to be taken into consideration for administering the adapter when starting and stopping it.

Supported high level messages include the following:

	
•

	

debug <debug level>: set the global debug level to <debug level>. If no level is supplied, toggle between 0 and 1.

	
•

	

dl <arg>: modify the local mdsadapter debug level depending on arg

	
•

	

(none): toggle between 0 and 1

	
•

	

off: turn off debug (no messages)

	
•

	

on: set to 0 (lowest level above off, least messages)

	
•

	

(a number): set to number (the higher the more debug messages)

	
•

	

dump: dump adapter data to the log

	
•

	

isisdump: request an isis dump

	
•

	

report

	
•

	

stop

	
•

	

relog: close the current log file, save it in the logs directory, and open a new log file

	
•

	

trigger <document name> <trigger name> [<arg> …]: Trigger the specified OnRequest trigger in the specified Output Document passing all the additional arguments to the document. If the document name, trigger name, or the number of arguments is invalid, the adapter exits due to a configuration error.

Information Models

The key objects supported by the adapter include:

	
•

	

Incidents are typically related to a customer and are generated by trouble calls. The customer in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Events are a consequence of the correlation of incidents. Outages are one form of an event that is managed by SRSService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that SRSService will generate within Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Crews, who work in the field that can be made up of one or more crew members, and one or more vehicle.

	
•

	

MDS orders, which contain data relevant to the work that the crews perform in the field.

Configuration

There are several mechanisms used to configure this interface:

	
•

	

DML files

	
•

	

Database tables

	
•

	

Command line options

Once the dml files and configuration tables for a customer’s initial configuration have gone into production, a knowledgeable user can make changes to the configuration, as business needs change. For example:

	
•

	

Change element tags and attribute names in input and output messages.

	
•

	

Remove obsolete elements and attributes.

	
•

	

Add new elements and attributes.

	
•

	

Change the format and contents of elements and attributes in output messages.

	
•

	

Change the transformation of data in input messages.

	
•

	

Alter business logic.

	
•

	

Change the contents of the tables that translate Oracle Utilities Network Management System values to and from equivalent values in the messages to and from the MDS.

	
•

	

Change the conditions that trigger the various messages sent to the MDS.

	
•

	

Alter the names of the MQSeries queue manager and queues.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

DML Files

DML files contain dml code that is compiled into internal data structures during initialization. Any errors in the dml files are logged, with the file names and line numbers that the errors were detected on. Any such errors cause initialization to fail. There is an off-line program that allows dml files to be checked before use.

A narrative about the various facilities is provided here. The details of the syntax and capabilities of dml are described below in the Appendices.

The main purpose of dml is to generate and process XML elements. The first few sections describe the generation of XML from Output Documents, but most of the facilities described can be used in Input Documents, which process XML. The discussion of Input Documents starts at section
Input Elements and Attributes
.

Output Elements and Attributes

The following is an example of a dml statement that will generate an element:

&Hello = world;

This will generate the element:

<Hello>world</Hello>

The ‘&’ identifies the following string ‘Hello’ as an element tag. The ‘=’ assigns the element’s data. The ‘world’ is a constant value. The ‘;’ terminates the statement.

Similarly, the statement:

&Tag < attr1=1; attr2=two; > = "";

generates the following empty element with two attributes:

<Tag attr1="1" attr2="two"/>

In the statement the ‘<’ ‘>’ pair enclose a list of attributes and their values. The "" is the empty string.

The statements:

&Tag < attr1=1; attr2=two; >

{

 &SubTag1=SubData1;

 &SubTag2=SubData2;

}

generate the following element with two attributes, and two sub-elements:

<Tag attr1="1" attr2="two">

<SubTab1>SubData1</SubTab1>

<SubTab2>SubData2</SubTab2>

</Tag>

The ‘{‘ and ‘}’ enclose a list of sub-elements.

External Data

So far, the elements and attributes discussed have contained only constant data. An example reading data from an event in an SRSoutput message is:

&EventDevice=$E.devAlias;

This assigns the alias (name) of the event’s interrupting device to the element tagged ‘EventDevice’. The ‘$’ indicates that the following string is the name of an external data object. The ‘E’ indicates that the data is associated with an event object, the ‘.’ separates the components of the name, and the ‘devAlias’ identifies the data field within the object. The names used for the fields of an event object are similar to the names of the corresponding fields in the Oracle Utilities Network Management System SRSoutput class.

Data obtained this way can be combined with other data using dml operators. For example:

&ExternalId = "NMS:" + $E.outageHdl.idx;

concatenates the constant string ‘NMS:’ (contained within quotes because of the non- alphanumeric character ‘:’), with the event’s index (sometimes known as the Ticket Number). Assuming that the event’s index was 1234, the following element would be generated:

<ExternalId>NMS:1234</ExternalId>

Variables

Sometimes the same data is to be assigned to more than one element, or intermediate result is to be used in more than one element. Variables are used to hold such intermediate results. For example:

@eid = "NMS:" + $E.outageHdl.idx;

&ExternalId = @eid;

&code = @eid + "%" + $E.devAlias;

would generate, assuming the device name was XFM1234567,

<ExternalId>NMS:1234</ExternalId>

<code>NMS:1234%XFM1234567</code>

The ‘@’ indicates that the following string is the name of a variable. The ‘+’ operator concatenates the string to the right with the string to the left.

SQL Select Statements

A SQL Select statement is used to read data from the database. For example, the statement:

sqlselect @type, @intDev | type_om, interrupt_dev_om |

 picklist_info_upd_tr | "where ref_id=" | $E.outageHdl.idx;

sets variables ‘type’ and ‘intDev’ to the values in the ‘type_om’ and ‘interrupt_dev_om’ columns of the row in the ‘picklist_info_upd_tr’ table where the ‘ref_id’ column matches the current event’s index.

The ‘sqlselect’ introduces the SQL select statement, and is followed by a list of variables that will be set to the contents of the columns in the database, separated by commas, and terminated by a vertical bar (|) as a separator. After the variables is a list of the columns to assign to the respective variables, separated by commas, and terminated by a vertical bar. The number of column names must match the number of variables. The column names are followed by the table or view name. The rest of the statement builds the ‘where clause’, by concatenating the values of all the remaining components. This syntax only supports a simple select syntax. More complicated select statements are built as a view on database tables, which the dml then accesses using this simpler syntax.

The table name can be a constant or the value of a variable, an external data field, a function call, or the result of the data manipulations, as described below.

If the table name is a constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not a constant, the columns are checked for validity at run time. If the table does not exist, all variables are set to their default values (described below), and, optionally, a debug message is output to the log. If a column is missing, the variable for the column is set to its default value, and, optionally, a debug message output to the log.

An important source of data relating to devices in the model is the facilities (or attribute) tables associated with various device classes (types). The name of the table for a device class is supplied by the ‘classTable’ function, which queries the Oracle Utilities Network Management System services for the table’s name. Not all facilities tables have the same columns (for example fuses and transformers may have fuse sizes, while reclosers may not). This is the reason that the adapter does not regard a missing column at run time as a fatal error.

Some tables, for example the facilities tables described above, contain data that does not change very often, and can be regarded as remaining static. In this case, values only need to be read from these tables when the table name, or ‘where clause’ changes. Such tables are declared static by use of the ‘static’ keyword. For example:

sqlselect @devPhases, @fuseSize |

 phase_designation, fuse_size |

static classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

reads the ‘phase_designation’ and ‘fuse_size’ columns for the interrupting device for an outage.

If the select returns no rows, the variables are set to their default values. If the select statement returns one or more rows of the table, the values are taken from the first row returned. Subsequent rows are ignored in the initial implementation of the adapter.

Function Calls

Function calls have a number of uses, including:

	
•

	

Making Oracle Utilities Network Management System API calls.

	
•

	

Performing data manipulations not supported by the dml syntax.

	
•

	

Accessing the adapter’s data.

	
•

	

Accessing other configuration data.

A simple example of truncating external data to 100 characters to match the length of strings expected by the MDS is:

&Address = substring($E.dispAddress, 0, 100);

the Address element is assigned 100 characters of the ‘dispAddress’ field from SRSoutput, starting at the beginning of the string (an offset of zero).

The various functions available are described in
DML Function Calls
.

Expressions

The values of the various data sources can be combined in expressions. Examples of the string concatenation operator ‘+’ have been shown above. The other operators in the initial implementation involve boolean or logical values.

Boolean values are either true or false. Any non-empty string is considered true, while the empty string is false. Boolean operators return ‘Y’ when they evaluate to true and the empty string when false. The boolean operators are:

	
•

	

The equality operator ‘ ==’: This compares two values for textual equality. For example abc
== ab has a value of "" (false).

	
•

	

The inequality operator ‘ !=‘: This compares two values for textual inequality. For example abc != abc has a value of "" (false).

	
•

	

The logical AND operator ‘ &&’: This is the union of two values, and has a value of true if and only if both values are true. For example, Y && Y has a value of Y (true).

	
•

	

The logical inclusive OR operator ‘ ||’: This is the intersection of two values, and has a value of true if either of the values is true. For example, @v1 || Y has a value of Y (true) whatever the value of the variable v1.

	
•

	

The logical NOT operator ‘ !’: This inverts a single value, being true if the value is false, and vice versa. For example !@v1 is exactly equivalent to @v1 == "".

Boolean values can be used directly, when the Y or "" is appropriate, or in the alternation operator, described here, or by if statements, described below.

The alternation operator returns the value of one of two expressions, depending on the value of a boolean expression and takes the form:

@bool ? @vtrue : @vfalse

If ‘@bool’ is true, the expression’s value is that of ‘@vtrue’, and if ‘@bool’ is false, the value is that of ‘@vfalse’.

Operator Summary

In the table below, each operator is followed by its name and an example of its use.

	

Operator

	

Description

	

Example

	

!

	

Not

	

!@bool

	

+

	

Concatenate

	

"NMS:" + $E.outageHdl.idx

	

==

	

Equal

	

@v1 == @v2

	

!=

	

Not equal

	

@v4 != on

	

&&

	

Logical AND

	

@b1 && @b2

	

||

	

Logical inclusive OR

	

@b3 || @b4

	

? :

	

Alternation

	

@bool ? @vtrue : @vfalse

The not operator is right associative, all the others are left associative. For example, !!@v means !(!@v), and @v1 + @v2 + @v3 means (@v1 + @v2) + @v3, and @v1 == @v2 ==
@v3 means (@v1 == @v2) == @v3.

Each box holds operators with the same precedence. An operator has a higher precedence than those in lower boxes. For example, @v1 == @v2 + @v3 means @v1 == (@v2 + @v3).

Parentheses can be used to change the precedence. For example, (@v1 == @v2) + abc would result in "Yabc" if @v1 was the same as @v2, otherwise "abc", while @v1 == @v2 +
abc would result in "Y" or "" depending on whether the value of v1 is the same as the value of v2 concatenated with "abc".

Parentheses should be used whenever the precedence is in doubt, especially when a boolean expression becomes more complex.

Input Elements and Attributes

The element statements described above in section 7.1 are used in Output Documents. Elements in Input Documents do not have values assigned to them, as the element values are supplied by the incoming XML. An example of an input element follows:

&JobNumber;

This defines an element whose tag is ‘JobNumber’. This element is optional, i.e. it does not have to be present in the input XML for the enclosing Input Document to be processed. In addition, no attributes were declared for the element. Therefore any attributes for the element in the input XML will be ignored.

If the element is not present in the input XML, its value is the element’s default. The specification of default values is described below. In this example, the default is "", the empty string. If special processing should take place when an element is present or not, the boolean function ‘isSet’ can be used to alter the processing logic using, for example, an ‘if’ statement, described below.

The value of the element can be used in assignments, expressions, and in the various SQL statements. For example:

@jobNo = &JobNumber;

assigns the element’s value to the variable ‘jobNo’.

To declare that an element is required for the Input Document to be processed, the required flag ‘R’ would be added to the declaration, as described below in section
Flags
.

An example of an element with four sub-elements is:

&CrewKey

{

&CrewName;

&AgencyCode;

&ShiftCode;

&ShiftDate;

}

The default way to obtain the value of a sub-element is to specify parent’s tag, followed by a forward slash (‘/’), followed by the sub-elements tag. Deeper nesting of elements is similar. For example:

@crewId = &CrewKey/CrewName + &CrewKey/AgencyCode + &CrewKey/ShiftCode + &CrewKey/ShiftDate;

If the nesting is very deep, it can become very tedious and error prone to have to type all the tags leading to a particular element. This can be avoided by giving the element a name, as described in section
Alternate Names
.

Input attributes are declared similarly to Output Document element attributes. For example:

&Elem < attr1; attr2; >;

declares an element with a tag of ‘Elem’, with two attributes ‘attr1’, and ‘attr2’.

The value of an attribute can be obtained as follows:

@val = &Elem<attr2>;

The attribute’s name is enclosed in angle brackets ‘<’ and ‘>’.

SQL Insert and Update Statements

SQL Insert and Update statements are used to save data to the database. For example, the statement:

sqlinsert picklist_completion_log |

 ref_id, who, reason_for_update, when |

 $O.event.idx, @crewId, @reason_for_update, time();

inserts a row into the ‘picklist_completion_log’ table. The value of the ‘ref_id’ column is supplied by the index of the Handle held in the ‘event’ field of the external object ‘O’ (Order), that is associated with a particular MDS Order. The value of the ‘who’ and ‘reason_for_update’ columns are supplied by the variables ‘crewId’ and ‘reason_for_update’. The ‘when’ column is supplied by the ‘time’ function, which returns the current time in internal format.

The ‘sqlinsert’ introduces the SQL insert statement, and is followed by the table or view name, followed by a vertical bar (|) as a separator. The list of column names follows, separated by commas, and terminated by a vertical bar. The list of data sources follow, separated by commas, and terminated by the statement terminator, ‘;’. The number of sources must match the number of columns.

The table name or a data source can be a constant or the value of a variable, an element, an external data field, a function call, or the result of an expression.

If the table name is constant, the columns are checked for validity at initialization time. If any of the columns specified are not in the table, an error message is output to the log, and initialization fails.

If the table name is not constant, the columns are checked for validity at run time. If the table does not exist, nothing is sent to the database, and, optionally, a debug message is output to the log. If a column is missing, the data for the column is not sent to the database, and, optionally, a debug message output to the log.

The type and length of the columns are read from the database, the first time a table is accessed (commonly at initialization time). Values for character columns (CHAR or VARCHAR2) are truncated to the column length. Values for NUMBER and FLOAT columns are checked for validity, and invalid numbers are set to NULL. Values for DATE columns are assumed to be in the internal time format and are checked for validity and set to NULL if invalid. Invalid column values are output to the log file.

The SQL Update statement is for use in tables with a set of key columns. If there is a row with the keys set to the values used in the statement, that row is updated. If there is no row with the same keys, the row is inserted. For example:

sqlupdate picklist_info_upd_tr |

 system_om, type_om, crew_restore |

 &System, &Type, @restoredTime |

 ref_id | $O.event.idx;

ensures that there is a row in the ‘picklist_info_upd_tr’ table with a ‘ref_id’ column equal to the outage’s event index, and sets the ‘system_om’, ‘type_om’, and ‘crew_restore’ columns to the values in the ‘System’ element, ‘Type’ element, and ‘restoredTime’ variable, respectively.

The ‘sqlupdate’ introduces the SQL update statement, and is followed by the table or view name, followed by a vertical bar (|) as a separator. The list of non-key column names follows, separated by commas, and terminated by a vertical bar. The list of non-key data sources follow, separated by commas, and terminated by a vertical bar. The number of non-key sources must match the number of non-key columns. The list of key column names follows, separated by commas, and terminated by a vertical bar. The list of key data sources follow, separated by commas, and terminated by the statement terminator, ‘;’. The number of key sources must match the number of key columns.

The set of rules for Update statements is the same as described above for Insert statements above, except that nothing is written to the database if a key column is missing.

If Statement

If statements are used to alter the flow of document processing, allowing elements to be generated optionally in output XML, different tables to be updated depending on data in incoming XML, etc. For example:

if (@doctype != create)

{

 # there is no job number until the reply to the create document is received

 &JobNumber = $O.externalId;

}

The statements between the brackets ‘{‘ and ‘}’ are only processed when the variable ‘doctype’ does not contain the string "create".

An if statement can also have an ‘else’ clause. For example:

if (@v1 == @v2)

{

 logDebug(0, "v1 is " , @v1, " as is v2");

}

else

{

 logDebug(0, "v1 is ", @v1, " and v2 is ", @v2);

}

Note: An if statement can have any number of ‘elseif’ clauses, optionally followed by an ‘else’ clause. For example:

if (@a == 1)

{

 logDebug(0, "a is 1");

}

elseif (@a == 2)

{

 logDebug(0, "a is 2");

}

else

{

 logDebug(0, "a is ", @a, " neither 1 nor 2");

}

‘else if’ (two words) can be substituted for ‘elseif’.

‘if’ statements can contain nested ‘if’ statements, for example:

if (@a == 1)

{

 if (@b == 1)

 {

 logDebug(0, "a is 1, b is 1");

 }

 else

 {

 logDebug(0, "a is 1, b is ", @b);

 }

}

elseif (@a == 2)

{

 if (@b == 1)

 {

 logDebug(0, "a is 2, b is 1");

 }

 else

 {

 logDebug(0, "a is 2, b is ", @b);

 }

}

else

{

logDebug(0, "a is ", @a, ", b is ", @b);

}

 Flags

Flags are used to modify the behavior of elements, attributes and variables. Flags are set by adding a flag specification to the entity’s definition. Individual flags have a flag character, used in flag specifications.

The flags are:

	
•

	

The ‘send on change’ flag ‘S’. This flag only applies to elements, attributes and triggers in Output Documents. It is described below in sections
Change Detection
 and
Triggers
.

	
•

	

The ‘always include’ flag ‘I’. This flag only applies to elements and attributes in Output Documents. It is described below in section
Change Detection
.

	
•

	

The ‘don’t save’ flag ‘D’. This flag only applies to elements and attributes in Output Documents. It is described below in section
Change Detection
.

	
•

	

The ‘ignore attribute changes’ flag ‘A’. This flag only applies to elements in Output Documents. It is described below in sections
Change Detection
.

	
•

	

The ‘default to current’ flag ‘C’. This applies to elements, attributes and variables in Output Documents. Normally when the source of an assignment fails (due to the unavailability of an incident, for example) the element, attribute or variable is set to its default (described below). If this flag is on, the previous value is used instead. This only has effect when change detection (see below) is in effect.

	
•

	

The ‘required’ flag ‘R’. This flag applies only to elements and attributes in Input Documents. If this flag is set, the element or attribute must be present in the input XML for the Input Document to process the XML. If an attribute is required, the element itself is implicitly required.

Flags are set by adding a flag specification after the name in an element, attribute or variable declaration. For example:

&Elem:CSI = $E.devAlias;

The flag specification is the ‘:’ followed by one or more flag characters.

All elements and attributes have definitions. However, variables do not have to be. They are implicitly defined when they are assigned in an assignment statement and in a SQL select statement. Such implicit definitions cannot have flag specifications. An example of a variable definition with a flag specification is:

@var:C;

 Defaults

There are cases when the values for an element, attribute or variable are not available. In this case the values are set to the entity’s default.

Values are not available in the following cases:

	
•

	

When an optional element is not present in input XML.

	
•

	

When insufficient incidents are associated with an event.

	
•

	

When a table name is dynamically set, for example a device’s facility table, and a column is referenced that the table does not contain.

	
•

	

When a sqlselect statement selects no rows.

	
•

	

A function call cannot generate a value, perhaps because it needs to use an external object that is not available. The specific situations are discussed in the function reference section of
DML Function Calls
.

If no default is specified, and the ‘default to current’ flag is not set, the default value for an entity is "", the empty string. The ‘default to current’ flag is discussed above in
Flags
.

A default is specified by adding a default specification to the entity’s definition, after its (possibly empty) flag specification. For example:

&CallerName::None = $I.0.getCustomerName;

This normally sets the ‘CallerName’ element to the name of the first customer that called. If the event has no incidents, the element’s value is set to ‘None’. In this case the flag specification ‘:’ is empty, and is followed by the default specification ‘:None’. If a change to the element ‘CallerName’ causes an update, the ‘S’ flag is included in the flag specification:

&CallerName:S:None = $I.0.getCustomerName;

This time the flag specification is ‘:S’ and the default specification remains ‘:None’.

 Alternate Names

Alternate names can be given to elements, attributes, and variables. Their usage depends on the type of Document the entities are in.

Input Documents

In Input Documents, only elements can have alternate names. They are used to give the elements names, which are easier to use when the element is a deeply nested sub-element. For example:

&Grandparent

{

 &Parent

 {

 &son:::Jim<jattr1;>;

 &daughter;

 }

}

Declares an element ‘Grandparent’ with one sub-element ‘Parent’, which has, in turn, two sub- elements ‘son’ and ‘daughter’. ‘son’ has a name of ‘Jim’. The following example accesses the value of ‘daughter’:

@dval = &Grandparent/Parent/daughter;

while accessing the value of ‘son’ uses the shorter and less error prone:

@sval = &Jim;

To obtain the value of the attribute of ‘son’:

@sattr = &Jim:<jattr1>;

When an element has a name, the long form cannot be used.

Output Documents

In Output Documents elements, attributes, and variables can have alternate names. They have two usages:

	
•

	

To allow other documents to set their values, for example using the function ‘setDocValue’, which needs the alternate name.

An example of this is when an order contains the estimated time of restoration (ETR), which is initially supplied by the Oracle Utilities Network Management System services. Subsequently, the field crew, after assessing the situation in the field, decides that this time is inappropriate and sends a message back. This message causes input XML to be sent to the adapter, which will then be processed in an Input Document. The document contains an API call to set the ETR in Oracle Utilities Network Management System to this value.

The ETR value in Oracle Utilities Network Management System now matches the ETR value in the MDS. However, the Output Document holds the value of all elements of the order sent to the MDS, to prevent unnecessary updates, and, in this example, will hold the ETR previously sent to the MDS.

The consequence of this situation is that the next time the event associated with the order changes, the Output Document will be triggered and a change to the ETR will be detected, even if no other elements have changed. This will cause an unnecessary transmission of an order update to the MDS.

The solution to this defeating of the change detection mechanism is to call ‘setDocValue’ with the new value, and the name of the element that contains the estimated time of restoration. Similar situations can arise for attributes and variables.

	
•

	

To uniquely name elements so that their values can be saved to the database so that change detection can continue to be effective over a adapter shutdown/restart cycle. This is further discussed in section
MDS_ORDER_VALUE
.

The name is specified in an alternate name specification following the (possibly empty) flag specification, and (possibly empty) default specification. For example:

&ETR:S:"No ETR":etr = formatDateTime($E.estRestTime);

This defines an element with the ‘S’ flag set, with a default of ‘No ETR’, and an alternate name of ‘etr’ which is set to the formatted value of the current event’s estimated time of restoration.

 Alternate Names

Alternate names can be given to elements, attributes, and variables. Their usage depends on the type of Document the entities are in.

Input Documents

In Input Documents, only elements can have alternate names. They are used to give the elements names, which are easier to use when the element is a deeply nested sub-element. For example:

&Grandparent

{

 &Parent

 {

 &son:::Jim<jattr1;>;

 &daughter;

 }

}

Declares an element ‘Grandparent’ with one sub-element ‘Parent’, which has, in turn, two sub- elements ‘son’ and ‘daughter’. ‘son’ has a name of ‘Jim’. The following example accesses the value of ‘daughter’:

@dval = &Grandparent/Parent/daughter;

while accessing the value of ‘son’ uses the shorter and less error prone:

@sval = &Jim;

To obtain the value of the attribute of ‘son’:

@sattr = &Jim:<jattr1>;

When an element has a name, the long form cannot be used.

Output Documents

In Output Documents elements, attributes, and variables can have alternate names. They have two usages:

	
•

	

To allow other documents to set their values, for example using the function ‘setDocValue’, which needs the alternate name.

An example of this is when an order contains the estimated time of restoration (ETR), which is initially supplied by the Oracle Utilities Network Management System services. Subsequently, the field crew, after assessing the situation in the field, decides that this time is inappropriate and sends a message back. This message causes input XML to be sent to the adapter, which will then be processed in an Input Document. The document contains an API call to set the ETR in Oracle Utilities Network Management System to this value.

The ETR value in Oracle Utilities Network Management System now matches the ETR value in the MDS. However, the Output Document holds the value of all elements of the order sent to the MDS, to prevent unnecessary updates, and, in this example, will hold the ETR previously sent to the MDS.

The consequence of this situation is that the next time the event associated with the order changes, the Output Document will be triggered and a change to the ETR will be detected, even if no other elements have changed. This will cause an unnecessary transmission of an order update to the MDS.

The solution to this defeating of the change detection mechanism is to call ‘setDocValue’ with the new value, and the name of the element that contains the estimated time of restoration. Similar situations can arise for attributes and variables.

	
•

	

To uniquely name elements so that their values can be saved to the database so that change detection can continue to be effective over a adapter shutdown/restart cycle. This is further discussed in section
MDS_ORDER_VALUE
.

The name is specified in an alternate name specification following the (possibly empty) flag specification, and (possibly empty) default specification. For example:

&ETR:S:"No ETR":etr = formatDateTime($E.estRestTime);

This defines an element with the ‘S’ flag set, with a default of ‘No ETR’, and an alternate name of ‘etr’ which is set to the formatted value of the current event’s estimated time of restoration.

 Alternate Names

Alternate names can be given to elements, attributes, and variables. Their usage depends on the type of Document the entities are in.

Input Documents

In Input Documents, only elements can have alternate names. They are used to give the elements names, which are easier to use when the element is a deeply nested sub-element. For example:

&Grandparent

{

 &Parent

 {

 &son:::Jim<jattr1;>;

 &daughter;

 }

}

Declares an element ‘Grandparent’ with one sub-element ‘Parent’, which has, in turn, two sub- elements ‘son’ and ‘daughter’. ‘son’ has a name of ‘Jim’. The following example accesses the value of ‘daughter’:

@dval = &Grandparent/Parent/daughter;

while accessing the value of ‘son’ uses the shorter and less error prone:

@sval = &Jim;

To obtain the value of the attribute of ‘son’:

@sattr = &Jim:<jattr1>;

When an element has a name, the long form cannot be used.

Output Documents

In Output Documents elements, attributes, and variables can have alternate names. They have two usages:

	
•

	

To allow other documents to set their values, for example using the function ‘setDocValue’, which needs the alternate name.

An example of this is when an order contains the estimated time of restoration (ETR), which is initially supplied by the Oracle Utilities Network Management System services. Subsequently, the field crew, after assessing the situation in the field, decides that this time is inappropriate and sends a message back. This message causes input XML to be sent to the adapter, which will then be processed in an Input Document. The document contains an API call to set the ETR in Oracle Utilities Network Management System to this value.

The ETR value in Oracle Utilities Network Management System now matches the ETR value in the MDS. However, the Output Document holds the value of all elements of the order sent to the MDS, to prevent unnecessary updates, and, in this example, will hold the ETR previously sent to the MDS.

The consequence of this situation is that the next time the event associated with the order changes, the Output Document will be triggered and a change to the ETR will be detected, even if no other elements have changed. This will cause an unnecessary transmission of an order update to the MDS.

The solution to this defeating of the change detection mechanism is to call ‘setDocValue’ with the new value, and the name of the element that contains the estimated time of restoration. Similar situations can arise for attributes and variables.

	
•

	

To uniquely name elements so that their values can be saved to the database so that change detection can continue to be effective over a adapter shutdown/restart cycle. This is further discussed in section
MDS_ORDER_VALUE
.

The name is specified in an alternate name specification following the (possibly empty) flag specification, and (possibly empty) default specification. For example:

&ETR:S:"No ETR":etr = formatDateTime($E.estRestTime);

This defines an element with the ‘S’ flag set, with a default of ‘No ETR’, and an alternate name of ‘etr’ which is set to the formatted value of the current event’s estimated time of restoration.

 Change Detection

When MDS orders are updated due to changes in the event that is associated with the order, it is important to send only the elements that have changed. This is because of the limited bandwidth available to transmit data to and from field crews.

In addition, some elements that change may not be important enough to cause an update to occur, for example, the number of customer calls that are associated with the event.

Some elements that do not change may have to be sent every time that an update message is to be sent, for example the order identifier could be the key on the MDS.

Change detection only applies to Output Documents, and only to documents that update data previously sent to the MDS. To indicate that change detection applies, change detection only occurs when the trigger invoking the Output Document has the ‘S’ (send on change) flag set. The rest of this section assumes that change detection applies.

The default setting for an element is that it is only included in the output XML when it changes, and that a change to the element is not important enough to cause an update to be in effect. For example:

&NumCustCalls = $E.custCall;

An element that causes the update to be sent has the ‘S’ (send on change) flag set. For example:

&IntDev:S = $E.devAlias;

An element that is always sent when the update is to be sent has the ‘I’ (always include) flag set. For example:

&Create:I < confirm="Always"; >;

The ‘S’ and ‘I’ flags can be combined. This means that the element is always sent on an update, and that a change to it causes an update to be sent. For example:

&JobNumber:SI=$O.externalId;

Change detection applies to element attributes in the same way as elements.

If the element or any attributes is to be included in the output XML, the element and all of its attributes (including those that have not changed) are included in the output XML.

When an object with an associated document is created, a copy is made of the document, with all elements and attributes marked as changed, because they have not been sent to the MDS yet. If an element is not included in the initial transmission of the document (due to an if statement), it, and all its attributes, remains marked as changed. Normally, this is the correct behavior. However, if it has constant attributes, and may is set externally by a call to setDocValue to suppress sending the value, the element will no longer be marked as changed, but the attributes will remain marked as changed. This means that the first time that the element is processed (due to the condition in the if statement changing), it will be transmitted because the attributes are marked as changed, which is likely not the intention.

Using the ‘ignore attribute changes’ flag ‘A’, defeats the behavior. It can be combined with the ‘S’ and ‘I’ flags, if appropriate. For example:

 if (($E.est_source == "O") || ($E.est_source == "C"))

{

 WorkCodeUDF:SA::ert = formatDateTime($E.estRestTime);

}

If the element or any attributes is to be included in the output XML, the element and all of its attributes (including those that have not changed) are included in the output XML.

The values of the elements and attributes are held in memory while the adapter is executing. In order to preserve these values over a shutdown/restart cycle, they are stored in the database. By default, the adapter saves all elements and attributes that do not have constant values. However, some element and attribute values are always set during the execution of the Output Document, for example:

if (@docType == "create")

{

 @conf = Always;

}

else

{

 @conf = Never;

}

&Confirm:I = @conf;

In this example, there is no need to save the value of the ‘Confirm’ element. To prevent saving its value, add the ‘don’t save’ flag ‘D’ to the element’s definition, for example:

&Confirm:ID = @conf;

The table used to save the values of the order document is described in section
The Order Tables
.

 The External Objects

The external objects are:

	
•

	

The Event object, identified by ‘E’, holds the data from the event’s latest ‘SRSoutput’ data. The names of the fields are the relevant fields in the Oracle Utilities Network Management System SRSoutput class. They are listed in
DML Function Calls
.

	
•

	

The Incident object, identified by ‘I’, holds the data from the event’s customer calls. The Incident object is not automatically populated. It can be populated by a call to the function readIncidents(). If memory is at a premium, the Incident object can be unpopulated by the function clearIncidents(). The names of the fields are the relevant fields in the Oracle Utilities Network Management System Incident class. They are listed in
DML Function Calls
. There can be any number of incidents associated to an event, including zero. Therefore, the offset of the incident of interest has to be supplied when accessing an incident field. Offsets start at zero. The offset is an integer, and is the second component of the external data reference. For example, $I.1.getCustomerName reads the name of the second customer in the incident array. A function, sortIncidents(), is supplied to sort the incidents. Before sorting they are in the order that the customers called. Any reference to an incident field can fail, because there may be no incidents. Such a failure causes the value of the element, attribute or variable being assigned to be set to its default.

	
•

	

The Order object, identified by ‘O’, holds data relating to orders sent to the MDS. It holds the order’s current event object (possibly aggregated to summarize a set of related events), the Output Document that holds all the document data for the order for change detection, a number of fields that are always available (section
Permanent Order Object Fields
,
Permanent Order Object Fields
 of
DML Function Calls
), and other data fields as configured by the MDS_ORDER and MDS_ORDER_FIELD tables. See
MDS_ORDER
 for a description of the order tables.

	
•

	

The Relationship object, identified by ‘R’, holds data relating to event relationships processed by the dml. It holds the type of relationship, the handles of all the related events, and a number of fields that are always available (see section
Permanent Relationship Object Fields
,
Permanent Relationship Object Fields
 of
DML Function Calls
).

	
•

	

The Global Data object, identified by ‘G’, which holds named values for use by any of the documents. A field is created by assigning values to the field, e.g., $G.QueueManager =
OPS;. If a field that has not been created is read, the field is created with a value of "", the empty string, and an warning is output to the log. The global data object usually holds configuration data, and the fields are set in a Configuration Document.

	
•

	

The Trigger Parameter object, identified by ‘T’, which holds the parameters sent to Output Documents when they are triggered from another document using the function ‘triggerOutputDoc’. The first parameter to ‘triggerOutputDoc’ specifies the Output Document to trigger, the second parameter specifies the trigger to pull, and the rest of the parameters values are available to the Output Document as fields ‘1’, ‘2’ … up to the number of parameters supplied, less two (the document and trigger names). For example, @param1
= $T.1; sets the variable ‘param1’ to the value of the first parameter.

Input Element Arrays

The declaration of input elements discussed in section
Input Elements and Attributes
. can only handle elements whose tags are unique within the bounding parent element (which may be the root element). If such an element appears in the input XML, its value (or those of its own sub-elements) will override the values previously read. Input element arrays solve this problem.

Generally there are two situations that repeated elements are required:

	
•

	

When the elements contain the same type of data and each should be processed in a similar fashion. For example, a crew logs on when the MDS had previously assigned multiple orders to the crew. Each of these assignments should be made to the crew on Oracle Utilities Network Management System.

	
•

	

When the elements contain different types of data, and the individual elements are identified by the value of a particular attribute, in effect giving the element a compound tag.

Using an element array with an unspecified index solves the first situation. For example:

&CrewAssignments

{

&CrewAssignment[]

{

&OrderId;

&AssignmentStatus;

}

}

This allows any number of elements with the tag ‘CrewAssignment’ to be processed. This can be achieved using the ‘for’ statement described below.

Using an element array with a specified index attribute solves the second situation. For example:

&UDFS

{

&UDF[idx];

}

@etr = &UDFS/UDF[et];

@troubleType = &UDFS/UDF[tt];

which assigns the ‘UDF’ element whose ‘idx’ attribute is ‘et’ to the variable ‘etr’ and the ‘UDF’ element whose ‘idx’ attribute is ‘tt’ to the variable ‘troubleType’.

Array elements can be given alternate names in the same way as normal input elements, but they cannot be given flags and defaults, as they have no meaning. Individual array indices can be required to be present, using a required index specification. For example:

&UDFS

{

&UDF[idx] R(et, tt);

}

@etr = &UDFS/UDF[et];

@troubleType = &UDFS/UDF[tt];

Prevents the processing of the input XML when the input XML does not contain a ‘UDF’ element with an ‘idx’ attribute of ‘et’ and contain a ‘UDF’ element with an ‘idx’ attribute of ‘tt’. The required index specification consists of an ‘R’ followed by a comma separated list of attribute values in parentheses ‘(‘ ‘)’.

While sub-elements to array elements can be given names, their usage differs from normal sub- elements because the appropriate index must be specified. This is done using a format similar to the long form of referencing tags, using forward slashes ‘/’. For example:

&ancestor

{

 &grandparent[idx]

 {

 &parent

 {

 &child;

 }

 }

}

@son = &ancestor/grandparent[smith]/parent/child;

uses the full long form.

&ancestor

{

 &grandparent[idx]:::granny

 {

 &parent

 {

 &child;

 }

 }

}

@son = &granny[smith]/parent/child;

uses a name for the array element.

&ancestor

{

 &grandparent[idx]:::granny

 {

 &parent

 {

 &child:::son;

 }

 }

}

@son = granny[smith]/son;

uses a name for both the array element and its sub-element.

For Statement

The for statement, or for loop, is used to iterate through the contents of an array element.

The array element can either have a specified index attribute or an unspecified index. The usage is similar.

For example:

&CrewId:R;

&CrewAssignments

{

&CrewAssignment[]:::asn

{

&OrderId;

&AssignmentStatus;

}

}

if (!findCrewById(&CrewId))

{

 stop;

}

for (&asn[], @i)

{

 if (isSet(&asn[@i]/OrderId) &&

 isSet(&asn[@i]/AssignmentStatus) &&

 findOrder(externalId, (&asn[@i]/OrderId))

 {

 if (&asn[@i]/AssignmentStatus == ASN)

{

assignCrew();

 }

elseif (&asn[@i]/AssignmentStatus == DSP)

{

dispatchCrew();

}

 }

}

The for statement executes all the statements between the matching brackets ‘{‘ and ‘}’, for each of the elements in the tag array (‘&asn[]’ in this case), in the order that they appeared in the input XML. During execution of the statements the ‘for’ variable (‘@i’ in this case) is set to the elements index in the tag array. As this array did not have an index attribute specified, the variable has a numeric value, starting at zero, and is incremented by one between loop executions. If the XML does not contain the element, the loop is never executed.

If, instead, the array element had an index attribute, for example:

&CrewAssignments

{

&CrewAssignment[idx]:::asn

{

&OrderId;

&AssignmentStatus;

}

}

the loop variable would contain the values for the ‘idx’ attribute included in the input XML. Note, however, that if the XML contained any ‘CrewAssignment’ elements, without an ‘idx’ attribute, these elements would be ignored, and therefore not available for processing.

 Queue Specification

The queue specification is used to specify the queue that XML from Output Documents are sent to, and the queue that input XML is received on to be processed by Input Documents. The queue specification appears in the header portion of the document. For example:

queue = NMS.TO.MDS.REQUEST;

Which sets the queue name to a constant. Commonly, the queue is set to the value of a field in the global object to facilitate the configuration of the queue names.

Output Documents can change the queue name by accessing the queue variable in the body of the document. For example:

If (@use_alternate_queue)

{

 @queue = $G.alternateQueue;

}

 Association of an Output Document to the Order Object

The order document must have an associated Output Document that generates the Order creation (usually) and update (always) XML. It is used to cache all the element data that is used for change detection. This association is achieved using the associate specification in the document header which takes the form:

associate = O;

where the ‘associate’ is the associate keyword and the ‘O’ identifies the Order Object.

Triggers

Triggers specify when Output Documents are activated to generate XML to be sent to the MDS. For example:

trigCreateOrder < SRSoutput; > =

($E.status == "ACK") && !findOrder(event, $E.outageHdl);

might be used to trigger the creation of an order.

The ‘trigCreateOrder’ is the trigger’s name. The value of a trigger is available to the body of the document in a variable with this name.

The angle brackets, ‘<’ and ‘>’, contain the trigger specification(s), which define the circumstances under which the trigger is to be tested. In this case the arrival of an asynchronous ‘SRSoutput’ message.

After the assignment is the expression which determines when the trigger is to be fired. The expression is evaluated and if it is true, i.e. not the empty string, the trigger is fired. The result of this evaluation is then assigned to the trigger variable. In the example, the trigger will fire if the event is in the acknowledged state and no order has been created for the event.

If an expression is not supplied, the trigger always fires when the trigger specification is satisfied. In this case, its value is set to ‘Y’.

Triggers can also have the ‘send on change’ ‘S’ flag set . If not set, all elements in the document are sent in the resulting XML. If set, only those elements that have changed are set. For example:

trigUpdateOrder:S < SRSoutput; > =

(!isIn($E.status, "UNA", "CNL") && findOrder(event, $E.outageHdl);

There can be multiple triggers, only one of which is fired. The triggers are evaluated in order of their definitions and the first to fire takes effect. The unfired triggers all have a value of false.

There are a number of types of trigger specifications. In some cases they need values. They are:

	
•

	

The reception of a SRSoutput message. The trigger specification is ‘SRSoutput’, which has no value. Examples of the SRSoutput trigger are shown above.

	
•

	

When an event is deleted. This occurs when outages are merged, and when a previously processed event is not returned by SRSService at start up. The trigger specification is ‘EventNonexistent’, which has no value. Commonly, this triggers the same Output Document that handles event cancellation. The event is supplied in trigger parameter 1. An example of an event non-existent trigger is:

triggerEventNonexistent<EventNonexistent;>

 = findOrder(order, $T.1) && $O.externalId;

	
•

	

Periodically. The trigger specification is ‘Periodic’, which needs a value that is the period at which to fire the trigger, in seconds. An example of a periodic trigger that fires once a minute is:

trig1min< Periodic=60; >;

	
•

	

By request in another document, using the ‘triggerOutputDoc’ function. The trigger specification is ‘OnRequest’, which needs a value that is the number of trigger parameters that need to be passed by the requesting document. An example of a request trigger with two parameters is:

trigOnRequest<OnRequest=2;>

 = findOrder(event, $T.1) &&

 isIn($E.status, "UNA", "CNL") &&

 $O.externalId;

	
•

	

Creation of, changes to the number of events in, and deletion of an event relationship processed by dml. The trigger specification is ‘RelationChanged’, which as no value. The Output Document is activated once for each event in the relationship. The event is supplied in trigger parameter 1. An example of an relationship change trigger is:

trigRelationChanged< RelationChanged; >

= findOrder(event, $T.1) &&

 isIn($E.status, "UNA", "CNL");

	
•

	

Deletion of an event relation processed by dml. The trigger specification is ‘RelationDeleted’, which as no value. The Output Document is activated once for the relationship. The relation is supplied in trigger parameter 1. An example of an relationship deletion trigger is:

trigRelationDeleted< RelationDeleted; >

= findOrder(RELATED_OUTAGE, relation, $T.1) &&

 $R.externalId;

	
•

	

A change to the number of events in an event relation that is aggregated by the adapter. The trigger specification is ‘AggregateChanged’, which has no value. The Output Document is activated once for the order in which the events are aggregated. The order is supplied in trigger parameter 1. An example of an aggregate change trigger is:

trigAggregateChanged< AggregateChanged; >

= findOrder(order, $T.1) &&

 $O.externalId;

This trigger is often used to ensure that all events in the relation have data updates sent by the MDS before new events are added to the relationship, for example the estimated time to restore.

	
•

	

An SRSoutput message arrives indicating number of events are merged. The trigger specification is ‘EventMerged’. Its value specifies the name of an Output Document, known as the Merge Priority Document, which is used to generate the priority of all of the orders associated with the events involved in the merge, if any. The Merge Priority Document must have a request trigger named ‘call’. The Output Document that contains the event merged trigger is known as the Merge Document. There can be zero or one Merge Document in all the dml files processed by the adapter. If no Merge Document is supplied, the SRSoutput message is processed via SRSoutput triggers, and the merged events are processed via event non-existent triggers. If a Merge Document is supplied, the adapter processes the SRSoutput message as follows:

1.For each of the events involved in the merge, including the surviving event, the adapter determines whether the event is associated with an order. If so it’s order becomes eligible to be the surviving order, except for a non-surviving event’s order is in an aggregate relationship. If there are no eligible orders, the SRSoutput message is processed via SRSoutput triggers, and the merged events are processed via event non-existent triggers. Neither the Merge Document nor the Merge Priority Document is processed.

2.When there are multiple eligible orders, the adapter must choose which one will become the survivor. The Merge Priority Document provides a priority value to allow this choice to be made. The adapter processes the Merge Priority Document via the ‘call’ trigger. The Merge Priority Document has its order and event objects set. Note that if the event is the surviving event, the previous version of the event object is set. This allows the event object’s fields before the merge to be used to determine the priority.

3.The Merge Priority Document returns the priority in the trigger argument object. The priority consists of a priority sort definition and one or more priority values. The priority sort definition is returned in the ‘0’ (the character zero) field of the trigger argument object ($T.0). If this value is the empty string, the order is no longer eligible to survive. If not empty, it defines the number and sort order of the priority values. The priority values are returned the ‘1’, ‘2’, … fields ($T.1, $T.2, …), up to the number of values. The number of characters in the priority sort definition determines the number of values expected by the adapter. Each character determines the sort order for the corresponding value, ‘A’ or ‘a’ for ascending and ‘B’ or ‘b’ for descending, the first character applies to $T.1, the second to $T.2, etc.

4.If there are multiple orders eligible, the one with the highest priority becomes the survivor. Each priority value is sorted alphabetically in the order specified by its character in the priority sort definition. The first value ($T.1) is examined first. If one order ranks higher that all the other, it is chosen. Otherwise, any order with a lower priority is discarded. Then the other values are examined in turn, until an order is chosen. If all the priorities are the same, the order associated with the surviving event, if any, survives. If the surviving event has no order, the order associated with the oldest event survives. For example, the following dml fragment illustrates how to choose the order with the most advanced crew assignment/dispatch status, and if they are equal the order with the oldest event.

two priority values, the first descending, the second ascending

$T.0 = DA;

orderCrewStatus() returns ’A’ for Assigned, ‘D’ for dispatched, ‘O’ for on site, nothing for none

@ocr = orderCrewStatus();

if (@ocr)

{

 $T.1 = @ocr;

}

else

{

 # ‘a’ precedes all of the valid values

 $T.1 = a;

}

formatDateTime() returns the date and time in the format

YYYY-MM-DDTHH:MM:SS

$T.2 = formatDateTime($E.outageTime);

5.The Merge Priority Document can populate other fields in the trigger argument object, to be used by the Merge Document when the order being processed becomes the surviving order. Note that the Merge Priority Document is processed even if there is only one eligible order so that these fields, if any, can be passed to the Merge Document.

6.If the surviving order is not associated with the surviving event, the surviving order is re- associated to the surviving event. The order that was associated with the surviving event is re-associated to the surviving order’s old event, so that it can be processed via an event non-existent trigger, to allow normal order clean up.

7.The adapter processes the Merge Document with the surviving order object and surviving event object set to the new version of the event, and the trigger argument object fields set by the Merge Priority Document when processing the surviving order.

8.Finally, the SRSoutput message is processed via SRSoutput triggers, and the merged events are processed via event non-existent triggers.

An example of an event merged trigger is:

TrigEventMerged <EventMerged="OrderMergePriority";>;

For this to be valid, there must be an Output Document named ‘OrderMergePriority’, with a request trigger named ‘call’.

 The Root Element

The root element is the element that contains all of the other elements in an XML document. The root element in dml serves a different purpose depending on whether it is part of an Output or Input Document.

In an Output Document, it is used to generate the root element in the XML to be sent. In an Input Document it is used to select the Input Document or Documents that the input XML can be processed by, similar to a trigger for an Output Document. An example of a root element follows:

&RootElement <environment = $G.environment; revision = "1.0.0";> = CreateJob;

The root element has the same format for both Input and Output Documents.

The root element differs from other elements in that the element’s tag is defined by the value of the element, ‘CreateJob’ in this example. The pseudo-tag ‘RootElement’ keyword identifies it to be the root element.

In an Output Document, the example would generate the following start element tag:

<CreateJob environment="Test" revision="1.0.0">

assuming that the global field ‘environment’ held the value ‘Test’.

To select an Input Document, the input XML’s root element must have the same tag, and all the attributes in the root element specification must be present and have exactly the same contents. Extra attributes in the XML’s root element are ignored.

An Input Document with the same root element definition example above would be selected by the root element in the example above.

The root element is defined in different areas, depending on the type of document.

In an Output Document the root element is in the body of the document, because it’s tag may have to be determined during document processing. It is the only element in an Output Document that is an exception to the rule that states that elements are generated in the order that they appear in the Output Document.

In an Input Document the root element is the header of the document because it is used before any processing is done in the document.

 The Base Path

The base path only applies to Input Documents, and is not necessary, but can make Input Documents more compact. Consider the following XML:

<ConfirmJob>

 <ApplicationArea>

 </ApplicationArea>

 <DataArea>

 <Job>

 <OriginalApplicationArea>

 <BODId>OrigBODId</BODId>

 </OriginalApplicationArea>

 <CreateSuccess>

 <JobNumber>1234567890</JobNumber>

 </CreateSuccess>

 </Job>

 </DataArea>

</ConfirmJob>

The XML could contain many other elements, but the ‘BODId’ and ‘JobNumber’ are the only elements to be processed. The elements in the Input Document would be:

&DataArea

{

 &Job

 {

 &OriginalApplicationArea

 {

 &BODId;

 }

 &CreateSuccess

 {

 &JobNumber;

 }

 }

}

Note that ‘BODId’ and ‘JobNumber’ have a common grandparent ‘Job’. By setting the base element to the grandparent by adding:

BasePath = DataArea/Job;

to the document’s header, the elements would become:

&OriginalApplicationArea

{

 &BODId;

}

&CreateSuccess

{

 &JobNumber;

}

 Stop Statement

 The Stop statement causes the processing of the current document to stop. It takes the form:

stop;

It is usually contained in an ‘if’ statement. Any statements with side effects, for example a SQL Insert, processed before the ‘stop’ do take effect.

A stop statement prevents an Output Document’s XML from being sent.

A stop statement in a Configuration Document, described below, causes initialization to fail.

 Include Statement

Sometimes it’s useful to have the same set of statements in two different places in a dml file. For example all Output Documents may need the same header, or application area. This can be achieved by placing the repeated statements in another file and then including the file more than once in another file. The following is an ‘include’ statement:

include ohdr.dml

 This ‘include’ statement in effect replaces the text ‘include ohdr.dml’ with the contents of the file ‘ohdr.dml’. Files being included can also include other files, but the nesting level is limited to 10 deep so that infinite recursion can be prevented.

 Configuration Documents

Configuration Documents are used to set configuration data and load configuration tables from the database at initialization time. They are similar to Input Documents, but have no elements.

They are processed at initialization time, and are then discarded. Any errors encountered when processing a Configuration Document should be made fatal by executing a stop statement, causing initialization to fail.

Common uses are to set fields in the global data object, including configuration fields, and to load mapping tables, used by the ‘mapTableStr’ and ‘mapTableCode’ functions described in
DML Function Calls
. For example:

ConfigDoc Configure

{

fields for other documents

$G.OutRequestQueue=NMS.MDS.REQUEST;

$G.OutErrorQueue=NMS.ERROR;

$G.InReplyQueue=MDS.NMS.REPLY;

$G.InRequestQueue=MDS.NMS.REQUEST;

$G.environment=Test;

configuration parameters

$G.config_QueueManager_name=OPS;

$G.config_OutQueue_req_name=$G.OutRequestQueue;

$G.config_OutQueue_err_name=$G.OutErrorQueue;

$G.config_OutQueue_numThread=5;

$G.config_InQueue_rep_name=$G_InReplyQueue;

$G.config_InQueue_rep_numThread=2;

$G.config_InQueue_req_name=$G.InRequestQueue;

$G.config_InQueue_req_numThread=4;

$G.config_ErrorQueue_name=$G.OutErrorQueue;

$G.config_ErrorDoc_name=Error;

$G.config_ErrorDoc_trigger=xmlErrorTrigger;

$G.config_Relation_Aggregate_AcknowledgeEvents = ack;

$G.config_Relation_Aggregate_type = PARTIAL_RESTORATION;

$G.config_Relation_Aggregate_ActiveEvents = Y;

$G.config_Relation_dml_type = RELATED_OUTAGE;

Load map tables

if (!loadMapConfigTable(mds_map_config) ||

 !loadMapTable(mds_cls_desc) ||

 !loadMapTable(mds_cls_type))

{

 stop;

}

}

Configuration fields have names starting with ‘config_’. The available configuration fields are:

	
•

	

config_QueueManager_name : The name of the queue manager to use. This field must be specified, or the adapter will exit with a configuration error message.

	
•

	

config_OutQueue_<id>_name : The name of an output queue to use. Each output queue needs to have a unique id, which replaces the ‘<id>’. The unique id may not contain an underscore (_).

	
•

	

config_OutQueue_numThread : The number of threads to use to generate output documents. If not specified, one thread is used to generate output documents.

	
•

	

config_InQueue_<id>_name : The name of an input queue to use. Each input queue needs to have a unique id, which replaces the ‘<id>’. The unique id may not contain an underscore (_).

	
•

	

config_InQueue_<id>_numThread : The number of threads to use to process input documents arriving on the input queue with the same id. Each input queue needs to have a unique id, which replaces the ‘<id>’. If not specified, one thread is used to process documents on the queue.

	
•

	

config_ErrorQueue_name : The name of the queue to send XML parse error and warning reports to. This field must be specified, or the adapter will exit with a configuration error message.

	
•

	

config_ErrorDoc_name : Specify an output document to process error reports. If specified, the config_ErrorDoc_trigger field must be specified. If not specified, the standard XML error document, as specified in the MQ/XML adapter documentation, is used.

	
•

	

config_ErrorDoc_trigger : The trigger to pull in the error document when there is an error or warning to report. Ignored is no error document is specified. If the specified trigger does not exist in the error document, the adapter exits with a configuration error message. The adapter supplies three trigger arguments to the error document. Argument one is the error or warning message description, argument two is the priority level, one of ‘Warning’, ‘Error’, and ‘Fatal Error’, and argument three is the offending XML document.

	
•

	

config_Relation_Aggregate_type : A comma separated list of relationship types to aggregate. The relationship types are: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. If a pseudo relationship of a type that is aggregated by the adapter is created using createPseudoRelation(), the pseudo relation is aggregated. If a relationship type is configured for both aggregation and dml processing, the adapter exits with a configuration error.

	
•

	

config_Relation_Aggregate_AcknowledgeEvents : Acknowledge all unacknowledged events in aggregate relations. The value of this field is used in a call to SRS::requestRowAction() as the button name. This field should be set if pseudo aggregate relations are created on events that may not be acknowledged.

	
•

	

config_Relation_Aggregate_ActiveEvents : If the field is not the empty string "", sum count data for all active events in an aggregated relation. The count data event fields are: customersOut, crit_k, crit_c, and crit_d.

	
•

	

config_Relation_dml_type: A comma separated list of relationship types to be processed by the dml, using the relationship object. The relationship types are: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. If a pseudo relationship of a type that is processed by the dml is created using createPseudoRelation(), the pseudo relation is processed by the dml. If a relationship type is configured for both aggregation and dml processing, the adapter exits with a configuration error.

	
•

	

config_Relation_dml_AcknowledgeEvents : Acknowledge all unacknowledged events in dml processed relations. The value of this field is used in a call to SRS::requestRowAction() as the button name.

	
•

	

config_MaxBackoutCount : The adapter uses the MQSeries syncpoint facilities to preserve input messages when there is a failure. Using the MQSeries syncpoint facilities introduces the possibility that a 'poison' message will be sent by the MDS. A 'poison' message is one that can never be successfully processed, for example because an Oracle Utilities Network Management System table has a constraint that the contents of the message violate. If the 'poison' message is never discarded, MDS will continually try to process the message, fail, and then restart. This parameter sets a limit on the number of restarts that MDS will perform before discarding a message. The default value is five. A value of zero disables this feature. If a message is discarded, the error is logged to the log file, including the offending XML, and if the error document is configured, and an error report is sent to the error queue.

	
•

	

config_Event_QueueDelay : When event data is received in an SRSoutput message, from SRSService, they are held for this period before they are queued for processing. If another message for the same event is received before the delay has expired, the older message is discarded, and the new message is held for the delay period. This avoids unnecessary processing and message transmission when event data is changing rapidly. Setting this delay too short can cause extra messages, while setting it too long can cause poor response. The value is in seconds. The default value is four seconds. A value of zero disables this feature.

	
•

	

config_Event_ReprocessPeriod : In certain circumstances, for example when more that one event is grouped, the adapter needs to request an event’s status from SRSService. The adapter periodically requests these events’ statuses in a single request, reducing the burden on SRSService. In addition, if an SRSoutput message for one of these events arrives before it is time to do the request, the request does not have to be made. Setting this period too short can cause extra messages, while setting it too long can cause poor response. The value is in seconds. The default value is six seconds. The minimum value is two seconds. It must be at least 2 seconds longer than config_Event_QueueDelay.

	
•

	

config_Crew_AssignmentCheckPeriod : When the assignment of crews to events is the responsibility of the adapter, as a proxy for the MDS, Oracle Utilities Network Management System can be configured to reduce the possibility of an operator inadvertently assigning a crew to an event. However, it must be possible to assign crews if Oracle Utilities Network Management System cannot communicate with the MDS, hence mistakes can happen. The adapter periodically checks all crew assignments. A sub-set of crew assignments is checked at the end of each period, the events in ten orders, and ten crews for events not in an order being checked each time. Setting the period too short causes unneeded processing, setting it too long delays such mistakes being repaired. The value is in seconds. The default value is six seconds. A value of zero disables this feature.

	
•

	

config_Crew_MoveAssignmentCheckDelay : When crew assignments are being checked, allowing the checking to occur during event grouping can, in some configurations, cause unnecessary message traffic between the adapter and SRSService. To prevent this, when a grouping happens, crew assignment checking is delayed. The value is in seconds. The default value is two seconds. A value of zero disables this feature.

	
•

	

config_Relation_CheckPeriod: When event relationships are processed by the adapter, the adapter loads the relationship database table each time a relationship is created, changed or deleted. In addition, the adapter checks for changes to the table at this period. The value is in seconds. The default value is 30 seconds. A value of zero disables this feature.

	
•

	

config_IgnoreCondStatus : In most implementations of the adapter, additional alarms in the Oracle Utilities Network Management System Work Agenda should not be processed. The value of this configuration parameter is a list of condition statuses, separated by commas (,), that are to be ignored by the adapter. To ignore additional alarms (often NFY events) set this value to 12.

	
•

	

config_CompleteStatus : In certain situations the adapter need to be able to determine if an event is complete, for example to prevent the assignment of a crew to a completed event, which is illegal. This can only be determined by examining the status string for the event, which is configurable in Oracle Utilities Network Management System. The value of this configuration parameter is a list of statuses, separated by commas (,), that indicate that an event is complete. The default value of this parameter is CMP, CNL.

	
•

	

config_EventUpdateTimeout : When device outages are confirmed and restored (using confirmDeviceOutage() and restoreOutage()), the new state of the event(s) needs to be read from SRSService. Because device operations are initiated by a message to DDService, which sends a notification to MTService to update the model, which subsequently notifies SRSService of the model change, the new state cannot be read immediately, because SRSService may not have received the notification. To avoid this, the adapter waits for an SRSoutput message updating the event before reading the new state. To prevent the adapter from hanging if an event update does not occur, a timeout is used to interrupt the wait. This value is the timeout in seconds. The default value is 20 seconds. The minimum is two seconds.

	
•

	

config_MaxThreadBusyUntilFatalError : The adapter monitors the input and output threads to detect Mutex deadlocks, which would cause the adapter to hang. This value is the maximum number of seconds that a thread can be responding to a single trigger or input XML document. The default value is 300 seconds (5 minutes). The minimum is 60 seconds.

	
•

	

config_StopServiceOnHighLevelStop : The adapter runs as a Windows Service, and it usually set to restart after a period after it fails. (This period is often the minimum one minute). If the adapter tells Windows that it has stopped normally, using a Service Stop message, just before exiting Windows does not try to restart the adapter. If the adapter does not send a Service Stop message, Windows will restart the adapter. When the adapter exits due to Stop request from the Service Property dialog, it sends Windows a Service Stop message, because the user is intending that the adapter stops and does not restart. When the adapter exits abnormally, it does not send a Service Stop message so that Windows will restart the adapter. However, when the adapter is sent a high-level stop message from Oracle Utilities Network Management System using the Action command, the user may or may not want the adapter to restart. This value determines whether the adapter sends a Service Stop message under these circumstances. A value of ‘Y’ causes the adapter to send a Service Stop message, while a value of ‘N’ prevents the adapter from sending a Service Stop message. The default value is ‘N’.

	
•

	

config_AllowCloseOutEventCancel : When this parameter is set to 'Y,' the DML function closeOutEvent will cancel the event instead of completing it, if the appliedRule value OUTAGE_PND_COMPLETE (26) is passed to the function. When this parameter is set to 'N,' the DML function closeOutEvent will not cancel events. The default value is 'Y'.

 Pseudo Relationships

Pseudo relationships can be created by the dml so that all the events on a single device can be processed in the same way as an Oracle Utilities Network Management System created event relationship. The processing of these relationships is configured in a configuration document.

For example, a probable device outage is created from multiple customer calls grouping to the common transformer, but the crew discovers that there are multiple service problems only affecting some of the customers (perhaps a tree limb took down two service wires). The crew will fix all of the problems, so they do not need multiple MDS orders. When the individual service status is set for the affected customers, all the events generated will be treated in the same way as a partial restoration. (This example assumes that partial restorations are aggregated, and the dml creates a pseudo partial relationship when this situation arises.)

When all of the events in a pseudo relation are completed, the relation itself is automatically completed.

Configuration Tables

The following tables are used in conjunction with the dml files to configure the MDS adapter. They are loaded at startup, or, in some cases, when a dml statement needs them.

The Order Tables

The order tables save order data and configure the fields that are available to the dml in the external Order object, identified by ‘O’ in the dml.

MDS_ORDER

The MDS_ORDER table is used to save order data so that the adapter can continue to process orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Order object field values, element values and attribute values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Order class

	

h_idx

	

NUMBER

	

Order Index

	

event_cls

	

NUMBER

	

Key event class

	

event_idx

	

NUMBER

	

Key event index

	

active_event_cls

	

NUMBER

	

Event class for last active event

	

active_event_idx

	

NUMBER

	

Event index for last active event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_xml_saved

	

DATE

	

When the xml data last sent to the MDS was saved in the database.

	

when_created

	

DATE

	

When the order was created

	

when_completed

	

DATE

	

When the order was completed or cancelled

	

comp_reason

	

VARCHAR2(64)

	

Text explaining why the order was completed or cancelled

The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally and are the key columns of the table. The order handle is available to the dml with a field name of ‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order. If the event is not aggregated, this is the single event associated with the order. If the event is aggregated, this is the key event of the relationship that makes up the aggregate. The event handle is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds the time and date the order was created. ‘when_completed’ holds the time and date the order was completed or cancelled. comp_reason hold the text explaining why the order was completed or cancelled. This text is supplied by the dml when it completes the order by calling the ‘orderComplete’ function.

The columns that hold the field, element and attribute values can have any name, but they must match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both are described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables.

MDS_ORDER_FIELD

The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the columns used to save their values in the MDS_ORDER table. In addition, it defines the names of all the fields that are available in the Order object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the field’s value.

MDS_ORDER_VALUE

The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order XML to the columns used to save their values in the MDS_ORDER table. All elements and attributes except those with constant values, and those with the ‘don’t save’ flag set, must be included in this map. The use of the ‘don’t save’ flag is described in section
Change Detection
. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The element’s or attribute’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the element’s or attribute’s value.

The recommended way of naming the elements and attributes is to use the alternate name described in
Alternate Names
. If an alternate name is not specified, the adapter generates element names by numbering all the elements in the order that they appear in the Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all elements to be saved from the document are counted, including those with an alternate name, so that if a name is given to an unnamed element, all the other unnamed elements have the same name. If an attribute has no alternate name, the adapter generates the name by appending the underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example ‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.

An Example

To illustrate the configuration of the order tables and example tables are shown below, based on the contents of the Output Document in
DML Examples
.

The MDS_ORDER table schema:

	

Column

	

Type

	

h_cls

	

NUMBER

	

h_idx

	

NUMBER

	

event_cls

	

NUMBER

	

event_idx

	

NUMBER

	

active

	

CHAR(1)

	

when_xml_saved

	

DATE

	

when_created

	

DATE

	

when_completed

	

DATE

	

comp_reason

	

VARCHAR2(64)

	

BODID

	

VARCHAR2(128)

	

E1

	

VARCHAR2(64)

	

E2

	

VARCHAR2(64)

	

E3

	

VARCHAR2(64)

	

E4

	

VARCHAR2(64)

	

E5

	

VARCHAR2(64)

	

E6

	

VARCHAR2(64)

	

E7

	

VARCHAR2(64)

	

E8

	

VARCHAR2(64)

	

E9

	

VARCHAR2(100)

	

E10

	

VARCHAR2(64)

	

E11

	

VARCHAR2(64)

	

E12

	

VARCHAR2(64)

	

E13

	

VARCHAR2(64)

	

E14

	

VARCHAR2(64)

	

E15

	

VARCHAR2(64)

	

E16

	

VARCHAR2(100)

	

E17

	

VARCHAR2(64)

	

E18

	

VARCHAR2(32)

	

E19

	

VARCHAR2(32)

The contents of the MDS_ORDER_FIELD table:

	

col

	

name

	

BODID

	

BODId

The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is included here to illustrate the numbering of the elements):

	

col

	

name

	

Element tag

	

E1

	

e1

	

Component

	

E2

	

e2

	

Confirmation

	

E3

	

e3

	

AuthorizationId

	

E4

	

e4

	

CreationDateTime

	

E5

	

e5

	

BODId

	

E6

	

e6

	

ExternalNumber

	

E7

	

e7

	

CreationDateTime

	

E8

	

e8

	

Device

	

E9

	

e9

	

Address

	

E10

	

e10

	

DevPhases

	

E11

	

e11

	

FuseSize

	

E12

	

e12

	

WinterLoad

	

E13

	

e13

	

SummerLoad

	

E14

	

e14

	

NumCustOut

	

E15

	

e15

	

CallerName

	

E16

	

e16

	

CallerAddr

	

E17

	

e17

	

CallerPhone

	

E18

	

e18

	

CallerClues

	

E19

	

e19

	

CallerDevice

The Order Tables

The order tables save order data and configure the fields that are available to the dml in the external Order object, identified by ‘O’ in the dml.

MDS_ORDER

The MDS_ORDER table is used to save order data so that the adapter can continue to process orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Order object field values, element values and attribute values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Order class

	

h_idx

	

NUMBER

	

Order Index

	

event_cls

	

NUMBER

	

Key event class

	

event_idx

	

NUMBER

	

Key event index

	

active_event_cls

	

NUMBER

	

Event class for last active event

	

active_event_idx

	

NUMBER

	

Event index for last active event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_xml_saved

	

DATE

	

When the xml data last sent to the MDS was saved in the database.

	

when_created

	

DATE

	

When the order was created

	

when_completed

	

DATE

	

When the order was completed or cancelled

	

comp_reason

	

VARCHAR2(64)

	

Text explaining why the order was completed or cancelled

The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally and are the key columns of the table. The order handle is available to the dml with a field name of ‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order. If the event is not aggregated, this is the single event associated with the order. If the event is aggregated, this is the key event of the relationship that makes up the aggregate. The event handle is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds the time and date the order was created. ‘when_completed’ holds the time and date the order was completed or cancelled. comp_reason hold the text explaining why the order was completed or cancelled. This text is supplied by the dml when it completes the order by calling the ‘orderComplete’ function.

The columns that hold the field, element and attribute values can have any name, but they must match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both are described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables.

MDS_ORDER_FIELD

The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the columns used to save their values in the MDS_ORDER table. In addition, it defines the names of all the fields that are available in the Order object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the field’s value.

MDS_ORDER_VALUE

The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order XML to the columns used to save their values in the MDS_ORDER table. All elements and attributes except those with constant values, and those with the ‘don’t save’ flag set, must be included in this map. The use of the ‘don’t save’ flag is described in section
Change Detection
. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The element’s or attribute’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the element’s or attribute’s value.

The recommended way of naming the elements and attributes is to use the alternate name described in
Alternate Names
. If an alternate name is not specified, the adapter generates element names by numbering all the elements in the order that they appear in the Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all elements to be saved from the document are counted, including those with an alternate name, so that if a name is given to an unnamed element, all the other unnamed elements have the same name. If an attribute has no alternate name, the adapter generates the name by appending the underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example ‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.

An Example

To illustrate the configuration of the order tables and example tables are shown below, based on the contents of the Output Document in
DML Examples
.

The MDS_ORDER table schema:

	

Column

	

Type

	

h_cls

	

NUMBER

	

h_idx

	

NUMBER

	

event_cls

	

NUMBER

	

event_idx

	

NUMBER

	

active

	

CHAR(1)

	

when_xml_saved

	

DATE

	

when_created

	

DATE

	

when_completed

	

DATE

	

comp_reason

	

VARCHAR2(64)

	

BODID

	

VARCHAR2(128)

	

E1

	

VARCHAR2(64)

	

E2

	

VARCHAR2(64)

	

E3

	

VARCHAR2(64)

	

E4

	

VARCHAR2(64)

	

E5

	

VARCHAR2(64)

	

E6

	

VARCHAR2(64)

	

E7

	

VARCHAR2(64)

	

E8

	

VARCHAR2(64)

	

E9

	

VARCHAR2(100)

	

E10

	

VARCHAR2(64)

	

E11

	

VARCHAR2(64)

	

E12

	

VARCHAR2(64)

	

E13

	

VARCHAR2(64)

	

E14

	

VARCHAR2(64)

	

E15

	

VARCHAR2(64)

	

E16

	

VARCHAR2(100)

	

E17

	

VARCHAR2(64)

	

E18

	

VARCHAR2(32)

	

E19

	

VARCHAR2(32)

The contents of the MDS_ORDER_FIELD table:

	

col

	

name

	

BODID

	

BODId

The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is included here to illustrate the numbering of the elements):

	

col

	

name

	

Element tag

	

E1

	

e1

	

Component

	

E2

	

e2

	

Confirmation

	

E3

	

e3

	

AuthorizationId

	

E4

	

e4

	

CreationDateTime

	

E5

	

e5

	

BODId

	

E6

	

e6

	

ExternalNumber

	

E7

	

e7

	

CreationDateTime

	

E8

	

e8

	

Device

	

E9

	

e9

	

Address

	

E10

	

e10

	

DevPhases

	

E11

	

e11

	

FuseSize

	

E12

	

e12

	

WinterLoad

	

E13

	

e13

	

SummerLoad

	

E14

	

e14

	

NumCustOut

	

E15

	

e15

	

CallerName

	

E16

	

e16

	

CallerAddr

	

E17

	

e17

	

CallerPhone

	

E18

	

e18

	

CallerClues

	

E19

	

e19

	

CallerDevice

The Order Tables

The order tables save order data and configure the fields that are available to the dml in the external Order object, identified by ‘O’ in the dml.

MDS_ORDER

The MDS_ORDER table is used to save order data so that the adapter can continue to process orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Order object field values, element values and attribute values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Order class

	

h_idx

	

NUMBER

	

Order Index

	

event_cls

	

NUMBER

	

Key event class

	

event_idx

	

NUMBER

	

Key event index

	

active_event_cls

	

NUMBER

	

Event class for last active event

	

active_event_idx

	

NUMBER

	

Event index for last active event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_xml_saved

	

DATE

	

When the xml data last sent to the MDS was saved in the database.

	

when_created

	

DATE

	

When the order was created

	

when_completed

	

DATE

	

When the order was completed or cancelled

	

comp_reason

	

VARCHAR2(64)

	

Text explaining why the order was completed or cancelled

The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally and are the key columns of the table. The order handle is available to the dml with a field name of ‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order. If the event is not aggregated, this is the single event associated with the order. If the event is aggregated, this is the key event of the relationship that makes up the aggregate. The event handle is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds the time and date the order was created. ‘when_completed’ holds the time and date the order was completed or cancelled. comp_reason hold the text explaining why the order was completed or cancelled. This text is supplied by the dml when it completes the order by calling the ‘orderComplete’ function.

The columns that hold the field, element and attribute values can have any name, but they must match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both are described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables.

MDS_ORDER_FIELD

The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the columns used to save their values in the MDS_ORDER table. In addition, it defines the names of all the fields that are available in the Order object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the field’s value.

MDS_ORDER_VALUE

The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order XML to the columns used to save their values in the MDS_ORDER table. All elements and attributes except those with constant values, and those with the ‘don’t save’ flag set, must be included in this map. The use of the ‘don’t save’ flag is described in section
Change Detection
. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The element’s or attribute’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the element’s or attribute’s value.

The recommended way of naming the elements and attributes is to use the alternate name described in
Alternate Names
. If an alternate name is not specified, the adapter generates element names by numbering all the elements in the order that they appear in the Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all elements to be saved from the document are counted, including those with an alternate name, so that if a name is given to an unnamed element, all the other unnamed elements have the same name. If an attribute has no alternate name, the adapter generates the name by appending the underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example ‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.

An Example

To illustrate the configuration of the order tables and example tables are shown below, based on the contents of the Output Document in
DML Examples
.

The MDS_ORDER table schema:

	

Column

	

Type

	

h_cls

	

NUMBER

	

h_idx

	

NUMBER

	

event_cls

	

NUMBER

	

event_idx

	

NUMBER

	

active

	

CHAR(1)

	

when_xml_saved

	

DATE

	

when_created

	

DATE

	

when_completed

	

DATE

	

comp_reason

	

VARCHAR2(64)

	

BODID

	

VARCHAR2(128)

	

E1

	

VARCHAR2(64)

	

E2

	

VARCHAR2(64)

	

E3

	

VARCHAR2(64)

	

E4

	

VARCHAR2(64)

	

E5

	

VARCHAR2(64)

	

E6

	

VARCHAR2(64)

	

E7

	

VARCHAR2(64)

	

E8

	

VARCHAR2(64)

	

E9

	

VARCHAR2(100)

	

E10

	

VARCHAR2(64)

	

E11

	

VARCHAR2(64)

	

E12

	

VARCHAR2(64)

	

E13

	

VARCHAR2(64)

	

E14

	

VARCHAR2(64)

	

E15

	

VARCHAR2(64)

	

E16

	

VARCHAR2(100)

	

E17

	

VARCHAR2(64)

	

E18

	

VARCHAR2(32)

	

E19

	

VARCHAR2(32)

The contents of the MDS_ORDER_FIELD table:

	

col

	

name

	

BODID

	

BODId

The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is included here to illustrate the numbering of the elements):

	

col

	

name

	

Element tag

	

E1

	

e1

	

Component

	

E2

	

e2

	

Confirmation

	

E3

	

e3

	

AuthorizationId

	

E4

	

e4

	

CreationDateTime

	

E5

	

e5

	

BODId

	

E6

	

e6

	

ExternalNumber

	

E7

	

e7

	

CreationDateTime

	

E8

	

e8

	

Device

	

E9

	

e9

	

Address

	

E10

	

e10

	

DevPhases

	

E11

	

e11

	

FuseSize

	

E12

	

e12

	

WinterLoad

	

E13

	

e13

	

SummerLoad

	

E14

	

e14

	

NumCustOut

	

E15

	

e15

	

CallerName

	

E16

	

e16

	

CallerAddr

	

E17

	

e17

	

CallerPhone

	

E18

	

e18

	

CallerClues

	

E19

	

e19

	

CallerDevice

The Order Tables

The order tables save order data and configure the fields that are available to the dml in the external Order object, identified by ‘O’ in the dml.

MDS_ORDER

The MDS_ORDER table is used to save order data so that the adapter can continue to process orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Order object field values, element values and attribute values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Order class

	

h_idx

	

NUMBER

	

Order Index

	

event_cls

	

NUMBER

	

Key event class

	

event_idx

	

NUMBER

	

Key event index

	

active_event_cls

	

NUMBER

	

Event class for last active event

	

active_event_idx

	

NUMBER

	

Event index for last active event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_xml_saved

	

DATE

	

When the xml data last sent to the MDS was saved in the database.

	

when_created

	

DATE

	

When the order was created

	

when_completed

	

DATE

	

When the order was completed or cancelled

	

comp_reason

	

VARCHAR2(64)

	

Text explaining why the order was completed or cancelled

The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally and are the key columns of the table. The order handle is available to the dml with a field name of ‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order. If the event is not aggregated, this is the single event associated with the order. If the event is aggregated, this is the key event of the relationship that makes up the aggregate. The event handle is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds the time and date the order was created. ‘when_completed’ holds the time and date the order was completed or cancelled. comp_reason hold the text explaining why the order was completed or cancelled. This text is supplied by the dml when it completes the order by calling the ‘orderComplete’ function.

The columns that hold the field, element and attribute values can have any name, but they must match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both are described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables.

MDS_ORDER_FIELD

The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the columns used to save their values in the MDS_ORDER table. In addition, it defines the names of all the fields that are available in the Order object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the field’s value.

MDS_ORDER_VALUE

The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order XML to the columns used to save their values in the MDS_ORDER table. All elements and attributes except those with constant values, and those with the ‘don’t save’ flag set, must be included in this map. The use of the ‘don’t save’ flag is described in section
Change Detection
. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The element’s or attribute’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the element’s or attribute’s value.

The recommended way of naming the elements and attributes is to use the alternate name described in
Alternate Names
. If an alternate name is not specified, the adapter generates element names by numbering all the elements in the order that they appear in the Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all elements to be saved from the document are counted, including those with an alternate name, so that if a name is given to an unnamed element, all the other unnamed elements have the same name. If an attribute has no alternate name, the adapter generates the name by appending the underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example ‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.

An Example

To illustrate the configuration of the order tables and example tables are shown below, based on the contents of the Output Document in
DML Examples
.

The MDS_ORDER table schema:

	

Column

	

Type

	

h_cls

	

NUMBER

	

h_idx

	

NUMBER

	

event_cls

	

NUMBER

	

event_idx

	

NUMBER

	

active

	

CHAR(1)

	

when_xml_saved

	

DATE

	

when_created

	

DATE

	

when_completed

	

DATE

	

comp_reason

	

VARCHAR2(64)

	

BODID

	

VARCHAR2(128)

	

E1

	

VARCHAR2(64)

	

E2

	

VARCHAR2(64)

	

E3

	

VARCHAR2(64)

	

E4

	

VARCHAR2(64)

	

E5

	

VARCHAR2(64)

	

E6

	

VARCHAR2(64)

	

E7

	

VARCHAR2(64)

	

E8

	

VARCHAR2(64)

	

E9

	

VARCHAR2(100)

	

E10

	

VARCHAR2(64)

	

E11

	

VARCHAR2(64)

	

E12

	

VARCHAR2(64)

	

E13

	

VARCHAR2(64)

	

E14

	

VARCHAR2(64)

	

E15

	

VARCHAR2(64)

	

E16

	

VARCHAR2(100)

	

E17

	

VARCHAR2(64)

	

E18

	

VARCHAR2(32)

	

E19

	

VARCHAR2(32)

The contents of the MDS_ORDER_FIELD table:

	

col

	

name

	

BODID

	

BODId

The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is included here to illustrate the numbering of the elements):

	

col

	

name

	

Element tag

	

E1

	

e1

	

Component

	

E2

	

e2

	

Confirmation

	

E3

	

e3

	

AuthorizationId

	

E4

	

e4

	

CreationDateTime

	

E5

	

e5

	

BODId

	

E6

	

e6

	

ExternalNumber

	

E7

	

e7

	

CreationDateTime

	

E8

	

e8

	

Device

	

E9

	

e9

	

Address

	

E10

	

e10

	

DevPhases

	

E11

	

e11

	

FuseSize

	

E12

	

e12

	

WinterLoad

	

E13

	

e13

	

SummerLoad

	

E14

	

e14

	

NumCustOut

	

E15

	

e15

	

CallerName

	

E16

	

e16

	

CallerAddr

	

E17

	

e17

	

CallerPhone

	

E18

	

e18

	

CallerClues

	

E19

	

e19

	

CallerDevice

The Order Tables

The order tables save order data and configure the fields that are available to the dml in the external Order object, identified by ‘O’ in the dml.

MDS_ORDER

The MDS_ORDER table is used to save order data so that the adapter can continue to process orders over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Order object field values, element values and attribute values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Order class

	

h_idx

	

NUMBER

	

Order Index

	

event_cls

	

NUMBER

	

Key event class

	

event_idx

	

NUMBER

	

Key event index

	

active_event_cls

	

NUMBER

	

Event class for last active event

	

active_event_idx

	

NUMBER

	

Event index for last active event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_xml_saved

	

DATE

	

When the xml data last sent to the MDS was saved in the database.

	

when_created

	

DATE

	

When the order was created

	

when_completed

	

DATE

	

When the order was completed or cancelled

	

comp_reason

	

VARCHAR2(64)

	

Text explaining why the order was completed or cancelled

The ‘h_cls’ and ‘h_idx’ columns make up the order handle, which identifies the order internally and are the key columns of the table. The order handle is available to the dml with a field name of ‘order’. The ‘event_cls’ and ‘event_idx’ columns make up the handle of the key event for the order. If the event is not aggregated, this is the single event associated with the order. If the event is aggregated, this is the key event of the relationship that makes up the aggregate. The event handle is available to the dml with a field name of ‘event’. The ‘active’ flag indicates whether the order is active, i.e. it has been created, but has neither been completed or cancelled. ‘when_created’ holds the time and date the order was created. ‘when_completed’ holds the time and date the order was completed or cancelled. comp_reason hold the text explaining why the order was completed or cancelled. This text is supplied by the dml when it completes the order by calling the ‘orderComplete’ function.

The columns that hold the field, element and attribute values can have any name, but they must match the contents of the MDS_ORDER_FIELD table and MDS_ORDER_VALUE table. Both are described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_ORDER, MDS_ORDER_FIELD, and MDS_ORDER_VALUE tables.

MDS_ORDER_FIELD

The MDS_ORDER_FIELD table maps the names of the fields in the Order object to the columns used to save their values in the MDS_ORDER table. In addition, it defines the names of all the fields that are available in the Order object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the field’s value.

MDS_ORDER_VALUE

The MDS_ORDER_VALUE table maps the names of the elements and attributes in the order XML to the columns used to save their values in the MDS_ORDER table. All elements and attributes except those with constant values, and those with the ‘don’t save’ flag set, must be included in this map. The use of the ‘don’t save’ flag is described in section
Change Detection
. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The element’s or attribute’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_ORDER table that holds the element’s or attribute’s value.

The recommended way of naming the elements and attributes is to use the alternate name described in
Alternate Names
. If an alternate name is not specified, the adapter generates element names by numbering all the elements in the order that they appear in the Output Document and appending this number to the letter ‘e’, for example e1, e2. Note that all elements to be saved from the document are counted, including those with an alternate name, so that if a name is given to an unnamed element, all the other unnamed elements have the same name. If an attribute has no alternate name, the adapter generates the name by appending the underscore character ‘_’ and the attribute’s name to the attribute’s element name, for example ‘el_attr’ is the name of the ‘attr’ attribute of an element with the alternate name ‘el’.

An Example

To illustrate the configuration of the order tables and example tables are shown below, based on the contents of the Output Document in
DML Examples
.

The MDS_ORDER table schema:

	

Column

	

Type

	

h_cls

	

NUMBER

	

h_idx

	

NUMBER

	

event_cls

	

NUMBER

	

event_idx

	

NUMBER

	

active

	

CHAR(1)

	

when_xml_saved

	

DATE

	

when_created

	

DATE

	

when_completed

	

DATE

	

comp_reason

	

VARCHAR2(64)

	

BODID

	

VARCHAR2(128)

	

E1

	

VARCHAR2(64)

	

E2

	

VARCHAR2(64)

	

E3

	

VARCHAR2(64)

	

E4

	

VARCHAR2(64)

	

E5

	

VARCHAR2(64)

	

E6

	

VARCHAR2(64)

	

E7

	

VARCHAR2(64)

	

E8

	

VARCHAR2(64)

	

E9

	

VARCHAR2(100)

	

E10

	

VARCHAR2(64)

	

E11

	

VARCHAR2(64)

	

E12

	

VARCHAR2(64)

	

E13

	

VARCHAR2(64)

	

E14

	

VARCHAR2(64)

	

E15

	

VARCHAR2(64)

	

E16

	

VARCHAR2(100)

	

E17

	

VARCHAR2(64)

	

E18

	

VARCHAR2(32)

	

E19

	

VARCHAR2(32)

The contents of the MDS_ORDER_FIELD table:

	

col

	

name

	

BODID

	

BODId

The contents of the MDS_ORDER_VALUE table (the element tag is not in the table, it is included here to illustrate the numbering of the elements):

	

col

	

name

	

Element tag

	

E1

	

e1

	

Component

	

E2

	

e2

	

Confirmation

	

E3

	

e3

	

AuthorizationId

	

E4

	

e4

	

CreationDateTime

	

E5

	

e5

	

BODId

	

E6

	

e6

	

ExternalNumber

	

E7

	

e7

	

CreationDateTime

	

E8

	

e8

	

Device

	

E9

	

e9

	

Address

	

E10

	

e10

	

DevPhases

	

E11

	

e11

	

FuseSize

	

E12

	

e12

	

WinterLoad

	

E13

	

e13

	

SummerLoad

	

E14

	

e14

	

NumCustOut

	

E15

	

e15

	

CallerName

	

E16

	

e16

	

CallerAddr

	

E17

	

e17

	

CallerPhone

	

E18

	

e18

	

CallerClues

	

E19

	

e19

	

CallerDevice

The Relationship Tables

The relationship tables save event relationship data and configure the fields that are available to the dml in the external Relationship object, identified by ‘R’ in the dml.

MDS_RELATION

The MDS_RELATION table is used to save relationship data so that the adapter can continue to process event relationships, and to detect changes in these relationships over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Relationship object field values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Relation class

	

h_idx

	

NUMBER

	

Relation Index

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

pseudo_dev_cls

	

NUMBER

	

Class of pseudo device

	

pseudo_dev_idx

	

NUMBER

	

Index of pseudo device

	

type

	

NUMBER

	

The type of relationship one of:

NESTED_OUTAGE(1) MOMENTARY_OUTAGE(2) PARTIAL_RESTORATION(4) RELATED_OUTAGE(8)

Pseudo relationships have the same number as their type, with the sign bit (bit 31) set.

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_created

	

DATE

	

When the relationship was created

	

when_completed

	

DATE

	

When the relationship was completed or cancelled

The columns that hold the field values can have any name, but they must match the contents of the MDS_RELATION_FIELD table, which is described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_RELATION and MDS_RELATION_FIELD tables.

MDS_RELATION_EVENT

The MDS_RELATION_EVENT table holds the events that are related to the key events in the MDS_RELATION table. It is not a configuration table. Its columns are:

	

Column

	

Type

	

Description

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

event_cls

	

NUMBER

	

Class of related event

	

event_idx

	

NUMBER

	

Index of related event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

MDS_ RELATION_FIELD

The MDS_RELATION_FIELD table maps the names of the fields in the Relationship object to the columns used to save their values in the MDS_RELATION table. In addition, it defines the names of all the fields that are available in the Relationship object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_RELATION table that
holds the field’s value.

The Relationship Tables

The relationship tables save event relationship data and configure the fields that are available to the dml in the external Relationship object, identified by ‘R’ in the dml.

MDS_RELATION

The MDS_RELATION table is used to save relationship data so that the adapter can continue to process event relationships, and to detect changes in these relationships over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Relationship object field values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Relation class

	

h_idx

	

NUMBER

	

Relation Index

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

pseudo_dev_cls

	

NUMBER

	

Class of pseudo device

	

pseudo_dev_idx

	

NUMBER

	

Index of pseudo device

	

type

	

NUMBER

	

The type of relationship one of:

NESTED_OUTAGE(1) MOMENTARY_OUTAGE(2) PARTIAL_RESTORATION(4) RELATED_OUTAGE(8)

Pseudo relationships have the same number as their type, with the sign bit (bit 31) set.

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_created

	

DATE

	

When the relationship was created

	

when_completed

	

DATE

	

When the relationship was completed or cancelled

The columns that hold the field values can have any name, but they must match the contents of the MDS_RELATION_FIELD table, which is described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_RELATION and MDS_RELATION_FIELD tables.

MDS_RELATION_EVENT

The MDS_RELATION_EVENT table holds the events that are related to the key events in the MDS_RELATION table. It is not a configuration table. Its columns are:

	

Column

	

Type

	

Description

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

event_cls

	

NUMBER

	

Class of related event

	

event_idx

	

NUMBER

	

Index of related event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

MDS_ RELATION_FIELD

The MDS_RELATION_FIELD table maps the names of the fields in the Relationship object to the columns used to save their values in the MDS_RELATION table. In addition, it defines the names of all the fields that are available in the Relationship object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_RELATION table that
holds the field’s value.

The Relationship Tables

The relationship tables save event relationship data and configure the fields that are available to the dml in the external Relationship object, identified by ‘R’ in the dml.

MDS_RELATION

The MDS_RELATION table is used to save relationship data so that the adapter can continue to process event relationships, and to detect changes in these relationships over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Relationship object field values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Relation class

	

h_idx

	

NUMBER

	

Relation Index

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

pseudo_dev_cls

	

NUMBER

	

Class of pseudo device

	

pseudo_dev_idx

	

NUMBER

	

Index of pseudo device

	

type

	

NUMBER

	

The type of relationship one of:

NESTED_OUTAGE(1) MOMENTARY_OUTAGE(2) PARTIAL_RESTORATION(4) RELATED_OUTAGE(8)

Pseudo relationships have the same number as their type, with the sign bit (bit 31) set.

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_created

	

DATE

	

When the relationship was created

	

when_completed

	

DATE

	

When the relationship was completed or cancelled

The columns that hold the field values can have any name, but they must match the contents of the MDS_RELATION_FIELD table, which is described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_RELATION and MDS_RELATION_FIELD tables.

MDS_RELATION_EVENT

The MDS_RELATION_EVENT table holds the events that are related to the key events in the MDS_RELATION table. It is not a configuration table. Its columns are:

	

Column

	

Type

	

Description

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

event_cls

	

NUMBER

	

Class of related event

	

event_idx

	

NUMBER

	

Index of related event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

MDS_ RELATION_FIELD

The MDS_RELATION_FIELD table maps the names of the fields in the Relationship object to the columns used to save their values in the MDS_RELATION table. In addition, it defines the names of all the fields that are available in the Relationship object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_RELATION table that
holds the field’s value.

The Relationship Tables

The relationship tables save event relationship data and configure the fields that are available to the dml in the external Relationship object, identified by ‘R’ in the dml.

MDS_RELATION

The MDS_RELATION table is used to save relationship data so that the adapter can continue to process event relationships, and to detect changes in these relationships over a adapter shutdown restart cycle. While not strictly a configuration table, it is described here to clarify the use of other configuration tables. The table has a fixed set of columns that are always in the table, and columns to hold Relationship object field values. The fixed set of columns is:

	

Column

	

Type

	

Description

	

h_cls

	

NUMBER

	

Relation class

	

h_idx

	

NUMBER

	

Relation Index

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

pseudo_dev_cls

	

NUMBER

	

Class of pseudo device

	

pseudo_dev_idx

	

NUMBER

	

Index of pseudo device

	

type

	

NUMBER

	

The type of relationship one of:

NESTED_OUTAGE(1) MOMENTARY_OUTAGE(2) PARTIAL_RESTORATION(4) RELATED_OUTAGE(8)

Pseudo relationships have the same number as their type, with the sign bit (bit 31) set.

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

	

when_created

	

DATE

	

When the relationship was created

	

when_completed

	

DATE

	

When the relationship was completed or cancelled

The columns that hold the field values can have any name, but they must match the contents of the MDS_RELATION_FIELD table, which is described below. It is suggested that the columns be named similarly to the name of the entity, allowing for the requirements of column names (case insensitivity, etc.). The column types should be VARCHAR2. The columns should be wide enough to hold the data that will be stored in them.

The off-line program that allows dml files to be checked before use can generate suggested contents for the MDS_RELATION and MDS_RELATION_FIELD tables.

MDS_RELATION_EVENT

The MDS_RELATION_EVENT table holds the events that are related to the key events in the MDS_RELATION table. It is not a configuration table. Its columns are:

	

Column

	

Type

	

Description

	

key_event_cls

	

NUMBER

	

Class of key event

	

key_event_idx

	

NUMBER

	

Index of key event

	

event_cls

	

NUMBER

	

Class of related event

	

event_idx

	

NUMBER

	

Index of related event

	

active

	

CHAR(1)

	

Active flag (Y = active, N = inactive)

MDS_ RELATION_FIELD

The MDS_RELATION_FIELD table maps the names of the fields in the Relationship object to the columns used to save their values in the MDS_RELATION table. In addition, it defines the names of all the fields that are available in the Relationship object. If the dml references a field that is not in this table, the adapter will log an error and initialization fails. The columns in the table are:

	

Column

	

Type

	

Description

	

name

	

VARCHAR2(32)

	

The field’s name.

	

col

	

VARCHAR2(32)

	

The column in the MDS_RELATION table that
holds the field’s value.

The Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. Typical usages include converting Oracle Utilities Network Management System control zones into dispatch areas on the MDS, and encoding long values in Oracle Utilities Network Management System to shorted encoded values. The dml uses these tables by calling ‘mapTableStr’ to convert from the MDS value to the Oracle Utilities Network Management System value, and ‘mapTableCode’ to convert from the Oracle Utilities Network Management System value to the MDS value. A table can be loaded using the function ‘loadMapTable’. All these functions take the name of the table as a parameter.

The tables and views have the following columns:

	

Column

	

Type

	

Description

	

string

	

VARCHAR2

	

The value in Oracle Utilities Network Management System.

	

code

	

VARCHAR2

	

The equivalent value in message.

The width of the columns can be any appropriate value.

There are three types of mapping table:

	
•

	

Those that map from string to code. In these cases the strings must be unique in the table.

	
•

	

Those that map from code to string. In these cases the code must be unique in the table.

	
•

	

Those that map both ways. In these cases the strings and codes must be unique.

This can be configured in a map configuration table, described below. If these is no configuration for the table, and informational message is output to the log, and the table is assumed to map both ways.

It is sometimes convenient to add a code column to other Oracle Utilities Network Management System tables to avoid redundant data. Data from these tables can be accessed by use of a view that maps the appropriate column names to ‘string’ and ‘code’.

If a value to be translated is not present in the table, a default value is used. If the default is not specified, the empty string is used.

The types of the tables and their defaults are specified in a map configuration table, which has the following columns:

	

Column

	

Type

	

Description

	

tablename

	

VARCHAR2

	

The name of the table the default applies to.

	

type

	

CHAR(1)

	

The type of the table. ‘C’ maps from string to code, ‘S’ maps from code to string, and ‘B’ maps both ways.

	

string

	

VARCHAR2

	

The default Oracle Utilities Network Management System value.

	

code

	

VARCHAR2

	

The default message value.

The width of the columns can be any appropriate value. A map configuration table is loaded using a function call similar to ‘loadMapConfigTable(mds_map_config)’. The configuration document is a convenient place to do this. There can be multiple map configuration tables loaded.

The SRS Message Type Table

The SRS Message Type Table, MDS_SRS_MSG_TYPE, configures the processing of SRSoutput InterSys messages. It has the following columns:

	

Column

	

Type

	

Description

	

message_type

	

NUMBER

	

The SRSoutput message type that this row configures

	

action

	

CHAR(1)

	

How to process it. ‘I’, ‘D’, ‘P’ or ‘R’.

	

proc_relation

	

CHAR(1)

	

Should special relationship processing be applied to it? ‘Y’ or ‘N’.

	

special

	

CHAR(1)

	

Should special processing be applied to it? ‘Y’ or ‘N’.

	

event_cls1

	

NUMBER

	

Event class for TRBL_ERT_UPDATE

	

event_cls2

	

NUMBER

	

Event class for TRBL_ERT_UPDATE

The message_type column values are the SRSoutput message types listed in SRSoutput.h.

The action column must be one of these values:

	
•

	

‘I’: completely ignore this message type. Any message type not included in the table is ignored.

	
•

	

‘D’: do not process the message, but apply the proc_relation and special flags if they are set.

	
•

	

‘P’: process the message as is, after applying the flags.

	
•

	

‘R’: reprocess the message’s event after applying the flags. Some SRSoutput messages do not hold all of the event’s data (e.g., DAMAGE_RPT_UPDATE), and some are used to update the viewer when conditions are to be hidden and may or may not indicate that an event has changed state (e.g., TRBL_REMOVE_ALL). As a consequence, these messages do not hold all the data required to process them. In these cases, the adapter requests SRSService to send all the current data for the message’s event.

When set to a value of ‘Y’, the proc_relation flag instructs the adapter to apply special relation processing to the message. This processing is activated when the appliedRule field of the SRSoutput message contains one of the following values: OUTAGE_PART_REST, OUTAGE_RELATED or OUTAGE_UNRELATED. These indicate that the event is part of a relationship that has been created, deleted or modified. In these cases, the adapter loads the current state of all relationships, reacts to the changes, and reprocesses the message’s event after a delay to allow any upcoming changes to the event to arrive before rereading the event’s data.

When set to a value of ‘Y’, the special flag instructs the adapter to apply special, message type specific, processing to the message. The following message types have special processing available:

	
•

	

TRBL_CLEAR: If the applied rule is not OUTAGE_MERGED, the event is processed by all Output Documents with a ‘EventNonexistent trigger.

In addition to the processing of the special flag described above, the following message types are processed differently from normal SRSoutput messages because they are not formatted in the normal manner:

	
•

	

TRBL_ERT_UPDATE: This message contains a list of estimated time of restoration updates. If this message type is not completely ignored, all the events in the message are reprocessed. As this message contains the events’ indexes, but not the events’ classes, the potential classes need to be supplied in the event_cls1 and event_cls2 columns. One or both of the classes (normal and momentary event classes) can be configured. If one is zero, it is ignored.

	
•

	

TRBL_WCB_UPDATE: This message type is not implemented in the adapter. If this message is not configured to be completely ignored, the adapter issues a warning to the log each time this message type is received.

The High Priority Category Table

The High Priority Category Table, MDS_HIGH_PRI_CAT, configures the priorities used by the functions ‘highPriTCCategoriesFromClues’. It has the following columns:

	

Column

	

Type

	

Description

	

group_order

	

NUMBER

	

A numeric representation of the trouble code categories

	

code

	

VARCHAR2(32)

	

The trouble codes for each trouble code category

	

priority

	

NUMBER

	

The priority of the trouble codes.

Note: The smaller the number the higher the priority. The higher the number the lower the priority

This table assigns the priority of each trouble code within each trouble code category.

Run Time Errors

There are many configuration errors that can be detected at initialization time, causing the adapter to exit. However, some configuration and other errors can only be detected at run-time.

All errors and diagnostic messages are output to the adapter’s log file. Important messages are output to the Windows Application Event log. Important errors can be output in XML formatted to an error queue, if an Error Output Document is configured in a Configuration Document. Note that, under some circumstances, it may be impossible to output errors to one or more of these destinations.

The types of run-time errors, and the adapter’s reaction to them are:

	
•

	

Data errors: These errors occur when badly formatted data is received. The input message is discarded.

	
•

	

Errors detected by the dml: The dml performs appropriate logic. Errors can be logged using the logging functions. Error XML can be sent by triggering the appropriate Output Document.

	
•

	

dml function call errors: These errors occur when a dml function is called and the prerequisites of the function are not met. The prerequisites of the functions are documented in
DML Function Calls
. This is regarded as a configuration error, causing the adapter to exit.

	
•

	

Mapping table errors: These errors occur when a map table function is called and the table name supplied by the dml does not exist in the database. This is regarded as a configuration error, causing the adapter to exit.

	
•

	

Errors when writing to the database: These are initially assumed to be transient, as some tables have constraints that contain time stamps. The adapter pauses for 1 second and re-tries. The adapter will retry 3 times. If all 3 re-tries fail, the adapter exits, on the assumption that there is a severe system problem. If the error occurred while an input message was being processed, and syncpoint is active (configured using the config_MaxBackoutCount field), the message will be re-processed after the adapter restarts. If this cycle is repeated too many times, the message is discarded.

	
•

	

API call failure: These are treated in the same way as errors writing to the database.

DML Examples

An Output Document

The following is an example of an Output Document that generates a create request document for a small MDS order. Various lines are numbered to allow reference to them in the explanation below. The numbers are not part of the syntax.

1 OutputDoc Job

2 queue=$G.OutRequestQueue; associate=O; persist="Y";

3 triggerCreate< SRSoutput; > = isIn($E.status, "ACK", "ASN", "ENR", "RST") &&

 ($E.outageHdl.cls != $G.momentary) &&

 !findOrder(event, $E.outageHdl);

4 triggerUpdate:S < SRSoutput; > = findOrder(event, $E.outageHdl) &&

 (!isIn($E.status, "UNA", "CNL"));

5 {

6 @docType = ChangeJob;

7 if (triggerCreate)

8 {

9 @docType = CreateJob;

10 createOrder();

11 }

12 &RootElement<environment = $G.environment; revision = "1.0.0";> = @docType;

13 &ApplicationArea

14 {

15 &Sender

16 {

17 &Component = NMS;

18 &Confirmation = "Always";

19 &AuthorizationId = "NMS Interface";

20 }

21 &CreationDateTime = formatDTNow();

22 @BODId = getGuid();

23 &BODId = @BODId;

24 }

25 &DataArea

26 {

27 &ExternalNumber = "NMS:"+ $E.outageHdl.idx;

28 # CreationDateTime is outageTime which is

29 # either when the first customer called

30 # or when the device was opened in the model

31 &CreationDateTime=formatDateTime($E.outageTime);

32 &Device:S = $E.devAlias;

33 &Address:S = substring($E.dispAddress, 0, 100);

34 sqlselect @devPhases, @fuseSize, @winter_load, @summer_load |

 phase_designation, fuse_size, kva_lod_win, kva_lod_sumr |

 classTable($E.devHdl.cls) | "where h_idx = " | $E.devHdl.idx;

35 &DevPhases = @devPhases;

36 &FuseSize = @fuseSize;

37 &WinterLoad = @winter_load;

38 &SummerLoad = @summer_load;

39 &NumCustOut:S = $E.customersOut;

40 &CallerName = $I.0.getCustomerName;

41 &CallerAddr = $I.0.getAddrStreet + " " + $I.0.getAddrCity;

42 &CallerPhone = $I.0.getCustomerPhone;

43 &CallerClues = $I.0.getShortDesc;

44 &CallerDevice = $I.0.getDeviceAlias;

45 }

46 $O.BODId = @BODId;

47 }

Line 1 declares the document to be an output document named ‘Job’. The name is used in diagnostics, and when a document is invoked in a ‘triggerOutputDoc’ function call (see below).

Line 2 contains three specifications, and illustrates that more than one specification can be placed on one line.

	
•

	

The first specifies the message queue that the document will be sent out on. The specification assigns the queue to be the value of the external data field named ‘OutRequestQueue’ in the global configuration object. The queue name is available to the rest of the document in the variable ‘@queue’, and could be changed, if required.

	
•

	

The second associates the document with the order object. Therefore this document will be used to hold the values of all the elements to be used for change detection when the event is updated with an SRSoutput message.

	
•

	

The third specifies that the message should be marked as persistent when placed on the queue. Not yet delivered messages are lost when the MQ server stops, if they are not marked as persistent.

Line 3 specifies a trigger, named ‘triggerCreate’ for the document, which causes an order to be created. It does not have the ‘send on change’ flag, so change detection is not in effect when this trigger is fired. The trigger specification, between ‘<’ and ‘>’ indicates when the trigger should be evaluated to determine whether it should be fired. In this case the arrival of an asynchronous SRSoutput message causes the trigger to be evaluated. The expression following the ‘=’ is a boolean expression that fires the trigger when it evaluates to true. There may be more than one trigger for an output document. The values of the triggers are available to the rest of the document in variables with the same names as the triggers.

Line 3 also illustrates that a specification can span multiple lines.

Line 4 specifies a trigger, named ‘triggerUpdate’ for the document, which causes an order to be updated after it has been created. It has the ‘send on change’ flag, so change detection is in effect when this trigger is fired. The trigger specification, between ‘<’ and ‘>’ indicates when the trigger should be evaluated to determine whether it should be fired. In this case the arrival of an asynchronous SRSoutput message causes the trigger to be evaluated. The expression following the ‘=’ is a boolean expression that fires the trigger when it evaluates to true. There may be more than one trigger for an output document. The values of the triggers are available to the rest of the document in variables with the same names as the triggers.

The ‘{‘ on line 5 and the ‘}’ on line 47 enclose the body of the document.

Line 6 sets a default value for the variable @docType, which will be used later to set the root element tag.

Line 7 controls whether lines 9 and 10 are evaluated, depending on which trigger fired. If the triggerCreate trigger fired, 9 and 10 will be evaluated.

Line 9 changes the value of the @docType variable to reflect that the order is new.

Line 10 creates a new order object to save the values of the element’s data for change detection.

Line 12 contains the root element tag and attributes. The root element differs from other elements in that the element’s tag is specified by the value of the expression to the right hand side of the ‘=’, in this case the value of the variable @docType. The reason for this is so that the same output document can be used for multiple message types, for example to create an order and to update the order. In this example, the ‘environment’ attribute is set to the value of the external data field named ‘environment’ in the global configuration object. The root element statement can be anywhere in the output document. All other elements appear in the generated XML in the order that they are within the output document.

Lines 13 to 24 define the ‘ApplicationArea’ element, with 3 sub-elements, one of which has 3 sub- elements.

The elements on lines 17 to 19 show how constants can be declared. On line 17 the ‘NMS’ is not surrounded by double quotes ("), because it only contains alphanumeric characters. On line 18 the ‘Always’ is surrounded by quotes, this acceptable, but not necessary because it only contains alphanumeric characters. On line 19 the ‘NMS Interface’ must be surrounded by quotes, because it contains a space.

The value of the element on line 21 is supplied by the ‘formatDTNow’ function that formats the current data and time BOD format CCYY-MM-DDThh:mm:ss.

Line 22 assigns a globally unique id to the variable ‘BODId’ for use on lines 23 and 46.

Lines 25 to 45 define the ‘DataArea’ element, with 15 sub-elements.

Line 27 assigns the concatenation of a constant (in quotes) with the event’s index.

Lines 28 to 30 are comments and are ignored. Everything between a ‘#’ and the end of a line, inclusive, is a comment and is ignored.

Line 31’s element is assigned the time the outage began in the format CCYY-MM-DDThh:mm:ss.

Line 32’s element is assigned the alias (name) of the event’s interrupting device. Because the ‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the MDS.

Line 33’s element is assigned the address of the event, truncated to 100 characters. Because the ‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the MDS.

Line 34 reads four columns of the interrupting device’s facilities (attribute) table. The function ‘classTable’ supplies the name of the table.

Lines 35 to 38 assigns the values read from the database in line 33 to the appropriate elements.

Line 39’s element is set to the number of customers affected by the outage. Because the ‘send on change’ flag (S) is present, a change to this element’s data will cause the XML to be sent to the MDS.

Lines 40 to 44 use the external object ‘Incidents’ to access customer call data. As there are potentially many incidents associated with an event, the dml has to specify which incident to use. The second component of the name, between the first and second period (.) is the offset into the array of incidents, in this case zero. The last component of the name is the name of the data access method in the Incident class. These examples access the first customer’s name, street address, city, phone number, clues, and transformer name. The incidents are normally ordered by the time that they called to report a problem, with the oldest first. If another ordering is required, by total priority for example, the sortIncidents() function can be used to change the order.

Line 46 saves the document’s globally unique id in the external object for use later in another document.

The XML generated by this output document would look similar to the following:

<CreateJob environment="Test" revision="1.0.0">

 <ApplicationArea>

 <Sender>

 <Component>NMS</Component>

 <Confirmation>Always</Confirmation>

 <AuthorizationId>NMS Interface</AuthorizationId>

 </Sender>

 <CreationDateTime>2003-05-01T13:36:13-05:00</CreationDateTime>

 <BODId>guid</BODId>

 </ApplicationArea>

 <DataArea>

 <ExternalNumber>NMS2010</ExternalNumber>

 <CreationDateTime>2003-05-01T13:26:13-05:00</CreationDateTime>

 <Device>XFM12345678</Device>

 <Address>5800 Yonge St. North York</Address>

 <DevPhases>A</DevPhases>

 <FuseSize>100</FuseSize>

 <WinterLoad>40</WinterLoad>

 <SummerLoad>45</SummerLoad>

 <NumCustOut>4</NumCustOut>

 <CallerName>M.J. McLaughlin</CallerName>

 <CallerAddr>5802 Yonge St. North York</CallerAddr>

 <CallerPhone>416 555-1212</CallerPhone>

 <CallerClues>NC</CallerClues>

 <CallerDevice>XFM12345678</CallerDevice>

 </DataArea>

</CreateJob>

An Input Document

The following is an example of an Input Document that processes a document containing completion data for an order. Various lines are numbered to allow reference to them in the explanation below. The numbers are not part of the syntax.

1 InputDoc CompletionData

2 queue=$G.InRequestQueue;

3 &RootElement<environment=$G.environment; revision="1.0.0";> =

4 FieldReportSave;

5 BasePath=DataArea;

6 {

7 &JobNumber:R;

8 &Crew

9 {

10 &CrewKey

11 {

12 &CrewName::"MDS";

13 }

14 }

15 &CompletionData

16 {

17 &System:R;

18 &Type:R;

19 &Failure:R;

20 &Cause:R;

21 &InterruptDev:R;

22 &Action:R;

23 &OtherAction::Other;

24 &RestoredTime;

25 &CustomerCaseNotes:::CCN;

26 }

27

28 if (!findOrder(externalId, &JobNumber))

29 {

30 stop;

31 }

32

33 @action=(&CompletionData/Action == "Other")

 ? &CompletionData/OtherAction

 : &CompletionData/Action;

34 @restoredTime = decodeDateTime(&CompletionData/RestoredTime);

35 sqlupdate picklist_info_upd_tr |

 system_om, type_om,

 failure_om, cause_om,

 interrupt_dev_om, action_text,

 crew_restore |

 &CompletionData/System, &CompletionData/Type,

 &CompletionData/Failure, &CompletionData/Cause,

 &CompletionData/InterruptDev, @action,

 @restoredTime |

 ref_id | $O.event.idx;

36 # call SRS::setCaseNoteInfo if appropriate

37 if (isSet(&CCN))

38 {

39 setCaseNoteInfo(getCaseNotesForEvent($O.event) + " " + &CCN);

40 }

41 # set no dtr flag if appropriate

42 if (isIn(&CompletionData/Type, "Customer Trouble",

43 "Other Utilities",

44 "Scheduled/Customer Notified"))

45 {

46 sqlupdate picklist_info_upd_tr | no_dtr_flag | Y |

 ref_id | $O.event.idx;

47 }

 # log change to event

48 @reason_for_update="Completion Information for Job " +

 &JobNumber + " from MDS";

49 sqlinsert picklist_completion_log |

 ref_id, who,

reason_for_update, when |

 $O.event.idx, &Crew/CrewKey/CrewName,

@reason_for_update, time();

50

51 }

Line 1 declares the document to be an input document named ‘CompletionData’ .

Line 2 specifies the message queue that the document will be received on. The statement assigns the queue to be the value of the external data field named ‘InRequestQueue’ in the global configuration object.

Line 3 contains the root element tag and attributes. The root element differs from other elements in that the element’s tag is specified by the value of the expression to the right hand side of the ‘=’, in this case ‘FieldReportSave’. The ‘environment’ attribute is set to the value of the external data field named ‘environment’ in the global configuration object. In contrast with output documents, the root element statement is in the header of the input document.

A message arriving on the message queue with the name specified on line 2, and with a root element tag and attributes as specified on line 3, triggers the processing of the message by the input document.

Line 5 specifies the base element’s tag. The base element specifies the sub-element of the root element at which to start processing the elements specified in the body of the input document. The base element is optional, but is convenient in that it reduces the element nesting level in the body of the input document.

The ‘{‘ on line 6 and the ‘}’ on line 51 enclose the body of the document.

Lines 7 to 26 define the tags for the elements that will be processed by the input document.

Line 7 defines a required element ‘JobNumber’. The ‘R’ in the flags field of the element definition indicates that the element must be present in the input XML for the document to be processed. All required elements must be present, otherwise the XML will be ignored.

Line 12 defines an optional element ‘CrewName’, a sub-element of ‘CrewKey’, which is in turn a sub-element of ‘Crew’. The element has a default value of ‘MDS’, which is the value used by references to the element in the rest of the document, when the element is not present. If a default value is not present, missing elements have a value of the empty string.

Lines 15 to 26 define the ‘CompletionData’ element, which has 9 sub-elements, some of which are required.

If all the required elements are present, the data can be processed.

Line 28 calls the ‘findOrder’ function that finds the order object with an ‘externalId’ field equal to the JobNumber supplied in the XML. This function returns a boolean indicating whether such an order object was found, or not. This result is inverted by the ‘!’ so that line 30 is executed if ‘findOrder’ fails. Line 30 is a stop statement, which causes the processing of the document to terminate.

Line 33 sets the variable ‘action’ to either the contents of the ‘OtherAction’ element or the ‘Action’ element, depending on whether ‘Action’ has a value of ‘Other’ or not. Both these elements are sub-elements of the ‘CompletionData’ element. A reference to a sub-element takes the form ‘&grandparent/parent/subelement’.

Alternatively, an element can be named to make the references more succinct. The element definition of ‘CustomerCareNotes’ with a name of ‘CCN" on line 25, and the references to it on lines 37 and 39 are an example of this.

Line 34 converts the time in the element ‘RestoredTime’ into a format suitable to be passed to the database, and saves it in the variable ‘restoredTime’.

Line 35 saves the values of 5 elements and 2 variables in the ‘picklist_info_upd_tr’ table in the database using a sqlupdate statement. This table has a key column ‘ref_id’ that is set to the order’s event’s index number. If aggregate processing has been configured, and the intention is to save the data in the database for all events in the aggregation, the function ‘picklistInfoUpdTr’ would be more appropriate.

Line 37 tests whether the element named ‘CCN’ (the ‘CustomerCaseNotes’ element in ‘CompletionData’), was present in the input XML, using the function ‘isSet’. If the element was set line 39 is executed . The function call to ‘getCaseNotesForEvent’ in the parameter list of the call to ‘setCaseNoteInfo’, calls an Oracle Utilities Network Management System API to read the current value of the order’s event case notes. The value returned is concatenated with a space and the value of the CCN element. The resulting value is saved to the event’s case notes using the function ‘setCaseNoteInfo’.

Lines 42 to 47 set the ‘no_dtr_flag’ column in the ‘picklist_info_upd_tr’ table to ‘Y’, if the ‘CompletionData/Type’ element indicates that the trouble was not with the utility’s equipment. The function ‘isIn’ returns true if its first parameter matches any one of the rest of its parameters, false otherwise

Lines 48 and 49 logs the change to the event by inserting a row into the picklist_completion_log table. If aggregate processing has been configured, and the intention is to save the data in the database for all events in the aggregation, the function ‘picklistCompLog’ would be more appropriate.

The following XML would be processed by the example input document

<FieldReportSave environment="Test" revision="1.0.0">

 <ApplicationArea>

 <Sender>

 <Component>MDS</Component>

 <Confirmation>Never</Confirmation>

 <AuthorizationId>MDS Interface</AuthorizationId>

 </Sender>

 <CreationDateTime>2003-05-01T14:30:17-05:00</CreationDateTime>

 <BODId>guid</BODId>

 </ApplicationArea>

 <DataArea>

 <JobNumber>MDS7704</JobNumber>

 <CompletionData>

 <System>4KV</System>

 <Type>Lateral</Type>

 <Failure>Fuse</Failure>

 <Cause>Animal</Cause>

 <InterruptDev>XFM12345678</InterruptDev>

 <Action>Fuse replaced</Action>

 <CustomerCaseNotes>Temporary Repair: Scheduled for Tuesday</ CustomerCaseNotes>

 </CompletionData>

 </DataArea>

</FieldReportSave>

DML Reference

This section contains a full reference for the dynamic message language used in the Generic WebSphere MQ Mobile Adapter configuration dml files.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Lexical Conventions

A dml configuration consists of one or more files. Each file is processed in turn to generate a sequence of tokens, which are further processed into internal data structures used at run time to generate XML documents and process XML documents.

Syntax notation

In the syntax notation used in this Appendix, syntactic categories are indicated by italic type, and literal words and characters in bold type. An optional part of the syntax is indicated by enclosing it in square brackets ([]). An ellipsis (…) indicates that the preceding part of the syntax can be optionally repeated an arbitrary number of times.

Tokens

There are seven kinds of tokens: names, strings, quoted strings, keywords, operators, and other separators. Blanks, tabs, line feeds, carriage returns, and comments (described below), are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent tokens.

Comments

The character # starts a comment which terminates at the end of the line on which it occurs.

Include Directive

The include directive can appear anywhere in an input file and takes the form:

include
file name

The contents of the file name are processed as if they replaced the include directive itself.

Keywords

The following names are reserved for use as keywords and may not be used otherwise:

associate persist BasePath classTable ConfigDoc else elseif for if include InputDoc OutputDoc queue RootElement sortIncidents sqlinsert sqlselect sqlupdate static stop VERSION

The following characters are used as operators or for punctuation:

@ $ & / ! | = : , " ; . () [] < > { } +

The following character combinations are used as operators:

== != && ||

Names

A name is an arbitrarily long sequence of letters and digits. The first character must be a letter. The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Strings

A string is an arbitrarily long sequence of letters and digits. . The underscore _ counts as a letter. Upper and lower case letters are different. All characters are significant.

Quoted Strings

A quoted string is an arbitrarily long sequence of characters, enclosed in double quotes "". To represent the double quote character in a quoted string, use two double quotes "".

Constants

A constant is one of:

	
•

	

name

	
•

	

string

	
•

	

quoted string

Version Directive

The version directive takes the form:

VERSION = string;

The VERSION directive serves to identify the version of the current dml file and must appear outside any document definitions. When this directive is encountered, the current file name and the supplied version string are output to the log.

Basic Concepts

Type(s)

DML is a typeless language, or perhaps more accurately, a singly typed language. All values consist of character strings. DML has no concept of numbers. To illustrate this, strings can be used to pass positive integers to functions. For example:

@truncatedString = substring(@address, 0, 100);

However, quoted strings must be used to pass negative integers. For example:

@lastCharacter = substring(@characters, "-1", 1);

It should be emphasized that it is the function, not the dml that is interpreting the character string as an integer.

In certain contexts, a value is used as a boolean, or logical, value. Any non-empty string is considered true, and the empty string (written as "") is considered false. A boolean
expression or function returns "Y" when true and "" when false.

Basic Concepts

Type(s)

DML is a typeless language, or perhaps more accurately, a singly typed language. All values consist of character strings. DML has no concept of numbers. To illustrate this, strings can be used to pass positive integers to functions. For example:

@truncatedString = substring(@address, 0, 100);

However, quoted strings must be used to pass negative integers. For example:

@lastCharacter = substring(@characters, "-1", 1);

It should be emphasized that it is the function, not the dml that is interpreting the character string as an integer.

In certain contexts, a value is used as a boolean, or logical, value. Any non-empty string is considered true, and the empty string (written as "") is considered false. A boolean
expression or function returns "Y" when true and "" when false.

Definitions and References

There are a number of value bearing entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable
definition takes the form:

@
name
:
modifiers

The name must be unique amongst the variables within the document. Other entities can have the same name. The :
modifiers is optional.

If the :
modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable
reference takes the form:

@
name

Variables can be set and referenced in all document types.

Elements

An element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.

plain element
definitions and an array
element
definitions are known collectively as element
definitions.

Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element
definition takes the form:

&
name
:
modifiers
< attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&
name
[]:
modifiers
<
 attribute definitions
>

The specified index form is:

&
name
[
name
]:
modifiers
< attribute definitions >
R(
constant list
)

where the name in square brackets is the name of the index attribute, and R(constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Array Elements must either have values but no sub-elements or must have sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&
element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element
reference taking the form:

&
element identifier
[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero.

plain element
references and an array
element
references are known collectively as element
references.

Elements can only be referenced in Input Documents.

Definitions and References

There are a number of value bearing entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable
definition takes the form:

@
name
:
modifiers

The name must be unique amongst the variables within the document. Other entities can have the same name. The :
modifiers is optional.

If the :
modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable
reference takes the form:

@
name

Variables can be set and referenced in all document types.

Elements

An element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.

plain element
definitions and an array
element
definitions are known collectively as element
definitions.

Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element
definition takes the form:

&
name
:
modifiers
< attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&
name
[]:
modifiers
<
 attribute definitions
>

The specified index form is:

&
name
[
name
]:
modifiers
< attribute definitions >
R(
constant list
)

where the name in square brackets is the name of the index attribute, and R(constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Array Elements must either have values but no sub-elements or must have sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&
element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element
reference taking the form:

&
element identifier
[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero.

plain element
references and an array
element
references are known collectively as element
references.

Elements can only be referenced in Input Documents.

Definitions and References

There are a number of value bearing entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable
definition takes the form:

@
name
:
modifiers

The name must be unique amongst the variables within the document. Other entities can have the same name. The :
modifiers is optional.

If the :
modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable
reference takes the form:

@
name

Variables can be set and referenced in all document types.

Elements

An element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.

plain element
definitions and an array
element
definitions are known collectively as element
definitions.

Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element
definition takes the form:

&
name
:
modifiers
< attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&
name
[]:
modifiers
<
 attribute definitions
>

The specified index form is:

&
name
[
name
]:
modifiers
< attribute definitions >
R(
constant list
)

where the name in square brackets is the name of the index attribute, and R(constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Array Elements must either have values but no sub-elements or must have sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&
element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element
reference taking the form:

&
element identifier
[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero.

plain element
references and an array
element
references are known collectively as element
references.

Elements can only be referenced in Input Documents.

Definitions and References

There are a number of value bearing entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable
definition takes the form:

@
name
:
modifiers

The name must be unique amongst the variables within the document. Other entities can have the same name. The :
modifiers is optional.

If the :
modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable
reference takes the form:

@
name

Variables can be set and referenced in all document types.

Elements

An element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.

plain element
definitions and an array
element
definitions are known collectively as element
definitions.

Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element
definition takes the form:

&
name
:
modifiers
< attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&
name
[]:
modifiers
<
 attribute definitions
>

The specified index form is:

&
name
[
name
]:
modifiers
< attribute definitions >
R(
constant list
)

where the name in square brackets is the name of the index attribute, and R(constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Array Elements must either have values but no sub-elements or must have sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&
element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element
reference taking the form:

&
element identifier
[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero.

plain element
references and an array
element
references are known collectively as element
references.

Elements can only be referenced in Input Documents.

Definitions and References

There are a number of value bearing entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable
definition takes the form:

@
name
:
modifiers

The name must be unique amongst the variables within the document. Other entities can have the same name. The :
modifiers is optional.

If the :
modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable
reference takes the form:

@
name

Variables can be set and referenced in all document types.

Elements

An element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.

plain element
definitions and an array
element
definitions are known collectively as element
definitions.

Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element
definition takes the form:

&
name
:
modifiers
< attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&
name
[]:
modifiers
<
 attribute definitions
>

The specified index form is:

&
name
[
name
]:
modifiers
< attribute definitions >
R(
constant list
)

where the name in square brackets is the name of the index attribute, and R(constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Array Elements must either have values but no sub-elements or must have sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&
element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element
reference taking the form:

&
element identifier
[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero.

plain element
references and an array
element
references are known collectively as element
references.

Elements can only be referenced in Input Documents.

Definitions and References

There are a number of value bearing entities in dml. Apart from one exception (variables), they must be defined before they are referenced. The definition introduces the entity, and defines certain modifiers to the entity. An entity is referenced when its value is used in an expression or when it is assigned to in an assignment statement. When a variable uses the default set of modifiers, it can be implicitly defined when first assigned.

Entities

The entities in a document carry values and have modifiers that change their behavior.

Variables

A variable is used to save intermediate results in a document. A variable
definition takes the form:

@
name
:
modifiers

The name must be unique amongst the variables within the document. Other entities can have the same name. The :
modifiers is optional.

If the :
modifiers are not required, variables can be implicitly defined when they are assigned to.

A variable
reference takes the form:

@
name

Variables can be set and referenced in all document types.

Elements

An element generates an XML element in Output Documents, and supplies an input XML element value or sub-elements in Input Documents. There are to kinds of element definitions: plain elements and array elements.

plain element
definitions and an array
element
definitions are known collectively as element
definitions.

Plain Element Definitions

Plain elements are referred to as elements in the rest of this section.

An element
definition takes the form:

&
name
:
modifiers
< attribute definitions >

The name of an element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Elements must either have values but no sub-elements or must have sub-elements but no value. (This may be changed in a future version of the adapter).

Array Element Definitions

Array elements can only appear in Input Documents, and are used when more that one element with the same tag can be sub-elements of the same element in the input XML. An array element
definition takes one of two forms: with an unspecified index, and with a specified index attribute.

The unspecified index form is:

&
name
[]:
modifiers
<
 attribute definitions
>

The specified index form is:

&
name
[
name
]:
modifiers
< attribute definitions >
R(
constant list
)

where the name in square brackets is the name of the index attribute, and R(constant list) is the required index list, which is optional. The required index list defines the values of the index attribute that must be in the input XML before the enclosing Input Document will be used to process the input XML.

Array element modifiers can only contain an alternate name for the array element.

The name of an array element is its XML tag, and must be unique amongst the elements within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers and attribute definitions are optional. The format of attribute definitions is described below in section
Attributes
. Array Elements must either have values but no sub-elements or must have sub-elements but no value.

Element References

The values of plain elements with values in Input Documents can be obtained using a plain element
reference taking the form:

&
element identifier

The element identifier has two forms:

The full element path, which is either the name of the element, if it is not a sub-element of another element, or the full element path of the sub-element’s enclosing element, followed by a slash (/) followed by the element’s name.

The element’s alternate name, which is defined in the element’s modifiers.

If the element has an alternate name, the full element path cannot be used.

The values of individual elements in an array element with values can be obtained using an array
element
reference taking the form:

&
element identifier
[index value]

The index value is either the value of the index attribute, in the case of a specified index, or a number in the case of an unspecified index, the elements being numbered in the order that the elements were in the input XML, starting at zero.

plain element
references and an array
element
references are known collectively as element
references.

Elements can only be referenced in Input Documents.

Attributes

An attribute generates an XML element attribute in Output Documents, and supplies an input XML element attribute value in Input Documents. An attribute definition is part of an element’s
attribute definitions and takes the form:

name
:
modifiers

The name of an attribute is its XML attribute, and must be unique amongst the attributes within its immediately enclosing element or document. Other entities can have the same name. The :
modifiers are optional.

In Output Documents attributes must have their values assigned to them where they are defined in the form:

NAME: modifiers
=
expression
;

The definition of an attribute in an Input Document takes the form:

NAME: modifiers
;

Attributes are defined as part of the attribute definitions of their element as described above in section These attribute definitions are one or more attribute definitions.

The values of an attribute can be obtained using an attribute reference taking the form:

element reference
<
name
>

Attributes can only be referenced in Input Documents.

Entity Modifiers

There are three entity modifiers they are:

	
•

	

The flags which modify the behavior of the entity. See section
Flags
 in the main document for the uses of flags.

	
•

	

The default value, which is used when entity is referenced but has no value. See section
Defaults
 in the main document for the circumstances that the default is used.

	
•

	

The alternate name, which is used to give the entity an alternate name. See section
Alternate Names
 in the main document for the circumstances that the alternate name is used.

The modifiers are defined in the order flags, default value, alternate name and take the form:

:
constant
:
constant
:
name

If a modifier at the end of the modifiers is empty the colon (:) must not be present. As a consequence, if all modifiers are empty, the modifiers are not present

External Data

External data is available from the various external data objects, described above in section
The External Objects
. All fields in the objects can be read, but some objects or individual fields are read-only, i.e. they cannot be written.

A reference to an external object field takes the form:

$
external data object identifier
.
field name

where the external data object identifier is the letter associated with the object and the field name is the name of the field (note that they are separated by a period (.)). Some fields (for example Handles) have sub-fields. A reference to a sub-field takes the form:

$
external data object identifier
.
field name
.
sub-field name

Most external objects have one instance at a time, but the Incident Object can have zero, one or more, depending on the number of incidents that have grouped to the current event. To reference an individual incident field, an offset to the incident into the array of incidents is required. This offset starts at zero, and is a constant which must only contain digits, known as an offset. The normal order of incidents is the order that they were received by Oracle Utilities Network Management System. This order can be altered by use of the sortIncidents function. A reference to an incident field takes the form:

$I.
offset
.
field name

Incident references can contain sub-fields.These are known as external field references.

Note that some external object fields are read-only, i.e. they cannot be set by the dml. The read- only status of each external object is listed below:

	
•

	

The Order Object (‘O’): All the fields listed in section
Permanent Order Object Fields
,
Permanent Order Object Fields
 of
DML Function Calls
 are read-only. All other fields are read/write.

	
•

	

The Relationship Object (‘R’): All the fields listed in section
Permanent Relationship Object Fields
,
Permanent Relationship Object Fields
 of
DML Function Calls
 are read-only. All other fields are read/write.

	
•

	

The Event Object (‘E’): All fields are read-only.

	
•

	

The Incident Object(‘I’): All fields are read-only.

	
•

	

The Global Data Object (‘G’): All fields are read/write.

	
•

	

The Trigger Parameter Object (‘T’): All fields are read/write.

Functions

A function is called using the following form:

name
([paramter1] [, paramter2] …)

Where name is the name of the function and parmeter2, parameter2, … are expressions. All functions return a value, but in some cases the value is always the empty string, implying that they are only called for their side effects. The functions available and their parameters are described in
DML Function Calls
.

Expressions

An expression is a combination of dml components that yield a value. Expressions are combined using operators. The following table shows the expressions and the operators:

	

Expression

	

Value

	

Notes

	

constant

	

The constant

	

	

variable reference

	

The variable’s current value

	

	

element
reference

	

The element’s current value

	

	

attribute
reference

	

The attribute’s current value

	

	

external field reference

	

The field’s current value

	

	

function

	

The function’s return value

	

	

expression1
+
expression2

	

The concatenation of the two expressions

	

	

(
expression
)

	

The expression’s value

	

Used to alter the precedence of operators.

	

expression1
?
expression2
:
expression3

	

If expression1 is true, expression2.

If expression1 is false, expression3.

	

Logical alternation. See note below.

	

!
expression

	

If expression is true, false.

If expression is false, true.

	

Logical NOT.

	

expression1
&&

expression2

	

true if both expression1 and expression2 are true, false otherwise

	

Logical AND. See note below.

	

expression1
||

expression2

	

true if either expression1 or expression2 is true, false otherwise

	

Logical OR. See note below.

	

expression1

==
 expression2

	

true if expression1 is an exact duplicate of expression2 is true, false otherwise

	

	

expression1

!=
 expression2

	

true if expression1 is not an exact duplicate of expression2 is true, false otherwise

	

Note: The logical alternation, AND, and OR expressions are evaluated left to right and expressions that do not need to be evaluated are not evaluated, and any side effects (e.g., due to a function call) do not occur. Specifically:

Alternation: expression1 is evaluated. If it is true only expression2 is evaluated, otherwise only expression3 is evaluated.

AND: expression1 is evaluated. If it is false, expression2 is not evaluated.

OR: expression1 is evaluated. If it is true, expression2 is not evaluated.

Lists

Name List

A name list is one or more names separated by commas (,). For example:

h_cls, h_idx

Constant List

A constant list is one or more constants, separated by commas (,). For example:

None, "$%I99", 13, "-3", "This is a ""quoted"" string"

Variable Reference Lists

A variable reference list is one or more variable references, separated by commas (,). For example:

@devPhases, @pole_number, @winter_load, @summer_load

Expression List

A expression list is one or more expressions, separated by commas (,). For example:

@a + @b, formatDateTime(@time), $E.outageHdl.idx, none

Lists

Name List

A name list is one or more names separated by commas (,). For example:

h_cls, h_idx

Constant List

A constant list is one or more constants, separated by commas (,). For example:

None, "$%I99", 13, "-3", "This is a ""quoted"" string"

Variable Reference Lists

A variable reference list is one or more variable references, separated by commas (,). For example:

@devPhases, @pole_number, @winter_load, @summer_load

Expression List

A expression list is one or more expressions, separated by commas (,). For example:

@a + @b, formatDateTime(@time), $E.outageHdl.idx, none

Lists

Name List

A name list is one or more names separated by commas (,). For example:

h_cls, h_idx

Constant List

A constant list is one or more constants, separated by commas (,). For example:

None, "$%I99", 13, "-3", "This is a ""quoted"" string"

Variable Reference Lists

A variable reference list is one or more variable references, separated by commas (,). For example:

@devPhases, @pole_number, @winter_load, @summer_load

Expression List

A expression list is one or more expressions, separated by commas (,). For example:

@a + @b, formatDateTime(@time), $E.outageHdl.idx, none

Lists

Name List

A name list is one or more names separated by commas (,). For example:

h_cls, h_idx

Constant List

A constant list is one or more constants, separated by commas (,). For example:

None, "$%I99", 13, "-3", "This is a ""quoted"" string"

Variable Reference Lists

A variable reference list is one or more variable references, separated by commas (,). For example:

@devPhases, @pole_number, @winter_load, @summer_load

Expression List

A expression list is one or more expressions, separated by commas (,). For example:

@a + @b, formatDateTime(@time), $E.outageHdl.idx, none

Lists

Name List

A name list is one or more names separated by commas (,). For example:

h_cls, h_idx

Constant List

A constant list is one or more constants, separated by commas (,). For example:

None, "$%I99", 13, "-3", "This is a ""quoted"" string"

Variable Reference Lists

A variable reference list is one or more variable references, separated by commas (,). For example:

@devPhases, @pole_number, @winter_load, @summer_load

Expression List

A expression list is one or more expressions, separated by commas (,). For example:

@a + @b, formatDateTime(@time), $E.outageHdl.idx, none

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Statements

Statements are the basic processing units in dml. Many of them are terminated using the statement
terminator, ; (semi-colon).

Statement Blocks

A number of statements require one or more statements grouped together. This is achieved using a statement block, which takes the form:

{

statements

}

Where statements is one or more statements.

Variable Assignment Statement

This statement assigns a value to a variable and takes the form:

variable reference
=
expression
;

Element Definition Statement

Element definitions differ between elements with values (simple elements) and those with sub- elements (compound elements). They also differ between those in Output Documents (output elements) and those in Input Documents (input elements). The four flavors are described in the following sections.

Output Element Definition Statements

These statements are only valid in Output Documents.

Simple Output Element Definition Statement

This statement assigns a value to an element and takes the form:

element
definition
=
expression
;

Compound Output Element Definition Statement

This statement defines an element with one or more sub-elements and takes the form:

element
definition

statement block

The statement block must contain at least one output element definition statement, but can also contain other statements allowed in Output Documents.

Input Element Definition Statements

These statements are only valid in Input Documents.

Simple Input Element Definition Statement

This statement defines an element that can accept a value from incoming XML documents and takes the form:

element
definition
;

Compound Input Element Definition Statement

This statement defines an element with sub-elements that can accept values value from incoming XML documents and takes the form:

element
definition

statement block

The statement block can only contain input element definition statements and must contain at least one.

External Data Assignment Statement

This statement assigns a value to an external object field and takes the form:

external field reference
=
expression
;

Function Statement

This statement is used to call a function for its side effects and the return value is either the empty string or can be ignored. It takes the form:

function expression
;

SQL Select Statement

This statement is used to read data from the database and takes the form:

sqlselect
variable reference list
|
name list
| [static] expression [|
expression …] ;

SQL Insert Statements

This statement is used to insert a row of data in a database table and takes the form:

sqlinsert
expression
|
name list
|
expression list
;

SQL Update Statements

This statement is used to insert or update a row of data in a database table and takes the form:

sqlupdate
expression
|
name list
|
expression list
|
name list
|
expression list
;

If Statement

This statement is used to alter the flow of expression evaluation, and output element selection, based on the value of an expression. It takes the form:

if (
expression
)

statement block 1

else if (
expression
)

statement block 2

else

statement block 3

elseif is a synonym for else if.

There can be any number of else if’s, including none. The else is optional.

If the expression of the if is true, it’s statement block (1 in this example) is evaluated.

Otherwise, if the expression of the first else if, if any, is true, it’s statement block (2 in this example) is evaluated.

Otherwise, if the expression of the next else if, if any, is true, it’s statement block is evaluated.

Otherwise, the else’s
statement block (3 in this example) is evaluated.

A maximum of one statement block will be evaluated in any if statement.

For Statement

 This statement is use to iterate through all elements in an array element. It can only appear in an Input Document. It takes the form:

for
(&
element identifier
[],
variable reference
)

statement block

Stop Statement

This statement is used to terminate processing of a document. In addition, it prevents an Output Document from sending its XML. It takes the form:

stop;

Root Element Statement

This statement is used to generate an Output Document’s root element and to select the Input Document or Documents that the input XML can be processed by. In an Output Document it is located in the document’s statement block. In an Input Document it is located in the input document
header. It takes the form:

&RootElement [<
attribute definitions
>] =
expression
;

Documents

Output Document Header

The output document header consists of the following specifications, in any order.

Queue Specification

This specification specifies the queue to which the Output Document’s XML is directed to, and takes the form:

queue =
expression
;

The queue is available to the Output Document’s statement block as a variable named queue, and can be assigned to in the following manner:

@queue
=
expression
;

The queue specification is optional, and defaults to the empty string. If the queue specification is defaulted, it must be set in the Output Document’s statement block. There may only be a maximum of one queue specification in the header of each Output Document.

Trigger Specification

An Output Document must have at least one trigger specification, and can have an arbitrary number greater than one.

Association Specification

This specification associates the Output Document with an external object, and takes the form:

associate = external data object identifier ;

The only external data object identifier currently supported is O, the Order Object. One and only one Output Document must be associated with the Order Object.

Persistence Specification

This specification allows you to set the persistence flag for outgoing messages, and takes the form:

persist = "Y" or "N";

If this specification is omitted, the message will have the default persistence setting configured for the queue it is being placed on.

Output Document

This document is used to generate XML and send it to the MDS. It takes the form:

OutputDoc
name

output document header

statement block

Input Document Header

The input document header consists of one and only one root element statement and the following specifications, in any order.

Queue Specification

This specification specifies the queue on which the Input Document’s XML is received from, and takes the form:

queue =
expression
;

The queue is available to the Input Document’s statement block as a variable named queue.

There must be one and only one queue specification in the header of each Input Document.

Base Path Specification

The specification specifies the sub-element of the root element of the XML document which contains all elements that will be processed by the Input Document. It takes the form:

BasePath
=
full element path
;

Input Document

This document is used to process input XML from the MDS. It takes the form:

InputDoc
name

input document header

statement block

Documents

Output Document Header

The output document header consists of the following specifications, in any order.

Queue Specification

This specification specifies the queue to which the Output Document’s XML is directed to, and takes the form:

queue =
expression
;

The queue is available to the Output Document’s statement block as a variable named queue, and can be assigned to in the following manner:

@queue
=
expression
;

The queue specification is optional, and defaults to the empty string. If the queue specification is defaulted, it must be set in the Output Document’s statement block. There may only be a maximum of one queue specification in the header of each Output Document.

Trigger Specification

An Output Document must have at least one trigger specification, and can have an arbitrary number greater than one.

Association Specification

This specification associates the Output Document with an external object, and takes the form:

associate = external data object identifier ;

The only external data object identifier currently supported is O, the Order Object. One and only one Output Document must be associated with the Order Object.

Persistence Specification

This specification allows you to set the persistence flag for outgoing messages, and takes the form:

persist = "Y" or "N";

If this specification is omitted, the message will have the default persistence setting configured for the queue it is being placed on.

Output Document

This document is used to generate XML and send it to the MDS. It takes the form:

OutputDoc
name

output document header

statement block

Input Document Header

The input document header consists of one and only one root element statement and the following specifications, in any order.

Queue Specification

This specification specifies the queue on which the Input Document’s XML is received from, and takes the form:

queue =
expression
;

The queue is available to the Input Document’s statement block as a variable named queue.

There must be one and only one queue specification in the header of each Input Document.

Base Path Specification

The specification specifies the sub-element of the root element of the XML document which contains all elements that will be processed by the Input Document. It takes the form:

BasePath
=
full element path
;

Input Document

This document is used to process input XML from the MDS. It takes the form:

InputDoc
name

input document header

statement block

Documents

Output Document Header

The output document header consists of the following specifications, in any order.

Queue Specification

This specification specifies the queue to which the Output Document’s XML is directed to, and takes the form:

queue =
expression
;

The queue is available to the Output Document’s statement block as a variable named queue, and can be assigned to in the following manner:

@queue
=
expression
;

The queue specification is optional, and defaults to the empty string. If the queue specification is defaulted, it must be set in the Output Document’s statement block. There may only be a maximum of one queue specification in the header of each Output Document.

Trigger Specification

An Output Document must have at least one trigger specification, and can have an arbitrary number greater than one.

Association Specification

This specification associates the Output Document with an external object, and takes the form:

associate = external data object identifier ;

The only external data object identifier currently supported is O, the Order Object. One and only one Output Document must be associated with the Order Object.

Persistence Specification

This specification allows you to set the persistence flag for outgoing messages, and takes the form:

persist = "Y" or "N";

If this specification is omitted, the message will have the default persistence setting configured for the queue it is being placed on.

Output Document

This document is used to generate XML and send it to the MDS. It takes the form:

OutputDoc
name

output document header

statement block

Input Document Header

The input document header consists of one and only one root element statement and the following specifications, in any order.

Queue Specification

This specification specifies the queue on which the Input Document’s XML is received from, and takes the form:

queue =
expression
;

The queue is available to the Input Document’s statement block as a variable named queue.

There must be one and only one queue specification in the header of each Input Document.

Base Path Specification

The specification specifies the sub-element of the root element of the XML document which contains all elements that will be processed by the Input Document. It takes the form:

BasePath
=
full element path
;

Input Document

This document is used to process input XML from the MDS. It takes the form:

InputDoc
name

input document header

statement block

Documents

Output Document Header

The output document header consists of the following specifications, in any order.

Queue Specification

This specification specifies the queue to which the Output Document’s XML is directed to, and takes the form:

queue =
expression
;

The queue is available to the Output Document’s statement block as a variable named queue, and can be assigned to in the following manner:

@queue
=
expression
;

The queue specification is optional, and defaults to the empty string. If the queue specification is defaulted, it must be set in the Output Document’s statement block. There may only be a maximum of one queue specification in the header of each Output Document.

Trigger Specification

An Output Document must have at least one trigger specification, and can have an arbitrary number greater than one.

Association Specification

This specification associates the Output Document with an external object, and takes the form:

associate = external data object identifier ;

The only external data object identifier currently supported is O, the Order Object. One and only one Output Document must be associated with the Order Object.

Persistence Specification

This specification allows you to set the persistence flag for outgoing messages, and takes the form:

persist = "Y" or "N";

If this specification is omitted, the message will have the default persistence setting configured for the queue it is being placed on.

Output Document

This document is used to generate XML and send it to the MDS. It takes the form:

OutputDoc
name

output document header

statement block

Input Document Header

The input document header consists of one and only one root element statement and the following specifications, in any order.

Queue Specification

This specification specifies the queue on which the Input Document’s XML is received from, and takes the form:

queue =
expression
;

The queue is available to the Input Document’s statement block as a variable named queue.

There must be one and only one queue specification in the header of each Input Document.

Base Path Specification

The specification specifies the sub-element of the root element of the XML document which contains all elements that will be processed by the Input Document. It takes the form:

BasePath
=
full element path
;

Input Document

This document is used to process input XML from the MDS. It takes the form:

InputDoc
name

input document header

statement block

Configuration Document

This document is used to set configuration data and load configuration tables from the database at initialization time. It takes the form:

ConfigDoc
name

statement block

Order of Document Processing and Other Considerations

The dml is read during adapter initialization in the order that the files are specified in the command line. Files from the command line must contain only complete documents, but files read using the include directive can contain any valid dml fragment, dependent on the context of the directive.

The processing of statements within a document is strictly from top to bottom in the order the statements were read during initialization, except when altered by a control flow statement (e.g., if and for statements). Statements in a document are processed until one of the following situations occur:

The last statement in the document is reached. If the document is an Output Document, the resulting XML is delivered to the queue specified in the document’s queue specification.

A stop statement is processed. If the document is a Configuration Document, the adapter sends an error message to the log and then exits.

A run time configuration error occurs. In all cases, the adapter sends an error message to the log and then exits.

An unrecoverable run time error occurs (e.g., DBService is not available to read or write a database table). In all cases, the adapter sends an error message to the log and then exits.

The processing of specifications in a document header is not necessarily in top to bottom order. Each document is described below.

Output Documents

Output Document specifications are processed in the following order:

The association specification is processed once during initialization.

The queue specification is evaluated just before the first statement of the document is processed.

When a trigger event occurs, all Output Documents are examined in top to bottom order to determine whether the event should trigger each document.

 If the trigger event’s type matches at least one trigger specification in the document, the triggers of that type are processed in top to bottom order, until one evaluates to true. In this case, all other triggers have their value set to false, even if they have not been processed. If all triggers evaluate to false the document is not processed due to the trigger event.

If the Output Document is triggered, it is fully processed before the next Output Document is examined in order to determine whether the event should trigger the next document.

Input Documents

All Input Document header specifications are evaluated at initialization, in the order base path specification, queue specification, and then root element specification.

When an input XML document arrives, each Input Document is examined in top to bottom order to determine whether the XML satisfies the root element specification. If no document matches the incoming XML, the XML is discarded. If at least one Input Document is eligible, the elements in the XML are delivered to the documents in the order they appear in the XML document. Once all elements have been delivered, each document is examined in top to bottom order to determine whether all required elements are present, and are processed in top to bottom order if the elements are present. Once all Input Documents have been processed, the XML is discarded.

Configuration Documents

Configuration Documents have no header specifications. All Configuration Documents are processed in top to bottom order. Once they all have been processed successfully, they are discarded.

Order of Document Processing and Other Considerations

The dml is read during adapter initialization in the order that the files are specified in the command line. Files from the command line must contain only complete documents, but files read using the include directive can contain any valid dml fragment, dependent on the context of the directive.

The processing of statements within a document is strictly from top to bottom in the order the statements were read during initialization, except when altered by a control flow statement (e.g., if and for statements). Statements in a document are processed until one of the following situations occur:

The last statement in the document is reached. If the document is an Output Document, the resulting XML is delivered to the queue specified in the document’s queue specification.

A stop statement is processed. If the document is a Configuration Document, the adapter sends an error message to the log and then exits.

A run time configuration error occurs. In all cases, the adapter sends an error message to the log and then exits.

An unrecoverable run time error occurs (e.g., DBService is not available to read or write a database table). In all cases, the adapter sends an error message to the log and then exits.

The processing of specifications in a document header is not necessarily in top to bottom order. Each document is described below.

Output Documents

Output Document specifications are processed in the following order:

The association specification is processed once during initialization.

The queue specification is evaluated just before the first statement of the document is processed.

When a trigger event occurs, all Output Documents are examined in top to bottom order to determine whether the event should trigger each document.

 If the trigger event’s type matches at least one trigger specification in the document, the triggers of that type are processed in top to bottom order, until one evaluates to true. In this case, all other triggers have their value set to false, even if they have not been processed. If all triggers evaluate to false the document is not processed due to the trigger event.

If the Output Document is triggered, it is fully processed before the next Output Document is examined in order to determine whether the event should trigger the next document.

Input Documents

All Input Document header specifications are evaluated at initialization, in the order base path specification, queue specification, and then root element specification.

When an input XML document arrives, each Input Document is examined in top to bottom order to determine whether the XML satisfies the root element specification. If no document matches the incoming XML, the XML is discarded. If at least one Input Document is eligible, the elements in the XML are delivered to the documents in the order they appear in the XML document. Once all elements have been delivered, each document is examined in top to bottom order to determine whether all required elements are present, and are processed in top to bottom order if the elements are present. Once all Input Documents have been processed, the XML is discarded.

Configuration Documents

Configuration Documents have no header specifications. All Configuration Documents are processed in top to bottom order. Once they all have been processed successfully, they are discarded.

Order of Document Processing and Other Considerations

The dml is read during adapter initialization in the order that the files are specified in the command line. Files from the command line must contain only complete documents, but files read using the include directive can contain any valid dml fragment, dependent on the context of the directive.

The processing of statements within a document is strictly from top to bottom in the order the statements were read during initialization, except when altered by a control flow statement (e.g., if and for statements). Statements in a document are processed until one of the following situations occur:

The last statement in the document is reached. If the document is an Output Document, the resulting XML is delivered to the queue specified in the document’s queue specification.

A stop statement is processed. If the document is a Configuration Document, the adapter sends an error message to the log and then exits.

A run time configuration error occurs. In all cases, the adapter sends an error message to the log and then exits.

An unrecoverable run time error occurs (e.g., DBService is not available to read or write a database table). In all cases, the adapter sends an error message to the log and then exits.

The processing of specifications in a document header is not necessarily in top to bottom order. Each document is described below.

Output Documents

Output Document specifications are processed in the following order:

The association specification is processed once during initialization.

The queue specification is evaluated just before the first statement of the document is processed.

When a trigger event occurs, all Output Documents are examined in top to bottom order to determine whether the event should trigger each document.

 If the trigger event’s type matches at least one trigger specification in the document, the triggers of that type are processed in top to bottom order, until one evaluates to true. In this case, all other triggers have their value set to false, even if they have not been processed. If all triggers evaluate to false the document is not processed due to the trigger event.

If the Output Document is triggered, it is fully processed before the next Output Document is examined in order to determine whether the event should trigger the next document.

Input Documents

All Input Document header specifications are evaluated at initialization, in the order base path specification, queue specification, and then root element specification.

When an input XML document arrives, each Input Document is examined in top to bottom order to determine whether the XML satisfies the root element specification. If no document matches the incoming XML, the XML is discarded. If at least one Input Document is eligible, the elements in the XML are delivered to the documents in the order they appear in the XML document. Once all elements have been delivered, each document is examined in top to bottom order to determine whether all required elements are present, and are processed in top to bottom order if the elements are present. Once all Input Documents have been processed, the XML is discarded.

Configuration Documents

Configuration Documents have no header specifications. All Configuration Documents are processed in top to bottom order. Once they all have been processed successfully, they are discarded.

Order of Document Processing and Other Considerations

The dml is read during adapter initialization in the order that the files are specified in the command line. Files from the command line must contain only complete documents, but files read using the include directive can contain any valid dml fragment, dependent on the context of the directive.

The processing of statements within a document is strictly from top to bottom in the order the statements were read during initialization, except when altered by a control flow statement (e.g., if and for statements). Statements in a document are processed until one of the following situations occur:

The last statement in the document is reached. If the document is an Output Document, the resulting XML is delivered to the queue specified in the document’s queue specification.

A stop statement is processed. If the document is a Configuration Document, the adapter sends an error message to the log and then exits.

A run time configuration error occurs. In all cases, the adapter sends an error message to the log and then exits.

An unrecoverable run time error occurs (e.g., DBService is not available to read or write a database table). In all cases, the adapter sends an error message to the log and then exits.

The processing of specifications in a document header is not necessarily in top to bottom order. Each document is described below.

Output Documents

Output Document specifications are processed in the following order:

The association specification is processed once during initialization.

The queue specification is evaluated just before the first statement of the document is processed.

When a trigger event occurs, all Output Documents are examined in top to bottom order to determine whether the event should trigger each document.

 If the trigger event’s type matches at least one trigger specification in the document, the triggers of that type are processed in top to bottom order, until one evaluates to true. In this case, all other triggers have their value set to false, even if they have not been processed. If all triggers evaluate to false the document is not processed due to the trigger event.

If the Output Document is triggered, it is fully processed before the next Output Document is examined in order to determine whether the event should trigger the next document.

Input Documents

All Input Document header specifications are evaluated at initialization, in the order base path specification, queue specification, and then root element specification.

When an input XML document arrives, each Input Document is examined in top to bottom order to determine whether the XML satisfies the root element specification. If no document matches the incoming XML, the XML is discarded. If at least one Input Document is eligible, the elements in the XML are delivered to the documents in the order they appear in the XML document. Once all elements have been delivered, each document is examined in top to bottom order to determine whether all required elements are present, and are processed in top to bottom order if the elements are present. Once all Input Documents have been processed, the XML is discarded.

Configuration Documents

Configuration Documents have no header specifications. All Configuration Documents are processed in top to bottom order. Once they all have been processed successfully, they are discarded.

Ordering of Incidents in the Incident Object

When processing starts for a document, the incidents in the Incident Object are in their normal order, i.e. the order that they were received by Oracle Utilities Network Management System. This order can be changed during the processing of the document by calling the sortIncidents function. The ordering remains the same during the processing, unless sortIncidents is called again. The order is set back to normal when the document processing finishes.

Interactions between Threads

The adapter is a multi-threaded process. Therefore more than one document can be processed at the same time, increasing performance. There is at least one thread for Output Document processing, and at least one thread for each Input Document queue. More threads can be configured using a Configuration Document. The adapter uses a number of other threads for internal processing.

This has a number of implications.

While trigger events are queued internally in the order that they occur, and are extracted from this queue in the order that they were queued, there is no guarantee that the Output Documents triggered by these events will complete their processing in the order the events were queued. This means the XML messages may be delivered to the MQSeries queue in an unexpected order. If this behavior is inappropriate, it can be eliminated at the expense of performance by using only one output thread, and by setting the config_Event_QueueDelay configuration parameter to zero.

A similar situation exists with input XML documents. They also cannot be guaranteed to update Oracle Utilities Network Management System in the order that they arrive. This situation can be improved at the expense of performance by limiting each input queue to one thread. It may be possible to eliminate it completely if the interface can be configured to use only one input queue.

Note that trigger events and input XML that affect particular Oracle Utilities Network Management System events, Order Objects, and Relationship Objects are processed in the order that they are queued. These situations are discussed below.

Note, however, that there is an inherent race condition in loosely coupled interfaces (the type implemented by the adapter) that use messages to communicate. Events can occur in Oracle Utilities Network Management System and the MDS that alter the state of Oracle Utilities Network Management System events and MDS orders almost simultaneously and it cannot be predicted whether the change on one system affects the other system first, or vice versa. Paradoxically, this situation can be improved by increasing the rate at which messages are processed, i.e. by increasing the number of threads.

The input, output, and internal threads need to coordinate access to various shared resources. Most of this coordination is invisible on the dml level, but a number of aspects of the coordination are worth consideration when writing dml.

One specific means of coordination is known as a mutex (for mutual exclusion). To access a shared resource that is protected by a mutex, the thread requests the mutex. If the mutex is free, the thread acquires the mutex. If another thread requests the mutex, it blocks (is suspended) until it is free. When the original thread has finished accessing the shared resource, it releases the mutex, making it free. The release unblocks one thread waiting for the mutex. When there is the potential for more than one mutex to be in use, there is a danger of a deadlock if one thread enters the mutexes in a different order from another thread. One a deadlock occurs, neither thread will ever run again.

Each thread runs in a separate environment, with a copy of each relevant document, but needs to share a number of resources. The access to these objects must be properly coordinated to prevent inconsistent access due to multiple threads updating the resource at the same time. These resources and the mechanisms used to prevent inconsistent access are:

	
•

	

The Global Data Object: The update of a single field is atomic (the update will be complete before any other thread can attempt to read or update the field). There is no coordination of updates to multiple fields. To avoid this problem, use a single field.

	
•

	

The Order Object: There is one Order Object for each order that has been created. Access to an individual Order Object is coordinated so that only one document can access the Order Object at one time. When a document in a thread needs to access an Order Object it calls findOrder. When successful, findOrder acquires the order’s mutex, preventing any other thread from accessing the Order Object. The order’s mutex is automatically acquired when the order is created by calling createOrder. The order’s mutex is automatically released in the following cases: when the document processing is terminated, and when findOrder or createOrder is called. This is to prevent deadlocks. A consequence of this is that if a trigger event triggers two Output Documents needing the same order, or two Input Documents are triggered by one input XML message, the state of the order when the second document starts processing is not guaranteed to be the same, because another thread may have altered its state.

	
•

	

The Relationship Object: There is one Relationship Object for each relationship that has been created. Access to an individual Relationship Object is coordinated so that only one document can access the Relationship Object at one time. When a document in a thread needs to access a Relationship Object it calls findRelation. When successful, findRelation acquires the relationship’s mutex, preventing any other thread from accessing the Relationship Object. The relationship’s mutex is automatically acquired when the relationship is created by calling createRelation. The relationship’s mutex is automatically released in the following cases: when the document processing is terminated, and when findRelation or createRelation is called. This is to prevent deadlocks. A consequence of this is that if a trigger event triggers two Output Documents using needing the same relationship, or two Input Documents are triggered by one input XML message, the state of the relationship when the second document starts processing is not guaranteed to be the same, because another thread may have altered its state. In addition, when findOrder or createOrder is called, the mutex for the order’s relationship is automatically acquired. This has the consequence that calling findOrder or createOrder after calling findRelation causes a configuration error if the order is not in the relationship. Similarly, calling findRelation after calling findOrder or createOrder causes a configuration error if the order is not in the relationship. This behavior is necessary to prevent deadlocks.

	
•

	

The current event: SRSoutput message for the same event must be processed in the order that they were sent by SRSService, otherwise the MDS will not receive up to date data. This prevented by a mutex that is acquired before the SRSoutput message is processed, and released automatically when it has been processed.

Ordering of Incidents in the Incident Object

When processing starts for a document, the incidents in the Incident Object are in their normal order, i.e. the order that they were received by Oracle Utilities Network Management System. This order can be changed during the processing of the document by calling the sortIncidents function. The ordering remains the same during the processing, unless sortIncidents is called again. The order is set back to normal when the document processing finishes.

Interactions between Threads

The adapter is a multi-threaded process. Therefore more than one document can be processed at the same time, increasing performance. There is at least one thread for Output Document processing, and at least one thread for each Input Document queue. More threads can be configured using a Configuration Document. The adapter uses a number of other threads for internal processing.

This has a number of implications.

While trigger events are queued internally in the order that they occur, and are extracted from this queue in the order that they were queued, there is no guarantee that the Output Documents triggered by these events will complete their processing in the order the events were queued. This means the XML messages may be delivered to the MQSeries queue in an unexpected order. If this behavior is inappropriate, it can be eliminated at the expense of performance by using only one output thread, and by setting the config_Event_QueueDelay configuration parameter to zero.

A similar situation exists with input XML documents. They also cannot be guaranteed to update Oracle Utilities Network Management System in the order that they arrive. This situation can be improved at the expense of performance by limiting each input queue to one thread. It may be possible to eliminate it completely if the interface can be configured to use only one input queue.

Note that trigger events and input XML that affect particular Oracle Utilities Network Management System events, Order Objects, and Relationship Objects are processed in the order that they are queued. These situations are discussed below.

Note, however, that there is an inherent race condition in loosely coupled interfaces (the type implemented by the adapter) that use messages to communicate. Events can occur in Oracle Utilities Network Management System and the MDS that alter the state of Oracle Utilities Network Management System events and MDS orders almost simultaneously and it cannot be predicted whether the change on one system affects the other system first, or vice versa. Paradoxically, this situation can be improved by increasing the rate at which messages are processed, i.e. by increasing the number of threads.

The input, output, and internal threads need to coordinate access to various shared resources. Most of this coordination is invisible on the dml level, but a number of aspects of the coordination are worth consideration when writing dml.

One specific means of coordination is known as a mutex (for mutual exclusion). To access a shared resource that is protected by a mutex, the thread requests the mutex. If the mutex is free, the thread acquires the mutex. If another thread requests the mutex, it blocks (is suspended) until it is free. When the original thread has finished accessing the shared resource, it releases the mutex, making it free. The release unblocks one thread waiting for the mutex. When there is the potential for more than one mutex to be in use, there is a danger of a deadlock if one thread enters the mutexes in a different order from another thread. One a deadlock occurs, neither thread will ever run again.

Each thread runs in a separate environment, with a copy of each relevant document, but needs to share a number of resources. The access to these objects must be properly coordinated to prevent inconsistent access due to multiple threads updating the resource at the same time. These resources and the mechanisms used to prevent inconsistent access are:

	
•

	

The Global Data Object: The update of a single field is atomic (the update will be complete before any other thread can attempt to read or update the field). There is no coordination of updates to multiple fields. To avoid this problem, use a single field.

	
•

	

The Order Object: There is one Order Object for each order that has been created. Access to an individual Order Object is coordinated so that only one document can access the Order Object at one time. When a document in a thread needs to access an Order Object it calls findOrder. When successful, findOrder acquires the order’s mutex, preventing any other thread from accessing the Order Object. The order’s mutex is automatically acquired when the order is created by calling createOrder. The order’s mutex is automatically released in the following cases: when the document processing is terminated, and when findOrder or createOrder is called. This is to prevent deadlocks. A consequence of this is that if a trigger event triggers two Output Documents needing the same order, or two Input Documents are triggered by one input XML message, the state of the order when the second document starts processing is not guaranteed to be the same, because another thread may have altered its state.

	
•

	

The Relationship Object: There is one Relationship Object for each relationship that has been created. Access to an individual Relationship Object is coordinated so that only one document can access the Relationship Object at one time. When a document in a thread needs to access a Relationship Object it calls findRelation. When successful, findRelation acquires the relationship’s mutex, preventing any other thread from accessing the Relationship Object. The relationship’s mutex is automatically acquired when the relationship is created by calling createRelation. The relationship’s mutex is automatically released in the following cases: when the document processing is terminated, and when findRelation or createRelation is called. This is to prevent deadlocks. A consequence of this is that if a trigger event triggers two Output Documents using needing the same relationship, or two Input Documents are triggered by one input XML message, the state of the relationship when the second document starts processing is not guaranteed to be the same, because another thread may have altered its state. In addition, when findOrder or createOrder is called, the mutex for the order’s relationship is automatically acquired. This has the consequence that calling findOrder or createOrder after calling findRelation causes a configuration error if the order is not in the relationship. Similarly, calling findRelation after calling findOrder or createOrder causes a configuration error if the order is not in the relationship. This behavior is necessary to prevent deadlocks.

	
•

	

The current event: SRSoutput message for the same event must be processed in the order that they were sent by SRSService, otherwise the MDS will not receive up to date data. This prevented by a mutex that is acquired before the SRSoutput message is processed, and released automatically when it has been processed.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

DML Function Calls

The importance of meeting the prerequisite specifications for all functions cannot be emphasized too much. If a prerequisite is not met, the adapter will exit with a fatal error message. Some of the prerequisites are written is short form because they are so common. An explanation of how to meet these prerequisites follows:

	
•

	

The current crew is set: The current crew is set by a successful call to the createCrew function, and by any of the findCrew… functions.

	
•

	

The current order is set: the current order is set by the createOrder and findOrder functions.

	
•

	

The current event is set: the current event is set when the current order is set, when an OutputDocument has been triggered by the arrival of an SRSoutput message, and when a call to findEventObject is successful.

	
•

	

The current damage report is set : the current damage report is set by a call to findOrCreateDamage

In addition, access to the E (event), I (incident), O (order) and R (relation) objects will only work if their prerequisites are met. If these are not met, the adapter does not exit, but all accesses fail, meaning no data can be read or written. Their prerequisites are:

	
•

	

E: the current event is set.

	
•

	

I: the current event is set (and it has incidents)

	
•

	

O: the current order is set.

	
•

	

R: the current relation is set by a call to findRelation.

List of Functions

Crew Functions

These functions create and update crews.

createCrew

NAME:

createCrew Create a new crew.

SYNOPSIS:

createCrew(crew ID, crew field, data, [crew field, data], ..)

PARAMETERS:

crew ID The crew ID

crew field The crew field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

Note: If the Crew Icons Window is used make sure that the following crew
fields: crewType, contact, zoneName, zoneHdl, crewCategory, crewCenter, crewSupervisor, are included otherwise the new crew will not appear in the Window.PRE-REQUISITE:

The crew field parameters are valid.

DESCRIPTION:

Create a new crew with the specified information using the Crew::createCrew API. If successful, set the current crew to the new crew.

RETURN VALUE:

True when successful.

False when unsuccessful.

 A crew with the specified crew ID exists. This can be determined by a call to findCrewById().

 The Crew::createCrew() API call fails.

 Note that the current crew is not set if the call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

findCrewById

NAME:

findCrewById Find an active or inactive crew based on its crew ID SYNOPSIS:

findCrewById(crew ID)

crew ID The crew ID.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified crew ID.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

None.

findCrewByExternalKey

NAME:

 findCrewByExternalKey Find an active or inactive crew based on its external key

SYNOPSIS:

 findCrewByExternalKey(externalKey)

externalKeyThe external key.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find the crew with the specified external key.

RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

Error messages are output to the error log.

findCrewByIdSubStr

NAME:

findCrewByIdSubStr Find an active or inactive crew based on a substring of the crew ID

SYNOPSIS:

findCrewByIdSubStr(string)

string A string.

 PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose crew ID contains the string.

RETURN VALUE:

True when successful. The current crew is set to the crew that was found.

False when unsuccessful.

DIAGNOSTICS:

None.

findCrewByExtKeySubStr

NAME:

findCrewByExtKeySubStr Find an active or inactive crew based on a substring of its external key

SYNOPSIS:

 findCrewByExternalKey(string)

stringA string.PRE-REQUISITE:

None .

DESCRIPTION:

Find a crew whose external key contains the string.RETURN VALUE:

True, when successful. The current crew is set to the crew that was found.

False when unsuccessful.DIAGNOSTICS:

Error messages are output to the error log.

updateCrew

NAME:

updateCrew Update the current crew’s information.

SYNOPSIS:

updateCrew(crew field, data, [crew field, data], ..)

PARAMETERS:

crew field The crew’s field to update.

 crewTypecalls Crew::crewType() API

 zoneNamecalls Crew::zoneName() API

 crewSizecalls Crew::crewSize() API

 contactcalls Crew::contact() API

 crewIdcalls Crew::crewId() API

 mobileNumcalls Crew::mobileNum() API

 pagerNumcalls Crew::pagerNum() API

 zoneHdlcalls Crew::zoneHdl() API

 crewCategorycalls Crew::crewCategory() API

 crewCentercalls Crew::crewCenter() API

 crewGroupcalls Crew::crewGroup() API

 crewSupervisorcalls Crew::crewSupervisor() API

 externalKeycalls Crew::externalKey() API

data The data written to the crew field

PRE-REQUISITE:

The current crew is set.

The crew field parameters are valid.

DESCRIPTION:

Update the current crew’s crew field with data and invoke the Crew::commit() API to commit the changes.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The Crew::commit() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

dispatchCrew

NAME:

dispatchCrew Dispatch the current crew to the current order

SYNOPSIS:

dispatchCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is already dispatched to another event, the previous dispatch is changed to an assignment.

Invoke the Crew::dispatch() API for the order’s active event. If the order is aggregated, assign the crew to the other events.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

arriveCrew

NAME:

arriveCrew Update the current crew’s information to reflect that the crew has arrived on site for an order.

SYNOPSIS:

arriveCrew()

arriveCrew(time)

PARAMETERS:

time The time the crew arrived in internal format. If this parameter is notsupplied, the current time is used.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is not dispatched to the order, the crew is dispatched to the order, using the logic described in the description of the ‘dispatchCrew’ function.

If the time is zero or invalid it is set to the current time

Invoke the CrewDispatch::arrived() API for the order’s active event.

RETURN VALUE:

The empty string.DIAGNOSTICS:

Error messages are output to the error log.

assignCrew

NAME:

assignCrew Assign the current crew to the current order

SYNOPSIS:

assignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is dispatched to the order, undispatch it.

Invoke the Crew::assign() API for all events associated with the order.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 unassignCrew

NAME:

unassignCrew Unassign the current crew from the current order

SYNOPSIS:

unassignCrew()

PARAMETERS:

None.

 PRE-REQUISITE:

The current crew is set.

The current order is set.

DESCRIPTION:

If the crew is assigned or dispatched to any events associated with the order, invoke the Crew::unassign() API or Crew::undispatch API, respectively, for the events.

RETURN VALUE:

 The empty string.

DIAGNOSTICS:

Error messages are output to the error log.

 activateCrew

NAME:

activateCrew Change the state of the current crew to active or inactive.

SYNOPSIS:

activateCrew(state)

PARAMETERS:

state The state of the crew

Y Activate the current crew and set it on-shift.

N Deactivate the current crew, set it off-shift, and remove all crew assignments and jobs.

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setActivation() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setActivation() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 availableCrew

NAME:

availableCrew Change the availability of the current crew.

SYNOPSIS:

availableCrew(state)

PARAMETERS:

state The availability of the crew

 Y Make the current crew available.

N Make the current crew unavailable; remove all crew assignments and jobs.

PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::setAvailability() API.

RETURN VALUE:

True when successful.

False when unsuccessful.

 The assignments and jobs cannot be removed from the current crew

 The Crew::setAvailability() API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

 releaseCrews

NAME:

releaseCrews Release all crews from the current order.

SYNOPSIS:

releaseCrews

PARAMETERS:

None.

 PRE-REQUISITE:

Current order is set.

DESCRIPTION:

Undispatch and unassign all crews related to the current order.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 crewActive

NAME:

crewActive Determine if the current crew is active.

SYNOPSIS:

crewActvie()

PARAMETERS:

None

 PRE-REQUISITE:

The current crew is set.

DESCRIPTION:

Invoke Crew::isActive() API.

RETURN VALUE:

True, when the current crew is active.

False, when current crew is not active.

 DIAGNOSTICS:

Error messages are output to the error log.

Code Mapping Tables

The code mapping tables and views are used to translate values in Oracle Utilities Network Management System to and from the equivalent values in the messages to and from the MDS. These tables are cached to improve performance.

loadMapConfigTable

NAME:

loadMapConfigTable Cache the contents of a table supplying information for the mapping tables.

SYNOPSIS:

loadMapConfigTable(table)

PARAMETERS:

table A table name.

PRE-REQUISITE:

None.

DESCRIPTION:

Read and cache table.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

loadMapTable NAME:

loadMapTable Cache the contents of a mapping table.

SYNOPSIS:

loadMapTable(name)

PARAMETERS:

name The name of the mapping table.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Read the contents of name and cache its values.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableStr NAME:

mapTableStr Return a string given its reference code

SYNOPSIS:

mapTableStr(name, code)

PARAMETERS:

name A mapping table name

code A reference code to a string.

PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the string that corresponds to code and return the string. If code is not found, but a default string exists, the default value is returned, otherwise return the empty string.

RETURN VALUE:

The string when successful.

The empty string when code is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

mapTableCode NAME:

mapTableCode Return a code given its reference string

SYNOPSIS:

mapTableCode(name, string)

PARAMETERS:

name A mapping table name

string A string

 PRE-REQUISITE:

The table, name, exists in the database.

DESCRIPTION:

Check if the table, name exists in memory, if not, call loadMapTable to load it.

Look up the code that corresponds to string and return the code. If string is not found, but a default code exists, the default code is returned, otherwise return the empty string.

RETURN VALUE:

The code when successful.

The empty string when string is not found.

 DIAGNOSTICS:

Error messages are output to the error log.

Damage Assessment Functions

These functions creates and updates damage reports.

findOrCreateDamage

NAME:

findOrCreateDamage Create a damage report for an device outage

SYNOPSIS:

findOrCreateDamage(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Load the damage report for event. If no damage report exists for the event, create it.

RETURN VALUE:

True, if the damage report was created.

False, if the damage report existed before the call.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetCrewId NAME:

damageSetCrewId Update the damage report with a crew ID

SYNOPSIS:

damageSetCrewId(crewId)

PARAMETERS:

crewId A crew ID.

PRE-REQUISITE:

The current damage report is set.

DESCRIPTION:

The crew ID field in the damage report is updated with crewId.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetReportTime NAME:

damageSetReportTime Update the damage report with a time

SYNOPSIS:

damageSetReportTime(time)

PARAMETERS:

time A time.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The reported time field in the damage report is updated with time.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetAddress NAME:

damageSetAddress Update the damage report with an Address

SYNOPSIS:

damageSetAddress(Address)

PARAMETERS:

Address An Address.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The Address field in the damage report is updated with Address.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetFeederName NAME:

damageSetFeederName Update the damage report with a feeder name

SYNOPSIS:

damageSetFeederName(feeder name)

PARAMETERS:

feeder name A feeder name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The feeder name field in the damage report is updated with feeder name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetNcg NAME:

damageSetNcg Update the damage report with an ncg

SYNOPSIS:

damageSetNcg(ncg)

PARAMETERS:

ncg An ncg.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The ncg field in the damage report is updated with ncg.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetTransformer NAME:

damageSetTransformer Update the damage report with a transformer

SYNOPSIS:

damageSetTransformer(transformer)

PARAMETERS:

transformer A grid.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetZoneName NAME:

damageSetZoneName Update the damage report with a zone name

SYNOPSIS:

damageSetZoneName(zone name)

PARAMETERS:

zone name A zone name.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The zone name field in the damage report is updated with zone name.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetGrid NAME:

damageSetGrid Update the damage report with a grid number

SYNOPSIS:

damageSetGrid(grid)

PARAMETERS:

grid A grid number.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The grid field in the damage report is updated with grid.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetSection NAME:

damageSetSection Update the damage report with the section affected.

SYNOPSIS:

damageSetSection(section)

PARAMETERS:

section The section affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The section field in the damage report is updated with section.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLocation NAME:

damageSetLocation Update the damage report with the affected location

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

location The affected location.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The location field in the damage report is updated with location.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetPhase NAME:

damageSetPhase Update the damage report with the phases affected

SYNOPSIS:

damageSetLocation(location)

PARAMETERS:

phase The affected phases.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The phase field in the damage report is updated with phase.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetLoadAffected NAME:

damageSetLoadAffected Update the damage report with the affected load.

SYNOPSIS:

damageSetLoadAffected(loadAffected)

PARAMETERS:

loadAffected
The load affected.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The load affected field in the damage report is updated with loadAffected.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetText1 NAME:

damageSetText1 Update a user defined field in the damage report

SYNOPSIS:

damageSetText1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #1 field in the damage report is updated with text.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetOption1 NAME:

damageSetOption1 Update a user defined field in the damage report

SYNOPSIS:

damageSetOption1(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined option #1 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetComment1 NAME:

damageSetComment1 Update the damage report with a comment

SYNOPSIS:

damageSetComment1(text)

PARAMETERS:

text A text.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The comment field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 damageSetText2 NAME:

damageSetText2 Update a user defined field in the damage report

SYNOPSIS:

damageSetText(text)

PARAMETERS:

text A value.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The user defined text #2 field in the damage report is updated with text.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

damageSetType NAME:

damageSetType Update the damage report with the number of affected items

SYNOPSIS:

damageSetType(item, number, accessible)

PARAMETERS:

item The type of item damaged.

number Number of item affected.

accessible Indicate whether the damage is accessible.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

The field containing the number of affected items in the damage report is updated with number and the corresponding accessibility field is updated with accessible

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 saveDamageDetails NAME:

saveDamage Details Save the damage report

SYNOPSIS:

saveDamageDetails()

PARAMETERS:

None.

PRE-REQUISITE:

The current damage report is set

DESCRIPTION:

Save the current damage report.

RETURN VALUE:

 The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Logging

logLocalError NAME:

logLocalError Log an error message to the local log file

SYNOPSIS:

logLocalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logError API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logLocalError("This is an ", @example, " of an ", &error, " message");

logFatalError NAME:

logFatalError Log a fatal error message to the local log file and exit

SYNOPSIS:

logFatalError(text [, text] …)

PARAMETERS:

text Text to include in the error message. Any number of parameters can besupplied.

 PRE-REQUISITE:

None

DESCRIPTION:

Concatenate all the parameters (no spaces are inserted between the parameters).

Invoke the logFatal API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

EXAMPLE:

logFatalError("This is an ", @example, " of a fatal ", &error, " message");

logDebug NAME:

logDebug Log a debug message

SYNOPSIS:

logDebug(level, text)

PARAMETERS:

level The minimum debug level at which to log the message. Zero means always. The debug level of the adapter can be changed by sending it a debug high levelmessage.

text Text to include in the debug message. Any number of parameters can besupplied

PRE-REQUISITE:

None

DESCRIPTION:

Invoke the debug API.

RETURN VALUE:

The empty string.

DIAGNOSTICS:

None.

EXAMPLE:

logDebug(0, "This is an ", @example, " of a ", &debug, " message");

Event Manipulation

These functions read and modify events.

readIncidents NAME:

readIncidents Populate the Incident Object for the current event

SYNOPSIS:

readIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has not been populated previously, and the current event has at least one incident associated with it, invoke the SRS::getIncidents API for the current event.

RETURN VALUE:

The number of incidents in the Incident Object, when successful.

The empty string, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

clearIncidents NAME:

clearIncidents Clear the Incident Object, freeing the memory it uses

SYNOPSIS:

clearIncidents()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

If the Incident Object for the current event has been populated previously, clear it.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

setCaseNoteInfo NAME:

setCaseNoteInfo Set the case notes for the current order

SYNOPSIS:

setCaseNoteInfo(note)

PARAMETERS:

note Text to be entered in the Case Notes.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Invoke the SRS::setCaseNoteInfo API for all the events associated with the order.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

getCaseNotesForEvent NAME:

getCaseNotesForEvent Get the case notes for an event

SYNOPSIS:

getCaseNotesForEvent(event)

PARAMETERS:

event An event handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Invoke the SRS::getCaseNotesForEvent API.

RETURN VALUE:

The case notes for the event when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

setEventInfo NAME:

setEventInfo Set event information for an order.

SYNOPSIS:

setEventInfo(outagefield1, value1, [outagefield2, value2], ...)

PARAMETERS:

outagefield1 The outage field to update/set.

value1 The value to set.

outagefield2 The outage field to update/set.

value2 The value to set.

PRE-REQUISITE:

The database table ‘OUTAGE_FIELD’ must be defined and populated. It contains the valid outage fields that can be used in outagefield.

DESCRIPTION:

Update outagefield[1,2…] with value[1,2…] for event. Multiple outagefields and values updates are supported. The SRS::setFieldInfo(..) API is invoked for all events associated with the order.

RETURN VALUE:

True, when successful.

False when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

completeEvent NAME:

completeEvent Complete all events associated with the current order

SYNOPSIS:

completeEvent()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.DESCRIPTION:

Restore and complete the event(s) associated with the current order.

Because the state of the event changes when the API’s used by this function are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 Could not restore event.

 DIAGNOSTICS:

Error messages are output to the error log.

setGenericField NAME:

setGenericField Update event information for the current order

SYNOPSIS:

setGenericField(field, value, user)

PARAMETERS:

field A field to update.

value A value.

user Who initiated the update.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, update field with value, indicating that user initiated the update.

The SRS API ‘setGenericField()’ is invoked.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

readGenericField NAME:

readGenericField Read information for the current event

SYNOPSIS:

readGenericField(field)

PARAMETERS:

field A field to read.PRE-REQUISITE:

The current event is set. The value of field is a valid generic field name.

DESCRIPTION:

Read the value of field for the current event.

The SRSoutput API ‘getGenericField()’ is invoked.

RETURN VALUE:

The value of field.

 DIAGNOSTICS:

Error messages are output to the error log.

ert NAME:

ert Set the estimated restoration time for the current order

SYNOPSIS:

ert(time)

PARAMETERS:

time The estimated restoration time in internal format.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the SRS:: setEstRestTime() API for all events associated with the current order.

RETURN VALUE:

True, when successful.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowAction NAME:

requestRowAction Press a button for the current event

SYNOPSIS:

requestRowAction(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current event is set.

DESCRIPTION:

Call the TES::requestRowAction API for the current event.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

requestRowActionAll NAME:

requestRowActionAll Press a button for the current order

SYNOPSIS:

requestRowActionAll(table, button)

PARAMETERS:

table The name of the table (work_agenda is most common).

button The name of the button to press.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Call the TES::requestRowAction API for all events associated with the current order.

RETURN VALUE:

True, when the API call succeeds.

False, when the API call fails.

 DIAGNOSTICS:

Error messages are output to the error log.

eventIsActive NAME:

eventIsActive Check that the current order has at least one active event

SYNOPSIS:

eventIsActive()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Determine if the order has at least one active event.

RETURN VALUE:

True, when active.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

confirmDeviceOutage NAME:

confirmDeviceOutage Confirm a device outage for all events associated with the current order.

SYNOPSIS:

confirmDeviceOutage(phases)

PARAMETERS:

phases The phases that are out

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that it is a real device outage. If phases are all the device’s phases, call the SRS::convertPOToRO() API, otherwise open the phases on the device, using the DDS::operateState() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when confirmation is successful.

False, if an API call fails. This will occur if the device has tags which prevent opening the device.

 DIAGNOSTICS:

Error messages are output to the error log.

 confirmServiceOutage NAME:

confirmServiceOutage Confirm a service outage for all events associated with the current order.

SYNOPSIS:

confirmServiceOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order, confirm that the customers described in the incidents read for the event, are individually out using the SRS::updateOutageTimes() API. Note that no outages are created for customers who are not attached to the device (for example a fuzzy call).

Because the state of the event changes when this API is called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

Because this function can create events, lockForEventCreation() should be called if the new events should not have orders created for them. If a pseudo relationship is to be created from the resulting events, it is recommended that createPseudoRelationFromConfirmServiceOutage() as it does not require the use of lockForEventCreation().

SEE ALSO:

createPseudoRelationFromConfirmServiceOutage(), section
createPseudoRelationFromConfirmServiceOutage
, and lockForEventCreation() section
lockForEventCreation

NAME:
.

RETURN VALUE:

The number of customers confirmed, when confirmation is successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

lockForEventCreation NAME:

lockForEventCreation Prevent the processing of new events until the current document is fully processed.

SYNOPSIS:

lockForEventCreation()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Prevent new events from being processed until the current document finishes processing. This is required if a call can cause events, e.g., confirmServiceOutage(), and the new events need to be processed, e.g., by createPseudoRelation(). If possible avoid using this function, because it prevents other threads from processing any changes to events.

SEE ALSO:

confirmServiceOutage(), section
confirmServiceOutage

NAME:
, and createPseudoRelation(), section
createPseudoRelation

NAME:
.

RETURN VALUE:

The empty string.

False, otherwise.

 DIAGNOSTICS:

None.

 restoreOutage NAME:

restoreOutage Restore all events for the current order

SYNOPSIS:

restoreOutage()

PARAMETERS:

None.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

For all events associated with the current order restore the event. If the event is a device outage restore it by closing all of the device’s phases using the DDS::operateState() API. If the event is a service outage, restore it using the SRS::processIndivServUpdate() API.

Because the state of the event changes when these API’s are called, the Event Object is automatically reloaded after the call. This means that the Incident Object will not be populated. If the Incident Object is required, it must be populated using readIncident().

RETURN VALUE:

True, when restoration is successful.

False, if an API fails. This will occur in a device outage if the device has tags which prevent closing the device. This may occur in a service outage if the event has not been acknowledged.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistCompLog NAME:

picklistCompLog Update the database table picklist_completion_log for all the events associated with the current order.

SYNOPSIS:

picklistCompLog(who, reason)

PARAMETERS:

who Who performed the action.

reason What occurred

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, create an entry in the database table ‘picklist_completion_log’ containing who and reason.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

 picklistInfoUpdTr NAME:

picklistInfoUpdTr Update the database table picklist_info_upd_tr for the current order.

SYNOPSIS:

picklistInfoUpdTr(field1, value1, [field2, value2], ..)

PARAMETERS:

field [1,2,..]Fields to update

value [1,2,..]Assignment Values

PRE-REQUISITE:

Current order is set.

DESCRIPTION:

For all events associated with the current order, update the fields with values in the database table ‘picklist_info_upd_tr’.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

Relation Functions

These functions manipulate dml and aggregate relationships.

Where these functions take a type parameter, it must be one of: NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE. (PSEUDO_ NESTED_OUTAGE, MOMENTARY_OUTAGE, PARTIAL_RESTORATION, and RELATED_OUTAGE are valid, but have the same effect as their non-pseudo counterparts).

findRelation NAME:

findRelation Find a dml relation by matching the contents of an relation object field. If found, set the current relation object to the relation found.

SYNOPSIS:

findRelation(type, fieldname, value)

PARAMETERS:

type A relationship type.

fieldname A field name

value A value

PRE-REQUISITE:

The type parameter is valid.

If the current order is set, the current order must be in the relation. (This can be guaranteed by not calling findOrder, or by finding the relation by order’s key event using findRelation(event, $O.event).)

DESCRIPTION:

Find the relation with a type of type whose fieldname has a value of value.

RETURN VALUE:

True, when successful.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelation NAME:

createPseudoRelation Create a pseudo (non-Oracle Utilities Network Management System) relationship.

SYNOPSIS:

createPseudoRelation(type)

PARAMETERS:

type A relationship type.

PRE-REQUISITE:

The current order is set

The type parameter is valid.

The relationship type must have been configured for aggregate processing (this may be changed in a future release).

DESCRIPTION:

Create a pseudo relationship of type among all outage events whose device is that of the current order’s active event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

createPseudoRelationFromConfirmServiceOutage

NAME:

createPseudoRelationFromConfirmServiceOutage Create a pseudo (non-Oracle Utilities Network Management System) relationship from the results of the confirmation of a service outage.

SYNOPSIS:

createPseudoRelationFromConfirmServiceOutage(type)

PARAMETERS:

type
A relationship type.

PRE-REQUISITE:

See confirmServiceOutage, section
confirmServiceOutage

NAME:
 and createPseudoRelation, section
createPseudoRelation

NAME:
.

DESCRIPTION:

Confirm a service outage as described in confirmServiceOutage, section
confirmServiceOutage

NAME:
.

Create a pseudo relationship of type as described in createPseudoRelation, section
createPseudoRelation

NAME:
.

This combined function is recommended rather than calling confirmServiceOutage and then calling createPseudoRelation because:

There is no need to call lockForEventCreation()

If this call is in progress when the adapter exits, it will be completed fully when the adapter restarts.

RETURN VALUE:

The number of customers confirmed, when successful.

False, when unsuccessful.

 No events exist on device.

 The order’s event is already in another relation.

 All the other events on the device are in another relation.

 DIAGNOSTICS:

Error messages are output to the error log.

triggerRelationChanged

NAME:

triggerRelationChanged Trigger all output documents with a RelationChanged trigger.

SYNOPSIS:

triggerRelationChanged(relation)

PARAMETERS:

relation
The relation’s handle. (If the relation has been found, $R.relation gives thisvalue).

PRE-REQUISITE:

There is at least one output document with a RelationChanged trigger.

DESCRIPTION:

For all events in the relation, trigger all output documents with a RelationChanged trigger, with the event’s handle as the trigger argument.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

deleteRelation NAME:

deleteRelation Delete the current relation.

SYNOPSIS:

deleteRelation()

PARAMETERS:

None.

PRE-REQUISITE:

The current relation is set.

DESCRIPTION:

Delete the current relation. After the deletion, there is no current relation.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

Miscellaneous API Functions

classTable

NAME:

classTable Return the class table for a class.

SYNOPSIS:

classTable(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getTable() API. If the table does not exist an empty string is returned.

RETURN VALUE:

The table name, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

getClassDesc

NAME:

getClassDesc Returns a textual description of the Class.

SYNOPSIS:

getClasDesc(class)

PARAMETERS:

class The class number

PRE-REQUISITE:

The class parameter must be an integer.

DESCRIPTION:

Call the ODS::getClassDesc() API. If the class does not exist an empty string is returned.

RETURN VALUE:

The textual description, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log

isCls NAME:

isCls Check if a class is one of classes in a list.

SYNOPSIS:

isCls(class, className1, className2, …)

PARAMETERS:

class A class number.

className1 , className2, …A list of class names.

PRE-REQUISITE:

None

DESCRIPTION:

Read and cache the class numbers for all the className parameters, using the ODS::getClassIndex API.

If class is one of the class numbers, return true, false otherwise.

RETURN VALUE:

True, when class is in the list.

False, when class is not in the list.

 DIAGNOSTICS:

Error messages are output to the error log.

setAlarm NAME:

setAlarm Send an alarm to the WorkAgenda

SYNOPSIS:

setAlarm(deviceHandle, alarmMsg)

PARAMETERS:

deviceHandle A device handle.

alarmMsg A alarm message.

PRE-REQUISITE:

None

DESCRIPTION:

Send an alarmMsg regarding deviceHandle, using the DDS::sendAlarm API.

RETURN VALUE:

None.

 DIAGNOSTICS:

Error messages are output to the error log.

getGuid NAME:

getGuid Return a globally unique id.

SYNOPSIS:

getGuid()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Invokes GatewayUtil::CreateGuid() API.

RETURN VALUE:

The GUID, when successful.

The empty string when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

interfaceUp NAME:

interfaceUp Register the state of the interface

SYNOPSIS:

interfaceUp()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently up. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

interfaceDown NAME:

interfaceDown Register the state of the interface

SYNOPSIS:

interfaceDown()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Register that the interface is currently down. Invoke SMS::registerCallback(), and SMS::registerInterfaceFailed() API.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

sql NAME:

sql Execute a non-select SQL statement

SYNOPSIS:

sql(sqlStatement)

PARAMETERS:

sqlStatement A non-select SQL statement.

PRE-REQUISITE:

None

DESCRIPTION:

Execute sqlStatement using the DBS::sql() API.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

EXAMPLE:

sql("delete from damage_report where event_cls=" + $E.outageHdl.cls +

 " and event_idx=" + $E.outageHdl.idx);

Non API Functions

This set of functions does not use the Oracle Utilities Network Management System API.

isSet

NAME:

isSet Check if a parameter has been set.

SYNOPSIS:

isSet(param)

PARAMETERS:

param The parameter to check.

PRE-REQUISITE:

None

DESCRIPTION:

Check if the param has been set.

RETURN VALUE:

True, if param has been set.

False, if not.

 DIAGNOSTICS:

None.

length NAME:

length Return the number of characters in a string.

SYNOPSIS:

length(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Determine the length of string.

RETURN VALUE:

The length of string.

 DIAGNOSTICS:

None.

substring NAME:

substring Return a sub-string of a value

SYNOPSIS:

substring(string, start, length)

PARAMETERS:

string A string value

start The starting position of the subset in string

length The length of the sub-string to return

PRE-REQUISITE:

None

DESCRIPTION:

Return a subset of string whose size equals length, and starts at position start in string.

If length is less than 1, return the empty string.

If start is zero or positive, it is an offset from the start of string.

If start is negative, it is an offset from the end of string.

If there are less than length characters in string starting at start, return all the characters in string starting at start.

Otherwise return length characters from string starting at start.

RETURN VALUE:

The sub-string

 DIAGNOSTICS:

None.

stringbefore

NAME:

stringbefore Return a sub-string of a string value

SYNOPSIS:

stringbefore(string, stop)

PARAMETERS:

string A string value

stop A string to stop at.

PRE-REQUISITE:

None

DESCRIPTION:

Search string for stop and return all characters before stop. If stop does not exist within string return string

RETURN VALUE:

The sub-string.

 DIAGNOSTICS:

None.

isDigits

NAME:

isDigits Check if the string is made up of digits only

SYNOPSIS:

isDigits(string)

PARAMETERS:

string A string value

PRE-REQUISITE:

None

DESCRIPTION:

Check if string is made up of purely numeric values (i.e. 0 to 9)

RETURN VALUE:

True, if string is all digits.

False, otherwise.

 DIAGNOSTICS:

Error messages are output to the error log.

stringInString

NAME:

stringInString Check to see whether a sub-string exists in another string

SYNOPSIS:

stringInString(string1, string2)

PARAMETERS:

string1 A string value

string2 A string value

PRE-REQUISITE:

None

DESCRIPTION:

Search string2 for string1.

RETURN VALUE:

True, if string1 is found

False, otherwise.

 DIAGNOSTICS:

None.

removeDelim

NAME:

removeDelim Return a substring without the contents contained within thedelimiters, including the delimiters.

SYNOPSIS:

removeDelim(string, start, end)

PARAMETERS:

string A string value

start A starting delimiter

end A end delimiter

PRE-REQUISITE:

None

DESCRIPTION:

Search string for start, remove all characters found between and including start and end. If start is not found return string. If end is not found, return all characters after and including start.

RETURN VALUE:

The sub-string value.

 DIAGNOSTICS:

Error messages are output to the error log.

decodeDateTime

NAME:

decodeDateTime Translate a formatted time string into internal format.

SYNOPSIS:

decodeDateTime(time)

PARAMETERS:

time A time in the format yyyy-mm-ddThh:mm:ss

PRE-REQUISITE:

None

DESCRIPTION:

Return time in internal time format. If time is not in the correct format, return the empty string.

RETURN VALUE:

The time in internal format, when successful.

False. when unsuccessful.

 Format of time is invalid

 DIAGNOSTICS:

Error messages are output to the error log.

formatDateTime

NAME:

formatDateTime Translate a time in internal format into a formatted time string.

SYNOPSIS:

formatDateTime(time)

PARAMETERS:

time A time in internal format.

PRE-REQUISITE:

None

DESCRIPTION:

Format time to yyyy-mm-ddThh:mm:ss. If time is not in internal format, return the empty string.

RETURN VALUE:

The formatted time, when successful.

False. when unsuccessful

 Invalid time supplied.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatDTNow

NAME:

formatDTNow Format the current system time

SYNOPSIS:

formatDTNow()

PARAMETERS:

None.

PRE-REQUISITE:

None

DESCRIPTION:

Return the results of formatDateTime(time()).

RETURN VALUE:

The formatted time.

 DIAGNOSTICS:

None.

 time

NAME:

time Return the current system time

SYNOPSIS:

time()

PARAMETERS:

None

PRE-REQUISITE:

None

DESCRIPTION:

Return the current system time

RETURN VALUE:

The current time, in internal format.

 DIAGNOSTICS:

None.

pause

NAME:

pause Pause evaluation for a period of time

SYNOPSIS:

pause(seconds)

PARAMETERS:

seconds The number of seconds to pause

PRE-REQUISITE:

None

DESCRIPTION:

Pause for seconds.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

 isIn

NAME:

isIn Check if a value exists in a list

SYNOPSIS:

isIn(value, item1, item2, item3, …)

PARAMETERS:

value A value

item1 , item2, item3, …A list of values.

PRE-REQUISITE:

None

DESCRIPTION:

Check item1, item2, item3, … for value.

RETURN VALUE:

True, when value is found.

False, when not found.

 DIAGNOSTICS:

None.

 selectValue

NAME:

selectValue Select a value based on a input string.

SYNOPSIS:

selectValue(string, default, match1, value1, [match2, value2], [match3, value3], …)

PARAMETERS:

string A value to match

default A default value

match[123] A list of values to compare to

value[123] The values to return if a match is found

PRE-REQUISITE:

None

DESCRIPTION:

Search match for string and return the corresponding value. If string is not found return default.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

NOTES:

For large lists, the use of a code mapping table would be more appropriate.

EXAMPLE:

@exp = selectValue(3, None, 1, "hello", 2, "goodbye", 3, "later")

Therefore, string = 3,default = None,match = 1, 2, 3 value = hello, goodbye, later

In this example, @exp = later.

 triggerOutputDoc

NAME:

triggerOutputDoc Trigger an output document

SYNOPSIS:

triggerOutputDoc(doc, trig, [argument1, argument2, …])

PARAMETERS:

doc An output document

trig The name of the trigger to fire.

argument Argument required to triggered the output document.

PRE-REQUISITE:

A document named doc must exist.

There must be an OnRequest trigger named trig in doc.

The number of arguments must match the number of arguments expected by trig.DESCRIPTION:

Validate doc and argument. Queue doc for processing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 sortIncidents

NAME:

sortIncidents Sort the incidents in the current event

SYNOPSIS:

sortIncidents(field1, sort order1, [field2, sort order2, …])

PARAMETERS:

field An incident object field

sort order The order to sort in, ‘asc’ meaning ascending or ‘desc’ meaning descending(this parameter is not case sensitive).

PRE-REQUISITE:

The current event is set.

The fields parameters must be valid incident fields See
Incident Object Fields
, below for the available incident fields.

The order parameters must be valid. If the last order parameter is omitted it defaults to ‘asc’

DESCRIPTION:

Sort the incidents in the current event. When two incidents are compared, the specified fields are compared in the order they appear in the parameter list. If they differ, the incident with the lower value comes first in the list if it has an ascending order, otherwise the incident with the higher value comes first. If the two fields are equal, the sort order depends on the next field in the parameter list. If all fields are equal, the order of the two incidents is undetermined. To force a consistent order, it is recommended that the last field be the ‘getCondHdl’ field which always differ (the newer incident having the larger value).

All comparisons are based on the internal types of the fields, in order to give the expected results. Character data is sorted in lexical order, the case being significant.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

highPriTCCategoriesFromClues

NAME:

highPriTCCategoriesFromClues Return the highest priority trouble code categories from all of the supplied clues.

SYNOPSIS:

highPriTCCategoriesFromClues(clues)

PARAMETERS:

clues The clues to decode

PRE-REQUISITE:

The MDS_HIGH_PRI_CAT table must exist in the database.

DESCRIPTION:

If the MDS_HIGH_PRI_CAT table has not been read, read and cache its contents. This table supplies the priority order for each group in the trouble code.

Decode each clue into it’s group and numeric value

Find the highest priority for each group in all the clues, and assemble these into a composite trouble code.

RETURN VALUE:

The composite trouble code.

 DIAGNOSTICS:

Error messages are output to the error log.

 loadTroubleCodes

NAME:

loadTroubleCodes Cache the trouble codes and their equivalent textual descriptions.

SYNOPSIS:

loadTroubleCodes()

PARAMETERS:

None.

 PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

The trouble codes are cached in-groups using the ‘group_order’ column. For each group the ‘code_num’ column and the ‘short_desc’ column are cached. The ‘code_num’ is used as the trouble codes’ reference code and the ‘short_desc’ is used as the trouble codes’ textual description.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 formatClues

NAME:

formatClues Convert a trouble code into a textual description

SYNOPSIS:

formatClues(trCode)

PARAMETERS:

trCode A trouble code

PRE-REQUISITE:

The table SRS_TROUBLE_CODES exists in the database.

DESCRIPTION:

If the SRS_TROUBLE_CODES table has not been read, read and cache its contents by calling loadTroubleCodes().

Convert each digit in trCode to its equivalent textual description. Concatenate the descriptions.

RETURN VALUE:

The textual description.

 DIAGNOSTICS:

None.

 phaseStr

NAME:

phaseStr Convert a set of phases in internal bitmap format to a textual representation.

SYNOPSIS:

phaseStr(phases)

PARAMETERS:

phases The phases in internal bitmap format.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the phase bits into ‘ABC’ format. If the bit for a phase is not set, do not include its letter.

RETURN VALUE:

The textual representation.

 DIAGNOSTICS:

None.

 phaseInt

NAME:

phaseInt Convert a set of phases in a textual representation to an internal bitmap format.

SYNOPSIS:

phaseInt(phases)

PARAMETERS:

phases A textual representation of the phases.

PRE-REQUISITE:

None

DESCRIPTION:

Convert the textual phase in ‘ABC’ format to its internal bitmap format.

RETURN VALUE:

The internal bitmap format.

 DIAGNOSTICS:

None.

 setTimeout

NAME:

setTimeout Set a time out to call a function

SYNOPSIS:

setTimeout(name, wait, function)

PARAMETERS:

name The name of the time out.

wait The time to wait, in seconds.

function The function to call at when the time expires.

PRE-REQUISITE:

The wait parameter must be an integer greater than zero.

The function parameter must be a function call.

DESCRIPTION:

If there is an un-expired timeout with the same name, do nothing.

Evaluate all the parameters of the function, if any.

Start a timeout with the specified name.

Call the function when the timeout expires (unless cancelled by cancelTimeout()).

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

cancelTimeout

NAME:

cancelTimeout Cancel a timeout.

SYNOPSIS:

cancelTimeout(name)

PARAMETERS:

name The name of the timeout to cancel.

PRE-REQUISITE:

None

DESCRIPTION:

If there is a timeout with the specified name, cancel it, preventing the timeout’s function from being called, otherwise, do nothing.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

createOrder

NAME:

createOrder Create an order.

SYNOPSIS:

createOrder()

PARAMETERS:

None.

PRE-REQUISITE:

The current event is set(usually due to the arrival of an SRSoutput message).

The current event must not be associated with another order. This can be determined by a call to findOrder(event, $E.outageHdl).

If the current relation is set, the current event must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the relation by relation’s key event using findRelation(event, $E.outageHdl.)

DESCRIPTION:

Create the order’s row in the MDS_ORDER table, and associate the event with the order.

Populate internal data structures for the order.

Set the current order to the order created.

RETURN VALUE:

True if successful.

False if unsuccessful (current event already associated with another order).

 DIAGNOSTICS:

Error messages are output to the error log.

 findOrder

NAME:

findOrder Find an order by matching the contents of an order object field. If found, set the current order object to the order found.

SYNOPSIS:

findOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

If the current relation is set, the order must be in the relation. (This can be guaranteed by not calling findRelation, or by finding the order from the relation’s key event, using findOrder(event, $R.event).)

DESCRIPTION:

Search for an order with a field whose value is value.

If found, set the current order object to the order that was found and return true.

If none is found, return false.

haveOrder

NAME:

haveOrder Determine if there is an order matching the contents of an order object field, without entering any mutexes.

SYNOPSIS:

haveOrder(field, value)

PARAMETERS:

field An order object field name.

value The value to match

PRE-REQUISITE:

The field parameter must be a valid order field name.

DESCRIPTION:

Search for an order with a field whose value is value.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 completeOrder NAME:

completeOrder Complete the current order, making it no longer active.

SYNOPSIS:

completeOrder(text)

PARAMETERS:

text A description of the why the order is complete. For example, the order couldhave been cancelled or completed by the crew.

PRE-REQUISITE:

The current order is set.

DESCRIPTION:

Complete the order by setting its ‘active’ column to ‘N’, its ‘when_completed’ column to the current time, and setting its ‘comp_reason’ column to text in MDS_ORDER table. Clear all data structures relating to the order.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

haveEventOrder NAME:

haveEventOrder Determine whether these is an order for an event.

SYNOPSIS:

haveEventOrder(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Determine whether there is an order for the event handle is event.

RETURN VALUE:

True, if the event has an order.

False, if the event does not have an order.

 DIAGNOSTICS:

None.

findEventObject NAME:

findEventObject Find the External Event Object for an event.

SYNOPSIS:

findEventObject(event)

PARAMETERS:

event The event’s handle.

PRE-REQUISITE:

None.

DESCRIPTION:

Find the event object whose handle is event. If successful, make it the current event.

RETURN VALUE:

True, when successful.

False, when unsuccessful.

 DIAGNOSTICS:

Error messages are output to the error log.

 setDocValue

NAME:

setDocValue Change the value of an element, attribute or variable in an active document

SYNOPSIS:

setDocValue(object, doc, name, value)

PARAMETERS:

object The object identifier character for the object that holds the active document.Currently only ‘O’, the order object, is available.

doc The name of the document

name The alternate name of the entity whose value is to be set.

value The value to set the entity to.

PRE-REQUISITE:

object must be a valid object identifier, and it must be a current object (for example, use findOrder()).

doc must be a associated with the object.

name must be the alternate name of an entity in doc.

DESCRIPTION:

Find the active document doc in the current object.

In the document set the entity named name to value.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

Error messages are output to the error log.

 printEvntCrew NAME:

printEvntCrew Print the current assignments/dispatches of crews to orders to the log.

SYNOPSIS:

printEvntCrew()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Print the crews assigned and dispatched to all orders to the log.

RETURN VALUE:

The empty string.

 DIAGNOSTICS:

None.

xml NAME:

xml Return the current input xml document, if any.

SYNOPSIS:

xml()

PARAMETERS:

None.

PRE-REQUISITE:

None.

DESCRIPTION:

Return the current input document, or the empty string, if none.

RETURN VALUE:

The current input xml document, if any.

The empty string, when an input xml document in not being processed.

 DIAGNOSTICS:

None.

Event Object Fields

These are the fields available in the external event object ‘E’. For each field the equivalent SRSoutput data field is listed.

	

Field Name

	

SRSoutput Data Fields

	

alarmHdl

	

SRSoutput::alarmHdl

	

devHdl

	

SRSoutput::devHdl

	

feederHdl

	

SRSoutput::feederHdl

	

outageHdl

	

SRSoutput::outageHdl

	

oldEvent

	

SRSoutput::oldEvent

	

condHdl

	

SRSoutput::condHdl

	

extraDevHdl

	

SRSoutput::extraDevHdl

	

devClsName

	

SRSoutput::devClsName

	

incidentType

	

SRSoutput::incidentType

	

description

	

SRSoutput::description

	

cause

	

SRSoutput::cause

	

preferredAlias

	

SRSoutput::perferredAlias

	

troubleCode

	

SRSoutput::troubleCode

	

troubleQueue

	

SRSoutput::troubleQueue

	

office

	

SRSoutput::office

	

circuit

	

SRSoutput::circuit

	

district

	

SRSoutput::district

	

dispAddress

	

SRSoutput::dispAddress

	

addrBuilding

	

SRSoutput::addrBuilding

	

addrStreet

	

SRSoutput::addrStreet

	

addrCity

	

SRSoutput::addrCity

	

city

	

SRSoutput::city

	

status

	

SRSoutput::status

	

feeder

	

SRSoutput::feeder

	

tags

	

SRSoutput::tags

	

est_source

	

SRSoutput::est_source

	

comment

	

SRSoutput::comment

	

devCode

	

SRSoutput::devCode

	

externId

	

SRSoutput::externId

	

crewId

	

SRSoutput::crewId

	

supplyNodeDevice

	

SRSoutput::supplyNodeDevice

	

supplyNodeIndexes

	

SRSoutput::supplyNodeIndexes

	

leafNcgs

	

SRSoutput::leafNcgs

	

numLeafNcgs

	

SRSoutput::numLeafNcgs

	

actionIDs

	

SRSoutput::actionIDs

	

numActionsIDs

	

SRSoutput::numActionsIDs

	

outageTime

	

SRSoutput::outageTime

	

firstIncTime

	

SRSoutput::firstIncTime

	

firstIncTimeStr

	

SRSoutput::firstIncTimeStr

	

estRestTime

	

SRSoutput::estRestTime

	

estRestTimeStr

	

SRSoutput::estRestTimeStr

	

estAssessTime

	

SRSoutput::estAssessTime

	

complete_time

	

SRSoutput::complete_time

	

job_complete_time

	

SRSoutput::job_complete_time

	

msgType

	

SRSoutput::msgType

	

validStateKey

	

SRSoutput::validStateKey

	

prevStateKey

	

SRSoutput::prevStateKey

	

stateValue

	

SRSoutput::stateValue

	

condStatus

	

SRSoutput::condStatus

	

condPhases

	

SRSoutput::condPhases

	

customersOut

	

SRSoutput::customersOut

	

typeMask

	

SRSoutput::typeMask

	

partition

	

SRSoutput::partition

	

ncg

	

SRSoutput::ncg

	

appliedRule

	

SRSoutput::appliedRule

	

priority

	

SRSoutput::priority

	

custCall

	

SRSoutput::custCall

	

pri_w

	

SRSoutput::pri_w

	

pri_sw

	

SRSoutput::pri_sw

	

pri_p

	

SRSoutput::pri_p

	

pri_e

	

SRSoutput::pri_e

	

custCrit

	

SRSoutput::custCrit

	

crit_1

	

SRSoutput::crit_1

	

crit_2

	

SRSoutput::crit_2

	

crit_3

	

SRSoutput::crit_3

	

crit_tot

	

SRSoutput::crit_tot

	

revenue

	

SRSoutput::revenue

	

numSndDev

	

SRSoutput:: numSndDev

	

numSupplied

	

SRSoutput::numSupplied

	

outageRef

	

SRSoutput::outageRef

	

oldCondID

	

SRSoutput::oldCondID

	

sort_col_1

	

SRSoutput::sort_col_1

	

sort_col_2

	

SRSoutput::sort_col_2

	

sort_col_3

	

SRSoutput::sort_col_3

	

sort_col_4

	

SRSoutput::sort_col_4

	

sort_col_5

	

SRSoutput::sort_col_5

	

sort_col_6

	

SRSoutput::sort_col_6

	

sort_col_7

	

SRSoutput::sort_col_7

	

sort_col_8

	

SRSoutput::sort_col_8

	

sort_col_9

	

SRSoutput::sort_col_9

	

life_support

	

SRSoutput::life_support

	

outage_type

	

SRSoutput::outage_type

	

old_outage_type

	

SRSoutput::old_outage_type

	

group_type

	

SRSoutput::group_type

	

messages

	

SRSoutput::messages

	

customer_phone

	

SRSoutput::customer_phone

	

numb

	

SRSoutput::numb

	

inc_outage

	

SRSoutput::inc_outage

	

devAlias

	

SRSoutput::devAlias

	

customerName

	

SRSoutput::customerName

	

rule_set

	

SRSoutput::rule_set

	

crit_k

	

SRSoutput::crit_k

	

crit_c

	

SRSoutput::crit_c

	

crit_d

	

SRSoutput::crit_d

	

from_str

	

SRSoutput::from_str

	

mergedEvents

	

SRSoutput::mergedEvent

	

numMerged

	

SRSoutput::numMerged

	

hasClue

	

SRSoutput::hasClue

	

ctrlZoneHdl1

	

SRSoutput::ctrlZoneHdl1

	

ctrlZoneHdl2

	

SRSoutput::ctrlZoneHdl2

	

ctrlZoneHdl3

	

SRSoutput::ctrlZoneHdl3

	

ctrlZoneHdl4

	

SRSoutput::ctrlZoneHdl4

	

ctrlZoneHdl5

	

SRSoutput::ctrlZoneHdl5

	

ctrlZoneHdl6

	

SRSoutput::ctrlZoneHdl6

	

ctrlZoneName1

	

SRSoutput::ctrlZoneName1

	

ctrlZoneName2

	

SRSoutput::ctrlZoneName2

	

ctrlZoneName3

	

SRSoutput::ctrlZoneName3

	

ctrlZoneName4

	

SRSoutput::ctrlZoneName4

	

ctrlZoneName5

	

SRSoutput::ctrlZoneName5

	

ctrlZoneName6

	

SRSoutput::ctrlZoneName6

	

who_responsible

	

SRSoutput::who_responsible

	

who_completed

	

SRSoutput::who_completed

	

resp_modify_time

	

SRSoutput:: resp_modify_time

	

xRef

	

SRSoutput::xRef

	

yRef

	

SRSoutput::yRef

	

highestIncPri

	

SRSoutput::highestIncPri

	

referralGroup

	

SRSoutput::referralGroup

	

who

	

SRSoutput::who

	

firstCrewTime

	

SRSoutput::firstCrewTime

	

additionalDevHdls

	

SRSoutput::additionalDevHdls

	

additionalCondHdls

	

SRSoutput::additionalCondHdls

	

relatedEvents

	

SRSoutput::relatedEvents

	

additionalCondStatuses

	

SRSoutput::additionalCondStatuses

	

numAdditional

	

SRSoutput::numAdditional

	

numRelated

	

SRSoutput::numRelated

	

maxNum

	

SRSoutput::maxNum

	

maxNumRelated

	

SRSoutput::maxNumRelated

	

routeId

	

SRSoutput::routeId

	

repair_minutes

	

SRSoutput::repair_minutes

	

crew_eta

	

SRSoutput::crew_eta

	

sheetNums

	

SRSoutput::sheetNums

	

generic_col_1

	

SRSoutput::generic_col_1

	

related_event

	

SRSoutput::related_event

	

related_type

	

SRSoutput::related_type

Incident Object Fields

These are the fields available in the external incident object ‘I’ and for sorting incidents. For each field the equivalent Incident data access function is listed.

	

Incident Field Name

	

Function Call

	

getGroupingFlag

	

Incident::getGroupingFlag()

	

getMessages

	

Incident::getMessages()

	

getClosestMeshNode

	

Incident::getClosestMeshNode()

	

getHdl

	

Incident::getHdl()

	

getSnd

	

Incident::getSnd()

	

getCondHdl

	

Incident::getCondHdl()

	

getPartition

	

Incident::getPartition()

	

getPhases

	

Incident::getPhases()

	

getCondStatus

	

Incident::getCondStatus()

	

getEvent

	

Incident::getEvent()

	

getPriority

	

Incident::getPriority()

	

getType

	

Incident::getType()

	

getClue

	

Incident::getClue()

	

getBitmask

	

Incident::getBitmask()

	

getTotalPriority

	

Incident::TotalPriority()

	

getLifeSupportCode

	

Incident::getLifeSupportCode()

	

getCriticalCustomer

	

Incident::getCriticalCustomer()

	

getCallCancelInd

	

Incident::getCallCancelInd()

	

getCallbackLateInd

	

Incident::getCallbackLateInd()

	

getTcode

	

Incident::getTcode()

	

getTroubleQueue

	

Incident::getTroubleQueue()

	

getShortDesc

	

Incident::getShortDesc()

	

getDrvInst

	

Incident::getDrvInst()

	

getCID

	

Incident::getCID()

	

getCustomerName

	

Incident::getCustomerName()

	

getCtype

	

Incident::getCtype()

	

getAddrBuilding

	

Incident::getAddrBuilding()

	

getAddrStreet

	

Incident::getAddrStreet()

	

getAddrCity

	

Incident::getAddrCity()

	

getOrderNumber

	

Incident::getOrderNumber()

	

getGenernalArea

	

Incident::getGeneralArea()

	

getMeterId

	

Incident::getMeterId()

	

getDeviceAlias

	

Incident::getDeviceAlias()

	

getNcg

	

Incident::getNcg()

	

getExternalId

	

Incident::getExternalId()

	

getInputTime

	

Incident::getInputTime()

	

getCallbackRequest

	

Incident::getCallbackRequest()

	

getCallbackDataTime

	

Incident::getCallbackDataTime()

	

getOpComment

	

Incident::getOpComment()

	

getCustomerPhone

	

Incident::getCustomerPhone()

	

alternatePhone

	

Incident::alternatePhone()

	

userName

	

Incident::userName()

	

getXRef

	

Incident::getXRef()

	

getYRef

	

Incident::getYRef()

	

getExternallySent

	

Incident::getExternallySent()

	

getAONFlag

	

Incident::getAONFlag()

	

getROCFlag

	

Incident::getROCFlag()

	

active

	

Incident::active()

Permanent Order Object Fields

These are the fields that are always available in the external order object ‘O’. These fields are read- only. The contents of each field are listed.

	

Incident Field Name

	

Contents

	

order

	

The order’s Handle

	

event

	

The order’s key event Handle

	

eventless

	

A boolean indicating that the order has lost all it’s events. This is true for a period between the time the key event became non-existent and the time the order is completed, often as a result of an EventNonexistent trigger triggering an Output Document that completes the order.

Permanent Relationship Object Fields

These are the fields that are always available in the external relationship object ‘O’. These fields are read-only. The contents of each field are listed.

	

Incident Field Name

	

Contents

	

relation

	

The relationship’s Handle

	

event

	

The relationship’s key (parent) event Handle

	

type

	

The relationship’s type

	

Active

	

A boolean indicating that the relationship is active. This is false for a period between the time the relationship was deleted in Oracle Utilities Network Management System and the time the relation is deleted, often as a result of a RelationDeleted trigger triggering an Output Document that deletes the relation.

SCADA Measurements

This chapter includes the following topics:

	
•

	

Introduction to scadapop

	
•

	

Configuration

	
•

	

Recaching Measurements

	
•

	

Information Model

Introduction to scadapop

The Oracle Utilities Network Management System (NMS) can accept updates from a variety of external (outside) Supervisory Control And Data Acquisition (SCADA) systems. Multiple external SCADA systems can be connected to a single NMS instance. If necessary a different adapter can be used for each external SCADA a utility wishes to connect to. For example one SCADA system might use the ICCPAdapter, one the generic NMS SCADA adapter (RTAdapter) another might use a project specific or custom SCADA adapter. In all cases the NMS objects and attributes that can be updated from each external SCADA adapter must be defined before NMS can accept input from these SCADA systems. This section describes one mechanism for populating the necessary configuration tables with objects and attribute information so the SCADA adapter can pass information into NMS.

Configuration

RDBMS Configuration

Tables involved:

	
•

	

scada_measurements_st : standard SCADA measurements configuration table. This is a staging table used by DDService for populating the production SCADA measurement tables.

	
•

	

digital_measurements: production SCADA measurements table for digital measurements. Only DDService should write to this table.

	
•

	

analog_measurements : production SCADA measurements table for analog measurements. Only DDService should write to this table.

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_points : optional model build attribute table that is used by the scadapop executable - to help populate the scada_measurements_st staging table. If you want to use scadapop - you need to populate the scada_points table.

Note: The scada_points table only needs to be populated if using scadapop. It is normally populated via device class driven attribute population during the model build process.

To configure the standard SCADA input RDBMS staging table (scada_measurements_st) using scadapop follow the following steps:

Specify which model devices have SCADA (via scada_points table. The scada_points table is generally populated via attribute population during model build construction/update but can be populated after the fact by a custom (project specific) process. A generalization is made that each defined "SCADA" provides a consistent set of attributes for a given NMS object. For example SCADA_A might be defined to always provide a digital "status" and 3 analog values - A_Phase_Amps, B_Phase_Amps and C_Phase_Amps. SCADA_B might be defined to always provide digital "status" and 6 analog values. This generalization is made to simplify configuration. It is generally acceptable if the external SCADA system does not actually provide all SCADA measurements for all configured points - within reason - to simplify configuration.

There are generally two options for populating the scada_points table:

	
1.

	

Populate scada_points RDBMS table via model build device attribute configuration.

This option involves populating two attributes in the scada_points table:

	
•

	

scada_name : the name of the SCADA, as defined in scada_ids.scada_name (for example, RTAdapter).

	
•

	

rtu_alias : SCADA unique identifier for reporting field device.

	

	

The rtu_alias must only be unique within a particular SCADA (scada_name). An individual rtu_alias may well report multiple analog values (AMP, VOLT, KVAR, etc.) as well as digital and/or status values.

To set up the scada_points table as a standard Network Management System attribute table generally involves the following RDBMS tables:

	
•

	

device_attributes : generic model build attribute configuration table.

	
•

	

scada_points : SCADA project specific attribute table.

	
2.

	

Populate the scada_points RDBMS table via a project specific (post model build) process. This might involve selecting all the devices of a specific class from the alias_mapping table - for example.

Once the scada_points table is populated, the scadapop program can be used to expand the information in the scada_points table to fully populate the more generic scada_measurements_st staging table (see notes below for how to use scadapop).

Note: A given "field device" corresponds to a given scada_points.rtu_alias and would typically be a breaker of some kind (often reporting both device status and multiple analog values). It could also be a transformer reporting analog values with or without status or some other class of device with SCADA data.

Below are two example device_attributes table entries to support population of the scada_points table via standard model build attribute population (option 1 above). For more information on this process, please consult the Network Management System Model Build process documentation. These are examples only.

INSERT INTO device_attributes (

DEVICE_CLS,

ATTR_NAME,

TABLE_NAME,

COLUMN_NAME,

ATTR_TYPE,

LENGTH,

REQUIRED,

MAINTENANCE

) VALUES (

143, 'Rtu_Id', 'scada_points', 'rtu_alias', 3,

 32, 'N', 'Y');

COMMIT WORK;

INSERT INTO device_attributes (

DEVICE_CLS,

ATTR_NAME,

TABLE_NAME,

COLUMN_NAME,

ATTR_TYPE,

LENGTH,

REQUIRED,

MAINTENANCE

) VALUES (

143, 'Rtu_Desc', 'scada_points', 'scada_name', 3,

32, 'N', 'Y');

COMMIT WORK;

Example data field explanation:

143 Class of device which may report SCADA data. + project specific

scada_points Attribute table to populate.

Rtu_Id Attribute id as appears in *.mb file for device.

 + project specific - SCADA device id (rtu_alias).

rtu_alias scada_points column to populate with Rtu_Id value.

Rtu_Desc Attribute id as appears in *.mb file for device.

 + project specific - SCADA system name (scada_name).

scada_name scada_points column to populate with Rtu_Desc value.

3 Data type of string (ASCII field); always set to 3 for a string

32 Maximum length of this attribute string (bytes)

 + project specific per scada_id len for SCADA.

'N' Required attribute

 + project specific - generally (N)o.

 'Y' Set to Y for model builder maintenance. Set this to "Y" if you want the Model Builder to maintain this table via the incremental model build process.

Once the scada_points table is populated the scadapop program can be used to expand this information to fully populate the more generic (required) scada_measurements_st staging table.

Run scadapop -h to get command line options. In general:

	
•

	

scadapop [-debug [n]] -partition <n> -initFile <file>

	
•

	

debug <n> - Turns debug on <to level n>

	
•

	

partition n - Populate partition n (0 = all partitions)

	
•

	

initFile - file - rti.dat initialization file (see below)

The rti.dat file is the configuration file used by the scadapop program. Based on data in this file, and entries in the scada_points table, scadapop populates the standard SCADA configuration (RDBMS) staging table:

	
•

	

scada_measurements_st

The scada_points table contains a record (row) for each device in the Network Management System model that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name" keyword in this configuration file. Where there is a match a row is populated in the scada_measurements_st staging table for each defined attribute.

	
•

	

Each defined Digital attribute for a given SCADA_Name has a measurement_type of "D" in the scada_measurements_st table.

	
•

	

Each defined Analog attribute for a given SCADA_Name has a measurement_type of "A" in the scada_measurements_st table.

The syntax rules for the rti.dat file are:

	
•

	

Lines with a leading # are treated as comments (ignored).

	
•

	

Leading blank space is ignored.

	
•

	

Only the first two non-blank tokens on a line are recognized.

	
•

	

The remaining tokens are treated as comments (ignored).

	
•

	

Blank lines ok. (ignored)

	
•

	

Attributes are associated to last defined SCADA_Name.

The following keywords exist - they must match EXACTLY:

	
•

	

SCADA_Name:

	
•

	

Analog:

	
•

	

Digital:

Note: The colon ":" character is a keyword delimiter. The colon must appear as the first character after the keyword in order for the keyword to be recognized.

Example rti.dat file:

SCADA_Name: USA

Digital: status (Switch Position or "Status")

Analog: Amps_A

Analog: Amps_B

Analog: Amps_C

Analog: Volts_A

Analog: Volts_B

Analog: Volts_C

Example scadapop commands:

scadapop -partition 0 -initFile ${CES_DATA_FILES}/OPAL_rti.dat

scadapop -partition 3111 -initFile rti.dat -debug

Configuration

RDBMS Configuration

Tables involved:

	
•

	

scada_measurements_st : standard SCADA measurements configuration table. This is a staging table used by DDService for populating the production SCADA measurement tables.

	
•

	

digital_measurements: production SCADA measurements table for digital measurements. Only DDService should write to this table.

	
•

	

analog_measurements : production SCADA measurements table for analog measurements. Only DDService should write to this table.

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_points : optional model build attribute table that is used by the scadapop executable - to help populate the scada_measurements_st staging table. If you want to use scadapop - you need to populate the scada_points table.

Note: The scada_points table only needs to be populated if using scadapop. It is normally populated via device class driven attribute population during the model build process.

To configure the standard SCADA input RDBMS staging table (scada_measurements_st) using scadapop follow the following steps:

Specify which model devices have SCADA (via scada_points table. The scada_points table is generally populated via attribute population during model build construction/update but can be populated after the fact by a custom (project specific) process. A generalization is made that each defined "SCADA" provides a consistent set of attributes for a given NMS object. For example SCADA_A might be defined to always provide a digital "status" and 3 analog values - A_Phase_Amps, B_Phase_Amps and C_Phase_Amps. SCADA_B might be defined to always provide digital "status" and 6 analog values. This generalization is made to simplify configuration. It is generally acceptable if the external SCADA system does not actually provide all SCADA measurements for all configured points - within reason - to simplify configuration.

There are generally two options for populating the scada_points table:

	
1.

	

Populate scada_points RDBMS table via model build device attribute configuration.

This option involves populating two attributes in the scada_points table:

	
•

	

scada_name : the name of the SCADA, as defined in scada_ids.scada_name (for example, RTAdapter).

	
•

	

rtu_alias : SCADA unique identifier for reporting field device.

	

	

The rtu_alias must only be unique within a particular SCADA (scada_name). An individual rtu_alias may well report multiple analog values (AMP, VOLT, KVAR, etc.) as well as digital and/or status values.

To set up the scada_points table as a standard Network Management System attribute table generally involves the following RDBMS tables:

	
•

	

device_attributes : generic model build attribute configuration table.

	
•

	

scada_points : SCADA project specific attribute table.

	
2.

	

Populate the scada_points RDBMS table via a project specific (post model build) process. This might involve selecting all the devices of a specific class from the alias_mapping table - for example.

Once the scada_points table is populated, the scadapop program can be used to expand the information in the scada_points table to fully populate the more generic scada_measurements_st staging table (see notes below for how to use scadapop).

Note: A given "field device" corresponds to a given scada_points.rtu_alias and would typically be a breaker of some kind (often reporting both device status and multiple analog values). It could also be a transformer reporting analog values with or without status or some other class of device with SCADA data.

Below are two example device_attributes table entries to support population of the scada_points table via standard model build attribute population (option 1 above). For more information on this process, please consult the Network Management System Model Build process documentation. These are examples only.

INSERT INTO device_attributes (

DEVICE_CLS,

ATTR_NAME,

TABLE_NAME,

COLUMN_NAME,

ATTR_TYPE,

LENGTH,

REQUIRED,

MAINTENANCE

) VALUES (

143, 'Rtu_Id', 'scada_points', 'rtu_alias', 3,

 32, 'N', 'Y');

COMMIT WORK;

INSERT INTO device_attributes (

DEVICE_CLS,

ATTR_NAME,

TABLE_NAME,

COLUMN_NAME,

ATTR_TYPE,

LENGTH,

REQUIRED,

MAINTENANCE

) VALUES (

143, 'Rtu_Desc', 'scada_points', 'scada_name', 3,

32, 'N', 'Y');

COMMIT WORK;

Example data field explanation:

143 Class of device which may report SCADA data. + project specific

scada_points Attribute table to populate.

Rtu_Id Attribute id as appears in *.mb file for device.

 + project specific - SCADA device id (rtu_alias).

rtu_alias scada_points column to populate with Rtu_Id value.

Rtu_Desc Attribute id as appears in *.mb file for device.

 + project specific - SCADA system name (scada_name).

scada_name scada_points column to populate with Rtu_Desc value.

3 Data type of string (ASCII field); always set to 3 for a string

32 Maximum length of this attribute string (bytes)

 + project specific per scada_id len for SCADA.

'N' Required attribute

 + project specific - generally (N)o.

 'Y' Set to Y for model builder maintenance. Set this to "Y" if you want the Model Builder to maintain this table via the incremental model build process.

Once the scada_points table is populated the scadapop program can be used to expand this information to fully populate the more generic (required) scada_measurements_st staging table.

Run scadapop -h to get command line options. In general:

	
•

	

scadapop [-debug [n]] -partition <n> -initFile <file>

	
•

	

debug <n> - Turns debug on <to level n>

	
•

	

partition n - Populate partition n (0 = all partitions)

	
•

	

initFile - file - rti.dat initialization file (see below)

The rti.dat file is the configuration file used by the scadapop program. Based on data in this file, and entries in the scada_points table, scadapop populates the standard SCADA configuration (RDBMS) staging table:

	
•

	

scada_measurements_st

The scada_points table contains a record (row) for each device in the Network Management System model that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name" keyword in this configuration file. Where there is a match a row is populated in the scada_measurements_st staging table for each defined attribute.

	
•

	

Each defined Digital attribute for a given SCADA_Name has a measurement_type of "D" in the scada_measurements_st table.

	
•

	

Each defined Analog attribute for a given SCADA_Name has a measurement_type of "A" in the scada_measurements_st table.

The syntax rules for the rti.dat file are:

	
•

	

Lines with a leading # are treated as comments (ignored).

	
•

	

Leading blank space is ignored.

	
•

	

Only the first two non-blank tokens on a line are recognized.

	
•

	

The remaining tokens are treated as comments (ignored).

	
•

	

Blank lines ok. (ignored)

	
•

	

Attributes are associated to last defined SCADA_Name.

The following keywords exist - they must match EXACTLY:

	
•

	

SCADA_Name:

	
•

	

Analog:

	
•

	

Digital:

Note: The colon ":" character is a keyword delimiter. The colon must appear as the first character after the keyword in order for the keyword to be recognized.

Example rti.dat file:

SCADA_Name: USA

Digital: status (Switch Position or "Status")

Analog: Amps_A

Analog: Amps_B

Analog: Amps_C

Analog: Volts_A

Analog: Volts_B

Analog: Volts_C

Example scadapop commands:

scadapop -partition 0 -initFile ${CES_DATA_FILES}/OPAL_rti.dat

scadapop -partition 3111 -initFile rti.dat -debug

Recaching Measurements

To load the SCADA measurements staging table into the production (run-time) SCADA measurements tables, the following command must be run:

UpdateDDS -recacheMeasurements

When this command is invoked, DDService will merge the scada_measurements_st table into the analog_measurements and digital_measurements tables (adding and removing rows as necessary) and load the updated analog_measurements and digital_measurements tables into memory.

When new measurements are added, all fields in the production measurements table are populated from the staging table.

When existing measurements are updated, all fields are copied from the staging table except the following columns because these columns can contain operator entered data (operator override values for example) - and should not be overwritten. Indeed this is the primary reason for using the staging table - to avoid overwriting these run-time columns:

	
•

	

QUALITY

	
•

	

VALUE

	
•

	

ACTIVE

Information Model

Database Schema

SCADA_IDS Database Table

The schema for this table is defined in ces_schema_scada.sql file.

The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_IDS

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "SCADA source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR2(32)

	

Name for the SCADA source

	

ADAPTER_TYPE

	

VARCHAR2(32)

	

Adapter type for this SCADA source.

	

ACTIVE

	

VARCHAR2(1)

	

Is the adapter active (Y/N)

SCADA_POINTS Database Table

The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network Management System operations database that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name:" keyword in the rti.dat configuration file (see notes above for example rti.dat population). Where there is a match, a row is populated in the appropriate (digital or analog) measurements table for each defined attribute.

The SCADA_POINTS table is normally populated via device driven attribute population during the model build process. It is a staging table for the RTI population process. It is not accessed during adapter execution.

The schema for this table can be found in the file ces_retain_scada.sql

SCADA_POINTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

SCADA_NAME

	

VARCHAR2(32)

	

SCADA system name (Rtu_Desc)

	

RTU_ALIAS

	

VARCHAR2(32)

	

SCADA point name (Rtu_Id)

	

PARTITION

	

INTEGER

	

Partition of this object

	

BIRTH

	

DATE

	

Date object activated into the model

	

BIRTH_PATCH

	

INTEGER

	

Patch which activated this object

	

DEATH

	

DATE

	

Date object de-activated into the model

	

DEATH_PATCH

	

INTEGER

	

Patch which de-activated this object

	

ACTIVE

	

VARCHAR2(1)

	

Active flag (Y/N)

SCADA_MEASUREMENTS_ST Database Table

The scada_measurements_st table is a staging table used to help populate the analog_measurements and digital_measurements (production) tables. The schema for this table can be found in the file ces_retain_scada.sql.

SCADA_MEASUREMENTS_ST

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

PARTITION

	

INTEGER

	

Object partition

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

RTI_ALIAS_A

	

VARCHAR2(128)

	

RTI device measurement name for phase A. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_B

	

VARCHAR2(128)

	

RTI device measurement name for phase B. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_C

	

VARCHAR2(128)

	

RTI device measurement name for phase C. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIM E

	

DATE

	

Time quality went off-nominal

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure. Only used for digital measurements.

	

MEASUREMENT_TY PE

	

VARCHAR2(1)

	

Measurement Type:

A -- Analog measurement

D -- Digital measurement

Information Model

Database Schema

SCADA_IDS Database Table

The schema for this table is defined in ces_schema_scada.sql file.

The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_IDS

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "SCADA source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR2(32)

	

Name for the SCADA source

	

ADAPTER_TYPE

	

VARCHAR2(32)

	

Adapter type for this SCADA source.

	

ACTIVE

	

VARCHAR2(1)

	

Is the adapter active (Y/N)

SCADA_POINTS Database Table

The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network Management System operations database that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name:" keyword in the rti.dat configuration file (see notes above for example rti.dat population). Where there is a match, a row is populated in the appropriate (digital or analog) measurements table for each defined attribute.

The SCADA_POINTS table is normally populated via device driven attribute population during the model build process. It is a staging table for the RTI population process. It is not accessed during adapter execution.

The schema for this table can be found in the file ces_retain_scada.sql

SCADA_POINTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

SCADA_NAME

	

VARCHAR2(32)

	

SCADA system name (Rtu_Desc)

	

RTU_ALIAS

	

VARCHAR2(32)

	

SCADA point name (Rtu_Id)

	

PARTITION

	

INTEGER

	

Partition of this object

	

BIRTH

	

DATE

	

Date object activated into the model

	

BIRTH_PATCH

	

INTEGER

	

Patch which activated this object

	

DEATH

	

DATE

	

Date object de-activated into the model

	

DEATH_PATCH

	

INTEGER

	

Patch which de-activated this object

	

ACTIVE

	

VARCHAR2(1)

	

Active flag (Y/N)

SCADA_MEASUREMENTS_ST Database Table

The scada_measurements_st table is a staging table used to help populate the analog_measurements and digital_measurements (production) tables. The schema for this table can be found in the file ces_retain_scada.sql.

SCADA_MEASUREMENTS_ST

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

PARTITION

	

INTEGER

	

Object partition

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

RTI_ALIAS_A

	

VARCHAR2(128)

	

RTI device measurement name for phase A. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_B

	

VARCHAR2(128)

	

RTI device measurement name for phase B. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_C

	

VARCHAR2(128)

	

RTI device measurement name for phase C. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIM E

	

DATE

	

Time quality went off-nominal

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure. Only used for digital measurements.

	

MEASUREMENT_TY PE

	

VARCHAR2(1)

	

Measurement Type:

A -- Analog measurement

D -- Digital measurement

Information Model

Database Schema

SCADA_IDS Database Table

The schema for this table is defined in ces_schema_scada.sql file.

The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_IDS

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "SCADA source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR2(32)

	

Name for the SCADA source

	

ADAPTER_TYPE

	

VARCHAR2(32)

	

Adapter type for this SCADA source.

	

ACTIVE

	

VARCHAR2(1)

	

Is the adapter active (Y/N)

SCADA_POINTS Database Table

The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network Management System operations database that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name:" keyword in the rti.dat configuration file (see notes above for example rti.dat population). Where there is a match, a row is populated in the appropriate (digital or analog) measurements table for each defined attribute.

The SCADA_POINTS table is normally populated via device driven attribute population during the model build process. It is a staging table for the RTI population process. It is not accessed during adapter execution.

The schema for this table can be found in the file ces_retain_scada.sql

SCADA_POINTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

SCADA_NAME

	

VARCHAR2(32)

	

SCADA system name (Rtu_Desc)

	

RTU_ALIAS

	

VARCHAR2(32)

	

SCADA point name (Rtu_Id)

	

PARTITION

	

INTEGER

	

Partition of this object

	

BIRTH

	

DATE

	

Date object activated into the model

	

BIRTH_PATCH

	

INTEGER

	

Patch which activated this object

	

DEATH

	

DATE

	

Date object de-activated into the model

	

DEATH_PATCH

	

INTEGER

	

Patch which de-activated this object

	

ACTIVE

	

VARCHAR2(1)

	

Active flag (Y/N)

SCADA_MEASUREMENTS_ST Database Table

The scada_measurements_st table is a staging table used to help populate the analog_measurements and digital_measurements (production) tables. The schema for this table can be found in the file ces_retain_scada.sql.

SCADA_MEASUREMENTS_ST

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

PARTITION

	

INTEGER

	

Object partition

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

RTI_ALIAS_A

	

VARCHAR2(128)

	

RTI device measurement name for phase A. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_B

	

VARCHAR2(128)

	

RTI device measurement name for phase B. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_C

	

VARCHAR2(128)

	

RTI device measurement name for phase C. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIM E

	

DATE

	

Time quality went off-nominal

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure. Only used for digital measurements.

	

MEASUREMENT_TY PE

	

VARCHAR2(1)

	

Measurement Type:

A -- Analog measurement

D -- Digital measurement

Information Model

Database Schema

SCADA_IDS Database Table

The schema for this table is defined in ces_schema_scada.sql file.

The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_IDS

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "SCADA source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR2(32)

	

Name for the SCADA source

	

ADAPTER_TYPE

	

VARCHAR2(32)

	

Adapter type for this SCADA source.

	

ACTIVE

	

VARCHAR2(1)

	

Is the adapter active (Y/N)

SCADA_POINTS Database Table

The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network Management System operations database that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name:" keyword in the rti.dat configuration file (see notes above for example rti.dat population). Where there is a match, a row is populated in the appropriate (digital or analog) measurements table for each defined attribute.

The SCADA_POINTS table is normally populated via device driven attribute population during the model build process. It is a staging table for the RTI population process. It is not accessed during adapter execution.

The schema for this table can be found in the file ces_retain_scada.sql

SCADA_POINTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

SCADA_NAME

	

VARCHAR2(32)

	

SCADA system name (Rtu_Desc)

	

RTU_ALIAS

	

VARCHAR2(32)

	

SCADA point name (Rtu_Id)

	

PARTITION

	

INTEGER

	

Partition of this object

	

BIRTH

	

DATE

	

Date object activated into the model

	

BIRTH_PATCH

	

INTEGER

	

Patch which activated this object

	

DEATH

	

DATE

	

Date object de-activated into the model

	

DEATH_PATCH

	

INTEGER

	

Patch which de-activated this object

	

ACTIVE

	

VARCHAR2(1)

	

Active flag (Y/N)

SCADA_MEASUREMENTS_ST Database Table

The scada_measurements_st table is a staging table used to help populate the analog_measurements and digital_measurements (production) tables. The schema for this table can be found in the file ces_retain_scada.sql.

SCADA_MEASUREMENTS_ST

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

PARTITION

	

INTEGER

	

Object partition

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

RTI_ALIAS_A

	

VARCHAR2(128)

	

RTI device measurement name for phase A. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_B

	

VARCHAR2(128)

	

RTI device measurement name for phase B. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_C

	

VARCHAR2(128)

	

RTI device measurement name for phase C. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIM E

	

DATE

	

Time quality went off-nominal

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure. Only used for digital measurements.

	

MEASUREMENT_TY PE

	

VARCHAR2(1)

	

Measurement Type:

A -- Analog measurement

D -- Digital measurement

Information Model

Database Schema

SCADA_IDS Database Table

The schema for this table is defined in ces_schema_scada.sql file.

The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_IDS

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "SCADA source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR2(32)

	

Name for the SCADA source

	

ADAPTER_TYPE

	

VARCHAR2(32)

	

Adapter type for this SCADA source.

	

ACTIVE

	

VARCHAR2(1)

	

Is the adapter active (Y/N)

SCADA_POINTS Database Table

The SCADA_POINTS table contains a row for each device in the Oracle Utilities Network Management System operations database that has SCADA information associated with it. Each record has a "scada_name" column which, in order to populate one of the measurements tables, must match a "SCADA_Name:" keyword in the rti.dat configuration file (see notes above for example rti.dat population). Where there is a match, a row is populated in the appropriate (digital or analog) measurements table for each defined attribute.

The SCADA_POINTS table is normally populated via device driven attribute population during the model build process. It is a staging table for the RTI population process. It is not accessed during adapter execution.

The schema for this table can be found in the file ces_retain_scada.sql

SCADA_POINTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

SCADA_NAME

	

VARCHAR2(32)

	

SCADA system name (Rtu_Desc)

	

RTU_ALIAS

	

VARCHAR2(32)

	

SCADA point name (Rtu_Id)

	

PARTITION

	

INTEGER

	

Partition of this object

	

BIRTH

	

DATE

	

Date object activated into the model

	

BIRTH_PATCH

	

INTEGER

	

Patch which activated this object

	

DEATH

	

DATE

	

Date object de-activated into the model

	

DEATH_PATCH

	

INTEGER

	

Patch which de-activated this object

	

ACTIVE

	

VARCHAR2(1)

	

Active flag (Y/N)

SCADA_MEASUREMENTS_ST Database Table

The scada_measurements_st table is a staging table used to help populate the analog_measurements and digital_measurements (production) tables. The schema for this table can be found in the file ces_retain_scada.sql.

SCADA_MEASUREMENTS_ST

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle class

	

H_IDX

	

INTEGER

	

Object handle index

	

PARTITION

	

INTEGER

	

Object partition

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

RTI_ALIAS_A

	

VARCHAR2(128)

	

RTI device measurement name for phase A. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_B

	

VARCHAR2(128)

	

RTI device measurement name for phase B. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

RTI_ALIAS_C

	

VARCHAR2(128)

	

RTI device measurement name for phase C. Only applies for digital measurements and only used by the MultiSpeak SCADA adapter.

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIM E

	

DATE

	

Time quality went off-nominal

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure. Only used for digital measurements.

	

MEASUREMENT_TY PE

	

VARCHAR2(1)

	

Measurement Type:

A -- Analog measurement

D -- Digital measurement

Generic SCADA Adapter

This chapter includes the following topics:

	
•

	

Introduction

	
•

	

Generic SCADA Adapter Configuration

	
•

	

Software Configuration

	
•

	

Data Flows

	
•

	

Information Model

Introduction

The Generic SCADA Adapter (executable name: RTAdapter) is an Oracle Utilities Network Management System interfacing adapter that can be used to interface to external SCADA systems. Generally one RTAdapter process is configured to communicate with each external SCADA system. Each external SCADA system must write some form of "scan file" to a defined (dedicated) directory which RTAdapter can access in read/write mode. The "scan files" are read out of the named directory by RTAdapter on a first-in-first-out basis (to support queuing of updates). The form of the scan files can be configured (to some degree) for each SCADA interface.

Generic SCADA Adapter Configuration

Overview

This section is used to guide the user in the configuration of the Oracle Utilities Network Management System Generic SCADA Adapter. The following are assumed to be true before the adapter is installed:

	
•

	

Oracle database access has been confirmed.

	
•

	

Isis messaging bus has been installed and verified.

	
•

	

Oracle Utilities Network Management System is installed and functional.

Generic SCADA Adapter Configuration

Overview

This section is used to guide the user in the configuration of the Oracle Utilities Network Management System Generic SCADA Adapter. The following are assumed to be true before the adapter is installed:

	
•

	

Oracle database access has been confirmed.

	
•

	

Isis messaging bus has been installed and verified.

	
•

	

Oracle Utilities Network Management System is installed and functional.

Configure Adapter to run as NMS System Service

Configure the Generic SCADA Adapter to run as an Oracle Utilities Network Management System service by updating the $NMS_HOME/etc/system.dat file to include the Generic SCADA Adapter as a system service. There are three main sections where this service needs to be defined: the service, program, and instance sections.

See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Generic SCADA Adapter. Search for USA (Universal SCADA Adapter) in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order for the Generic SCADA Adapter to properly be monitored by SMService.

Note: The adapter process is generally given a configuration name adapted from the SCADA system from which it is receiving data (such as the USA name used in the system.dat.template file noted above). Also, take note that in the example above, it is assumed that the Generic SCADA Adapter will reside on the same machine where the Oracle Utilities Network Management System environment resides.

Command Line Options for Generic SCADA Adapter

The command line for the Generic SCADA Adapter provides the following options:

	

Command Line Option

	

What it does

	

-volbuffer <VOLTS>

	

threshold for analog VOLT attributes, report if changed by more than <VOLTS>.

	

-ampbuffer <AMPS>

	

threshold for analog AMP attributes, report if changed by more than <AMPS>.

	

-idle <cycles>

	

Number of processing cycles to wait without processing any data before sending an alarm.

	

-lock

	

use file locking to prevent file overwrite during file read (if scan file names are not unique).

	

-error

	

show processing errors.

	

-watch

	

show files being processed, minimal info.

	

-debug

	

enable debugging

	

-operate

	

operate (change status of) model devices, otherwise generates pseudo alarms only.

	

-controls

	

Call the project/SCADA specific rti_project.ces script when an outbound control request (open/close) is made. This script can be customized to help trigger an action (some type of control request) on external system. Generally for testing.

	

-offline

	

For testing purposes - when a control request is received - simulate the external SCADA system and operate the device.

	

-dir <directory>

	

Value either directing RTAdapter to the directory containing scada data scan files or if set to 'RDBMS' enabling the scada_in database polling functionality. (required)

	

-interval <interval>

	

seconds between file processing cycles. (required)

	

-scada <scada>

	

scada source name (required)

Software Configuration

Overview

The interface comes with a configuration support tool (rtipop) that can be used to help populate the standard SCADA configuration tables for incoming SCADA data (analog_measurements and digital_measurements). The rtipop process can be used to provide initial population of these tables.

Software Configuration

Overview

The interface comes with a configuration support tool (rtipop) that can be used to help populate the standard SCADA configuration tables for incoming SCADA data (analog_measurements and digital_measurements). The rtipop process can be used to provide initial population of these tables.

Adapter Configuration

RDBMS configuration:

Tables involved:

	
•

	

Scada_measurements_st: standard SCADA measurements configuration table. This is
a staging table used by DDService for populating the production SCADA
measurements tables.

	
•

	

digital_measurements : production SCADA measurements table for incoming digital data

	
•

	

analog_measurements : production SCADA measurements table

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_states : RTAdapter string state to integer mapping - required.

	
•

	

scada_synonyms : RTAdapter scada data attribute value mapping - required.

	
•

	

scada_in: RTAdapter polling table can be used to queue incoming SCADA updates - optional.

Note: The RTAdapter process does not require any population into the scada_in table. The use of the scada_in as a polling table is intended to be a low-volume interface (less than 100 operations/hr). The use of scada_in is entirely optional.

RTAdapter specific RDBMS population

scada_ids : RTAdapter name to unique integer value mapping.

	
•

	

Generally used to SCADA name to a unique integer id.

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_states : RTAdapter string to integer mapping.

	
•

	

Generally used to map topology state and/or quality code information

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_synonyms : RTAdapter scada data attribute/synonym value mapping.

	
•

	

Generally used to map SCADA reported attributes to Network Management System attributes.

	
•

	

$NMS_HOME/sql/OPAL_scada_synonyms.sql

Sample RTAdapter configuration/execution sequence

To get RTAdapter up and running, the following general steps should suffice.

Start from the home directory for RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces product_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces <sql/OPAL_scada_points.sql

	
•

	

creates scada_points table

	
3.

	

Create basic example configuration (change at will...)

 ISQL.ces OPAL_scada_ids.sql

 ISQL.ces OPAL_scada_states.sql

 ISQL.ces OPAL_scada_synonyms.sql

ISQL.ces OPAL_scada_points.sql

	
•

	

Sample population data for scada_points table for OPAL model.

	
•

	

For example only. Need to hand edit to match your model objects.

	
4.

	

scadapop -partition -initFile $CES_DATA_FILES/OPAL_rti.dat

	
•

	

This should populate scada_measurements_st tables.

	
•

	

Make sure you have entries in the scada_measurements_st table when you are done with this step.

	
5.

	

 UpdateDDS -recacheMeasures

	
•

	

 This should populate the analog_measurements and digital_measurements tables.

	
6.

	

Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Recommend using -watch and possibly the -debug option to start; helps to identify configuration issues.

	
7.

	

If the system.dat file is using the $NMS_SCADA_SCAN_FILE_DIR environment variable to specify the SCADA scan file directory, make sure this environment variable points to a directory that the RTAdapter process can both read and write. Generally, this means a directory owned by the id that is executing RTAdapter. For example, mkdir ~/usa. At the same time, suggest creating a test data holding directory (for example, mkdir ~/usa/tst).

	
8.

	

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

	
9.

	

The $NMS_HOME/templates/rtiadapter.dat.template file contains sample RTAdapter incoming data blocks. You can use the example data blocks in this file to validate basic RTAdapter functionality.

For example:

Copy example data blocks from the rtiadapter.dat.template to individual test files under ~/ usa/tst (using the example configuration above); cut the following out of rtiadapter.dat.template SCADA data file to "live" RTAdapter scan file directory to test.

1.Copy the following lines into a file - say BR2413_open

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

2.Copy the following lines into a file - say BR2413_close

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|CLOSED

	

	

END_DATA

3.Copy BR2413_open and BR2413_close to ~/usa/tst (following example above).

4.cd ~/usa/tst

5.cp BR2413_open ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device open in the standard OPAL model.

6.cp BR2413_close ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device close in the standard OPAP model.

7.Follow other examples for conditions and quality codes.

	

	

Turn debug on RTAdapter to see what is going on. You should be able to send RTAdapter debug messages on the fly:

	

	

Action any.USA debug on

8.Validate that devices are changing state in the Network Management System viewer as you execute steps 5 and 6 above ("cp BR2413_open .." followed by "cp BR2413_close ..") sequence over and over.

Sample RTAdapter polling configuration/execution sequence

To get
RTAdapter up and running, the following general steps should suffice.

Start from the home directory for
RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces ces_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces ces_schema_scada_in.sql

	
•

	

creates scada_in table

	
3.

	

Create basic example configuration (change at will...)

ISQL.ces OPAL_scada_ids.sql

ISQL.ces OPAL_scada_states.sql

ISQL.ces OPAL_scada_synonyms.sql

4.

Validate the
RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Verify -dir is set to ‘RDBMS’.

	
•

	

Recommend using -watch and possibly the -debug option to start - to help identify configuration issues.

5.

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

6.

Insert row into SCADA_IN table either using alias or h_cls and h_idx with status = ‘N’.

	
•

	

Example sql statement:

INSERT into scada_in (

 h_cls,

 h_idx,

 alias,

 attribute,

 operation,

 source,

 status

) VALUES (

 206,

 1015054348,

 '',

 'STATUS',

 'OPEN',

 'spl1',

 'N'

);

COMMIT WORK

Adapter Configuration

RDBMS configuration:

Tables involved:

	
•

	

Scada_measurements_st: standard SCADA measurements configuration table. This is
a staging table used by DDService for populating the production SCADA
measurements tables.

	
•

	

digital_measurements : production SCADA measurements table for incoming digital data

	
•

	

analog_measurements : production SCADA measurements table

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_states : RTAdapter string state to integer mapping - required.

	
•

	

scada_synonyms : RTAdapter scada data attribute value mapping - required.

	
•

	

scada_in: RTAdapter polling table can be used to queue incoming SCADA updates - optional.

Note: The RTAdapter process does not require any population into the scada_in table. The use of the scada_in as a polling table is intended to be a low-volume interface (less than 100 operations/hr). The use of scada_in is entirely optional.

RTAdapter specific RDBMS population

scada_ids : RTAdapter name to unique integer value mapping.

	
•

	

Generally used to SCADA name to a unique integer id.

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_states : RTAdapter string to integer mapping.

	
•

	

Generally used to map topology state and/or quality code information

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_synonyms : RTAdapter scada data attribute/synonym value mapping.

	
•

	

Generally used to map SCADA reported attributes to Network Management System attributes.

	
•

	

$NMS_HOME/sql/OPAL_scada_synonyms.sql

Sample RTAdapter configuration/execution sequence

To get RTAdapter up and running, the following general steps should suffice.

Start from the home directory for RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces product_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces <sql/OPAL_scada_points.sql

	
•

	

creates scada_points table

	
3.

	

Create basic example configuration (change at will...)

 ISQL.ces OPAL_scada_ids.sql

 ISQL.ces OPAL_scada_states.sql

 ISQL.ces OPAL_scada_synonyms.sql

ISQL.ces OPAL_scada_points.sql

	
•

	

Sample population data for scada_points table for OPAL model.

	
•

	

For example only. Need to hand edit to match your model objects.

	
4.

	

scadapop -partition -initFile $CES_DATA_FILES/OPAL_rti.dat

	
•

	

This should populate scada_measurements_st tables.

	
•

	

Make sure you have entries in the scada_measurements_st table when you are done with this step.

	
5.

	

 UpdateDDS -recacheMeasures

	
•

	

 This should populate the analog_measurements and digital_measurements tables.

	
6.

	

Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Recommend using -watch and possibly the -debug option to start; helps to identify configuration issues.

	
7.

	

If the system.dat file is using the $NMS_SCADA_SCAN_FILE_DIR environment variable to specify the SCADA scan file directory, make sure this environment variable points to a directory that the RTAdapter process can both read and write. Generally, this means a directory owned by the id that is executing RTAdapter. For example, mkdir ~/usa. At the same time, suggest creating a test data holding directory (for example, mkdir ~/usa/tst).

	
8.

	

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

	
9.

	

The $NMS_HOME/templates/rtiadapter.dat.template file contains sample RTAdapter incoming data blocks. You can use the example data blocks in this file to validate basic RTAdapter functionality.

For example:

Copy example data blocks from the rtiadapter.dat.template to individual test files under ~/ usa/tst (using the example configuration above); cut the following out of rtiadapter.dat.template SCADA data file to "live" RTAdapter scan file directory to test.

1.Copy the following lines into a file - say BR2413_open

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

2.Copy the following lines into a file - say BR2413_close

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|CLOSED

	

	

END_DATA

3.Copy BR2413_open and BR2413_close to ~/usa/tst (following example above).

4.cd ~/usa/tst

5.cp BR2413_open ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device open in the standard OPAL model.

6.cp BR2413_close ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device close in the standard OPAP model.

7.Follow other examples for conditions and quality codes.

	

	

Turn debug on RTAdapter to see what is going on. You should be able to send RTAdapter debug messages on the fly:

	

	

Action any.USA debug on

8.Validate that devices are changing state in the Network Management System viewer as you execute steps 5 and 6 above ("cp BR2413_open .." followed by "cp BR2413_close ..") sequence over and over.

Sample RTAdapter polling configuration/execution sequence

To get
RTAdapter up and running, the following general steps should suffice.

Start from the home directory for
RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces ces_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces ces_schema_scada_in.sql

	
•

	

creates scada_in table

	
3.

	

Create basic example configuration (change at will...)

ISQL.ces OPAL_scada_ids.sql

ISQL.ces OPAL_scada_states.sql

ISQL.ces OPAL_scada_synonyms.sql

4.

Validate the
RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Verify -dir is set to ‘RDBMS’.

	
•

	

Recommend using -watch and possibly the -debug option to start - to help identify configuration issues.

5.

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

6.

Insert row into SCADA_IN table either using alias or h_cls and h_idx with status = ‘N’.

	
•

	

Example sql statement:

INSERT into scada_in (

 h_cls,

 h_idx,

 alias,

 attribute,

 operation,

 source,

 status

) VALUES (

 206,

 1015054348,

 '',

 'STATUS',

 'OPEN',

 'spl1',

 'N'

);

COMMIT WORK

Adapter Configuration

RDBMS configuration:

Tables involved:

	
•

	

Scada_measurements_st: standard SCADA measurements configuration table. This is
a staging table used by DDService for populating the production SCADA
measurements tables.

	
•

	

digital_measurements : production SCADA measurements table for incoming digital data

	
•

	

analog_measurements : production SCADA measurements table

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_states : RTAdapter string state to integer mapping - required.

	
•

	

scada_synonyms : RTAdapter scada data attribute value mapping - required.

	
•

	

scada_in: RTAdapter polling table can be used to queue incoming SCADA updates - optional.

Note: The RTAdapter process does not require any population into the scada_in table. The use of the scada_in as a polling table is intended to be a low-volume interface (less than 100 operations/hr). The use of scada_in is entirely optional.

RTAdapter specific RDBMS population

scada_ids : RTAdapter name to unique integer value mapping.

	
•

	

Generally used to SCADA name to a unique integer id.

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_states : RTAdapter string to integer mapping.

	
•

	

Generally used to map topology state and/or quality code information

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_synonyms : RTAdapter scada data attribute/synonym value mapping.

	
•

	

Generally used to map SCADA reported attributes to Network Management System attributes.

	
•

	

$NMS_HOME/sql/OPAL_scada_synonyms.sql

Sample RTAdapter configuration/execution sequence

To get RTAdapter up and running, the following general steps should suffice.

Start from the home directory for RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces product_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces <sql/OPAL_scada_points.sql

	
•

	

creates scada_points table

	
3.

	

Create basic example configuration (change at will...)

 ISQL.ces OPAL_scada_ids.sql

 ISQL.ces OPAL_scada_states.sql

 ISQL.ces OPAL_scada_synonyms.sql

ISQL.ces OPAL_scada_points.sql

	
•

	

Sample population data for scada_points table for OPAL model.

	
•

	

For example only. Need to hand edit to match your model objects.

	
4.

	

scadapop -partition -initFile $CES_DATA_FILES/OPAL_rti.dat

	
•

	

This should populate scada_measurements_st tables.

	
•

	

Make sure you have entries in the scada_measurements_st table when you are done with this step.

	
5.

	

 UpdateDDS -recacheMeasures

	
•

	

 This should populate the analog_measurements and digital_measurements tables.

	
6.

	

Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Recommend using -watch and possibly the -debug option to start; helps to identify configuration issues.

	
7.

	

If the system.dat file is using the $NMS_SCADA_SCAN_FILE_DIR environment variable to specify the SCADA scan file directory, make sure this environment variable points to a directory that the RTAdapter process can both read and write. Generally, this means a directory owned by the id that is executing RTAdapter. For example, mkdir ~/usa. At the same time, suggest creating a test data holding directory (for example, mkdir ~/usa/tst).

	
8.

	

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

	
9.

	

The $NMS_HOME/templates/rtiadapter.dat.template file contains sample RTAdapter incoming data blocks. You can use the example data blocks in this file to validate basic RTAdapter functionality.

For example:

Copy example data blocks from the rtiadapter.dat.template to individual test files under ~/ usa/tst (using the example configuration above); cut the following out of rtiadapter.dat.template SCADA data file to "live" RTAdapter scan file directory to test.

1.Copy the following lines into a file - say BR2413_open

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

2.Copy the following lines into a file - say BR2413_close

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|CLOSED

	

	

END_DATA

3.Copy BR2413_open and BR2413_close to ~/usa/tst (following example above).

4.cd ~/usa/tst

5.cp BR2413_open ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device open in the standard OPAL model.

6.cp BR2413_close ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device close in the standard OPAP model.

7.Follow other examples for conditions and quality codes.

	

	

Turn debug on RTAdapter to see what is going on. You should be able to send RTAdapter debug messages on the fly:

	

	

Action any.USA debug on

8.Validate that devices are changing state in the Network Management System viewer as you execute steps 5 and 6 above ("cp BR2413_open .." followed by "cp BR2413_close ..") sequence over and over.

Sample RTAdapter polling configuration/execution sequence

To get
RTAdapter up and running, the following general steps should suffice.

Start from the home directory for
RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces ces_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces ces_schema_scada_in.sql

	
•

	

creates scada_in table

	
3.

	

Create basic example configuration (change at will...)

ISQL.ces OPAL_scada_ids.sql

ISQL.ces OPAL_scada_states.sql

ISQL.ces OPAL_scada_synonyms.sql

4.

Validate the
RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Verify -dir is set to ‘RDBMS’.

	
•

	

Recommend using -watch and possibly the -debug option to start - to help identify configuration issues.

5.

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

6.

Insert row into SCADA_IN table either using alias or h_cls and h_idx with status = ‘N’.

	
•

	

Example sql statement:

INSERT into scada_in (

 h_cls,

 h_idx,

 alias,

 attribute,

 operation,

 source,

 status

) VALUES (

 206,

 1015054348,

 '',

 'STATUS',

 'OPEN',

 'spl1',

 'N'

);

COMMIT WORK

Adapter Configuration

RDBMS configuration:

Tables involved:

	
•

	

Scada_measurements_st: standard SCADA measurements configuration table. This is
a staging table used by DDService for populating the production SCADA
measurements tables.

	
•

	

digital_measurements : production SCADA measurements table for incoming digital data

	
•

	

analog_measurements : production SCADA measurements table

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_states : RTAdapter string state to integer mapping - required.

	
•

	

scada_synonyms : RTAdapter scada data attribute value mapping - required.

	
•

	

scada_in: RTAdapter polling table can be used to queue incoming SCADA updates - optional.

Note: The RTAdapter process does not require any population into the scada_in table. The use of the scada_in as a polling table is intended to be a low-volume interface (less than 100 operations/hr). The use of scada_in is entirely optional.

RTAdapter specific RDBMS population

scada_ids : RTAdapter name to unique integer value mapping.

	
•

	

Generally used to SCADA name to a unique integer id.

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_states : RTAdapter string to integer mapping.

	
•

	

Generally used to map topology state and/or quality code information

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_synonyms : RTAdapter scada data attribute/synonym value mapping.

	
•

	

Generally used to map SCADA reported attributes to Network Management System attributes.

	
•

	

$NMS_HOME/sql/OPAL_scada_synonyms.sql

Sample RTAdapter configuration/execution sequence

To get RTAdapter up and running, the following general steps should suffice.

Start from the home directory for RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces product_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces <sql/OPAL_scada_points.sql

	
•

	

creates scada_points table

	
3.

	

Create basic example configuration (change at will...)

 ISQL.ces OPAL_scada_ids.sql

 ISQL.ces OPAL_scada_states.sql

 ISQL.ces OPAL_scada_synonyms.sql

ISQL.ces OPAL_scada_points.sql

	
•

	

Sample population data for scada_points table for OPAL model.

	
•

	

For example only. Need to hand edit to match your model objects.

	
4.

	

scadapop -partition -initFile $CES_DATA_FILES/OPAL_rti.dat

	
•

	

This should populate scada_measurements_st tables.

	
•

	

Make sure you have entries in the scada_measurements_st table when you are done with this step.

	
5.

	

 UpdateDDS -recacheMeasures

	
•

	

 This should populate the analog_measurements and digital_measurements tables.

	
6.

	

Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Recommend using -watch and possibly the -debug option to start; helps to identify configuration issues.

	
7.

	

If the system.dat file is using the $NMS_SCADA_SCAN_FILE_DIR environment variable to specify the SCADA scan file directory, make sure this environment variable points to a directory that the RTAdapter process can both read and write. Generally, this means a directory owned by the id that is executing RTAdapter. For example, mkdir ~/usa. At the same time, suggest creating a test data holding directory (for example, mkdir ~/usa/tst).

	
8.

	

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

	
9.

	

The $NMS_HOME/templates/rtiadapter.dat.template file contains sample RTAdapter incoming data blocks. You can use the example data blocks in this file to validate basic RTAdapter functionality.

For example:

Copy example data blocks from the rtiadapter.dat.template to individual test files under ~/ usa/tst (using the example configuration above); cut the following out of rtiadapter.dat.template SCADA data file to "live" RTAdapter scan file directory to test.

1.Copy the following lines into a file - say BR2413_open

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

2.Copy the following lines into a file - say BR2413_close

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|CLOSED

	

	

END_DATA

3.Copy BR2413_open and BR2413_close to ~/usa/tst (following example above).

4.cd ~/usa/tst

5.cp BR2413_open ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device open in the standard OPAL model.

6.cp BR2413_close ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device close in the standard OPAP model.

7.Follow other examples for conditions and quality codes.

	

	

Turn debug on RTAdapter to see what is going on. You should be able to send RTAdapter debug messages on the fly:

	

	

Action any.USA debug on

8.Validate that devices are changing state in the Network Management System viewer as you execute steps 5 and 6 above ("cp BR2413_open .." followed by "cp BR2413_close ..") sequence over and over.

Sample RTAdapter polling configuration/execution sequence

To get
RTAdapter up and running, the following general steps should suffice.

Start from the home directory for
RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces ces_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces ces_schema_scada_in.sql

	
•

	

creates scada_in table

	
3.

	

Create basic example configuration (change at will...)

ISQL.ces OPAL_scada_ids.sql

ISQL.ces OPAL_scada_states.sql

ISQL.ces OPAL_scada_synonyms.sql

4.

Validate the
RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Verify -dir is set to ‘RDBMS’.

	
•

	

Recommend using -watch and possibly the -debug option to start - to help identify configuration issues.

5.

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

6.

Insert row into SCADA_IN table either using alias or h_cls and h_idx with status = ‘N’.

	
•

	

Example sql statement:

INSERT into scada_in (

 h_cls,

 h_idx,

 alias,

 attribute,

 operation,

 source,

 status

) VALUES (

 206,

 1015054348,

 '',

 'STATUS',

 'OPEN',

 'spl1',

 'N'

);

COMMIT WORK

Adapter Configuration

RDBMS configuration:

Tables involved:

	
•

	

Scada_measurements_st: standard SCADA measurements configuration table. This is
a staging table used by DDService for populating the production SCADA
measurements tables.

	
•

	

digital_measurements : production SCADA measurements table for incoming digital data

	
•

	

analog_measurements : production SCADA measurements table

	
•

	

scada_ids : RTAdapter SCADA definition table.

	
•

	

scada_states : RTAdapter string state to integer mapping - required.

	
•

	

scada_synonyms : RTAdapter scada data attribute value mapping - required.

	
•

	

scada_in: RTAdapter polling table can be used to queue incoming SCADA updates - optional.

Note: The RTAdapter process does not require any population into the scada_in table. The use of the scada_in as a polling table is intended to be a low-volume interface (less than 100 operations/hr). The use of scada_in is entirely optional.

RTAdapter specific RDBMS population

scada_ids : RTAdapter name to unique integer value mapping.

	
•

	

Generally used to SCADA name to a unique integer id.

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_states : RTAdapter string to integer mapping.

	
•

	

Generally used to map topology state and/or quality code information

	
•

	

$NMS_HOME/sql/OPAL_scada_states.sql

scada_synonyms : RTAdapter scada data attribute/synonym value mapping.

	
•

	

Generally used to map SCADA reported attributes to Network Management System attributes.

	
•

	

$NMS_HOME/sql/OPAL_scada_synonyms.sql

Sample RTAdapter configuration/execution sequence

To get RTAdapter up and running, the following general steps should suffice.

Start from the home directory for RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces product_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces <sql/OPAL_scada_points.sql

	
•

	

creates scada_points table

	
3.

	

Create basic example configuration (change at will...)

 ISQL.ces OPAL_scada_ids.sql

 ISQL.ces OPAL_scada_states.sql

 ISQL.ces OPAL_scada_synonyms.sql

ISQL.ces OPAL_scada_points.sql

	
•

	

Sample population data for scada_points table for OPAL model.

	
•

	

For example only. Need to hand edit to match your model objects.

	
4.

	

scadapop -partition -initFile $CES_DATA_FILES/OPAL_rti.dat

	
•

	

This should populate scada_measurements_st tables.

	
•

	

Make sure you have entries in the scada_measurements_st table when you are done with this step.

	
5.

	

 UpdateDDS -recacheMeasures

	
•

	

 This should populate the analog_measurements and digital_measurements tables.

	
6.

	

Validate the RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Recommend using -watch and possibly the -debug option to start; helps to identify configuration issues.

	
7.

	

If the system.dat file is using the $NMS_SCADA_SCAN_FILE_DIR environment variable to specify the SCADA scan file directory, make sure this environment variable points to a directory that the RTAdapter process can both read and write. Generally, this means a directory owned by the id that is executing RTAdapter. For example, mkdir ~/usa. At the same time, suggest creating a test data holding directory (for example, mkdir ~/usa/tst).

	
8.

	

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

	
9.

	

The $NMS_HOME/templates/rtiadapter.dat.template file contains sample RTAdapter incoming data blocks. You can use the example data blocks in this file to validate basic RTAdapter functionality.

For example:

Copy example data blocks from the rtiadapter.dat.template to individual test files under ~/ usa/tst (using the example configuration above); cut the following out of rtiadapter.dat.template SCADA data file to "live" RTAdapter scan file directory to test.

1.Copy the following lines into a file - say BR2413_open

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

2.Copy the following lines into a file - say BR2413_close

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|CLOSED

	

	

END_DATA

3.Copy BR2413_open and BR2413_close to ~/usa/tst (following example above).

4.cd ~/usa/tst

5.cp BR2413_open ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device open in the standard OPAL model.

6.cp BR2413_close ..

	

	

This should cause the BR2413 file to be read and processed by RTAdapter - you should see the BR2413 device close in the standard OPAP model.

7.Follow other examples for conditions and quality codes.

	

	

Turn debug on RTAdapter to see what is going on. You should be able to send RTAdapter debug messages on the fly:

	

	

Action any.USA debug on

8.Validate that devices are changing state in the Network Management System viewer as you execute steps 5 and 6 above ("cp BR2413_open .." followed by "cp BR2413_close ..") sequence over and over.

Sample RTAdapter polling configuration/execution sequence

To get
RTAdapter up and running, the following general steps should suffice.

Start from the home directory for
RTAdapter:

	
1.

	

Login to Network Management System admin account with standard OPAL model configured and running.

	
2.

	

Create RTAdapter specific RDBMS tables:

ISQL.ces ces_schema_scada.sql

	
•

	

creates scada_ids table

	
•

	

creates scada_states table

	
•

	

creates scada_synonyms table

ISQL.ces ces_schema_scada_in.sql

	
•

	

creates scada_in table

	
3.

	

Create basic example configuration (change at will...)

ISQL.ces OPAL_scada_ids.sql

ISQL.ces OPAL_scada_states.sql

ISQL.ces OPAL_scada_synonyms.sql

4.

Validate the
RTAdapter is in the $NMS_HOME/etc/system.dat file (see directions above).

	
•

	

Verify -dir is set to ‘RDBMS’.

	
•

	

Recommend using -watch and possibly the -debug option to start - to help identify configuration issues.

5.

Stop and restart Oracle Utilities Network Management System services (sms_start.ces).

	
•

	

Make sure RTAdapter is running.

6.

Insert row into SCADA_IN table either using alias or h_cls and h_idx with status = ‘N’.

	
•

	

Example sql statement:

INSERT into scada_in (

 h_cls,

 h_idx,

 alias,

 attribute,

 operation,

 source,

 status

) VALUES (

 206,

 1015054348,

 '',

 'STATUS',

 'OPEN',

 'spl1',

 'N'

);

COMMIT WORK

Data Flows

SCADA Entry

The SCADA system sends fixed format files to the RTAdapter. The following format rules generally apply:

	
1.

	

Actual SCADA data appears between ^DATA (the string DATA at the start of a line) and ^END_DATA.

	
2.

	

 Records between DATA and END_DATA are identified by OBJECT which must match an analog_measurements.rti_alias or digital_measurements.rti_alias entry. Where both the rti_alias matches the field after OBJECT| and the subsequent attribute matches the analog_measurments.attribute or digital_measurements.attribute field an update may occur (assuming new data is provided).

	
3.

	

 SYNCHRONIZE|TRUE is a special case used to synchronize conditions and is outside the standard DATA/END_DATA block. If set the line following SYNCHRONIZE|TRUE should be something like TYPE|note - to indicate the data that follows is to be used to synchronize "note" class conditions. For SYNCHRONIZE scan files the condition action code should be "syn" - not "add" or "rem".

	
4.

	

 All other fields are generally ignored.

	
5.

	

 For digital_measurements: device status: open or closed, battery low, etc. Example:

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

	
6.

	

For analog measurements: Amps (Amps_A, Amps_B, Amps_C):

	

	

DATA

	

	

OBJECT|BR2413

	

	

AMPS_A|1.1

	

	

AMPS_B|1.2

	

	

AMPS_C|1.3|SUSPECT

	

	

OBJECT|BR2414

	

	

AMPS_A|2.1:4096

	

	

AMPS_B|2.2

	

	

AMPS_C|2.3

	

	

END_DATA

Both digital and analog measurements can include quality codes for each attribute. Quality codes are part of the standard Oracle Utilities Network Management System attribute definition and are contained within a 32-bit integer field. Bits 0->10 are reserved for Oracle Utilities Network Management System purposes. Bits 11->31 are available for project specific configuration. Quality codes are generally defined in the quality_codes configuration table. In the analog example above (AMPS_C|1.3|SUSPECT) the SUSPECT string must be defined in the scada_states table and map to a valid quality code integer. Analog entry with a quality code. Integers can also be used directly to provide quality codes (AMPS_A|2.1:4096).

	
7.

	

 Generic SCADA conditions (generally notes or tags - could be any condition) are also supported. To send a condition something like the following would be required:

	

	

DATA

	

	

OBJECT|BR2414

	

	

NOTE_0|add|WHO=system|TIM=2009-02-27T16:22:17|TXT=NOTE_0
txt|EXT=BR2414-note_0

	

	

END_DATA

The above text would "add" a note condition to the model on the device mapped to BR2414. The following keyword phrases can be used to specify common condition fields:

	

	

WHO= (who should be recorded as the creator of the condition - must be a valid NMS user name).

	

	

TIM= ISO timestamp for when the condition was added. Timestamp format must be defined in your $DATEMSK file.

	

	

TXT= Text string for the condition.text field (notes.text. tags.text, etc).

	

	

EXT= SCADA unique identifier for the created condition. This field is necessary to allow the external system to later remove the condition.

	
8.

	

 To remote the SCADA condition above:

	

	

DATA

	

	

OBJECT|BR2414

	

	

NOTE_0|rem|WHO=system|TIM=2009-10-27T16:22:17|EXT=BR2414-note_0

	

	

END_DATA

Data Flows

SCADA Entry

The SCADA system sends fixed format files to the RTAdapter. The following format rules generally apply:

	
1.

	

Actual SCADA data appears between ^DATA (the string DATA at the start of a line) and ^END_DATA.

	
2.

	

 Records between DATA and END_DATA are identified by OBJECT which must match an analog_measurements.rti_alias or digital_measurements.rti_alias entry. Where both the rti_alias matches the field after OBJECT| and the subsequent attribute matches the analog_measurments.attribute or digital_measurements.attribute field an update may occur (assuming new data is provided).

	
3.

	

 SYNCHRONIZE|TRUE is a special case used to synchronize conditions and is outside the standard DATA/END_DATA block. If set the line following SYNCHRONIZE|TRUE should be something like TYPE|note - to indicate the data that follows is to be used to synchronize "note" class conditions. For SYNCHRONIZE scan files the condition action code should be "syn" - not "add" or "rem".

	
4.

	

 All other fields are generally ignored.

	
5.

	

 For digital_measurements: device status: open or closed, battery low, etc. Example:

	

	

DATA

	

	

OBJECT|BR2414

	

	

BREAKER_POS|OPEN

	

	

END_DATA

	
6.

	

For analog measurements: Amps (Amps_A, Amps_B, Amps_C):

	

	

DATA

	

	

OBJECT|BR2413

	

	

AMPS_A|1.1

	

	

AMPS_B|1.2

	

	

AMPS_C|1.3|SUSPECT

	

	

OBJECT|BR2414

	

	

AMPS_A|2.1:4096

	

	

AMPS_B|2.2

	

	

AMPS_C|2.3

	

	

END_DATA

Both digital and analog measurements can include quality codes for each attribute. Quality codes are part of the standard Oracle Utilities Network Management System attribute definition and are contained within a 32-bit integer field. Bits 0->10 are reserved for Oracle Utilities Network Management System purposes. Bits 11->31 are available for project specific configuration. Quality codes are generally defined in the quality_codes configuration table. In the analog example above (AMPS_C|1.3|SUSPECT) the SUSPECT string must be defined in the scada_states table and map to a valid quality code integer. Analog entry with a quality code. Integers can also be used directly to provide quality codes (AMPS_A|2.1:4096).

	
7.

	

 Generic SCADA conditions (generally notes or tags - could be any condition) are also supported. To send a condition something like the following would be required:

	

	

DATA

	

	

OBJECT|BR2414

	

	

NOTE_0|add|WHO=system|TIM=2009-02-27T16:22:17|TXT=NOTE_0
txt|EXT=BR2414-note_0

	

	

END_DATA

The above text would "add" a note condition to the model on the device mapped to BR2414. The following keyword phrases can be used to specify common condition fields:

	

	

WHO= (who should be recorded as the creator of the condition - must be a valid NMS user name).

	

	

TIM= ISO timestamp for when the condition was added. Timestamp format must be defined in your $DATEMSK file.

	

	

TXT= Text string for the condition.text field (notes.text. tags.text, etc).

	

	

EXT= SCADA unique identifier for the created condition. This field is necessary to allow the external system to later remove the condition.

	
8.

	

 To remote the SCADA condition above:

	

	

DATA

	

	

OBJECT|BR2414

	

	

NOTE_0|rem|WHO=system|TIM=2009-10-27T16:22:17|EXT=BR2414-note_0

	

	

END_DATA

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

Information Model

Database Schema

SCADA_IDS Database table

	

Column

	

Data Type

	

Description

	

ID

	

NUMBER

	

Numeric identifier for each "scada source" that we want RTI to process.

	

SCADA_NAME

	

VARCHAR(32)

	

Name for the scada source

The schema for this table is defined in product_schema_scada_id.sql file. The script, OPAL_scada_ids.sql, populates generic SCADA sources for the OPAL model. A source is any SCADA system that can provide information to the adapter. There could be one SCADA source defined for each of multiple SCADA vendors, or a utility may choose to divide their territory into multiple regions, with each region acting as a separate SCADA source. Each SCADA source must have a name as well as a unique integer ID.

SCADA_SYNONYMS Database table

The SCADA_SYNONYMS table contains all the synonyms for attribute name or values (e.g., KV_3, AMP_A, and CLOSE) used by RTAdapter in processing flat files of SCADA data input.

	

Column

	

Data Type

	

Description

	

scada_name

	

VARCHAR2(32)

	

SCADA name - from scada_id name

	

keyword

	

VARCHAR2(32)

	

SCADA unique attribute keyword string from SCADA system. Generally maps to an NMS attribute name but this is not required unless the scada_synonyms.attribute_alias field is left blank.

If the scada_synonyms.attribute_alias field is left blank than the scada_synonyms.keyword field must map to a valid NMS attribute name - from attributes.name (table.column).

For conditions this is unique name used by external SCADA to identify the condition class (NOTE, TAG, etc). NMS condition class must be in scada_synonyms.attribute_alias.

	

value

	

VARCHAR2(32)

	

For digitals: Customer value associated with keyword that indicates digital state (OPEN, CLOSED).

For analogs: This field could be null, but the value is part of the primary key - so set to the same value as the keyword.

For conditions: Must be "add", "rem" or "syn". The "syn" value is used for synchronization requests.

	

process_type

	

VARCHAR2(5)

	

For Digitals - 'D'

For Analog - 'A'

For threshold VOLT processing - ‘A_VOL’

For threshold AMP processing - ‘A_AMP’

For Conditions - ‘C’

	

attribute_alias

	

VARCHAR2(20)

	

Attribute name from attributes table.

For digitals: The only way to get a model object to change status is to set this value to 'Status'. All other values are for digital attributes.

For analogs: This field is optional and can be set to ‘’ (empty string). If this value is ‘’, the scada_synonyms.keyword is used as the attribute name.

For conditions: This field is the condition class name (tag, note, etc).

	

status_value

	

VARCHAR2(20)

	

Numeric or string from scada_states.alias table.

For digital status: This field is generally set to DEVICE_CLOSE or DEVICE_OPEN

For analogs: This field is NULL.

For conditions: This field is either a numeric condition status or a string that maps to a numeric condition status via the scada_states table. If it is a string it MUST start with an alpha (non-numeric) character.

For each implementation, define the customer specific <project>_scada_synonyms.sql file to specify the required synonyms.

SCADA_STATES

This table exists to allow for entering a character string into the scada_states.status_value field instead of an integer. For example 'DEVICE_CLOSE' instead of 2.

	

Column

	

Data Type

	

Description

	

SCADA_NAME

	

VARCHAR2(32)

	

Name of scada from scada_ids.scada_name

	

ALIAS

	

VARCHAR2(32)

	

Alias to map to integer

	

VALUE

	

INTEGER

	

Integer value to map to

OPAL_scada_states.sql defines the commonly used entries .

SCADA_IN

The scada_in table can be used by RTAdapter to queue incoming SCADA updates (initially just status changes). RTAdapter, if configured to do so, should periodically poll this table and check for unprocessed rows (status='N'). If unprocessed rows are found RTAdapter will attempt to update the model according to data provided. If an error occurs, the scada_in.error_code and scada_in.error_description columns should be populated with some indication of the problem - status will be set to 'E'. If the update is successful scada_in.status='S'.

Note that this is NOT intended to be a high-volume interface. We would normally expect this interface to process less than 100 operations per hour (for example). While it could likely be pushed beyond this rate, it was not designed to do so.

Note also that the database sequence scada_in_sequence must be set up properly to create the primary key (scada_in.id) value on insert.

It is the responsibility of the project administrative team to maintain (clear out) this table to prevent it from becoming overly large. It is NOT intended to provide long term storage of external requests. It was initially designed as a short term queue by customer request, so it is intended to hold less than 1000 entries (there are no indexes other than primary key). The design may be subject to change if we decide to use it for more general purposes or for higher volume updates.

The scada_in.attribute and scada_in.operation values must be properly defined in the scada_synonyms and scada_states tables.

	

Column

	

Data Type

	

Description

	

ID

	

VARCHAR2(32)

	

scada_in_sequence generated pk

	

H_CLS

	

NUMBER(38,0)

	

NMS class of device

	

H_IDX

	

NUMBER(38,0)

	

NMS index of device

	

ALIAS

	

VARCHAR2(128)

	

SCADA point alias - can be null if h_cls and h_idx are NOT null

	

ATTRIBUTE

	

VARCHAR(16)

	

SCADA attribute name (status for now) defined in scada_synonyms.

	

OPERATION

	

VARCHAR(6)

	

Operation (open, close) from scada_synonyms, scada_states.

	

OPERATION_DATE

	

DATE

	

When operation occurred in field

	

CAPTURE_DATE

	

DATE

	

When operation captured.

	

SOURCE

	

VARCHAR(32)

	

source/user name

	

STATUS

	

VARCHAR2(1)

	

Status of request:

N = New

S = Successful

E = Error

	

ERROR_CODE

	

NUMBER(38,0)

	

Error code

	

ERROR_DESCRIPTION

	

VARCHAR(256)

	

Error code description.

ANALOG_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier - matches scada_ids.id

	

RTU_ID

	

VARCHAR2(32)

	

RTU IDID - unique name within SCADA system.

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

DIGITAL_MEASUREMENTS

	

Column

	

Data Type

	

Description

	

H_CLS

	

SMALLINT

	

Object handle

	

H_IDX

	

INTEGER

	

Object index

	

PARTITION

	

INTEGER

	

Object partition handle

	

ATTRIBUTE

	

SMALLINT

	

Data attribute index (from ATTRIBUTES table)

	

TTL

	

SMALLINT

	

Time-To-Live Value

	

LIMIT_GROUP_ID

	

INTEGER

	

Object limit group

	

RTI_ALIAS

	

VARCHAR2(128)

	

RTI device measurement name

	

SCADA_ID

	

INTEGER

	

SCADA source identifier

	

RTU_ID

	

VARCHAR2(32)

	

RTU ID

	

QUALITY

	

INTEGER

	

Quality code

	

VALUE

	

FLOAT

	

Manual Replace Value

	

UPDATE_FLAG

	

INTEGER

	

Manual Replace Flag

	

ICCP_OBJECT

	

VARCHAR2(32)

	

ICCP mms object name

	

DISPLAY_ID

	

VARCHAR2(64)

	

ID for display call up

	

NORMAL_STATE

	

INTEGER

	

Normal state for measure

	

CONTROLLABLE

	

VARCHAR2(1)

	

Is this row controllable

	

ACTIVE

	

VARCHAR2(1)

	

Is this row active

	

SOURCE

	

VARCHAR2(33)

	

Source of measurements

	

COMMENTS

	

VARCHAR2(512)

	

Comment associated with

	

OFF_NOMINAL_TIME

	

DATE

	

Time quality went off-nominal

This section provides an overview of the logical information model supported by this interface. The key objects supported by this interface include:

	
•

	

Customers, which are defined using accounts, service locations and meters. This model is based upon the MultiSpeak model. Typically, as a practical note, the custId identifier may in fact be the same as the account number. Some extensions to the MultiSpeak model are used as required to address issues that are otherwise not addressed by MultiSpeak. The support of a bulk load process that reads a XML file, with defined customers to create the model. This process (createSql) can be ran to generate the SQL to be run on the production servers, or can directly create the customers.

	
•

	

Trouble calls are also referred to as incidents within Oracle Utilities Network Management System. An incident is typically related to a customer, who in turn is related to a device. In the absence of a correlation to a device, a trouble call is classified as a ‘fuzzy’ call, which differentiates it from a call that can be directly correlated to the electrical distribution network.

	
•

	

Outages, which are a consequence of the correlation of incidents. Outages are one form of an event that is managed by JMService. Some events are non-outage events, such as power quality. The type of call that is provided can identify such non-outage and outage events. Each call needs to be identified with a trouble code, which will determine the type of call that JMService will generate with in Oracle Utilities Network Management System.

	
•

	

Devices, which are part of the electrical distribution network. Customers, outages and conditions may have relationships to devices. Typically customers are related to transformer devices. Outages are typically related to switch, fuse or transformer devices.

	
•

	

Conditions (which can be specialized within Oracle Utilities Network Management System for the management of information such as tags, notes, etc.)

	
•

	

SQL queries, result sets and transactions.

	
•

	

Customer disconnections and reconnections for indicating customers who have been purposely removed from Service by the utility.

	
•

	

Crew Outage States that will identify outage states that change as a result of a crew action. For example a crew that has been dispatched, assigned, or suspended from outage work would correlate to an action that may trigger an outage state change in Oracle Utilities Network Management System.

The information described by these models is formatted using XML for the purposes of exchange through this interface. The following table describes tags that are used in the XML definitions, and how they relate to the information model within Oracle Utilities Network Management System. The corresponding types used in these models are I = Integer, S = String, T = TimeStamp, C = Single Character, and F = floating point.

ICCP Adapter

This chapter includes the following topics:

	
•

	

ICCP Adapter Introduction

	
•

	

ICCP

	
•

	

ICCP Adapter Configuration

	
•

	

Configuring the LiveData Server

ICCP Adapter Introduction

The ICCP Adapter is an application that integrates the Oracle Utilities Network Management
System with a remote SCADA system through the Inter-control Center Communications
Protocol (ICCP).

The ICCP Adapter employs the LiveData Server product provided by LiveData, Inc. LiveData
Server is a mandatory component of the Oracle Utilities Network Management System ICCP
Adapter and must be separately licensed from LiveData, Inc.

ICCP

The Inter-Control Center Communications Protocol (ICCP) is a standard interface protocol that
can be used with Oracle Utilities Network Management System to provide data exchange with
remote and local SCADA systems. ICCP is also an international standard: International
Electrotechnical Commission (IEC) Telecontrol Application Service Element 2 (TASE.2).

ICCP allows the exchange of real-time and historical power system monitoring and control data,
including measured values, scheduling data, energy accounting data, and operator messages. Data
exchange can occur between:

	
•

	

Multiple control center Energy Mangemenet System (EMS) systems

	
•

	

EMS and power plant DCS systems

	
•

	

EMS and distribution SCADA systems

	
•

	

EMS and other utility systems

	
•

	

EMS/SCADA and substations

The ICCP standard consists of the following blocks:

	

Block

	

Description

	

Notes

	

Block 1

	

 Basic Services

	

Available on Oracle Utilities Network Management System ICCP interface

	

Block 2

	

 Extended Data Set Condition Monitoring

	

Available on Oracle Utilities Network Management System ICCP interface

	

Block 3

	

 Blocked Transfers

	

	

Block 4

	

 Operator Stations

	

	

Block 5

	

 Device Control

	

Available on Oracle Utilities Network Management System ICCP interface

	

Block 6

	

 Programs

	

	

Block 7

	

 Events

	

	

Block 8

	

 Accounts

	

	

Block 9

	

 Time Series

	

ICCP Adapter Configuration

This section guides the user through configuration of the Oracle Utilities Network Management
System ICCP Adapter. The following are assumed to be true before the adapter is installed:

	
•

	

Oracle database access has been confirmed.

	
•

	

Isis messaging bus has been installed and verified.

	
•

	

Oracle Utilities Network Management System is installed and functional.

	
•

	

LiveData Server is installed, functional, and licensed.

The major steps in configuring the ICCP Adapter are:

	
•

	

Configuring the Adapter to Run as a System Service

	
•

	

Generating Configuration Files Using the Auto Configuration Program gateway_config.pl

	
•

	

Configuring the LiveData Server

Configuring the Adapter to Run as a System Service

Configure the ICCP Adapter by updating the
$NMS_HOME/etc/system.dat file to include the ICCP Adapter as a system service. There are three main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/
system.dat.template file for examples of how to configure the ICCP Adapter. Search for IccpAdapter and make sure those lines are uncommented. You must restart the system services in order for the ICCP Adapter to be properly monitored by SMService.

Below is an example of the program section in the system.dat file:

program IccpAdapter IccpAdapter -prm_path /users/nms1/etc/

Note : It is assumed that the ICCP Adapter will reside on the same Unix or Linux server where the Oracle Utilities Network Management System services environment resides.

Command Line Options for ICCP Adapter

The command line for the ICCP Adapter provides the following options:

	

Command Line Option

	

What it does

	

-debug <level>

	

Sets the level of debug messages generated by the adapter. <level> is a positive number, or zero. The higher the number, the more information is displayed. If <level> is omitted, it defaults to a value of 0.

	

-prm_path <IccpAdapter.prm path>

	

Sets the path of the IccpAdapter.prm parameter file location. This file is used to configure the operation of the ICCP adapter.

	

-help

	

Returns the available IccpAdapter startup parameters and definitions, then terminates.

	

-nodaemon

	

Runs in the foreground, used when running by hand.

IccpAdapter.prm

The IccpAdapter.prm file is used to configure the operation of the Oracle Utilities Network Management System ICCP Adapter. The default location for this file is the same as where the IccpAdapter binary is located (i.e., $CES_HOME/bin) but it is generally configured to be in a different location by using the -prm_path <IccpAdapter.prm path> command line option. Lines in this file beginning with a ";" (semi-colon) are comments. Lines beginning with a "[" (left bracket) are block identifiers (markers). Fields marked as <Required> must be configured for proper operation and are generally site specific. See the IccpAdapter.prm.template file in the standard $CES_HOME/templates directory for an example IccpAdapter configuration file.

Fields in the IccpAdapter.prm File

	

Field name

	

Type

	

Default

	

Valid Values

	

Description

	

[IccpAdapter]

	

Marker

	

	

	

Used for generic configuration of program.

	

Debug

	

Int

	

0

	

[0..MAX_INT]

	

Specify the ‘debug’ level for the program. Higher numbers generate more output messages to the log file.

	

ServerHostname

	

IP
address

List -
blank

separated

	

<Required>

	

128.168.148.43
etc

	

The IP address(es) of the LiveData Server
hostname(s) to connect to. It could be a blank
separated list of IP address of several
LiveData Servers. In case a failure of
connection was detected by the IccpAdapter
with the current LiveData Server, it will
traverse the ServerHostname list for the next
LiveData Server to connect to.

	

Port

	

Integer

	

<Required>

	

[1..MAX_INT]

	

Blank separated list of TCP/IP port numbers that the Iccp Adapter will use for a connection attempt to a LiveData Server. Parallel to the ServerHostname, it could be a list of port numbers to use to connect to the corresponding LiveData server in ServerHostname. In case there was a failure of connection with the current LiveData Server, it would proceed to the next entry - in parallel with the next ServerHostname entry. 5002 is typical.

	

Period

	

Integer

	

10

	

[1..MAX_INT]

	

Time in seconds between periodic transfers of non-time critical data.

	

StatusUpdates

	

Integer

	

25

	

[1..MAX_INT]

	

The maximum number of status updates to be sent to DDService at one time.

	

ScadaId

	

Integer

	

1

	

[1..MAX_INT]

	

Identification number assigned to the SCADA in Oracle Utilities Network Management System with which the ICCP Adapter is communicating.

	

AnalogTolerance

	

Double

	

0.0F

	

[0.01..0.99]

	

Dead band for analog value updates. It is the required percent change from the last reported value to trigger an update.

	

Analogs

	

Boolean

	

F

	

[T, F]

	

Boolean value indicating use of the ANALOG_MEASUREMENTS table.

	

Digitals

	

Boolean

	

T

	

[T, F]

	

Boolean value indicating use of the DIGITAL_MEASUREMENTS table.

	

ReconnectPeriod

	

Integer

	

60

	

[0..MAX_INT]

	

Configurable duration of delay to wait after the LiveData Server instances failed in succession.

	

Controls

	

Boolean

	

F

	

[T, F]

	

Boolean value indicating use of the controls table for Block 5 functionality.

	

QualityCodeUseOn AssociationTimeOut

	

Integer

	

0

	

[0..MAX_INT]

	

Quality code that will be sent to DDService when the communication with LD server is lost. A valid QualityCode must be specified if this option is used.

	

DisableStop

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will accept and process a stop high level message. This option disables this feature. When this feature is enabled, the adapter will disregard a stop high level message.

	

DisableCOV

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will process a COV update (one or more open and close sequences within a scan cycle - normally indicating one or more momentaries) and send it to DDService. This option disables this feature.

	

Vccs

	

Integer

	

<Required>

	

[1..MAX_INT]

	

The number of VCCs (Virtual Control Centers) that are configured in the LiveData Server.

	

IgnoreCritInterSysServFail

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will stop if SMSserivce reports a critical service failure and not restart until services are recovered. This option disables this feature.

	

NoSwitchOpQualityMask

	

Integer

	

No Mask

	

[0..MAX_INT]

	

This parameter sets the quality codes that prevent switches from being operated. There is no effect on non-switch statuses.

	

PhaseEncodeSwitch

	

Boolean

	

F

	

[T, F]

	

If set to true, this will enable Iccp Adapter to interpret data discrete values as three-bit phase encoded statuses. [e.g., A = ‘001’, B = ‘010’, C = ‘100’, etc.]

	

PseudoAlarms

	

Boolean

	

F

	

[T, F]

	

If set to 1, then this will set the pseudo flag for the switch entry to be sent to DDService. Generates pseudo (advisory) alarms for ICCP reported device ops rather than actually operating the switches in the Oracle Utilities Network Management System model.

	

SendTimeout

	

Integer

	

10

	

[0..MAX_INT]

	

Number of seconds to wait when attempting
to conenct IccpAdapter to the LiveData
server. If no connection is received, it will
move to the next available LiveData server (if
configured). Generally leave as the default.

	

DetachRead

	

Boolean

	

T

	

[T,F]

	

Detach the IccpAdapter internal thread that is
reading the incoming RTP data stream from
Isis. Generally leave as the default.

	

DetachWrite

	

Boolean

	

F

	

[T,F]

	

Detach the IccpAdapter internal thread that is
writing the outgoing RTP data stream from
Isis. Generally leave as the default

	

DetachHeartbeat

	

Boolean

	

F

	

[T,F]

	

Detach the IccpAdapter internal thread that is
sending outgoing RTP data stream heartbeat
requests from Isis. Generally leave as the
default

	

[VCC#]

	

Marker

	

	

	

E.g., [VCC1]. Provides additional information for each VCC (Virtual Control Center).

	

AssociationAddress

	

Integer

	

<Required>

	

[1..MAX_INT]

	

RTP address in LiveData Server for watching and controlling this VCCs association status

	

TransferSetAddress

	

Integer

	

<Required>

	

[1..MAX_INT]

	

RTP address in LiveData Server for controlling the use of configured ICCP transfer sets

	

NumTransferSets

	

Integer

	

<Required>

	

[1..MAX_INT]

	

The total number of transfer sets that are available for use in the VCC. Number must be a multiple of 16.

	

AssociationName

	

String

	

Vcc Label

	

[a..z, A..Z, 0..9]

	

The name of the ICCP Association.

	

AssociationRestartTime

	

Integer

	

30

	

[1..MAX_INT]

	

Seconds allowed for restart before the association is considered failed.

	

TransferSetRestartPeriod

	

Integer

	

30

	

[1..MAX_INT]

	

Seconds allowed to restart transferset before the restart is considered failed and no additional restart attempts will be made.

	

TransferSetFailCountReset

	

Integer

	

60

	

[1..MAX_INT]

	

The number of fail count to be exhausted before marking the transfer set as not alive.

	

MaxTransferSetRestarts

	

Integer

	

10

	

[1..MAX_INT]

	

Maximum number of restart for transfer set.

	

TransferSetControlMask

	

String

	

<Required>

	

[T, F]

	

Transfer set control mask for the transfer set to be sent to LiveData Server. One T/F flag for each TransferSet. String length must be a multiple of 16. Example with one TransferSet enabled: "FTTTTTTTTTTTTTTT"

	

[ValidityQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Validity Quality values

	

Valid

	

Integer

	

0

	

2**n (n=11->31)

	

The value is valid. This is the default (normal) value should virtually always be 0.

	

Held

	

Integer

	

0

	

2**n (n=11->31)

	

Previous data value has been held over. Interpretation is local.

	

Suspect

	

Integer

	

0

	

2**n (n=11->31)

	

Data value is questionable. Interpretation is local.

	

Notvalid

	

Integer

	

0

	

 2**n (n=11->31)

	

The value is not valid.

	

[CurrentSourceQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Current Source Quality values.

	

Telemetered

	

Integer

	

0

	

2**n (n=11->31)

	

Value was received from a telemetered site. This is the default (normal) value should virtually always be 0.

	

Calculated

	

Integer

	

0

	

2**n (n=11->31)

	

Value was calculated based on other data.

	

Entered

	

Integer

	

0

	

2**n (n=11->31)

	

Value was entered manually.

	

Estimated

	

Integer

	

0

	

2**n (n=11->31)

	

Value was estimated (State Estimator, etc.).

	

[NormalValueQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Normal Value Quality values.

	

Normal

	

Integer

	

0

	

2**n (n=11->31)

	

The point value is that which has been configured as normal for the point. This is the default (normal) value should virtually always be 0.

	

Abnormal

	

Integer

	

0

	

2**n (n=11->31)

	

The point value is not that which has been configured as normal for the point.

	

[TimeStampQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Timestamp Quality values

	

Valid

	

Integer

	

0

	

2**n (n=11->31)

	

Current value of the TimeStamp attribute contains the time stamp of when the value was last changed. This is the default (normal) value should virtually always be 0.

	

Invalid

	

Integer

	

0

	

2**n (n=1->31)

	

Current value of the TimeStamp attribute contains the time stamp other than when the value was last changed.

	

[SwitchStatusQuality]

	

Marker

	

	

	

Assign an Oracle Utilties Network
Management System quality to the non-open/
close statuses that can be returned in the two-
bit ICCP status field. ICCP "open" is
generally (1) and "closed" is (2).

	

Between

	

Integer

	

262144

	

2**n (n=11->31)

	

Qualithy code to set if the two bit ICCP
switch status is reported as "between" (0).

	

Invalid

	

Integer

	

524288

	

2**n (n=11->31)

	

Qualithy code to set if the two bit ICCP
switch status is reported as "invalid" (3).

Sample IccpAdapter.prm Configuration File

[IccpAdapter]

Debug=1

Period=5

ScadaId=1

Analogs=0

AnalogTolerance=.0001

Digitals=1

Controls=0

Port=5002

QualityCodeUseOnAssociationTimeOut=16384

Vccs=1

DisableCOV=0

[VCC1]

AssociationAddress=10

TransferSetAddress=20

NumTransferSets=16

[ValidityQuality]

Valid=

Held=

Suspect=

Notvalid=1048576

[CurrentSourceQuality]

Telemetered=

Calculated=

Entered=

Estimated=2097152

[NormalValueQuality]

Normal=

Abnormal=

[TimeStampQuality]

Valid=

Invalid=

Quality Codes

The IccpAdapter.prm file also enables ICCP quality codes to be translated into Oracle Utilities
Network Management System quality codes. In the simplest configuration (and default), all of the
ICCP quality codes (other than Between and Invalid SwitchStatusQuality codes which need to be
defined to ensure proper operation) are assigned to the 'normal' Oracle Utilities Network
Management System quality code (0).

Note : Oracle Utilities Network Management System quality codes are always single bit values. Therefore, the only valid value for configuration is 0 or a proper value of 2^nth power where n=0->31. The
Quality Rules Table
 table lists all the valid user-defined quality codes in Oracle Utilities Network Management System.

If none of the predefined quality codes are applicable, then a new code must be created. The
following steps accomplish this:

	
•

	

Choose an ICCP quality listed in the IccpAdapter.prm.

	
•

	

Check the
Quality Rules Table
 to see which values have already been assigned to qualities.

	
•

	

Assign one of the values listed below to the ICCP quality and enter it in the
Quality Rules Table
.

	
•

	

Locate the quality in the IccpAdapter.prm file and enter the assigned value for it.

The assigned value must be the decimal representation of 32 bits, where no more than one bit has a value of 1. For example, if the bit position is 11, use the number 2048. The following list contains the decimal values that may be assigned to new qualities: 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648.

Values of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 may not be assigned as codes for new qualities because they are already defined and used within Oracle Utilities Network Management System. The ‘normal’ Oracle Utilities Network Management System quality code is 0.

The adapter reads the IccpAdapter.prm file only during startup. If the quality code is added when the adapter is running, you must restart the adapter in order for it to recognize the new quality code.

IccpAdapter.prm

The IccpAdapter.prm file is used to configure the operation of the Oracle Utilities Network Management System ICCP Adapter. The default location for this file is the same as where the IccpAdapter binary is located (i.e., $CES_HOME/bin) but it is generally configured to be in a different location by using the -prm_path <IccpAdapter.prm path> command line option. Lines in this file beginning with a ";" (semi-colon) are comments. Lines beginning with a "[" (left bracket) are block identifiers (markers). Fields marked as <Required> must be configured for proper operation and are generally site specific. See the IccpAdapter.prm.template file in the standard $CES_HOME/templates directory for an example IccpAdapter configuration file.

Fields in the IccpAdapter.prm File

	

Field name

	

Type

	

Default

	

Valid Values

	

Description

	

[IccpAdapter]

	

Marker

	

	

	

Used for generic configuration of program.

	

Debug

	

Int

	

0

	

[0..MAX_INT]

	

Specify the ‘debug’ level for the program. Higher numbers generate more output messages to the log file.

	

ServerHostname

	

IP
address

List -
blank

separated

	

<Required>

	

128.168.148.43
etc

	

The IP address(es) of the LiveData Server
hostname(s) to connect to. It could be a blank
separated list of IP address of several
LiveData Servers. In case a failure of
connection was detected by the IccpAdapter
with the current LiveData Server, it will
traverse the ServerHostname list for the next
LiveData Server to connect to.

	

Port

	

Integer

	

<Required>

	

[1..MAX_INT]

	

Blank separated list of TCP/IP port numbers that the Iccp Adapter will use for a connection attempt to a LiveData Server. Parallel to the ServerHostname, it could be a list of port numbers to use to connect to the corresponding LiveData server in ServerHostname. In case there was a failure of connection with the current LiveData Server, it would proceed to the next entry - in parallel with the next ServerHostname entry. 5002 is typical.

	

Period

	

Integer

	

10

	

[1..MAX_INT]

	

Time in seconds between periodic transfers of non-time critical data.

	

StatusUpdates

	

Integer

	

25

	

[1..MAX_INT]

	

The maximum number of status updates to be sent to DDService at one time.

	

ScadaId

	

Integer

	

1

	

[1..MAX_INT]

	

Identification number assigned to the SCADA in Oracle Utilities Network Management System with which the ICCP Adapter is communicating.

	

AnalogTolerance

	

Double

	

0.0F

	

[0.01..0.99]

	

Dead band for analog value updates. It is the required percent change from the last reported value to trigger an update.

	

Analogs

	

Boolean

	

F

	

[T, F]

	

Boolean value indicating use of the ANALOG_MEASUREMENTS table.

	

Digitals

	

Boolean

	

T

	

[T, F]

	

Boolean value indicating use of the DIGITAL_MEASUREMENTS table.

	

ReconnectPeriod

	

Integer

	

60

	

[0..MAX_INT]

	

Configurable duration of delay to wait after the LiveData Server instances failed in succession.

	

Controls

	

Boolean

	

F

	

[T, F]

	

Boolean value indicating use of the controls table for Block 5 functionality.

	

QualityCodeUseOn AssociationTimeOut

	

Integer

	

0

	

[0..MAX_INT]

	

Quality code that will be sent to DDService when the communication with LD server is lost. A valid QualityCode must be specified if this option is used.

	

DisableStop

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will accept and process a stop high level message. This option disables this feature. When this feature is enabled, the adapter will disregard a stop high level message.

	

DisableCOV

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will process a COV update (one or more open and close sequences within a scan cycle - normally indicating one or more momentaries) and send it to DDService. This option disables this feature.

	

Vccs

	

Integer

	

<Required>

	

[1..MAX_INT]

	

The number of VCCs (Virtual Control Centers) that are configured in the LiveData Server.

	

IgnoreCritInterSysServFail

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will stop if SMSserivce reports a critical service failure and not restart until services are recovered. This option disables this feature.

	

NoSwitchOpQualityMask

	

Integer

	

No Mask

	

[0..MAX_INT]

	

This parameter sets the quality codes that prevent switches from being operated. There is no effect on non-switch statuses.

	

PhaseEncodeSwitch

	

Boolean

	

F

	

[T, F]

	

If set to true, this will enable Iccp Adapter to interpret data discrete values as three-bit phase encoded statuses. [e.g., A = ‘001’, B = ‘010’, C = ‘100’, etc.]

	

PseudoAlarms

	

Boolean

	

F

	

[T, F]

	

If set to 1, then this will set the pseudo flag for the switch entry to be sent to DDService. Generates pseudo (advisory) alarms for ICCP reported device ops rather than actually operating the switches in the Oracle Utilities Network Management System model.

	

SendTimeout

	

Integer

	

10

	

[0..MAX_INT]

	

Number of seconds to wait when attempting
to conenct IccpAdapter to the LiveData
server. If no connection is received, it will
move to the next available LiveData server (if
configured). Generally leave as the default.

	

DetachRead

	

Boolean

	

T

	

[T,F]

	

Detach the IccpAdapter internal thread that is
reading the incoming RTP data stream from
Isis. Generally leave as the default.

	

DetachWrite

	

Boolean

	

F

	

[T,F]

	

Detach the IccpAdapter internal thread that is
writing the outgoing RTP data stream from
Isis. Generally leave as the default

	

DetachHeartbeat

	

Boolean

	

F

	

[T,F]

	

Detach the IccpAdapter internal thread that is
sending outgoing RTP data stream heartbeat
requests from Isis. Generally leave as the
default

	

[VCC#]

	

Marker

	

	

	

E.g., [VCC1]. Provides additional information for each VCC (Virtual Control Center).

	

AssociationAddress

	

Integer

	

<Required>

	

[1..MAX_INT]

	

RTP address in LiveData Server for watching and controlling this VCCs association status

	

TransferSetAddress

	

Integer

	

<Required>

	

[1..MAX_INT]

	

RTP address in LiveData Server for controlling the use of configured ICCP transfer sets

	

NumTransferSets

	

Integer

	

<Required>

	

[1..MAX_INT]

	

The total number of transfer sets that are available for use in the VCC. Number must be a multiple of 16.

	

AssociationName

	

String

	

Vcc Label

	

[a..z, A..Z, 0..9]

	

The name of the ICCP Association.

	

AssociationRestartTime

	

Integer

	

30

	

[1..MAX_INT]

	

Seconds allowed for restart before the association is considered failed.

	

TransferSetRestartPeriod

	

Integer

	

30

	

[1..MAX_INT]

	

Seconds allowed to restart transferset before the restart is considered failed and no additional restart attempts will be made.

	

TransferSetFailCountReset

	

Integer

	

60

	

[1..MAX_INT]

	

The number of fail count to be exhausted before marking the transfer set as not alive.

	

MaxTransferSetRestarts

	

Integer

	

10

	

[1..MAX_INT]

	

Maximum number of restart for transfer set.

	

TransferSetControlMask

	

String

	

<Required>

	

[T, F]

	

Transfer set control mask for the transfer set to be sent to LiveData Server. One T/F flag for each TransferSet. String length must be a multiple of 16. Example with one TransferSet enabled: "FTTTTTTTTTTTTTTT"

	

[ValidityQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Validity Quality values

	

Valid

	

Integer

	

0

	

2**n (n=11->31)

	

The value is valid. This is the default (normal) value should virtually always be 0.

	

Held

	

Integer

	

0

	

2**n (n=11->31)

	

Previous data value has been held over. Interpretation is local.

	

Suspect

	

Integer

	

0

	

2**n (n=11->31)

	

Data value is questionable. Interpretation is local.

	

Notvalid

	

Integer

	

0

	

 2**n (n=11->31)

	

The value is not valid.

	

[CurrentSourceQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Current Source Quality values.

	

Telemetered

	

Integer

	

0

	

2**n (n=11->31)

	

Value was received from a telemetered site. This is the default (normal) value should virtually always be 0.

	

Calculated

	

Integer

	

0

	

2**n (n=11->31)

	

Value was calculated based on other data.

	

Entered

	

Integer

	

0

	

2**n (n=11->31)

	

Value was entered manually.

	

Estimated

	

Integer

	

0

	

2**n (n=11->31)

	

Value was estimated (State Estimator, etc.).

	

[NormalValueQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Normal Value Quality values.

	

Normal

	

Integer

	

0

	

2**n (n=11->31)

	

The point value is that which has been configured as normal for the point. This is the default (normal) value should virtually always be 0.

	

Abnormal

	

Integer

	

0

	

2**n (n=11->31)

	

The point value is not that which has been configured as normal for the point.

	

[TimeStampQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Timestamp Quality values

	

Valid

	

Integer

	

0

	

2**n (n=11->31)

	

Current value of the TimeStamp attribute contains the time stamp of when the value was last changed. This is the default (normal) value should virtually always be 0.

	

Invalid

	

Integer

	

0

	

2**n (n=1->31)

	

Current value of the TimeStamp attribute contains the time stamp other than when the value was last changed.

	

[SwitchStatusQuality]

	

Marker

	

	

	

Assign an Oracle Utilties Network
Management System quality to the non-open/
close statuses that can be returned in the two-
bit ICCP status field. ICCP "open" is
generally (1) and "closed" is (2).

	

Between

	

Integer

	

262144

	

2**n (n=11->31)

	

Qualithy code to set if the two bit ICCP
switch status is reported as "between" (0).

	

Invalid

	

Integer

	

524288

	

2**n (n=11->31)

	

Qualithy code to set if the two bit ICCP
switch status is reported as "invalid" (3).

Sample IccpAdapter.prm Configuration File

[IccpAdapter]

Debug=1

Period=5

ScadaId=1

Analogs=0

AnalogTolerance=.0001

Digitals=1

Controls=0

Port=5002

QualityCodeUseOnAssociationTimeOut=16384

Vccs=1

DisableCOV=0

[VCC1]

AssociationAddress=10

TransferSetAddress=20

NumTransferSets=16

[ValidityQuality]

Valid=

Held=

Suspect=

Notvalid=1048576

[CurrentSourceQuality]

Telemetered=

Calculated=

Entered=

Estimated=2097152

[NormalValueQuality]

Normal=

Abnormal=

[TimeStampQuality]

Valid=

Invalid=

Quality Codes

The IccpAdapter.prm file also enables ICCP quality codes to be translated into Oracle Utilities
Network Management System quality codes. In the simplest configuration (and default), all of the
ICCP quality codes (other than Between and Invalid SwitchStatusQuality codes which need to be
defined to ensure proper operation) are assigned to the 'normal' Oracle Utilities Network
Management System quality code (0).

Note : Oracle Utilities Network Management System quality codes are always single bit values. Therefore, the only valid value for configuration is 0 or a proper value of 2^nth power where n=0->31. The
Quality Rules Table
 table lists all the valid user-defined quality codes in Oracle Utilities Network Management System.

If none of the predefined quality codes are applicable, then a new code must be created. The
following steps accomplish this:

	
•

	

Choose an ICCP quality listed in the IccpAdapter.prm.

	
•

	

Check the
Quality Rules Table
 to see which values have already been assigned to qualities.

	
•

	

Assign one of the values listed below to the ICCP quality and enter it in the
Quality Rules Table
.

	
•

	

Locate the quality in the IccpAdapter.prm file and enter the assigned value for it.

The assigned value must be the decimal representation of 32 bits, where no more than one bit has a value of 1. For example, if the bit position is 11, use the number 2048. The following list contains the decimal values that may be assigned to new qualities: 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648.

Values of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 may not be assigned as codes for new qualities because they are already defined and used within Oracle Utilities Network Management System. The ‘normal’ Oracle Utilities Network Management System quality code is 0.

The adapter reads the IccpAdapter.prm file only during startup. If the quality code is added when the adapter is running, you must restart the adapter in order for it to recognize the new quality code.

IccpAdapter.prm

The IccpAdapter.prm file is used to configure the operation of the Oracle Utilities Network Management System ICCP Adapter. The default location for this file is the same as where the IccpAdapter binary is located (i.e., $CES_HOME/bin) but it is generally configured to be in a different location by using the -prm_path <IccpAdapter.prm path> command line option. Lines in this file beginning with a ";" (semi-colon) are comments. Lines beginning with a "[" (left bracket) are block identifiers (markers). Fields marked as <Required> must be configured for proper operation and are generally site specific. See the IccpAdapter.prm.template file in the standard $CES_HOME/templates directory for an example IccpAdapter configuration file.

Fields in the IccpAdapter.prm File

	

Field name

	

Type

	

Default

	

Valid Values

	

Description

	

[IccpAdapter]

	

Marker

	

	

	

Used for generic configuration of program.

	

Debug

	

Int

	

0

	

[0..MAX_INT]

	

Specify the ‘debug’ level for the program. Higher numbers generate more output messages to the log file.

	

ServerHostname

	

IP
address

List -
blank

separated

	

<Required>

	

128.168.148.43
etc

	

The IP address(es) of the LiveData Server
hostname(s) to connect to. It could be a blank
separated list of IP address of several
LiveData Servers. In case a failure of
connection was detected by the IccpAdapter
with the current LiveData Server, it will
traverse the ServerHostname list for the next
LiveData Server to connect to.

	

Port

	

Integer

	

<Required>

	

[1..MAX_INT]

	

Blank separated list of TCP/IP port numbers that the Iccp Adapter will use for a connection attempt to a LiveData Server. Parallel to the ServerHostname, it could be a list of port numbers to use to connect to the corresponding LiveData server in ServerHostname. In case there was a failure of connection with the current LiveData Server, it would proceed to the next entry - in parallel with the next ServerHostname entry. 5002 is typical.

	

Period

	

Integer

	

10

	

[1..MAX_INT]

	

Time in seconds between periodic transfers of non-time critical data.

	

StatusUpdates

	

Integer

	

25

	

[1..MAX_INT]

	

The maximum number of status updates to be sent to DDService at one time.

	

ScadaId

	

Integer

	

1

	

[1..MAX_INT]

	

Identification number assigned to the SCADA in Oracle Utilities Network Management System with which the ICCP Adapter is communicating.

	

AnalogTolerance

	

Double

	

0.0F

	

[0.01..0.99]

	

Dead band for analog value updates. It is the required percent change from the last reported value to trigger an update.

	

Analogs

	

Boolean

	

F

	

[T, F]

	

Boolean value indicating use of the ANALOG_MEASUREMENTS table.

	

Digitals

	

Boolean

	

T

	

[T, F]

	

Boolean value indicating use of the DIGITAL_MEASUREMENTS table.

	

ReconnectPeriod

	

Integer

	

60

	

[0..MAX_INT]

	

Configurable duration of delay to wait after the LiveData Server instances failed in succession.

	

Controls

	

Boolean

	

F

	

[T, F]

	

Boolean value indicating use of the controls table for Block 5 functionality.

	

QualityCodeUseOn AssociationTimeOut

	

Integer

	

0

	

[0..MAX_INT]

	

Quality code that will be sent to DDService when the communication with LD server is lost. A valid QualityCode must be specified if this option is used.

	

DisableStop

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will accept and process a stop high level message. This option disables this feature. When this feature is enabled, the adapter will disregard a stop high level message.

	

DisableCOV

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will process a COV update (one or more open and close sequences within a scan cycle - normally indicating one or more momentaries) and send it to DDService. This option disables this feature.

	

Vccs

	

Integer

	

<Required>

	

[1..MAX_INT]

	

The number of VCCs (Virtual Control Centers) that are configured in the LiveData Server.

	

IgnoreCritInterSysServFail

	

Boolean

	

F

	

[T, F]

	

Normally the adapter will stop if SMSserivce reports a critical service failure and not restart until services are recovered. This option disables this feature.

	

NoSwitchOpQualityMask

	

Integer

	

No Mask

	

[0..MAX_INT]

	

This parameter sets the quality codes that prevent switches from being operated. There is no effect on non-switch statuses.

	

PhaseEncodeSwitch

	

Boolean

	

F

	

[T, F]

	

If set to true, this will enable Iccp Adapter to interpret data discrete values as three-bit phase encoded statuses. [e.g., A = ‘001’, B = ‘010’, C = ‘100’, etc.]

	

PseudoAlarms

	

Boolean

	

F

	

[T, F]

	

If set to 1, then this will set the pseudo flag for the switch entry to be sent to DDService. Generates pseudo (advisory) alarms for ICCP reported device ops rather than actually operating the switches in the Oracle Utilities Network Management System model.

	

SendTimeout

	

Integer

	

10

	

[0..MAX_INT]

	

Number of seconds to wait when attempting
to conenct IccpAdapter to the LiveData
server. If no connection is received, it will
move to the next available LiveData server (if
configured). Generally leave as the default.

	

DetachRead

	

Boolean

	

T

	

[T,F]

	

Detach the IccpAdapter internal thread that is
reading the incoming RTP data stream from
Isis. Generally leave as the default.

	

DetachWrite

	

Boolean

	

F

	

[T,F]

	

Detach the IccpAdapter internal thread that is
writing the outgoing RTP data stream from
Isis. Generally leave as the default

	

DetachHeartbeat

	

Boolean

	

F

	

[T,F]

	

Detach the IccpAdapter internal thread that is
sending outgoing RTP data stream heartbeat
requests from Isis. Generally leave as the
default

	

[VCC#]

	

Marker

	

	

	

E.g., [VCC1]. Provides additional information for each VCC (Virtual Control Center).

	

AssociationAddress

	

Integer

	

<Required>

	

[1..MAX_INT]

	

RTP address in LiveData Server for watching and controlling this VCCs association status

	

TransferSetAddress

	

Integer

	

<Required>

	

[1..MAX_INT]

	

RTP address in LiveData Server for controlling the use of configured ICCP transfer sets

	

NumTransferSets

	

Integer

	

<Required>

	

[1..MAX_INT]

	

The total number of transfer sets that are available for use in the VCC. Number must be a multiple of 16.

	

AssociationName

	

String

	

Vcc Label

	

[a..z, A..Z, 0..9]

	

The name of the ICCP Association.

	

AssociationRestartTime

	

Integer

	

30

	

[1..MAX_INT]

	

Seconds allowed for restart before the association is considered failed.

	

TransferSetRestartPeriod

	

Integer

	

30

	

[1..MAX_INT]

	

Seconds allowed to restart transferset before the restart is considered failed and no additional restart attempts will be made.

	

TransferSetFailCountReset

	

Integer

	

60

	

[1..MAX_INT]

	

The number of fail count to be exhausted before marking the transfer set as not alive.

	

MaxTransferSetRestarts

	

Integer

	

10

	

[1..MAX_INT]

	

Maximum number of restart for transfer set.

	

TransferSetControlMask

	

String

	

<Required>

	

[T, F]

	

Transfer set control mask for the transfer set to be sent to LiveData Server. One T/F flag for each TransferSet. String length must be a multiple of 16. Example with one TransferSet enabled: "FTTTTTTTTTTTTTTT"

	

[ValidityQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Validity Quality values

	

Valid

	

Integer

	

0

	

2**n (n=11->31)

	

The value is valid. This is the default (normal) value should virtually always be 0.

	

Held

	

Integer

	

0

	

2**n (n=11->31)

	

Previous data value has been held over. Interpretation is local.

	

Suspect

	

Integer

	

0

	

2**n (n=11->31)

	

Data value is questionable. Interpretation is local.

	

Notvalid

	

Integer

	

0

	

 2**n (n=11->31)

	

The value is not valid.

	

[CurrentSourceQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Current Source Quality values.

	

Telemetered

	

Integer

	

0

	

2**n (n=11->31)

	

Value was received from a telemetered site. This is the default (normal) value should virtually always be 0.

	

Calculated

	

Integer

	

0

	

2**n (n=11->31)

	

Value was calculated based on other data.

	

Entered

	

Integer

	

0

	

2**n (n=11->31)

	

Value was entered manually.

	

Estimated

	

Integer

	

0

	

2**n (n=11->31)

	

Value was estimated (State Estimator, etc.).

	

[NormalValueQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Normal Value Quality values.

	

Normal

	

Integer

	

0

	

2**n (n=11->31)

	

The point value is that which has been configured as normal for the point. This is the default (normal) value should virtually always be 0.

	

Abnormal

	

Integer

	

0

	

2**n (n=11->31)

	

The point value is not that which has been configured as normal for the point.

	

[TimeStampQuality]

	

Marker

	

	

	

Assign an Oracle Utilities Network Management System quality to ICCP Timestamp Quality values

	

Valid

	

Integer

	

0

	

2**n (n=11->31)

	

Current value of the TimeStamp attribute contains the time stamp of when the value was last changed. This is the default (normal) value should virtually always be 0.

	

Invalid

	

Integer

	

0

	

2**n (n=1->31)

	

Current value of the TimeStamp attribute contains the time stamp other than when the value was last changed.

	

[SwitchStatusQuality]

	

Marker

	

	

	

Assign an Oracle Utilties Network
Management System quality to the non-open/
close statuses that can be returned in the two-
bit ICCP status field. ICCP "open" is
generally (1) and "closed" is (2).

	

Between

	

Integer

	

262144

	

2**n (n=11->31)

	

Qualithy code to set if the two bit ICCP
switch status is reported as "between" (0).

	

Invalid

	

Integer

	

524288

	

2**n (n=11->31)

	

Qualithy code to set if the two bit ICCP
switch status is reported as "invalid" (3).

Sample IccpAdapter.prm Configuration File

[IccpAdapter]

Debug=1

Period=5

ScadaId=1

Analogs=0

AnalogTolerance=.0001

Digitals=1

Controls=0

Port=5002

QualityCodeUseOnAssociationTimeOut=16384

Vccs=1

DisableCOV=0

[VCC1]

AssociationAddress=10

TransferSetAddress=20

NumTransferSets=16

[ValidityQuality]

Valid=

Held=

Suspect=

Notvalid=1048576

[CurrentSourceQuality]

Telemetered=

Calculated=

Entered=

Estimated=2097152

[NormalValueQuality]

Normal=

Abnormal=

[TimeStampQuality]

Valid=

Invalid=

Quality Codes

The IccpAdapter.prm file also enables ICCP quality codes to be translated into Oracle Utilities
Network Management System quality codes. In the simplest configuration (and default), all of the
ICCP quality codes (other than Between and Invalid SwitchStatusQuality codes which need to be
defined to ensure proper operation) are assigned to the 'normal' Oracle Utilities Network
Management System quality code (0).

Note : Oracle Utilities Network Management System quality codes are always single bit values. Therefore, the only valid value for configuration is 0 or a proper value of 2^nth power where n=0->31. The
Quality Rules Table
 table lists all the valid user-defined quality codes in Oracle Utilities Network Management System.

If none of the predefined quality codes are applicable, then a new code must be created. The
following steps accomplish this:

	
•

	

Choose an ICCP quality listed in the IccpAdapter.prm.

	
•

	

Check the
Quality Rules Table
 to see which values have already been assigned to qualities.

	
•

	

Assign one of the values listed below to the ICCP quality and enter it in the
Quality Rules Table
.

	
•

	

Locate the quality in the IccpAdapter.prm file and enter the assigned value for it.

The assigned value must be the decimal representation of 32 bits, where no more than one bit has a value of 1. For example, if the bit position is 11, use the number 2048. The following list contains the decimal values that may be assigned to new qualities: 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648.

Values of 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 may not be assigned as codes for new qualities because they are already defined and used within Oracle Utilities Network Management System. The ‘normal’ Oracle Utilities Network Management System quality code is 0.

The adapter reads the IccpAdapter.prm file only during startup. If the quality code is added when the adapter is running, you must restart the adapter in order for it to recognize the new quality code.

High Level Messages

The ICCP Adapter can be dynamically controlled from Oracle Utilities Network Management System by using high-level messages. They can be used any time while running the Oracle Utilities Network Management System ICCP Adapter. The following high-level messages can be used:

	
•

	

stop

Disconnect from the LiveData Server and stop the Oracle Utilities Network Management System ICCP Adapter.

	
•

	

report

Empty message to determine how many Oracle Utilities Network Management System ICCP Adapters are running.

	
•

	

debug [on | off | #]

Turn on/off debug, or set it to a specific level. On is equivalent to 1, off is 0. Level can be any integer value no less than 0.

	
•

	

demote

Causes the Oracle Utilities Network Management System ICCP Adapter currently in control to relinquish control.

Use IccpAdapterService with high-level messages for the Oracle Utilities Network Management System ICCP Adapter. Example:

 Action any.IccpAdapterService report

Generating Configuration Files Using the Auto Configuration Program gateway_config.pl

The Auto Configuration Program is a command line utility for generating the configuration files for LiveData Server and the SQL statements that are used for inserting the data into the controls, analog and digital measurements tables. A
Customer ICCP Association XML Description
 defines each ICCP Association that the Oracle Utilities Network Management System ICCP Adapter will establish.

To generate the PDI files for the LiveData Server configuration, follow these steps:

	
1.

	

Verify that the DBQuery program is working properly and the SCADAMAP table is populated. On the Unix command prompt from the server where the Oracle Utilities Network Management System services are running, issue the following command:

DBQuery "select count(*) from scadamap"

The query should return the number of records from the SCADAMAP table. This should not be zero.

	
2.

	

Put the following files in a temporary folder:

	
•

	

gateway_config.pl

	
•

	

NMS-ICCP-Schema.xsd

	
•

	

Customer ICCP Association XML file/s

	
3.

	

Execute the gateway_config.pl program with the association XML filename/s as argument/s:

gateway_config.pl <name of XML file>

When prompted by the script, please indicate the IP of the LiveData Server.

Example usage and output from the "gateway_config.pl" script:

NMS_SERVER:user1$./gateway_config.pl scada.xml

Please indicate the IP address of the LiveData server: 10.10.234.1

Validating file 'scada.xml'... Ok

Getting information from ATTRIBUTES table... found 193 rows

Getting information from SCADAMAP table... found 8 rows

Deleting NMS_DEFAULT/*.pdi

Opening new NMS_DEFAULT/*.pdi files

Processing file iccpproductscada.xml

Finished file iccpproductscada.xml

Executing 'measurements.sql'...

Converting PDI files...

Mem_Main.pdi (18)

mem_vmd.pdi (50)

processor.pdi (47)

RTP_Main.pdi (18)

rtp_vmd.pdi (120)

vcc1_vmd.pdi (254)

PDI files were successfully generated!

**

* Please copy the NMS_DEFAULT *

* folder to the ICCP Config directory *

* of the LiveData Server. *

**

	
4.

	

Copy the generated NMS_DEFAULT folder and contents from the Unix/Linux server to the <ProgramFiles>LiveData\Server\Config\ICCP directory on the Windows server where the LiveData server is located.

	
5.

	

On the Unix command prompt from the server where the Oracle Utilities Network Management System services are running, issue the following command to refresh the measurements table:

 UpdateDDS -recacheMeasures

ICCP Point Mapping

ICCP points must first be mapped before sending SCADA updates to Oracle Utilities Network Management System. These ICCP points are placed in DIGITAL_MEASUREMENTS and ANALOG_MEASUREMENTS tables of the Oracle Utilities Network Management System database. These ICCP points are also contained in the PDI files generated by the Auto Configuration program and are used by the LiveData server.

Customer ICCP Association XML Description

The purpose of the XML file is to contain all of the necessary information for the Oracle Utilities Network Management System ICCP Adapter to retrieve SCADA data. It contains the following information:

	
•

	

List of the ICCP points

	
•

	

Method for retrieving the ICCP points

	
•

	

ICCP Servers from which to retrieve the points

	
•

	

Information to connect to those ICCP Servers

Each set of ICCP points that comes from a specific ICCP Server, or collection of redundant servers, should be in its own XML file.

XML Basics: Tags are text enclosed in ‘<…>’, or ‘</…>’. The first tag identifies the start of the data, and the second tag identifies the end. The text inside of the angle brackets is called the element type. Tags are used to delineate data, or content, in the file. So <Name>Joe Smith</Name> uses the tag <Name>, element type ‘Name’ and content ‘Joe Smith’. It is also possible for start tags to incorporate attributes. For example, <Name full=’yes’>Joseph Christopher Smith</Name> the start tag has an attribute of ‘full’ to help describe the element type.

In this document when it’s stated that a tag can be repeated, then multiple instances of the tag can exist in the XML file. For example: <Name>Joe Smith</Name><Name>Mary Smith</Name>. This behavior is described in an XML Schema. XML Schemas define tags and the order, context, and usage of those tags.

An XML namespace is a collection of names, which are used in XML documents as tags and attributes. Namespaces are used to uniquely identify XML tags that have the same element type.

<?xml version="1.0"?>

This line specifies the XML version of the document. All XML documents must start with a declaration that specifies the version of XML used. In this case the document conforms to version 1.0 of the XML specification.

 <IccpAssociation xmlns="http://www.ces.com"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ces.com

 CES-ICCP-Schema.xsd">

The <IccpAssociation> tag begins the description of the ICCP link from the Oracle Utilities Network Management System ICCP Adapter to the ICCP server(s). The tag has three attributes: xmlns, xmlns:xsi, and xsi:schemaLocation. The xmlns and xmlns:xsi attributes define namespaces, where the value of the attribute gives the name for the namespace. The xmlns namespace defines the default namespace for the XML document. The xmlns:xsi defines a second namespace, xsi, for defining XML schemas. It is used by the next attribute to identify the schema that the XML document must conform to. The xsi:schemaLocation attribute identifies where the XML Schema is for each namespace. In this example, it identifies the file CES-ICCP-Schema.xsd as the schema definition for the xmlns namespace.

<ServerVCC>

The <ServerVCC> tag (and the tags that follow, until the closing tag </ServerVCC>) describes all the information necessary for LiveData Server to create an association for retrieval of the specified points (see below). The information is broken into two parts. The first part, the <Instance> tag, describes the information about a given ICCP Server. The <Instance> tag can be repeated up to eight times. The second part describes the information that must remain the same among all the ICCP Servers (see below).

 <Instance>

 <Name>Customer_Server_VCC1</Name>

 <PSEL>00 01</PSEL>

 <SSEL>00 01</SSEL>

 <TSEL>00 01</TSEL>

 <APTitle>2 16 3826 4325 2364 8143 6345 2335 0073</APTitle>

 <AEQualifier>53549</AEQualifier>

 <Description>Power Company Scada System</Description>

 <Organization>Scada Management Group</Organization>

 <UnitName>Production Scada System A</UnitName>

 <Locality>Room 034, sub-level 1</Locality>

 <IPAddress>192.168.1.10</IPAddress>

 <Hostname>system1.company.com</Hostname>

 </Instance>

 <Instance>

 …

 </Instance>

Each <Instance> tag contains the information that is unique in describing a VCC. First, it lists the OSI networking parameters to connect to the ICCP Server VCC, followed by general information about the VCC, and finally the IP address/hostname for the computer. The italicized items are optional.

The <IPAddress> and <Hostname> tags support multiple addresses, up to a total of eight. You should use either the <IPAddress> or <Hostname> tag, not both. If the ICCP Server is running redundantly and the only configuration difference is the machine that it is running on, just list the multiple machines. If other information is different (OSI networking configuration parameters for example) then create another <Instance> for the other ICCP Server.

<Domain>Customer_Domain</Domain>

<BilateralTableId>Bilateral_Table_Id_1</BilateralTableId>

<Version>1996,8</Version>

<SupportedBlocks>1 2 5</SupportedBlocks>

This information is used by LiveData Server to establish an active association with the ICCP Server. It is consistent among all the possible ICCP Servers that have been defined with the <Instance> tag.

</ServerVCC>

<ClientVCC>

Once all the ICCP Server information has been defined, the information describing the Oracle Utilities Network Management System ICCP Adapter is placed in the <ClientVCC> tag. Like the <ServerVCC> tag it also must include information that describes the VCC.

 <Name>SPL_Client_VCC</Name>

 <PSEL>00 02</PSEL>

 <SSEL>00 02</SSEL>

 <TSEL>00 02</TSEL>

 <APTitle>2 16 3826 4734 3324 8767 5511 1928 0073</APTitle>

 <AEQualifier>3829</AEQualifier>

 <Description>ORACLE NMS ICCP Adapter</Description>

 <Organization>OMS Management Group</Organization>

 <UnitName>ICCP Interface A</UnitName>

 <Locality>Room 034, sub-level 1</Locality>

 <IPAddress>192.168.1.11</IPAddress>

 <Hostname>gateway1.company.com</Hostname>

 <Domain>CES_Domain</Domain>

 <BilateralTableId>CES_Bilateral_Table_Id</BilateralTableId>

 <Version>1996,8</Version>

 <SupportedBlocks>1 2</SupportedBlocks>

The items italicized are optional, but in order for LiveData Server to successfully connect to the ICCP Server, it may require some or all of the optional tags. Which tags will be required at a given installation is dependant upon the ICCP Server. Typically <PSEL> and <SSEL> are the only optional tags necessary.

The <IPAddress> or <Hostname> tags in the context of the <ClientVCC> tag take only one value, not a list of values like in the context of the <ServerVCC> tag.

<DSTransferSet>

After describing the ICCP Adapter VCC, the next step is to define every Data Set Transfer Set that the ICCP Adapter VCC will be creating in the ICCP Server. The first set of tags defines how the transfer set data set will be sent from the ICCP Server back to the ICCP Adapter. The second section lists the values to be included in the transfer set data set. The Oracle Utilities Network Management System ICCP Adapter supports an unlimited number of Data Set Transfer Sets, but its possible that the ICCP Server does not. To define more than one Data Set Transfer Set, repeat the <DSTransferSet> tag.

<Domain>CES_Domain</Domain>

<StartTime>0</StartTime>

<TLE>0</TLE>

<BufferTime>0</BufferTime>

<IntervalTimeout>0</IntervalTimeout>

<IntegrityTimeout>0</IntegrityTimeout>

<ObjectChange>true</ObjectChange>

<OperatorRequest>true</OperatorRequest>

<RBE>true</RBE>

Each transfer set data set starts by defining the method for retrieving the points in the transfer set data set. A description of each of these tags can be found in the <DSTransferSet> tag description below.

 <DataValue>

 <IccpId>wilsonBrkr104_status</IccpId>

 <Domain>CES_Domain</Domain>

 <IccpType>Data_StateQ</IccpType>

 <Attribute>status</Attribute>

 <CESDeviceId>wilsonBrkr104</CESDeviceId>

 </DataValue>

The <DataValue> tag describes one ICCP point that this data set transfer set will contain. This point will be transmitted from any ICCP Server listed in the <ServerVCC> tag to the Oracle Utilities Network Management System ICCP Adapter. The italicized fields are optional. The use of the <Attribute> tag is described below. The <DataValue> tag can be repeated an unlimited number of times.

 </DSTransferSet>

 <ControlPoint>

 <IccpId>wilsonBrkr104_control</IccpId>

 <Domain>CES_Domain</Domain>

 <RemoteVCC>EMS_Domain</RemoteVCC>

 <CESDeviceId>wilsonBrkr104</CESDeviceId>

 <ControlAction>

 <CtrlType>OPEN</CtrlType>

 <ControlTimeOut>20</ControlTimeOut>

 </ControlAction>

 <ControlAction>

 <CtrlType>CLOSE</CtrlType>

 <ControlTimeOut>30</ControlTimeOut>

 </ControlAction>

 </ControlPoint>

After the transfer set data set definitions, all of the control points are defined. The <ControlPoint> tag is used to describe a command control point. This point is used for opening and closing SCADA devices. The <CtrlType> tag identifies the control actions that can be performed on the point. It also specifies the timeout period for each in seconds. The <ControlPoint> tag can be repeated indefinitely.

 </ClientVCC>

</IccpAssociation>

XML: Tags

<IccpAssociation>

The <IccpAssociation> tag is used to define the ICCP Association.

	

Required Attributes:

	

	

Description:

	

Xmlns

	

	

Specifies the default namespace for the XML document. Use a value of "http://www.splwg.com"

	

Xmlns:xsi

	

	

Specifies a namespace with prefix ‘xsi’. Use a value of "http:// www.w3.org/2001/XMLSchema-instance"

	

xsi:schemaLocation

	

	

Specifies the schema file that defines the content for a namespace. Use a value of "http://www.splwg.com NMS-ICCP-Schema.xsd"

	

	

Children:

	

Description

	

1

	

<ServerVCC>

	

Element context tag to define the ICCP Servers that can be used for this association

	

1

	

<ClientVCC>

	

Element context tag to define the Oracle Utilities Network Management System ICCP Adapter VCC that will be used for this association.

<ServerVCC>

The <ServerVCC> tag describes the information for all the possible ICCP Servers the Oracle Utilities Network Management System ICCP Adapter VCC can connect to.

	

	

Children:

	

Description:

	

1..8

	

<Instance>

	

Element content tag to define information unique to each possible ICCP Server. Up to eight instances can be defined.

	

1

	

<Domain>

	

Domain name of the ICCP Server VCC

	

1

	

<BilateralTableId>

	

The bilateral table id used by the ICCP Server VCC

	

1

	

<Version>

	

Supported version of the ICCP protocol. Only use a value of ‘1996,8’

	

1

	

<Supported Blocks>

	

A space separated list of the ICCP Blocks supported by the ICCP Server VCC. Ex ‘1 2 5’, for blocks one, two, and five.

<Instance>

The <Instance> tag describes the connection information that can be different between ICCP Servers. Items that are italicized are optional.

	

	

Children:

	

Description:

	

1

	

<Name>

	

Name of the ICCP Server VCC

	

1

	

<PSEL>

	

Presentation selector for the ICCP Server VCC, part of the OSI networking configuration

	

1

	

<SSEL>

	

Session selector for the ICCP Server VCC, part of the OSI networking configuration

	

1

	

<TSEL>

	

Transport selector for the ICCP Server VCC, part of the OSI networking configuration

	

1

	

<APTitle>

	

The object identifier representing the Application Process Title for the ICCP Server VCC.

	

1

	

<AEQualifier>

	

Number used to quality the application entity.

	

1

	

<Description>

	

A description of this VCC.

	

1

	

<Organization>

	

A description of the organization responsible for this VCC.

	

1

	

<UnitName>

	

A description of the VCC.

	

1

	

<Locality>

	

A description of the location of the VCC

	

1

	

<IPAddress>

	

Select one of these two tags. If <IPAddress> is used, then the value should be the IP address of the Oracle Utilities Network Management System ICCP Adapter computer. If <Hostname> is used, the value should be the hostname for the Oracle Utilities Network Management System ICCP Adapter Computer. Each tag supports a space separated list of up to eight values.

	

<Hostname>

<ClientVCC>

The <ClientVCC> tag describes the connection information for the Oracle Utilities Network Management System ICCP Adapter VCC. Items that are italicized are optional.

	

	

Children

	

Description

	

1

	

<Name>

	

Name of the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<PSEL>

	

Presentation selector for the Oracle Utilities Network Management System ICCP Adapter VCC, part of the OSI networking configuration

	

1

	

<SSEL>

	

Session selector for the Oracle Utilities Network Management System ICCP Adapter VCC, part of the OSI networking configuration

	

1

	

<TSEL>

	

Transport selector for the Oracle Utilities Network Management System ICCP Adapter VCC, part of the OSI networking configuration

	

1

	

<APTitle>

	

The object identifier representing the Application Process Title for the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<AEQualifier>

	

Number used to quality the application entity.

	

1

	

<Description>

	

A description of this VCC.

	

1

	

<Organization>

	

A description of the organization responsible for this VCC.

	

1

	

<UnitName>

	

A description of the VCC.

	

1

	

<Locality>

	

A description of the location of the VCC

	

1

	

<IPAddress>

	

Select one of these two tags. If <IPAddress> is used, then the value should be the IP address of the Oracle Utilities Network Management System ICCP Adapter computer. If <Hostname> is used, the value should be the hostname for the Oracle Utilities Network Management System ICCP Adapter Computer.

	

<Hostname>

	

1

	

<Domain>

	

Domain name of the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<BilateralTableId>

	

The bilateral table id used by the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<Version>

	

Supported version of the ICCP protocol. Only use a value of ‘1996,8’

	

1

	

<SupportedBlocks>

	

A listing of the ICCP Blocks supported by the Oracle Utilities Network Management System ICCP Adapter VCC. Use a value of ‘1 2 5’.

	

	

<DSTransferSet>

	

Element content tag to define a data set transfer set.

	

0.

	

<ControlPoint>

	

(Optional) Element content tag to define a point that will be SCADA controlled.

<DSTransferSet>

The <DSTransferSet> tag defines the data set of ICCP points to transfer, and the transfer set used to send the ICCP points.

	

	

Children

	

Description

	

1

	

<Domain>

	

Domain name to create the transfer set in on the ICCP Server

	

1

	

<StartTime>

	

Time to start the transfer set. Number of seconds from Jan 1, 1970, GMT. A value of 0 disables this option

	

1

	

<TLE>

	

Time Limit for Execution. Number of seconds the ICCP Server has from starting to process the transfer set to actually sending it, before it should give up. A value of 0 disables this option.

	

1

	

<BufferTime>

	

Used with report by exception, number of seconds to wait after first value change before sending data set transfer set.

	

1

	

<IntervalTimeout>

	

Number of seconds to periodically send the data set transfer set. A value of 0 disables this option. To get periodic updates of call values when using report by exception, use the integrity timeout.

	

1

	

<IntegrityTimeout>

	

Number of seconds to periodically refresh all the values in a data set transfer set. Used with report by exception. A value of 0 disables this option

	

1

	

<ObjectChange>

	

A value of ‘true’ will send the data set transfer set when a value changes. A value of ‘false’ won’t trigger a send. If report by exception is in use, only the value that changed will be sent.

	

1

	

<OperatorRequest>

	

A value of ‘true’ will allow the ICCP Server to send the data set transfer set outside of the transfer set configuration. A value of ‘false’ disables this option.

	

1

	

<RBE>

	

Report by exception. A value of ‘true’ will cause only the values that have changed to be sent in the data set transfer set. A value of ‘false’ will cause all values to be sent.

	

•

	

<DataValue>

	

Element content tag to define the points in this data set transfer set.

<DataValue>

The <DataValue> tag defines one ICCP point. Items that are italicized are optional.

	

	

Children:

	

Description:

	

1

	

<IccpId>

	

ICCP ID of data value.

	

1

	

<Domain>

	

Domain name of ICCP ID

	

1

	

<IccpType>

	

Type of ICCP object

	

1

	

<Attribute>

	

Oracle Utilities Network Management System attribute for ICCP ID. Valid attributes are listed in the ATTRIBUTES table.1

	

1

	

<CESDeviceID>

	

Value that maps to an OMS device in the scadamap database table.

1 Using the <Attribute> tag can dramatically change the operation of the auto configuration program. The normal processing without the tag will take the ICCP ID and attempt to parse it based on the standard naming convention from the Oracle Utilities Network Management System ICCP Adapter Functional Description document. When the <Attribute> tag is present, that parsing won’t take place. The value from the <Attribute> tag is mapped to the ATTRIBUTES table, and the ICCP ID is mapped to the scadaid column of the SCADAMAP table. Since the auto configuration program is now looking for each ICCP ID in the SCADAMAP table, it is now necessary to have every ICCP ID be present in the GIS export file.

<ControlPoint>

The <ControlPoint> tag defines one ICCP control point.

	

	

Children

	

Description

	

1

	

<IccpId>

	

ICCP ID of control point.

	

1

	

<Domain>

	

Domain name of ICCP ID.

	

1

	

<RemoteVCC>

	

Remote Server VCC.

	

1

	

<CESDeviceId>

	

Value that maps to an OMS device in the scadamap database table.

	

1..2

	

<Control Action>

	

Value indicating which type of action is allowed with this ICCP control point.

<ControlAction>

The <ControlAction> tag defines each SCADA action that can be made to the parent Control Point.

	

	

Children

	

Description

	

1

	

<CtrlType>

	

Type of control action to perform. Valid values are OPEN or CLOSE.

	

1

	

<ControlTimeOut>

	

The amount of time the Oracle Utilities Network Management System will wait for the control action to complete before issuing an alarm.

Customer ICCP Association XML Description

The purpose of the XML file is to contain all of the necessary information for the Oracle Utilities Network Management System ICCP Adapter to retrieve SCADA data. It contains the following information:

	
•

	

List of the ICCP points

	
•

	

Method for retrieving the ICCP points

	
•

	

ICCP Servers from which to retrieve the points

	
•

	

Information to connect to those ICCP Servers

Each set of ICCP points that comes from a specific ICCP Server, or collection of redundant servers, should be in its own XML file.

XML Basics: Tags are text enclosed in ‘<…>’, or ‘</…>’. The first tag identifies the start of the data, and the second tag identifies the end. The text inside of the angle brackets is called the element type. Tags are used to delineate data, or content, in the file. So <Name>Joe Smith</Name> uses the tag <Name>, element type ‘Name’ and content ‘Joe Smith’. It is also possible for start tags to incorporate attributes. For example, <Name full=’yes’>Joseph Christopher Smith</Name> the start tag has an attribute of ‘full’ to help describe the element type.

In this document when it’s stated that a tag can be repeated, then multiple instances of the tag can exist in the XML file. For example: <Name>Joe Smith</Name><Name>Mary Smith</Name>. This behavior is described in an XML Schema. XML Schemas define tags and the order, context, and usage of those tags.

An XML namespace is a collection of names, which are used in XML documents as tags and attributes. Namespaces are used to uniquely identify XML tags that have the same element type.

<?xml version="1.0"?>

This line specifies the XML version of the document. All XML documents must start with a declaration that specifies the version of XML used. In this case the document conforms to version 1.0 of the XML specification.

 <IccpAssociation xmlns="http://www.ces.com"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.ces.com

 CES-ICCP-Schema.xsd">

The <IccpAssociation> tag begins the description of the ICCP link from the Oracle Utilities Network Management System ICCP Adapter to the ICCP server(s). The tag has three attributes: xmlns, xmlns:xsi, and xsi:schemaLocation. The xmlns and xmlns:xsi attributes define namespaces, where the value of the attribute gives the name for the namespace. The xmlns namespace defines the default namespace for the XML document. The xmlns:xsi defines a second namespace, xsi, for defining XML schemas. It is used by the next attribute to identify the schema that the XML document must conform to. The xsi:schemaLocation attribute identifies where the XML Schema is for each namespace. In this example, it identifies the file CES-ICCP-Schema.xsd as the schema definition for the xmlns namespace.

<ServerVCC>

The <ServerVCC> tag (and the tags that follow, until the closing tag </ServerVCC>) describes all the information necessary for LiveData Server to create an association for retrieval of the specified points (see below). The information is broken into two parts. The first part, the <Instance> tag, describes the information about a given ICCP Server. The <Instance> tag can be repeated up to eight times. The second part describes the information that must remain the same among all the ICCP Servers (see below).

 <Instance>

 <Name>Customer_Server_VCC1</Name>

 <PSEL>00 01</PSEL>

 <SSEL>00 01</SSEL>

 <TSEL>00 01</TSEL>

 <APTitle>2 16 3826 4325 2364 8143 6345 2335 0073</APTitle>

 <AEQualifier>53549</AEQualifier>

 <Description>Power Company Scada System</Description>

 <Organization>Scada Management Group</Organization>

 <UnitName>Production Scada System A</UnitName>

 <Locality>Room 034, sub-level 1</Locality>

 <IPAddress>192.168.1.10</IPAddress>

 <Hostname>system1.company.com</Hostname>

 </Instance>

 <Instance>

 …

 </Instance>

Each <Instance> tag contains the information that is unique in describing a VCC. First, it lists the OSI networking parameters to connect to the ICCP Server VCC, followed by general information about the VCC, and finally the IP address/hostname for the computer. The italicized items are optional.

The <IPAddress> and <Hostname> tags support multiple addresses, up to a total of eight. You should use either the <IPAddress> or <Hostname> tag, not both. If the ICCP Server is running redundantly and the only configuration difference is the machine that it is running on, just list the multiple machines. If other information is different (OSI networking configuration parameters for example) then create another <Instance> for the other ICCP Server.

<Domain>Customer_Domain</Domain>

<BilateralTableId>Bilateral_Table_Id_1</BilateralTableId>

<Version>1996,8</Version>

<SupportedBlocks>1 2 5</SupportedBlocks>

This information is used by LiveData Server to establish an active association with the ICCP Server. It is consistent among all the possible ICCP Servers that have been defined with the <Instance> tag.

</ServerVCC>

<ClientVCC>

Once all the ICCP Server information has been defined, the information describing the Oracle Utilities Network Management System ICCP Adapter is placed in the <ClientVCC> tag. Like the <ServerVCC> tag it also must include information that describes the VCC.

 <Name>SPL_Client_VCC</Name>

 <PSEL>00 02</PSEL>

 <SSEL>00 02</SSEL>

 <TSEL>00 02</TSEL>

 <APTitle>2 16 3826 4734 3324 8767 5511 1928 0073</APTitle>

 <AEQualifier>3829</AEQualifier>

 <Description>ORACLE NMS ICCP Adapter</Description>

 <Organization>OMS Management Group</Organization>

 <UnitName>ICCP Interface A</UnitName>

 <Locality>Room 034, sub-level 1</Locality>

 <IPAddress>192.168.1.11</IPAddress>

 <Hostname>gateway1.company.com</Hostname>

 <Domain>CES_Domain</Domain>

 <BilateralTableId>CES_Bilateral_Table_Id</BilateralTableId>

 <Version>1996,8</Version>

 <SupportedBlocks>1 2</SupportedBlocks>

The items italicized are optional, but in order for LiveData Server to successfully connect to the ICCP Server, it may require some or all of the optional tags. Which tags will be required at a given installation is dependant upon the ICCP Server. Typically <PSEL> and <SSEL> are the only optional tags necessary.

The <IPAddress> or <Hostname> tags in the context of the <ClientVCC> tag take only one value, not a list of values like in the context of the <ServerVCC> tag.

<DSTransferSet>

After describing the ICCP Adapter VCC, the next step is to define every Data Set Transfer Set that the ICCP Adapter VCC will be creating in the ICCP Server. The first set of tags defines how the transfer set data set will be sent from the ICCP Server back to the ICCP Adapter. The second section lists the values to be included in the transfer set data set. The Oracle Utilities Network Management System ICCP Adapter supports an unlimited number of Data Set Transfer Sets, but its possible that the ICCP Server does not. To define more than one Data Set Transfer Set, repeat the <DSTransferSet> tag.

<Domain>CES_Domain</Domain>

<StartTime>0</StartTime>

<TLE>0</TLE>

<BufferTime>0</BufferTime>

<IntervalTimeout>0</IntervalTimeout>

<IntegrityTimeout>0</IntegrityTimeout>

<ObjectChange>true</ObjectChange>

<OperatorRequest>true</OperatorRequest>

<RBE>true</RBE>

Each transfer set data set starts by defining the method for retrieving the points in the transfer set data set. A description of each of these tags can be found in the <DSTransferSet> tag description below.

 <DataValue>

 <IccpId>wilsonBrkr104_status</IccpId>

 <Domain>CES_Domain</Domain>

 <IccpType>Data_StateQ</IccpType>

 <Attribute>status</Attribute>

 <CESDeviceId>wilsonBrkr104</CESDeviceId>

 </DataValue>

The <DataValue> tag describes one ICCP point that this data set transfer set will contain. This point will be transmitted from any ICCP Server listed in the <ServerVCC> tag to the Oracle Utilities Network Management System ICCP Adapter. The italicized fields are optional. The use of the <Attribute> tag is described below. The <DataValue> tag can be repeated an unlimited number of times.

 </DSTransferSet>

 <ControlPoint>

 <IccpId>wilsonBrkr104_control</IccpId>

 <Domain>CES_Domain</Domain>

 <RemoteVCC>EMS_Domain</RemoteVCC>

 <CESDeviceId>wilsonBrkr104</CESDeviceId>

 <ControlAction>

 <CtrlType>OPEN</CtrlType>

 <ControlTimeOut>20</ControlTimeOut>

 </ControlAction>

 <ControlAction>

 <CtrlType>CLOSE</CtrlType>

 <ControlTimeOut>30</ControlTimeOut>

 </ControlAction>

 </ControlPoint>

After the transfer set data set definitions, all of the control points are defined. The <ControlPoint> tag is used to describe a command control point. This point is used for opening and closing SCADA devices. The <CtrlType> tag identifies the control actions that can be performed on the point. It also specifies the timeout period for each in seconds. The <ControlPoint> tag can be repeated indefinitely.

 </ClientVCC>

</IccpAssociation>

XML: Tags

<IccpAssociation>

The <IccpAssociation> tag is used to define the ICCP Association.

	

Required Attributes:

	

	

Description:

	

Xmlns

	

	

Specifies the default namespace for the XML document. Use a value of "http://www.splwg.com"

	

Xmlns:xsi

	

	

Specifies a namespace with prefix ‘xsi’. Use a value of "http:// www.w3.org/2001/XMLSchema-instance"

	

xsi:schemaLocation

	

	

Specifies the schema file that defines the content for a namespace. Use a value of "http://www.splwg.com NMS-ICCP-Schema.xsd"

	

	

Children:

	

Description

	

1

	

<ServerVCC>

	

Element context tag to define the ICCP Servers that can be used for this association

	

1

	

<ClientVCC>

	

Element context tag to define the Oracle Utilities Network Management System ICCP Adapter VCC that will be used for this association.

<ServerVCC>

The <ServerVCC> tag describes the information for all the possible ICCP Servers the Oracle Utilities Network Management System ICCP Adapter VCC can connect to.

	

	

Children:

	

Description:

	

1..8

	

<Instance>

	

Element content tag to define information unique to each possible ICCP Server. Up to eight instances can be defined.

	

1

	

<Domain>

	

Domain name of the ICCP Server VCC

	

1

	

<BilateralTableId>

	

The bilateral table id used by the ICCP Server VCC

	

1

	

<Version>

	

Supported version of the ICCP protocol. Only use a value of ‘1996,8’

	

1

	

<Supported Blocks>

	

A space separated list of the ICCP Blocks supported by the ICCP Server VCC. Ex ‘1 2 5’, for blocks one, two, and five.

<Instance>

The <Instance> tag describes the connection information that can be different between ICCP Servers. Items that are italicized are optional.

	

	

Children:

	

Description:

	

1

	

<Name>

	

Name of the ICCP Server VCC

	

1

	

<PSEL>

	

Presentation selector for the ICCP Server VCC, part of the OSI networking configuration

	

1

	

<SSEL>

	

Session selector for the ICCP Server VCC, part of the OSI networking configuration

	

1

	

<TSEL>

	

Transport selector for the ICCP Server VCC, part of the OSI networking configuration

	

1

	

<APTitle>

	

The object identifier representing the Application Process Title for the ICCP Server VCC.

	

1

	

<AEQualifier>

	

Number used to quality the application entity.

	

1

	

<Description>

	

A description of this VCC.

	

1

	

<Organization>

	

A description of the organization responsible for this VCC.

	

1

	

<UnitName>

	

A description of the VCC.

	

1

	

<Locality>

	

A description of the location of the VCC

	

1

	

<IPAddress>

	

Select one of these two tags. If <IPAddress> is used, then the value should be the IP address of the Oracle Utilities Network Management System ICCP Adapter computer. If <Hostname> is used, the value should be the hostname for the Oracle Utilities Network Management System ICCP Adapter Computer. Each tag supports a space separated list of up to eight values.

	

<Hostname>

<ClientVCC>

The <ClientVCC> tag describes the connection information for the Oracle Utilities Network Management System ICCP Adapter VCC. Items that are italicized are optional.

	

	

Children

	

Description

	

1

	

<Name>

	

Name of the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<PSEL>

	

Presentation selector for the Oracle Utilities Network Management System ICCP Adapter VCC, part of the OSI networking configuration

	

1

	

<SSEL>

	

Session selector for the Oracle Utilities Network Management System ICCP Adapter VCC, part of the OSI networking configuration

	

1

	

<TSEL>

	

Transport selector for the Oracle Utilities Network Management System ICCP Adapter VCC, part of the OSI networking configuration

	

1

	

<APTitle>

	

The object identifier representing the Application Process Title for the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<AEQualifier>

	

Number used to quality the application entity.

	

1

	

<Description>

	

A description of this VCC.

	

1

	

<Organization>

	

A description of the organization responsible for this VCC.

	

1

	

<UnitName>

	

A description of the VCC.

	

1

	

<Locality>

	

A description of the location of the VCC

	

1

	

<IPAddress>

	

Select one of these two tags. If <IPAddress> is used, then the value should be the IP address of the Oracle Utilities Network Management System ICCP Adapter computer. If <Hostname> is used, the value should be the hostname for the Oracle Utilities Network Management System ICCP Adapter Computer.

	

<Hostname>

	

1

	

<Domain>

	

Domain name of the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<BilateralTableId>

	

The bilateral table id used by the Oracle Utilities Network Management System ICCP Adapter VCC

	

1

	

<Version>

	

Supported version of the ICCP protocol. Only use a value of ‘1996,8’

	

1

	

<SupportedBlocks>

	

A listing of the ICCP Blocks supported by the Oracle Utilities Network Management System ICCP Adapter VCC. Use a value of ‘1 2 5’.

	

	

<DSTransferSet>

	

Element content tag to define a data set transfer set.

	

0.

	

<ControlPoint>

	

(Optional) Element content tag to define a point that will be SCADA controlled.

<DSTransferSet>

The <DSTransferSet> tag defines the data set of ICCP points to transfer, and the transfer set used to send the ICCP points.

	

	

Children

	

Description

	

1

	

<Domain>

	

Domain name to create the transfer set in on the ICCP Server

	

1

	

<StartTime>

	

Time to start the transfer set. Number of seconds from Jan 1, 1970, GMT. A value of 0 disables this option

	

1

	

<TLE>

	

Time Limit for Execution. Number of seconds the ICCP Server has from starting to process the transfer set to actually sending it, before it should give up. A value of 0 disables this option.

	

1

	

<BufferTime>

	

Used with report by exception, number of seconds to wait after first value change before sending data set transfer set.

	

1

	

<IntervalTimeout>

	

Number of seconds to periodically send the data set transfer set. A value of 0 disables this option. To get periodic updates of call values when using report by exception, use the integrity timeout.

	

1

	

<IntegrityTimeout>

	

Number of seconds to periodically refresh all the values in a data set transfer set. Used with report by exception. A value of 0 disables this option

	

1

	

<ObjectChange>

	

A value of ‘true’ will send the data set transfer set when a value changes. A value of ‘false’ won’t trigger a send. If report by exception is in use, only the value that changed will be sent.

	

1

	

<OperatorRequest>

	

A value of ‘true’ will allow the ICCP Server to send the data set transfer set outside of the transfer set configuration. A value of ‘false’ disables this option.

	

1

	

<RBE>

	

Report by exception. A value of ‘true’ will cause only the values that have changed to be sent in the data set transfer set. A value of ‘false’ will cause all values to be sent.

	

•

	

<DataValue>

	

Element content tag to define the points in this data set transfer set.

<DataValue>

The <DataValue> tag defines one ICCP point. Items that are italicized are optional.

	

	

Children:

	

Description:

	

1

	

<IccpId>

	

ICCP ID of data value.

	

1

	

<Domain>

	

Domain name of ICCP ID

	

1

	

<IccpType>

	

Type of ICCP object

	

1

	

<Attribute>

	

Oracle Utilities Network Management System attribute for ICCP ID. Valid attributes are listed in the ATTRIBUTES table.1

	

1

	

<CESDeviceID>

	

Value that maps to an OMS device in the scadamap database table.

1 Using the <Attribute> tag can dramatically change the operation of the auto configuration program. The normal processing without the tag will take the ICCP ID and attempt to parse it based on the standard naming convention from the Oracle Utilities Network Management System ICCP Adapter Functional Description document. When the <Attribute> tag is present, that parsing won’t take place. The value from the <Attribute> tag is mapped to the ATTRIBUTES table, and the ICCP ID is mapped to the scadaid column of the SCADAMAP table. Since the auto configuration program is now looking for each ICCP ID in the SCADAMAP table, it is now necessary to have every ICCP ID be present in the GIS export file.

<ControlPoint>

The <ControlPoint> tag defines one ICCP control point.

	

	

Children

	

Description

	

1

	

<IccpId>

	

ICCP ID of control point.

	

1

	

<Domain>

	

Domain name of ICCP ID.

	

1

	

<RemoteVCC>

	

Remote Server VCC.

	

1

	

<CESDeviceId>

	

Value that maps to an OMS device in the scadamap database table.

	

1..2

	

<Control Action>

	

Value indicating which type of action is allowed with this ICCP control point.

<ControlAction>

The <ControlAction> tag defines each SCADA action that can be made to the parent Control Point.

	

	

Children

	

Description

	

1

	

<CtrlType>

	

Type of control action to perform. Valid values are OPEN or CLOSE.

	

1

	

<ControlTimeOut>

	

The amount of time the Oracle Utilities Network Management System will wait for the control action to complete before issuing an alarm.

Flat File: Alternative to XML

Making Customer ICCP Association XML files can be tedious. The creation of XML needs to follow certain rules as described in the NMS-ICCP-Schema.xsd. A flat file can be used in conjunction with the script makexml.pl to map ICCP points easily. The functionality of the makexml.pl script will be discussed further on the next section.

An ICCP flat file could be composed of four columns:

	
•

	

ICCP Name

	
•

	

ICCP Type

	
•

	

Attribute

	
•

	

NMS Device ID

Flat File Creation Rules

ICCP Name

	
•

	

ICCP Name has to be unique within the flat file.

	
•

	

It is recommended for the name to be composed of alpha-numeric characters and underscore

	
•

	

It is recommended for the first character of the ICCP Name to be a letter

	
•

	

There should be no space, no periods and no dashes in the ICCP name.

ICCP Type

Below is a list of supported ICCP Types. Please take note of the underscore.

	
•

	

Data_State

	
•

	

Data_StateQ

	
•

	

Data_StateQTimeTag

	
•

	

Data_StateExtended

	
•

	

Data_Real

	
•

	

Data_RealQ

	
•

	

Data_RealQTimeTag

	
•

	

Data_RealExtended

Attribute

	
•

	

The attribute should have a corresponding entry in the ATTRIBUTES table, specifically, in the NAME field in the Oracle Utilities Network Management System database. Take note that entries under the attributes column of the flat file needs to exactly match the entries in the NAME field of the ATTRIBUTES table, taking into consideration case sensitivity, underscores, etc.

NMSDeviceID

	
•

	

This is the ID of the SCADA device. This ID should match the SCADAID field of the SCADAMAP table. Take note that matching should put into consideration several aspects like case sensitivity, special characters like hyphens, etc.

	
•

	

The file below is a sample file wherein the NMSDeviceID of a given row does not have a matching SCADAID field in the SCADAMAP table.

Sample ICCP Flat file for illustrating "Unknown SCADAID" error

#ICCP Name ICCP Type Attribute NMS Device Id

S_BR_R_4142_0 Data_StateExtended Status S_BR_R_4142xx

	
•

	

If this is the case, the following error will occur.

NMS_SERVER:user1$./gateway_config.pl scada.txt

Please indicate the IP address of the LiveData server: 123

Validating file 'scada.xml'... Ok

Getting information from ATTRIBUTES table... found 193 rows

Getting information from SCADAMAP table... found 8 rows

Deleting NMS_DEFAULT/*.pdi

Opening new NMS_DEFAULT/*.pdi files

Processing file scada.xml

Unknown SCADA device S_BR_R_4142xx for point S_BR_R_4142_0

Finished file scada.xml

Inter-column Rules

	
•

	

For each combination of NMSDeviceID ID and Attribute, there should be only one ICCP Name.

	
•

	

In the sample below, the featured lines on the flat file do not follow this rule.

Sample ICCP Flat file for illustrating "Multiple Mapping" error

#ICCPName ICCPType Attribute NMSDeviceId

STATUS_CB7752 Data_StateExtended tag CB-7752

STATUS_CB7752_RCK Data_StateExtended tag CB-7752

	
•

	

If this is the case, the following error will occur.

NMS_SERVER:user1$./gateway_config.pl scada.txt

Please indicate the IP address of the LiveData server: 123

Validating file 'scada.xml'... Ok

Getting information from ATTRIBUTES table... found 193 rows

Getting information from SCADAMAP table... found 8 rows

Deleting NMS_DEFAULT/*.pdi

Opening new NMS_DEFAULT/*.pdi files

Processing file scada.xml

Point STATUS_CB7752_RCK is being mapped to measurement 'CB-7752.tag' which is already mapped using point STATUS_CB7752

Finished file scada.xml

Executing 'measurements.sql'...

Other flat file considerations

	
•

	

A line whose starting character is a ‘#’ is considered as a comment. It is recommended that comments be placed on top of the file

	
•

	

There should not be a blank line in the file

	
•

	

Non-comment rows are space delimited

Flat File: Alternative to XML

Making Customer ICCP Association XML files can be tedious. The creation of XML needs to follow certain rules as described in the NMS-ICCP-Schema.xsd. A flat file can be used in conjunction with the script makexml.pl to map ICCP points easily. The functionality of the makexml.pl script will be discussed further on the next section.

An ICCP flat file could be composed of four columns:

	
•

	

ICCP Name

	
•

	

ICCP Type

	
•

	

Attribute

	
•

	

NMS Device ID

Flat File Creation Rules

ICCP Name

	
•

	

ICCP Name has to be unique within the flat file.

	
•

	

It is recommended for the name to be composed of alpha-numeric characters and underscore

	
•

	

It is recommended for the first character of the ICCP Name to be a letter

	
•

	

There should be no space, no periods and no dashes in the ICCP name.

ICCP Type

Below is a list of supported ICCP Types. Please take note of the underscore.

	
•

	

Data_State

	
•

	

Data_StateQ

	
•

	

Data_StateQTimeTag

	
•

	

Data_StateExtended

	
•

	

Data_Real

	
•

	

Data_RealQ

	
•

	

Data_RealQTimeTag

	
•

	

Data_RealExtended

Attribute

	
•

	

The attribute should have a corresponding entry in the ATTRIBUTES table, specifically, in the NAME field in the Oracle Utilities Network Management System database. Take note that entries under the attributes column of the flat file needs to exactly match the entries in the NAME field of the ATTRIBUTES table, taking into consideration case sensitivity, underscores, etc.

NMSDeviceID

	
•

	

This is the ID of the SCADA device. This ID should match the SCADAID field of the SCADAMAP table. Take note that matching should put into consideration several aspects like case sensitivity, special characters like hyphens, etc.

	
•

	

The file below is a sample file wherein the NMSDeviceID of a given row does not have a matching SCADAID field in the SCADAMAP table.

Sample ICCP Flat file for illustrating "Unknown SCADAID" error

#ICCP Name ICCP Type Attribute NMS Device Id

S_BR_R_4142_0 Data_StateExtended Status S_BR_R_4142xx

	
•

	

If this is the case, the following error will occur.

NMS_SERVER:user1$./gateway_config.pl scada.txt

Please indicate the IP address of the LiveData server: 123

Validating file 'scada.xml'... Ok

Getting information from ATTRIBUTES table... found 193 rows

Getting information from SCADAMAP table... found 8 rows

Deleting NMS_DEFAULT/*.pdi

Opening new NMS_DEFAULT/*.pdi files

Processing file scada.xml

Unknown SCADA device S_BR_R_4142xx for point S_BR_R_4142_0

Finished file scada.xml

Inter-column Rules

	
•

	

For each combination of NMSDeviceID ID and Attribute, there should be only one ICCP Name.

	
•

	

In the sample below, the featured lines on the flat file do not follow this rule.

Sample ICCP Flat file for illustrating "Multiple Mapping" error

#ICCPName ICCPType Attribute NMSDeviceId

STATUS_CB7752 Data_StateExtended tag CB-7752

STATUS_CB7752_RCK Data_StateExtended tag CB-7752

	
•

	

If this is the case, the following error will occur.

NMS_SERVER:user1$./gateway_config.pl scada.txt

Please indicate the IP address of the LiveData server: 123

Validating file 'scada.xml'... Ok

Getting information from ATTRIBUTES table... found 193 rows

Getting information from SCADAMAP table... found 8 rows

Deleting NMS_DEFAULT/*.pdi

Opening new NMS_DEFAULT/*.pdi files

Processing file scada.xml

Point STATUS_CB7752_RCK is being mapped to measurement 'CB-7752.tag' which is already mapped using point STATUS_CB7752

Finished file scada.xml

Executing 'measurements.sql'...

Other flat file considerations

	
•

	

A line whose starting character is a ‘#’ is considered as a comment. It is recommended that comments be placed on top of the file

	
•

	

There should not be a blank line in the file

	
•

	

Non-comment rows are space delimited

Advanced Configuration with gateway_config.pl

There are two ways that the operation of the gateway_config.pl program can be modified. They are accomplished by creating one or more of the following files in the same directory as the gateway_config.pl program: makexml.pl and scadamap.pl.

Script: makexml.pl

	
•

	

The makexml.pl Perl script changes the input file(s) to the gateway_config.pl program. It is run before the XML validation. Because of this, it allows the input file(s) to be in virtually any format. Functionally, it operates as a stand-alone script that takes a list of files as command line arguments and prints out the new file names, separated by spaces. It converts the input file(s) to the gateway_config.pl to an ICCP Association XML file.

	
•

	

Place makexml.pl in the same directory as the gateway_config.pl program.

Script: scadamap.pl

The scadamap.pl Perl script is used for making changes to the values in the scadaid column from the SCADAMAP table. When gateway_config.pl loads the SCADAMAP table from the database and the scadamap.pl script is present, it will run the scadamap.pl script once with every value from the scadaid column as a command line argument. The scadamap.pl script will modify the value and print out the new value. Below is an example.

#!perl -w

First, get the scadaid from the command line

$scadamapname = $ARGV[0];

Second, remove any white space from the name

$scadamapname =~ s/\s*//g;

Third, change any periods (.) to underscores (_)

$scadamapname =~ s/\./\$/g;

Fourth, change any dashes (-) to underscores (_)

$scadamapname =~ s/-/_/g;

Print out the modified name for the gateway_config.pl

print $scadamapname;

exit;

To utilize this script, name it scadamap.pl and place it in the same directory as the gateway_config.pl program.

Advanced Configuration with gateway_config.pl

There are two ways that the operation of the gateway_config.pl program can be modified. They are accomplished by creating one or more of the following files in the same directory as the gateway_config.pl program: makexml.pl and scadamap.pl.

Script: makexml.pl

	
•

	

The makexml.pl Perl script changes the input file(s) to the gateway_config.pl program. It is run before the XML validation. Because of this, it allows the input file(s) to be in virtually any format. Functionally, it operates as a stand-alone script that takes a list of files as command line arguments and prints out the new file names, separated by spaces. It converts the input file(s) to the gateway_config.pl to an ICCP Association XML file.

	
•

	

Place makexml.pl in the same directory as the gateway_config.pl program.

Script: scadamap.pl

The scadamap.pl Perl script is used for making changes to the values in the scadaid column from the SCADAMAP table. When gateway_config.pl loads the SCADAMAP table from the database and the scadamap.pl script is present, it will run the scadamap.pl script once with every value from the scadaid column as a command line argument. The scadamap.pl script will modify the value and print out the new value. Below is an example.

#!perl -w

First, get the scadaid from the command line

$scadamapname = $ARGV[0];

Second, remove any white space from the name

$scadamapname =~ s/\s*//g;

Third, change any periods (.) to underscores (_)

$scadamapname =~ s/\./\$/g;

Fourth, change any dashes (-) to underscores (_)

$scadamapname =~ s/-/_/g;

Print out the modified name for the gateway_config.pl

print $scadamapname;

exit;

To utilize this script, name it scadamap.pl and place it in the same directory as the gateway_config.pl program.

Advanced Configuration with gateway_config.pl

There are two ways that the operation of the gateway_config.pl program can be modified. They are accomplished by creating one or more of the following files in the same directory as the gateway_config.pl program: makexml.pl and scadamap.pl.

Script: makexml.pl

	
•

	

The makexml.pl Perl script changes the input file(s) to the gateway_config.pl program. It is run before the XML validation. Because of this, it allows the input file(s) to be in virtually any format. Functionally, it operates as a stand-alone script that takes a list of files as command line arguments and prints out the new file names, separated by spaces. It converts the input file(s) to the gateway_config.pl to an ICCP Association XML file.

	
•

	

Place makexml.pl in the same directory as the gateway_config.pl program.

Script: scadamap.pl

The scadamap.pl Perl script is used for making changes to the values in the scadaid column from the SCADAMAP table. When gateway_config.pl loads the SCADAMAP table from the database and the scadamap.pl script is present, it will run the scadamap.pl script once with every value from the scadaid column as a command line argument. The scadamap.pl script will modify the value and print out the new value. Below is an example.

#!perl -w

First, get the scadaid from the command line

$scadamapname = $ARGV[0];

Second, remove any white space from the name

$scadamapname =~ s/\s*//g;

Third, change any periods (.) to underscores (_)

$scadamapname =~ s/\./\$/g;

Fourth, change any dashes (-) to underscores (_)

$scadamapname =~ s/-/_/g;

Print out the modified name for the gateway_config.pl

print $scadamapname;

exit;

To utilize this script, name it scadamap.pl and place it in the same directory as the gateway_config.pl program.

Configuring the LiveData Server

These steps assume that the LiveData Server has already been licensed and installed on a Windows server. Follow these steps to configure the LiveData Server:

	
1.

	

The cfg.db file located in %ProgramFiles%\LiveData directory. This file contains the LiveData configurations. In order to generate this file, the following line must be added to the %ProgramFiles%\LiveData\livedata.ini under the [Database.ConnectAliases] section:

cfg=sqlite:C:\Program Files\LiveData\cfg.db

Note : This cfg.db file must be deleted for the new configurations to take effect. You might need to stop Apache and the running Live Data protocol server to do this.

	
2.

	

Edit the ConfigMain.pdi file located %ProgramFiles%\LiveData\Config directory by replacing the value for the following line:

 include=ICCP\NMS_DEFAUL\RTP_Main.pdi

	
3.

	

Stop the LiveData Server using Windows Services control tool (execute services.msc in a run prompt).

	
4.

	

Edit the LiveData Server registry entry under HKEY_LOCAL_MACHINE, SYSTEM, CurrentControlSet, Services, LiveDataServer, STARTUPPARAMETER to include the ConfigMain.pdi parameter, example:

/ipath=Config /scripts=Scripts /soap_port=8080 /listen_port=102 / alias=cfg /flags=1 variable=LoadConfig=@scriptAccess(loadconf.py,"""ConfigMain.pdi""")

	
5.

	

Restart the LiveData Server in the Windows Services control tool.

Information Model - Database Schema

SCADAMAP Table

The data for this table normally comes from the Oracle Utilities Network Management System Model Build process and is specific to each customer.

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

The Handle Class number

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the H_CLS field

	

H_IDX

	

NUMBER

	

	

The Handle Class Index

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the H_IDX field

	

PARTITION

	

NUMBER

	

	

The map partition this device exists in the data model

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the P_IDX field

	

BIRTH

	

DATE

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

BIRTH_PATCH

	

NUMBER

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

DEATH

	

DATE

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

DEATH_PATCH

	

NUMBER

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

ACTIVE

	

VARCHAR2

	

1

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

Only rows whose Active field = ‘Y’ are going to be processed by the ICCP Adapter

	

SCADAID

	

VARCHAR2

	

32

	

SCADA ID

	

Maps to the NMSDeviceID in the ICCP flat file

	

ALIAS

	

VARCHAR2

	

32

	

This name would show on the Viewer and Work Agenda when referring to this device.

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the ALIAS field

Information Model - Database Schema

SCADAMAP Table

The data for this table normally comes from the Oracle Utilities Network Management System Model Build process and is specific to each customer.

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

The Handle Class number

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the H_CLS field

	

H_IDX

	

NUMBER

	

	

The Handle Class Index

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the H_IDX field

	

PARTITION

	

NUMBER

	

	

The map partition this device exists in the data model

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the P_IDX field

	

BIRTH

	

DATE

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

BIRTH_PATCH

	

NUMBER

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

DEATH

	

DATE

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

DEATH_PATCH

	

NUMBER

	

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

	

ACTIVE

	

VARCHAR2

	

1

	

Time-axis field. Similar concept with other Oracle Utilities Network Management System tables.

	

Only rows whose Active field = ‘Y’ are going to be processed by the ICCP Adapter

	

SCADAID

	

VARCHAR2

	

32

	

SCADA ID

	

Maps to the NMSDeviceID in the ICCP flat file

	

ALIAS

	

VARCHAR2

	

32

	

This name would show on the Viewer and Work Agenda when referring to this device.

	

Matches record in Oracle Utilities Network Management System ALIAS_MAPPING table, specifically the ALIAS field

Quality Rules Table

This database table will define the quality codes that may be used for analog and digital values. This table defines the meaning of each bit in the quality codes for SCADA measurements.

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

PRIORITY

	

NUMBER

	

	

Ranking priority of the quality code

	

Priority code, specifies relative importance of this quality bit over other quality bits

	

VALUE

	

NUMBER

	

	

Bit value used for the quality code change.

	

For Phase 1:

2048=No Data

4096=Old Data

	

STRING

	

VARCHAR2

	

3

	

Description of the quality code, which is displayed next to the value of the measurement when a quality exists for a measurement change.

	

The actual character string displayed next to the device when viewed via the Viewer

	

DESCRIPTION

	

VARCHAR2

	

128

	

Descriptive string

	

Any text string-usually the action taken from the SCADA Summary

	

COLOR

	

NUMBER

	

	

Designates which color is used in the Viewer to display the measurement when a particular quality bit is set.

Integer value for the color associated to the quality code change to be displayed

	

The integers are mapped to the pre-allocated colors documented in separate application file.

	

LOCATION

	

NUMBER

	

	

Location of symbol in relation to the device associated with the value.

only used if a symbol is defined for the quality code as apposed to just a color for a quality change

	

1-9; 5 overrides the device symbol

	

SYMBOL

	

NUMBER

	

	

The symbol used to display the value. only used if a symbol is defined for the quality code as apposed to just a color for a quality change

	

Valid Symbol Identification Number defined in <project>_SYMBOLS.sym. 0 if defining a text symbol.

	

OFF_NOMINAL

	

VARCHAR2

	

1

	

Whether or not the value is off- nominal

	

Y or N

Note: If multiple bits in the quality code are set, then the color of the measurement text in the Viewer is determined by the color of the lowest order bit that is set in the quality code.

Digital and Analog Measurements Tables

These tables define digital and analog measurements as used by Oracle Utilities Network Management System. They also manage the existence of the measurement and linkage information. Manually overridden values may also be stored here.

The Oracle Utilities Network Management System ICCP Adapter communicates dynamic information to the Oracle Utilities Network Management System services. The services will cache measurements defined by this table. Population is dependent upon customer-supplied information. The information to be contained in these tables is generated by the Auto Configuration Program.

Digital_Measurements Table

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

Class component of handle

	

Valid object class

	

H_IDX

	

NUMBER

	

	

Index component of handle

	

>0

	

PARTITION

	

NUMBER

	

	

Partition number, index component of partition handle

	

Valid partition or 0 for multi- partition objects

	

ATTRIBUTE

	

NUMBER

	

	

Attribute number which identifies measurement type

	

Valid attribute number

	

TTL

	

NUMBER

	

	

Setting for displaying measurement value in the Viewer or not.

	

1 or 0. 1=yes

	

LIMIT_GROUP_ID

	

NUMBER

	

	

Limit group ID

	

Customer defined

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server

	

Alphanumeric

	

SCADA_ID

	

NUMBER

	

	

SCADA host ID

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID

	

String (optional)

	

QUALITY

	

NUMBER

	

	

Measurement quality code

	

Bit mask of quality codes

	

VALUE

	

NUMBER

	

	

Measurement/entered value

	

Entered value

	

UPDATE_FLAG

	

NUMBER

	

	

Manual replace flag

	

1=true, 0=false

	

ICCP_OBJECT

	

VARCHAR2

	

32

	

ICCP Object type of the telemetered value

	

Alphanumeric

	

DISPLAY_ID

	

VARCHAR2

	

64

	

	

	

NORMAL_STATE

	

NUMBER

	

	

	

	

CONTROLLABLE

	

VARCHAR2

	

1

	

	

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management, indicates whether the row is active within the model

	

Y(yes=active), N(no=inactive), A(local add=active), D(local delete=inactive), R(locally removed, dependent=inactive)

	

SOURCE

	

VARCHAR2

	

33

	

Source of the measurement.

	

any character string.

	

COMMENTS

	

VARCHAR2

	

512

	

Operator-entered comments

	

any character string.

	

OFF_NOMINAL_TI ME

	

DATE

	

	

	

Analog_Measurements Table

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

Class component of handle

	

Valid object class

	

H_IDX

	

NUMBER

	

	

Index component of handle

	

>0

	

PARTITION

	

NUMBER

	

	

Partition number, index component of partition handle

	

Valid partition or 0 for multi-partition objects

	

ATTRIBUTE

	

NUMBER

	

	

Attribute number which identifies measurement type

	

Valid attribute number

	

TTL

	

NUMBER

	

	

Setting for displaying measurement value in the Viewer or not.

	

1 or 0. 1=yes

	

LIMIT_GROUP_ID

	

NUMBER

	

	

Limit group ID

	

Customer defined

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server

	

Alphanumeric

	

SCADA_ID

	

NUMBER

	

	

SCADA host ID

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID

	

String (optional)

	

QUALITY

	

NUMBER

	

	

Measurement quality code

	

Bit mask of quality codes

	

VALUE

	

FLOAT

	

126

	

Measurement/entered value

	

Entered value

	

UPDATE_FLAG

	

NUMBER

	

	

Manual replace flag

	

1=true, 0=false

	

ICCP_OBJECT

	

VARCHAR2

	

32

	

ICCP Object type of the telemetered value

	

Alphanumeric

	

DISPLAY_ID

	

VARCHAR2

	

64

	

	

	

CONTROLLABLE

	

VARCHAR2

	

1

	

	

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management, indicates whether the row is active within the model

	

Y(yes=active), N(no=inactive), A(local add=active), D(local delete=inactive), R(locally removed, dependent=inactive)

	

SOURCE

	

VARCHAR2

	

33

	

Source of the measurement.

	

any character string.

	

COMMENTS

	

VARCHAR2

	

512

	

Operator-entered comments

	

any character string.

	

OFF_NOMINAL_TIME

	

DATE

	

	

	

Digital and Analog Measurements Tables

These tables define digital and analog measurements as used by Oracle Utilities Network Management System. They also manage the existence of the measurement and linkage information. Manually overridden values may also be stored here.

The Oracle Utilities Network Management System ICCP Adapter communicates dynamic information to the Oracle Utilities Network Management System services. The services will cache measurements defined by this table. Population is dependent upon customer-supplied information. The information to be contained in these tables is generated by the Auto Configuration Program.

Digital_Measurements Table

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

Class component of handle

	

Valid object class

	

H_IDX

	

NUMBER

	

	

Index component of handle

	

>0

	

PARTITION

	

NUMBER

	

	

Partition number, index component of partition handle

	

Valid partition or 0 for multi- partition objects

	

ATTRIBUTE

	

NUMBER

	

	

Attribute number which identifies measurement type

	

Valid attribute number

	

TTL

	

NUMBER

	

	

Setting for displaying measurement value in the Viewer or not.

	

1 or 0. 1=yes

	

LIMIT_GROUP_ID

	

NUMBER

	

	

Limit group ID

	

Customer defined

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server

	

Alphanumeric

	

SCADA_ID

	

NUMBER

	

	

SCADA host ID

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID

	

String (optional)

	

QUALITY

	

NUMBER

	

	

Measurement quality code

	

Bit mask of quality codes

	

VALUE

	

NUMBER

	

	

Measurement/entered value

	

Entered value

	

UPDATE_FLAG

	

NUMBER

	

	

Manual replace flag

	

1=true, 0=false

	

ICCP_OBJECT

	

VARCHAR2

	

32

	

ICCP Object type of the telemetered value

	

Alphanumeric

	

DISPLAY_ID

	

VARCHAR2

	

64

	

	

	

NORMAL_STATE

	

NUMBER

	

	

	

	

CONTROLLABLE

	

VARCHAR2

	

1

	

	

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management, indicates whether the row is active within the model

	

Y(yes=active), N(no=inactive), A(local add=active), D(local delete=inactive), R(locally removed, dependent=inactive)

	

SOURCE

	

VARCHAR2

	

33

	

Source of the measurement.

	

any character string.

	

COMMENTS

	

VARCHAR2

	

512

	

Operator-entered comments

	

any character string.

	

OFF_NOMINAL_TI ME

	

DATE

	

	

	

Analog_Measurements Table

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

Class component of handle

	

Valid object class

	

H_IDX

	

NUMBER

	

	

Index component of handle

	

>0

	

PARTITION

	

NUMBER

	

	

Partition number, index component of partition handle

	

Valid partition or 0 for multi-partition objects

	

ATTRIBUTE

	

NUMBER

	

	

Attribute number which identifies measurement type

	

Valid attribute number

	

TTL

	

NUMBER

	

	

Setting for displaying measurement value in the Viewer or not.

	

1 or 0. 1=yes

	

LIMIT_GROUP_ID

	

NUMBER

	

	

Limit group ID

	

Customer defined

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server

	

Alphanumeric

	

SCADA_ID

	

NUMBER

	

	

SCADA host ID

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID

	

String (optional)

	

QUALITY

	

NUMBER

	

	

Measurement quality code

	

Bit mask of quality codes

	

VALUE

	

FLOAT

	

126

	

Measurement/entered value

	

Entered value

	

UPDATE_FLAG

	

NUMBER

	

	

Manual replace flag

	

1=true, 0=false

	

ICCP_OBJECT

	

VARCHAR2

	

32

	

ICCP Object type of the telemetered value

	

Alphanumeric

	

DISPLAY_ID

	

VARCHAR2

	

64

	

	

	

CONTROLLABLE

	

VARCHAR2

	

1

	

	

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management, indicates whether the row is active within the model

	

Y(yes=active), N(no=inactive), A(local add=active), D(local delete=inactive), R(locally removed, dependent=inactive)

	

SOURCE

	

VARCHAR2

	

33

	

Source of the measurement.

	

any character string.

	

COMMENTS

	

VARCHAR2

	

512

	

Operator-entered comments

	

any character string.

	

OFF_NOMINAL_TIME

	

DATE

	

	

	

Digital and Analog Measurements Tables

These tables define digital and analog measurements as used by Oracle Utilities Network Management System. They also manage the existence of the measurement and linkage information. Manually overridden values may also be stored here.

The Oracle Utilities Network Management System ICCP Adapter communicates dynamic information to the Oracle Utilities Network Management System services. The services will cache measurements defined by this table. Population is dependent upon customer-supplied information. The information to be contained in these tables is generated by the Auto Configuration Program.

Digital_Measurements Table

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

Class component of handle

	

Valid object class

	

H_IDX

	

NUMBER

	

	

Index component of handle

	

>0

	

PARTITION

	

NUMBER

	

	

Partition number, index component of partition handle

	

Valid partition or 0 for multi- partition objects

	

ATTRIBUTE

	

NUMBER

	

	

Attribute number which identifies measurement type

	

Valid attribute number

	

TTL

	

NUMBER

	

	

Setting for displaying measurement value in the Viewer or not.

	

1 or 0. 1=yes

	

LIMIT_GROUP_ID

	

NUMBER

	

	

Limit group ID

	

Customer defined

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server

	

Alphanumeric

	

SCADA_ID

	

NUMBER

	

	

SCADA host ID

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID

	

String (optional)

	

QUALITY

	

NUMBER

	

	

Measurement quality code

	

Bit mask of quality codes

	

VALUE

	

NUMBER

	

	

Measurement/entered value

	

Entered value

	

UPDATE_FLAG

	

NUMBER

	

	

Manual replace flag

	

1=true, 0=false

	

ICCP_OBJECT

	

VARCHAR2

	

32

	

ICCP Object type of the telemetered value

	

Alphanumeric

	

DISPLAY_ID

	

VARCHAR2

	

64

	

	

	

NORMAL_STATE

	

NUMBER

	

	

	

	

CONTROLLABLE

	

VARCHAR2

	

1

	

	

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management, indicates whether the row is active within the model

	

Y(yes=active), N(no=inactive), A(local add=active), D(local delete=inactive), R(locally removed, dependent=inactive)

	

SOURCE

	

VARCHAR2

	

33

	

Source of the measurement.

	

any character string.

	

COMMENTS

	

VARCHAR2

	

512

	

Operator-entered comments

	

any character string.

	

OFF_NOMINAL_TI ME

	

DATE

	

	

	

Analog_Measurements Table

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

H_CLS

	

NUMBER

	

	

Class component of handle

	

Valid object class

	

H_IDX

	

NUMBER

	

	

Index component of handle

	

>0

	

PARTITION

	

NUMBER

	

	

Partition number, index component of partition handle

	

Valid partition or 0 for multi-partition objects

	

ATTRIBUTE

	

NUMBER

	

	

Attribute number which identifies measurement type

	

Valid attribute number

	

TTL

	

NUMBER

	

	

Setting for displaying measurement value in the Viewer or not.

	

1 or 0. 1=yes

	

LIMIT_GROUP_ID

	

NUMBER

	

	

Limit group ID

	

Customer defined

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server

	

Alphanumeric

	

SCADA_ID

	

NUMBER

	

	

SCADA host ID

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID

	

String (optional)

	

QUALITY

	

NUMBER

	

	

Measurement quality code

	

Bit mask of quality codes

	

VALUE

	

FLOAT

	

126

	

Measurement/entered value

	

Entered value

	

UPDATE_FLAG

	

NUMBER

	

	

Manual replace flag

	

1=true, 0=false

	

ICCP_OBJECT

	

VARCHAR2

	

32

	

ICCP Object type of the telemetered value

	

Alphanumeric

	

DISPLAY_ID

	

VARCHAR2

	

64

	

	

	

CONTROLLABLE

	

VARCHAR2

	

1

	

	

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management, indicates whether the row is active within the model

	

Y(yes=active), N(no=inactive), A(local add=active), D(local delete=inactive), R(locally removed, dependent=inactive)

	

SOURCE

	

VARCHAR2

	

33

	

Source of the measurement.

	

any character string.

	

COMMENTS

	

VARCHAR2

	

512

	

Operator-entered comments

	

any character string.

	

OFF_NOMINAL_TIME

	

DATE

	

	

	

Controls Table

This table defines control actions as used by Oracle Utilities Network Management System. Population is dependent upon customer-supplied information. The information to be contained in this table is generated by the Auto Configuration Program.

	

Column Name

	

Data Type

	

Size

	

Description

	

Values

	

DEVICE_CLASS

	

NUMBER

	

	

Class component of device handle.

	

Valid object class

	

DEVICE_ID

	

NUMBER

	

	

Index component of device handle.

	

>0

	

CTLTYPE_ID

	

NUMBER

	

	

The Control Action ID number associated to the action.

	

Valid control action ID. 1 (OPEN),2 (CLOSE)…

	

CONTROL_ID

	

NUMBER

	

	

Part of unique key to identify each control action for a single device.

	

0..N, based on the number of control actions defined for the device.

	

EXP_STATE

	

NUMBER

	

	

Expected return value.

	

Numeric

	

ATTRIBUTE

	

NUMBER

	

	

If non-zero, attribute number which identifies measurement type.

	

0 (Ignore) or Valid attribute number

	

RTI_ALIAS

	

VARCHAR2

	

128

	

Alias to be used in communications between the Oracle Utilities Network Management System ICCP Adapter and LiveData Server.

	

Alphanumeric

	

TIMEOUT

	

NUMBER

	

	

SCADA timeout for this device.

	

0 = No Timeout, >0 = timeout is seconds.

	

NOT_IN_SERVICE

	

VARCHAR2

	

1

	

Not in service flag.

	

N (In Service), Y (Not in Service)

	

SCADA_ID

	

NUMBER

	

	

SCADA server ID.

	

0 (not a SCADA device), 1 (SCADA 1), 2 (SCADA 2)...

	

RTU_ID

	

VARCHAR2

	

32

	

SCADA RTU ID.

	

String (optional)

	

ACTIVE

	

VARCHAR2

	

1

	

Active flag for patch management; indicates whether the row is active within the model.

	

Y (yes=active), N (no=inactive), A (local add=active), D (local delete=inactive),R (locally removed, dependent=inactive)

MultiSpeak Adapter

The Oracle Utilities Network Management System MultiSpeak Adapter provides the ability to request and receive meter status information from an Automated Meter Reading (AMR) system, to receive crew location information from an Automated Vehicle Location (AVL) system, and to communicate with SCADA systems. The interface uses communication protocols as defined in MultiSpeak Version 4.1 Web Services specification. (SOAP protocol version 1.1 is used unless otherwise noted.) HTTPS protocol is used as transport mechanism (plain HTTP is not supported). It allows Oracle Utilities Network Management System to communicate securely with any MultiSpeak-compliant AMR or AVL system.

The Oracle Utilities Network Management System MultiSpeak Adapter is implemented as a Java application, running on the Oracle WebLogic Server platform.

Please read through this chapter thoroughly before beginning your product installation.

Installation

This chapter describes how you install the Oracle Utilities Network Management System MultiSpeak Adapter, including:

	
•

	

Manual Installation Instructions for Oracle WebLogic Server

Note : It is assumed that the Oracle Utilities Network Management System Web Gateway component has already been installed. Refer to Oracle Utilities
Network Management System Installation Guide for complete instructions on how to install and configure the Oracle Utilities Network Management System Web Gateway.

Installation Overview

The Oracle Utilities Network Management System MultiSpeak Adapter is delivered as a single file: nms-amr.ear.base.

This file is installed into the $CES_HOME/dist/install/deploy directory during the Oracle Utilities Network Management System installation process. The nms-install-config script has to be used in order to apply adapter configuration changes and create the nms-amr.ear file, which can be deployed to the Java Application server (see
Software Configuration
 for configuration instructions).

Adapter Installation Instructions for Oracle WebLogic Server

The Oracle WebLogic Server Administration Console enables you to deploy the Utilities Network Management System MultiSpeak Adapter as follows:

	
1.

	

Log into the WebLogic Server Administration Console:

 http://<weblogic machine name>:7001/console/

where <weblogic machine name> is the machine name where WebLogic Server is installed.

	
2.

	

If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.

	
3.

	

In the left pane of the Administration Console, select Deployments.

	
4.

	

In the right pane, click Install.

	
5.

	

In the Install Application Assistant, locate the nms-amr.ear file.

	
6.

	

Click Next.

	
7.

	

Specify that you want to target the installation as an application.

	
8.

	

Click Next.

	
9.

	

Select the servers and/or clusters to which you want to deploy the application.

Note: If you have not created additional Managed Servers or clusters, you will not see this assistant page.

	
10.

	

Click Next.

	
11.

	

Set the deployed name of the application to be nms-amr.

	
12.

	

Click Next.

	
13.

	

Review the configuration settings you have specified, and click Finish to complete the installation.

Software Configuration

Configuration for the AMR and AVL componenets of the Oracle Utilities Network Management System MultiSpeak Adapter comes from the following sources:

	
•

	

CES_PARAMETERS database table

	
•

	

Oracle Utilities Network Management System configuration rules

AMR Configuration Parameters

Entries in the CES_PARAMETERS database table for the AMR component of the Oracle Utilities Network Management System MultiSpeak Adapter should have value 'AMRInterface' in the APP column. Column ATTRIB should contain name of the configuration parameter and column VALUE its value.

The following table describes the general configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.amr_vendor

	

AMR vendor.

Supported AMR vendors:

	
•

	

multispeak - MultiSpeak-compliant AMR system

This parameter is required.

Default: multispeak

	

config.ping_request_interval

	

Time interval in seconds between subsequent meter ping requests to the AMR system.

Default:60 seconds

	

config.enabled

	

Enables AMR processing.

Default: true

	

config.unsolicited_message_de adband

	

Deadband value in seconds for unsolicited messages reporting same status for a meter. If several unsolicited messages of the same type are received within the deadband then only one of them will be processed.

Default: 60 seconds

	

config.max_meter_status_age

	

Period of time in seconds after which meter status information received from AMR system is considered stale and has to be obtained from the AMR system again.

Default: 300 seconds

	

config.max_ping_request_age

	

If difference between the current time and ping request time is greater than value of this parameter then the request is too old to be sent to the AMR system. Such requests are marked as completed in the AMR_RESPONSES table. The value is defined in seconds.

Default: 3600 seconds

The following table describes configuration parameters specific to a particular AMR vendor. This could be any MultiSpeak-compliant AMR system.

	

Parameter

	

Description

	

multispeak.meter_status.< exter
nal status>

	

This parameter configures mapping between external (MultiSpeak) and internal meter status values. Valid values are:

ON - meter is energized OFF - meter is deenergized UNKNOWN - external meter status has no configured mapping,

Examples: multispeak.meter_status.Outage=OFF multispeak.meter_status.PowerOff=OFF multispeak.meter_status.PowerOn=ON multispeak.meter_status.Restoration=ON multispeak.meter_status.Instantaneous=UNKNOWN multispeak.meter_status.NoResponse=UNKNOWN multispeak.meter_status.Inferred=UNKNOWN

	

multispeak.od_oa.url

	

This parameter configures the URL of the AMR system web service.

Default: https://localhost/multispeak

	

multispeak.od_oa.username

	

Username to use when connecting to the AMR system web service.

Default: empty string

	

multispeak.od_oa.password

	

Password to use when connecting to the AMR system web service.

Default: empty string

	

multispeak.od_oa.header.<attr ibute>

	

Used to set the values for MultiSpeak header attributes. For example, the following would set the MultiSpeak header attribute "Company" to the value "Oracle":

multispeak.od_oa.header.Company=Oracle

	

multispeak.od_oa.soap12

	

Indicates the SOAP protocol version to use for communicating with the AMR/AMI system. If true, version 1.2 will be used. Otherwise, version 1.1 will be used.

Default: false (SOAP version 1.1 is used)

	

multispeak.max_ping_attempt s

	

Maximum number of attempts to ping a meter.

Default: 3

	

multispeak.ping_attempt_inter val

	

Amount of time in seconds to wait for reply from the AMR system before resending meter ping request.

Default: 60 seconds

	

multispeak.send_meter_numb er_field

	

This parameter designates which field in the InitiateOutageDetectionEventRequest message should be used to submit meter numbers to the AMR system.

Valid values:

	
•

	

meterID - meterID element should be used

	
•

	

objectID - objected attribute should be used

	
•

	

meterNo - meterNo attribute should be used

Default: meterID

	

multispeak.unsolicited_meter_ statuses

	

Comma-separated list of meter statuses for unsolicited "power up" and "last gasp" messages.

Example:

multispeak.unsolicited_meter_statuses=Outage,Restoration

AVL Configuration Parameters

Entries in the CES_PARAMETERS database table for the AVL component of the Oracle Utilities Network Management System MultiSpeak Adapter should have value 'AVLInterface' in the APP column. Column ATTRIB should contain the name of the configuration parameter and the column VALUE should contain its value.

The AVL component requires configuration for converting crew location information received from the AVL system into the Oracle Utilities Network Management System coordinate system. Coordinate conversion is done using reference point coordinates that are known for both systems. At least two reference points are required for coordinate conversion to work.

The AVL configuration parameters are described in the following table:

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System during initialization process. This parameter is required.

	

avl.num_reference_points

	

Number of configured reference points

	

avl.reference_point<N>.x

	

X coordinate of the reference point N in the Oracle Utilities Network Management System coordinate system

	

avl.reference_point<N>.y

	

Y coordinate of the reference point N in the Oracle Utilities Network Management System coordinate system

	

avl.reference_point<N>.longitude

	

Geographic longitude of the reference point N

	

avl.reference_point<N>.latitude

	

Geographic latitude of the reference point N

	

avl.xy_scale

	

Number of decimal points to use when rounding X/Y coordinates

	

avl.lat_long_scale

	

Number of decimal points for rounding longitude/ latitude coordinates

	

config.enabled

	

Enables AVL processing

Default: true

Credentials Files

Credentials files are used to configure usernames and passwords to be used by the parts of the adapter that communicate with the Oracle Utilities Network Management System.

Credentials files should only be readably by the operating system account under which application server is running.

The format of a credentials file is described in the following table:

	

Property

	

Description

	

nms.username

	

 Valid NMS username.

	

nms.password

	

NMS user password

The following illustration shows a sample credentials file.

nms.username=amr

nms.password=amr-user-password

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Oracle Utilities Network Management System Configuration Rules

Below is the list of configuration rules in the Oracle Utilities Network Management System, which control AMR-related functionality. These rules are not directly used by the Oracle Utilities Network Management System MultiSpeak Adapter.

amrInterfacesEnabled

This rule enables AMR processing in JMService. Its value indicates the AMR processing types that are available. AMR processing is disabled if this rule is set to 0 (default value).

Available types of AMR processing:

	
•

	

1 - Outage detection

	
•

	

2 - PSO verification

	
•

	

4 - PDO verification

	
•

	

8 - Restoration verification

	
•

	

16 - Manual AMR processing

The rule value is a bitmask, which allows any combination of AMR processing types to be enabled. For example, if the rule is set to 9 then Outage Detection and Restoration Verification will be enabled.

meterOffThreshold

Maximum probability of meter having power when meter is still assumed to be "off". Default value is 0.

meterOffTroubleCode

Trouble code to be used when a call should be created because of information received from AMR system.

meterOnThreshold

Minimum probability of meter having power when meter is still assumed to be "on". Default value is 100.

meterQueryThreshold

This parameter is used to determine if a meter can be queried when an active request exists. When a new request is made, existing requests will be evaluated to see if any contain meter(s) from the new request. If a match is found, and the difference between the time the request was received and current time is less than value of this rule in seconds, that meter will be rejected from the new request. If set to -1 (default value), this rule will not be enforced.

 meterPingPercentage

This parameter governs the percentage of meters to ping for an AMR action. When set to 100, it will ping all AMR meters downstream from the outage device. When set to -1, it will ping one AMR meter on each SND. When set to any other number between 1 and 99, JMService will attempt to ping the specified percentage of meters for each transformer affected by the outage (the resulting number of meters is rounded up so that at least one meter per transformer is pinged). It is possible to configure this rule differently for different device classes. Default value of this rule is 100.

 useMeterTimeForDetection

This configuration rule determines if meter read time reported by AMR system should be used as call time for incidents created by outage detection functionality.

Valid values:

	
•

	

 0 - Meter read time will not be used, instead current system time will be used (this is the default behavior)

	
•

	

1 - Meter read time will be used

 useMeterTimeForRestoration

This configuration rule determines if meter read time reported by AMR system should be used to adjust outage restoration time as part of outage restoration verification functionality.

Valid values:

	
•

	

 0 - outage restoration time will not be modified

	
•

	

 1 - outage restoration time will be updated with the latest meter read time amongst the meters which reported power on for the restored outage (this is the default behavior)

meterRequestSendDelay

This configuration rule is used to control how long the outage prediction engine should wait before sending a meter ping request to the MultiSpeak adapter. This rule is only applicable for PSO Verification, PDO Verification, and Restoration Verification requests.

meterRequestTTL

This configuration rule is used to control the "time-to-live" (TTL) for meter ping requests. This is the period of time NMS will wait for a responses from AMR system.

TTL is configurable per request type. It can either be a fixed value (for example, the PSO Verification request can remain active for 15 minutes) or it can be calculated based on the number of meters in the request combined with minimum and maximum values. If TTL is set to 0, then the meter ping request remains active until the first response is received.

meterPingSuppress

This configuration rule can be used to suppress sending meter ping requests to the AMR system based on the request type.

Adapter Interface Communication Overview

The Oracle Utilities Network Management System MultiSpeak Adapter provides a reliable and configurable way of connecting MultiSpeak-compliant AMR, AVL, and SCADA systems to the Oracle Utilities Network Management System. The interface connects to the AMR systems by use of MultiSpeak-compliant SOAP/XML calls over the HTTPS protocol. For SCADA integration, JMS queues can also be used as the transport mechanism. The interface connects to the Oracle Utilities Network Management System through direct database access using JDBC and by use of a CORBA connection through the Oracle Utilities Network Management System Web Gateway.

Adapter Design

Supported Data Flows

Oracle Utilities Network Management System MultiSpeak Adapter supports following data flows described in the MultiSpeak Web Services Version 4.1 specification.

Oracle Utilities Network Management System to an AMR system:

	
•

	

InitiateOutageDetectionEventRequest

Oracle Utilities Network Management System requests meter status information from the AMR system.

An AMR system to Oracle Utilities Network Management System:

	
•

	

ODEventNotification

AMR system reports meter status information to the Oracle Utilities Network Management System.

An AVL system to Oracle Utilities Network Management System:

	
•

	

AVLChangedNotification

AVL system reports crew location information to the Oracle Utilities Network Management System.

Incoming requests (ODEventNotification and AVLChangedNotification) are authenticated against list of valid Oracle Utilities Network Management System users. Username and password has to be provided in the header of each incoming MultiSpeak message.

Adapter Design

Supported Data Flows

Oracle Utilities Network Management System MultiSpeak Adapter supports following data flows described in the MultiSpeak Web Services Version 4.1 specification.

Oracle Utilities Network Management System to an AMR system:

	
•

	

InitiateOutageDetectionEventRequest

Oracle Utilities Network Management System requests meter status information from the AMR system.

An AMR system to Oracle Utilities Network Management System:

	
•

	

ODEventNotification

AMR system reports meter status information to the Oracle Utilities Network Management System.

An AVL system to Oracle Utilities Network Management System:

	
•

	

AVLChangedNotification

AVL system reports crew location information to the Oracle Utilities Network Management System.

Incoming requests (ODEventNotification and AVLChangedNotification) are authenticated against list of valid Oracle Utilities Network Management System users. Username and password has to be provided in the header of each incoming MultiSpeak message.

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

AMR Business Processes

This section describes the utility business processes related to AMR that can be supported through the Oracle Utilities Network Management System MultiSpeak Adapter.

Outage Detection

The vendor AMR system detects no power for a meter, either because of a "last gasp" meter message or from scheduled meter polling. A "power out" call is submitted to Oracle Utilities Network Management System, which generates a probable outage event.

[image:]

PSO Verification

One customer call is received, generating a probable service outage in Oracle Utilities Network Management System. The Oracle Utilities Network Management System MultiSpeak Adapter is notified of the new probable outage, and the customer meter is pinged to verify power status.

If the meter reports that the power is still on, then we have conflicting information from the customer and the meter, so the outage predication engine will set the status of this event to Verify. At this point, we believe that there is no outage, but that the customer has a problem, such as a blown fuse, within his home. This event must be resolved by a customer service representative contacting the caller to explain the situation to them.

[image:]

PDO Verification

Several customer calls are received, which are submitted into the Oracle Utilities Network Management System. The resulting probably outage rolls up to a device. The list of affected AMR customers is provided to the Oracle Utilities Network Management System MultiSpeak Adapter by the Oracle Utilities Network Management System outage prediction engine. The interface submits meter status requests to the AMR for any of the affected meters from which it has not already received a last gasp message. The received meter statuses are sent back to the prediction engine and the predicted outage device may change by moving downstream.

[image:]

Restoration Verification

An outage event is restored in Oracle Utilities Network Management System, and a list of affected meters is provided by the outage prediction engine to the Oracle Utilities Network Management System MultiSpeak Adapter. The interface submits meter status requests to the AMR for any of the affected meters from which it has not received a "power up" message. The results are passed back to the Oracle Utilities Network Management System and the periodic cycle for getting outage events continues. The received meter statuses are sent back to the prediction engine. A power out status will result in another outage call and a nested outage that still needs restoration.

[image:]

Unsolicited Power Ups

The AMR system can send unsolicited power up message when it detects that meter power has been restored. The adapter delivers such messages to the outage prediction engine, which uses them as part of Restoration Verification processing.

Manual Ping

In the diagram below, please note that the number indicates the sequence of actions:

1. The operator or system has chosen a device to "Ping".

2. Information about the new ping request is stored in the database.

3. The AMR application notes the new ping request and verifies the device.

4. A response is received from the meter.

5. The database is updated with some information about the request response. Oracle Utilities Network Management System is aware of the response data in the database and displays relevant information.

[image:]

Database Schema

Oracle Utilities Network Management System MultiSpeak Adapter uses several databases tables to store meter status information received from the AMR system and pending meter ping requests.

AMR_REQUESTS

AMR_REQUESTS is populated by the outage prediction engine when a request for meter information is submitted. There is one row per request, and each request can involve multiple meters.

	

Field

	

DataType

	

Nullable

	

Comments

	

REQUEST_IDX

	

NUMBER

	

No

	

AMR request id.

PRIMARY KEY

	

EVENT_CLS

	

NUMBER

	

No

	

The class part of the handle of the event for which the AMR request was made.

	

EVENT_IDX

	

NUMBER

	

No

	

The index part of the handle of the event for which the AMR request was made.

	

REQUEST_TIME

	

DATE

	

No

	

The timestamp when the AMR request was created.

	

WHO_REQUESTED

	

VARCHA R2(32)

	

Yes

	

User name of the operator who created the AMR request.

	

AMR_COMPLETE_T IME

	

DATE

	

Yes

	

The timestamp when the AMR request was completed or cancelled.

	

WHO_COMPLETED

	

VARCHA R2(32)

	

Yes

	

User name of the operator who completed or cancelled the AMR request.

	

REQUEST_TYPE

	

NUMBER

	

Yes

	

Request type.

Possible values:

	
•

	

1 - PSO Verification

	
•

	

2 - PDO Verification

	
•

	

3 - Restoration Verification

	
•

	

4 - Manual

	

QUERY_TYPE

	

NUMBER

	

Yes

	

Query type.

Possible values:

	
•

	

0 - simple meter status query

	
•

	

1 - complex meter information query

	

STATUS

	

NUMBER

	

Yes

	

Status of the AMR request.

Possible values:

1- active

2 - explicitly completed

3 -cancelled

	

DEVICE_CLS

	

NUMBER

	

Yes

	

The class part of the handle of the device for which the AMR request was made.

	

DEVICE_IDX

	

NUMBER

	

Yes

	

The index part of the handle of the device for which the AMR request was made.

	

NCG

	

NUMBER

	

Yes

	

NCG of the device for which the AMR request was made.

	

TTL

	

Number(9)

	

Yes

	

The Time-To-Live of the request in seconds.

AMR_RESPONSES

The AMR_RESPONSES table is used to transfer meter status information between the outage prediction engine and the MultiSpeak adapter. The outage prediction engine inserts rows into this table when a request for meter information is submitted. Every request in AMR_RESPONSES is represented by one row for each meter requested. The MultiSpeak adapter updates this table as requested meter status information becomes available.

	

Field

	

DataType

	

Nullable

	

Comments

	

ID

	

Number

	

No

	

Unique record identifier. PRIMARY KEY

	

REQUEST_IDX

	

NUMBER

	

Yes

	

AMR request id.

	

REQUEST_TIME

	

DATE

	

Yes

	

Request timestamp.

	

METER_NO

	

VARCHAR2(256)

	

Yes

	

Meter number as known to the AMR system

	

METER_ID

	

NUMBER

	

No

	

NMS meter identifier.

	

REQUEST_STATUS

	

VARCHAR2(1)

	

Yes

	

Request status.

Possible values:

	
•

	

N - new request (not yet sent to AMR)

	
•

	

P - pending request (waiting for AMR response)

	
•

	

S - suppressed request

	
•

	

R - AMR response received

	
•

	

C - completed request

	

STATUS

	

VARCHAR2(256)

	

Yes

	

Meter status received from AMR.

Possible values:

	
•

	

ON - meter has power

	
•

	

OFF - meter does not have power

	

AMR_ERROR

	

VARCHAR2(256)

	

Yes

	

Error message received from the AMR system.

	

RECEIVED_TIME

	

DATE

	

Yes

	

Timestamp when the response was received from the AMR system.

	

RESULT_TIME

	

DATE

	

Yes

	

Timestamp returned by the AMR system for the meter status.

	

PROBABILITY

	

NUMBER

	

Yes

	

The probability of the meter having power (0 - no power; 100 - meter has power.)

	

STATUS

	

NUMBER(3)

	

Yes

	

Response status string

AMR_CU_METERS

Table AMR_CU_METERS contains information about all meters known to the Oracle Utilities Network Management System. This table is also used to cache the latest known meter status information to reduce the number of requests to the AMR system.

	

Field

	

DataType

	

Nullable

	

Comments

	

METER_ID

	

VARCHAR2(14)

	

No

	

Meter identifier in Oracle Utilities Network Management System.

	

METER_NO

	

VARCHAR2(20)

	

Yes

	

Meter identifier used by the AMR system.

	

RESULT_TIME

	

DATE

	

Yes

	

Timestamp of the latest meter status update.

	

POWER_UP_TIME

	

DATE

	

Yes

	

Timestamp of the latest power-up message.

	

LAST_GASP_TIME

	

DATE

	

Yes

	

Timestamp of the latest "last gasp" message.

	

ALT_METER_NO

	

VARCHAR2(256)

	

Yes

	

Alternative meter number.

	

AMR_ENABLED

	

VARCHAR2(1)

	

Yes

	

Indicator that meter is AMR- enabled.

	

STATUS

	

VARCHAR2(256)

	

Yes

	

Latest known meter status.

Possible values:

	
•

	

ON - meter has power

	
•

	

OFF - meter does not have power

	

REQUEST_IDX

	

NUMBER

	

Yes

	

AMR request id for the latest received meter status.

	

PROBABILITY

	

NUMBER

	

Yes

	

Latest known probability of the meter having power (0 - no power; 100 - meter has power).

AMR_CU_METERS_HISTORY

The AMR_CU_METERS_HISTORY table is used to store all meter status updates received from the AMR system. This table has the same columns as the AMR_CU_METERS table.

SCADA Component

The Oracle Utilities Network Management System MultiSpeak Adapter’s SCADA component has the capability of interacting with SCADA systems having a MultiSpeak-compatible interface.

The following functionality is available:

	
•

	

Receiving device status updates from SCADA system

	
•

	

Receiving analog and digital measurement updates from SCADA system

	
•

	

Mapping of SCADA quality codes (applies to status and measurement updates)

	
•

	

Receiving tag information from SCADA system

	
•

	

Receiving alarm information from SCADA system

	
•

	

Sending control request to SCADA system to operate devices and place/remove tags

A single instance of the adapter is capable of communicating with multiple SCADA systems. Several communication links can be configured for each SCADA system. If the currently active link fails, the adapter will automatically switch to the next link.

JMS Transport Mechanism

	
•

	

The JMS transport mechanism is based on the SOAP over JMS specification.

	
•

	

Two JMS queues are used per communication channel (one for requests and another for responses) resulting in four queues in total. The name of the SCADA to NMS request queue is fixed (queue/OARequest).

	
•

	

Each individual request is synchronous. The system places the message on the request queue and waits for a reply to arrive on the response queue.

	
•

	

TextMessage or BytesMessage JMS message classes can be used. In both cases message must be a valid MultiSpeak message.

	
•

	

Requests and responses are connected through JMSCorrelationID JMS header.

	
•

	

In the request message, the JMS header JMSReplyTo must contain the queue where response message should be sent.

	
•

	

SOAP version 1.1 is used.

	
•

	

There is no support for accessing a WSDL over JMS.

The following table describes JMS message properties:

	

JMS Message Property

	

Value

	

SOAPJMS_bindingVersion

	

"1.0"

	

SOAPJMS_targetServer

	

"SCADA_Server" or "OA_Server" depending on the target system

	

SOAPJMS_soapAction

	

""

	

SOAPJMS_contentType

	

"text/xml"

	

SOAPJMS_requestURI

	

"jms:jndi:<jms queue>"

where

<jms queue> is the JNDI name of the JMS queue the request is sent to

	

SOAPJMS_isFault

	

"true" for SOAP fault messages

Supported Data Flows

NMS to SCADA

Heartbeat

PingURL

The adapter periodically sends PingURL message to the each configured SCADA system. Failure to send the message or error response from SCADA system (reply contains errorObject element) triggers switch to alternate link (if available). Upon restoration of communication with the SCADA system (PingURL has been sent successfully) synchronization sequence is executed.

PingURL request example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/

 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"

 xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:PingURL xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

Synchronization/Integrity check

The purpose of the synchronization sequence is to bring the state of devices in the NMS model up-to-date with the SCADA system. NMS supports two synchronization methods for device statuses, digital and analog measurements. At the beginning of the synchronization sequence, NMS will make GetMethods call to determine the list of operations supported by the SCADA system. Synchronization method selection is based on configured preferred method and available SCADA operations.

The synchronization sequence is executed automatically after the connection to a SCADA system is established. It also can be triggered manually using following command

Action -add_soap multispeak.SCADA resync

GetMethods

GetMethods retrieves lists of operations the SCADA system implements. It is used to determine available modes of syn-chronization. It is also used to determine if control requests can be send to SCADA.

GetMethods request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:GetMethods xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetMethodsResponse>

 <ver:GetMethodsResult>

 <ver:string>PingURL</ver:string>

 <ver:string>GetMethods</ver:string>

 <ver:string>InitiateStatusReadByPointID</ver:string>

 <ver:string>InitiateAnalogReadByPointID</ver:string>

 <ver:string>InitiateControl</ver:string>

 <ver:string>GetAllSCADAStatus</ver:string>

 <ver:string>GetAllSCADAAnalogs</ver:string>

 <ver:string>GetAllSCADATags</ver:string>

 </ver:GetMethodsResult>

 </ver:GetMethodsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAStatus, GetAllSCADAAnalogs

The first synchronization method involves NMS invoking GetAllSCADAStatus and GetAllSCADAAnalogs operations to request the latest device statuses, digital and analog measurements from the SCADA. SCADA provides the requested information synchronously in the response message.

The MultiSpeak specification allows data to be returned in chunks by the SCADA system. In this case, NMS would have to make multiple GetAllSCADAXXX calls. The element lastReceived is included so that large sets of data can be returned in manageable blocks. lastReceived will carry an empty string the first time in a session that this method is invoked. When multiple calls to this method are required to obtain all of the data, the lastReceived should carry the objectID of the last data instance received in subsequent calls. If the ObjectsRemaining field is present in the MultiSpeak reply message’s message header, it will be used to determine when all of the data has been received. If the ObjectsRemaining field is not present, the empty result set will signal the end of the data.

GetAllSCADAStatus request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAStatus xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAStatus>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAStatusResponse>

 <ver:GetAllSCADAStatusResult>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Initial</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>0</ver:changeCounter>

 <ver:timeStamp>2011-03-01T11:11:11</ver:timeStamp>

 </ver:scadaStatus>

 </ver:GetAllSCADAStatusResult>

 </ver:GetAllSCADAStatusResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAAnalogs xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAAnalogs>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0" />

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAAnalogsResponse>

 <ver:GetAllSCADAAnalogsResult>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Default</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:GetAllSCADAAnalogsResult>

 </ver:GetAllSCADAAnalogsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs is used for both digital and analog measurements.

InitiateStatusReadByPointID, InitiateAnalogReadByPointID

The second synchronization method uses InitiateXXXReadByPointID operations to request latest device statuses, digital and analog measurements from the SCADA. SCADA provides requested information asynchronously by sending SCADAXXXChangedNotification messages to NMS. To avoid having to send all SCADA points known to NMS an empty list of SCADA points can be used to indicate desire to initiate read for all SCADA points.

InitiateStatusReadByPointID and InitiateAnalogReadByPointID request exam ples

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateStatusReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600187</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateStatusReadByPointID>

 </S:Body>

</S:Envelope>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/ xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateAnalogReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release" xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink" xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600203</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateAnalogReadByPointID>

 </S:Body>

</S:Envelope>

GetAllSCADATags

Synchronization of tag information is done using GetAllSCADATags operation (not part of MultiSpeak 4.1). The expectation is that SCADA systems would return information about all currently applied tags. NMS compares information received from SCADA against tags currently present in the model and make necessary adjustments (adding or removing tags).

GetAllSCADATags request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADATags xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADATags>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADATagsResponse>

 <ver:GetAllSCADATagsResult>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:GetAllSCADATagsResult>

 </ver:GetAllSCADATagsResponse>

 </soapenv:Body>

</soapenv:Envelope>

Controls

NMS can use the same operation (InitiateControl) to request device operation and to request placement or removal of a tag. The InitiateControl message consists of a single controlAction object.

The following InitiateControl fields are used:

	
•

	

scadaPointID - SCADA point ID;

	
•

	

controlKey - SCADA-specific value indicating requested operation (open/close device, place/remove tag);

	
•

	

transactionID - unique value associated with the control request;

	
•

	

responseURL - URL of NMS web service , which should be used to report outcome of the requested control action.

Notes:

	
•

	

Field function is required, but NMS will not use it. Field function will always contain the following value: Direct operate.

	
•

	

NMS will not issue separate select and operate commands.

InitiateControl request example

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" TimeStamp="2011-03- 19T20:04:37"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:InitiateControl>

 <ver:controlAction>

 <ver:scadaPointID>BR_R-2241</ver:scadaPointID>

 <ver:controlKey>open</ver:controlKey>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 </ver:controlAction>

 <ver:responseURL>https://nms-server:7002/nms-amr/oa</ver:responseURL>

 <ver:transactionID>12345</ver:transactionID>

 </ver:InitiateControl>

 </soapenv:Body>

</soapenv:Envelope>

Operating a SCADA-controlled device

	
1.

	

NMS user instructs open of a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADAStatusChangedNotification with the new status of the operated device

	
b.

	

NMS updates device status in the model and removes Instructed flag

	
3.

	

Regardless of the outcome of the requested control action

	
a.

	

SCADA sends ControlActionCompleted message to indicate whether requested control action was successful or not

	
b.

	

In case of negative outcome NMS removes Instructed flag. Device status remains unchanged.

Note: When SCADA sends ControlActionCompleted message to NMS in case of success NMS will not update device status in its model until SCADAStatusChangedNotification message has been received.

Placing or removing a tag on a SCADA-controlled device

	
1.

	

NMS user instructs placement of a HOLD tag on a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in the NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADATagChangedNotification with the new status of the operated device.

	
b.

	

NMS updates device status in the model and removes Instructed flag.

	
3.

	

If requested control action has NOT been successfully executed then:

	
a.

	

SCADA sends ControlActionCompleted message to indicate that requested control action has not been executed.

	
b.

	

NMS removes Instructed flag, device status remains unchanged.

Note: SCADA can send ControlActionCompleted message to NMS in case of success, but NMS will not update tag information in its model until SCADATagChangedNotification message has been received.

Supported Data Flows

NMS to SCADA

Heartbeat

PingURL

The adapter periodically sends PingURL message to the each configured SCADA system. Failure to send the message or error response from SCADA system (reply contains errorObject element) triggers switch to alternate link (if available). Upon restoration of communication with the SCADA system (PingURL has been sent successfully) synchronization sequence is executed.

PingURL request example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/

 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"

 xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:PingURL xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

Synchronization/Integrity check

The purpose of the synchronization sequence is to bring the state of devices in the NMS model up-to-date with the SCADA system. NMS supports two synchronization methods for device statuses, digital and analog measurements. At the beginning of the synchronization sequence, NMS will make GetMethods call to determine the list of operations supported by the SCADA system. Synchronization method selection is based on configured preferred method and available SCADA operations.

The synchronization sequence is executed automatically after the connection to a SCADA system is established. It also can be triggered manually using following command

Action -add_soap multispeak.SCADA resync

GetMethods

GetMethods retrieves lists of operations the SCADA system implements. It is used to determine available modes of syn-chronization. It is also used to determine if control requests can be send to SCADA.

GetMethods request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:GetMethods xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetMethodsResponse>

 <ver:GetMethodsResult>

 <ver:string>PingURL</ver:string>

 <ver:string>GetMethods</ver:string>

 <ver:string>InitiateStatusReadByPointID</ver:string>

 <ver:string>InitiateAnalogReadByPointID</ver:string>

 <ver:string>InitiateControl</ver:string>

 <ver:string>GetAllSCADAStatus</ver:string>

 <ver:string>GetAllSCADAAnalogs</ver:string>

 <ver:string>GetAllSCADATags</ver:string>

 </ver:GetMethodsResult>

 </ver:GetMethodsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAStatus, GetAllSCADAAnalogs

The first synchronization method involves NMS invoking GetAllSCADAStatus and GetAllSCADAAnalogs operations to request the latest device statuses, digital and analog measurements from the SCADA. SCADA provides the requested information synchronously in the response message.

The MultiSpeak specification allows data to be returned in chunks by the SCADA system. In this case, NMS would have to make multiple GetAllSCADAXXX calls. The element lastReceived is included so that large sets of data can be returned in manageable blocks. lastReceived will carry an empty string the first time in a session that this method is invoked. When multiple calls to this method are required to obtain all of the data, the lastReceived should carry the objectID of the last data instance received in subsequent calls. If the ObjectsRemaining field is present in the MultiSpeak reply message’s message header, it will be used to determine when all of the data has been received. If the ObjectsRemaining field is not present, the empty result set will signal the end of the data.

GetAllSCADAStatus request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAStatus xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAStatus>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAStatusResponse>

 <ver:GetAllSCADAStatusResult>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Initial</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>0</ver:changeCounter>

 <ver:timeStamp>2011-03-01T11:11:11</ver:timeStamp>

 </ver:scadaStatus>

 </ver:GetAllSCADAStatusResult>

 </ver:GetAllSCADAStatusResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAAnalogs xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAAnalogs>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0" />

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAAnalogsResponse>

 <ver:GetAllSCADAAnalogsResult>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Default</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:GetAllSCADAAnalogsResult>

 </ver:GetAllSCADAAnalogsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs is used for both digital and analog measurements.

InitiateStatusReadByPointID, InitiateAnalogReadByPointID

The second synchronization method uses InitiateXXXReadByPointID operations to request latest device statuses, digital and analog measurements from the SCADA. SCADA provides requested information asynchronously by sending SCADAXXXChangedNotification messages to NMS. To avoid having to send all SCADA points known to NMS an empty list of SCADA points can be used to indicate desire to initiate read for all SCADA points.

InitiateStatusReadByPointID and InitiateAnalogReadByPointID request exam ples

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateStatusReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600187</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateStatusReadByPointID>

 </S:Body>

</S:Envelope>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/ xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateAnalogReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release" xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink" xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600203</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateAnalogReadByPointID>

 </S:Body>

</S:Envelope>

GetAllSCADATags

Synchronization of tag information is done using GetAllSCADATags operation (not part of MultiSpeak 4.1). The expectation is that SCADA systems would return information about all currently applied tags. NMS compares information received from SCADA against tags currently present in the model and make necessary adjustments (adding or removing tags).

GetAllSCADATags request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADATags xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADATags>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADATagsResponse>

 <ver:GetAllSCADATagsResult>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:GetAllSCADATagsResult>

 </ver:GetAllSCADATagsResponse>

 </soapenv:Body>

</soapenv:Envelope>

Controls

NMS can use the same operation (InitiateControl) to request device operation and to request placement or removal of a tag. The InitiateControl message consists of a single controlAction object.

The following InitiateControl fields are used:

	
•

	

scadaPointID - SCADA point ID;

	
•

	

controlKey - SCADA-specific value indicating requested operation (open/close device, place/remove tag);

	
•

	

transactionID - unique value associated with the control request;

	
•

	

responseURL - URL of NMS web service , which should be used to report outcome of the requested control action.

Notes:

	
•

	

Field function is required, but NMS will not use it. Field function will always contain the following value: Direct operate.

	
•

	

NMS will not issue separate select and operate commands.

InitiateControl request example

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" TimeStamp="2011-03- 19T20:04:37"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:InitiateControl>

 <ver:controlAction>

 <ver:scadaPointID>BR_R-2241</ver:scadaPointID>

 <ver:controlKey>open</ver:controlKey>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 </ver:controlAction>

 <ver:responseURL>https://nms-server:7002/nms-amr/oa</ver:responseURL>

 <ver:transactionID>12345</ver:transactionID>

 </ver:InitiateControl>

 </soapenv:Body>

</soapenv:Envelope>

Operating a SCADA-controlled device

	
1.

	

NMS user instructs open of a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADAStatusChangedNotification with the new status of the operated device

	
b.

	

NMS updates device status in the model and removes Instructed flag

	
3.

	

Regardless of the outcome of the requested control action

	
a.

	

SCADA sends ControlActionCompleted message to indicate whether requested control action was successful or not

	
b.

	

In case of negative outcome NMS removes Instructed flag. Device status remains unchanged.

Note: When SCADA sends ControlActionCompleted message to NMS in case of success NMS will not update device status in its model until SCADAStatusChangedNotification message has been received.

Placing or removing a tag on a SCADA-controlled device

	
1.

	

NMS user instructs placement of a HOLD tag on a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in the NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADATagChangedNotification with the new status of the operated device.

	
b.

	

NMS updates device status in the model and removes Instructed flag.

	
3.

	

If requested control action has NOT been successfully executed then:

	
a.

	

SCADA sends ControlActionCompleted message to indicate that requested control action has not been executed.

	
b.

	

NMS removes Instructed flag, device status remains unchanged.

Note: SCADA can send ControlActionCompleted message to NMS in case of success, but NMS will not update tag information in its model until SCADATagChangedNotification message has been received.

Supported Data Flows

NMS to SCADA

Heartbeat

PingURL

The adapter periodically sends PingURL message to the each configured SCADA system. Failure to send the message or error response from SCADA system (reply contains errorObject element) triggers switch to alternate link (if available). Upon restoration of communication with the SCADA system (PingURL has been sent successfully) synchronization sequence is executed.

PingURL request example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/

 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"

 xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:PingURL xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

Synchronization/Integrity check

The purpose of the synchronization sequence is to bring the state of devices in the NMS model up-to-date with the SCADA system. NMS supports two synchronization methods for device statuses, digital and analog measurements. At the beginning of the synchronization sequence, NMS will make GetMethods call to determine the list of operations supported by the SCADA system. Synchronization method selection is based on configured preferred method and available SCADA operations.

The synchronization sequence is executed automatically after the connection to a SCADA system is established. It also can be triggered manually using following command

Action -add_soap multispeak.SCADA resync

GetMethods

GetMethods retrieves lists of operations the SCADA system implements. It is used to determine available modes of syn-chronization. It is also used to determine if control requests can be send to SCADA.

GetMethods request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:GetMethods xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetMethodsResponse>

 <ver:GetMethodsResult>

 <ver:string>PingURL</ver:string>

 <ver:string>GetMethods</ver:string>

 <ver:string>InitiateStatusReadByPointID</ver:string>

 <ver:string>InitiateAnalogReadByPointID</ver:string>

 <ver:string>InitiateControl</ver:string>

 <ver:string>GetAllSCADAStatus</ver:string>

 <ver:string>GetAllSCADAAnalogs</ver:string>

 <ver:string>GetAllSCADATags</ver:string>

 </ver:GetMethodsResult>

 </ver:GetMethodsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAStatus, GetAllSCADAAnalogs

The first synchronization method involves NMS invoking GetAllSCADAStatus and GetAllSCADAAnalogs operations to request the latest device statuses, digital and analog measurements from the SCADA. SCADA provides the requested information synchronously in the response message.

The MultiSpeak specification allows data to be returned in chunks by the SCADA system. In this case, NMS would have to make multiple GetAllSCADAXXX calls. The element lastReceived is included so that large sets of data can be returned in manageable blocks. lastReceived will carry an empty string the first time in a session that this method is invoked. When multiple calls to this method are required to obtain all of the data, the lastReceived should carry the objectID of the last data instance received in subsequent calls. If the ObjectsRemaining field is present in the MultiSpeak reply message’s message header, it will be used to determine when all of the data has been received. If the ObjectsRemaining field is not present, the empty result set will signal the end of the data.

GetAllSCADAStatus request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAStatus xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAStatus>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAStatusResponse>

 <ver:GetAllSCADAStatusResult>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Initial</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>0</ver:changeCounter>

 <ver:timeStamp>2011-03-01T11:11:11</ver:timeStamp>

 </ver:scadaStatus>

 </ver:GetAllSCADAStatusResult>

 </ver:GetAllSCADAStatusResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAAnalogs xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAAnalogs>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0" />

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAAnalogsResponse>

 <ver:GetAllSCADAAnalogsResult>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Default</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:GetAllSCADAAnalogsResult>

 </ver:GetAllSCADAAnalogsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs is used for both digital and analog measurements.

InitiateStatusReadByPointID, InitiateAnalogReadByPointID

The second synchronization method uses InitiateXXXReadByPointID operations to request latest device statuses, digital and analog measurements from the SCADA. SCADA provides requested information asynchronously by sending SCADAXXXChangedNotification messages to NMS. To avoid having to send all SCADA points known to NMS an empty list of SCADA points can be used to indicate desire to initiate read for all SCADA points.

InitiateStatusReadByPointID and InitiateAnalogReadByPointID request exam ples

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateStatusReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600187</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateStatusReadByPointID>

 </S:Body>

</S:Envelope>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/ xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateAnalogReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release" xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink" xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600203</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateAnalogReadByPointID>

 </S:Body>

</S:Envelope>

GetAllSCADATags

Synchronization of tag information is done using GetAllSCADATags operation (not part of MultiSpeak 4.1). The expectation is that SCADA systems would return information about all currently applied tags. NMS compares information received from SCADA against tags currently present in the model and make necessary adjustments (adding or removing tags).

GetAllSCADATags request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADATags xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADATags>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADATagsResponse>

 <ver:GetAllSCADATagsResult>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:GetAllSCADATagsResult>

 </ver:GetAllSCADATagsResponse>

 </soapenv:Body>

</soapenv:Envelope>

Controls

NMS can use the same operation (InitiateControl) to request device operation and to request placement or removal of a tag. The InitiateControl message consists of a single controlAction object.

The following InitiateControl fields are used:

	
•

	

scadaPointID - SCADA point ID;

	
•

	

controlKey - SCADA-specific value indicating requested operation (open/close device, place/remove tag);

	
•

	

transactionID - unique value associated with the control request;

	
•

	

responseURL - URL of NMS web service , which should be used to report outcome of the requested control action.

Notes:

	
•

	

Field function is required, but NMS will not use it. Field function will always contain the following value: Direct operate.

	
•

	

NMS will not issue separate select and operate commands.

InitiateControl request example

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" TimeStamp="2011-03- 19T20:04:37"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:InitiateControl>

 <ver:controlAction>

 <ver:scadaPointID>BR_R-2241</ver:scadaPointID>

 <ver:controlKey>open</ver:controlKey>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 </ver:controlAction>

 <ver:responseURL>https://nms-server:7002/nms-amr/oa</ver:responseURL>

 <ver:transactionID>12345</ver:transactionID>

 </ver:InitiateControl>

 </soapenv:Body>

</soapenv:Envelope>

Operating a SCADA-controlled device

	
1.

	

NMS user instructs open of a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADAStatusChangedNotification with the new status of the operated device

	
b.

	

NMS updates device status in the model and removes Instructed flag

	
3.

	

Regardless of the outcome of the requested control action

	
a.

	

SCADA sends ControlActionCompleted message to indicate whether requested control action was successful or not

	
b.

	

In case of negative outcome NMS removes Instructed flag. Device status remains unchanged.

Note: When SCADA sends ControlActionCompleted message to NMS in case of success NMS will not update device status in its model until SCADAStatusChangedNotification message has been received.

Placing or removing a tag on a SCADA-controlled device

	
1.

	

NMS user instructs placement of a HOLD tag on a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in the NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADATagChangedNotification with the new status of the operated device.

	
b.

	

NMS updates device status in the model and removes Instructed flag.

	
3.

	

If requested control action has NOT been successfully executed then:

	
a.

	

SCADA sends ControlActionCompleted message to indicate that requested control action has not been executed.

	
b.

	

NMS removes Instructed flag, device status remains unchanged.

Note: SCADA can send ControlActionCompleted message to NMS in case of success, but NMS will not update tag information in its model until SCADATagChangedNotification message has been received.

Supported Data Flows

NMS to SCADA

Heartbeat

PingURL

The adapter periodically sends PingURL message to the each configured SCADA system. Failure to send the message or error response from SCADA system (reply contains errorObject element) triggers switch to alternate link (if available). Upon restoration of communication with the SCADA system (PingURL has been sent successfully) synchronization sequence is executed.

PingURL request example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/

 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"

 xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:PingURL xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

Synchronization/Integrity check

The purpose of the synchronization sequence is to bring the state of devices in the NMS model up-to-date with the SCADA system. NMS supports two synchronization methods for device statuses, digital and analog measurements. At the beginning of the synchronization sequence, NMS will make GetMethods call to determine the list of operations supported by the SCADA system. Synchronization method selection is based on configured preferred method and available SCADA operations.

The synchronization sequence is executed automatically after the connection to a SCADA system is established. It also can be triggered manually using following command

Action -add_soap multispeak.SCADA resync

GetMethods

GetMethods retrieves lists of operations the SCADA system implements. It is used to determine available modes of syn-chronization. It is also used to determine if control requests can be send to SCADA.

GetMethods request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:GetMethods xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetMethodsResponse>

 <ver:GetMethodsResult>

 <ver:string>PingURL</ver:string>

 <ver:string>GetMethods</ver:string>

 <ver:string>InitiateStatusReadByPointID</ver:string>

 <ver:string>InitiateAnalogReadByPointID</ver:string>

 <ver:string>InitiateControl</ver:string>

 <ver:string>GetAllSCADAStatus</ver:string>

 <ver:string>GetAllSCADAAnalogs</ver:string>

 <ver:string>GetAllSCADATags</ver:string>

 </ver:GetMethodsResult>

 </ver:GetMethodsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAStatus, GetAllSCADAAnalogs

The first synchronization method involves NMS invoking GetAllSCADAStatus and GetAllSCADAAnalogs operations to request the latest device statuses, digital and analog measurements from the SCADA. SCADA provides the requested information synchronously in the response message.

The MultiSpeak specification allows data to be returned in chunks by the SCADA system. In this case, NMS would have to make multiple GetAllSCADAXXX calls. The element lastReceived is included so that large sets of data can be returned in manageable blocks. lastReceived will carry an empty string the first time in a session that this method is invoked. When multiple calls to this method are required to obtain all of the data, the lastReceived should carry the objectID of the last data instance received in subsequent calls. If the ObjectsRemaining field is present in the MultiSpeak reply message’s message header, it will be used to determine when all of the data has been received. If the ObjectsRemaining field is not present, the empty result set will signal the end of the data.

GetAllSCADAStatus request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAStatus xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAStatus>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAStatusResponse>

 <ver:GetAllSCADAStatusResult>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Initial</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>0</ver:changeCounter>

 <ver:timeStamp>2011-03-01T11:11:11</ver:timeStamp>

 </ver:scadaStatus>

 </ver:GetAllSCADAStatusResult>

 </ver:GetAllSCADAStatusResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAAnalogs xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAAnalogs>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0" />

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAAnalogsResponse>

 <ver:GetAllSCADAAnalogsResult>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Default</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:GetAllSCADAAnalogsResult>

 </ver:GetAllSCADAAnalogsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs is used for both digital and analog measurements.

InitiateStatusReadByPointID, InitiateAnalogReadByPointID

The second synchronization method uses InitiateXXXReadByPointID operations to request latest device statuses, digital and analog measurements from the SCADA. SCADA provides requested information asynchronously by sending SCADAXXXChangedNotification messages to NMS. To avoid having to send all SCADA points known to NMS an empty list of SCADA points can be used to indicate desire to initiate read for all SCADA points.

InitiateStatusReadByPointID and InitiateAnalogReadByPointID request exam ples

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateStatusReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600187</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateStatusReadByPointID>

 </S:Body>

</S:Envelope>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/ xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateAnalogReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release" xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink" xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600203</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateAnalogReadByPointID>

 </S:Body>

</S:Envelope>

GetAllSCADATags

Synchronization of tag information is done using GetAllSCADATags operation (not part of MultiSpeak 4.1). The expectation is that SCADA systems would return information about all currently applied tags. NMS compares information received from SCADA against tags currently present in the model and make necessary adjustments (adding or removing tags).

GetAllSCADATags request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADATags xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADATags>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADATagsResponse>

 <ver:GetAllSCADATagsResult>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:GetAllSCADATagsResult>

 </ver:GetAllSCADATagsResponse>

 </soapenv:Body>

</soapenv:Envelope>

Controls

NMS can use the same operation (InitiateControl) to request device operation and to request placement or removal of a tag. The InitiateControl message consists of a single controlAction object.

The following InitiateControl fields are used:

	
•

	

scadaPointID - SCADA point ID;

	
•

	

controlKey - SCADA-specific value indicating requested operation (open/close device, place/remove tag);

	
•

	

transactionID - unique value associated with the control request;

	
•

	

responseURL - URL of NMS web service , which should be used to report outcome of the requested control action.

Notes:

	
•

	

Field function is required, but NMS will not use it. Field function will always contain the following value: Direct operate.

	
•

	

NMS will not issue separate select and operate commands.

InitiateControl request example

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" TimeStamp="2011-03- 19T20:04:37"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:InitiateControl>

 <ver:controlAction>

 <ver:scadaPointID>BR_R-2241</ver:scadaPointID>

 <ver:controlKey>open</ver:controlKey>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 </ver:controlAction>

 <ver:responseURL>https://nms-server:7002/nms-amr/oa</ver:responseURL>

 <ver:transactionID>12345</ver:transactionID>

 </ver:InitiateControl>

 </soapenv:Body>

</soapenv:Envelope>

Operating a SCADA-controlled device

	
1.

	

NMS user instructs open of a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADAStatusChangedNotification with the new status of the operated device

	
b.

	

NMS updates device status in the model and removes Instructed flag

	
3.

	

Regardless of the outcome of the requested control action

	
a.

	

SCADA sends ControlActionCompleted message to indicate whether requested control action was successful or not

	
b.

	

In case of negative outcome NMS removes Instructed flag. Device status remains unchanged.

Note: When SCADA sends ControlActionCompleted message to NMS in case of success NMS will not update device status in its model until SCADAStatusChangedNotification message has been received.

Placing or removing a tag on a SCADA-controlled device

	
1.

	

NMS user instructs placement of a HOLD tag on a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in the NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADATagChangedNotification with the new status of the operated device.

	
b.

	

NMS updates device status in the model and removes Instructed flag.

	
3.

	

If requested control action has NOT been successfully executed then:

	
a.

	

SCADA sends ControlActionCompleted message to indicate that requested control action has not been executed.

	
b.

	

NMS removes Instructed flag, device status remains unchanged.

Note: SCADA can send ControlActionCompleted message to NMS in case of success, but NMS will not update tag information in its model until SCADATagChangedNotification message has been received.

Supported Data Flows

NMS to SCADA

Heartbeat

PingURL

The adapter periodically sends PingURL message to the each configured SCADA system. Failure to send the message or error response from SCADA system (reply contains errorObject element) triggers switch to alternate link (if available). Upon restoration of communication with the SCADA system (PingURL has been sent successfully) synchronization sequence is executed.

PingURL request example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/

 Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink"

 xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:PingURL xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

Synchronization/Integrity check

The purpose of the synchronization sequence is to bring the state of devices in the NMS model up-to-date with the SCADA system. NMS supports two synchronization methods for device statuses, digital and analog measurements. At the beginning of the synchronization sequence, NMS will make GetMethods call to determine the list of operations supported by the SCADA system. Synchronization method selection is based on configured preferred method and available SCADA operations.

The synchronization sequence is executed automatically after the connection to a SCADA system is established. It also can be triggered manually using following command

Action -add_soap multispeak.SCADA resync

GetMethods

GetMethods retrieves lists of operations the SCADA system implements. It is used to determine available modes of syn-chronization. It is also used to determine if control requests can be send to SCADA.

GetMethods request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release" xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Header>

 <S:Body>

 <ns4:GetMethods xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="http://www.w3.org/1999/xlink" xmlns:ns2="gml" xmlns="cpsm" />

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetMethodsResponse>

 <ver:GetMethodsResult>

 <ver:string>PingURL</ver:string>

 <ver:string>GetMethods</ver:string>

 <ver:string>InitiateStatusReadByPointID</ver:string>

 <ver:string>InitiateAnalogReadByPointID</ver:string>

 <ver:string>InitiateControl</ver:string>

 <ver:string>GetAllSCADAStatus</ver:string>

 <ver:string>GetAllSCADAAnalogs</ver:string>

 <ver:string>GetAllSCADATags</ver:string>

 </ver:GetMethodsResult>

 </ver:GetMethodsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAStatus, GetAllSCADAAnalogs

The first synchronization method involves NMS invoking GetAllSCADAStatus and GetAllSCADAAnalogs operations to request the latest device statuses, digital and analog measurements from the SCADA. SCADA provides the requested information synchronously in the response message.

The MultiSpeak specification allows data to be returned in chunks by the SCADA system. In this case, NMS would have to make multiple GetAllSCADAXXX calls. The element lastReceived is included so that large sets of data can be returned in manageable blocks. lastReceived will carry an empty string the first time in a session that this method is invoked. When multiple calls to this method are required to obtain all of the data, the lastReceived should carry the objectID of the last data instance received in subsequent calls. If the ObjectsRemaining field is present in the MultiSpeak reply message’s message header, it will be used to determine when all of the data has been received. If the ObjectsRemaining field is not present, the empty result set will signal the end of the data.

GetAllSCADAStatus request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAStatus xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAStatus>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAStatusResponse>

 <ver:GetAllSCADAStatusResult>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Initial</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>0</ver:changeCounter>

 <ver:timeStamp>2011-03-01T11:11:11</ver:timeStamp>

 </ver:scadaStatus>

 </ver:GetAllSCADAStatusResult>

 </ver:GetAllSCADAStatusResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADAAnalogs xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADAAnalogs>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0" />

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADAAnalogsResponse>

 <ver:GetAllSCADAAnalogsResult>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Default</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:GetAllSCADAAnalogsResult>

 </ver:GetAllSCADAAnalogsResponse>

 </soapenv:Body>

</soapenv:Envelope>

GetAllSCADAAnalogs is used for both digital and analog measurements.

InitiateStatusReadByPointID, InitiateAnalogReadByPointID

The second synchronization method uses InitiateXXXReadByPointID operations to request latest device statuses, digital and analog measurements from the SCADA. SCADA provides requested information asynchronously by sending SCADAXXXChangedNotification messages to NMS. To avoid having to send all SCADA points known to NMS an empty list of SCADA points can be used to indicate desire to initiate read for all SCADA points.

InitiateStatusReadByPointID and InitiateAnalogReadByPointID request exam ples

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateStatusReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600187</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateStatusReadByPointID>

 </S:Body>

</S:Envelope>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm" xmlns:ns2="http://www.w3.org/1999/ xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:InitiateAnalogReadByPointID

 xmlns:ns4="http://www.multispeak.org/Version_4.1_Release" xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink" xmlns:ns1="gml">

 <ns4:pointIDs />

 <ns4:responseURL>https://nms-server:7002/nms-amr/oa</ns4:responseURL>

 <ns4:transactionID>1300163600203</ns4:transactionID>

 <ns4:expTime units="Hours">1.0</ns4:expTime>

 </ns4:InitiateAnalogReadByPointID>

 </S:Body>

</S:Envelope>

GetAllSCADATags

Synchronization of tag information is done using GetAllSCADATags operation (not part of MultiSpeak 4.1). The expectation is that SCADA systems would return information about all currently applied tags. NMS compares information received from SCADA against tags currently present in the model and make necessary adjustments (adding or removing tags).

GetAllSCADATags request and response example

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header>

 <ns4:MultiSpeakMsgHeader xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml"

 Pwd="test" UserID="nms" />

 </S:Header>

 <S:Body>

 <ns4:GetAllSCADATags xmlns:ns4="http://www.multispeak.org/ Version_4.1_Release"

 xmlns:ns3="cpsm"

 xmlns:ns2="http://www.w3.org/1999/xlink"

 xmlns:ns1="gml">

 <ns4:lastReceived></ns4:lastReceived>

 </ns4:GetAllSCADATags>

 </S:Body>

</S:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release"

 xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"

 ObjectsRemaining="0"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:GetAllSCADATagsResponse>

 <ver:GetAllSCADATagsResult>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:GetAllSCADATagsResult>

 </ver:GetAllSCADATagsResponse>

 </soapenv:Body>

</soapenv:Envelope>

Controls

NMS can use the same operation (InitiateControl) to request device operation and to request placement or removal of a tag. The InitiateControl message consists of a single controlAction object.

The following InitiateControl fields are used:

	
•

	

scadaPointID - SCADA point ID;

	
•

	

controlKey - SCADA-specific value indicating requested operation (open/close device, place/remove tag);

	
•

	

transactionID - unique value associated with the control request;

	
•

	

responseURL - URL of NMS web service , which should be used to report outcome of the requested control action.

Notes:

	
•

	

Field function is required, but NMS will not use it. Field function will always contain the following value: Direct operate.

	
•

	

NMS will not issue separate select and operate commands.

InitiateControl request example

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" TimeStamp="2011-03- 19T20:04:37"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:InitiateControl>

 <ver:controlAction>

 <ver:scadaPointID>BR_R-2241</ver:scadaPointID>

 <ver:controlKey>open</ver:controlKey>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 </ver:controlAction>

 <ver:responseURL>https://nms-server:7002/nms-amr/oa</ver:responseURL>

 <ver:transactionID>12345</ver:transactionID>

 </ver:InitiateControl>

 </soapenv:Body>

</soapenv:Envelope>

Operating a SCADA-controlled device

	
1.

	

NMS user instructs open of a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADAStatusChangedNotification with the new status of the operated device

	
b.

	

NMS updates device status in the model and removes Instructed flag

	
3.

	

Regardless of the outcome of the requested control action

	
a.

	

SCADA sends ControlActionCompleted message to indicate whether requested control action was successful or not

	
b.

	

In case of negative outcome NMS removes Instructed flag. Device status remains unchanged.

Note: When SCADA sends ControlActionCompleted message to NMS in case of success NMS will not update device status in its model until SCADAStatusChangedNotification message has been received.

Placing or removing a tag on a SCADA-controlled device

	
1.

	

NMS user instructs placement of a HOLD tag on a SCADA-controlled device.

	
2.

	

Instructed flag is placed on the device in NMS. The device remains closed in the NMS model.

	
3.

	

NMS sends InitiateControl message to the SCADA system.

	
4.

	

If requested control action has been successfully executed then:

	
a.

	

SCADA sends SCADATagChangedNotification with the new status of the operated device.

	
b.

	

NMS updates device status in the model and removes Instructed flag.

	
3.

	

If requested control action has NOT been successfully executed then:

	
a.

	

SCADA sends ControlActionCompleted message to indicate that requested control action has not been executed.

	
b.

	

NMS removes Instructed flag, device status remains unchanged.

Note: SCADA can send ControlActionCompleted message to NMS in case of success, but NMS will not update tag information in its model until SCADATagChangedNotification message has been received.

SCADA to NMS

Supported Operations

PingURL

SCADA system can use PingURL operation to verify that NMS is operational.

GetMethods

SCADA system can use GetMethods operation to determine operations supported by NMS.

SCADAAnalogChangedNotification

SCADA system can use this operation to report that analog or digital measurement(s) has changed. The message consists of an array of scadaAnalog objects.

The following scadaAnalog fields should be used ((XPath notation is used):

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

measurementTypeID - measurement type (used to determine NMS attribute);

	
•

	

value - measurement value and units;

	
•

	

quality - quality code associated with the measurement;

	
•

	

timeStamp - measurement timestamp.

Note: If SCADA point ID uniquely identifies the measurement then the measurementTypeID field can be omitted.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unable to map measurement to NMS attribute;

	
•

	

Empty measurement value.

SCADAAnalogChangedNotification example

	
•

	

Sets Amps attribute to 260.78 and turns off faultIndicator for device BR_R-2241.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAAnalogChangedNotification>

 <ver:scadaAnalogs>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:scadaAnalogs>

 </ver:SCADAAnalogChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

SCADAAnalogChangedNotificationByPointID

The SCADA system can use this operation to report that an analog or digital measurement has changed. The message consists of a single scadaAnalog object.

The following scadaAnalog fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

measurementTypeID - measurement type (used to determine NMS attribute);

	
•

	

value - measurement value and units;

	
•

	

quality - quality code associated with the measurement;

	
•

	

timeStamp - measurement timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unable to map measurement to NMS attribute;

	
•

	

Empty measurement value.

SCADAStatusChangedNotification

The SCADA system will use this operation to report that one or more devices have changed status. The message consists of an array of scadaStatus objects.

The following scadaStatus fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

status - SCADA device status (Open/Closed);

	
•

	

quality - quality code associated with the status update;

	
•

	

changeCounter - number of device status changes since the last report;

	
•

	

timeStamp - device operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid status value.

SCADAStatusChangedNotification examples

	
1.

	

Opens device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAStatusChangedNotification>

 <ver:scadaStatuses>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Measured</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>1</ver:changeCounter>

 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>

 </ver:scadaStatus>

 </ver:scadaStatuses>

 </ver:SCADAStatusChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
2.

	

Closes device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAStatusChangedNotification>

 <ver:scadaStatuses>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Measured</ver:quality>

 <ver:status>Closed</ver:status>

 <ver:changeCounter>1</ver:changeCounter>

 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>

 </ver:scadaStatus>

 </ver:scadaStatuses>

 </ver:SCADAStatusChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

SCADAStatusChangedNotificationByPointID

The SCADA system can use this operation to report that the status of a device has changed. The message consists of a single scadaStatus object.

The following scadaStatus fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

status - SCADA device status (Open/Closed);

	
•

	

quality - quality code associated with the status update;

	
•

	

changeCounter - number of device status changes since the last report;

	
•

	

timeStamp - device operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid status value.

SCADATagChangedNotification

The SCADA system can use this operation to report that there has been a change in tag(s) placed on devices in the SCADA system. The message consists of an array of scadaTag objects.

The following scadaTag fields should be used:

	
•

	

@objectID - SCADA tag identifier;

	
•

	

scadaPointID - SCADA point id;

	
•

	

@verb - action (New/Change/Delete);

	
•

	

tagType - SCADA tag type;

	
•

	

username - SCADA operator's user name;

	
•

	

comment - tag comments, notes;

	
•

	

timeStamp - tag operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid tag type;

	
•

	

Unsupported action.

This operation does not exist in MultiSpeak 4.1 specification.

SCADATagChangedNotification examples

	
1.

	

Place HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="New">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
2.

	

Update HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada2</ver:username>

 <ver:comment>updated test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:13:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
3.

	

Remove HOLD tag from device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="Delete">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>updated test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:14:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

ControlActionCompleted

The SCADA system can use this operation to report to NMS the outcome of a control action requested by the InitiateControl operation. The message consists of a single of scadaControl object. In case of successful control action field, the controlStatus should contain value "Control accepted." Any other value is interpreted as control failure.

ControlActionCompleted example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:ControlActionCompleted>

 <ver:controlAction>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 <ver:controlStatus>Control accepted</ver:controlStatus>

 </ver:controlAction>

 <ver:transactionID>12345</ver:transactionID>

 </ver:ControlActionCompleted>

 </soapenv:Body>

</soapenv:Envelope>

VoltageAlarmNotification

The SCADA system can use this operation to report alarms to NMS. The message consists of an array of voltageA-larm objects.

The following voltageAlarm fields should be used:

	
•

	

@objectID - SCADA alarm identifier;

	
•

	

sourceIdentifier - SCADA point id;

	
•

	

sourceIdentifier/@name - attribute name;

	
•

	

@verb - action (only New is allowed);

	
•

	

@errorString - alarm description;

	
•

	

comments - alarm description;

	
•

	

eventTime - SCADA alarm timestamp;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/voltageValue - SCADA measurement value, which caused the alarm;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/quality - SCADA quality code;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/analogCondition - SCADA limit violation;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/phaseCode - SCADA alarm phases.

For alarms SCADA quality code is passed "as-is." Configured quality code mapping rules are not applied in this case.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unsupported action.

VoltageAlarmNotification example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms1" Pwd="systems" AppName="SoapUI"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:VoltageAlarmNotification>

 <ver:alarms>

 <ver:voltageAlarm objectID="alarm-1" verb="New" errorString="alarm test">

 <ver:comments>comment</ver:comments>

 <ver:sourceIdentifier name="Volts">BR2422</ver:sourceIdentifier>

 <ver:eventTime>2011-05-11T10:05:25.484-05:00</ver:eventTime>

 <ver:voltageAlarmList>

 <ver:voltageAlarmItem>

 <ver:voltageValue units="V">100</ver:voltageValue>

 <ver:quality>Measured</ver:quality>

 <ver:analogCondition>H1</ver:analogCondition>

 <ver:phaseCode>BC</ver:phaseCode>

 </ver:voltageAlarmItem>

 </ver:voltageAlarmList>

 </ver:voltageAlarm>

 </ver:alarms>

 </ver:VoltageAlarmNotification>

 </soapenv:Body>

</soapenv:Envelope>

MultiSpeak Message Header

The attributes UserID and Pwd in the MultiSpeak message header are used for authentication. These attributes should be populated with valid NMS credentials for all messages coming to NMS with exception of PingURL and GetMethods.

The attribute AppName in the MultiSpeak message header must be populated with the name of the SCADA system the message originated from. It is checked against the SCADA systems defined in the SCADA_IDS database table.

SCADA to NMS

Supported Operations

PingURL

SCADA system can use PingURL operation to verify that NMS is operational.

GetMethods

SCADA system can use GetMethods operation to determine operations supported by NMS.

SCADAAnalogChangedNotification

SCADA system can use this operation to report that analog or digital measurement(s) has changed. The message consists of an array of scadaAnalog objects.

The following scadaAnalog fields should be used ((XPath notation is used):

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

measurementTypeID - measurement type (used to determine NMS attribute);

	
•

	

value - measurement value and units;

	
•

	

quality - quality code associated with the measurement;

	
•

	

timeStamp - measurement timestamp.

Note: If SCADA point ID uniquely identifies the measurement then the measurementTypeID field can be omitted.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unable to map measurement to NMS attribute;

	
•

	

Empty measurement value.

SCADAAnalogChangedNotification example

	
•

	

Sets Amps attribute to 260.78 and turns off faultIndicator for device BR_R-2241.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAAnalogChangedNotification>

 <ver:scadaAnalogs>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:scadaAnalogs>

 </ver:SCADAAnalogChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

SCADAAnalogChangedNotificationByPointID

The SCADA system can use this operation to report that an analog or digital measurement has changed. The message consists of a single scadaAnalog object.

The following scadaAnalog fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

measurementTypeID - measurement type (used to determine NMS attribute);

	
•

	

value - measurement value and units;

	
•

	

quality - quality code associated with the measurement;

	
•

	

timeStamp - measurement timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unable to map measurement to NMS attribute;

	
•

	

Empty measurement value.

SCADAStatusChangedNotification

The SCADA system will use this operation to report that one or more devices have changed status. The message consists of an array of scadaStatus objects.

The following scadaStatus fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

status - SCADA device status (Open/Closed);

	
•

	

quality - quality code associated with the status update;

	
•

	

changeCounter - number of device status changes since the last report;

	
•

	

timeStamp - device operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid status value.

SCADAStatusChangedNotification examples

	
1.

	

Opens device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAStatusChangedNotification>

 <ver:scadaStatuses>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Measured</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>1</ver:changeCounter>

 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>

 </ver:scadaStatus>

 </ver:scadaStatuses>

 </ver:SCADAStatusChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
2.

	

Closes device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAStatusChangedNotification>

 <ver:scadaStatuses>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Measured</ver:quality>

 <ver:status>Closed</ver:status>

 <ver:changeCounter>1</ver:changeCounter>

 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>

 </ver:scadaStatus>

 </ver:scadaStatuses>

 </ver:SCADAStatusChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

SCADAStatusChangedNotificationByPointID

The SCADA system can use this operation to report that the status of a device has changed. The message consists of a single scadaStatus object.

The following scadaStatus fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

status - SCADA device status (Open/Closed);

	
•

	

quality - quality code associated with the status update;

	
•

	

changeCounter - number of device status changes since the last report;

	
•

	

timeStamp - device operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid status value.

SCADATagChangedNotification

The SCADA system can use this operation to report that there has been a change in tag(s) placed on devices in the SCADA system. The message consists of an array of scadaTag objects.

The following scadaTag fields should be used:

	
•

	

@objectID - SCADA tag identifier;

	
•

	

scadaPointID - SCADA point id;

	
•

	

@verb - action (New/Change/Delete);

	
•

	

tagType - SCADA tag type;

	
•

	

username - SCADA operator's user name;

	
•

	

comment - tag comments, notes;

	
•

	

timeStamp - tag operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid tag type;

	
•

	

Unsupported action.

This operation does not exist in MultiSpeak 4.1 specification.

SCADATagChangedNotification examples

	
1.

	

Place HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="New">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
2.

	

Update HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada2</ver:username>

 <ver:comment>updated test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:13:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
3.

	

Remove HOLD tag from device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="Delete">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>updated test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:14:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

ControlActionCompleted

The SCADA system can use this operation to report to NMS the outcome of a control action requested by the InitiateControl operation. The message consists of a single of scadaControl object. In case of successful control action field, the controlStatus should contain value "Control accepted." Any other value is interpreted as control failure.

ControlActionCompleted example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:ControlActionCompleted>

 <ver:controlAction>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 <ver:controlStatus>Control accepted</ver:controlStatus>

 </ver:controlAction>

 <ver:transactionID>12345</ver:transactionID>

 </ver:ControlActionCompleted>

 </soapenv:Body>

</soapenv:Envelope>

VoltageAlarmNotification

The SCADA system can use this operation to report alarms to NMS. The message consists of an array of voltageA-larm objects.

The following voltageAlarm fields should be used:

	
•

	

@objectID - SCADA alarm identifier;

	
•

	

sourceIdentifier - SCADA point id;

	
•

	

sourceIdentifier/@name - attribute name;

	
•

	

@verb - action (only New is allowed);

	
•

	

@errorString - alarm description;

	
•

	

comments - alarm description;

	
•

	

eventTime - SCADA alarm timestamp;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/voltageValue - SCADA measurement value, which caused the alarm;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/quality - SCADA quality code;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/analogCondition - SCADA limit violation;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/phaseCode - SCADA alarm phases.

For alarms SCADA quality code is passed "as-is." Configured quality code mapping rules are not applied in this case.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unsupported action.

VoltageAlarmNotification example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms1" Pwd="systems" AppName="SoapUI"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:VoltageAlarmNotification>

 <ver:alarms>

 <ver:voltageAlarm objectID="alarm-1" verb="New" errorString="alarm test">

 <ver:comments>comment</ver:comments>

 <ver:sourceIdentifier name="Volts">BR2422</ver:sourceIdentifier>

 <ver:eventTime>2011-05-11T10:05:25.484-05:00</ver:eventTime>

 <ver:voltageAlarmList>

 <ver:voltageAlarmItem>

 <ver:voltageValue units="V">100</ver:voltageValue>

 <ver:quality>Measured</ver:quality>

 <ver:analogCondition>H1</ver:analogCondition>

 <ver:phaseCode>BC</ver:phaseCode>

 </ver:voltageAlarmItem>

 </ver:voltageAlarmList>

 </ver:voltageAlarm>

 </ver:alarms>

 </ver:VoltageAlarmNotification>

 </soapenv:Body>

</soapenv:Envelope>

MultiSpeak Message Header

The attributes UserID and Pwd in the MultiSpeak message header are used for authentication. These attributes should be populated with valid NMS credentials for all messages coming to NMS with exception of PingURL and GetMethods.

The attribute AppName in the MultiSpeak message header must be populated with the name of the SCADA system the message originated from. It is checked against the SCADA systems defined in the SCADA_IDS database table.

SCADA to NMS

Supported Operations

PingURL

SCADA system can use PingURL operation to verify that NMS is operational.

GetMethods

SCADA system can use GetMethods operation to determine operations supported by NMS.

SCADAAnalogChangedNotification

SCADA system can use this operation to report that analog or digital measurement(s) has changed. The message consists of an array of scadaAnalog objects.

The following scadaAnalog fields should be used ((XPath notation is used):

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

measurementTypeID - measurement type (used to determine NMS attribute);

	
•

	

value - measurement value and units;

	
•

	

quality - quality code associated with the measurement;

	
•

	

timeStamp - measurement timestamp.

Note: If SCADA point ID uniquely identifies the measurement then the measurementTypeID field can be omitted.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unable to map measurement to NMS attribute;

	
•

	

Empty measurement value.

SCADAAnalogChangedNotification example

	
•

	

Sets Amps attribute to 260.78 and turns off faultIndicator for device BR_R-2241.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAAnalogChangedNotification>

 <ver:scadaAnalogs>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value units="Amps">260.78</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>Amps</ver:measurementTypeID>

 </ver:scadaAnalog>

 <ver:scadaAnalog>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:value>0</ver:value>

 <ver:quality>Measured</ver:quality>

 <ver:timeStamp>2010-06-27T14:41:15-05:00</ver:timeStamp>

 <ver:measurementTypeID>faultIndicator</ver:measurementTypeID>

 </ver:scadaAnalog>

 </ver:scadaAnalogs>

 </ver:SCADAAnalogChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

SCADAAnalogChangedNotificationByPointID

The SCADA system can use this operation to report that an analog or digital measurement has changed. The message consists of a single scadaAnalog object.

The following scadaAnalog fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

measurementTypeID - measurement type (used to determine NMS attribute);

	
•

	

value - measurement value and units;

	
•

	

quality - quality code associated with the measurement;

	
•

	

timeStamp - measurement timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unable to map measurement to NMS attribute;

	
•

	

Empty measurement value.

SCADAStatusChangedNotification

The SCADA system will use this operation to report that one or more devices have changed status. The message consists of an array of scadaStatus objects.

The following scadaStatus fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

status - SCADA device status (Open/Closed);

	
•

	

quality - quality code associated with the status update;

	
•

	

changeCounter - number of device status changes since the last report;

	
•

	

timeStamp - device operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid status value.

SCADAStatusChangedNotification examples

	
1.

	

Opens device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAStatusChangedNotification>

 <ver:scadaStatuses>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Measured</ver:quality>

 <ver:status>Open</ver:status>

 <ver:changeCounter>1</ver:changeCounter>

 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>

 </ver:scadaStatus>

 </ver:scadaStatuses>

 </ver:SCADAStatusChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
2.

	

Closes device BR_R-2241

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADAStatusChangedNotification>

 <ver:scadaStatuses>

 <ver:scadaStatus>

 <ver:objectName>BR_R-2241</ver:objectName>

 <ver:quality>Measured</ver:quality>

 <ver:status>Closed</ver:status>

 <ver:changeCounter>1</ver:changeCounter>

 <ver:timeStamp>2011-03-04T11:44:10</ver:timeStamp>

 </ver:scadaStatus>

 </ver:scadaStatuses>

 </ver:SCADAStatusChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

SCADAStatusChangedNotificationByPointID

The SCADA system can use this operation to report that the status of a device has changed. The message consists of a single scadaStatus object.

The following scadaStatus fields should be used:

	
•

	

@objectID or objectName - SCADA point ID;

	
•

	

status - SCADA device status (Open/Closed);

	
•

	

quality - quality code associated with the status update;

	
•

	

changeCounter - number of device status changes since the last report;

	
•

	

timeStamp - device operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid status value.

SCADATagChangedNotification

The SCADA system can use this operation to report that there has been a change in tag(s) placed on devices in the SCADA system. The message consists of an array of scadaTag objects.

The following scadaTag fields should be used:

	
•

	

@objectID - SCADA tag identifier;

	
•

	

scadaPointID - SCADA point id;

	
•

	

@verb - action (New/Change/Delete);

	
•

	

tagType - SCADA tag type;

	
•

	

username - SCADA operator's user name;

	
•

	

comment - tag comments, notes;

	
•

	

timeStamp - tag operation timestamp.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Invalid tag type;

	
•

	

Unsupported action.

This operation does not exist in MultiSpeak 4.1 specification.

SCADATagChangedNotification examples

	
1.

	

Place HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="New">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:12:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
2.

	

Update HOLD tag on device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="Change">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada2</ver:username>

 <ver:comment>updated test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:13:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

	
3.

	

Remove HOLD tag from device BR2422

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:SCADATagChangedNotification>

 <ver:scadaTags>

 <ver:scadaTag objectID="scada-tag-1" verb="Delete">

 <ver:tagType>Hold</ver:tagType>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:username>scada</ver:username>

 <ver:comment>updated test tag</ver:comment>

 <ver:timeStamp>2011-07-19T14:14:31.859-05:00</ver:timeStamp>

 </ver:scadaTag>

 </ver:scadaTags>

 </ver:SCADATagChangedNotification>

 </soapenv:Body>

</soapenv:Envelope>

ControlActionCompleted

The SCADA system can use this operation to report to NMS the outcome of a control action requested by the InitiateControl operation. The message consists of a single of scadaControl object. In case of successful control action field, the controlStatus should contain value "Control accepted." Any other value is interpreted as control failure.

ControlActionCompleted example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ver="http://www.multispeak.org/Version_4.1_Release">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="scada" Pwd="test" AppName="Scada1"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:ControlActionCompleted>

 <ver:controlAction>

 <ver:scadaPointID>BR2422</ver:scadaPointID>

 <ver:function>Direct operate</ver:function>

 <ver:relayType>Normal</ver:relayType>

 <ver:controlStatus>Control accepted</ver:controlStatus>

 </ver:controlAction>

 <ver:transactionID>12345</ver:transactionID>

 </ver:ControlActionCompleted>

 </soapenv:Body>

</soapenv:Envelope>

VoltageAlarmNotification

The SCADA system can use this operation to report alarms to NMS. The message consists of an array of voltageA-larm objects.

The following voltageAlarm fields should be used:

	
•

	

@objectID - SCADA alarm identifier;

	
•

	

sourceIdentifier - SCADA point id;

	
•

	

sourceIdentifier/@name - attribute name;

	
•

	

@verb - action (only New is allowed);

	
•

	

@errorString - alarm description;

	
•

	

comments - alarm description;

	
•

	

eventTime - SCADA alarm timestamp;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/voltageValue - SCADA measurement value, which caused the alarm;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/quality - SCADA quality code;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/analogCondition - SCADA limit violation;

	
•

	

voltageAlarmList/voltageAlarmItem[1]/phaseCode - SCADA alarm phases.

For alarms SCADA quality code is passed "as-is." Configured quality code mapping rules are not applied in this case.

Possible error conditions:

	
•

	

Unknown SCADA system;

	
•

	

Unknown SCADA point id;

	
•

	

Unsupported action.

VoltageAlarmNotification example

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ver="http://www.multispeak.org/Version_4.1_Release" xmlns:cpsm="cpsm">

 <soapenv:Header>

 <ver:MultiSpeakMsgHeader UserID="nms1" Pwd="systems" AppName="SoapUI"/>

 </soapenv:Header>

 <soapenv:Body>

 <ver:VoltageAlarmNotification>

 <ver:alarms>

 <ver:voltageAlarm objectID="alarm-1" verb="New" errorString="alarm test">

 <ver:comments>comment</ver:comments>

 <ver:sourceIdentifier name="Volts">BR2422</ver:sourceIdentifier>

 <ver:eventTime>2011-05-11T10:05:25.484-05:00</ver:eventTime>

 <ver:voltageAlarmList>

 <ver:voltageAlarmItem>

 <ver:voltageValue units="V">100</ver:voltageValue>

 <ver:quality>Measured</ver:quality>

 <ver:analogCondition>H1</ver:analogCondition>

 <ver:phaseCode>BC</ver:phaseCode>

 </ver:voltageAlarmItem>

 </ver:voltageAlarmList>

 </ver:voltageAlarm>

 </ver:alarms>

 </ver:VoltageAlarmNotification>

 </soapenv:Body>

</soapenv:Envelope>

MultiSpeak Message Header

The attributes UserID and Pwd in the MultiSpeak message header are used for authentication. These attributes should be populated with valid NMS credentials for all messages coming to NMS with exception of PingURL and GetMethods.

The attribute AppName in the MultiSpeak message header must be populated with the name of the SCADA system the message originated from. It is checked against the SCADA systems defined in the SCADA_IDS database table.

Software Configuration

Configuration for the Oracle Utilities Network Management System MultiSpeak Adapter comes from the following sources:

	
•

	

 CES_PARAMETERS database table;

	
•

	

 SCADA_IDS database table;

	
•

	

 SCADA_LINKS database table;

	
•

	

 SCADA_SYNONYMS database table.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

CES_PARAMETERS

Entries in the CES_PARAMETERS database table for the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter should have the value SCADAInterface in the APP column. Column ATTRIB should contain the name of the configuration parameter and column VALUE its value.

Common Configuration Parameters

The following table describes the common configuration parameters.

	

Parameter

	

Description

	

config.credentials

	

Absolute path to the file containing user credentials the adapter will use to communicate with Oracle Utilities Network Management System.

This parameter is required.

	

config.enabled

	

Enables SCADA processing.

Default: true

Per SCADA System Configuration Parameters

The following configuration parameters are configured individually for each SCADA system the adapter is communicating with. Names of such parameters are prefixed with the name of the SCADA system they apply to (value from the SCADA_NAME column in the SCADA_IDS table).

Authentication with the SCADA System

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter passes credentials to the SCADA system in the UserID and Pwd fields of the MultiSpeak message header.

	

Parameter

	

Description

	

<scada name>.headers.UserID

	

Username to be passed to the SCADA system.

	

<scada name>.headers.Pwd

	

Password to be passed to the SCADA system.

Note: Other MultiSpeak message header fields can be set by using desired field name in the parameter name.

Synchronization Method

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports two methods of synchronizing device statuses and measurements with the SCADA system: synchronous and asynchronous.

	

Parameter

	

Description

	

<scada name>.preferred_sync_method

	

Preferred method of synchronization with the SCADA system.

Valid values:

	
•

	

sync - synchronous

	
•

	

asyns - asynchronous

Default: async.

	

<scada name>.need_sync_points

	

Whether full list of SCADA points known to NMS should be sent to SCADA during synchronization process. Only applicable when preferred_sync_method is async.

Valid values: true/false

Default: false

SOAP Protocol Version

When HTTPS transport is used the Oracle Utilities Network Management System MultiSpeak Adapter can use SOAP version 1.1 or 1.2. JMS transport always uses SOAP 1.1.

	

Parameter

	

Description

	

<scada name>.soap12

	

Whether SOAP 1.2 should be used.

Valid values: true/false

Default: false (use SOAP 1.1)

Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter supports sending control requests to the SCADA system.

	

Parameter

	

Description

	

<scada name>.allow_controls

	

Whether control requests should be sent to SCADA.

Valid values: true/false

Default: false (controls are not allowed)

Heartbeat Interval

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically sends PingURL message to the SCADA system to check status of the link. Heartbeat failure causes adapter to switch to alternate link (if available).

	

Parameter

	

Description

	

<scada name>.heartbeat_interval

	

Interval in seconds between heartbeat messages.

Default: 60 seconds

 Own Web Service URL

There are cases when the SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter needs to send an URL of its own web service to the SCADA system. For example, when sending asynchronous request to the SCADA system, it needs to provide a URL where the response should be sent when the results become available.

	

Parameter

	

Description

	

<scada name>.OA.url

	

URL where the incoming web service of the Oracle Utilities Network Management System MultiSpeak Adapter is deployed.

SCADA_IDS

This database table is used to configure the list of SCADA systems that the adapter will be communicating with. For SCADA systems compatible with this adapter, the column ADAPTER_TYPE should have value MULTISPEAK.

Example

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (200, 'SCADA1', 'MULTISPEAK', 'Y');

INSERT INTO scada_ids (id, scada_name, adapter_type, active)

VALUES (201, 'SCADA2', 'MULTISPEAK', 'Y');

SCADA_LINKS

This database table is used to configure communication links to the SCADA systems. It is allowed to configure multiple links to a single SCADA system. If one link fails the adapter will switch to another one in the order determined by the PRIORITY field (only one link is active at any given time). HTTPS and JMS links are supported.

	
•

	

For HTTP links, the WS_URL column is used to specify the URL of the SCADA system web service.

	
•

	

For JMS links, the columns REQUEST_QUEUE and RESPONSE_QUEUE are used to specify the JNDI names of the JMS queues used to send requests to and receive responses from the SCADA system. Queues have to be defined locally on the WebLogic server where the adapter is running. WebLogic Messaging Bridge can be used to connect to remote JMS implementations.

	
•

	

The value in the TIMEOUT column controls how long the adapter should wait for a response from the SCADA system (in seconds). This is only applicable to JMS links. The maximum allowed value is 3600 (1 hour).

	
•

	

The value in the PERSISTENT column defines the delivery mode for JMS messages. If set to 'Y' then JMS messages are persistent, otherwise they are not persistent. By default messages are not persistent. This is only applicable to JMS links.

Example

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (1, 200, 'http://scada-server1:8088/SCADA', 30, 1, 'Y');

INSERT INTO scada_links (id, scada_id, ws_url, timeout, priority, active)

VALUES (2, 200, 'http://scada-server2:8088/SCADA', 30, 2, 'Y');

INSERT INTO scada_links (id, scada_id, request_queue, response_queue,

 timeout, persistent, priority, active)

VALUES (3, 200, 'queue/ScadaRequest', 'queue/ScadaResponse', 30, 'N', 3, 'Y');

SCADA_SYNONYMS

This database table is used configure mapping of different data elements between SCADA and NMS systems. The SCADA_ID column should always be populated with the id of the SCADA system (value of the ID column in the SCADA_IDS table) the mapping applies to.

Attribute Mapping

Attribute mapping is used when SCADA point ID does not uniquely identify both NMS device and attribute. SCADA attribute name/key should be entered into the KEYWORD column. NMS attribute key should be entered into the INT_VALUE column. PROCESS_TYPE should be 'D' for digital measurements and 'A' for analogs.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (1, 200, 'faultIndicator', 23, 'D');

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (2, 200, 'Amps', 1012, 'A');

Quality Code Mapping

The SCADA quality value should be entered into the KEYWORD column. The MultiSpeak 4.1 specification defines the following quality values: Measured, Default, Estimated, Calculated, Initial, Last, and Failed.

The NMS quality code should be entered into the INT_VALUE column (lower 11 bits are reserved for NMS-specific quality codes).

The
PROCESS_TYPE should be 'Q'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, int_value, process_type)

VALUES (3, 200, 'Measured', 4096, 'Q');

Tag Type Mapping

The SCADA tag type should be entered into the KEYWORD column.

The NMS condition class name should be entered into VALUE column.

The PROCESS_TYPE should be 'C'.

Example

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (11, 200, 'Hold', 'hold', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (12, 200, 'Tag', 'tag', 'C');

INSERT INTO scada_synonyms (id, scada_id, keyword, value, process_type)

VALUES (13, 200, 'Clear', 'clear', 'C');

DDService Configuration for Outbound Controls

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter periodically polls the database table EXPECTED_ACTIONS for pending SCADA controls.

DDService only write records into this table when it is running with the ' -sendAsyncSCADA' command-line option.

SCADA Point Configuration

The SCADA component of the Oracle Utilities Network Management System MultiSpeak Adapter loads SCADA point configuration from the ANALOG_MEASUREMENTS and DIGITAL_MEASUREMENTS database tables. It normally happens during initialization. The adapter can be forced to reload the SCADA point configuration during runtime using the following command:

Action -add_soap multispeak.SCADA reload

The synchronization sequence will be automatically started after the SCADA point configuration is reloaded.

images/x_expanded.png

images/x_indexx.png

images/x_05_WebSphereMQAdapter.07.07.1.png
call
Taking

R

Cther

Customer status,
Trouble calls,
Customer history

Trouble calls,
Callbacks

Queries,
Transactions,

Customer updates
. " Conditions,

Generic CIS/ Seneri

IWVRMQ
Adapter

i

ISIS Message Bus

]

Oracle NMS

WebSphere MQ Gateway Context

images/x_10_MultiSpeak.12.12.2.png
Probable Senvice Outage (PSO) Venficaton
iR inace s

D p—

S Creaes

Poldtabaso o now rauests
|
Verly AR Mosr Status

e fornon oS requese,

gencrss e A request

@Gt e v s,

ater X soconds has passed

@ sond Mator St 0 s OMS procossos st
S Mot ity 10 MG raprcirs f necessary

images/x_seebttm.png

images/x_10_MultiSpeak.12.10.1.png
Interface Communication Overview

)

Aol S CoRea CORBAGatevey
|
I
| ()

swo

SFi s

sna:

Y

5 5
g b
L k.

A 5o et ALyt s

& e

images/x_tocx.png

images/x_prev.png

images/x_04_Intergraph_GElectric_Adapter.06.02.1.png
G/Electric-Oracle NMS Integration

Data Review &
Enhancement
Stage
Other Graphics or
Tabular Data Gl S Data
(optional) Mapping Data Import
Stage

Oracle's G/
Electric Data [T—>| _
Extractor

Oracle NMS
V18

Customer Source
Data Extraction
stage

Cell
Manupulation
Rules

Oracle NMS Model Build,
Exception Report

images/x_04_Intergraph_GElectric_Adapter.06.22.1.png
FeatureName

f@e_avo

images/x_10_MultiSpeak.12.12.1.png
Vandor Web Servce AR Intetace s

et AR OutageEvents
Last GaspPovier Up

Receive OutageEvent Message
Holdfor X minutes

Send MeterStatus to JSendce——]

Got AR Outagevens,
Lest GaspPover Up

images/x_collapse.png

images/x_04_Intergraph_GElectric_Adapter.06.30.1.png
Eile Edit
- T-E2Nets Configuration

g“unm

S Profie
seM:e Nam\ng r

rvice Identification

onnection Type:
o Releass 8.0 Com

L\s!enevs
Oracle Names Servers
ess Configuration

Hos..[Aspen
Port. (1521

images/x_next.png

images/x_10_MultiSpeak.12.12.5.png
Vendor Web S

oo vt crosor———@

L Opsstor vses Manus oo —— @
Poi database ornow equests.

ey Xsonss P
Verty AV weter Satus

o o OMS recuests,
generta vendoc AVR 1St

OMS processes s,
SencMete Sats o MSarica —— b 1ot I nacossary.srcoabiy
and ecvad e & upatsd

Pl datats orne et
ey aaents P

images/x_10_MultiSpeak.12.12.4.png
= [

et OutogeE s rom AR Lo ——
Lot Case Power U

Folater Xmins PR S E—
Posaps s st

Nendr et S

ety AV Mot Sttus
e e OV e,
omneras vendr AV reapest

oot Susto s p| S s

Polldstabeso fornow et
e X seeonds

ot OutageEvnssrom AR
Lot Casel Poner U
Telator mimes

images/x_04_Intergraph_GElectric_Adapter.06.22.2.png
ono.
SoURCEmNO
OWNERFNO.
SouRcEaio
CUNERFIELD.
OWNERCHCFIELD
TRIGGERINGONO.
OWNERTRIGGERINGOIO

BREALINEAR
PICKOUICKSUPPCRTINTERFAC
HELPCONTEXTIO
SECONDOWNERFIELD.
SECCNDOWNERCNOFIELD.
EDITOATE

MAKORSET
OFFSETVALIDATIONPRIORITY
BREAKTOLERAWCE
ALLOWINTERIORREL ATION

PO
Usernave
ToouT

PRIMARY GEOGRAPHICENO.
PRIMARYATTRIBUTEQNO
ocno.

PRIMARYOETALONG
EDITOATE
NMBERCENOOES
IMPORTFEATURENAME
REPLAGE

Nave
ALTERNATEGEOGRAPHIGENO
LocALECCMMENT

MeERGE
CLASSIFICATIONANO.
IDENTIFIERVIEW.

BuLkEDIT

ICONORDINAL

Toa T

TaBLE
ceTAL
ATGNVENTRELD
oho

eorToaTe

omo.

LOGRLECOMMENT

LRROWNO

ViEw
o
o
vy
FELOS
EDITOATE

ey
RUE
FLTER

CONTENT

ConT: FILTERGROINAL
o

eoroATE

images/logobar.png
ORACLE

images/x_seertlow.png

images/x_04_Intergraph_GElectric_Adapter.06.36.3.png
OMS Model

Load selected
pariticns in
quencto
exact

Aduinisor
e
i Partion Grop Type [rT—
Ewctor ~ Eletic or Landbase be earaed
Run Change Detect T
Detet Cranged

[~ Partitions

images/x_06_Generic_MQ_Mobile_Adapter.08.05.1.png
Mobile Data
System

MDS Gateway W

Centricty

MDS Gateway Context

images/cover.png
ORACLE
UTILITIES

Oracle Utilities
Network Management System

Adapters Guide

Release 1.11.0
Part Number E24669-01
July, 2011

Copyright © 1999, 2011 Oracle Corporation. All Rights Reserved.
e ———

images/x_nextx.png

images/x_seertup.png

images/x_03_ArcGIS.05.2.1.png
ArcGlS-Oracle NMS Imeg};t on

Bunrers e

Oracle
NMS Pre-
process

Source Data
Extraction
stage

Data Review &
Enhancement
Stage

edlines & Permanent Changes to the GIS.

images/x_seelflow.png

images/x_print.png

images/x_seeright.png

images/x_toc.png

images/x_prevx.png

images/x_04_Intergraph_GElectric_Adapter.06.36.2.png
GiElectric
Oracle
Database

Ojocts and

Oracle
GlElectric
Extractor

Extractad
workorder
MP files

Retrieve
Extracted
Wark Orders
to NMS
Server

s s
Maintonance Prodetion
Wode Mode
Model Build Production
Senvice Model B
imports Mods! s
Freprocssess
Workorders ot validated
b fios) woncarder
T (mb files)
s
Preprocessor

images/x_10_MultiSpeak.12.12.3.png
Verly AMR Vst Status
Tor nen OMS raquts,
Genrats v AN request

Gt esls rom AR Roauest
tar X saconcs s paceed

iR inrace

s

ol dabasofor now oquests
e

Sena ot Ststus o MSarvce—— o]

e customer sonvce ot -———@
¢ cummersevcacat 2@

FaluptotheFusecn 1or2
OV Grea an Outage

OMS processes sais,
e nacasean

images/x_index.png
Index |

images/x_01_IVR_Adapter.03.06.1.png
Genaric VR
Adapter

images/x_blank.png

images/x_04_Intergraph_GElectric_Adapter.06.36.1.png
G Eloctiic Database

GEfectrc Database
Oracie 8.x/10x

.

Oracle’s G Eledric Data.

Extractor
Detect changed
partitons
T
Oracte NMS Model
FeaderMP Fias / “Rciministrtor
Landbase MP Files
- S

Gracte NMS Model B

Process
'ﬁ
M~
Anaiysic
Oracle NMS Data Mode! Engineer

e

