

[image: Oracle Utilities Network Management System]

	
[image: logobar.png]

	

Oracle Utilities Network Management System

Configuration Guide

Release 1.11.0

E24670-01

July 2011

Oracle Utilities Network Management System Configuration Guide, Release 1.11.0

E24670-01

Copyright (c) 1991, 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software or software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

Please read through this document thoroughly before beginning your product implementation The purpose of this guide is to provide implementation guidelines for a standard Oracle Utilities Network Management System implementation. This document discusses installation, interfaces, modeling, and software configuration that are considered typical and acceptable for a standard product implementation.

Audience

This document is intended for anyone responsible for the implementation of Oracle Utilities Network Management System.

Related Documents

	
•

	

Oracle Utilities Network Management System Installation Guide

	
•

	

Oracle Utilities Network Management System Adapters Guide

	
•

	

Oracle Utilities Network Management System User’s Guide

Conventions

The following text conventions are used in this document:

	

Convention

	

Meaning

	

boldface

	

Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.

	

italic

	

Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.

	

monospace

	

Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

System Overview

The Oracle Utilities Network Management System is an operations resource management system that runs on a Unix/Linux platform. The system administrator is responsible for maintaining the Unix operating system, the Oracle Utilities Network Management System, and the PC connections to remote workstations. This guide provides details about installing, optimizing, and troubleshooting the Oracle Utilities Network Management System and assumes that the reader is an experienced Unix/Linux user.

	
•

	

System Overview

	
•

	

Hardware and Third Party Software

	
•

	

Network Architecture

	
•

	

Architecture Guidelines

System Overview

An Oracle Utilities Network Management System includes:

	
•

	

Isis

	
•

	

Oracle Utilities Network Management System services

	
•

	

Oracle Utilities Network Management applications

	
•

	

User environments

	
•

	

A tablespace in an Oracle database

The Oracle Utilities Network Management System can be broken down into individual components. Each component is installed and configured separately. Oracle Utilities Network Management System uses a client/server architecture. The server supports services and application tools required to run Oracle Utilities Network Management System software, while the clients display a graphical user interface to allow the user to interact with the system. Inter-application/Service communication is managed with a concurrency management and messaging system called Isis. Isis is the backbone of the communication architecture for an Oracle Utilities Network Management System. The network model, system configuration, and operational data is all stored persistently in an Oracle database, accessed and maintained via the various Oracle Utilities Network Management System *DBService Services.

The table below describes the Oracle Utilities Network Management System components.

	

Component

	

Description

	

Client User Environments

	

A set of user environments must be configured for the use of the client tools. The user environments support clients running Oracle Utilities Network Management System software in various modes, such as dispatch or administration.

	

Isis

	

Clients access services and tools through a central concurrency management and messaging system called Isis. Isis is a real-time implementation of message oriented middleware and comprises the backbone of the system, providing access to the server for each client and the communication required between tools and services. Isis delivers the organized information to the client applications.

	

Services

	

Services maintain and manage the real-time model and data. Services also cache information from the database tables to optimize information requests from the applications.

	

Applications

	

Applications consist primarily of the front-end tools used by the Operational User. These tools access data from the services for presentation to the user and perform specific actions corresponding to appropriate business practices.

	

Web-Gateway

	

The Web-Gateway is a combination of a CORBA (Common Object Request Broker Architecture) interface and Oracle WebLogic Application Server. The Web-Gateway allows messages published via Oracle Utilities Network Management System Services to be made available to Java (Swing) clients. The Web-Gateway also provides a mechanism for the Java clients to request information on or request updates to the Oracle Utilities Network Management System run-time model.

	

Oracle Database

	

The Oracle Database contains the complete network model, configuration, and operational data history of an Oracle Utilities Network Management System.

Note: Services, applications, and the Oracle RDBMS tablespaces can be spread over multiple servers or run on a single server. The simplest configuration is for everything (Oracle RDBMS, Oracle Utilities Network Management System services, Oracle Utilities Network Management System Web Gateway and Oracle Utilities Network Management System applications) to run on a single (generally SMP) server. Common variations would include the use of a cluster based hardware server to support high-availability (for Oracle RDBMS and Oracle Utilities Network Management System Services) and running two or more separate app-servers to support Oracle Utilities Network Management System Applications. This provides flexibility for system configuration, depending on your needs and hardware.

User Environments

Oracle Utilities Network Management System forms a managed visual workspace that organizes tools into related groups allowing users to perform specific tasks. Each group of tools makes up a separate user environment, or user type. The user type, entered when logging in to the application, establishes the environment by specifying the scripts that are run to launch tools. These scripts determine the set of tools available for each user type and define the sequence in which the tools are started.

Additionally, each tool supports a number of command line and/or configuration options that are chosen for each user type and stored in the database. These options are used when starting the tools and tailor each tool to the particular environment.

The Java/Swing-based end-user environments are configured using a combination of sql files (RDBMS table based configuration), special XML files, and Java properties files. The "special" XML files are Oracle Utilities Network Management System-specific XML files that allow the Java user interface to be customized for a particular project implementation.

Isis

Isis is the common messaging bus through which client processes and services interact on a Unix TCP/IP network. Isis is primarily concerned with passing messages between Unix processes on the network. These processes may be configured to run on one or more nodes. Each node may be configured with system services, system gateways/adapters, client tools, or any combination thereof..

There are multiple hardware and message bus configurations that can be applied within the scope of a single Oracle Utilities Network Management System.

Database

Oracle Utilities Network Management System requires an Oracle relational database management system (RDBMS). The database persistently manages the tables that define the information constructs of the electrical network data model (sometimes called an operations model). Oracle Utilities Network Management System services cache information from the relational tables. These tables include the management of system constructs such as handles and aliases, class hierarchy, topology model, device status, events, incidents (trouble calls), outages, and conditions.

Database installation and configuration follow these basic steps:

	
•

	

The Oracle RDBMS is initially configured using the product's standard installation and configuration procedures. To help you get started, Oracle provides an example network data and customer model (Oracle Power and Light) that can be installed out of the box.

	
•

	

Using Oracle Utilities Network Management System utilities, the initial schema is installed and populated. For a new project installation (not out of the box Oracle Power and Light), note that significant work must generally be undertaken to translate available electrical network topology and customer model data into the standard schema required by the Oracle Utilties Network Management System. This is an effort often measured in months, not days. Proper conversion of available network and customer data to the standard Oracle Utilities Network Management System schema is generally the most time consuming aspect of a project implementation.

	
•

	

If you are performing an upgrade, you may need to perform a migration of the schema and population of the database.

All Oracle Utilities Network Management System schema definitions follow the SQL standard. Schema installation and population use SQL scripts that are generally executed via the SQL interface (ISQL.ces) to the Oracle RDBMS instance. The necessary data elements required for an Oracle Utilities Network Management System consist of the following components.

	

Component

	

Description

	

Oracle Tablespaces

	

Used for persistent storage of production data (e.g., network components, operations data, etc), customer information and indexes. Connectivity to the tablespace is defined by the $RDBMS_USER, $RDBMS_PASSWD, $RDBMS_HOST environment variables and the connection global name as defined in the tnsnames.ora configuration file. The Oracle Utilities Network Management System model is typically loaded into three or more separate tablespaces, Electrical Network Operations data, Electrical Network Operations index data and Customer Model data (name, address, phone, account, etc)..

	

Maps

	

Maps are collections of model element data (mosely coordinates) typically grouped by electrical feeder but sometimes grouped by geographic area. They are sometimes called tiles. These maps are used to minimize RDBMS access and increase performance during graphical map rendering. These maps are stored in the $OPERATIONS_MODEL directory (usually $NMS_HOME/data). Two versions of maps are stored here, binary and text. In addition there are two types of maps, electrical and background. Electrical maps can always be regenerated from the RDBMS. Depending on how background maps are built for your model, background maps may not be. Some models build background maps as translations of background data from the customer-specific master GIS. Maps are tied to a specific database and cannot be associated with any other. In addition, the binary maps are O/S specific and used for faster loading during runtime. They can be quickly re-created from the text maps.

Hardware and Third Party Software

Since specific system requirements can change with new releases, they are not available as part of this document. For the most current requirements, refer to the Oracle Utilities Network
Management System Release Notes document.

Network Architecture

Running Oracle Utilities Network Management System software over a shared local area network and wide area network requires a network analysis. Network latency can cause significant problems with an Oracle Utilities Network Management System. Since significant inter-process communication is managed by Isis via TCP/IP, significant latency or constrained network bandwidth can cause slowdowns, reduced throughput and possibly process shutdowns.

Security Guidelines

The Oracle Utilities Network Management System (NMS) utilizes several Unix ports to facilitate communication between various daemon processes. Some of these ports are used to communicate to adapters to external (non-Oracle) systems. Below is a list of the common ports NMS might utilize in a production environment. It includes a brief description of what each port (or set of ports) might be used for, whether these ports are configurable, and whether these ports would expect to be exposed on a production server (to facilitate communication to external systems).

	

Port

	

Configurable?

	

Internal?

	

User

	

Description

	

2042

	

Y

	

Y

	

ISIS

	

ISISPORT - connection to Isis.

	

2043

	

Y

	

N

	

ISIS

	

ISISREMOTE - remote connection to Isis.

	

49152->65535

	

N

	

Y

	

ISIS

	

Transient TCP/UDP ports used for Isis process to process communication.

Architecture Guidelines

This chapter provides an overview of the product module dependencies and locations, the logical hardware relationships, and sample physical hardware implementations:

	
•

	

Product dependencies and locations

	
•

	

Logical hardware design

	
•

	

Sample server implementations

	
•

	

Hardware sizing

	
•

	

Printing

Overview

The guidelines in this section complement the information contained in the Oracle Utilities Network Management System Release Notes. The Product Summary and Dependencies document has been replaced by a combination of the Release Notes and this Architecture Guidelines document.

This section contains information about product module dependencies and locations, the logical hardware relationships, and sample physical hardware implementations. It should provide the information needed to understand the relationships between the software modules and the hardware that is required to implement.

For an overall product summary, please refer to the Oracle Utilities Network Management System User Guide.

Product Dependencies and Locations

The following table describes Oracle Utilities Network Management System product module dependencies and their locations.

	

Module/ Component

	

Product

	

Dependency

	

Server

	

Client

	

Location

	

Model
Management

	

OMS

Base / DMS Base

	

	

	

	

	

 NMS Core Services

	

	

	

Unix

	

	

System Server

	

 Web Gateway

	

	

	

Unix

	

	

System Server

	

 Configuration Assistant

	

	

	

	

Windows

	

Web Client

	

US Electric Ops
Model

	

OMS

Base / DMS Base

	

Model Management

	

	

	

	

 Model Builder

	

	

	

Unix

	

	

System Server

	

US Standard
Configuration

	

OMS

Base / DMS Base

	

Model Management

	

	

	

	

 Application Configuration

	

	

	

	

Unix /

Windows

	

Application Server/

Web Client

	

Web Trouble

	

OMS

Base

	

Web Workspace

	

	

	

	

 Trouble Management Service

	

	

	

Unix

	

	

System Server

	

High Availability

	

OMS

Base / DMS Base

	

Model Management

	

	

	

	

Cluster Capability

	

	

	

Unix

	

	

RDBMS Server/

System Server

	

Redliner

	

OMS

Base / DMS Base

	

	

	

	

	

Redliner Application

	

	

	

	

Windows

	

Clients

	

GIS Adapters

	

OMS

Base / DMS Base

	

Model Management

	

	

	

	

 ESRI Adapter

	

	

	

	

	

GIS Server

	

 Intergraph Adapter

	

	

	

	

	

GIS Server

	

 Smallworld Adapter

	

	

	

	

	

GIS Server

	

Generic Adapters

	

OMS Base

	

	

	

	

	

IVR Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

CIS Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

Switching
Management

	

OMS

Base / DMS Base

	

Model Management

	

	

	

	

 Switching Service

	

	

	

Unix

	

	

System Server

	

Switching Application

	

	

	

	

Windows

	

Web Client

	

Power Flow
Extensions

	

DMS Power Flow

	

OMS Base or DMS Base

	

	

	

	

 Power Flow Service

	

	

Model Management

	

Unix

	

	

System Server

	

 Power Flow Applications

	

	

Web Workspace

	

	

Unix

	

Application Server

	

Suggested
Switching

	

DMS Adv. Feeder Mgmt

	

Power Flow Extensions

	

Unix

	

	

System Server

	

Feeder Load
Management

	

DMS Adv. Feeder Mgmt

	

Power Flow Extensions

	

Unix

	

	

System Server

	

Fault Location,
Isolation & Service
Restoration

	

DMS FLISR

	

Switching Management and SCADA Adapters

	

Unix

	

	

System Server

	

Volt/VAR
Optimization

	

DMS VVO

	

Power Flow Extensions

	

Unix

	

	

System Server

	

Fault Location
Analysis

	

DMS FLA

	

Power Flow Extensions

	

Unix

	

	

System Server

	

Schematics

	

OMS Switching & Schematics

/ DMS Base

	

Model Management

	

	

	

	

 Schematics Generator

	

	

	

Unix

	

	

System Server

	

Generic MQ
Adapters

	

OMS Adapters

	

	

	

	

	

 CIS MQ Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

 CIS MQ Callback Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

 IVR MQ Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

 Mobile MQ Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

Generic Adapters

	

OMS Adapters

	

	

	

	

	

 AMR Adapter

	

	

Web Trouble

	

Unix

	

	

System Server

	

Storm
Management

	

OMS Storm

	

Web Trouble

	

	

Windows

	

Web Client

	

Web Workspace

	

OMS Base DMS Base

	

Model Management

	

	

Windows

	

Web Client

	

Web Trouble

	

OMS Base

	

Web Workspace

	

	

Windows

	

Web Client

	

Web Call Entry

	

OMS Call Center

	

Web Trouble

	

	

Windows

	

Web Client

	

Web Callbacks

	

OMS Call Center

	

Web Trouble

	

	

Windows

	

Web Client

	

Call Overflow
Adapter

	

OMS Call Center

	

Web Trouble

	

Unix

	

	

System Server

	

SCADA Extensions

	

NMS SCADA

	

Web Workspace

	

	

Unix

	

Application Server

	

SCADA Adapters

	

NMS SCADA

	

	

	

	

	

 ICCP Blocks 1 & 2

	

	

	

Unix

	

	

ICCP Server

	

 ICCP Block 5

	

	

	

Unix

	

	

ICCP Server

	

 Generic SCADA

	

	

	

Unix

	

	

System Server

	

Service Alert

	

OMS Paging

	

	

	

	

	

 Service AlertService

	

	

Web Trouble

	

Unix

	

	

System Server

	

 Service Alert Client

	

	

Web Trouble

	

	

Windows

	

Web Client

	

NMS Schema

	

NMS Extractors & Schema

	

Model Management

	

Unix

	

	

BI RDBMS Server

	

Outage Analytics

	

Schema

	

NMS Extractors and Schema and Web Trouble

	

	

Windows

	

BI Web/ App Server

	

Distribution Analytics

	

Schema

	

NMS Extractors and Schema and Power Flow Extensions

	

	

Windows

	

BI Web/ App Server

	

Trouble Reporting

	

NMS Extractors and Schema

	

Web Trouble

	

	

Windows

	

BI RDBMS Server BI Report Server

	

Storm Reporting

	

NMS Extractors and Schema

	

Storm Management

	

	

Windows

	

BI RDBMS Server

	

Switching
Reporting

	

NMS Extractors and Schema

	

Switching Management

	

	

Windows

	

BI RDBMS Server

Oracle Utilities Network Management System High-Level Hardware Diagrams

[image:]
Example Simple High-Level Hardware/Software Diagram

[image:]
Example Complex High-Level Hardware/Software Diagram

Hardware Sizing

Hardware sizing guidelines are not discussed in this document. There are many variables that affect hardware sizing and the calculations would be more complex than what is suitable for this document. Hardware sizing is best handled by the Consulting Services team that is working on the project.

Standard Product Implementation

This chapter provides an overview of a standard implementation of Oracle Utilities Network Management System, including:

	
•

	

Overview

	
•

	

Software Release Level

	
•

	

Installation

	
•

	

Interfaces

	
•

	

Modeling and GIS Integration

	
•

	

Operations Modules Software Configuration

	
•

	

Management Reporting Modules Software Configuration

Overview

These possible changes to the Oracle Utilities Network Management System standard product software, installation, interfaces, modeling, and software configuration are considered typical and acceptable for a standard product implementation. Staying within the guidelines discussed in this guide allows a customer to follow the standard configuration from release to release and significantly reduces Oracle Utilities Network Management System migration and upgrade issues.

The intent is to allow a customer to make changes that follow the 80/20 rule; that is, a customer should be able to stick to 80% of the standard product configuration and only make the 20% configuration changes which are absolutely necessary to make the implementation successful.

There are many additional configuration changes possible and technically supported by Oracle; however, changes outside of these guidelines are considered project scope changes and redefine the project as a non-standard configuration project. This in turn creates testability and maintainability issues, as non-standard configuration may not be encompassed by our test process and can result in issues with which our customer support department may not be familiar. In addition, deviations from the product configuration mean your system will not conform as closely to standard product documentation and training material.

Software Release Level

A standard product implementation should utilize a release of Oracle Utilities Network Management System with no software code changes, additions or modifications. The software should be on an officially supported release code line and not a special project code line. Only patches that are produced by the Oracle support organization and/or the project team should be installed when necessary to fix critical problems.

Installation

The installation should be done according to the guidelines taught in the Oracle Utilities Network Management System System Administration class and follow all recommended procedures for system configuration. The software should be installed on servers and clients in a configuration that meets the requirements stated in the Architecture Guidelines section of Chapter 1 for the installed modules. The installation also should comply with the required operating system level and patches identified in the Oracle Utilities Network Management System Installation Guide. The utilized Oracle Utilities Network Management System software modules should have all dependent Oracle Utilities Network Management System software modules installed and configured. The required third-party products should be installed and at the supported release level as stated in the Oracle Utilities Network Management System Installation Guide document for the installed release.

Interfaces

A standard product implementation should use the Oracle Utilities Network Management System standard CIS, IVR, and mobile data interfaces with an officially supported middleware gateway such as the WebSphere MQ gateway or using the Oracle Table Interface. SCADA system integration should be done utilizing the Oracle Utilities Network Management System LiveData ICCP Adapter or MultiSpeak-based web services SCADA adapter. AMR/AMI and AVL integrations should be done using the Oracle Utilities Network Management System MultiSpeak Adapter. Paging and email notification integration should be done using the Service Alert supported services.

When interfaces are done to non-standard systems that cannot be supported utilizing the standard interfaces described above, they should be done utilizing the published APIs and should not directly read or write to the Oracle Utilities Network Management System operations database.

Database level and/or reporting integration may be done using the Oracle Business Intelligence for Utilities database and must utilize tables and attributes described in the Oracle published schema.

Modeling and GIS Integration

The following sections describe some recommended guidelines to follow when you integrate Oracle Utilities Network Management System with a GIS.

GIS Model Extractor

The GIS extractor utilized should either be supported by Oracle or by one of our modeling partners. The extractor should produce Oracle standard model preprocessor (MP) files and utilize the Oracle conventions for model building and an approved incremental update process.

Standard Preprocessor

The Oracle Utilities Network Management System standard preprocessor supports eighteen different rules that allow for data translation (for instance, expand elbows, or add recloser bypass switch). It is acceptable to use as many of these rules as necessary to build an acceptable operations model. The standard preprocessor takes as input model preprocessor (MP) files and produces Oracle standard model build (MB) files.

Device Types and Attributes

Select which device types (classes) are used from the standard model definition, mapping the customer's GIS data to these existing classes.

	
•

	

Define unique class alias names based on the GIS attribute(s).

	
•

	

Select which attributes are used from the standard model definition (providing at a minimum those necessary for the required modules), again mapping the customer's GIS data to the existing attributes.

	
•

	

Utilize Oracle-provided modeling workbooks to define the model used for the project, which is used to generate the project classes and inheritance.

	
•

	

The name of any device may be constructed from one or more GIS attributes.

	
•

	

The display name for any device type can be changed (for instance, allows the device type to have a different name on the control tool).

Software Configuration Dependencies On Device Types

There are a number of OMS software configuration aspects that depend upon the device types that are chosen to be built within the OMS data model. In so far as the data model can change for different facilities, the software configuration must be adapted. The following configuration settings are dependent upon the resulting OMS model definition and require adaptation for every project. These configurations are generated automatically by Oracle to match the defined OMS model.

	
•

	

Control Tool panels

	
•

	

Web Trouble Stop Classes

	
•

	

Symbology mapping and symbol set

Operations Modules Software Configuration

This section lists configuration options in Oracle Utilities Network Management System applications and components, including:

	
•

	

Web Workspace

	
•

	

Web Trouble

	
•

	

Web Call Entry

	
•

	

Web Callbacks

	
•

	

Web Switching Management

	
•

	

Power Flow Extensions

	
•

	

Fault Location Analysis (FLA)

	
•

	

Fault Location, Isolation, and Service Restoration (FLISR)

	
•

	

Feeder Load Management (FLM)

	
•

	

Suggested Switching

	
•

	

Volt/VAr Optimization

	
•

	

Redliner

	
•

	

SCADA Extensions

	
•

	

Service Alert

	
•

	

Storm Management

Overview

Unless there is sound reason to change them, Oracle recommends that labels, buttons, table columns and dialogs be left as-is for consistency. This avoids confusion and further improves our ability to support our customers. However, there are cases where such changes are allowed, and the following sections identify those cases. There are also cases where it is allowable to delete a field, button or label. This may mean that the deleted item is actually just "hidden". Depending upon where on the form the deleted or hidden item was originally placed, there may be some "white space" remaining where the deleted item was present.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Workspace

Login

	
•

	

Add and remove usernames (using the Configuration Assistant).

	
•

	

Delete or rename user types.

Work Agenda

	
•

	

Change labels of any column.

	
•

	

Change labels of any menu/toolbar items.

	
•

	

Add three permanent filters (using the Configuration Assistant).

	
•

	

Add three permanent sorts.

	
•

	

Change set of Work Queues (or Dispatch Groups).

Main Menus/Toolbar

	
•

	

Delete or rename items.

Authority

	
•

	

Define specific control zone hierarchy (up to 5 levels).

Viewer

	
•

	

Change project symbology file used by Oracle Utilities Network Management System (Customer responsibility - includes AVL crew symbology if configured.

	
•

	

Viewer background color may be gray or black.

	
•

	

Annotation and/or landbase color may be changed to be compatible with the Viewer background. All annotation is assumed to be one color, and all landbase graphics are assumed to be a single color.

	
•

	

Zoom levels.

	
•

	

Declutter / reclutter.

	
•

	

Big Symbols.

	
•

	

Selectable and unselectable objects.

Control Tool

	
•

	

Change labels for actions.

	
•

	

Delete actions.

Web Trouble

Event Management Rules

	
•

	

Delete any standard rule set.

	
•

	

Change parameter values of any rule in any standard rule set (using the Configuration Assistant).

	
•

	

Delete any rule in any standard rule set (except in cases where there are rule dependencies).

Event Details

	
•

	

Delete outage reporting drop down menus.

	
•

	

Rename outage reporting drop down menus.

	
•

	

Add and delete items on outage reporting drop down menus (using the Configuration Assistant).

	
•

	

Add additional option menu field verification prior to completion (e.g., not only must the Failure and Remedy be changed from "Unselected", but it may also check for values in other option menu fields prior to completion).

	
•

	

Remove current completion validation check or any other configured validation check.

Crew Actions

	
•

	

Add and Remove Crew Types from standard list of crew types.

	
•

	

Add and Remove Personnel Job Titles from standard list of job titles.

	
•

	

Add and Remove Vehicle/Equipment types from standard list of vehicle/equipment type.

Damage Assessment

	
•

	

Add, remove, or rename damage types.

	
•

	

Modify the minutes to repair, and minutes to repair if inaccessible, for each damage type.

	
•

	

Add, remove, or rename damage parts.

Web Trouble

Event Management Rules

	
•

	

Delete any standard rule set.

	
•

	

Change parameter values of any rule in any standard rule set (using the Configuration Assistant).

	
•

	

Delete any rule in any standard rule set (except in cases where there are rule dependencies).

Event Details

	
•

	

Delete outage reporting drop down menus.

	
•

	

Rename outage reporting drop down menus.

	
•

	

Add and delete items on outage reporting drop down menus (using the Configuration Assistant).

	
•

	

Add additional option menu field verification prior to completion (e.g., not only must the Failure and Remedy be changed from "Unselected", but it may also check for values in other option menu fields prior to completion).

	
•

	

Remove current completion validation check or any other configured validation check.

Crew Actions

	
•

	

Add and Remove Crew Types from standard list of crew types.

	
•

	

Add and Remove Personnel Job Titles from standard list of job titles.

	
•

	

Add and Remove Vehicle/Equipment types from standard list of vehicle/equipment type.

Damage Assessment

	
•

	

Add, remove, or rename damage types.

	
•

	

Modify the minutes to repair, and minutes to repair if inaccessible, for each damage type.

	
•

	

Add, remove, or rename damage parts.

Web Trouble

Event Management Rules

	
•

	

Delete any standard rule set.

	
•

	

Change parameter values of any rule in any standard rule set (using the Configuration Assistant).

	
•

	

Delete any rule in any standard rule set (except in cases where there are rule dependencies).

Event Details

	
•

	

Delete outage reporting drop down menus.

	
•

	

Rename outage reporting drop down menus.

	
•

	

Add and delete items on outage reporting drop down menus (using the Configuration Assistant).

	
•

	

Add additional option menu field verification prior to completion (e.g., not only must the Failure and Remedy be changed from "Unselected", but it may also check for values in other option menu fields prior to completion).

	
•

	

Remove current completion validation check or any other configured validation check.

Crew Actions

	
•

	

Add and Remove Crew Types from standard list of crew types.

	
•

	

Add and Remove Personnel Job Titles from standard list of job titles.

	
•

	

Add and Remove Vehicle/Equipment types from standard list of vehicle/equipment type.

Damage Assessment

	
•

	

Add, remove, or rename damage types.

	
•

	

Modify the minutes to repair, and minutes to repair if inaccessible, for each damage type.

	
•

	

Add, remove, or rename damage parts.

Web Trouble

Event Management Rules

	
•

	

Delete any standard rule set.

	
•

	

Change parameter values of any rule in any standard rule set (using the Configuration Assistant).

	
•

	

Delete any rule in any standard rule set (except in cases where there are rule dependencies).

Event Details

	
•

	

Delete outage reporting drop down menus.

	
•

	

Rename outage reporting drop down menus.

	
•

	

Add and delete items on outage reporting drop down menus (using the Configuration Assistant).

	
•

	

Add additional option menu field verification prior to completion (e.g., not only must the Failure and Remedy be changed from "Unselected", but it may also check for values in other option menu fields prior to completion).

	
•

	

Remove current completion validation check or any other configured validation check.

Crew Actions

	
•

	

Add and Remove Crew Types from standard list of crew types.

	
•

	

Add and Remove Personnel Job Titles from standard list of job titles.

	
•

	

Add and Remove Vehicle/Equipment types from standard list of vehicle/equipment type.

Damage Assessment

	
•

	

Add, remove, or rename damage types.

	
•

	

Modify the minutes to repair, and minutes to repair if inaccessible, for each damage type.

	
•

	

Add, remove, or rename damage parts.

Web Trouble

Event Management Rules

	
•

	

Delete any standard rule set.

	
•

	

Change parameter values of any rule in any standard rule set (using the Configuration Assistant).

	
•

	

Delete any rule in any standard rule set (except in cases where there are rule dependencies).

Event Details

	
•

	

Delete outage reporting drop down menus.

	
•

	

Rename outage reporting drop down menus.

	
•

	

Add and delete items on outage reporting drop down menus (using the Configuration Assistant).

	
•

	

Add additional option menu field verification prior to completion (e.g., not only must the Failure and Remedy be changed from "Unselected", but it may also check for values in other option menu fields prior to completion).

	
•

	

Remove current completion validation check or any other configured validation check.

Crew Actions

	
•

	

Add and Remove Crew Types from standard list of crew types.

	
•

	

Add and Remove Personnel Job Titles from standard list of job titles.

	
•

	

Add and Remove Vehicle/Equipment types from standard list of vehicle/equipment type.

Damage Assessment

	
•

	

Add, remove, or rename damage types.

	
•

	

Modify the minutes to repair, and minutes to repair if inaccessible, for each damage type.

	
•

	

Add, remove, or rename damage parts.

Web Call Entry

	
•

	

Add and remove usernames - using the Configuration Assistant.

	
•

	

Add/Remove Trouble Codes but must map to Oracle standard trouble codes .

	
•

	

Change labels and order of columns in Outages Summary.

	
•

	

Modify Event History Cause dropdowns to reflect outage reporting drop down menus.

Web Callbacks

	
•

	

Add and remove usernames - using the Configuration Assistant.

	
•

	

Add/Remove Callback Status options but must map to Oracle standard callback statuses.

	
•

	

Change labels of any column in main window and View My Callback Lists window.

Web Switching Management

Switching List/Safety List

	
•

	

Change labels of columns.

	
•

	

Change labels of menu/toolbar items.

Switching Documents

	
•

	

Change labels on any header field.

	
•

	

Delete any header field.

	
•

	

Change header labels on any switching step field.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

Safety Documents

	
•

	

Rename any safety document.

	
•

	

Change labels on field of standard documents.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

	
•

	

Delete any fields of standard documents.

	
•

	

Delete any standard documents.

	
•

	

Define up to three new safety documents (starting from a copy of any standard safety documents and making any of the allowable changes listed above).

Web Switching Management

Switching List/Safety List

	
•

	

Change labels of columns.

	
•

	

Change labels of menu/toolbar items.

Switching Documents

	
•

	

Change labels on any header field.

	
•

	

Delete any header field.

	
•

	

Change header labels on any switching step field.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

Safety Documents

	
•

	

Rename any safety document.

	
•

	

Change labels on field of standard documents.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

	
•

	

Delete any fields of standard documents.

	
•

	

Delete any standard documents.

	
•

	

Define up to three new safety documents (starting from a copy of any standard safety documents and making any of the allowable changes listed above).

Web Switching Management

Switching List/Safety List

	
•

	

Change labels of columns.

	
•

	

Change labels of menu/toolbar items.

Switching Documents

	
•

	

Change labels on any header field.

	
•

	

Delete any header field.

	
•

	

Change header labels on any switching step field.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

Safety Documents

	
•

	

Rename any safety document.

	
•

	

Change labels on field of standard documents.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

	
•

	

Delete any fields of standard documents.

	
•

	

Delete any standard documents.

	
•

	

Define up to three new safety documents (starting from a copy of any standard safety documents and making any of the allowable changes listed above).

Web Switching Management

Switching List/Safety List

	
•

	

Change labels of columns.

	
•

	

Change labels of menu/toolbar items.

Switching Documents

	
•

	

Change labels on any header field.

	
•

	

Delete any header field.

	
•

	

Change header labels on any switching step field.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

Safety Documents

	
•

	

Rename any safety document.

	
•

	

Change labels on field of standard documents.

	
•

	

Add additional required fields verification prior to state change.

	
•

	

Remove any validation check or any other configured validation check.

	
•

	

Delete any fields of standard documents.

	
•

	

Delete any standard documents.

	
•

	

Define up to three new safety documents (starting from a copy of any standard safety documents and making any of the allowable changes listed above).

Power Flow Extensions

Power Flow User Tools

	
•

	

Change labels of columns on Power Flow Results.

	
•

	

Remove columns to display on Power Flow Results.

Power Flow Algorithm Rules

	
•

	

Change parameter values of any power flow algorithm rule - using the Configuration Assistant.

Load Profile

	
•

	

Number of day types.

Seasonal Conductor and Transformer Flow Ratings

	
•

	

Seasonal limit.

	
•

	

Normal limit.

	
•

	

Emergency limit.

Power Flow Switching Extensions

	
•

	

Change labels of Power Flow specific columns on switching steps.

Power Flow Extensions

Power Flow User Tools

	
•

	

Change labels of columns on Power Flow Results.

	
•

	

Remove columns to display on Power Flow Results.

Power Flow Algorithm Rules

	
•

	

Change parameter values of any power flow algorithm rule - using the Configuration Assistant.

Load Profile

	
•

	

Number of day types.

Seasonal Conductor and Transformer Flow Ratings

	
•

	

Seasonal limit.

	
•

	

Normal limit.

	
•

	

Emergency limit.

Power Flow Switching Extensions

	
•

	

Change labels of Power Flow specific columns on switching steps.

Power Flow Extensions

Power Flow User Tools

	
•

	

Change labels of columns on Power Flow Results.

	
•

	

Remove columns to display on Power Flow Results.

Power Flow Algorithm Rules

	
•

	

Change parameter values of any power flow algorithm rule - using the Configuration Assistant.

Load Profile

	
•

	

Number of day types.

Seasonal Conductor and Transformer Flow Ratings

	
•

	

Seasonal limit.

	
•

	

Normal limit.

	
•

	

Emergency limit.

Power Flow Switching Extensions

	
•

	

Change labels of Power Flow specific columns on switching steps.

Power Flow Extensions

Power Flow User Tools

	
•

	

Change labels of columns on Power Flow Results.

	
•

	

Remove columns to display on Power Flow Results.

Power Flow Algorithm Rules

	
•

	

Change parameter values of any power flow algorithm rule - using the Configuration Assistant.

Load Profile

	
•

	

Number of day types.

Seasonal Conductor and Transformer Flow Ratings

	
•

	

Seasonal limit.

	
•

	

Normal limit.

	
•

	

Emergency limit.

Power Flow Switching Extensions

	
•

	

Change labels of Power Flow specific columns on switching steps.

Power Flow Extensions

Power Flow User Tools

	
•

	

Change labels of columns on Power Flow Results.

	
•

	

Remove columns to display on Power Flow Results.

Power Flow Algorithm Rules

	
•

	

Change parameter values of any power flow algorithm rule - using the Configuration Assistant.

Load Profile

	
•

	

Number of day types.

Seasonal Conductor and Transformer Flow Ratings

	
•

	

Seasonal limit.

	
•

	

Normal limit.

	
•

	

Emergency limit.

Power Flow Switching Extensions

	
•

	

Change labels of Power Flow specific columns on switching steps.

Power Flow Extensions

Power Flow User Tools

	
•

	

Change labels of columns on Power Flow Results.

	
•

	

Remove columns to display on Power Flow Results.

Power Flow Algorithm Rules

	
•

	

Change parameter values of any power flow algorithm rule - using the Configuration Assistant.

Load Profile

	
•

	

Number of day types.

Seasonal Conductor and Transformer Flow Ratings

	
•

	

Seasonal limit.

	
•

	

Normal limit.

	
•

	

Emergency limit.

Power Flow Switching Extensions

	
•

	

Change labels of Power Flow specific columns on switching steps.

Fault Location Analysis (FLA)

	
•

	

Change labels of any column.

	
•

	

Change ordering of columns.

	
•

	

Change formatted string value for "Distance from Upstream Switch" column, for example from ft to yds or meters, depending on the GIS units used.

Fault Location, Isolation, and Service Restoration (FLISR)

	
•

	

Change labels of any column.

	
•

	

Change labels of any button.

Feeder Load Management (FLM)

	
•

	

Change labels of any column.

	
•

	

Change ordering of columns.

Suggested Switching

	
•

	

Change labels in Suggested Switching user tools.

Volt/VAr Optimization

	
•

	

Change labels of on any screen.

Redliner

There are no configuration options available.

SCADA Extensions

	
•

	

Change labels of columns on SCADA Summary page.

	
•

	

Change tooltips of buttons on SCADA Work Agenda page.

	
•

	

Change alarm limit values.

Service Alert

Service Alert provides a user interface for update and maintenance of the contact list, notification parameters, customer contact information, and critical/sensitive customer information; it is the customer's responsibility to do this administration via the provided tool. You may modify XSL messages for use by the supported notification mechanisms/devices.

Storm Management

	
•

	

Change labels of columns.

	
•

	

Change labels of menu/toolbar items.

	
•

	

Change the historical average lookup values, but not how they are used in the algorithm.

	
•

	

Define a sort order for the events that is used by the analysis engine prior to stepping through its periodic analysis, within the constraints of the configuration options available for this purpose.

	
•

	

Change storm outage type names, definitions and restoration order, within the constraints of the configuration options available for this purpose, including adding or removing some (but not all) outage types (directly tied to the historical average lookup value definition process).

	
•

	

Specify which of the top three control zone levels is the "simulation level" (the level at which the lookup values are specified).

	
•

	

Define which crew types are eligible to assess/repair which storm outage types.

	
•

	

Define performance factors for each crew type.

	
•

	

Define nominal crew resources.

	
•

	

Change storm shift definitions, within the constraints that there must be at least one but no more than four shifts, and the sum of all shift lengths must be exactly 24 hours (directly tied to the historical average lookup value definition process).

	
•

	

Change storm season definitions, within the constraints that there must be at least one but no more than four seasons, and each month must be part of a season (directly tied to the historical average lookup value definition process).

	
•

	

Change storm holiday definitions, including the removal of all holiday definitions (directly tied to the historical average lookup value definition process).

	
•

	

Change storm special conditions types (directly tied to the historical average lookup value definition process).

	
•

	

Change storm level names, including adding or removing some (but not all) levels.

	
•

	

Change list of company names for the crew resources, including adding or removing some (but not all) names.

	
•

	

Add and remove usernames and passwords.

	
•

	

 Delete or rename user types.

Management Reporting Modules Software Configuration

The following sections describe the cases where it is allowable to change values in the Management Reporting modules.

Business Intelligence

Allowable values you may change include:

	
•

	

Modify extractor to match configuration within guidelines of accepted product configuration changes.

	
•

	

Oracle provides standard Oracle Business Intelligence for Utilities dashboards and answers; it is the customer's responsibility to modify these to meet business needs.

Trouble Reports

Allowable values you may change include:

	
•

	

Oracle provides standard reports in Oracle BI Publisher or Oracle BI Discover (customer choice); it is the customer's responsibility to modify these to meet business needs.

Business Intelligence

Allowable values you may change include:

	
•

	

Modify extractor to match configuration within guidelines of accepted product configuration changes.

	
•

	

Oracle provides standard Oracle Business Intelligence for Utilities dashboards and answers; it is the customer's responsibility to modify these to meet business needs.

Trouble Reports

Allowable values you may change include:

	
•

	

Oracle provides standard reports in Oracle BI Publisher or Oracle BI Discover (customer choice); it is the customer's responsibility to modify these to meet business needs.

Unix Configuration

Oracle Utilities Network Management System is installed and configured on a Unix or Linux workstation or server. The workstation or server must be properly configured before running the software. This chapter describes the Unix configuration required for optimal use of Oracle Utilities Network Management System. It includes the following topics:

	
•

	

Unix User Names

	
•

	

Korn Shell

	
•

	

Executables/Run-Times

	
•

	

Operating System Configuration

Unix User Names

Oracle recommends you create a minimum of two users: one administrative user and one or more application users.

Creating an Administrative User

The administrative user, as the name implies, has central control over many critical aspects of the Oracle Utilities Network Management System. This user is the central controller of:

	
•

	

Isis - configuration and starting and stopping of the Isis processes

	
•

	

Oracle Utilities Network Management System services - Stopping and starting and repository of service logs

	
•

	

Oracle Utilities Network Management System binaries -compiled code, configuration files.

	
•

	

Database connection that has write privileges as well as read privileges

	
•

	

Model-building data.

It should be noted that for data security, Oracle Utilities Network Management System tools that can be used to directly modify data are installed with permissions set so that only the administrative user is allowed to execute them.

The administrative user (e.g., nms) has access to critical components of the system. This user owns and maintains the services, the starting of the services, model building, binaries, the database, and the configuration standards. The administrative user maintains the Oracle Utilities Network Management System Unix-based configuration and executables in one location. The administrative users Oracle environment variables ($RDBMS_USER, $RDBMS_PASSWD, $RDBMS_HOST) point to the ORACLE production tablespace owner. Thus, when services are started the user has the necessary read/write access to the production tablespace.

The administrative user:

	
•

	

Owns the executable and runtime directories.

	
•

	

Has read-write permissions to the production database.

	
•

	

Owns the service processes (DBService, MTService, etc.)

	
•

	

Performs all sms_start.ces commands.

	
•

	

Performs all model builds.

Note: A model build user could be created on a second machine in order to share processing load. This user should be configured in the same fashion as the administrative user with respect to database access and sms_start.ces/ces_setup.ces access.

Creating an Application User

The application user is the standard end user of Oracle Utilities Network Management System, such as a dispatcher. This is a user who may want to run Oracle Utilities Network Management System Unix-based tools and applications. The application user will have access to the application binaries installed in the Oracle Utilities Network Management System administrative user's directories through environment variables (such as $PATH). Application users generally have read and execute permissions for the executables and runtime directories mentioned above - with some exceptions for privileged applications. The Oracle Utilities Network Management System application user's Oracle environment variables provide a read-only Oracle user connection. Production data changes can only be made through normal Oracle Utilities Network Management System application (authorized) access operations.

The application user:

	
•

	

Runs Oracle Utilities Network Management System Unix-based applications.

	
•

	

Is capable of viewing production data in read-only mode.

	
•

	

Has read/execute permissions to the administrative user’s runtime directories.

	
•

	

Has indirect write permissions to the database through tools and applications.

Korn Shell

The Korn Shell sets environment variables and provides a command line interface to the operating system. The Korn Shell (ksh) standardizes command line execution and requests, such as running scripts, executing applications, and operating the services. The Korn Shell uses a file called .profile to configure itself. Both the administrative and application users need to have

	
•

	

Their default shell set to ksh.

	
•

	

The .profile configured to source the Oracle Utilities Network Management System configuration file (.nmsrc).

For your convenience, templates of a generic .profile and .nmsrc file are included in the Oracle Utilities Network Management System software distribution, under $CES_HOME/templates. These files can be copied to $NMS_HOME/.profile and $NMS_HOME/.nmsrc and then modified to suit your installation.

.profile Configuration

The Korn Shell is configured using .profile file. It is a hidden file that exists in the user’s home directory. When a user logs in, this file executes, setting environment variables and defining terminal configuration. The following is required for setting up .profile.

The .profile file must source the user environment configuration file, .nmsrc. This is an easy addition to .profile. Add the following line to the bottom of .profile using any text editor.

 . ~/.nmsrc

This runs .nmsrc in the current shell and initializes all of the environment variables within the .nmsrc file in the current working environment.

The .profile file must also execute correctly when called from another script, as well as when the user logs in at a terminal. Anything in .profile that is terminal-specific should be placed in an "if" clause to suppress execution if the .profile is not being run from a terminal.

 # Set a variable to be true when .profile is

 # being run from a terminal rather than a script.

 #

 if tty -s

 then

 TTY=true;

 else

 TTY=false;

 fi

 #

 # Protect items that must only be run from a

 # terminal and not from a script.

 #

 if $TTY

 then

 stty Compaq

 tset -I -Q

 PS1="`hostname`>"

 fi

The search path environment variable, $PATH, tells the operating system where to locate the files necessary for software execution. It must include the directories that contain the Oracle Utilities Network Management System Unix-based software. The entry in .profile will look something like the following example, where <project> is the application user name:

 export PATH=/users/<project>/bin:/users/nms/bin:$PATH

This entry searches the user's home directory before the nms directory, letting customer specific tools and scripts take precedence over the Oracle Utilities Network Management System base executables provided.

When on a Unix terminal, the DISPLAY variable is used to direct the windowing system to display itself on a specific screen. The syntax is:

 hostname:display_number.screen_number

For example, to export the display to the machine ceshost on screen 2, the entry in .profile is: export DISPLAY=nmshost.yourdomain.com:0.2

Executables/Run-Times

The Oracle Utilities Network Management System Unix-based software is installed in the product home directory ($CES_HOME/bin). When commands are entered at the prompt, the shell looks for the appropriate bin directory for a matching program. The PATH environment variable determines where the shell looks for the bin directory, so PATH must be modified to include the location of the Oracle Utilities Network Management System software. It is defined in the .nmsrc file located in the user’s home directory and it may contain multiple path names, each separated with a colon (:). The shell parses each path name until the corresponding program is located or each path name is exhausted.

WARNING! It is extremely important that the first two items in $PATH are the locations of (a) the bundled third-party software for Oracle Utilities Network Management System (/opt/oms-9.1), and (b) the location of the Oracle Utilities Network Management System software itself.

The syntax is as follows.

 export PATH=<pathname>:<pathname>

For example,

 export PATH=/opt/oms-9.1/:$CES_HOME/bin:/usr/local/bin/:$PATH

Note: The PATH environment variable can also be set in .profile for shell initialization purposes, but for this purpose it is better to modify the variable in .nmsrc. The .profile should only be edited by a competent system administrator, and a working version should always be backed up.

Operating System Configuration

A standard operating system installation will often not be optimally configured to work with an Oracle Utilities Network Management System. Sometimes the user will spawn more processes than allowed by the standard kernel configuration. Other times, a map file may require a larger data segment than the average user. Due to problems like these, you may find that you will have to tweak the operating system configuration, which may include reconfiguring the kernel or some other part of your Unix system.

The values that are specified in this guide are examples only, as the correct values depend on how large your operating model is, how you use the system (e.g., as a server, app-server, or client) and what kind of a load is placed on the system. This section should give you an idea of how to change components of the operating system that frequently become a problem running Oracle Utilities Network Management System.

Solaris

In Solaris, limits to data segment size and the number of files available to the user are defined by the ulimit command. For the most part, these parameters do not need to be tweaked, but should you need to, you can run:

 $ ulimit -d <datasegment size in kilobytes>

 (Usually 256 Mb will be enough)

 $ ulimit -n <number of file descriptors>

 (Usually 1024 will be enough)

AIX

AIX sets its limits in a system configuration file called /etc/security/limits. You can type "man limits" from the command line for the documentation on how to modify this file. The following table describes the parameters you may have to modify.

	

Parameter Name

	

Description

	

Nofiles

	

The soft limit on the number of open file descriptors

	

nofiles

	

The hard (upper) limit on the number of open file descriptors

	

data

	

The soft limit on data segment size

	

data_hard

	

The hard (upper) limit on data segment size

Users can adjust these parameters using the ulimit command, as long as the parameters are below the hard limit configuration. If your parameter requirements are under the hard limit, you may want to consider adding the appropriate ulimit command to the .nmsrc file instead of modifying the limits file. For example, adding a line that states ulimit -d 262144 would set the data segment size limit to 256 MB; having it in the .nmsrc file would ensure that the limit is set correctly each time the user logs in.

Linux

In Linux, limits to data segment size and the number of files available to the user are defined by the ulimit command. For the most part, these parameters do not need to be tweaked, but should you need to, you can run:

 $ ulimit -d <datasegment size in kilobytes>

 (Usually 256 MB will be enough)

 $ ulimit -n <number of file descriptors>

 (Usually 1024 will be enough)

Core File Naming Configuration

Unix systems can generally be set up to save a core file if an executable experiences a non- recoverable error of some sort. Standard Unix configuration generally names this file "core" and places it in the directory where the executable was executed. The problem with this configuration is that if a core file does get generated it can happen that a second core file (from the same or different executable) can overwrite the original core file - thus hiding information that could possibly be used to better track down the source of the problem. This is not an entirely uncommon phenomenon for Unix system and there are generally Unix OS specific steps that can be taken to have the OS generate core files with process specific names - to help prevent information from being lost and make it easier to solve problems if they do occur. Below are some OS specific options for this purpose:

Solaris

As root edit /etc/coreadm.conf (COREADM_INIT_PATTERN=core.%p) or run coreadm -i "core.%p".

AIX

From your .nmsrc file:

 export CORE_NAMING=true

or - as the root user - if you want to change it for the entire system. Do man on chcore for more info.

 chcore -n on -d

Linux

Note the following may be the default on the Linux distributions supported by Oracle Utilities Network Management System.

 echo "1" > /proc/sys/kernel/core_uses_pid

You should also check to make sure the ulimit for core files is set to unlimited - otherwise no core or a truncated core file may be created:

 ulimit -c unlimited

Isis Configuration

Isis is the backbone of the Oracle Utilities Network Management System. It is the messaging bus through which all components communicate. This chapter provides the details for configuring Isis. It includes the following topics:

	
•

	

Isis Configuration Files

	
•

	

Isis Architecture

	
•

	

Isis Directory Structure

	
•

	

Isis Environment Variables

	
•

	

Isis Log Files

	
•

	

Starting Isis

	
•

	

The cmd Tool

	
•

	

Troubleshooting

Isis Terminology

The following table describes Isis terms used in this chapter.

	

Term

	

Definition

	

Ports

	

Isis requires a set of three TCP/IP ports for communication. These are defined in the sites file. These ports may also be defined in the /etc/services file. The port definitions in the /etc/services file may be overridden through the use of the ISISPORT and ISISREMOTE environment variables.

ISISPORT defines the UDP port that Isis backbone sites use to communicate with each other and the TCP port that processes use to connect to the Isis backbone. Thus ISISPORT defines two out of the three TCP/IP ports for running Isis. Default value for ISISPORT is 2042, as registered by the Internet Assigned Numbers Authority (IANA).

ISISREMOTE defines the UDP port used by processes to communicate to the Isis backbone when no TCP ports are available. Specifying this field is necessary even thought it is generally not used by Oracle Utilities Network Management System. Default value for ISISREMOTE is 2043, as registered with IANA.

	

Site

	

Each node (client workstation or server) that runs the Isis protocol is a site. Each site has a defined number (1, 2, 3...) and a set of TCP/IP ports that are used to communicate with it, as defined in the sites file. The set of ports assigned to each site are generally the same for each site.

	

 protos

	

Protos is the name of the Isis protocol process. Each Isis backbone site has one copy of this process.

Isis Architecture

The following diagrams show an architecture in which a production system is running on a machine(s) (Services and Applications) with a specified ISISPORT, while additional Oracle Utilities Network Management System applications are run on separate ISISPORTs. The Isis process we are most concerned with is isis-protos - often referred to as simply protos. To have an operational Isis messaging backbone you must have access to at least one protos on your network (normally the same machine you are running on). Separate Oracle Utilities Network Management System applications can be run using the same ISISPORTs as long as the CMM_CELL names are unique. However, it is highly recommended that a production system retain its own individual (private) port. This is because all processes using a single protos share the same set of ports combining environments will limit the scalability of the participating Oracle Utilities Network Management System environments. Further, sharing a protos process between production and non-production Oracle Utilities Network Management System environments is not recommended.

The diagrams below show a production system on its own port and CELL, a test bed with its own port and CELL, and a training system with a single port supporting multiple CELLs for individual training environments.

Stopping an Isis protos process associated to a port (e.g., 2042) stops all Oracle Utilities Network Management System services and applications in every CMM_CELL (e.g., PROD) associated with that Isis port (2042). This does not affect any Isis processes running on other ports (2032, 2020). Stopping services and tools within a CELL does not affect the Oracle Utilities Network Management System services and tools in any other CELL.

Isis Directory Structure

The Isis directory structure is provided for verification purposes only.

	

Directory

	

Contents

	

bin

	

Isis executables, including the isisboot script, which is used to start up Isis. The cmd command resides here as well. cmd provides a command line interface to Isis that is useful for verifying connections and debugging problems.

	

lib

	

Isis runtime libraries

	

include

	

Contains Isis include files used in compiling the software

run_isis

The run_isis directory should normally be under $NMS_HOME/etc/ and contains Isis configuration files:

	
•

	

sites, which defines all of the nodes on a given Isis "backbone," and

	
•

	

isis.rc, which provides startup information for Isis.

It also contains the nohup.out log file, which contains the output from the isisboot command before Isis becomes functional, as well as the <site>.logdir.<port>/<site>_protos.log, where output is placed after Isis becomes functional.

Isis Configuration Files

This section addresses the files that affect the configuration of Isis software. Some of these files are Isis specific files, while others are operating system files.

Isis sites File

The Isis sites file is located in $NMS_HOME/etc/run_isis. It identifies all nodes on the network that will be running Isis, assigns them a unique Isis identification/site number, and defines the TCP/IP port numbers under which they will run.

This file must be updated and consistent across all nodes running Isis in the computer network. For each entry in the sites file, a corresponding entry should exist in the /etc/hosts file in case the DNS services fail. The format of this file specifies the Isis node number, network service ports, hostname, user name, and a comment:

 + 001:2042,2042,2043 server1.oracle.com ces,hp9000s800

 + 002:2042,2042,2043 server2.oracle.com ces,hp9000s800

 + 003:2042,2042,2043 client1.oracle.com ces,Alphaserver

 + 004:2042,2042,2043 client2.oracle.com ces,Alphaserver

 + 005:2042,2042,2043 client3.oracle.com ces,hp9000s700

 + 006:2042,2042,2043 client4.oracle.com ces,E450

 + 007:2042,2042,2043 client5.oracle.com ces,E250

The leading plus sign is very important and this file cannot have any comments (except in the comment section of the end of each line). This file should parallel the entries in the /etc/hosts file. The /etc/services file should be configured with the default port numbers of the ports to be used for communications.

isis.rc Startup File

The isis.rc file is located in $NMS_HOME/etc/run_isis. It contains the following information:

	
•

	

Which machines may run Isis

	
•

	

The number of machines that run Isis

	
•

	

The Isis processes to start

	
•

	

The location of Isis logs

A generic isis.rc license file is now included in the Oracle Utilities Network Management Systems software distribution. Previously each customer was provided with a customized isis.rc file, but this is no longer a requirement and the isis.rc provided with the distribution should be used instead.

/etc/hosts

The /etc/hosts file is a Unix operating system file. It defines all of the nodes in the computer network configuration. This file must be updated and consistent across all nodes in the computer network. The format of this file specifies the Internet Protocol address, hostname and any aliases, all separated by tabs. Comments begin with a #. Also, there should be an alias provided for all machines, which is less than 15 characters, for the Isis processes; display hosts managed by the applications cannot have more than 15 characters.

 # See the hosts (4) manual page for more information.

 # Note: The entries cannot be preceded by a space.

 # The format described in this file is the correct format.

 # The original Berkeley manual page contains an error in

 #the format description.

 127.00.0.1localhostloopbackloghost

 200.100.100.1 server1.oracle.comserver1

 200.100.100.2 server2.oracle.comserver2

 200.100.100.3 client1.oracle.comclient1

 200.100.100.4 client2.oracle.comclient2

 200.100.100.5 client3.oracle.comclient3

 200.100.100.6 client4.oracle.comclient4

 200.100.100.7 client5.oracle.comclient5

Isis Environment Variables

Isis environment variables let client user names connect to different user environments. For example, a user might switch from a configuration environment to a model build environment. For information on the settings for Isis environment variables, see
Isis Environment Variables
.

ISISPORT and ISISREMOTE

ISISPORT is set to the second (tcp) service port in the sites file, and ISISREMOTE is set to the third (bcast) service port in the sites file. These environment variables override the default settings in /etc/services. These variables tell the tools and services where to listen for Isis messages.

ISISHOST

This variable specifies a possible list of nodes on which Isis will be running. It is used to configure a remote Isis system. A remote Isis system is one in which Isis and some applications run on different nodes. The applications on startup will cycle through the comma delimited list specified by this variable and will seek to make a UDP connection with the Isis process running on the remote node until it finds a valid Isis process with the same ISISPORT and ISISREMOTE values. This value can be for fail over; the applications will check each node in the list on startup, and if the first is down, they will connect with the next in the list. This is not needed or used with most implementations of Oracle Utilities Network Management System.

CMM_CELL

This variable lets different sets of services and tools exist on the same service ports. Messages received on the ports from tools and services started with a different CMM_CELL are disregarded.

CMM_CELL can be set to any value, as long as it is unique from other CMM_CELL variables running on the same service ports.

ISIS_PARAMETERS

Specifies the Isis parameter file to be referenced by applications and services on startup. An example of possible parameter file content for an Oracle Utilities Network Management System appears below:

 #isis.prmisis_NativeThreadStackSize 131072# specify that all applications should provide their# parameters when a dump occursisis_prmDumpAllParameters 1# allow messages which can have 10MB of information, model# builds may require messages of this sizeisis_msgMessageSizeLimit 10000000#isis_UDPSndbuf 131072isis_UDPRcvbuf 131072#isis_iclPacketHighWaterMark 49152isis_iclPacketLowWaterMark 32768# don’t go below 2048isis_iclMaxSlots 4096#PROTOSprotos_maxLocalClients 1024protos_maxRemoteClients 1024protos_taskHigh 100protos_taskLow 95

Isis Standalone Mode

By default, Isis now starts in "standalone" mode. This means that Isis will bind to the local loopback adapter (localhost - 127.0.0.1) and not the adapter defined by the gethostbyname function. This means that Isis will not be available to other hosts on the network by default, and this is generally desireable. If your configuration requires a connection to Isis from another host, you will need to edit the Isis parameters file ($NMS_HOME/etc/run_isis/isis.prm) and change "isis_standalone" from "1" to "0":

isis_standalone 0

Disabling Isis on Network Adapters

If you are not running Isis in standalone mode, Isis will bind to all available network adapters on the server. It is good practice (and sometimes necessary) to configure Isis to not bind to certain adapters. An example would be a heart-beat network that is typically configured on a clustered server. To disable an adapter, list it's IP address or subnet in the Isis parameters file ($NMS_HOME/etc/run_isis/isis.prm):

isis_rnsDisable_1 192.168.123.0/24

isis_rnsDisable_2 10.10.42.20

See the isis.prm file for further documentation.

Isis Multi-Environment Considerations

When configuring multiple Oracle Utilities Network Management System environments, each site should be assigned unique port numbers. This logically partitions each network and prevents unwanted cross effects. As an example, the on-line system environment may be assigned to the 204x ports while the model build environment may be set to 214x, the off-line engineering environment set to 224x, and so on. While it is possible to configure all systems on the same port with CMM_CELL values differentiating the systems, it is not recommended.

Isis Log Files

isis.<date>.time.log

The isis.<date>.<time>.log file keeps track of events while Isis is initializing. It is located in $CES_LOG_DIR. The nohup.out file contains clues if there is any difficulty in starting Isis.

Isis Log Files

isis.<date>.time.log

The isis.<date>.<time>.log file keeps track of events while Isis is initializing. It is located in $CES_LOG_DIR. The nohup.out file contains clues if there is any difficulty in starting Isis.

<Site No.>.logdir.<port>

This is the directory where the Protos and Incarnation logs reside. The location of this directory is defined in the isis.rc file, and is typically found in $CES_LOG_DIR/run_isis.

The Protos Log

protos is the Isis protocol process. This process logs its messages to $CES_HOME/etc/run_isis/ <Site No.>.logdir.<port>/<Site No.>_protos.log. Check here for runtime problems with Isis.

The Incarn Log

This is a short file called $CES_LOG_DIR/run_isis/<Site No.>.logdir./<Site No.>.incarn and it usually includes a single line containing the incarnation number for the particular site.

Starting Isis

isisboot

isisboot is the script that initializes Isis. It is located in $CES_HOME/isis/bin. On startup isisboot reads the isis.rc license file to determine if it can proceed. If so, it reads the sites file to determine the default network ports and site (node) identification numbers to use.

Starting Isis

isisboot

isisboot is the script that initializes Isis. It is located in $CES_HOME/isis/bin. On startup isisboot reads the isis.rc license file to determine if it can proceed. If so, it reads the sites file to determine the default network ports and site (node) identification numbers to use.

Initializing Isis

To initialize Isis, complete these steps:

	
1.

	

From the nmsadmin user name type:

 isisboot

	
2.

	

When complete (which could take up to a minute or more), type:

 cmd status

This determines if Isis has successfully started and will provide information similar to the following:

 cmd: my_site_no = 1

 my_host = 127.0.0.1

 Isis version = V3.4.14 Build: 20 $Date: 2010/06/09 19:03:03 $

 verbose mode = off

	
3.

	

If it has started successfully, type:

 cmd sites

Result: Isis lists all connected machines. For example:

 tstaix01:cesadmin$ cmd sites *** viewid = 1/1 tstaix01.oracle.com [site_no 1 site_incarn 3]

Starting Isis on Non-Default Ports

Isis may need to run on ports other than the default ports listed in the sites file. It is common to separate different sets of services by running Isis for those services on separate network ports. For example, a configuration system may run on 1601, 1602 and 1603, while the model build services run on ports 1701, 1702 and 1702. Therefore it may be necessary to switch a client from one set of Isis ports to another.

To start Isis on a non-default port, complete these steps:

	
1.

	

To check which ports to use, at the prompt type:

 echo $ISISPORT

This returns the port configured for this environment.

	
2.

	

As the nmsadmin user, start isisboot with the "-p" flag. The syntax is:

 $CES_HOME/isis/bin/isisboot -p <port number>

For example, to start Isis on ports 2052 and 2053, type:

 $CES_HOME/isis/bin/isisboot -p 2052

Results:

	
•

	

isisboot will then create a new isis.rc file called isis.rc.<port number> from the existing isis.rc.

	
•

	

A new sites file called sites.<port number> will be created from the existing sites file.

	
•

	

New log files will also be created with the same naming convention.

The cmd Tool

Verify the connection to Isis using the cmd tool. If cmd is working, Isis is functioning as well. The syntax for cmd is:

$cmd <options>

Type cmd from the Unix command line to bring up the command line interface, identified by the cmd> prompt. The following table presents a subset of cmd commands.

	

Command

	

Description

	

sites

	

Shows all nodes connected by Isis on the current ports:

cmd>sites

*** viewid = 34/5

test1.oracle.com [site_no 34 site_incarn 1]

test2.oracle.com [site_no 33 site_incarn 1]

test3.oracle.com [site_no 6 site_incarn 1]

	

status

	

Provides the current status of the Isis protos process. Part of the information returned is the current Isis version corresponding to the executed cmd binary.

	

list

	

Provides a list of all the Isis process groups and applications connected to the protos. This identifies the CMM_CELL and process group. This can be used to identify remaining processes still running.

	

snapshot

	

Sends a message to all applications currently connected to Isis to generate an Isis dump. All the Isis related information for this process is written to disk in a log file with the process ID as the prefix (<pid>.log). This log file can be found in the run.*Service directories for services or the directory from which applications have been launched.

Isis dumps are extremely useful when debugging problems, as they can tell the developer exactly what messages are being processed at the time the dump was generated.

	

rescan

	

Tells protos to update the site view.

	

shutdown

	

Causes the protocols process to shutdown. Wait 4 minutes before restarting Isis after a shutdown or an unsuccessful start attempt, and verify that all processes are completely down by checking the process list on each node (ps -aef).

	

Help

	

Print all cmd command options.

	

Help <command>

	

Print information about a specific command.

Exiting cmd

Type "quit" to exit cmd.

Troubleshooting

When an Oracle Utilities Network Management System application or Service is experiencing problems, some helpful information would include an Isis dump of the applications process, the log file associated with that application, and the output of the processes list.

Generating an Isis Dump File

To generate an Isis dump file, complete these steps:

	
1.

	

On each node of concern:

 ps -aef > $(hostname)_ps.out

	
2.

	

Identify the process ID of the problem application(s).

 grep -i <application> $(hostname)_ps.out

	
3.

	

Use the following command to generate an Isis dump file for a specific process:

 kill -USR2 <pid>

The process will not be affected and will continue to operate, but upon receiving the USR2 signal, it will generate an Isis dump (<pid>.log) in the directory from which that tool was launched.

Note: Any subsequent USR2 messages will result in the process appending a new Isis dump to the <pid>.log file. Only the user running the applications can perform this action.

Generating an Isis Dump File for All Applications

An alternative is to issue the cmd snapshot command, which will create an Isis dump for all applications. The applications will continue to run, but every single application running will create an Isis dump file. This will clutter the file system, but it is sometimes the best way to gather all the information you need to investigate a problem.

To issue the cmd snapshot and obtain a list of all the current Isis dump files, enter these commands:

cd $NMS_HOME

ps -aef > $(hostname)_ps.out

touch DUMP_START

cmd snapshot

find . -name [1-9]*.log -newer $NMS_HOME/DUMP_START > ~

 /logs.txt 2>/dev/null

zip isis-dumps.zip 'cat ~/logs.txt'

This set of commands will find all the .log files that start with a number and were generated after the time the DUMP_START time-stamped file was created. It will create a file called isis-
dumps.zip that can be sent back to Customer Support for investigation. With the full set of logs, Customer Support can track all the interactive messaging for problem investigation and resolution.

Reporting a Problem to Customer Support

In general, when reporting a problem to Customer Support, the following information can speed the problem identification and resolution process:

	
•

	

An explanation of what the observed symptoms were and where they occurred.

	
•

	

An explanation of how to repeat the problem, if possible.

	
•

	

An explanation of expected behavior.

	
•

	

A specific time frame when the problem occurred.

	
•

	

Example data demonstrating the problem (e.g., event numbers, crew names, etc.).

	
•

	

Service logs and environment log files of the affected Services/Applications.

	
•

	

Isis dumps of the affected application and services at the time the problem was observed. A complete Isis dump of all processes may be requested if the problem is repeatable, along with a process list output file.

	
•

	

The core file, if one exists for the process.

	
•

	

Any other activity that occurred prior to, or concurrent with, the issue that may stand out as a possible contributor.

Database Configuration

Oracle Utilities Network Management System currently supports the Oracle Relational Database Management System (RDBMS). The RDBMS must be properly installed and configured prior to using the Oracle Utilities Network Management System software. This chapter provides the configuration requirements for Oracle. It includes the following topics:

	
•

	

Oracle Installation Guidelines

	
•

	

Oracle Tablespaces

	
•

	

Oracle Users

	
•

	

Starting Oracle

Oracle Installation Guidelines

It is recommended that Oracle Enterprise Edition be installed. Please see the Oracle RDBMS installation documentation for specific Oracle installation requirements.

Oracle Tablespaces

Every Oracle Utilities Network Management System must have its own Oracle tablespace set. In general, the tablespaces consist of the following:

	

Tablespace

	

Description

	

Production

	

The production tablespace (ces_db) contains all of the production data for Oracle Utilities Network Management System. This includes model data, outages, and data that is produced by operations performed in Oracle Utilities Network Management System.

	

Production Temporary (Optional)

	

The production temporary tablespace (ces_tmp) temporarily stores operating data prior to insertion into the production tablespace. The default Oracle TEMP tablespace should be the designated temporary tablespace for the system. Oracle is more efficient when managing temporary data in this way. Make sure that a sufficient amount of space is allotted to TEMP.

	

Production Index

	

The production index tablespace (ces_idx) contains all of the indexes for the production tablespace. The nms user’s .nmsrc file must contain the CES_INDEX_TABLESPACE environment variable referencing this tablespace.

	

Customer Data

	

The customer data tablespace (<project>_customers_db) belongs to the customer. It is populated with the entire customer database by the CIS extraction process. Public synonyms are assigned to the customer tables and selectability is granted to production Oracle users so that the necessary table joins can be created.

Each tablespace should be located on a separate disk to enhance performance and decrease bottlenecks due to high volumes of input/output.

It is key that the tablespaces are provided with sufficient disk space and are monitored regularly for growth. When a tablespace runs out of disk space, operational data will be lost and Oracle Utilities Network Management System services will discontinue to function properly.

Oracle Instances

For performance, scalability and simplicity there is normally only one Oracle instance on a production machine. It is not generally recommended that a production machine have multiple Oracle instances on the same machine. An exception would be where a cluster is used; you may want an Oracle instance installed on both sides of the cluster (production on the primary side, Model Build, Test, or Oracle Business Intelligence on the secondary side). Under normal circumstances there would only be one instance of Oracle on each side - if one side of the cluster fails you could end up with two instances on the surviving node. In general, try to keep it simple.

You should consult with your Oracle Utilities Network Management System Professional Services technical team to develop a creative solution to meet your specific needs.

Oracle Utilities Network Management System uses three environment variables that are set in the $HOME/.nmsrc file to create a connection to the Oracle database. These are:

	
•

	

RDBMS_USER - Oracle user that owns the tablespace where the data will be stored:

	
•

	

RDBMS_PASSWD - Password for the RDBMS_USER as defined in Oracle.

	
•

	

RDBMS_HOST - Instance name for the Oracle connection

If Oracle tablespaces for different Oracle Utilities Network Management System implementations occupy the same Oracle instance on a machine resource, then the RDBMS_USER and RDBMS_PASSWD environment variables must be different. The user-password pair RDBMS_USER/RDBMS_PASSWD generally owns a complete set of Network Management System tables that are used for a single Oracle Utilities Network Management System environment - and are often created in a "Network Management System instance specific" set of tablespaces - though this is not required. If two separate Oracle Utilities Network Management System environments attempted to use the same RDBMS_USER/RDBMS_PASSWD combination, the databases would likely become corrupted. This is a common mistake. Be aware of the shell you are using, the environment variables, and their values.

Note: Two or more Oracle Utilities Network Management System instances on a single machine can be acceptable (depending on machine resources) for testing, training and model build environments.

It may be necessary to tune Oracle for the specific environment it will be operating on. Typically a qualified DBA can perform the necessary tuning and modifications. Often this is an iterative process that requires running the full Oracle Utilities Network Management System on the production machines and capturing statistics for analysis.

Other Environment Variables

Other Oracle-specific environment variables may need to be different between systems, but these are due to how the DBA has constructed the environments. Other than the NLS specific environment variables noted below, these are listed in one of the example tables in chapter five.

When Oracle is loaded onto a given platform, the Oracle instance itself will generally have a default National Language Support (NLS) setting. Oracle Utilities Network Management System client applications (like DBService) which utilize the Oracle Call Interface (OCI) need to know what NLS settings to use for inserting and interpreting result sets from Oracle. Presently, the easiest way to do this is as follows:

	
1.

	

Add the following environment variable to your .nmsrc file: NLS_LANG

Note : For a US configuration, Oracle believes the NLS_LANG environment variable (as far as OCI is concerned) typically defaults to AMERICAN_AMERICA.WE8ISO8859P1. Thus if a customer sets their Oracle NLS to something other than this value (inside of Oracle during instance setup) - and does not specify the NLS_LANG environment variable to appropriately match, DBService will not start. You will see a note in the DBService log file indicating a mismatch that must be rectified.

	
2.

	

The following process should work for setting NLS_LANG:

Set NLS_LANG to <NLS_DATE_LANGUAGE>_<NLS_TERRITORY>.<NLS_CHARACTERSET>

where each "NLS component" needs to match the values returned by this query:

SELECT * FROM v$nls_parameters WHERE parameter IN (‘NLS_DATE_LANGUAGE’,

‘NLS_CHARACTERSET’, ‘NLS_TERRITORY’)

For example, we have NLS_LANG=AMERICAN_AMERICA.WE8ISO8859P1, and our query returns:

PARAMETER VALUE

------------------- ----------

NLS_DATE_LANGUAGE AMERICAN

NLS_TERRITORY AMERICA

NLS_CHARACTERSET WE8ISO8859P1

	
3.

	

Set the ORA_NLS10 environment variable. For example:

export ORA_NLS10=/users/oracle/product/10/nls/data

(or wherever your valid Oracle nls/data directory is located)

Oracle Users

Once the tablespace is established, you must create users and grant their permissions. Oracle users are those users that have access to the Oracle tablespaces. Before defining the users, it is important to discuss the security role that a user can possess.

Security Roles

Security roles determine the level of database operations that a user can perform. There are two types of security roles:

	

Role

	

Description

	

ces_rw

	

Read-write role. This role has read and write privileges to the production data. It can create, drop, update to, and insert to, all of the production tablespace objects.

	

ces_ro

	

Read-only role. This role can only connect and select data from the production tablespace objects.

Note: Certain security tables, such as ces_users, are excluded from the view of the ces_ro role.

Users

There are three Oracle users. Each user directly relates to the tablespaces. Substitute specific customer name for <project> where noted below.

	

User

	

Description

	

<project>_CES

	

The <project>_ces Oracle user is the owner of the production tablespace. This user has a ces_rw role and maintains full control of the data elements in the production tablespace.

	

<project>

	

The <project> Oracle user is the application user. This user has a ces_ro role to the production tablespace.

	

<project>_customers

	

The <project>_customers user has full privileges to the customer data tablespace only and no privileges on the production tablespace.

Starting Oracle

Complete the following steps to start Oracle:

	
1.

	

Login as oracle. If logged in as the root user, the system will not request a password. At the prompt, type:

 su - oracle

	
2.

	

Login to SQL*Plus:

	
•

	

As the oracle user, type:

 sqlplus /nolog

	
•

	

At the SQL> prompt, type:

 connect / as sysdba

 startup

 quit

	
3.

	

Start the listener. As the oracle user, type:

 lsnrctl start

Note: The tnsnames.ora and listener.ora files must be properly configured to start the oracle listener. The location of these files may vary by system, but they must be consistent on all machines requiring connections via SQLNET.

	
4.

	

Login as the distribution user and test the connection to Oracle. At the prompt, type:

 ISQL.ces

This references the RDBMS_USER, RDBMS_PASSWD and RDBMS_HOST to establish the connection to the database. If this connection is successful, a SQL> prompt will appear.

Environment Configuration

Many problems that occur during an initial installation and setup of an Oracle Utilities Network Management System result from improperly defined environment variables and a misunderstanding of their usage and impact. This chapter describes the environment variables, their standard settings, and where they are located. This information should help you avoid a number of problems.

Because of the innate flexibility allowed by environment variables, there are an infinite number of permutations you can apply for a system setup. Not everything you can do with these variables should be done. This chapter describes the suggested settings that you should adhere to in order to avoid confusion.

This chapter includes the following topics:

	
•

	

System Resource File

	
•

	

Modifying Environment Variables

System Resource File

The System Resource file ($HOME/.nmsrc) houses the environment variables that enable the Oracle Utilities Network Management System to operate correctly and consistently. They define the connections information for the database and Isis, as well as environment specific configuration settings such as viewer symbology, application geometry, and more.

You will need to modify the System Resource file in part for application to specific systems. One suggestion is to use environment variable dependencies. By doing this you can simplify the process of changing values; by changing one variable that is a root dependency, the change will cascade through a number of others, limiting your required changes and maintaining consistency throughout the file.

Modifying Environment Variables

To modify the environment variables, complete these steps:

	
•

	

Modify the variable you want to change with the new settings in the .nmsrc file.

	
•

	

Type . nmsrc at the prompt to source the file in the current working environment. The new variables replace the old variables.

Note: New variables replace the old variables when the file is sourced. You should source .nmsrc each time you change the file. The file .profile automatically sources .nmsrc at startup.

Environment Variables

The table below lists the required environment variables and their standard settings that must be modified depending on the type and number of environments you are constructing. See templates/nmsrc.template for more variables. Other variables may be added as well, depending on the functionality of your system. This is not an exhaustive list, but it does address the variables typically required to start an Oracle Utilities Network Management System.

	

Environment Variable

	

Example Setting

	

Description

	

NMS_ROOT

	

/users/nmsadmin

	

Provides a common location to place the base Oracle Utilities Network Management System directories and files owned by the administrator. It is recommended that you set this to the home directory of the Oracle Utilities Network Management System administrator. By specifying this directory correctly, you can use it to simplify other installations. When this value changes, the change will be cascaded throughout the other dependent environment variables. This environment variable is used by a number of scripts and processes.

	

CES_HOME

	

$NMS_ROOT/nms/ product/1.10.0.0

	

This environment variable is set to the product installation directory for the active installation.

	

NMS_HOME

	

${HOME}

	

The nmsadmin username home directory. This is the directory where the implementation directory and runtime directories exist. This should be set to the nmsadmin username home directory.

	

NMS_PROJECT

	

config

	

This is the project name, can default to "config" or will match the customers project name (e.g., OracleLite). This is the name that is immediately to the left of the "product" name in the CES_SITE environment variable.

	

NMS_CONFIG

	

$NMS_HOME/ $NMS_PROJECT

	

This is the location of the project configuration and implementation files. The name (i.e., config) must also match the CES_SITE variable on the left side ("config product ces") and exactly match the NMS_PROJECT environment variable.

	

CES_DATA_FILES

	

$NMS_HOME/sql

	

Defines the location of data files used in various scripts and routines that define aspects of system configuration. This variable must be defined and can be accessed from a number of scripts. The standard location for these files is the $NMS_HOME/sql directory. Examples are ces_classes.dat, ces_inheritance.dat, and ces_devices.cel.

	

CES_DAYS_TO_LOG

	

5

	

Identifies how long to store the old log files. When services are restarted, log files older than the set number of days (5 in this case) will be removed.

	

CES_DATA_TABLESPACE

	

ces_db

	

Used by the ISQL.ces process to identify the tablespace name of data tablespace.

	

CES_INDEX_TABLESPACE

	

ces_idx

	

Used by the ISQL.ces process. It will parse SQL scripts that create indexes and make sure that the index is actually created in the specified tablespace name. This tablespace must be owned by the RDBMS_USER. The practice of separating indexes from operational data improves Oracle performance.

	

CES_LOG_DIR

	

$HOME/log

	

For services and login environments, this defines where to place the resulting log files. Since log file generation requires write access for a process, the user who started the process must have write access to this directory. It is highly recommended that this directory be located on a different filesystem from $CES_HOME.

	

CES_MASTER_VIEWER

	

"VIEW;0;1"

	

Defines the process name for the Viewer that is to be designated as the "Master Viewer". This is the Viewer that will receive all the load messages from View buttons on tools like the Work Agenda. Typically, this is the first Viewer started from the Environment Manager. This will let the View button//action from other windows designate a specific Viewer for loading new maps, rather than changing the current view in all the running Viewers in an environment.

	

CES_SITE

	

Project specific. Example:<project> product ces

	

Defines the configuration inheritance path for a system. When the setup process executes, it searches this site variable from left to right looking for configuration files with prefixes that match the value in the site variable. This feature lets you inherit or override the ces or product configuration. This variable is used by most of the configuration scripts.

	

CES_SYSDATE

	

Environment specific. Example: %D%R|%D|%R

	

Defines the display format for which all applications will display date and time elements. The format for this requires specifying 3 formats: date and time | date | time The three formats specified in this environment variable must also be added to the $DATEMSK file.

	

CES_SMTP_SERVER

	

smtp.example.com

	

The hostname or IP address of a Simple Mail Transfer Protocol (SMTP) server. This is used by ServiceAlert when sending alert emails. See also: CES_DOMAIN_SUFFIX.

	

CES_DOMAIN_SUFFIX

	

example.com

	

The domain suffix to be used when sending emails via ServiceAlert.

	

CMM_CELL

	

Environment specific. Will be specified to some unique value for each system.Example:production

	

Allows for encapsulation of Isis messages within a specific group of the same CMM_CELL specification. All applications that join up and connect to a specific set of services must have the same CMM_CELL, as well as ISISPORT and ISISREMOTE variables.

	

DATEMSK

	

$NMS_HOME/etc/ ces_datefmt

	

This file will be generated and updated by Oracle. It defines all the expected date formats that can be encountered as input by widgets and Services. Services will use the values in this file, for example, as a format dictionary when given call time as part of a trouble call. Expected time formats should be placed near the top of the file so that the search and compare algorithm encounters the most likely values as quickly as possible.

	

ISIS_PARAMETERS

	

$NMS_HOME/etc/ run_isis/isis.prm

	

Identifies which file to reference for Isis parameters. This must be established before initiating an application.

	

ISISPORT

	

System specific, the default should be 2042.

	

A TCP/IP connection port on which Oracle Utilities Network Management System processes communicate (via Isis).

	

ISISREMOTE

	

System specific, the default should be 2043.

	

A TCP/IP port used when you are making a connection to a "remote" protos. This can either be when the process is running on a machine without protos or if a local connection is attempted and all the local connections are filled.

	

MB_META_HOSTS

	

System specific. Example: AIX.0057F8F4C00

	

The value presented in <architecture> defines the O/S system on which the binary version of the data maps is built. These binary maps are O/S specific and are built from the system independent text version that resided directly in the OPERATIONS_MODEL directory. The value used in place of <architecture> is determined by the following Unix command: $(uname).$(uname -m | sed -e "s/\//-/g")

	

NLS_LANG

	

System specific.

Example:
AMERICAN_AMERICA.W
E8MSWIN1252

	

The National Language Support value for the Oracle
database installation. DBService will not start unless this is
set correctly.

To definitively determine what the various NLS_LANG
components should be for your RDBMS instance, the
following query should be helpful:

 select * from v$nls_parameters where parameter in (

 'NLS_DATE_LANGUAGE',

 'NLS_TERRITORY',

 'NLS_CHARACTERSET')

	

NMS_APPSERVER_HOST

	

System specific.

Example:
server.example.com

	

The hostname of the Java application server. Needed for
sites running WebLogic

	

NMS_APPSERVER_PORT

	

System specific:

Example: 7001

	

The port on which the Java application server at
NMS_APPSERVER_HOST is listening. The WebLogic
default port is 7001.

	

NMS_NS_HOST

	

System specific.

Example:
server.example.com

	

The hostname where the Naming_Service is started. Only
needed for sites running a Java application server.

	

NMS_NS_PORT

	

System specific.

Example: 17821

	

The port on which the Naming Service is running. Only
needed for sites running a Java application server.

	

OPERATIONS_RDBMS

	

System specific.

Example: ces_db

	

Identifies the primary tablespace for the operations data.

	

ORACLE_HOME

	

System specific: Example:/usr/users/oracle/product/11

	

Identifies the home directory for the Oracle user. This is necessary to simplify other variables dependant on this path.

	

ORACLE_SID

	

System specific. Example: PRODSERV01

	

Identifies the Oracle session ID value.

	

PREFERRED_ALIAS

	

Model specific. Example: OPS:PSU

	

Defines what alias of a device is to be displayed by default. In the example, the system will display the alias that has a DB_TYPE of OPS as found in the alias_mapping table. If an alias with a DB_TYPE of OPS does not exist, then the PSU (pseudo) alias will be displayed. This, by convention, is a unique name of <class_name.device_idx>. Depending on the model build definition, you can use and define other alias options, such as a SCADA alias.

	

RDBMS_HOST

	

System specific. Example: PRODSERV01.world

	

Identifies the host machine for establishing an sqlnet connection via Oracle. This value must exist in the tnsnames.ora file on the system attempting a connection. This is required for the use of many setup scripts and ISQL.ces.

	

RDBMS_PASSWD

	

System specific.

	

The password used to establish a connection to the operations database. This is related to the $RDBMS_USER variable.

	

RDBMS_USER

	

System specific

	

The user name used to make a connection with the Oracle tablespace. For the production server, this name would correspond to the user with read/write access to the database.

	

ORACLE_SERVICE_NAME

	

System specific

	

The service name of the Oracle database that the system should connect to.

	

SYMBOLOGY_SET

	

System specific. Example: $OPERATIONS_MODELS/SYMBOLS/PRODUCT_SYMBOLS.sym

	

Identifies the primary symbology file loaded by the Viewer. This file identifies the Viewer symbols for all objects.

	

VIEW_GEOMETRIES

	

System specific. Example:"1024x744+0+0,\512x384+0+384, \512x384+512+384,\512x384+0+0,\512x384+512+0"

	

Defines the start up geometries of the Viewers from the Environment Manager on the screen where an Environment Manager is mapped. The first value corresponds to the default size of the initial large Viewer. The other four settings define the sizing for the four smaller viewers started in succession from the Environment Manager. The format for the setting is: WIDTHxHEIGHTxXPOSxYPOS where the values are in pixels and the XPOS and YPOS refer to the top left position placement of the Viewer window.

	

VIEW_GEOMETRIES_NO_ EMAN

	

System specific. Example: "1024x768+0+0,\ 512x384+0+384,\ 512x384+512+384,\ 512x384+0+0,\ 512x384+512+0"

	

Identifies the Viewer geometries for the screen where no Environment Manager GUI is mapped. For two (or more) screen systems, these are the settings that define Viewer appearance on the other screens. The format is the same as VIEW_GEOMETRIES.

Services Configuration

The configuration of Oracle Utilities Network Management System services involves establishing the location of system services on server nodes in the computer network and defining their configuration and command line options.

This chapter includes the following topics:

	
•

	

Services Overview

	
•

	

Service Alert Email Administration

	
•

	

Service Alert Printing Administration

	
•

	

Services Configuration File

	
•

	

Model Build System Data File

	
•

	

Starting and Stopping Services

Services Overview

Oracle Utilities Network Management System services provide memory-based model management for RDBMS persistent electrical network model information - generally to support real-time access and performance objectives. The services maintain the memory resident data model for the real-time status of the electrical network. The memory model caches the necessary data to build the model from relational database tables. The services then solve this model (fills in the blanks, determine what is energized, grounded, looped, etc.) and optimize the result for client access. Each service generates and passes appropriate incremental model updates to Isis (the Network Management System real-time publish/subscribe message bus) for publication. Interested applications subscribe to the published messages keep the Network Management System end users up to date with current state of the model.

Startup scripts that run when the operating system boots can be used to automatically start the Oracle RDBMS, Isis, and Oracle Utilities Network Management System services. How you configure and where you place these scripts is based upon startup (default) Unix "runlevel" and your platform. For Linux platforms you can generally determine your current runlevel via:

 /sbin/runlevel

For Linux startup/shutdown scripts are generally located in the /etc/init.d directory. A Unix softlink to each startup script to run for a given runlevel is generally made in the /etc/rc<run_level>.d directory. Other Unix operating systems have similar but often slightly different conventions. It is presently an exercise left to the system administrator to properly create and configure startup scripts that will properly run on startup for a given Operating System. Example scripts for some common startup scripts may be found in the $CES_HOME/templates directory. These scripts are examples only and will need to modified/reviewed/tested locally to ensure they work properly for a given installation.

Oracle Utilities Network Management System Services are generally flexible and attempt to cater to the functional needs of various utility clients through the use of command line options and run-time parameters stored in the relational database. Below is a brief summary of the primary Oracle Utilities Network Management System Services. Details about available command line options and relational database parameters specific to each service can be found in the $CES_HOME/documentation/services directory.

SMService - System Monitor Service

SMService monitors the core Oracle Utilities Network Management System service and interface processes. It reads and caches the appropriate system.dat configuration file to determine which processes to initiate and monitor. In the event that a managed process fails, SMService restarts it based on the cached configuration data from the system.dat file.

The following variations of system.dat files should be located under $NMS_HOME/etc. There should be *.template versions of these files in the $CES_HOME/templates directory. These configuration files generally define the specific run-time executables and command line options necessary for a given Network Management System installation:

	
•

	

system.dat.init - defines configuration required for initial setup.

	
•

	

system.dat.model_build - defines minimum configuration required for initial model builds.

	
•

	

system.dat file - defines configuration for fully operational Network Management System.

sms_start.ces will launch SMService, which in turn will cache the $NMS_HOME/etc/system.dat file by default and then launch the remaining services, interfaces and adapters as defined by the $NMS_HOME/etc/system.dat file. The following command sequence can be used to specify an alternate system.dat type file:

 sms_start.ces -f ~/etc/my_system.dat

The smsReport tool can be used to request and monitor the SMService view of the processes it is currently managing. smsReport is a non-GUI tool used to report the state of the system by querying SMService. It is executed in either one-shot or monitor mode. One-shot mode is the default mode that queries SMService for the current state and displays it to the user on exit. However, if the system state is INITIALIZING, then smsReport automatically switches to monitor mode so as to not exit prior to initialization completing before exiting. Monitor mode is set by starting smsReport with the -monitor command line option. It serves the same function as the default one-shot mode but does not close after the system state has been reported.

To shutdown the Oracle Utilities Network Management System (gracefully) use the following script:

 sms_stop.ces

The sms_stop.ces script will shutdown all of the user environments (one at a time) and then the services in reverse order to how they where defined to startup in the ~/etc/system.dat file. Using this script generally prevents certain deadlock conditions which can occur if an attempt is made to stop all user environments and system services at the same time.

DBService - Database Service

DBService provides database access for any processes attached directly to the Isis message bus within the Oracle Utilities Network Manage System environment. The messaging backbone, Isis, directs database queries and commands to the appropriate Oracle RDBMS server and returns results to the requesting process.

Note : A given instance of DBService allows a configurable number of queries to occur in parallel but serializes RDBMS updates. By assigning update responsibility of specific tables to specific DBService instances (by convention) parallel updates can be supported which generally increases performance and/or scalability under system load. TCDBService, MBDBService are examples of this strategy.

ODService - Object Directory Service

ODService registers new objects as well as caches configuration and (optionally) run-time
information that is likely to be requested by applications in a particular form and/or on a regular
basis. This caching allows the requests to be handled very quickly without directly accessing the
database. Cached information is primarily static configuration data, such as object classes, class
hierarchy, symbology assignments and (optionally) device alias information.

DDService - Dynamic Data Service

DDService manages real time (dynamic) information required by the system. In addition to command line options DDService utilizes the srs_rules table for run time options.

Examples of dynamic data that DDService manages include:

	
•

	

Current status of switchable devices

	
•

	

Special operating conditions of devices (tags, crews, notes, etc.)

	
•

	

SCADA information (analogs, digitals, quality codes)

	
•

	

Operating authority (users and control zones)

When you make changes to Oracle Utilities Network Management System control zones (control_zones and/or control_zone_structures tables), you need to tell DDService to update its internal control zone memory structures with the following UpdateDDS command:

UpdateDDS -recacheZones

When you make changes to SCADA device definitions, you can tell DDService to update itself with the following UpdateDDS command:

UpdateDDS -recacheMeasures

MTService - Managed Topology Service

Real-time electrical systems are in a constant state of flux of electrical flow. A single device operation could de-energize a model section, create a parallel on one or more phases, ground one or more phases, create a loop condition, or extend some other form of energization/deenergization. Since the topological state (i.e., energization, ground status, energizing feeder, feeder color, etc.) of a device cannot be accurately determined without taking into account a large number of other devices and operating conditions, it is not possible for each application to independently determine current topological states. Instead, MTService maintains a complete topological copy of the model in memory, which it updates as devices and conditions change. It publishes topological impact updates and services topological data requests from other Network Management System applications and services.

JMService - Job Management Service

JMService is the customer trouble call analysis engine. It relies on MTService to trace device connectivity when determining probable outages in the system. Customer complaints (trouble calls) are fed into the system and JMService groups them using configurable rules to compute and publish the most likely cause of the problem. JMService also manages restoration resources (crews). In addition to command line arguments, JMService uses the srs_rules table for the majority of its run-time configuration options.

TCDBService - Trouble Call Database Service

This is a copy of DBService that runs specifically to improve the performance of JMService by handling database calls for JMService. This lets the main DBService manage database requests from operator activity not directly related to trouble calls.

MBService - Model Build Service

MBService is used in building a data model, which mirrors the customer's existing data model (generally extracted from a Geographic Information System such as ESRI, Intergraph, SmallWorld, or AutoCAD). When changes are made in the GIS a project-specific extractor is used to extract and transform GIS changes into a standard Network Management System format. MBService takes the standardized input, parses and integrates the resulting changes into the Oracle Utilities Network Management System electrical network model. In addition to maintaining the model database, MBService also generates map files, which are optimized for use with Network Management System graphical viewing tools.

SwService - Switching Service

SwService helps manage switch plan state transitions and provides a facility for sending updated plans to interested parties via e-mail.

MBDBService - Model Build Database Service

MBDBService serves the same purpose for MBService as TCDBService does for JMService. It is a copy of DBService that runs specifically to improve the performance of MBService by handling the database calls resulting from model building. It only applies if you use the -mbdbs command line option when starting MBService. This option bypasses DBService and uses MBDBService to perform queries and SQL commands.

MQDBService - MQService Gateway DBService

MQDBService provides direct access to the database for the MQSeries Gateway. This reduces competing throughput for the DBService reserved for operator interactions.

PFService - Power Flow Service

PFService manages real-time operations power flow calculations that allow you to view the complex voltages and currents at points and devices in the electrical network model. These calculations are performed on an electrical island basis by tracing from each energized source and collecting all the energized objects. SCADA measurements at the feeder head and at various points down the feeder are used to accurately distribute load to each load point. PFService sends the real-time power flow solution results, as well as information about voltage and flow violations, to various Oracle Utilities Network Management System windows for you to view.

CORBA Gateway Service

The CORBA Gateway service provides part of the interface between the Java-based applications such as Web Trouble, Storm Management, Web Call Entry, etc. and the other C++-based Oracle Utilities Network Management System services. The CORBA gateway allows the Java Application Servers to get published updates from services like JMService, DDService or MTService and also provides the mechanism to query these services directly on-demand. The Java Application Servers (i.e., WebLogic) must then take these updates and make them available for the Java (end-user) client applications.

The CORBA Gateway service uses Isis to communicate with the other Oracle Utilities Network Management System services. The CORBA Gateway service requires that the TAO (TheACE ORB) CORBA Naming Service be running. Normally TAO is configured to run (be default) on startup. See the $CES_HOME/templates/tao.template script for an annotated example of a tao startup/shutdown script that could be configured to run at system startup.

Note: We now recommend that you run two copies of the CORBA gateway for each Oracle Utilities Network Management System environment.

	
1.

	

The first instance is a dedicated publisher instance that takes messages published via the Oracle Utilities Network Management System services and publishes them the Java Application Server (WebLogic).

	
2.

	

The second instance is dedicated to handling Java client application requests to Oracle Utilities Network Management System services.

Examples of how to setup these corbagateway instances can be found in the $CES_HOME/ templates/system.dat.template file.

The WebLogic Java Application Server must be configured to correctly connect to the appropriate corbagateway(s). See the Oracle Utilities Network Management System installation guide for instructions on configuring the Java Application server.

If you need to run two or more Java Application Servers (WebLogic instances) to support two or more Oracle Utilities Network Management System environments on the same Unix machine you will need a corresponding number of IP addresses. One IP address is needed to support the appropriate instance of the Java Application Server for each Oracle Utilities Network Management System environment. This can be accomplished in one of two ways:

	
1.

	

If you have two or more (available) Ethernet ports on your server (or can add additional cards), attach that port to the network and assign it a new IP address.

	
2.

	

On most Unix systems, you can add a second IP address - known as an "alias" - to your single interface. You will need a second valid IP address for your network in order to do this.

Service Alert Service

Service Alert processes updates from other services such as job/event update information, device operations, as well as receiving notifications from database triggers. These "updates" serve as the triggers for Service Alert to determine when the criteria for sending out a notification have been met. Once triggered, Service Alert gathers relevant data and sends out the desired notifications.

Service Alert Email Administration

How Service Alert Email and Paging Notification Work

When initiating a notification, Service Alert sends email and paging requests to the CORBA gateway. It is the email toolkit code within the CORBA gateway that interfaces with a mail system. The email toolkit uses SMTP to send these message requests. * Therefore, to properly receive Service Alert notifications, an SMTP server needs to be configured and running on the network. All that is left to do is to describe to the email toolkit the configuration settings that it needs in order to communicate with the SMTP server.

Note: Pager notifications are also sent by SMTP, since most major paging providers allow messages to be sent to a pager via an email aliasing system.

Service Alert Email Administration

How Service Alert Email and Paging Notification Work

When initiating a notification, Service Alert sends email and paging requests to the CORBA gateway. It is the email toolkit code within the CORBA gateway that interfaces with a mail system. The email toolkit uses SMTP to send these message requests. * Therefore, to properly receive Service Alert notifications, an SMTP server needs to be configured and running on the network. All that is left to do is to describe to the email toolkit the configuration settings that it needs in order to communicate with the SMTP server.

Note: Pager notifications are also sent by SMTP, since most major paging providers allow messages to be sent to a pager via an email aliasing system.

Entering Email/Pager Configuration Settings

The following Unix environment variables need to be set up properly in order to configure the email/pager notifications.

	

Variable

	

Description

	

CES_SMTP_SERVER

	

This is the fully qualified network hostname of the mail server.

	

CES_DOMAIN_SUFFIX

	

Domain Suffix - This value should be a valid domain such as "oracle.com". This value is used in constructing the domain portion of the "From" field for all outbound messages. This field is also used during SMTP communication between the CORBA gateway and the mail server. It is important to set this to a valid domain, as some SMTP servers will verify that the domain exists and is real. If the server does not believe that the domain is legitimate, the email message may be discarded

The Email Username setting is a command line parameter on the CORBA gateway. The username is the string that appears after the "-username" command line option. This will appear in all email and pager notifications "From" field. It is probably a good idea to set up an email alias for this username, in case notification recipients attempt to reply to a notification. Note that the "@domain.com" portion of the username should be omitted as this comes from the "CES_DOMAIN_SUFFIX" Environment variable.

Service Alert Printing Administration

After installing the Oracle Utilities Network Management System Web Gateway, three sets of configuration steps need to be performed to allow printing from Service Alert, as described in the following paragraphs.

Adding Printers for Service Alert

A Unix System Administration will need to add the printers/queues to the Unix server where the Service Alert application is executing.

Services Configuration File

The Services Configuration Data File (system.dat) configures services for operation. It determines how services are defined, which default flags to use, on which computers, and how long the waitfor timer runs. The system.dat file is located in the $NMS_HOME/etc directory.

There are a number of sections in the system.dat file. The most critical sections include:

	
•

	

scripts

	
•

	

server

	
•

	

services

	
•

	

applications

	
•

	

program

	
•

	

instances

Scripts

The following table defines the scripts that SMService uses to perform various tasks.

	

Script

	

Description

	

LaunchScript

	

Used to launch a service. The most widely used mechanism for starting all the services is:

sms_start.ces

The default script to start a single service is sms_start_service.ces. Its syntax is:

sms_start_service.ces <host> <service> <process> <options>

host - Name of the machine on which to run the service

service - Name of the service

process - Name of the executable that launches the service

options - Command line options that are passed to the process at initialization

For example, to start DBService, type:

sms_start_service.ces train1 DBService DBService -nodaemon

Define the launch script in system.dat as follows:

LaunchScript <script name>

If no script is specified, then sms_start_service.ces is assumed.

	

Notify Script

	

Announces an event. This script eliminates the need for an Isis tool as an announcer. It can be used to generate e-mails and logs, or to interface to paging systems. When developing this script, keep in mind that it does not connect to Isis. The syntax is:

<script name> <time> <host> <process> <event type> <system state> <old system state> <message>

time - Date/time stamp.

host - Name of the machine on which the processes are running.

process - Name of the process.

event
 type - The process state. Valid values are:

	

	

STARTING
- The process has started.

	

	

INITIALIZING - The process has registered and is initializing.

	

	

RUNNING - The process reports as initialized.

	

	

FAILED - The process has failed.

	

	

FAILED_INTERFACE - The process reports a failed interface.

	

	

STOPPED - The process intentionally stops.

	

	

INFO - The process generates a progress report.

system state - State of the system. Valid values are:

	

	

INITIALIZING - SMService is launching processes from system.dat.

	

	

NORMAL - All processes are running or are intentionally stopped.

	

	

WARNING - A non-critical process has failed. This state also refers to failed critical processes that have another instance running.

	

	

CRITICAL - A critical process has failed and there are no other instances running.

old system state - State of the system before the event generating the announcement occurred.

message - Message supplied by SMService or the process that caused the event.

Define the notify script in system.dat as follows:

 NotifyScript <script name>

There is no default value, so if a script is not defined here, then only Isis announcements are generated.

	

CoreScript

	

SMService looks to this script for instructions when a core file is detected. This script determines what should be done with the file, such as announce the existence of the file, delete it, archive it, or e-mail the administrator. It does not connect to Isis. Its syntax is:

<script name> <process> <corefile>

process - Name of the process that has produced the core file

corefile - Path to the core file

Define the core script in system.dat as follows:

 CoreScript <script name>

If a script is not defined, the core file remains and will be detected by SMService during the next cycle.

Server

This section of the system.dat file defines all machines that run services. Each server must be assigned a separate server ID number from 1 to 10. The format is:

 service <hostname> <server id>

For example, for services running between machines london and paris:

 server london 1

 server paris 2

The value for hostname can be specified literally as <local>. If this is the case, then SMService will automatically substitute the name of the current node as the machine name. For example:

 server <local> 1

While it is possible to configure services to run on different nodes and to have redundant versions of non-database services running on multiple nodes this is generally only done for very specific circumstances. In general it is suggested that you use the <local> syntax and run everything on one server.

Service

These entries in the system.dat file are definitions of services and process groups, such as interfaces, that are launched and monitored by SMService. Below is a sample service section:

	

NAME

	

REQUIRED

	

START

	

DELAY

	

RESTARTS

	

RESET

	

MODE

	

service SMService

	

Y

	

60

	

0

	

10

	

86400

	

	

service DBService

	

Y

	

90

	

0

	

10

	

86400

	

	

service ODService

	

Y

	

180

	

0

	

10

	

86400

	

	

service DDService

	

Y

	

180

	

0

	

10

	

86400

	

	

service MTService

	

Y

	

180

	

0

	

10

	

86400

	

	

service MBService

	

Y

	

180

	

0

	

10

	

86400

	

	

service JMService

	

Y

	

280

	

0

	

10

	

86400

	

	

service SwService

	

Y

	

280

	

0

	

10

	

86400

	

	

service PFService

	

Y

	

4000

	

0

	

10

	

86400

	

	

service corbagateway

	

Y

	

120

	

0

	

10

	

86400

	

	

service service_alert

	

Y

	

120

	

0

	

10

	

86400

	

The following table describes the SMService Service fields.

	

Field

	

Description

	

NAME

	

The name of the executable for the particular service.

	

REQUIRED

	

Indicates whether the instance of the service is required for the system to be functional. Valid values are ‘Y’, ‘Yes’, ‘N’, or ‘No’. If there are no instances of a required service, the system locks until an instance is started.

	

START

	

The time taken for a service to start.

	

DELAY

	

Sets the number of seconds to wait before restarting a failed service. It only applies to processes that failed after they were running. Processes that fail before initialization are restarted based on the period parameter. A negative number indicates that the process is not restarted.

	

RESTARTS

	

The number of times to attempt restarting a process. A process is no longer automatically restarted after this value is exhausted until the process is reset (see below).

	

RESET

	

The timeout period that controls the rate at which processes are reset. When a process is reset, the restart counters re-initialize. A negative value deactivates this feature.

	

MODE

	

An optional argument that specifies the high availability mode of the service. If a mode is specified, the service starts with -<mode> and -number <n>, where <n> is the id defined for the node in the server line. Valid modes are exclusive, redundant, parallel or not specified.

Exclusive runs with only one server.

Redundant specifies running two servers, each with a database that mirrors the other.

Parallel involves using Oracle Parallel Server to run two servers with a shared database.

Program

The program section of the system.dat file defines the executable program and command line options for each service. This section is optional, but can be used for the following:

	
•

	

Specifying an alternative executable for a particular service. For example, setting TCDBService as an instance of DBService.

	
•

	

Specifying command line options across all instances of a service. This simplifies the instance definition so that the command line options do not have to be duplicated for each definition.

Below is a sample applications section:

	

NAME

	

EXE

	

ARGS

	

program DBService

	

DBService

	

-nodaemon

	

program ODService

	

ODService

	

-nodaemon -aggregates

	

program DDService

	

DDService

	

-nodaemon -zones -subscribezone -allowReset -alarms ALL

	

program MTService

	

MTService

	

-nodaemon

	

program MBService

	

MBService

	

-nodaemon

	

program JMService

	

JMService

	

-nodaemon -dbs

	

program SwService

	

SwService

	

-nodaemon

	

program PFService

	

PFService

	

-nodaemon

	

program corbagateway

	

Corbagateway

	

-nodaemon

-ORBInitRef NameService=iioploc:// <hostname>:1750/NameService

-ORBLogFile /users/<username>/dialog_log/ orb.log

-ORBDebugLevel 3

-implname InterSys_<hostname>_<username>

-iorfile /users/<username>/etc/ <username>_vns.ior

-publisher

-xmldir /users/<username>/dist/wwwroot/xml

	

program service_alert

	

Mycentricity

	

-nodaemon -xmldir /users/<username>/dist/ wwwroot/xml

The following table describes the SMService Program fields.

	

Field

	

Description

	

NAME

	

Specifies the name of the service that the executable belongs to. Valid services for this value are defined in the service section.

	

EXE

	

Specifies the name of the executable that runs the service.

	

ARGS

	

Defines the command line options that are used in all instances of the service.

Instance

The instance section of the system.dat file defines how the services are started. The format of each line is:

 instance <node> <service> <database/args>

The following example starts nine services on the local node.

	

	

NODE

	

SERVICE

	

DATABASE/ARGS

	

instance

	

<local>

	

SMService

	

	

instance

	

<local>

	

DBService

	

	

instance

	

<local>

	

ODService

	

	

instance

	

<local>

	

DDService

	

	

instance

	

<local>

	

MTService

	

	

instance

	

<local>

	

JMService

	

	

instance

	

<local>

	

SwService

	

	

instance

	

<local>

	

corbagateway

	

	

instance

	

<local>

	

service_alert

	

The following table describes the SMService Instance fields.

	

Field

	

Description

	

NODE

	

Defines the node. Valid nodes for this value are defined in the server section.The value for NODE can be specified literally as <local>. If this is the case, then SMService will automatically substitute the name of the current node as the instance for which the service is to be started. By using "<local>" in place of a specific machine name, you can simplify your effort when replicating a system; you will not need to make changes to the system.dat at all.

	

SERVICE

	

The service being defined.

	

DATABASE/ARGS

	

Command line arguments that are applied when the service starts at this node. If the program section specifies command line options for a particular service, it applies to all nodes, so the arguments do not need specification here.

Model Build System Data File

The Model Build System Data File (system.dat.model_build) configures services for Model Build/ Configuration operations. It is formatted the same as system.dat.

The system.dat.model_build starts only SMService, DBService, ODService, and MBService. These services are generally executed from configuration scripts, such as ces_setup.ces, which require that some services be running to access the database and object classes.

Starting and Stopping Services

In order to start services, the following configuration files must be updated for the specific site configuration:

 ~/etc/system.dat.model_build

 ~/etc/system.dat

 ~/etc/system.dat.init

Starting Services

To start services, complete these steps:

	
1.

	

Login to the server machine as the Oracle Utilities Network Management System Admin user.

	
2.

	

Type:

sms_start.ces

SMService starts. It reads and caches the system.dat file by default and starts the remaining services based on the data it just cached.

Note: Using the -f <filename> option with sms_start.ces will override the default behavior and SMService will cache the specified file instead (e.g., ~/etc/system.dat.init, or ~/etc/system.dat.model_build.etc.).

Stopping Services

To stop services, type:

sms_stop.ces -s

When stopping services, you may have other tools running. The services are the core dependencies of all applications, so when services are stopped, all tools should be stopped and then restarted after the services have been re-launched. The best method to stop everything short of stopping Isis is to stop the process by groups.

	
1.

	

To stop both clients and services:

 sms_stop.ces -a

Note: Occasionally, there are tools or Isis processes that may continue to exist as defunct and/or hung processes after the above commands do (or do not) run to completion. Check the process list on the Unix machines for these processes and kill them prior to restarting. Otherwise, otherwise the system may not restart properly.

Building the System Data Model

The Model Build process creates the operations data model that mirrors the utility company’s Geographic Information System.

This chapter defines the configuration of the model builder and provides an overview of validating and testing tools. It includes the following topics:

	
•

	

Model Builder Overview

	
•

	

Data Directory

	
•

	

Model Configuration

	
•

	

Customer Model - Logical Data Model

	
•

	

Customer Model Views

	
•

	

Model Build Process

	
•

	

Model Manipulation Applications and Scripts

	
•

	

Schematics

	
•

	

In Construction Pending / Device Decommissioning (ICP)

	
•

	

Auto Throw-Over Switch Configuration (ATO)

	
•

	

Symbology

	
•

	

Power Flow Data Requirements and Maintenance

	
•

	

Catalog Tables

	
•

	

Power Flow Engineering Data Maintenance

	
•

	

Spatially Enabling the Data Model for Advanced Spatial Analytics

Model Builder Overview

The Model Builder Service (MBService) is used in building an Oracle Utilities Network Management System operations data model. The Oracle Utilities Network Management System operations data model is built using the customer’s existing "as-built" data model (usually a Geographic Information System such as ArcGIS or graphic files such as AutoCAD). Necessary enhancements are applied to the GIS data model to make the "real-time" data model.

When changes are made in the GIS, MBService then merges them into the Oracle Utilities Network Management System data model. In addition to maintaining the model database, MBService also generates map files that are loaded for visual inspection.

A single spatial grouping of data known as a partition passes through various stages during its incorporation into the Oracle Utilities Network Management System Operations Model:

	
•

	

GIS Data Extraction - to extract the data from the GIS to Oracle’s vendor neutral model preprocessor (MP) file format.

	
•

	

Preprocessing - to produce model build (.mb) files used by the Model Builder.

	
•

	

Model Build (MBService) - saves the information into the Oracle Utilities Network Management System Operations Model RDBMS and writes out a set of maps.

The Model Builder service (MBService) is responsible for managing structural changes to the core operations model. Structural changes are largely the creation, deletion, and modification of objects. Non-structural changes involve updating attribute information such as status values.

The core operations model describes a set of interconnected network components with graphical representations and managed statuses. The objects contained within the model are subdivided into partitions with interconnections of partitions managed through the use of boundary nodes.

This data model must initially be obtained from an external source (such as a GIS) to populate the core operations model. Once populated, the core operations model is the basis for support of system services and the construction of diagrams.

The real-time services typically load parts of the model during initialization. These services also update attributes of the model. The process of model edit involves the creation, update, and deletion of objects that require consequential updates within services.

Patches

Import Files are submitted to MBService for processing. Each set of transactions submitted to MBService is considered a model patch and is applied to the current model. Most often, a patch is generated when a single partition is submitted to MBService for building.

The lifetime of a patch includes the following:

	
•

	

Initial creation of the patch either locally or externally.

	
•

	

A ddition of the patch to the core operations model, where the patch will either be applied and become part of the current operations model or will be deleted if there is a problem with the patch resulting from patch format errors or real-time issues in the operations model (i.e., deleting a device with a call or outage).

Data Directory

The data directory, which is owned by the Unix Oracle Utilities Network Management System services user, must be unique for each Oracle Utilities Network Management System implementation. This directory is also referred to by the $OPERATIONS_MODELS environment variable. A unique version of this directory must be present for each Oracle Utilities Network Management System data model. It contains the model map files that the Viewer picks up and loads for the operator. These maps must be consistent with the data model; variations will cause problems with the Viewer’s display of maps.

For example, if the same $OPERATIONS_MODELS directory is shared by the PRODUCTION and TEST environments (which have separate data models), then the map files that PRODUCTION accesses can get corrupted by model builds done in the TEST system. Model builds can also cause discontinuity between the data maps that PRODUCTION sees and the database that PRODUCTION uses.

Of course, with Unix systems the model builds performed on TEST may fail due to an inability to write the resulting maps to the PRODUCTION data directory in the first place, if permissions are established correctly. This is another common mistake in environment construction. When you replicate environments, confirm that important variables like $OPERATIONS_MODELS are defined correctly.

Every Unix Oracle Utilities Network Management System user must have a local copy of the $OPERATIONS_MODELS directory available for use by the Viewer. Once set up correctly, Oracle Utilities Network Management System maintains various remote copies of the map files by copying them from the database server as they are modified.

[image:] SYMBOLS/

[image:] VFONTS/

[image:] errors/

[image:] Patch<n>.log

[image:] patches/

[image:] *.mb

[image:] done/

[image:] *.mb

[image:] reports/

[image:] <metafiles>/

[image:] *.mf * *.bmf

[image:] *.mad & *.mac files

The following table describes the Model Builder directories and files.

	

Directory/ Files

	

Description

	

SYMBOLS

	

Contains the defined symbol sets for the presentation of all objects. (Convention only. May be moved elsewhere.)

	

VFONTS

	

Contains the set of supported vector fonts used in the presentation of scalable text. (Convention only. May be moved elsewhere.)

	

errors

	

Contains the output files of the model builder specifically related to errors and patch processing. The log files are named in Patch<patch_number>.log format.

	

*.mac

	

Textual representations of the background maps. The background map files corresponding to the *.mad files. These files are used by the Viewer to present background graphic information (boundaries, roads, text, etc.).

	

*.mad

	

Textual representations of the electrical maps. The map files used by the Viewer when presenting graphic information correlated to the network information stored in the database. It is essential to keep the database and the maps synchronized to ensure proper presentation and map conductivity.

	

metafile dir (binary map files)

	

The name of the metafile directory varies with the architecture. The exact name of the metafile directory is determined by the string: $(uname).$(uname -m | sed "s/\//-/g")

The metafile directory contains a binary copy of the maps that have been built. Whenever possible, the metafile is used instead of the *.mad files because metafiles are smaller and much faster. In a client/server environment, metafiles are distributed to the clients after a model build. (See below for more information)

	

patches

	

Contains <mapname>.mb files and/or <mapname>.mbd directories. These files define the model build transactions that will be submitted to the model. Files are moved into the done subdirectory after they have been submitted.

	

reports

	

This directory contains difference reports, which list all changes being introduced into the model for each patch. These are only generated if MBService is running with the -report option.

	

error

	

Contains the log files of the model build patch commitment process. The log files are named in Patch<patch number>. log format.

Binary Map Files

There is another directory that stores binary versions of all the *.mad and *.mac files. This directory is determined by the formula $OPERATIONS_MODELS/$(uname).$(uname -m | grep sed -e "s/\//-/g"). Basically, the Model Build Service converts the *.mad and *.mac files into O/S specific binary files stored as *.mf and *.bmf files respectively. The Viewer uses this directory to first search for an appropriate metafile version of the map to load before trying to load the text version. The binary version improves the performance of the Viewer loading the map.

Note: The caveat here is that the metafiles are O/S architecture specific. While the *.mad and *.mac files can be reproduced from a Sun system to a Linux system for example, the metafiles must be rebuilt against the Linux system architecture using the BUILD_METAFILES.ces script. Luckily this process is extremely fast.

For Application server client environments the Viewer only requires metafiles, so the *.mad and *.mac files only need to reside on the Services/Database server. The metafiles are all you need to distribute to client systems. Since the metafiles are significantly smaller in size than the *.mad and *.mac files, the distribution process has a lower impact to bandwidth.

Replicating an Oracle Utilities Network Management System

Essentially an entire Oracle Utilities Network Management System can be replicated across architectures without loss of data content. All you need to take into consideration are the metafiles, binary executables, and Isis executables, all of which are the only O/S specific characteristics of an Oracle Utilities Network Management System. This keeps you from relying upon specific machine architecture.

Model Configuration

This section provides a checklist of the steps to follow before a model build can be performed. There are numerous configuration scripts and SQL files that need to be configured in order to fully set up an operational Oracle Utilities Network Management System.

Conditions

The following conditions must be met for a successful model build.

Environment Variables

Each user of the Oracle Utilities Network Management System must have the environment variables. Environment variables are set in the nmsrc file located in the $NMS_HOME directory. You may edit the file using any text editor. The following environment variables are required to configure and build the model.

	

Environment Variable

	

Description

	

RDBMS_USER

	

Database login user name.

	

RDBMS_PASSWD

	

Database login password.

	

RDBMS_TYPE

	

Database type (ORACLE).

	

RDBMS_HOST

	

Database host machine. In the case of ORACLE_OCI, append ".world" to the machine name. Dependent upon the Oracle installation.

	

RDBMS_HOSTS_DIRECT

	

Usually the same as RDBMS_HOST. If multiple database instantiations are in use (as in software high availability), then the RDBMS_HOST values are concatenated together for RDBMS_HOSTS_DIRECT.

	

CMM_CELL

	

The name of the Isis communication "channel". All systems that have the same CMM cell value will communicate. Any value may be used, as long as all the interacting systems have the same value. Other non-interacting systems may not have this value.

	

CES_DATA_FILES

	

This environment variable is set to the directory where most configuration data files used by Oracle Utilities Network Management System software are installed. This includes *.dat, *.sym, *.cel files, among others.

	

NMS_ROOT

	

This environment variable is set to the directory where the
top of the Oracle Utilities Network Management System
installation occurs (i.e., ~/nms).

	

CES_HOME

	

This environment variable is set to the product installation
directory (i.e., $NMS_HOME/product/1.10.0.0).

	

CES_LOG_DIR

	

This environment variable is set to the location of the
service log files.

	

DATEMSK

	

This environment variable points to the path of the
ces_datefmt file.

	

CES_SERVER

	

This environment variable contains the hostname of the
Oracle Utilities Network Management System server.

	

CES_SMTP_SERVER

	

This environment variable points to an SMTP server
where mail transactions can occur.

	

CES_SQL_FILES

	

This environment variable is set to the directory where
most SQL files used by Oracle Utilities Network
Management System software are installed.

	

CES_SITE

	

This environment variable contains a list of a set of
configuration standards. Oracle defines the standard base
configuration upon which customer configurations are
built. The CES_SITE variable indicates which
configurations to use. The setup process looks only for the
files containing the values specified in this variable. The
syntax is:

CES_SITE = "<project> product ces"

The first argument is the name of the customer or project.
The last argument is the name of the default base
configuration. There may be multiple configurations
specified between the first and last arguments. When the
system boots it processes the arguments from right to left,
so it first loads the base configuration. Then it moves on to
the previous argument and loads the associated
configuration files if they exist. The process continues until
each argument is processed.

	

OPERATIONS_MODELS

	

This variable specifies the directory into which the model
will be built. That is, all maps and log files from the model
build are located in this directory.

	

SYMBOLOGY_SET

	

This environment variable is set to the full path of the
Oracle Utilities Network Management System symbol file
<project>_SYMBOLS.sym.

	

CES_BASE_SYMBOLOGY

	

Directory that contains CES_SYMBOLS.sym, the default
symbol file.

	

VFONT_DIR

	

The directory that contains a set of font definitions for
vector text. By convention, it is set to
$OPERATIONS_MODELS/VFONTS

	

CES_DATA_TABLESPACE

	

Contains the name of the primary Oracle tablespace. The
installation and setup process uses it to better manage how
database tables are set up.

	

CES_INDEX_TABLESPACE

	

Contains the name of the Oracle tablespace that is to be
used for most indexes. The installation and setup process
will attempt to put most indexes into this tablespace.

	

NMS_LOADPROFILE_DIR

	

This applies to power flow configurations where individual
transformer profiles are used. It is the directory where the
CSV files containing the profile data should be placed.

Isis Configuration

Isis is the messaging backbone used by the Oracle Utilities Network Management System Operations Model, and it is required for every step of a model build. See
Isis Configuration
 for information about setup and configuration.

The CMM_CELL environment variable must be set uniformly over the network in order to communicate with programs on other machines.

To ensure Isis is running, type:

 ps -ef | grep isis

Result: A pid (process id) is returned to confirm that Isis is running.

Verifying Database Connection

Through the installation process the nmsrc file and the Oracle Wallet should be setup correctly so the ISQL.ces script can be run by an administrative user to connect to an interactive session of the database.

ISQL.ces can make a connection to the database. To verify that a connection is possible to the database, complete these steps:

	
1.

	

From the <project> user name on the master server, type:

ISQL.ces

A database prompt ensures that the environment is set up correctly.

	
2.

	

Type quit to exit the database connection.

Directory

The model builder is primarily concerned with the tables within the selected database and the directory structure located under ${OPERATIONS_MODELS} as shown below.

Verifying Directory Set Up

A directory structure must be set up. To verify that it has been set up, type the following commands:

$ cd ${OPERATIONS MODELS}

$ ls

Result: A list of all directories will be displayed.

Setting up the Directory Structure

If the directory structure has not been set up, run the script ces_mb_setup.ces to configure it. It requires the OPERATIONS_MODELS environment variable to be set to the user’s map data directory.

Note: The ces_mb_setup.ces script is part of the model setup process, so the step listed here is redundant if this has already been completed.

The <project>_mb_setup.ces script creates and cleans the directory structure for customer specific model build setups.

The <project>_mb_preprocessor.ces script is called during the initial setup process to set up any additional directories or database tables that may be required by the model preprocessor. It is only required if special setup is needed.

Cleaning Up the Directory

If the data directory already exists from an obsolete data model, ces_mb_setup.ces -clean should be called to clean up all the residual files.

WARNING: If you run this script with the -clean option, you will delete
the operational model.

Directory

The model builder is primarily concerned with the tables within the selected database and the directory structure located under ${OPERATIONS_MODELS} as shown below.

Verifying Directory Set Up

A directory structure must be set up. To verify that it has been set up, type the following commands:

$ cd ${OPERATIONS MODELS}

$ ls

Result: A list of all directories will be displayed.

Setting up the Directory Structure

If the directory structure has not been set up, run the script ces_mb_setup.ces to configure it. It requires the OPERATIONS_MODELS environment variable to be set to the user’s map data directory.

Note: The ces_mb_setup.ces script is part of the model setup process, so the step listed here is redundant if this has already been completed.

The <project>_mb_setup.ces script creates and cleans the directory structure for customer specific model build setups.

The <project>_mb_preprocessor.ces script is called during the initial setup process to set up any additional directories or database tables that may be required by the model preprocessor. It is only required if special setup is needed.

Cleaning Up the Directory

If the data directory already exists from an obsolete data model, ces_mb_setup.ces -clean should be called to clean up all the residual files.

WARNING: If you run this script with the -clean option, you will delete
the operational model.

Directory

The model builder is primarily concerned with the tables within the selected database and the directory structure located under ${OPERATIONS_MODELS} as shown below.

Verifying Directory Set Up

A directory structure must be set up. To verify that it has been set up, type the following commands:

$ cd ${OPERATIONS MODELS}

$ ls

Result: A list of all directories will be displayed.

Setting up the Directory Structure

If the directory structure has not been set up, run the script ces_mb_setup.ces to configure it. It requires the OPERATIONS_MODELS environment variable to be set to the user’s map data directory.

Note: The ces_mb_setup.ces script is part of the model setup process, so the step listed here is redundant if this has already been completed.

The <project>_mb_setup.ces script creates and cleans the directory structure for customer specific model build setups.

The <project>_mb_preprocessor.ces script is called during the initial setup process to set up any additional directories or database tables that may be required by the model preprocessor. It is only required if special setup is needed.

Cleaning Up the Directory

If the data directory already exists from an obsolete data model, ces_mb_setup.ces -clean should be called to clean up all the residual files.

WARNING: If you run this script with the -clean option, you will delete
the operational model.

Directory

The model builder is primarily concerned with the tables within the selected database and the directory structure located under ${OPERATIONS_MODELS} as shown below.

Verifying Directory Set Up

A directory structure must be set up. To verify that it has been set up, type the following commands:

$ cd ${OPERATIONS MODELS}

$ ls

Result: A list of all directories will be displayed.

Setting up the Directory Structure

If the directory structure has not been set up, run the script ces_mb_setup.ces to configure it. It requires the OPERATIONS_MODELS environment variable to be set to the user’s map data directory.

Note: The ces_mb_setup.ces script is part of the model setup process, so the step listed here is redundant if this has already been completed.

The <project>_mb_setup.ces script creates and cleans the directory structure for customer specific model build setups.

The <project>_mb_preprocessor.ces script is called during the initial setup process to set up any additional directories or database tables that may be required by the model preprocessor. It is only required if special setup is needed.

Cleaning Up the Directory

If the data directory already exists from an obsolete data model, ces_mb_setup.ces -clean should be called to clean up all the residual files.

WARNING: If you run this script with the -clean option, you will delete
the operational model.

Class Organization

The operations model is designed around a class hierarchy. At the top of the hierarchy is the superclass, from which all other classes inherit attributes. The hierarchy may have multiple levels, each level having a parent/child relationship. The superclass is the only level that is always a parent and never a child.

Class Inheritance Definition

Classes and inheritance are defined and configured in the <project>_classes.dat and <project>_inheritance.dat files, respectively, located in the <project>/data directory. These files are loaded when the ces_setup.ces command is run to set up the data model.

These files can be individually loaded using the ODLoad command. The syntax to load classes.dat in Classes table via ODLoad is:

 ODLoad -c <filename>

The inheritance relationships file, inheritance.dat, can be loaded into the INHERITANCE table via ODLoad. The syntax is:

ODLoad -I <filename>

In addition to these base class and inheritance files, special files may be included for dynamic condition classes (<project>_cond_classes.dat, <project>_cond_inheritance.dat) and classes required for the power flow application (<project>_pf_classes.dat, <project>_pf_inheritance.dat). These additional files would be supplemental to the base files and should not duplicate any entries.

Oracle includes some required classes within the ces_core_classes.dat file. These classes are required in order for the Oracle Utilities Network Management System to work properly. Their inheritance is defined in ces_core_inheritance.dat and is also required. None of the information in these files should be changed, removed, or duplicated.

Class Organization

The operations model is designed around a class hierarchy. At the top of the hierarchy is the superclass, from which all other classes inherit attributes. The hierarchy may have multiple levels, each level having a parent/child relationship. The superclass is the only level that is always a parent and never a child.

Class Inheritance Definition

Classes and inheritance are defined and configured in the <project>_classes.dat and <project>_inheritance.dat files, respectively, located in the <project>/data directory. These files are loaded when the ces_setup.ces command is run to set up the data model.

These files can be individually loaded using the ODLoad command. The syntax to load classes.dat in Classes table via ODLoad is:

 ODLoad -c <filename>

The inheritance relationships file, inheritance.dat, can be loaded into the INHERITANCE table via ODLoad. The syntax is:

ODLoad -I <filename>

In addition to these base class and inheritance files, special files may be included for dynamic condition classes (<project>_cond_classes.dat, <project>_cond_inheritance.dat) and classes required for the power flow application (<project>_pf_classes.dat, <project>_pf_inheritance.dat). These additional files would be supplemental to the base files and should not duplicate any entries.

Oracle includes some required classes within the ces_core_classes.dat file. These classes are required in order for the Oracle Utilities Network Management System to work properly. Their inheritance is defined in ces_core_inheritance.dat and is also required. None of the information in these files should be changed, removed, or duplicated.

Attribute Table Configuration

The Oracle Utilities Network Management System attribute table is populated using <project>_attributes.sql. The user attribute table is populated using the <project>_schema_attributes.sqlfile.

Control Zone Configuration

If you plan to use Oracle Utilities Network Management System control authority functionality, then all electrical devices should have an assigned Network Component Group (NCG). This is usually assigned in the source data or computed in the preprocessor.

Symbology

 Oracle Utilities Network Management System Viewer symbol information is stored in <project>_SYMBOLS.sym file. The <project>_ssm.sql file maps classes to the particular symbol.The symbology file build process has been standardized to build the run-time symbol file ($NMS_HOME/<project>/data/SYMBOLS/<PROJECT>_SYMBOLS.sym) from these symbol file sources in order of increasing preference:

	
1.

	

$CES_HOME/product/data/SYMBOLS/MASTER_SYMBOLS.sym,

	
2.

	

$CES_HOME/i18n/data/SYMBOLS/MASTER_SYMBOLS.sym,

	
3.

	

$NMS_HOME/<project>/data/SYMBOLS/<PROJECT>_DEVICE_SYMBOLS.sym,

	
4.

	

$NMS_HOME/<project>/data/SYMBOLS/ <PROJECT>_CONDITION_SYMBOLS.sym.

The command, nms-make-symbols, will do the construction of the run-time symbology file and will make a backup of the resulting file if one existed prior to the execution of this script. Run nms-make-symbols before running nms-install-config to get your <project>_SYMBOLS.sym file up to date with the your latest configuration and NMS product release.

Service Configuration File

The sms_start.ces.cesscript is used to start up Oracle Utilities Network Management System services. It normally reads the system.dat file to determine which services to start up and what arguments to give them. Before a model is built, this configuration must not be used, because it contains startup commands for the Dynamic Data Service (DDService), the Managed Topology Service (MTService), and the Job Management Service (JMService), none of which will execute until a model has been at least partially built. The model build process expects to find another configuration file, system.dat.model_build, in the same directory that has a more limited set of services. In addition, there is a system.dat.init file that starts up only the database service.

Licensed Products File

The Automated Setup script (ces_setup.ces) and related .sql and .ces files will reference a <project>_licensed_products.dat file to properly configure the model to support the products you have licensed. This file is a text file and contains a list of the licensed Oracle Utilities Network Management System options. There is a template version of this file in $CES_HOME/templates/licensed_products.dat.template. The template should be copied to your $NMS_CONFIG/sql directory and renamed to a <project>_licensed_products.dat file. Then you should edit the file to uncomment the options you have licensed and are implementing. This edited template file should then be installed using the nms-install-config installation script prior to running the ces_setup.ces command.

Here is a list of options in the template file, with an indication of the license bundle they are in and the application(s) they affect:

Outage Management System - Standard Edition ####

OMS-SE Applications ##

#opws # Operator’s Workspace (also used with DMS-SE)

#crewman # Trouble Management

#troubleman # Trouble Management

#webgateway # Configuration Assistant, any "Web" products

OMS-SE Adapters ##

#crsi_gateway # Oracle Utilities CCB-NMS integration

#oms_mwm # Oracle Utilities NMS-MWM integration

#ivr_gateway # Generic Interactive Voice Recognition integration

Outage Management System - Enterprise Edition ####

OMS-EE Adapters ##

#mq_gateway # IBM MQSeries integration

#mobile # MQ Mobile integration

#amr # Generic AMR/AMI integration

Distribution Management System - Standard Edition ####

#WebSwitching # Web Switching Management (mutually exclusive with Switchman)

#switchman # Original Switching Management (mutually exclusive with WebSwitching)

Distribution Management System - Enterprise Edition ####

#powerflow # Power Flow, Volt/VAr Optimization, FLM, Suggested Switching

#flm # Feeder Load Management

#network_analysis # Power Flow

#dynratings # Dynamic Line Ratings

#flm # Feeder Load Management

#opf # Volt/VAr Optimization

#ss # Suggested Switching

Additional NMS Applications - General ####

#datamart # NMS DM (Oracle Utilities Performance Datamart product)

#bi # NMS BI (Oracle Utilities Business Intelligence integration)

Additional NMS Applications - OMS focus ##

#crewcentricity # NMS Web Client (Web Workspace/Web Trouble) and Call Center (WCE, WCB)

#mycentricity # NMS Paging (Service Alert)

#stormman # NMS Storm (Storm Management)

Additional NMS Applications - DMS focus ##

#flisr # Fault Location, Isolation, and Service Restoration

#fla # Fault Location Analysis

Automated Setup

Oracle has an automated process that sets up the database schema and directory structure. Any scripts, SQL files, or data files that are properly set up, named and installed will automatically get picked up and used by this process. The automated setup process will use various SQL files mentioned in this section to build the initial data model.

ces_setup.ces: This script must be run on the model build host machine, the machine on which MBService is running. This process loads scripts, SQL, and data files that are properly configured and installed. The script makes liberal use of ISQL.ces, which submits all SQL files to DBService to be run. The syntax is:

ces_setup.ces [[-clean [-noVerify]] [-reset] | [-offline]] [-showme] [-o <logFile>] [-noInherit] [-debug]

[-noMigrations] [-cust]

The following table describes the ces_setup.ces command line options.

	

Option Variable

	

Description

	

-clean

	

Destroys the current model in order to build a new model. A prompt requires the user to verify this option. After this, a rebuilt model will still retain and use the same internal device identifiers (handles). This is useful for continuity of reporting before and after a clean model build.

	

-noVerify

	

Bypasses the interactive verification prompt that opens for the -clean option.

	

-reset

	

Resets the generation of internal device identifiers (handles). If -reset if used with -clean, then a model built afterward will not be relatable to the previous model, even though they may look the same.

	

-offline

	

Preserves the data model, but erases the real-time and historic information concerning the model, such as tags, permits or notes. Configuration changes made directly to the database may be lost. For example, a list of login users maintained with the SqlX tool would be replaced with the login users defined in the CES_USER configuration table located in <project>_ceslogin.sql.

	

-showme

	

Prints the complete list in sequential order of scripts, SQL, and data files that are loaded or executed during the model build. Child scripts are indented in the list to easily identify parents. This option must be included in the database table or directory creation scripts in order to work properly.

	

-o <logFile>

	

If the -o parameter is specified, output will go to the log with the specified logFile name, except if "-o -" is used, in which case output will go to stdout.

	

-cust

	

Updates the customers view after the setup is completed.

	

-noMigrations

	

Skips the automatic PR migration process.

Use this option with caution, as it deviates from the supported process.

	

-noInherit

	

Skips base configuration and loads only the customer’s configuration. This environment variable contains a list of a set of configuration standards. Oracle defines the standard base configuration upon which customer configurations are built.

Use this option with caution, as it deviates from the supported process.

ces_setup.ces Log File

ces_setup.ces automatically send its output to a log file in $CES_LOG_DIR. The standard naming convention is:

	
•

	

setup.<date>.<time>.log

The log file named is amended when any combination of the -clean, -offline, or -showme parameters are used:

	
•

	

setup_clean.<date>.<time>.log

	
•

	

setup_offline.<date>.<time>.log

	
•

	

setup_showme.<date>.<time>.log

	
•

	

setup_clean_showme.<date>.<time>.log

	
•

	

setup_offline_showme.<date>.<time>.log

When output is sent to a log file, a single line will be sent to the console indicating the name of the log file. The first line of the log file shows the arguments that were passed to ces_setup.ces

The CES_SITE variable indicates which configurations to use. The setup process looks only for the files containing the values specified in this variable. The syntax is:

CES_SITE="<project> product ces"

The first argument is the name of the customer or project. The last argument is the name of the default base configuration. There may be multiple configurations specified between the first and last arguments. When the system boots it processes the arguments from right to left, so it first loads the base configuration. Then it moves on to the previous argument and loads the associated configuration files if they exist. The process continues until each argument is processed.

The noInherit option makes sure that only the left-most configuration is loaded. Usually the left- most configuration is the customer’s project-specific configuration based on Oracle’s standard product configuration.

The setup process runs a large set of shell and SQL scripts that set up all aspects of the Oracle Utilities Network Management System model. The right-most value of the CES_SITE environment variable identifies a "base," or predefined configuration. By default, the setup process sets up the model in the predefined configuration. However, the setup script contains numerous "hooks" that when encountered, install project-specific configuration that overrides the base configuration.

For example, if project XYZ defines a base model stdbase, then the CES_SITE environment variable is set to "xyz stdbase." The stdbase configuration is used by default, with project-specific files overriding stdbase files when encountered. The stdbase configuration may contain a script stdbase_mb_preprocessor.ces that sets up the data model for the stdbase version of the preprocessor. Project XYZ uses a different preprocessor with a different setup. The Oracle Utilities Network Management System setup process has a hook for a <project>_mb_preprocessor.ces file, so any file of this form with the project prefix as specified by CES_SITE (in this case, xyz_mb_preprocessor.ces) is called in place of the stdbase version. The exact details are dependent upon the nature of the "hook" involved. Some hooks are set up to call both the project script and the base script, while others will only call one or the other.

Linking In Customers

In order for Oracle Utilities Network Management System Trouble Management to run, user information must be linked into the model. This information is assumed to be in the database, whether explicitly loaded or whether linked in as a synonym. Oracle requires that the table that contains the end user information be joined to the SUPPLY_NODES table as a view called CES_CUSTOMERS.

Population of the CES_CUSTOMERS table

CES_CUSTOMERS is a materialized view populated with a join on four tables with details about customers, their meters, and their locations:

	
•

	

CU_CUSTOMERS

	
•

	

CU_SERVICE_LOCATIONS

	
•

	

CU_METERS

	
•

	

CU_SERVICE_POINTS

To update the Oracle Utilities Network Management System customer model, project-specific customer import processes will drop and rebuild mirror versions of these tables, named:

	
•

	

CU_CUSTOMERS_CIS

	
•

	

CU_SERVICE_LOCATIONS_CIS

	
•

	

CU_METERS_CIS

	
•

	

CU_SERVICE_POINTS_CIS

They will then run product_update_customers.ces, which will perform change detection between the CU_*_CIS tables and their Oracle Utilities Network Management System counterparts, perform incremental updates to them, and re-create the CES_CUSTOMERS table.

Note : If you do not want to update the CU_* tables or you do not have an updated set of CU_*_CIS tables, you should add the "-no_pre_process" option to the call to product_update_customers.ces and the CU_* tables will remain unchanged.

From the CES_CUSTOMERS view, a smaller table (or view) must be extracted that is called CUSTOMER_SUM.

Population of the CUSTOMER_SUM table

The CUSTOMER_SUM table is a smaller extraction of the CES_CUSTOMERS information in which the customer information is summarized. JMServiceuses this for faster calculations. Depending on the definition of CUSTOMER_SUM (table or view), a fresh extraction may be required after each model build.

Linking In Customers

In order for Oracle Utilities Network Management System Trouble Management to run, user information must be linked into the model. This information is assumed to be in the database, whether explicitly loaded or whether linked in as a synonym. Oracle requires that the table that contains the end user information be joined to the SUPPLY_NODES table as a view called CES_CUSTOMERS.

Population of the CES_CUSTOMERS table

CES_CUSTOMERS is a materialized view populated with a join on four tables with details about customers, their meters, and their locations:

	
•

	

CU_CUSTOMERS

	
•

	

CU_SERVICE_LOCATIONS

	
•

	

CU_METERS

	
•

	

CU_SERVICE_POINTS

To update the Oracle Utilities Network Management System customer model, project-specific customer import processes will drop and rebuild mirror versions of these tables, named:

	
•

	

CU_CUSTOMERS_CIS

	
•

	

CU_SERVICE_LOCATIONS_CIS

	
•

	

CU_METERS_CIS

	
•

	

CU_SERVICE_POINTS_CIS

They will then run product_update_customers.ces, which will perform change detection between the CU_*_CIS tables and their Oracle Utilities Network Management System counterparts, perform incremental updates to them, and re-create the CES_CUSTOMERS table.

Note : If you do not want to update the CU_* tables or you do not have an updated set of CU_*_CIS tables, you should add the "-no_pre_process" option to the call to product_update_customers.ces and the CU_* tables will remain unchanged.

From the CES_CUSTOMERS view, a smaller table (or view) must be extracted that is called CUSTOMER_SUM.

Population of the CUSTOMER_SUM table

The CUSTOMER_SUM table is a smaller extraction of the CES_CUSTOMERS information in which the customer information is summarized. JMServiceuses this for faster calculations. Depending on the definition of CUSTOMER_SUM (table or view), a fresh extraction may be required after each model build.

Linking In Customers

In order for Oracle Utilities Network Management System Trouble Management to run, user information must be linked into the model. This information is assumed to be in the database, whether explicitly loaded or whether linked in as a synonym. Oracle requires that the table that contains the end user information be joined to the SUPPLY_NODES table as a view called CES_CUSTOMERS.

Population of the CES_CUSTOMERS table

CES_CUSTOMERS is a materialized view populated with a join on four tables with details about customers, their meters, and their locations:

	
•

	

CU_CUSTOMERS

	
•

	

CU_SERVICE_LOCATIONS

	
•

	

CU_METERS

	
•

	

CU_SERVICE_POINTS

To update the Oracle Utilities Network Management System customer model, project-specific customer import processes will drop and rebuild mirror versions of these tables, named:

	
•

	

CU_CUSTOMERS_CIS

	
•

	

CU_SERVICE_LOCATIONS_CIS

	
•

	

CU_METERS_CIS

	
•

	

CU_SERVICE_POINTS_CIS

They will then run product_update_customers.ces, which will perform change detection between the CU_*_CIS tables and their Oracle Utilities Network Management System counterparts, perform incremental updates to them, and re-create the CES_CUSTOMERS table.

Note : If you do not want to update the CU_* tables or you do not have an updated set of CU_*_CIS tables, you should add the "-no_pre_process" option to the call to product_update_customers.ces and the CU_* tables will remain unchanged.

From the CES_CUSTOMERS view, a smaller table (or view) must be extracted that is called CUSTOMER_SUM.

Population of the CUSTOMER_SUM table

The CUSTOMER_SUM table is a smaller extraction of the CES_CUSTOMERS information in which the customer information is summarized. JMServiceuses this for faster calculations. Depending on the definition of CUSTOMER_SUM (table or view), a fresh extraction may be required after each model build.

Customer Model - Logical Data Model

This section provides an overview of the logical view of the Oracle Utilities Network Management System customer model. Where the MultiSpeak data model uses Customer, Service Location and Meter entities, the Oracle Utilities Network Management System model adds the notion of a Service Point to increase flexibility, and provide for improved performance of the physical implementation. Additionally, the Oracle Utilities Network Management System model extends beyond the basic MultiSpeak model in the following ways:

	
•

	

Supports more than one meter per service location.

	
•

	

MultiSpeak attributes not required for NMS purposes are not required, such as billing information (acRecvBal, acRecvCur, …) and meterology information (kwh, multiplier, …)

	
•

	

Provides model extensions to support important attributes not currently defined by MultiSpeak but necessary for NMS purposes.

	
•

	

Supports customer-defined attributes for read-only purposes with no requirement for use in analysis.

This model, when joined with the Supply Node information in the Oracle Utilities Network Management System database (supply_nodes), results in the following E-R diagram:

[image:]

Residential Model

In this extended model, it is recognized that the occurrence of multiple meters is reasonably common, where each meter may have different rate codes associated.

Although the occurrence of multiple transformers is much less frequent than multiple meters, there are also several possible configurations of meters and transformers, with different electrical arrangements. Often, multiple transformers will occur on (geographically) large sites (e.g., factory, airport, shopping mall, etc.), where it is appropriate and helpful (from the perspective of outage analysis) to have multiple service locations defined for the site which aid in readily locating the appropriate transformer.

The following pictures depict some simple examples of the usage of this customer model. The first example shows two service locations, each with a meter connected to a distribution transformer.

[image:]

The second example is an account with a single location with two meters, which is described through the definition of a customer account, a service location and two meters. The service location is associated with a distribution transformer.

[image:]

A third example would be a combination of the two previous examples, where a single customer account was responsible for the billing related to all of the above service locations. A more sophisticated example of residential metering is provided in the appendix.

Commercial and Industrial (C & I) Model

Many Commercial and Industrial situations are more complicated than residential metering. In these cases, a variety of configurations of meters, transformers and circuits must be addressed. The variations include:

	
•

	

Primary metering, where the meter is placed on the high side of the transformer

	
•

	

Internal buses, where two transformers can be used with two meters, feeding an internal bus

	
•

	

Alternate transformers, where a meter can be switched to one of two transformers, each on a different circuit

	
•

	

A single transformer feeding two meters, where different rates apply to each meter

The following diagram illustrates these examples.

[image:]

Customer Model Database Schemas

The following section provides schema descriptions for the data and tables that are relevant to the Customer Model. It should be noted that the naming convention used internally is slightly different than the convention used in MultiSpeak or CIM exchange formats, due to the case-insensitive nature of Oracle RDBMS.

Customer Model Database Tables

The purpose of this section is to provide descriptions of the data and tables that support the implementation of the Oracle Utilities Network Management System customer model. These descriptions address only the data elements that are relevant to the customer model. The actual database tables may contain additional fields, but the other fields are not relevant to the customer model and are not described here.

	

Req Key Values

	

Meaning

	

Comment

	

N

	

Not required

	

Not needed for standard ces_customers table.

	

C

	

Configured in standard ces_customers table.

	

Not all columns referenced in the ces_customers table are required for a given implementation - inclusion of some columns can be project-specific.

	

Y

	

Required

	

Used in standard ces_customers table - still may not be 100% required. Actual requirements are generally project specific.

Customers Table

The cu_customers table is used to manage customer accounts. While the primary key is cust_id, this typically may have the same value as account_number.

cu_customers

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

cust_id

	

NUMBER NOT NULL,

	

Primary key - may be generated.

	

N

	

cust_account_number

	

VARCHAR2(30) NOT NULL

	

Customer account number.

	

N

	

cust_billing_account

	

VARCHAR2(13) NULL

	

Customer billing account number.

	

Y,C

	

cust_name

	

VARCHAR2(90) NULL

	

Name of the customer; concatenation of last, first and middle names, or business name.

	

N

	

cust_last_name

	

VARCHAR2(30) NULL

	

Last name.

	

N

	

cust_first_name

	

VARCHAR2(30) NULL

	

First name. Typically, this is only populated for residential customers.

	

N

	

cust_middle_name

	

VARCHAR2(30) NULL

	

Middle name or initial.

	

Y,C

	

cust_home_ac

	

NUMBER(3) NULL

	

Phone area code for the home phone.

	

Y,C

	

cust_home_phone

	

NUMBER(7) NULL

	

Phone number for the home phone.

	

N

	

cust_day_ac

	

NUMBER(3) NULL

	

Phone area code for the work phone.

	

N

	

cust_day_phone

	

NUMBER(7) NULL

	

Phone number for the work phone.

	

N

	

cust_day_phone_ex

	

NUMBER(7) NULL

	

Typically, day phone numbers are related to customers’ work phone numbers, which generally include extensions.

	

N

	

cust_bill_addr_1

	

VARCHAR2(50) NULL

	

Street address of the billing address. Note that billing address fields are usually populated only if different from the address held in the cu_service_point table.

	

N

	

cust_bill_addr_2

	

VARCHAR2(50) NULL

	

Second line, if necessary, of street address of the billing address.

	

N

	

cust_bill_addr_3

	

VARCHAR2(50) NULL

	

Third line, if necessary, of street address of the billing address.

	

N

	

cust_bill_addr_4

	

VARCHAR2(50) NULL

	

Fourth line, if necessary, of street address of the billing address.

	

N

	

cust_bill_city

	

VARCHAR2(30) NULL,

	

City of the billing address.

	

N

	

cust_bill_state

	

VARCHAR2(30) NULL

	

State of the billing address.

	

N

	

cust_bill_postcode_1

	

VARCHAR2(10) NULL

	

First 5 zip code numbers for US.

	

N

	

cust_bill_postcode_2

	

VARCHAR2(10) NULL

	

Second 4 zip code numbers for US.

	

C

	

cust_name_initials

	

VARCHAR2(3) NULL

	

The customer initials. Possibly used for certain soundex type searching if a customer wants to enable it - not often. Not necessary.

	

N

	

cust_comment

	

VARCHAR2(255)NULL

	

General field provided to support additional information about the customer, such as 30ft ladder, assult-case, crit-pmp-station, etc.

	

N

	

cust_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support the inclusion of other desired data not covered in the core fields. These fields can be extracted for project specific reporting.

	

N

	

cust_user_def_2

	

VARCHAR2(255) NULL

	

N

	

cust_user_def_3

	

VARCHAR2(255) NULL

	

N

	

cust_user_def_4

	

VARCHAR2(255) NULL

	

N

	

last_update_time

	

DATE

	

Time of last update for record. Generally, set internally when a record is updated - not via external CIS.

Customers Table

The cu_customers table is used to manage customer accounts. While the primary key is cust_id, this typically may have the same value as account_number.

cu_customers

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

cust_id

	

NUMBER NOT NULL,

	

Primary key - may be generated.

	

N

	

cust_account_number

	

VARCHAR2(30) NOT NULL

	

Customer account number.

	

N

	

cust_billing_account

	

VARCHAR2(13) NULL

	

Customer billing account number.

	

Y,C

	

cust_name

	

VARCHAR2(90) NULL

	

Name of the customer; concatenation of last, first and middle names, or business name.

	

N

	

cust_last_name

	

VARCHAR2(30) NULL

	

Last name.

	

N

	

cust_first_name

	

VARCHAR2(30) NULL

	

First name. Typically, this is only populated for residential customers.

	

N

	

cust_middle_name

	

VARCHAR2(30) NULL

	

Middle name or initial.

	

Y,C

	

cust_home_ac

	

NUMBER(3) NULL

	

Phone area code for the home phone.

	

Y,C

	

cust_home_phone

	

NUMBER(7) NULL

	

Phone number for the home phone.

	

N

	

cust_day_ac

	

NUMBER(3) NULL

	

Phone area code for the work phone.

	

N

	

cust_day_phone

	

NUMBER(7) NULL

	

Phone number for the work phone.

	

N

	

cust_day_phone_ex

	

NUMBER(7) NULL

	

Typically, day phone numbers are related to customers’ work phone numbers, which generally include extensions.

	

N

	

cust_bill_addr_1

	

VARCHAR2(50) NULL

	

Street address of the billing address. Note that billing address fields are usually populated only if different from the address held in the cu_service_point table.

	

N

	

cust_bill_addr_2

	

VARCHAR2(50) NULL

	

Second line, if necessary, of street address of the billing address.

	

N

	

cust_bill_addr_3

	

VARCHAR2(50) NULL

	

Third line, if necessary, of street address of the billing address.

	

N

	

cust_bill_addr_4

	

VARCHAR2(50) NULL

	

Fourth line, if necessary, of street address of the billing address.

	

N

	

cust_bill_city

	

VARCHAR2(30) NULL,

	

City of the billing address.

	

N

	

cust_bill_state

	

VARCHAR2(30) NULL

	

State of the billing address.

	

N

	

cust_bill_postcode_1

	

VARCHAR2(10) NULL

	

First 5 zip code numbers for US.

	

N

	

cust_bill_postcode_2

	

VARCHAR2(10) NULL

	

Second 4 zip code numbers for US.

	

C

	

cust_name_initials

	

VARCHAR2(3) NULL

	

The customer initials. Possibly used for certain soundex type searching if a customer wants to enable it - not often. Not necessary.

	

N

	

cust_comment

	

VARCHAR2(255)NULL

	

General field provided to support additional information about the customer, such as 30ft ladder, assult-case, crit-pmp-station, etc.

	

N

	

cust_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support the inclusion of other desired data not covered in the core fields. These fields can be extracted for project specific reporting.

	

N

	

cust_user_def_2

	

VARCHAR2(255) NULL

	

N

	

cust_user_def_3

	

VARCHAR2(255) NULL

	

N

	

cust_user_def_4

	

VARCHAR2(255) NULL

	

N

	

last_update_time

	

DATE

	

Time of last update for record. Generally, set internally when a record is updated - not via external CIS.

Service Locations Table

The purpose of the cu_service_locations table is to manage locations (premises) at which a customer is served. A customer account may have multiple service locations.

cu_service_locations

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

serv_loc_id

	

NUMBER NOT NULL

	

Primary key - may be generated.

	

N

	

serv_type

	

VARCHAR2(2) NULL

	

The type of service at this location. (electrical or gas). Only necessary for utilities that support multiple service types.

	

N

	

serv_status

	

VARCHAR2(50) NULL

	

Electrical service status of the service location. For example:

INA - Inactive

ACT - Active

PDI - Pending Disconnect

Can be used to coordinate business processes around how to handle customer disconnects (for example, update the day before). Each project needs to discuss these.

	

Y,C

	

serv_account_number

	

VARCHAR2(30) NOT NULL

	

The service account number which will be used for call entry purposes, and the account number used in createIncident XML.

	

Y,C

	

serv_revenue_class

	

VARCHAR2(30) NULL

	

Revenue class for the service location.

	

N

	

serv_load_mgmt

	

NUMBER NULL

	

Binary - whether or not there is load mgmt at this Service Location

	

Y,C

	

serv_concat_address

	

VARCHAR2(200) NULL

	

Concatenated address of the service address 1, 2, 3, and 4.

	

N

	

serv_special_needs

	

VARCHAR2(1) NULL

	

Identifies any special needs of the customer.

	

N

	

serv_priority

	

VARCHAR2(32) NULL

	

Mapped to ces_customers.priority. This defines the meaningful customer type value the utility uses internally. This value will be displayed on troubleInfo as well.

	

N

	

serv_addr_1

	

VARCHAR2(50) NULL

	

First line of street address of the service address.

	

N

	

serv_addr_2

	

VARCHAR2(50) NULL

	

Second line, if necessary, of street address of the service address.

	

N

	

serv_addr_3

	

VARCHAR2(50) NULL

	

Third line, if necessary, of street address of the service address.

	

N

	

serv_addr_4

	

 VARCHAR2 (50) NULL

	

Third line, if necessary, of street address of the service address.

	

N

	

serv_city

	

VARCHAR2(25) NULL

	

City of the service location.

	

N

	

serv_state

	

VARCHAR2(25) NULL

	

State of the service location.

	

Y,C

	

serv_city_state

	

VARCHAR2(50) NULL

	

This field contains the data that will appear in the ces_customers.CITY_STATE field.

	

Y,C

	

serv_postcode_1

	

VARCHAR2(10) NULL

	

First 5 Zipcode numbers for US.

	

N

	

serv_postcode_2

	

VARCHAR2(10) NULL

	

Second 4 Zipcode numbers for US.

	

N

	

serv_user_geog_1

	

VARCHAR2(25) NULL

	

User geo codes typically used for political areas, such as counties, tax districts, etc.

	

N

	

serv_user_geog_2

	

VARCHAR2(25) NULL

	

Y,C

	

serv_town

	

VARCHAR2(3) NULL

	

The town or county for the customer.

	

Y,C

	

serv_str_block

	

VARCHAR2(20) NULL

	

Block number - used in searches.

	

N

	

serv_str_pfix

	

VARCHAR2(10) NULL

	

The 'R' in R 321 Rolling Rd (R rear, F front, A adjacent, etc.)

	

Y,C

	

serv_str_struc

	

VARCHAR2(20) NULL

	

Structure relates to apartments, units, piers, docks, warehouse, slip, etc.

	

N

	

serv_str_name

	

VARCHAR2(30) NULL

	

Name of the street (Main Street).

	

N

	

serv_str_cdl_dir

	

VARCHAR2(10) NULL

	

Cardinal direction (N, S, E, W).

	

N

	

serv_str_sfix

	

VARCHAR2(10) NULL

	

ST, PKY, PLC, DR, RD, AVE, etc.

	

Y,C

	

serv_lot

	

VARCHAR2(10) NULL

	

Lot number - used in searches.

	

Y,C

	

serv_apt

	

VARCHAR2(8) NULL

	

Apartment number.

	

N

	

serv_elec_addr

	

VARCHAR2(50) NULL

	

Elec address used in searches.

	

N

	

serv_sic

	

VARCHAR2(8) NULL

	

Standard Industrial Code.

	

N

	

serv_comment

	

VARCHAR2(255) NULL

	

General comment about the service location.

	

Y,C

	

serv_cumulative_priority

	

NUMBER NULL

	

Summation of priority codes for this location.

	

Y,C

	

serv_life_support

	

NUMBER NULL

	

Indicates if this is a life-support customer.

	

Y,C

	

serv_d_priority

	

NUMBER NULL

	

D customer defined flag, 0 or 1 - often medical customers.

	

Y,C

	

serv_c_priority

	

NUMBER NULL

	

C customer defined flag, 0 or 1 - often emergency customers.

	

Y,C

	

serv_k_priority

	

NUMBER NULL

	

K customer defined flag, 0 or 1 - often key/critical customers.

	

Y,C

	

serv_map_loc_x

	

NUMBER NULL

	

GPS lat/long or other mapping coordinates.

	

Y,C

	

serv_map_loc_y

	

NUMBER NULL

	

N

	

serv_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support other desired data not covered in the core fields. These fields can be extracted for project-specific reporting purposes.

	

N

	

serv_user_def_2

	

VARCHAR2(255) NULL

	

N

	

serv_user_def_3

	

VARCHAR2(255) NULL

	

N

	

serv_user_def_4

	

VARCHAR2(255) NULL

	

N

	

last_update_time

	

DATE

	

Time of last update for record.

Service Locations Table

The purpose of the cu_service_locations table is to manage locations (premises) at which a customer is served. A customer account may have multiple service locations.

cu_service_locations

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

serv_loc_id

	

NUMBER NOT NULL

	

Primary key - may be generated.

	

N

	

serv_type

	

VARCHAR2(2) NULL

	

The type of service at this location. (electrical or gas). Only necessary for utilities that support multiple service types.

	

N

	

serv_status

	

VARCHAR2(50) NULL

	

Electrical service status of the service location. For example:

INA - Inactive

ACT - Active

PDI - Pending Disconnect

Can be used to coordinate business processes around how to handle customer disconnects (for example, update the day before). Each project needs to discuss these.

	

Y,C

	

serv_account_number

	

VARCHAR2(30) NOT NULL

	

The service account number which will be used for call entry purposes, and the account number used in createIncident XML.

	

Y,C

	

serv_revenue_class

	

VARCHAR2(30) NULL

	

Revenue class for the service location.

	

N

	

serv_load_mgmt

	

NUMBER NULL

	

Binary - whether or not there is load mgmt at this Service Location

	

Y,C

	

serv_concat_address

	

VARCHAR2(200) NULL

	

Concatenated address of the service address 1, 2, 3, and 4.

	

N

	

serv_special_needs

	

VARCHAR2(1) NULL

	

Identifies any special needs of the customer.

	

N

	

serv_priority

	

VARCHAR2(32) NULL

	

Mapped to ces_customers.priority. This defines the meaningful customer type value the utility uses internally. This value will be displayed on troubleInfo as well.

	

N

	

serv_addr_1

	

VARCHAR2(50) NULL

	

First line of street address of the service address.

	

N

	

serv_addr_2

	

VARCHAR2(50) NULL

	

Second line, if necessary, of street address of the service address.

	

N

	

serv_addr_3

	

VARCHAR2(50) NULL

	

Third line, if necessary, of street address of the service address.

	

N

	

serv_addr_4

	

 VARCHAR2 (50) NULL

	

Third line, if necessary, of street address of the service address.

	

N

	

serv_city

	

VARCHAR2(25) NULL

	

City of the service location.

	

N

	

serv_state

	

VARCHAR2(25) NULL

	

State of the service location.

	

Y,C

	

serv_city_state

	

VARCHAR2(50) NULL

	

This field contains the data that will appear in the ces_customers.CITY_STATE field.

	

Y,C

	

serv_postcode_1

	

VARCHAR2(10) NULL

	

First 5 Zipcode numbers for US.

	

N

	

serv_postcode_2

	

VARCHAR2(10) NULL

	

Second 4 Zipcode numbers for US.

	

N

	

serv_user_geog_1

	

VARCHAR2(25) NULL

	

User geo codes typically used for political areas, such as counties, tax districts, etc.

	

N

	

serv_user_geog_2

	

VARCHAR2(25) NULL

	

Y,C

	

serv_town

	

VARCHAR2(3) NULL

	

The town or county for the customer.

	

Y,C

	

serv_str_block

	

VARCHAR2(20) NULL

	

Block number - used in searches.

	

N

	

serv_str_pfix

	

VARCHAR2(10) NULL

	

The 'R' in R 321 Rolling Rd (R rear, F front, A adjacent, etc.)

	

Y,C

	

serv_str_struc

	

VARCHAR2(20) NULL

	

Structure relates to apartments, units, piers, docks, warehouse, slip, etc.

	

N

	

serv_str_name

	

VARCHAR2(30) NULL

	

Name of the street (Main Street).

	

N

	

serv_str_cdl_dir

	

VARCHAR2(10) NULL

	

Cardinal direction (N, S, E, W).

	

N

	

serv_str_sfix

	

VARCHAR2(10) NULL

	

ST, PKY, PLC, DR, RD, AVE, etc.

	

Y,C

	

serv_lot

	

VARCHAR2(10) NULL

	

Lot number - used in searches.

	

Y,C

	

serv_apt

	

VARCHAR2(8) NULL

	

Apartment number.

	

N

	

serv_elec_addr

	

VARCHAR2(50) NULL

	

Elec address used in searches.

	

N

	

serv_sic

	

VARCHAR2(8) NULL

	

Standard Industrial Code.

	

N

	

serv_comment

	

VARCHAR2(255) NULL

	

General comment about the service location.

	

Y,C

	

serv_cumulative_priority

	

NUMBER NULL

	

Summation of priority codes for this location.

	

Y,C

	

serv_life_support

	

NUMBER NULL

	

Indicates if this is a life-support customer.

	

Y,C

	

serv_d_priority

	

NUMBER NULL

	

D customer defined flag, 0 or 1 - often medical customers.

	

Y,C

	

serv_c_priority

	

NUMBER NULL

	

C customer defined flag, 0 or 1 - often emergency customers.

	

Y,C

	

serv_k_priority

	

NUMBER NULL

	

K customer defined flag, 0 or 1 - often key/critical customers.

	

Y,C

	

serv_map_loc_x

	

NUMBER NULL

	

GPS lat/long or other mapping coordinates.

	

Y,C

	

serv_map_loc_y

	

NUMBER NULL

	

N

	

serv_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support other desired data not covered in the core fields. These fields can be extracted for project-specific reporting purposes.

	

N

	

serv_user_def_2

	

VARCHAR2(255) NULL

	

N

	

serv_user_def_3

	

VARCHAR2(255) NULL

	

N

	

serv_user_def_4

	

VARCHAR2(255) NULL

	

N

	

last_update_time

	

DATE

	

Time of last update for record.

Meters Table

The cu_meters table describes meters that might exist at a service location. The use of meters is optional (but increasingly common) within Oracle Utilities Network Management System. Meter information is required for a project which intends to utilize integration with an Automated Meter Reading Infrastructure.

The cu_service_points table tracks the relationship between a meter (cu_meters) and a customer account (cu_customers) and service location (cu_service_locations).

cu_meters

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

meter_id

	

NUMBER NOT NULL

	

Primary key - may be generated.

	

Y,C

	

meter_no

	

VARCHAR2(20) NOT NULL

	

Meter number.

	

N

	

meter_serial_number

	

VARCHAR2(20) NULL

	

Serial number on the meter.

	

N

	

meter_type

	

VARCHAR2(20) NULL

	

Type of meter (gas, electric, water, etc.).

	

N

	

meter_manufacturer

	

VARCHAR2(20) NULL

	

Manufacturer of the meter.

	

N

	

meter_phases

	

VARCHAR2(1) NULL

	

Phase(s) connected to the meter (IE 1, 2, or 3).

	

N

	

meter_rate_code

	

VARCHAR2(65) NULL

	

Rate code for the meter.

	

N

	

meter_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support other desired data not covered in the core fields.These fields can be extracted for project-specific reporting purposes.

	

N

	

meter_user_def_2

	

VARCHAR2(255) NULL

	

N

	

meter_user_def_3

	

VARCHAR2(255) NULL

	

N

	

meter_user_def_4

	

VARCHAR2(255) NULL

	

Y,C

	

meter_amr_enabled

	

VARCHAR2(1)NULL

	

‘Y’ or ‘N’ - REL_10_0.

	

N

	

last_update_time

	

DATE

	

Time of last update for record.

Meters Table

The cu_meters table describes meters that might exist at a service location. The use of meters is optional (but increasingly common) within Oracle Utilities Network Management System. Meter information is required for a project which intends to utilize integration with an Automated Meter Reading Infrastructure.

The cu_service_points table tracks the relationship between a meter (cu_meters) and a customer account (cu_customers) and service location (cu_service_locations).

cu_meters

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

meter_id

	

NUMBER NOT NULL

	

Primary key - may be generated.

	

Y,C

	

meter_no

	

VARCHAR2(20) NOT NULL

	

Meter number.

	

N

	

meter_serial_number

	

VARCHAR2(20) NULL

	

Serial number on the meter.

	

N

	

meter_type

	

VARCHAR2(20) NULL

	

Type of meter (gas, electric, water, etc.).

	

N

	

meter_manufacturer

	

VARCHAR2(20) NULL

	

Manufacturer of the meter.

	

N

	

meter_phases

	

VARCHAR2(1) NULL

	

Phase(s) connected to the meter (IE 1, 2, or 3).

	

N

	

meter_rate_code

	

VARCHAR2(65) NULL

	

Rate code for the meter.

	

N

	

meter_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support other desired data not covered in the core fields.These fields can be extracted for project-specific reporting purposes.

	

N

	

meter_user_def_2

	

VARCHAR2(255) NULL

	

N

	

meter_user_def_3

	

VARCHAR2(255) NULL

	

N

	

meter_user_def_4

	

VARCHAR2(255) NULL

	

Y,C

	

meter_amr_enabled

	

VARCHAR2(1)NULL

	

‘Y’ or ‘N’ - REL_10_0.

	

N

	

last_update_time

	

DATE

	

Time of last update for record.

Account Type Table

The purpose of the cu_account_type table is to contain a configuration of the valid Account Types that can be specified for a Service Point record. The initial loading of customer data populates this table. There is often only one row in this table (for electrical service).

cu_account_type

	

cu_account_type

	

Column Name

	

Data Type

	

Description

	

acctyp_account_type

	

VARCHAR2(10) NOT NULL

	

Electric, Gas, Propane, Appliance Repair, etc.

	

acctyp_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support other desired data not covered in the core fields. These fields can be extracted for project-specific reporting purposes.

	

acctyp_user_def_2

	

VARCHAR2(255) NULL

	

acctyp_user_def_3

	

VARCHAR2(255) NULL

	

acctyp_user_def_4

	

VARCHAR2(255) NULL

Account Type Table

The purpose of the cu_account_type table is to contain a configuration of the valid Account Types that can be specified for a Service Point record. The initial loading of customer data populates this table. There is often only one row in this table (for electrical service).

cu_account_type

	

cu_account_type

	

Column Name

	

Data Type

	

Description

	

acctyp_account_type

	

VARCHAR2(10) NOT NULL

	

Electric, Gas, Propane, Appliance Repair, etc.

	

acctyp_user_def_1

	

VARCHAR2(255) NULL

	

These user-defined fields support other desired data not covered in the core fields. These fields can be extracted for project-specific reporting purposes.

	

acctyp_user_def_2

	

VARCHAR2(255) NULL

	

acctyp_user_def_3

	

VARCHAR2(255) NULL

	

acctyp_user_def_4

	

VARCHAR2(255) NULL

Service Points Table

The purpose of the cu_service_points table is to manage the linkages between the cu_customers, cu_service_locations, cu_meters, cu_account_type and supply_nodes tables.

Key indexes are placed on this table for performance. History can be tracked, by setting active_fl to 'N' to identify that a record is now historical. No timestamp is used to track when a service point went out of service and the cu_service_points table is not intended nor recommended as a long term repository for service point history.

cu_service_points

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

serv_point_id

	

VARCHAR2(64) NOT NULL

	

Primary key. If the CIS cannot provide a unique value, use a generated key (for example, by combining cust_id, serv_loc_id and meter_id columns). This is used for CIS-to-NMS integration. For Customer Care & Billing (CC&B) integration in Oracle Utilities Network Management System 1.10, this is the CC&B Service Point Id. (See below for related info on ces_customers).

	

Y,C

	

cust_id

	

NUMBER NOT NULL

	

Foreign key ref to the cu_customers table.

	

Y,C

	

serv_loc_id

	

NUMBER NOT NULL

	

Foreign key ref to the cu_service_locations table.

	

Y,C

	

meter_id

	

NUMBER NOT NULL

	

Foreign key ref to the cu_meters table.

	

Y,C

	

device_id

	

VARCHAR2(25) NOT NULL

	

Foreign key ref to the supply_nodes table. This field is critical and necessary, as it ties Oracle Utilities Network Management System to the CIS.

	

N

	

feeder_id

	

VARCHAR2(10) NULL

	

Foreign key ref to the supply nodes table. Note this field is non- critical and generally not necessary.

	

Y,C

	

active_fl

	

VARCHAR2(1) NOT NULL

	

Identifies currently active records. Generally, this is always ‘Y’ as there is little provision or need for inactive records in the system. Inactive records are generally removed from this table.

	

N

	

create_dttm

	

DATE NOT NULL,

	

Timestamp for the record's creation.

	

Y,C

	

account_type

	

VARCHAR2(10) NOT NULL

	

Foreign key to the cu_account_type table.

	

N

	

last_update_time

	

DATE

	

Time of last update.

Service Points Table

The purpose of the cu_service_points table is to manage the linkages between the cu_customers, cu_service_locations, cu_meters, cu_account_type and supply_nodes tables.

Key indexes are placed on this table for performance. History can be tracked, by setting active_fl to 'N' to identify that a record is now historical. No timestamp is used to track when a service point went out of service and the cu_service_points table is not intended nor recommended as a long term repository for service point history.

cu_service_points

	

Req

	

Column Name

	

Data Type

	

Description

	

Y,C

	

serv_point_id

	

VARCHAR2(64) NOT NULL

	

Primary key. If the CIS cannot provide a unique value, use a generated key (for example, by combining cust_id, serv_loc_id and meter_id columns). This is used for CIS-to-NMS integration. For Customer Care & Billing (CC&B) integration in Oracle Utilities Network Management System 1.10, this is the CC&B Service Point Id. (See below for related info on ces_customers).

	

Y,C

	

cust_id

	

NUMBER NOT NULL

	

Foreign key ref to the cu_customers table.

	

Y,C

	

serv_loc_id

	

NUMBER NOT NULL

	

Foreign key ref to the cu_service_locations table.

	

Y,C

	

meter_id

	

NUMBER NOT NULL

	

Foreign key ref to the cu_meters table.

	

Y,C

	

device_id

	

VARCHAR2(25) NOT NULL

	

Foreign key ref to the supply_nodes table. This field is critical and necessary, as it ties Oracle Utilities Network Management System to the CIS.

	

N

	

feeder_id

	

VARCHAR2(10) NULL

	

Foreign key ref to the supply nodes table. Note this field is non- critical and generally not necessary.

	

Y,C

	

active_fl

	

VARCHAR2(1) NOT NULL

	

Identifies currently active records. Generally, this is always ‘Y’ as there is little provision or need for inactive records in the system. Inactive records are generally removed from this table.

	

N

	

create_dttm

	

DATE NOT NULL,

	

Timestamp for the record's creation.

	

Y,C

	

account_type

	

VARCHAR2(10) NOT NULL

	

Foreign key to the cu_account_type table.

	

N

	

last_update_time

	

DATE

	

Time of last update.

Linkages to Other Tables

The customer model has linkages to other tables in the Oracle Utilities Network Management System model. The primary linkage between utility customers and the Oracle Utilities Network Management System electrical network model is the device_id column. The definitive table linkage is between supply_nodes.device_id and cu_service_points.device_id. From the perspective of the cu_service_points table, the device_id field is used to uniquely identify the electrical network model element (supply node) which supplies power to a service point (customer).

In general, an Oracle Utilities Network Management System supply node is any place on the model where a utility customer can be connected to receive electrical power. For customers that wish to model secondary network, this supply point can be associated with a single customer/meter. For customers that are only interested in modeling primary distribution circuits, the supply node is often associated with a secondary transformer.

The Oracle Utilities Network Management System electrical data model is implemented under the
assumption that the source for the electrical network model data (generally a Geographic
Information System) and the source for the utility customer data (generally a Customer
Information System) understand and maintain this customer-to-supply-node relationship. The
accuracy of this linkage is critical for reliable trouble call handling and outage reporting. Without
this linkage, customer trouble calls enter the system as fuzzy calls and outage reports have
diminished accuracy.

Customer Model Views

The purpose of this section is to describe the views that support existing Oracle Utilities Network Management System software, and provide compatibility for this customer model with existing installations.

CES Customers View

The ces_customers view (or table) is derived from the cu_customers, cu_service_locations, cu_meters, cu_service_points and supply_nodes tables. It provides a flat customer view that is utilized by various Oracle Utilities Network Management System services and applications such as JMService, Web Call Entry and others.

ces_customers

	

Displayed Column Name

	

Originating Table

	

Column in originating table

	

id

	

cu_service_points

	

serv_point_id

	

h_cls

	

supply_nodes

	

device_cls

	

h_idx

	

supply_nodes

	

device_idx

	

supply_idx

	

supply_nodes

	

h_idx

	

meter_number

	

cu_meters

	

meter_no

	

device_id

	

supply_nodes

	

device_id

	

account_type

	

cu_service_points

	

account_type

	

account_number (not null)

	

cu_service_locations

	

serv_account_number

	

account_name

	

cu_customers

	

cust_name

	

address_building

	

cu_service_locations

	

serv_str_struc

	

block

	

cu_service_locations

	

serv_str_block

	

address

	

cu_service_locations

	

serv_concat_address

	

city_state

	

cu_service_locations

	

serv_city_state

	

zip_code

	

cu_service_locations

	

serv_postcode_1

	

phone_area

	

cu_customers

	

cust_day_ac

	

phone_number

	

cu_customers

	

cust_day_phone

	

priority

	

cu_service_locations

	

serv_cumulative_priority

	

c_priority

	

cu_service_locations

	

serv_c_priority

	

k_priority

	

cu_service_locations

	

serv_k_priority

	

d_priority

	

cu_service_locations

	

serv_d_priority

	

life_support

	

cu_service_locations

	

serv_life_support

	

avg_revenue

	

cu_service_locations

	

serv_revenue_class

	

name_initials

	

cu_customers

	

cust_name_initials

	

town

	

cu_service_locations

	

serv_town

	

feeder_id

	

supply_nodes

	

feeder_id

	

lot

	

cu_service_locations

	

serv_lot

	

apt

	

cu_service_locations

	

serv_apt

	

cust_id (not null)

	

cu_customers

	

cust_id

	

meter_id (not null)

	

cu_meters

	

meter_id

	

serv_loc_id (not null)

	

cu_service_locations

	

serv_loc_id

	

amr_enabled

	

cu_meters

	

amr_enabled

	

x_coord

	

cu_service_locations

	

serv_map_loc_x

	

y_coord

	

cu_service_locations

	

serv_map_loc_y

CES Customers View

The ces_customers view (or table) is derived from the cu_customers, cu_service_locations, cu_meters, cu_service_points and supply_nodes tables. It provides a flat customer view that is utilized by various Oracle Utilities Network Management System services and applications such as JMService, Web Call Entry and others.

ces_customers

	

Displayed Column Name

	

Originating Table

	

Column in originating table

	

id

	

cu_service_points

	

serv_point_id

	

h_cls

	

supply_nodes

	

device_cls

	

h_idx

	

supply_nodes

	

device_idx

	

supply_idx

	

supply_nodes

	

h_idx

	

meter_number

	

cu_meters

	

meter_no

	

device_id

	

supply_nodes

	

device_id

	

account_type

	

cu_service_points

	

account_type

	

account_number (not null)

	

cu_service_locations

	

serv_account_number

	

account_name

	

cu_customers

	

cust_name

	

address_building

	

cu_service_locations

	

serv_str_struc

	

block

	

cu_service_locations

	

serv_str_block

	

address

	

cu_service_locations

	

serv_concat_address

	

city_state

	

cu_service_locations

	

serv_city_state

	

zip_code

	

cu_service_locations

	

serv_postcode_1

	

phone_area

	

cu_customers

	

cust_day_ac

	

phone_number

	

cu_customers

	

cust_day_phone

	

priority

	

cu_service_locations

	

serv_cumulative_priority

	

c_priority

	

cu_service_locations

	

serv_c_priority

	

k_priority

	

cu_service_locations

	

serv_k_priority

	

d_priority

	

cu_service_locations

	

serv_d_priority

	

life_support

	

cu_service_locations

	

serv_life_support

	

avg_revenue

	

cu_service_locations

	

serv_revenue_class

	

name_initials

	

cu_customers

	

cust_name_initials

	

town

	

cu_service_locations

	

serv_town

	

feeder_id

	

supply_nodes

	

feeder_id

	

lot

	

cu_service_locations

	

serv_lot

	

apt

	

cu_service_locations

	

serv_apt

	

cust_id (not null)

	

cu_customers

	

cust_id

	

meter_id (not null)

	

cu_meters

	

meter_id

	

serv_loc_id (not null)

	

cu_service_locations

	

serv_loc_id

	

amr_enabled

	

cu_meters

	

amr_enabled

	

x_coord

	

cu_service_locations

	

serv_map_loc_x

	

y_coord

	

cu_service_locations

	

serv_map_loc_y

Customer Sum View

Within Oracle Utilities Network Management System, the customer_sum view (or table) is used primarily by JMService to identify the number of customers, critical customers, etc. on each supply node. The customer_sum view/table is typically generated from the ces_customers table/view. It is simply a summation of the customer model and is designed to provide more efficient outage impact estimates.

customer_sum

	

Displayed Column Name

	

Originating Table

	

Column in originating table

	

supply_cls

	

supply_nodes

	

h_cls (=994)

	

supply_idx

	

supply_nodes

	

h_idx

	

device_id

	

supply_nodes

	

device_id

	

revenue

	

cu_service_locations

	

serv_revenue_class

	

customer_count

	

count(distinct cu_service_points)

	

cust_id

	

critical_c

	

sum(cu_service_locations)

	

serv_c_priority

	

critical_k

	

sum(cu_service_locations)

	

serv_k_priority

	

critical_d

	

sum(cu_service_locations)

	

serv_d_priority

	

critical_both

	

sum(cu_service_locations)

	

Combination of either critical c, critical k, critical d types. (serv_cumulative_priority)

	

x_coord

	

point_coordinates

	

x_coord

	

y_coord

	

point_coordinates

	

y_coord

	

ddo

	

	

Historical - likely should be removed at some point. Often set the same as customer_count to satisfy JMService.

Customer Sum View

Within Oracle Utilities Network Management System, the customer_sum view (or table) is used primarily by JMService to identify the number of customers, critical customers, etc. on each supply node. The customer_sum view/table is typically generated from the ces_customers table/view. It is simply a summation of the customer model and is designed to provide more efficient outage impact estimates.

customer_sum

	

Displayed Column Name

	

Originating Table

	

Column in originating table

	

supply_cls

	

supply_nodes

	

h_cls (=994)

	

supply_idx

	

supply_nodes

	

h_idx

	

device_id

	

supply_nodes

	

device_id

	

revenue

	

cu_service_locations

	

serv_revenue_class

	

customer_count

	

count(distinct cu_service_points)

	

cust_id

	

critical_c

	

sum(cu_service_locations)

	

serv_c_priority

	

critical_k

	

sum(cu_service_locations)

	

serv_k_priority

	

critical_d

	

sum(cu_service_locations)

	

serv_d_priority

	

critical_both

	

sum(cu_service_locations)

	

Combination of either critical c, critical k, critical d types. (serv_cumulative_priority)

	

x_coord

	

point_coordinates

	

x_coord

	

y_coord

	

point_coordinates

	

y_coord

	

ddo

	

	

Historical - likely should be removed at some point. Often set the same as customer_count to satisfy JMService.

Model Build Process

Model Build with a Preprocessor

In most cases, customers will place source data files into a designated directory and run the ces_model_build.ces script. This script takes no arguments and builds whatever maps are recognized by the <project>_maps_to_build.ces script. When the build completes, any completed maps will have import files automatically placed in a designated directory. In some cases, models may be built directly from import files.

Model Build Process

Model Build with a Preprocessor

In most cases, customers will place source data files into a designated directory and run the ces_model_build.ces script. This script takes no arguments and builds whatever maps are recognized by the <project>_maps_to_build.ces script. When the build completes, any completed maps will have import files automatically placed in a designated directory. In some cases, models may be built directly from import files.

Customer Model Build Scripts

The following table describes the model build scripts.

	

Script

	

Description

	

ces_model_build.ces

	

Builds the maps recognized by <project>_maps_to_build.ces. Upon completion, the ${OPERATIONS_MODELS}/patches/done directory contains import files for the built maps.

	

<project>_build_map.ces

	

Required for any model build process that has a model preprocessor. Takes a map name and generates an import file for that map. The resulting import file is placed in the $OPERATIONS_MODELS/patches directory.

	

ces_build_maps.ces

	

This script takes multiple map prefixes as parameters. Any maps supplied will be built as a single model transaction. This is recommended when there is a model transaction involving multiple maps, especially if facilities are being transferred from one map to another. This does not run any _prebuild or _postbuild scripts.

	

<project>_maps_to_build.ces

	

Required for all model build processes. Identifies and prints a list (single line, space separated) of all maps that are queued up to be built. Model .mb files in the patches directory should be included in the list of maps to build including the .mb extension. All other maps to build should be reported without extensions.

	

<project>_postbuild.ces

	

Although not a required element of the model build, project-specific needs may call for an additional process after each model build. The additional process is carried out by the <project>_postbuild.ces script. It is run after the ces_model_build.ces script builds a complete set of maps. Common reasons for this process include recalculations of control zones, a fresh extraction of the CUSTOMER_SUM table, or a recache of DDService.

	

<project>_prebuild.ces

	

Although not a required element of the model build, project-specific needs may call for an additional process before each model build. The <project> _prebuild.ces script carries out the additional process. It is run before the ces_model_build.ces script builds a complete set of maps. This process is rarely needed.

Model Build with a Post-Processor

If a post-processor is needed for the model build, you should create and install the <project>_postbuild.ces script. If the post-processor requires patches to be applied to the model, it will build import files and put them in the patches directory. The ces_build_map.ces script can be called with the -noVerify option to build each patch without user interaction.

Constructing the Model

To ensure correct model construction, complete these steps:

	
1.

	

To ensure Isis is running, type:

 ps -ef | grep isis

Result: A pid (process ID) should be returned confirming that Isis is running.

	
2.

	

If a model build preprocessor is being used, make sure that the expected scripts are created and installed. These are <project>_build_map.ces and <project>_maps_to_build.ces.

	
3.

	

When new files are brought to the system, place them in the appropriate directory on the master server before initiating the model build.

	
•

	

Import files should go into the ${OPERATIONS_MODELS}/patches directory.

	
•

	

Preprocessor input files will probably go into a project-specific directory. An example of a commonly used directory is ${OPERATIONS_MODELS}/mp.

	
4.

	

Log into the master server as the administrative user and initiate a model build by typing:

 ces_model_build.ces

Or, if you want to produce a build log, enter the following:

 ces_model_build.ces | tee model_build.log.$(date+"%d.%m.%Y") 2>&1

Result: Each import file will be processed, updating the Operating Model and Graphic Presentation files.

	
5.

	

Wait for the user prompt before continuing further model build operations. This process may take some time.

	
6.

	

Review the error output information contained in the errors directory.

The Model Build Preprocessor

Oracle Utilities Network Management System obtains descriptions of the physical, electrical, and topological infrastructure from CAD, GIS and AM/FM systems through the model builder and associated preprocessors. The purpose of a preprocessor is to extract information from a source (GIS, CAD, AM/FM, etc.) and convert it to the neutral Oracle Utilities Network Management System import (.mb) format. From this format, it is processed by the model builder to determine and apply actual changes to the Oracle Utilities Network Management System operations model.

When the product is to be configured for a customer, there is a need to populate the corresponding Operations Model. Typically customers will have data stored within one or more forms: within a GIS, within a CAD product, in an RDBMS, or in flat files.

The information within these forms can either be directly extracted or preprocessed to a form which can be presented to the Model Build interface.

Model Build Basics

Model Build is a process of steps that will generate an operational topological representation of client’s existing GIS. A single segment of data (partition) passes through four stages during its incorporation into the Operations Model:

	
•

	

Extraction

	
•

	

Preprocessing

	
•

	

Model Build
 (MB Service)

	
•

	

Completed Operations Model

The following figure provides an overview of the model build process:

[image:]

Extraction

The graphical representations of objects that will be modeled, along with the associated attributes, are grouped and exported into external files in a format that the preprocessor is capable of reading. It is at this stage that the partitioning of the model into geographic grids or schematic diagrams is typically determined.

Preprocessing

The preprocessor reads the files generated by the extraction process and constructs an Import file which models the extracted portion. The preprocessor tends to be a major development task, taking weeks or months to complete.

Model Build

The Model Build (or MB Service) parses the Import file, verifies basic model consistency, applies the contained changes to the Operations Model Database, and commits the changes as part of the final model.

Completed Operations Model

The completed model consists of new or updated partitions and new or revised entries within the core model database schema.

Model Build Basics

Model Build is a process of steps that will generate an operational topological representation of client’s existing GIS. A single segment of data (partition) passes through four stages during its incorporation into the Operations Model:

	
•

	

Extraction

	
•

	

Preprocessing

	
•

	

Model Build
 (MB Service)

	
•

	

Completed Operations Model

The following figure provides an overview of the model build process:

[image:]

Extraction

The graphical representations of objects that will be modeled, along with the associated attributes, are grouped and exported into external files in a format that the preprocessor is capable of reading. It is at this stage that the partitioning of the model into geographic grids or schematic diagrams is typically determined.

Preprocessing

The preprocessor reads the files generated by the extraction process and constructs an Import file which models the extracted portion. The preprocessor tends to be a major development task, taking weeks or months to complete.

Model Build

The Model Build (or MB Service) parses the Import file, verifies basic model consistency, applies the contained changes to the Operations Model Database, and commits the changes as part of the final model.

Completed Operations Model

The completed model consists of new or updated partitions and new or revised entries within the core model database schema.

Model Build Basics

Model Build is a process of steps that will generate an operational topological representation of client’s existing GIS. A single segment of data (partition) passes through four stages during its incorporation into the Operations Model:

	
•

	

Extraction

	
•

	

Preprocessing

	
•

	

Model Build
 (MB Service)

	
•

	

Completed Operations Model

The following figure provides an overview of the model build process:

[image:]

Extraction

The graphical representations of objects that will be modeled, along with the associated attributes, are grouped and exported into external files in a format that the preprocessor is capable of reading. It is at this stage that the partitioning of the model into geographic grids or schematic diagrams is typically determined.

Preprocessing

The preprocessor reads the files generated by the extraction process and constructs an Import file which models the extracted portion. The preprocessor tends to be a major development task, taking weeks or months to complete.

Model Build

The Model Build (or MB Service) parses the Import file, verifies basic model consistency, applies the contained changes to the Operations Model Database, and commits the changes as part of the final model.

Completed Operations Model

The completed model consists of new or updated partitions and new or revised entries within the core model database schema.

Model Build Basics

Model Build is a process of steps that will generate an operational topological representation of client’s existing GIS. A single segment of data (partition) passes through four stages during its incorporation into the Operations Model:

	
•

	

Extraction

	
•

	

Preprocessing

	
•

	

Model Build
 (MB Service)

	
•

	

Completed Operations Model

The following figure provides an overview of the model build process:

[image:]

Extraction

The graphical representations of objects that will be modeled, along with the associated attributes, are grouped and exported into external files in a format that the preprocessor is capable of reading. It is at this stage that the partitioning of the model into geographic grids or schematic diagrams is typically determined.

Preprocessing

The preprocessor reads the files generated by the extraction process and constructs an Import file which models the extracted portion. The preprocessor tends to be a major development task, taking weeks or months to complete.

Model Build

The Model Build (or MB Service) parses the Import file, verifies basic model consistency, applies the contained changes to the Operations Model Database, and commits the changes as part of the final model.

Completed Operations Model

The completed model consists of new or updated partitions and new or revised entries within the core model database schema.

Model Build Basics

Model Build is a process of steps that will generate an operational topological representation of client’s existing GIS. A single segment of data (partition) passes through four stages during its incorporation into the Operations Model:

	
•

	

Extraction

	
•

	

Preprocessing

	
•

	

Model Build
 (MB Service)

	
•

	

Completed Operations Model

The following figure provides an overview of the model build process:

[image:]

Extraction

The graphical representations of objects that will be modeled, along with the associated attributes, are grouped and exported into external files in a format that the preprocessor is capable of reading. It is at this stage that the partitioning of the model into geographic grids or schematic diagrams is typically determined.

Preprocessing

The preprocessor reads the files generated by the extraction process and constructs an Import file which models the extracted portion. The preprocessor tends to be a major development task, taking weeks or months to complete.

Model Build

The Model Build (or MB Service) parses the Import file, verifies basic model consistency, applies the contained changes to the Operations Model Database, and commits the changes as part of the final model.

Completed Operations Model

The completed model consists of new or updated partitions and new or revised entries within the core model database schema.

Model Preprocessor

T he preprocessor reads--or parses--the files generated by the extraction process and constructs an import file which accurately models the extracted portion. The end result of completing a preprocessor is a script that is capable of accepting customer source GIS data files and generating import files.

The Model Preprocessor can be broken into individual stages called: Parse, Post Parse, Cell Explosion, Post Explode, Topology Construction, Post Topology, and Model Build Import file generation.

[image:]The following figure illustrates the stages in the preprocessor:

Parse stage

The Parser reads the client GIS model from external files created by the Extraction process into a data structure known as an Entity Set. After this phase is completed, the resulting Entity Set will be a ‘skeleton’ for the complete model. The activities completed in this stage are not client specific; it will be more specific to a standard data file format (e.g., AutoCAD’s DXF format, Intergraph’s ISFF format, etc.). Each individual graphical object (e.g., point, line, or text) will be represented in an output file.

	
•

	

Post Parse : Client specific processing that is used to accommodate any modification of the data that may be required prior to Cell Explosion.

	
•

	

Cell Explosion : Cell explosion is the central phase of preprocessing. It is here that the conversion of the raw graphical objects to model objects is accomplished. The graphical objects are mapped to objects, which will appear in client’s final model.

	
•

	

Post Explode : Allows for client specific processing after Cell Explosion.

	
•

	

Topology Construction : The inter-device connectivity for all electrical objects is constructed in this stage. The connectivity can either be explicit (i.e. ‘To’ and ‘From’ node identifiers) or based on proximity.

	
•

	

Post Topology : The final opportunity for client specific processing.

	
•

	

Model Build Import File Generation

Cell Explosion

The central phase of preprocessing is the conversion of graphical objects into full-fledged model objects; this conversion from a graphical object to a model object can involve a wide range of operations. These operations are specified in a text file <client>_devices.cel, which is called the explosion definition file.

The operations that may be accomplished during this phase include the following:

	
•

	

Handle Assignment - This requires that a graphical entity be mapped to a particular class of model objects (e.g., switch, transformer, device annotation, road, water boundary, etc.) and that an index number, unique within that class, be assigned to this object.

	
•

	

Attribute Manipulation - Attributes can be added, removed or renamed. They can also be assigned new values based upon combinations of other attribute values or the result of mathematical calculations.

	
•

	

Expansion/Replacement of One Object by Multiple Objects - For example a transformer in the mapping system could be exploded into a transformer with a switch and a network protector.

	
•

	

Creation of Aggregate Objects - One object may be used to represent a group of objects. For example, a recloser object may in fact represent the recloser along with a by-pass switch, a load switch, and a source switch. All of these component objects may be created and bundled into a single aggregate object during this phase.

	
•

	

Elimination of Un-Necessary Objects - Any object not explicitly ‘matched’ during this phase will be eliminated; thus, this stage acts as a filter.

	
•

	

Assignment of Core Properties - For example, phase, nominal status, NCG, and symbology can be assigned as default values for all devices.

	
•

	

Daughter Object Creation - Creating new entities based upon information taken from an existing object.

	
•

	

Classification of Objects as Background - Sets the location of an object to a background partition.

	
•

	

Diagnostic Messaging - Aids in debugging or as a method to configure customer specific error messages with customer defined attributes.

Model objects have handles (class and index), attributes and aliases, geometry, and optionally aggregate object specification, all of which are supported through the explosion preprocessor.

To understand the cell definitions, which specify how an object is recognized and processed during cell explosion, one should understand two fundamental ideas:

	
1.

	

"Parent" and "daughter" objects

	
2.

	

String expansion.

Parent and daughter objects

Those objects, which enter the cell explosion process from the parser (or the post-parse processing) and which are recognized (or matched) by a definition, are considered to be "parent" objects (or, at least, potential parents); any new graphic objects created by the cell definition which matched the parent are considered "daughter" objects.

There are 4 outcomes for an object after cell explosion:

	
1.

	

 The parent object may pass through and be modified by cell explosion without giving rise to daughter objects.

	
2.

	

The parent object may pass through cell explosion while giving rise to one or more daughter objects.

	
3.

	

The parent object may be eliminated by cell explosion yet give rise to daughter objects, which survive and proceed to the succeeding stages.

	
4.

	

The parent object may be eliminated by cell explosion and not give rise to daughter objects.

Note : Any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through this process; all other objects are eliminated.

Commonly, if the parent gives rise to daughter objects, the parent dies, but transfers some of its attributes to the resulting daughters through use of the ATT keyword.

The following illustration depicts outcomes 1 and 2 for an object:

[image:]

String expansion

When assigning new attributes, you may want the values for these new attributes to be formed from existing attributes--either by simply copying an existing value, or by combining and/or transforming the old values. This process is accomplished by "string expansion" which replaces or expands an attribute name into the full string representing that attribute’s value. In cell definitions, enclosing an attribute name in square brackets indicates that you intend for this attribute name to be expanded; e.g., the form "[FEEDER_ID]" will be replaced by the value of the FEEDER_ID attribute, such as "6992" (assuming that such an attribute exists for the matched object). In addition to this simple expansion, there are several specialized forms of string expansion that can be summarized as follows:

	
1.

	

Substring

	
•

	

Delimiter Based

Indicated by "<"or ">". This this form returns the substring before or after the first occurrence of the delimiting character. The delimiting character is the character immediately following the "<"or the ">".

For example, if TAG= "XYZ.553", then [<.[TAG]] returns the substring preceding the first period (".") in the TAG attribute value, in this case," XYZ". Likewise, [>.[TAG]] returns the substring following the period, which would be "553".

Note : When nesting a simple expansion form (e.g., [TAG]) within a delimiter based expansion form; you can discard the inner square brackets. Thus, "[<.TAG]" is equivalent to "[<.[TAG]]".

	
•

	

Position Based

Indicated by "@" -- this form returns the substring beginning and ending at the given character positions.

Using the example from above where TAG="XYZ.553", the notation [@(1:2)[TAG]] extracts the substring from the value of the TAG attribute, which begins with character position 1 (position 0 being the first character) and ends with character position 2. In other words, it extracts a two-character substring, beginning from the second position, returning the value "YZ"

Note : The character position can be specified relative to the end of the string by using the "$" character to represent the last position in the string. E.g., "[@($-1:$)[TAG]]" returns the last two characters "53". Also note that a single character can be extracted by specifying the start and end positions as the same character, e.g., "[@(2:2)[TAG]]" returns the third character, "Z".

	
2.

	

Codelist

These can be used to map or convert an input value into the corresponding output value.

	
•

	

Basic Lookup Table:

	

	

To create the "lookup table", we use the CODE keyword. The format for the table is:

CODE, <listname>,input value, outputvalue.

	

	

For example:

CODE, RANK_LIST, E, 1

CODE, RANK_LIST, R, 2

CODE, RANK_LIST, P, 4

	

	

 creates a lookup table with three entries or mappings.

	

	

(A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword, e.g., DEFAULT_CODE, RANK_LIST, 1 means that any input value other than E, R or P results in the output of a "1".)

	

	

To actually look up or convert a value, we use the codelist form of string expansion, indicated by a "%".

[%RANK_LIST.[RANK_CODE]]

	

	

will return "1" if the RANK_CODE attribute is "E"; "2" if the RANK_CODE is "R"; and "4" if the RANK_CODE is "P".

	
•

	

Database Lookup:

	

	

This works the same as the basic lookup table but the entries are stored in a database table. There are 2 formats for database lookups:

	
•

	

DBCODE

	

	

The table name (which also serves as the list name), the input column name, and the output column name are defined using the DBCODE keyword. The format for the DBCODE is:

	

	

DBCODE, <tablename>, <input column>,< output column>

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

	

	

means that there exists a database table called "feeder_ncg" which has an input value column called "feeder_name" and an output value column "ncg_id".

	
•

	

NAMED_DBCODE

	

	

NAMED_DBCODE is similar to DBCODE except it takes a list name that is different from the table name. It is used in cases where there is a need for 2 codelists based on the same database table but with different input and output columns. The format is:

	

	

NAMED_DBCODE, <listname>, <tablename>, <input column>,
<output column>

	

	

A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword. For example, DEFAULT_CODE, feeder_ncg, 1 means that any input value other than what has been defined results in the output of a "1". Additionally, a special DEFAULT_CODE value can be assigned with the value specified as "--INTEGER_SEQUENTIAL--".

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

	

	

Means if a lookup into the table named feeder_ncg does not have a match, the default action will be to select the maximum value of ncg_ids in the table, add one to the ncg_id, and create a new record with the given feeder name and the incremental maximum ncg_id.

	

	

Accessing the table is the same as the basic lookup table mentioned above.

	
•

	

Math Functions :

	

	

Mathematical functions can be calculated by using the input value to access a "pseudo- codelist." "List name" has one of the following values:

	

	

MATH_SIN

	

	

MATH_COS

	

	

MATH_TAN

	

	

MATH_ASIN

	

	

MATH_ACOS

	

	

MATH_ATAN

	

	

MATH_LOG

	

	

MATH_LOG10

	

	

MATH_EXP

	

	

MATH_SQRT

	

	

MATH_CEIL (round up to next greatest number)

	

	

MATH_FLOOR (round down to next lowest number)

	

	

MATH_FABS (absolute value, e.g., -4.5 becomes 4.5)

	

	

MATH_RPN (math function in reverse polish notation)

	

	

For example, to calculate the sine of an ANGLE attribute:

[%MATH_SIN.[ANGLE]]

	
•

	

Coordinate Lookup :

	

	

The coordinates of an object can be accessed using a form that mimics a codelist lookup:

	

	

[%COORDINATE.FIRSTX] returns the first X coordinate of the object

	

	

[%COORDINATE.LASTX] returns the last X coordinate of the object

	

	

[%COORDINATE.FIRSTY] returns the first Y coordinate of the object

	

	

[%COORDINATE.LASTY] returns the last Y coordinate of the object

	
3.

	

Default Value

A default value can be specified which will be returned if the result of string expansion would otherwise be an empty string. This is indicated by enclosing a default value between two caret symbols ("^").

For example: "[^PRIMARY^[PRI_CIRCUIT_ID]]" returns a value of "PRIMARY" in any case where the PRI_CIRCUIT_ID attribute is non-existent or empty.

If a default value is not specified, then a "String Expansion Error" message will occur.

	
4.

	

Special Attributes

Some properties of an object can be accessed as if they were attributes by using one of the special names given below, preceded by a double dollar sign:

CLS (cell number)

IDX (index number)

X1 (1st or primary X coordinate)

Y1 (1st or primary Y coordinate)

Xn (subsequent X coordinate)

Yn (subsequent Y coordinate)

COORD_CNT (number of coordinates)

MAP_CLASS (class number of partition)

MAP_NAME (full name of partition)

CELL_NAME (cell name - i.e. the set of instructions for an object)

CLS_NAME (actual name of class rather than number)

For example, [$$CELL_NAME] returns the name of the "cell" within the cell definition file that was matched by the current object.

	
5.

	

Handle Reference

One daughter object can access the class and index number of another daughter object by using the following two forms:

$<#>.CLS

$<#>.IDX

For example, in daughter object #2, the class number of daughter #1 can be accessed by the form: "[$1.CLS]" and index number of daughter #1 can be accessed by the form: "[$1.IDX]".

Note : A common practical application of this form of string expansion is to assign the DEVICE_CLS and DEVICE_IDX attributes of a SND attached to its corresponding transformer.

Available Cell Explosion Keywords

This section provides descriptions, syntax, and examples for available cell explosion keywords.

Global (outside all cell definitions)

	
•

	

CODE - Defines an entry in a code conversion lookup table. See String Expansion Section.

	
•

	

DBCODE - Defines an entry in a database table. See String Expansion Section.

	
•

	

DEFAULT_CODE - Sets default values for codelist. See String Expansion Section.

	
•

	

INCLUDE - Reads definitions from another file.

	

	

INCLUDE, <name of file to include>

INCLUDE, /users/xyz/data/xyz_devices.cel

	
•

	

NAMED_DBCODE - Allows for definitions of more than one codelist from a single database table.

	
•

	

TEMPLATE - Uses a template definition.

	
•

	

USE - Sets default values for an entity’s properties.

	

	

 USE, <KEYWORD>, <value>

USE, PHASE, abc

Shared (used by both parent objects & daughter graphic objects)

	
•

	

ATT[n] - Sets the value of an attribute. There is no limit on the number of ATT[n] records that can exist in the cell definitions. [n] is currently a placeholder, usually set to 0 (zero).

	

	

ATT[n],<att_name>, <att_value>

ATT0, feeder, [@(9:12) [ACAD_layer]]

ATT0, riser, N

	
•

	

ATTR_INDEX - The string that follows this keyword will be used to assign an index unique for an object of this object’s class; usually, the string will be formed by expansion of one or more attributes.

	

	

ATTR_INDEX, <n>

ATTR_INDEX,

	
•

	

BND_HANDLE - Indicates that the index for this object should be provided by the boundary-node handle manager.

	

	

BND_HANDLE, 1

	
•

	

CLASS - Sets the class of object to explicit value.

	

	

CLASS, <class name>

CLASS, Xfm

	
•

	

DATT[n] - Dynamic attribute name. [n] is currently a placeholder, usually set to 0 (zero).

	

	

DATT[n], <att_name>, <att_value>

DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

GEO_HANDLE - Indicates that a unique index should be generated based upon the object’s class and geographical coordinates.

	

	

GEO_HANDLE, 1

	
•

	

INDEX - Sets the index of object to an explicit value.

	

	

INDEX, <n>

INDEX, 533

	
•

	

MARK_BGD - Marks an object as background and sets its location to the background partition.

	

	

MARK_BGD, 1

	
•

	

MSG[n] (or MESSAGE[n]) - Prints a message to standard output when this definition is used, where [n] is either 0, 1, 2, or 3.

	

	

MSG[1|2|3], <message text> MESSAGE[1|2|3], <message text>

MSG1, Warning: Found stray fuse

MSG2, Handle: [$$CLS] . [$$IDX]

MSG3, At (X,Y) of ([$$X1],[$$Y1])

	
•

	

NCG - Set the entity’s Network Control Group (NCG) property. (Program-style preprocessor only)

	

	

NCG, <n>

NCG, [@(9:12)[ACAD_layer]]

	
•

	

NOMINAL_STATE - Sets the entity’s ‘NOMINAL_STATE’ property. The value can be an integer typically between 0 and 15 or the key words OPEN or CLOSED.

	

	

NOMINAL_STATE, <n>|OPEN|CLOSED

NOMINAL_STATE, CLOSED

	
•

	

OPT_ATT[n] - Sets an optional value of an attribute. Will not report a string error message if the value fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_ATT[n], <att_name>, <att_value>

OPT_ATT1, From_Node_Bnd, [NODE1_BND]

	
•

	

OPT_DATT[n] - Sets an optional dynamic attribute name. Will not report a string error message if the attribute name fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_DATT[n]

OPT_DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

 4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

PHASE - Sets the entity’s ‘PHASE’ property (e.g., to ABC).

	

	

PHASE, <n>

PHASE, [%PHASE_LIST.[@(6:8)[ACAD_layer]]]

	
•

	

STRING - Sets the value of the text string for this entity. (TEXT objects only)

	

	

STRING, <string>

STRING, [KVAR]

	
•

	

SUB_BND - Indicates that this object is a substation boundary node and that its index should be assigned based upon the supplied string (usually the feeder or circuit identifier).

SUB_BND, 1

	
•

	

SYM_ID - Sets the symbology-state-class to an explicit value, rather than its default value, which is the same as the class number.

	

	

SYM_ID, <n>

SYM_ID, 1304

	
•

	

VOLTS - Sets the entity’s ‘VOLTS’ property. (Program-style preprocessor only)

	

	

VOLTS, <n>

VOLTS, [voltage] 1000 *

Parent Object ("explosionDef") Only

	
•

	

AGGREGATE/_ POINT/_LINE/_TEXT - Creates a graphic object of the specified kind that becomes a component of the overall aggregate device. AGGREGATE and AGGREGATE_LINE require 2 coordinates; AGGREGATE_POINT and AGGREGATE_TEXT require one coordinate. All AGGREGATE definition types require an END_AGGREGATE. (Obsolete)

	

	

AGGREGATE, <n>

AGGREGATE, 4

	

	

AGGREGATE_ POINT, <n>

AGGREGATE_POINT, 1

	

	

AGGREGATE_ LINE, <n>

AGGREGATE_ LINE, 3

	

	

AGGREGATE_ TEXT, <n>

AGGREGATE_ TEXT, 2

	
•

	

CELL - Begins the definition for one device type. The cell definition file can contain many sets of cell definitions. All CELL definitions require an END_CELL.

	

	

CELL, <name>

CELL, uxfm2

	
•

	

END_CELL - Ends an explosion definition.

END_CELL

	
•

	

END_AGGREGATE - Ends an aggregate definition.

END_AGGREGATE

	
•

	

END_TEMP - Ends a template definition.

END_TEMP

	
•

	

MATT[n] - Matching attribute of the object to explode. [n] is currently a placeholder, usually set to 0 (zero). There is no limit on the number of MATT[n] records a cell explosion definition may have, but for the explosion to occur, all must match.

	

	

MATT[n],<attribute name>,<target attribute value>

MATTO, ACAD_objectType, INSERT

	
•

	

POINT/LINE/TEXT - Creates a "daughter" graphic object of the specified kind. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT, <n>

POINT, 3

	

	

LINE, <n>

LINE, 1

	

	

TEXT, <n>

TEXT, 5

	
•

	

POINT/LINE/TEXT WHEN <condition> - Creates a "daughter" graphic object of the specified kind when the given condition is met. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT WHEN <condition>

POINT WHEN

	

	

LINE WHEN <condition>

LINE WHEN

	

	

TEXT WHEN <condition>

TEXT WHEN

	
•

	

POINT/LINE/TEXT FOR
<variable> IN
<List of Values> - Creates zero, one or multiple graphic objects of the specified kind, one object for each value in the supplied list. Use <variable> within the definition as if it were an attribute name. A special variable called "$$ICOUNT" can also be used to retrieve the number of the iteration. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <variable> IN <list of values>

POINT FOR

	

	

LINE FOR <variable> IN <list of values>

LINE FOR

	

	

TEXT FOR <variable> IN <list of values>

TEXT FOR

	
•

	

POINT/LINE/TEXT FOR
<num-valu
e> TIMES - Creates zero, one or multiple graphic objects of the specified kind; number of objects specified by <num-values>. ($$ICOUNT can be used just as for the previous form). All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <numeric value> TIMES

POINT FOR

	

	

LINE FOR <numeric value> TIMES

LINE FOR

	

	

TEXT FOR <numeric value> TIMES

TEXT FOR

	
•

	

REQUEST_HANDLE - Indicates that the existing handle of this object should be replaced with one supplied by the Explosion manager’s "ExplodeHandle" class. (Primarily for ISFF)

REQUEST_HANDLE, 1

	
•

	

RMV[n] - Removes an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RMV[n]

RMV0, voltage

	
•

	

RNA[n] - Renames an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RNA[n], <att_name>, <new_att_name>

RNA0, amp_content, amp_cont

	
•

	

TEXT_SCALE - Specifies the scale factor for text. Used to allow the height of base text symbol to be used as a multiplier to the cell definition specified coordinates.

	

	

TEXT_SCALE, <n>

	

	

TEXT_SCALE, 1

	

	

for example with the TEXT_SCALE, 1 specified and the base text object has a specified height of 400 and the COORD1, 10, 30 is specified, the resulting coordinates will be 400x10, 400x30 or 4000, 12000.

	
•

	

USE_REFERENCE - Indicates that the index for this object should be based upon its corresponding reference object. (ISFF only) (Obsolete). For example:

	

	

USE_REFERENCE, 1

causes the FRAMME RB_REFPRMRY and RB_REFSCNDRY linkages to be used instead of the normal RB_PRIMRY and RB_SECNDRY.

Component "Daughter" Object ("explosionGrObject") Only

	
•

	

ABSOLUTE_COORDS - Indicates that coordinate values are specified in absolute, "real-world" numbers; this over-rides the default behavior which is for numbers used in COORD statements to be taken as relative to the insertion point of the parent object (i.e. this insertion point corresponds to COORD 0.0, 0.0).

	

	

ABSOLUTE_COORDS, 1

	
•

	

ANGLE - Sets the text rotation for this entity. Horizontal is zero and the angle proceeds counter clockwise. (TEXT objects only)

	

	

ANGLE, <a>

	

	

ANGLE, 90

	
•

	

COORD/COORD[n] - Sets relative/absolute coordinate of an object/endpoint.

	

	

COORD, <x>, <y>

	

	

COORD, 1.0, 2.5

	

	

COORD[n], <x>, <y>

	

	

COORD1, 0.0, 1.0
COORD2, 1.0, 2.0

	
•

	

COMPONENT[n] - Sets the aggregate sequence number and cell component number for a single component in the aggregate.

	

	

COMPONENT[n], <agg_seq_num>, <cell_comp_num>

	

	

COMPONENT1, 1, 2

	
•

	

END_AGGREGATE - Ends the definition of component graphic object.

	

	

END_AGGREGATE

	
•

	

HEIGHT - Sets the text height for this entity. (TEXT objects only)

	

	

HEIGHT, <h>

	

	

HEIGHT, 2

	
•

	

H_ORIENTATION - Sets the horizontal justification of text. Values can be LEFT, CENTER, or RIGHT, or 0, 1, or 2. Default is LEFT. (TEXT objects only)

	

	

H_ORIENTATION, <n>|LEFT|CENTER|RIGHT

	

	

H_ORIENTATION, LEFT

	
•

	

USE_ROTATION - Indicates that the rotation property of the original entity should be used to set the rotation for the component graphic object.

	

	

USE_ROTATION, 1

	
•

	

V_ORIENTATION - Sets the vertical justification of text. Values can be TOP, CENTER, or BOTTOM, or 0,1, or 2. Default is BOTTOM. (TEXT objects only)

	

	

V_ORIENTATION, <n>|TOP|CENTER|BOTTOM

	

	

V_ORIENTATION, 2

Special Attributes Set by Explode an Processed by mat2entityset.(script-preprocessor):

	
•

	

Alias - Sets an alias for an attribute (both script- and program-style preprocessors).

	

	

ATT[n], ALIAS[dbtype], <value>

	

	

ATT0, ALIAS[OPS], [LOC_NUM]

	
•

	

Diagram-id - Sets the Diagram Id .

	

	

ATT[n], DIAGRAM_ID, <value>

	

	

ATT1, DIAGRAM_ID, [IPID]

	
•

	

Group - Sets the Group code.

	

	

ATT[n], CES_PP_GROUP|GROUP|Group|group, <value>

	
•

	

Local

	

	

ATT[n], LOCAL|Local|local, <value>

	
•

	

Locations (not to be confused with LOCATIONS)

	

	

ATTN[n],CES_LOCATION, <value>

	

	

ATT1, CES_LOCATION, 4901.[MID]

	

	

ATTN[n], CES_LOCATION_DEFINITION, <value>

	

	

ATT1, CES_LOCATION_DEFINITION, 4901.[MID]

	

	

ATT[n], CES_LOCATION_NAME, <value>

	

	

ATT1, CES_LOCATION_NAME, Pole [^?^[SUPPORT_NO]]

	

	

ATT[n], CES_LOCATION_DESC, <value>

	

	

ATT1, CES_LOCATION_DESC, Pole defined by support/switch:~ [^?^[SUPPORT_NO]]/[^?^[SWITCH_NAME]]

	

	

ATT[n], CES_LOCATION_REFERENCE, <value>

	

	

ATT1, CES_LOCATION_REFERENCE, [%COORDINATE.FIRSTX],~ [%COORDINATE.FIRSTY]

 Network Control Group

	

	

ATTN[n], NCG|Ncg|ncg, <value>

	

	

ATT1, NCG, [%feeder_ncg.[^UNKNOWN^[DISTRICT]]_ ~ [%ncg_volt.[^UNKNOWN^[VOLT_LEV]]]]

	
•

	

Rank

	

	

ATT[n], RANK|Rank|rank, <value>

	

	

ATT1, RANK, [%MATH_RPN.[%RANKU.[^NO^[URBAN]]]~ [%RANKLC.[^UNKNOWN^[LINE_CATEGORY]]] + ~ [%RANKV.[^0^[VOLT_LEV]] [^0^[VOLT_LEV]]] + ~ [%RANKB11.[^0^[VOLT_LEV]] [^UNKNOWN^[DISTRICT]]] + ~ [%RANKP.[^RYB^[PHASING]]] +]

	
•

	

Physical Property

	

	

ATT[n], CES_PHYS_PROP|PHYS_PROP|Phys_Prop|phys_prop|physical_property, <value>

	

	

ATT0, CES_PHYS_PROP, [%MATH_RPN.[%PHYS_PROP.BACKBONE] [%PHYS_PROP.~
[^OH^[OH_UG]]] +]

	
•

	

Topology specific (see the Attribute Topology Users Guide for further discussion)

	

	

ATT[n], From_Node, <value>

	

	

ATT1, From_Node, [FROM_NODE]

	

	

ATT[n], To_Node, <value>

	

	

ATT1, To_Node, [TO_NODE]

	

	

ATT[n], Unique_id, <value>

	

	

ATT1, Unique_Id, [FROM_NODE]_[TO_NODE]_FID

	
•

	

Transition

	

	

ATT[n], TRANSITION_ID|Transition_ID|Transition_Id|transition_id, <value>

	

	

 ATT1, TRANSITION_ID, 120

	
•

	

Voltage

	

	

ATT[n], VOLTAGE|Voltage|voltage, <value>

	

	

ATT1, VOLTAGE, [%VOLTS.[^UNKNOWN^[OPERATING_VOLTAGE]]]

Model Preprocessor

T he preprocessor reads--or parses--the files generated by the extraction process and constructs an import file which accurately models the extracted portion. The end result of completing a preprocessor is a script that is capable of accepting customer source GIS data files and generating import files.

The Model Preprocessor can be broken into individual stages called: Parse, Post Parse, Cell Explosion, Post Explode, Topology Construction, Post Topology, and Model Build Import file generation.

[image:]The following figure illustrates the stages in the preprocessor:

Parse stage

The Parser reads the client GIS model from external files created by the Extraction process into a data structure known as an Entity Set. After this phase is completed, the resulting Entity Set will be a ‘skeleton’ for the complete model. The activities completed in this stage are not client specific; it will be more specific to a standard data file format (e.g., AutoCAD’s DXF format, Intergraph’s ISFF format, etc.). Each individual graphical object (e.g., point, line, or text) will be represented in an output file.

	
•

	

Post Parse : Client specific processing that is used to accommodate any modification of the data that may be required prior to Cell Explosion.

	
•

	

Cell Explosion : Cell explosion is the central phase of preprocessing. It is here that the conversion of the raw graphical objects to model objects is accomplished. The graphical objects are mapped to objects, which will appear in client’s final model.

	
•

	

Post Explode : Allows for client specific processing after Cell Explosion.

	
•

	

Topology Construction : The inter-device connectivity for all electrical objects is constructed in this stage. The connectivity can either be explicit (i.e. ‘To’ and ‘From’ node identifiers) or based on proximity.

	
•

	

Post Topology : The final opportunity for client specific processing.

	
•

	

Model Build Import File Generation

Cell Explosion

The central phase of preprocessing is the conversion of graphical objects into full-fledged model objects; this conversion from a graphical object to a model object can involve a wide range of operations. These operations are specified in a text file <client>_devices.cel, which is called the explosion definition file.

The operations that may be accomplished during this phase include the following:

	
•

	

Handle Assignment - This requires that a graphical entity be mapped to a particular class of model objects (e.g., switch, transformer, device annotation, road, water boundary, etc.) and that an index number, unique within that class, be assigned to this object.

	
•

	

Attribute Manipulation - Attributes can be added, removed or renamed. They can also be assigned new values based upon combinations of other attribute values or the result of mathematical calculations.

	
•

	

Expansion/Replacement of One Object by Multiple Objects - For example a transformer in the mapping system could be exploded into a transformer with a switch and a network protector.

	
•

	

Creation of Aggregate Objects - One object may be used to represent a group of objects. For example, a recloser object may in fact represent the recloser along with a by-pass switch, a load switch, and a source switch. All of these component objects may be created and bundled into a single aggregate object during this phase.

	
•

	

Elimination of Un-Necessary Objects - Any object not explicitly ‘matched’ during this phase will be eliminated; thus, this stage acts as a filter.

	
•

	

Assignment of Core Properties - For example, phase, nominal status, NCG, and symbology can be assigned as default values for all devices.

	
•

	

Daughter Object Creation - Creating new entities based upon information taken from an existing object.

	
•

	

Classification of Objects as Background - Sets the location of an object to a background partition.

	
•

	

Diagnostic Messaging - Aids in debugging or as a method to configure customer specific error messages with customer defined attributes.

Model objects have handles (class and index), attributes and aliases, geometry, and optionally aggregate object specification, all of which are supported through the explosion preprocessor.

To understand the cell definitions, which specify how an object is recognized and processed during cell explosion, one should understand two fundamental ideas:

	
1.

	

"Parent" and "daughter" objects

	
2.

	

String expansion.

Parent and daughter objects

Those objects, which enter the cell explosion process from the parser (or the post-parse processing) and which are recognized (or matched) by a definition, are considered to be "parent" objects (or, at least, potential parents); any new graphic objects created by the cell definition which matched the parent are considered "daughter" objects.

There are 4 outcomes for an object after cell explosion:

	
1.

	

 The parent object may pass through and be modified by cell explosion without giving rise to daughter objects.

	
2.

	

The parent object may pass through cell explosion while giving rise to one or more daughter objects.

	
3.

	

The parent object may be eliminated by cell explosion yet give rise to daughter objects, which survive and proceed to the succeeding stages.

	
4.

	

The parent object may be eliminated by cell explosion and not give rise to daughter objects.

Note : Any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through this process; all other objects are eliminated.

Commonly, if the parent gives rise to daughter objects, the parent dies, but transfers some of its attributes to the resulting daughters through use of the ATT keyword.

The following illustration depicts outcomes 1 and 2 for an object:

[image:]

String expansion

When assigning new attributes, you may want the values for these new attributes to be formed from existing attributes--either by simply copying an existing value, or by combining and/or transforming the old values. This process is accomplished by "string expansion" which replaces or expands an attribute name into the full string representing that attribute’s value. In cell definitions, enclosing an attribute name in square brackets indicates that you intend for this attribute name to be expanded; e.g., the form "[FEEDER_ID]" will be replaced by the value of the FEEDER_ID attribute, such as "6992" (assuming that such an attribute exists for the matched object). In addition to this simple expansion, there are several specialized forms of string expansion that can be summarized as follows:

	
1.

	

Substring

	
•

	

Delimiter Based

Indicated by "<"or ">". This this form returns the substring before or after the first occurrence of the delimiting character. The delimiting character is the character immediately following the "<"or the ">".

For example, if TAG= "XYZ.553", then [<.[TAG]] returns the substring preceding the first period (".") in the TAG attribute value, in this case," XYZ". Likewise, [>.[TAG]] returns the substring following the period, which would be "553".

Note : When nesting a simple expansion form (e.g., [TAG]) within a delimiter based expansion form; you can discard the inner square brackets. Thus, "[<.TAG]" is equivalent to "[<.[TAG]]".

	
•

	

Position Based

Indicated by "@" -- this form returns the substring beginning and ending at the given character positions.

Using the example from above where TAG="XYZ.553", the notation [@(1:2)[TAG]] extracts the substring from the value of the TAG attribute, which begins with character position 1 (position 0 being the first character) and ends with character position 2. In other words, it extracts a two-character substring, beginning from the second position, returning the value "YZ"

Note : The character position can be specified relative to the end of the string by using the "$" character to represent the last position in the string. E.g., "[@($-1:$)[TAG]]" returns the last two characters "53". Also note that a single character can be extracted by specifying the start and end positions as the same character, e.g., "[@(2:2)[TAG]]" returns the third character, "Z".

	
2.

	

Codelist

These can be used to map or convert an input value into the corresponding output value.

	
•

	

Basic Lookup Table:

	

	

To create the "lookup table", we use the CODE keyword. The format for the table is:

CODE, <listname>,input value, outputvalue.

	

	

For example:

CODE, RANK_LIST, E, 1

CODE, RANK_LIST, R, 2

CODE, RANK_LIST, P, 4

	

	

 creates a lookup table with three entries or mappings.

	

	

(A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword, e.g., DEFAULT_CODE, RANK_LIST, 1 means that any input value other than E, R or P results in the output of a "1".)

	

	

To actually look up or convert a value, we use the codelist form of string expansion, indicated by a "%".

[%RANK_LIST.[RANK_CODE]]

	

	

will return "1" if the RANK_CODE attribute is "E"; "2" if the RANK_CODE is "R"; and "4" if the RANK_CODE is "P".

	
•

	

Database Lookup:

	

	

This works the same as the basic lookup table but the entries are stored in a database table. There are 2 formats for database lookups:

	
•

	

DBCODE

	

	

The table name (which also serves as the list name), the input column name, and the output column name are defined using the DBCODE keyword. The format for the DBCODE is:

	

	

DBCODE, <tablename>, <input column>,< output column>

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

	

	

means that there exists a database table called "feeder_ncg" which has an input value column called "feeder_name" and an output value column "ncg_id".

	
•

	

NAMED_DBCODE

	

	

NAMED_DBCODE is similar to DBCODE except it takes a list name that is different from the table name. It is used in cases where there is a need for 2 codelists based on the same database table but with different input and output columns. The format is:

	

	

NAMED_DBCODE, <listname>, <tablename>, <input column>,
<output column>

	

	

A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword. For example, DEFAULT_CODE, feeder_ncg, 1 means that any input value other than what has been defined results in the output of a "1". Additionally, a special DEFAULT_CODE value can be assigned with the value specified as "--INTEGER_SEQUENTIAL--".

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

	

	

Means if a lookup into the table named feeder_ncg does not have a match, the default action will be to select the maximum value of ncg_ids in the table, add one to the ncg_id, and create a new record with the given feeder name and the incremental maximum ncg_id.

	

	

Accessing the table is the same as the basic lookup table mentioned above.

	
•

	

Math Functions :

	

	

Mathematical functions can be calculated by using the input value to access a "pseudo- codelist." "List name" has one of the following values:

	

	

MATH_SIN

	

	

MATH_COS

	

	

MATH_TAN

	

	

MATH_ASIN

	

	

MATH_ACOS

	

	

MATH_ATAN

	

	

MATH_LOG

	

	

MATH_LOG10

	

	

MATH_EXP

	

	

MATH_SQRT

	

	

MATH_CEIL (round up to next greatest number)

	

	

MATH_FLOOR (round down to next lowest number)

	

	

MATH_FABS (absolute value, e.g., -4.5 becomes 4.5)

	

	

MATH_RPN (math function in reverse polish notation)

	

	

For example, to calculate the sine of an ANGLE attribute:

[%MATH_SIN.[ANGLE]]

	
•

	

Coordinate Lookup :

	

	

The coordinates of an object can be accessed using a form that mimics a codelist lookup:

	

	

[%COORDINATE.FIRSTX] returns the first X coordinate of the object

	

	

[%COORDINATE.LASTX] returns the last X coordinate of the object

	

	

[%COORDINATE.FIRSTY] returns the first Y coordinate of the object

	

	

[%COORDINATE.LASTY] returns the last Y coordinate of the object

	
3.

	

Default Value

A default value can be specified which will be returned if the result of string expansion would otherwise be an empty string. This is indicated by enclosing a default value between two caret symbols ("^").

For example: "[^PRIMARY^[PRI_CIRCUIT_ID]]" returns a value of "PRIMARY" in any case where the PRI_CIRCUIT_ID attribute is non-existent or empty.

If a default value is not specified, then a "String Expansion Error" message will occur.

	
4.

	

Special Attributes

Some properties of an object can be accessed as if they were attributes by using one of the special names given below, preceded by a double dollar sign:

CLS (cell number)

IDX (index number)

X1 (1st or primary X coordinate)

Y1 (1st or primary Y coordinate)

Xn (subsequent X coordinate)

Yn (subsequent Y coordinate)

COORD_CNT (number of coordinates)

MAP_CLASS (class number of partition)

MAP_NAME (full name of partition)

CELL_NAME (cell name - i.e. the set of instructions for an object)

CLS_NAME (actual name of class rather than number)

For example, [$$CELL_NAME] returns the name of the "cell" within the cell definition file that was matched by the current object.

	
5.

	

Handle Reference

One daughter object can access the class and index number of another daughter object by using the following two forms:

$<#>.CLS

$<#>.IDX

For example, in daughter object #2, the class number of daughter #1 can be accessed by the form: "[$1.CLS]" and index number of daughter #1 can be accessed by the form: "[$1.IDX]".

Note : A common practical application of this form of string expansion is to assign the DEVICE_CLS and DEVICE_IDX attributes of a SND attached to its corresponding transformer.

Available Cell Explosion Keywords

This section provides descriptions, syntax, and examples for available cell explosion keywords.

Global (outside all cell definitions)

	
•

	

CODE - Defines an entry in a code conversion lookup table. See String Expansion Section.

	
•

	

DBCODE - Defines an entry in a database table. See String Expansion Section.

	
•

	

DEFAULT_CODE - Sets default values for codelist. See String Expansion Section.

	
•

	

INCLUDE - Reads definitions from another file.

	

	

INCLUDE, <name of file to include>

INCLUDE, /users/xyz/data/xyz_devices.cel

	
•

	

NAMED_DBCODE - Allows for definitions of more than one codelist from a single database table.

	
•

	

TEMPLATE - Uses a template definition.

	
•

	

USE - Sets default values for an entity’s properties.

	

	

 USE, <KEYWORD>, <value>

USE, PHASE, abc

Shared (used by both parent objects & daughter graphic objects)

	
•

	

ATT[n] - Sets the value of an attribute. There is no limit on the number of ATT[n] records that can exist in the cell definitions. [n] is currently a placeholder, usually set to 0 (zero).

	

	

ATT[n],<att_name>, <att_value>

ATT0, feeder, [@(9:12) [ACAD_layer]]

ATT0, riser, N

	
•

	

ATTR_INDEX - The string that follows this keyword will be used to assign an index unique for an object of this object’s class; usually, the string will be formed by expansion of one or more attributes.

	

	

ATTR_INDEX, <n>

ATTR_INDEX,

	
•

	

BND_HANDLE - Indicates that the index for this object should be provided by the boundary-node handle manager.

	

	

BND_HANDLE, 1

	
•

	

CLASS - Sets the class of object to explicit value.

	

	

CLASS, <class name>

CLASS, Xfm

	
•

	

DATT[n] - Dynamic attribute name. [n] is currently a placeholder, usually set to 0 (zero).

	

	

DATT[n], <att_name>, <att_value>

DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

GEO_HANDLE - Indicates that a unique index should be generated based upon the object’s class and geographical coordinates.

	

	

GEO_HANDLE, 1

	
•

	

INDEX - Sets the index of object to an explicit value.

	

	

INDEX, <n>

INDEX, 533

	
•

	

MARK_BGD - Marks an object as background and sets its location to the background partition.

	

	

MARK_BGD, 1

	
•

	

MSG[n] (or MESSAGE[n]) - Prints a message to standard output when this definition is used, where [n] is either 0, 1, 2, or 3.

	

	

MSG[1|2|3], <message text> MESSAGE[1|2|3], <message text>

MSG1, Warning: Found stray fuse

MSG2, Handle: [$$CLS] . [$$IDX]

MSG3, At (X,Y) of ([$$X1],[$$Y1])

	
•

	

NCG - Set the entity’s Network Control Group (NCG) property. (Program-style preprocessor only)

	

	

NCG, <n>

NCG, [@(9:12)[ACAD_layer]]

	
•

	

NOMINAL_STATE - Sets the entity’s ‘NOMINAL_STATE’ property. The value can be an integer typically between 0 and 15 or the key words OPEN or CLOSED.

	

	

NOMINAL_STATE, <n>|OPEN|CLOSED

NOMINAL_STATE, CLOSED

	
•

	

OPT_ATT[n] - Sets an optional value of an attribute. Will not report a string error message if the value fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_ATT[n], <att_name>, <att_value>

OPT_ATT1, From_Node_Bnd, [NODE1_BND]

	
•

	

OPT_DATT[n] - Sets an optional dynamic attribute name. Will not report a string error message if the attribute name fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_DATT[n]

OPT_DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

 4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

PHASE - Sets the entity’s ‘PHASE’ property (e.g., to ABC).

	

	

PHASE, <n>

PHASE, [%PHASE_LIST.[@(6:8)[ACAD_layer]]]

	
•

	

STRING - Sets the value of the text string for this entity. (TEXT objects only)

	

	

STRING, <string>

STRING, [KVAR]

	
•

	

SUB_BND - Indicates that this object is a substation boundary node and that its index should be assigned based upon the supplied string (usually the feeder or circuit identifier).

SUB_BND, 1

	
•

	

SYM_ID - Sets the symbology-state-class to an explicit value, rather than its default value, which is the same as the class number.

	

	

SYM_ID, <n>

SYM_ID, 1304

	
•

	

VOLTS - Sets the entity’s ‘VOLTS’ property. (Program-style preprocessor only)

	

	

VOLTS, <n>

VOLTS, [voltage] 1000 *

Parent Object ("explosionDef") Only

	
•

	

AGGREGATE/_ POINT/_LINE/_TEXT - Creates a graphic object of the specified kind that becomes a component of the overall aggregate device. AGGREGATE and AGGREGATE_LINE require 2 coordinates; AGGREGATE_POINT and AGGREGATE_TEXT require one coordinate. All AGGREGATE definition types require an END_AGGREGATE. (Obsolete)

	

	

AGGREGATE, <n>

AGGREGATE, 4

	

	

AGGREGATE_ POINT, <n>

AGGREGATE_POINT, 1

	

	

AGGREGATE_ LINE, <n>

AGGREGATE_ LINE, 3

	

	

AGGREGATE_ TEXT, <n>

AGGREGATE_ TEXT, 2

	
•

	

CELL - Begins the definition for one device type. The cell definition file can contain many sets of cell definitions. All CELL definitions require an END_CELL.

	

	

CELL, <name>

CELL, uxfm2

	
•

	

END_CELL - Ends an explosion definition.

END_CELL

	
•

	

END_AGGREGATE - Ends an aggregate definition.

END_AGGREGATE

	
•

	

END_TEMP - Ends a template definition.

END_TEMP

	
•

	

MATT[n] - Matching attribute of the object to explode. [n] is currently a placeholder, usually set to 0 (zero). There is no limit on the number of MATT[n] records a cell explosion definition may have, but for the explosion to occur, all must match.

	

	

MATT[n],<attribute name>,<target attribute value>

MATTO, ACAD_objectType, INSERT

	
•

	

POINT/LINE/TEXT - Creates a "daughter" graphic object of the specified kind. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT, <n>

POINT, 3

	

	

LINE, <n>

LINE, 1

	

	

TEXT, <n>

TEXT, 5

	
•

	

POINT/LINE/TEXT WHEN <condition> - Creates a "daughter" graphic object of the specified kind when the given condition is met. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT WHEN <condition>

POINT WHEN

	

	

LINE WHEN <condition>

LINE WHEN

	

	

TEXT WHEN <condition>

TEXT WHEN

	
•

	

POINT/LINE/TEXT FOR
<variable> IN
<List of Values> - Creates zero, one or multiple graphic objects of the specified kind, one object for each value in the supplied list. Use <variable> within the definition as if it were an attribute name. A special variable called "$$ICOUNT" can also be used to retrieve the number of the iteration. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <variable> IN <list of values>

POINT FOR

	

	

LINE FOR <variable> IN <list of values>

LINE FOR

	

	

TEXT FOR <variable> IN <list of values>

TEXT FOR

	
•

	

POINT/LINE/TEXT FOR
<num-valu
e> TIMES - Creates zero, one or multiple graphic objects of the specified kind; number of objects specified by <num-values>. ($$ICOUNT can be used just as for the previous form). All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <numeric value> TIMES

POINT FOR

	

	

LINE FOR <numeric value> TIMES

LINE FOR

	

	

TEXT FOR <numeric value> TIMES

TEXT FOR

	
•

	

REQUEST_HANDLE - Indicates that the existing handle of this object should be replaced with one supplied by the Explosion manager’s "ExplodeHandle" class. (Primarily for ISFF)

REQUEST_HANDLE, 1

	
•

	

RMV[n] - Removes an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RMV[n]

RMV0, voltage

	
•

	

RNA[n] - Renames an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RNA[n], <att_name>, <new_att_name>

RNA0, amp_content, amp_cont

	
•

	

TEXT_SCALE - Specifies the scale factor for text. Used to allow the height of base text symbol to be used as a multiplier to the cell definition specified coordinates.

	

	

TEXT_SCALE, <n>

	

	

TEXT_SCALE, 1

	

	

for example with the TEXT_SCALE, 1 specified and the base text object has a specified height of 400 and the COORD1, 10, 30 is specified, the resulting coordinates will be 400x10, 400x30 or 4000, 12000.

	
•

	

USE_REFERENCE - Indicates that the index for this object should be based upon its corresponding reference object. (ISFF only) (Obsolete). For example:

	

	

USE_REFERENCE, 1

causes the FRAMME RB_REFPRMRY and RB_REFSCNDRY linkages to be used instead of the normal RB_PRIMRY and RB_SECNDRY.

Component "Daughter" Object ("explosionGrObject") Only

	
•

	

ABSOLUTE_COORDS - Indicates that coordinate values are specified in absolute, "real-world" numbers; this over-rides the default behavior which is for numbers used in COORD statements to be taken as relative to the insertion point of the parent object (i.e. this insertion point corresponds to COORD 0.0, 0.0).

	

	

ABSOLUTE_COORDS, 1

	
•

	

ANGLE - Sets the text rotation for this entity. Horizontal is zero and the angle proceeds counter clockwise. (TEXT objects only)

	

	

ANGLE, <a>

	

	

ANGLE, 90

	
•

	

COORD/COORD[n] - Sets relative/absolute coordinate of an object/endpoint.

	

	

COORD, <x>, <y>

	

	

COORD, 1.0, 2.5

	

	

COORD[n], <x>, <y>

	

	

COORD1, 0.0, 1.0
COORD2, 1.0, 2.0

	
•

	

COMPONENT[n] - Sets the aggregate sequence number and cell component number for a single component in the aggregate.

	

	

COMPONENT[n], <agg_seq_num>, <cell_comp_num>

	

	

COMPONENT1, 1, 2

	
•

	

END_AGGREGATE - Ends the definition of component graphic object.

	

	

END_AGGREGATE

	
•

	

HEIGHT - Sets the text height for this entity. (TEXT objects only)

	

	

HEIGHT, <h>

	

	

HEIGHT, 2

	
•

	

H_ORIENTATION - Sets the horizontal justification of text. Values can be LEFT, CENTER, or RIGHT, or 0, 1, or 2. Default is LEFT. (TEXT objects only)

	

	

H_ORIENTATION, <n>|LEFT|CENTER|RIGHT

	

	

H_ORIENTATION, LEFT

	
•

	

USE_ROTATION - Indicates that the rotation property of the original entity should be used to set the rotation for the component graphic object.

	

	

USE_ROTATION, 1

	
•

	

V_ORIENTATION - Sets the vertical justification of text. Values can be TOP, CENTER, or BOTTOM, or 0,1, or 2. Default is BOTTOM. (TEXT objects only)

	

	

V_ORIENTATION, <n>|TOP|CENTER|BOTTOM

	

	

V_ORIENTATION, 2

Special Attributes Set by Explode an Processed by mat2entityset.(script-preprocessor):

	
•

	

Alias - Sets an alias for an attribute (both script- and program-style preprocessors).

	

	

ATT[n], ALIAS[dbtype], <value>

	

	

ATT0, ALIAS[OPS], [LOC_NUM]

	
•

	

Diagram-id - Sets the Diagram Id .

	

	

ATT[n], DIAGRAM_ID, <value>

	

	

ATT1, DIAGRAM_ID, [IPID]

	
•

	

Group - Sets the Group code.

	

	

ATT[n], CES_PP_GROUP|GROUP|Group|group, <value>

	
•

	

Local

	

	

ATT[n], LOCAL|Local|local, <value>

	
•

	

Locations (not to be confused with LOCATIONS)

	

	

ATTN[n],CES_LOCATION, <value>

	

	

ATT1, CES_LOCATION, 4901.[MID]

	

	

ATTN[n], CES_LOCATION_DEFINITION, <value>

	

	

ATT1, CES_LOCATION_DEFINITION, 4901.[MID]

	

	

ATT[n], CES_LOCATION_NAME, <value>

	

	

ATT1, CES_LOCATION_NAME, Pole [^?^[SUPPORT_NO]]

	

	

ATT[n], CES_LOCATION_DESC, <value>

	

	

ATT1, CES_LOCATION_DESC, Pole defined by support/switch:~ [^?^[SUPPORT_NO]]/[^?^[SWITCH_NAME]]

	

	

ATT[n], CES_LOCATION_REFERENCE, <value>

	

	

ATT1, CES_LOCATION_REFERENCE, [%COORDINATE.FIRSTX],~ [%COORDINATE.FIRSTY]

 Network Control Group

	

	

ATTN[n], NCG|Ncg|ncg, <value>

	

	

ATT1, NCG, [%feeder_ncg.[^UNKNOWN^[DISTRICT]]_ ~ [%ncg_volt.[^UNKNOWN^[VOLT_LEV]]]]

	
•

	

Rank

	

	

ATT[n], RANK|Rank|rank, <value>

	

	

ATT1, RANK, [%MATH_RPN.[%RANKU.[^NO^[URBAN]]]~ [%RANKLC.[^UNKNOWN^[LINE_CATEGORY]]] + ~ [%RANKV.[^0^[VOLT_LEV]] [^0^[VOLT_LEV]]] + ~ [%RANKB11.[^0^[VOLT_LEV]] [^UNKNOWN^[DISTRICT]]] + ~ [%RANKP.[^RYB^[PHASING]]] +]

	
•

	

Physical Property

	

	

ATT[n], CES_PHYS_PROP|PHYS_PROP|Phys_Prop|phys_prop|physical_property, <value>

	

	

ATT0, CES_PHYS_PROP, [%MATH_RPN.[%PHYS_PROP.BACKBONE] [%PHYS_PROP.~
[^OH^[OH_UG]]] +]

	
•

	

Topology specific (see the Attribute Topology Users Guide for further discussion)

	

	

ATT[n], From_Node, <value>

	

	

ATT1, From_Node, [FROM_NODE]

	

	

ATT[n], To_Node, <value>

	

	

ATT1, To_Node, [TO_NODE]

	

	

ATT[n], Unique_id, <value>

	

	

ATT1, Unique_Id, [FROM_NODE]_[TO_NODE]_FID

	
•

	

Transition

	

	

ATT[n], TRANSITION_ID|Transition_ID|Transition_Id|transition_id, <value>

	

	

 ATT1, TRANSITION_ID, 120

	
•

	

Voltage

	

	

ATT[n], VOLTAGE|Voltage|voltage, <value>

	

	

ATT1, VOLTAGE, [%VOLTS.[^UNKNOWN^[OPERATING_VOLTAGE]]]

Model Preprocessor

T he preprocessor reads--or parses--the files generated by the extraction process and constructs an import file which accurately models the extracted portion. The end result of completing a preprocessor is a script that is capable of accepting customer source GIS data files and generating import files.

The Model Preprocessor can be broken into individual stages called: Parse, Post Parse, Cell Explosion, Post Explode, Topology Construction, Post Topology, and Model Build Import file generation.

[image:]The following figure illustrates the stages in the preprocessor:

Parse stage

The Parser reads the client GIS model from external files created by the Extraction process into a data structure known as an Entity Set. After this phase is completed, the resulting Entity Set will be a ‘skeleton’ for the complete model. The activities completed in this stage are not client specific; it will be more specific to a standard data file format (e.g., AutoCAD’s DXF format, Intergraph’s ISFF format, etc.). Each individual graphical object (e.g., point, line, or text) will be represented in an output file.

	
•

	

Post Parse : Client specific processing that is used to accommodate any modification of the data that may be required prior to Cell Explosion.

	
•

	

Cell Explosion : Cell explosion is the central phase of preprocessing. It is here that the conversion of the raw graphical objects to model objects is accomplished. The graphical objects are mapped to objects, which will appear in client’s final model.

	
•

	

Post Explode : Allows for client specific processing after Cell Explosion.

	
•

	

Topology Construction : The inter-device connectivity for all electrical objects is constructed in this stage. The connectivity can either be explicit (i.e. ‘To’ and ‘From’ node identifiers) or based on proximity.

	
•

	

Post Topology : The final opportunity for client specific processing.

	
•

	

Model Build Import File Generation

Cell Explosion

The central phase of preprocessing is the conversion of graphical objects into full-fledged model objects; this conversion from a graphical object to a model object can involve a wide range of operations. These operations are specified in a text file <client>_devices.cel, which is called the explosion definition file.

The operations that may be accomplished during this phase include the following:

	
•

	

Handle Assignment - This requires that a graphical entity be mapped to a particular class of model objects (e.g., switch, transformer, device annotation, road, water boundary, etc.) and that an index number, unique within that class, be assigned to this object.

	
•

	

Attribute Manipulation - Attributes can be added, removed or renamed. They can also be assigned new values based upon combinations of other attribute values or the result of mathematical calculations.

	
•

	

Expansion/Replacement of One Object by Multiple Objects - For example a transformer in the mapping system could be exploded into a transformer with a switch and a network protector.

	
•

	

Creation of Aggregate Objects - One object may be used to represent a group of objects. For example, a recloser object may in fact represent the recloser along with a by-pass switch, a load switch, and a source switch. All of these component objects may be created and bundled into a single aggregate object during this phase.

	
•

	

Elimination of Un-Necessary Objects - Any object not explicitly ‘matched’ during this phase will be eliminated; thus, this stage acts as a filter.

	
•

	

Assignment of Core Properties - For example, phase, nominal status, NCG, and symbology can be assigned as default values for all devices.

	
•

	

Daughter Object Creation - Creating new entities based upon information taken from an existing object.

	
•

	

Classification of Objects as Background - Sets the location of an object to a background partition.

	
•

	

Diagnostic Messaging - Aids in debugging or as a method to configure customer specific error messages with customer defined attributes.

Model objects have handles (class and index), attributes and aliases, geometry, and optionally aggregate object specification, all of which are supported through the explosion preprocessor.

To understand the cell definitions, which specify how an object is recognized and processed during cell explosion, one should understand two fundamental ideas:

	
1.

	

"Parent" and "daughter" objects

	
2.

	

String expansion.

Parent and daughter objects

Those objects, which enter the cell explosion process from the parser (or the post-parse processing) and which are recognized (or matched) by a definition, are considered to be "parent" objects (or, at least, potential parents); any new graphic objects created by the cell definition which matched the parent are considered "daughter" objects.

There are 4 outcomes for an object after cell explosion:

	
1.

	

 The parent object may pass through and be modified by cell explosion without giving rise to daughter objects.

	
2.

	

The parent object may pass through cell explosion while giving rise to one or more daughter objects.

	
3.

	

The parent object may be eliminated by cell explosion yet give rise to daughter objects, which survive and proceed to the succeeding stages.

	
4.

	

The parent object may be eliminated by cell explosion and not give rise to daughter objects.

Note : Any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through this process; all other objects are eliminated.

Commonly, if the parent gives rise to daughter objects, the parent dies, but transfers some of its attributes to the resulting daughters through use of the ATT keyword.

The following illustration depicts outcomes 1 and 2 for an object:

[image:]

String expansion

When assigning new attributes, you may want the values for these new attributes to be formed from existing attributes--either by simply copying an existing value, or by combining and/or transforming the old values. This process is accomplished by "string expansion" which replaces or expands an attribute name into the full string representing that attribute’s value. In cell definitions, enclosing an attribute name in square brackets indicates that you intend for this attribute name to be expanded; e.g., the form "[FEEDER_ID]" will be replaced by the value of the FEEDER_ID attribute, such as "6992" (assuming that such an attribute exists for the matched object). In addition to this simple expansion, there are several specialized forms of string expansion that can be summarized as follows:

	
1.

	

Substring

	
•

	

Delimiter Based

Indicated by "<"or ">". This this form returns the substring before or after the first occurrence of the delimiting character. The delimiting character is the character immediately following the "<"or the ">".

For example, if TAG= "XYZ.553", then [<.[TAG]] returns the substring preceding the first period (".") in the TAG attribute value, in this case," XYZ". Likewise, [>.[TAG]] returns the substring following the period, which would be "553".

Note : When nesting a simple expansion form (e.g., [TAG]) within a delimiter based expansion form; you can discard the inner square brackets. Thus, "[<.TAG]" is equivalent to "[<.[TAG]]".

	
•

	

Position Based

Indicated by "@" -- this form returns the substring beginning and ending at the given character positions.

Using the example from above where TAG="XYZ.553", the notation [@(1:2)[TAG]] extracts the substring from the value of the TAG attribute, which begins with character position 1 (position 0 being the first character) and ends with character position 2. In other words, it extracts a two-character substring, beginning from the second position, returning the value "YZ"

Note : The character position can be specified relative to the end of the string by using the "$" character to represent the last position in the string. E.g., "[@($-1:$)[TAG]]" returns the last two characters "53". Also note that a single character can be extracted by specifying the start and end positions as the same character, e.g., "[@(2:2)[TAG]]" returns the third character, "Z".

	
2.

	

Codelist

These can be used to map or convert an input value into the corresponding output value.

	
•

	

Basic Lookup Table:

	

	

To create the "lookup table", we use the CODE keyword. The format for the table is:

CODE, <listname>,input value, outputvalue.

	

	

For example:

CODE, RANK_LIST, E, 1

CODE, RANK_LIST, R, 2

CODE, RANK_LIST, P, 4

	

	

 creates a lookup table with three entries or mappings.

	

	

(A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword, e.g., DEFAULT_CODE, RANK_LIST, 1 means that any input value other than E, R or P results in the output of a "1".)

	

	

To actually look up or convert a value, we use the codelist form of string expansion, indicated by a "%".

[%RANK_LIST.[RANK_CODE]]

	

	

will return "1" if the RANK_CODE attribute is "E"; "2" if the RANK_CODE is "R"; and "4" if the RANK_CODE is "P".

	
•

	

Database Lookup:

	

	

This works the same as the basic lookup table but the entries are stored in a database table. There are 2 formats for database lookups:

	
•

	

DBCODE

	

	

The table name (which also serves as the list name), the input column name, and the output column name are defined using the DBCODE keyword. The format for the DBCODE is:

	

	

DBCODE, <tablename>, <input column>,< output column>

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

	

	

means that there exists a database table called "feeder_ncg" which has an input value column called "feeder_name" and an output value column "ncg_id".

	
•

	

NAMED_DBCODE

	

	

NAMED_DBCODE is similar to DBCODE except it takes a list name that is different from the table name. It is used in cases where there is a need for 2 codelists based on the same database table but with different input and output columns. The format is:

	

	

NAMED_DBCODE, <listname>, <tablename>, <input column>,
<output column>

	

	

A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword. For example, DEFAULT_CODE, feeder_ncg, 1 means that any input value other than what has been defined results in the output of a "1". Additionally, a special DEFAULT_CODE value can be assigned with the value specified as "--INTEGER_SEQUENTIAL--".

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

	

	

Means if a lookup into the table named feeder_ncg does not have a match, the default action will be to select the maximum value of ncg_ids in the table, add one to the ncg_id, and create a new record with the given feeder name and the incremental maximum ncg_id.

	

	

Accessing the table is the same as the basic lookup table mentioned above.

	
•

	

Math Functions :

	

	

Mathematical functions can be calculated by using the input value to access a "pseudo- codelist." "List name" has one of the following values:

	

	

MATH_SIN

	

	

MATH_COS

	

	

MATH_TAN

	

	

MATH_ASIN

	

	

MATH_ACOS

	

	

MATH_ATAN

	

	

MATH_LOG

	

	

MATH_LOG10

	

	

MATH_EXP

	

	

MATH_SQRT

	

	

MATH_CEIL (round up to next greatest number)

	

	

MATH_FLOOR (round down to next lowest number)

	

	

MATH_FABS (absolute value, e.g., -4.5 becomes 4.5)

	

	

MATH_RPN (math function in reverse polish notation)

	

	

For example, to calculate the sine of an ANGLE attribute:

[%MATH_SIN.[ANGLE]]

	
•

	

Coordinate Lookup :

	

	

The coordinates of an object can be accessed using a form that mimics a codelist lookup:

	

	

[%COORDINATE.FIRSTX] returns the first X coordinate of the object

	

	

[%COORDINATE.LASTX] returns the last X coordinate of the object

	

	

[%COORDINATE.FIRSTY] returns the first Y coordinate of the object

	

	

[%COORDINATE.LASTY] returns the last Y coordinate of the object

	
3.

	

Default Value

A default value can be specified which will be returned if the result of string expansion would otherwise be an empty string. This is indicated by enclosing a default value between two caret symbols ("^").

For example: "[^PRIMARY^[PRI_CIRCUIT_ID]]" returns a value of "PRIMARY" in any case where the PRI_CIRCUIT_ID attribute is non-existent or empty.

If a default value is not specified, then a "String Expansion Error" message will occur.

	
4.

	

Special Attributes

Some properties of an object can be accessed as if they were attributes by using one of the special names given below, preceded by a double dollar sign:

CLS (cell number)

IDX (index number)

X1 (1st or primary X coordinate)

Y1 (1st or primary Y coordinate)

Xn (subsequent X coordinate)

Yn (subsequent Y coordinate)

COORD_CNT (number of coordinates)

MAP_CLASS (class number of partition)

MAP_NAME (full name of partition)

CELL_NAME (cell name - i.e. the set of instructions for an object)

CLS_NAME (actual name of class rather than number)

For example, [$$CELL_NAME] returns the name of the "cell" within the cell definition file that was matched by the current object.

	
5.

	

Handle Reference

One daughter object can access the class and index number of another daughter object by using the following two forms:

$<#>.CLS

$<#>.IDX

For example, in daughter object #2, the class number of daughter #1 can be accessed by the form: "[$1.CLS]" and index number of daughter #1 can be accessed by the form: "[$1.IDX]".

Note : A common practical application of this form of string expansion is to assign the DEVICE_CLS and DEVICE_IDX attributes of a SND attached to its corresponding transformer.

Available Cell Explosion Keywords

This section provides descriptions, syntax, and examples for available cell explosion keywords.

Global (outside all cell definitions)

	
•

	

CODE - Defines an entry in a code conversion lookup table. See String Expansion Section.

	
•

	

DBCODE - Defines an entry in a database table. See String Expansion Section.

	
•

	

DEFAULT_CODE - Sets default values for codelist. See String Expansion Section.

	
•

	

INCLUDE - Reads definitions from another file.

	

	

INCLUDE, <name of file to include>

INCLUDE, /users/xyz/data/xyz_devices.cel

	
•

	

NAMED_DBCODE - Allows for definitions of more than one codelist from a single database table.

	
•

	

TEMPLATE - Uses a template definition.

	
•

	

USE - Sets default values for an entity’s properties.

	

	

 USE, <KEYWORD>, <value>

USE, PHASE, abc

Shared (used by both parent objects & daughter graphic objects)

	
•

	

ATT[n] - Sets the value of an attribute. There is no limit on the number of ATT[n] records that can exist in the cell definitions. [n] is currently a placeholder, usually set to 0 (zero).

	

	

ATT[n],<att_name>, <att_value>

ATT0, feeder, [@(9:12) [ACAD_layer]]

ATT0, riser, N

	
•

	

ATTR_INDEX - The string that follows this keyword will be used to assign an index unique for an object of this object’s class; usually, the string will be formed by expansion of one or more attributes.

	

	

ATTR_INDEX, <n>

ATTR_INDEX,

	
•

	

BND_HANDLE - Indicates that the index for this object should be provided by the boundary-node handle manager.

	

	

BND_HANDLE, 1

	
•

	

CLASS - Sets the class of object to explicit value.

	

	

CLASS, <class name>

CLASS, Xfm

	
•

	

DATT[n] - Dynamic attribute name. [n] is currently a placeholder, usually set to 0 (zero).

	

	

DATT[n], <att_name>, <att_value>

DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

GEO_HANDLE - Indicates that a unique index should be generated based upon the object’s class and geographical coordinates.

	

	

GEO_HANDLE, 1

	
•

	

INDEX - Sets the index of object to an explicit value.

	

	

INDEX, <n>

INDEX, 533

	
•

	

MARK_BGD - Marks an object as background and sets its location to the background partition.

	

	

MARK_BGD, 1

	
•

	

MSG[n] (or MESSAGE[n]) - Prints a message to standard output when this definition is used, where [n] is either 0, 1, 2, or 3.

	

	

MSG[1|2|3], <message text> MESSAGE[1|2|3], <message text>

MSG1, Warning: Found stray fuse

MSG2, Handle: [$$CLS] . [$$IDX]

MSG3, At (X,Y) of ([$$X1],[$$Y1])

	
•

	

NCG - Set the entity’s Network Control Group (NCG) property. (Program-style preprocessor only)

	

	

NCG, <n>

NCG, [@(9:12)[ACAD_layer]]

	
•

	

NOMINAL_STATE - Sets the entity’s ‘NOMINAL_STATE’ property. The value can be an integer typically between 0 and 15 or the key words OPEN or CLOSED.

	

	

NOMINAL_STATE, <n>|OPEN|CLOSED

NOMINAL_STATE, CLOSED

	
•

	

OPT_ATT[n] - Sets an optional value of an attribute. Will not report a string error message if the value fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_ATT[n], <att_name>, <att_value>

OPT_ATT1, From_Node_Bnd, [NODE1_BND]

	
•

	

OPT_DATT[n] - Sets an optional dynamic attribute name. Will not report a string error message if the attribute name fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_DATT[n]

OPT_DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

 4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

PHASE - Sets the entity’s ‘PHASE’ property (e.g., to ABC).

	

	

PHASE, <n>

PHASE, [%PHASE_LIST.[@(6:8)[ACAD_layer]]]

	
•

	

STRING - Sets the value of the text string for this entity. (TEXT objects only)

	

	

STRING, <string>

STRING, [KVAR]

	
•

	

SUB_BND - Indicates that this object is a substation boundary node and that its index should be assigned based upon the supplied string (usually the feeder or circuit identifier).

SUB_BND, 1

	
•

	

SYM_ID - Sets the symbology-state-class to an explicit value, rather than its default value, which is the same as the class number.

	

	

SYM_ID, <n>

SYM_ID, 1304

	
•

	

VOLTS - Sets the entity’s ‘VOLTS’ property. (Program-style preprocessor only)

	

	

VOLTS, <n>

VOLTS, [voltage] 1000 *

Parent Object ("explosionDef") Only

	
•

	

AGGREGATE/_ POINT/_LINE/_TEXT - Creates a graphic object of the specified kind that becomes a component of the overall aggregate device. AGGREGATE and AGGREGATE_LINE require 2 coordinates; AGGREGATE_POINT and AGGREGATE_TEXT require one coordinate. All AGGREGATE definition types require an END_AGGREGATE. (Obsolete)

	

	

AGGREGATE, <n>

AGGREGATE, 4

	

	

AGGREGATE_ POINT, <n>

AGGREGATE_POINT, 1

	

	

AGGREGATE_ LINE, <n>

AGGREGATE_ LINE, 3

	

	

AGGREGATE_ TEXT, <n>

AGGREGATE_ TEXT, 2

	
•

	

CELL - Begins the definition for one device type. The cell definition file can contain many sets of cell definitions. All CELL definitions require an END_CELL.

	

	

CELL, <name>

CELL, uxfm2

	
•

	

END_CELL - Ends an explosion definition.

END_CELL

	
•

	

END_AGGREGATE - Ends an aggregate definition.

END_AGGREGATE

	
•

	

END_TEMP - Ends a template definition.

END_TEMP

	
•

	

MATT[n] - Matching attribute of the object to explode. [n] is currently a placeholder, usually set to 0 (zero). There is no limit on the number of MATT[n] records a cell explosion definition may have, but for the explosion to occur, all must match.

	

	

MATT[n],<attribute name>,<target attribute value>

MATTO, ACAD_objectType, INSERT

	
•

	

POINT/LINE/TEXT - Creates a "daughter" graphic object of the specified kind. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT, <n>

POINT, 3

	

	

LINE, <n>

LINE, 1

	

	

TEXT, <n>

TEXT, 5

	
•

	

POINT/LINE/TEXT WHEN <condition> - Creates a "daughter" graphic object of the specified kind when the given condition is met. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT WHEN <condition>

POINT WHEN

	

	

LINE WHEN <condition>

LINE WHEN

	

	

TEXT WHEN <condition>

TEXT WHEN

	
•

	

POINT/LINE/TEXT FOR
<variable> IN
<List of Values> - Creates zero, one or multiple graphic objects of the specified kind, one object for each value in the supplied list. Use <variable> within the definition as if it were an attribute name. A special variable called "$$ICOUNT" can also be used to retrieve the number of the iteration. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <variable> IN <list of values>

POINT FOR

	

	

LINE FOR <variable> IN <list of values>

LINE FOR

	

	

TEXT FOR <variable> IN <list of values>

TEXT FOR

	
•

	

POINT/LINE/TEXT FOR
<num-valu
e> TIMES - Creates zero, one or multiple graphic objects of the specified kind; number of objects specified by <num-values>. ($$ICOUNT can be used just as for the previous form). All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <numeric value> TIMES

POINT FOR

	

	

LINE FOR <numeric value> TIMES

LINE FOR

	

	

TEXT FOR <numeric value> TIMES

TEXT FOR

	
•

	

REQUEST_HANDLE - Indicates that the existing handle of this object should be replaced with one supplied by the Explosion manager’s "ExplodeHandle" class. (Primarily for ISFF)

REQUEST_HANDLE, 1

	
•

	

RMV[n] - Removes an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RMV[n]

RMV0, voltage

	
•

	

RNA[n] - Renames an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RNA[n], <att_name>, <new_att_name>

RNA0, amp_content, amp_cont

	
•

	

TEXT_SCALE - Specifies the scale factor for text. Used to allow the height of base text symbol to be used as a multiplier to the cell definition specified coordinates.

	

	

TEXT_SCALE, <n>

	

	

TEXT_SCALE, 1

	

	

for example with the TEXT_SCALE, 1 specified and the base text object has a specified height of 400 and the COORD1, 10, 30 is specified, the resulting coordinates will be 400x10, 400x30 or 4000, 12000.

	
•

	

USE_REFERENCE - Indicates that the index for this object should be based upon its corresponding reference object. (ISFF only) (Obsolete). For example:

	

	

USE_REFERENCE, 1

causes the FRAMME RB_REFPRMRY and RB_REFSCNDRY linkages to be used instead of the normal RB_PRIMRY and RB_SECNDRY.

Component "Daughter" Object ("explosionGrObject") Only

	
•

	

ABSOLUTE_COORDS - Indicates that coordinate values are specified in absolute, "real-world" numbers; this over-rides the default behavior which is for numbers used in COORD statements to be taken as relative to the insertion point of the parent object (i.e. this insertion point corresponds to COORD 0.0, 0.0).

	

	

ABSOLUTE_COORDS, 1

	
•

	

ANGLE - Sets the text rotation for this entity. Horizontal is zero and the angle proceeds counter clockwise. (TEXT objects only)

	

	

ANGLE, <a>

	

	

ANGLE, 90

	
•

	

COORD/COORD[n] - Sets relative/absolute coordinate of an object/endpoint.

	

	

COORD, <x>, <y>

	

	

COORD, 1.0, 2.5

	

	

COORD[n], <x>, <y>

	

	

COORD1, 0.0, 1.0
COORD2, 1.0, 2.0

	
•

	

COMPONENT[n] - Sets the aggregate sequence number and cell component number for a single component in the aggregate.

	

	

COMPONENT[n], <agg_seq_num>, <cell_comp_num>

	

	

COMPONENT1, 1, 2

	
•

	

END_AGGREGATE - Ends the definition of component graphic object.

	

	

END_AGGREGATE

	
•

	

HEIGHT - Sets the text height for this entity. (TEXT objects only)

	

	

HEIGHT, <h>

	

	

HEIGHT, 2

	
•

	

H_ORIENTATION - Sets the horizontal justification of text. Values can be LEFT, CENTER, or RIGHT, or 0, 1, or 2. Default is LEFT. (TEXT objects only)

	

	

H_ORIENTATION, <n>|LEFT|CENTER|RIGHT

	

	

H_ORIENTATION, LEFT

	
•

	

USE_ROTATION - Indicates that the rotation property of the original entity should be used to set the rotation for the component graphic object.

	

	

USE_ROTATION, 1

	
•

	

V_ORIENTATION - Sets the vertical justification of text. Values can be TOP, CENTER, or BOTTOM, or 0,1, or 2. Default is BOTTOM. (TEXT objects only)

	

	

V_ORIENTATION, <n>|TOP|CENTER|BOTTOM

	

	

V_ORIENTATION, 2

Special Attributes Set by Explode an Processed by mat2entityset.(script-preprocessor):

	
•

	

Alias - Sets an alias for an attribute (both script- and program-style preprocessors).

	

	

ATT[n], ALIAS[dbtype], <value>

	

	

ATT0, ALIAS[OPS], [LOC_NUM]

	
•

	

Diagram-id - Sets the Diagram Id .

	

	

ATT[n], DIAGRAM_ID, <value>

	

	

ATT1, DIAGRAM_ID, [IPID]

	
•

	

Group - Sets the Group code.

	

	

ATT[n], CES_PP_GROUP|GROUP|Group|group, <value>

	
•

	

Local

	

	

ATT[n], LOCAL|Local|local, <value>

	
•

	

Locations (not to be confused with LOCATIONS)

	

	

ATTN[n],CES_LOCATION, <value>

	

	

ATT1, CES_LOCATION, 4901.[MID]

	

	

ATTN[n], CES_LOCATION_DEFINITION, <value>

	

	

ATT1, CES_LOCATION_DEFINITION, 4901.[MID]

	

	

ATT[n], CES_LOCATION_NAME, <value>

	

	

ATT1, CES_LOCATION_NAME, Pole [^?^[SUPPORT_NO]]

	

	

ATT[n], CES_LOCATION_DESC, <value>

	

	

ATT1, CES_LOCATION_DESC, Pole defined by support/switch:~ [^?^[SUPPORT_NO]]/[^?^[SWITCH_NAME]]

	

	

ATT[n], CES_LOCATION_REFERENCE, <value>

	

	

ATT1, CES_LOCATION_REFERENCE, [%COORDINATE.FIRSTX],~ [%COORDINATE.FIRSTY]

 Network Control Group

	

	

ATTN[n], NCG|Ncg|ncg, <value>

	

	

ATT1, NCG, [%feeder_ncg.[^UNKNOWN^[DISTRICT]]_ ~ [%ncg_volt.[^UNKNOWN^[VOLT_LEV]]]]

	
•

	

Rank

	

	

ATT[n], RANK|Rank|rank, <value>

	

	

ATT1, RANK, [%MATH_RPN.[%RANKU.[^NO^[URBAN]]]~ [%RANKLC.[^UNKNOWN^[LINE_CATEGORY]]] + ~ [%RANKV.[^0^[VOLT_LEV]] [^0^[VOLT_LEV]]] + ~ [%RANKB11.[^0^[VOLT_LEV]] [^UNKNOWN^[DISTRICT]]] + ~ [%RANKP.[^RYB^[PHASING]]] +]

	
•

	

Physical Property

	

	

ATT[n], CES_PHYS_PROP|PHYS_PROP|Phys_Prop|phys_prop|physical_property, <value>

	

	

ATT0, CES_PHYS_PROP, [%MATH_RPN.[%PHYS_PROP.BACKBONE] [%PHYS_PROP.~
[^OH^[OH_UG]]] +]

	
•

	

Topology specific (see the Attribute Topology Users Guide for further discussion)

	

	

ATT[n], From_Node, <value>

	

	

ATT1, From_Node, [FROM_NODE]

	

	

ATT[n], To_Node, <value>

	

	

ATT1, To_Node, [TO_NODE]

	

	

ATT[n], Unique_id, <value>

	

	

ATT1, Unique_Id, [FROM_NODE]_[TO_NODE]_FID

	
•

	

Transition

	

	

ATT[n], TRANSITION_ID|Transition_ID|Transition_Id|transition_id, <value>

	

	

 ATT1, TRANSITION_ID, 120

	
•

	

Voltage

	

	

ATT[n], VOLTAGE|Voltage|voltage, <value>

	

	

ATT1, VOLTAGE, [%VOLTS.[^UNKNOWN^[OPERATING_VOLTAGE]]]

Model Preprocessor

T he preprocessor reads--or parses--the files generated by the extraction process and constructs an import file which accurately models the extracted portion. The end result of completing a preprocessor is a script that is capable of accepting customer source GIS data files and generating import files.

The Model Preprocessor can be broken into individual stages called: Parse, Post Parse, Cell Explosion, Post Explode, Topology Construction, Post Topology, and Model Build Import file generation.

[image:]The following figure illustrates the stages in the preprocessor:

Parse stage

The Parser reads the client GIS model from external files created by the Extraction process into a data structure known as an Entity Set. After this phase is completed, the resulting Entity Set will be a ‘skeleton’ for the complete model. The activities completed in this stage are not client specific; it will be more specific to a standard data file format (e.g., AutoCAD’s DXF format, Intergraph’s ISFF format, etc.). Each individual graphical object (e.g., point, line, or text) will be represented in an output file.

	
•

	

Post Parse : Client specific processing that is used to accommodate any modification of the data that may be required prior to Cell Explosion.

	
•

	

Cell Explosion : Cell explosion is the central phase of preprocessing. It is here that the conversion of the raw graphical objects to model objects is accomplished. The graphical objects are mapped to objects, which will appear in client’s final model.

	
•

	

Post Explode : Allows for client specific processing after Cell Explosion.

	
•

	

Topology Construction : The inter-device connectivity for all electrical objects is constructed in this stage. The connectivity can either be explicit (i.e. ‘To’ and ‘From’ node identifiers) or based on proximity.

	
•

	

Post Topology : The final opportunity for client specific processing.

	
•

	

Model Build Import File Generation

Cell Explosion

The central phase of preprocessing is the conversion of graphical objects into full-fledged model objects; this conversion from a graphical object to a model object can involve a wide range of operations. These operations are specified in a text file <client>_devices.cel, which is called the explosion definition file.

The operations that may be accomplished during this phase include the following:

	
•

	

Handle Assignment - This requires that a graphical entity be mapped to a particular class of model objects (e.g., switch, transformer, device annotation, road, water boundary, etc.) and that an index number, unique within that class, be assigned to this object.

	
•

	

Attribute Manipulation - Attributes can be added, removed or renamed. They can also be assigned new values based upon combinations of other attribute values or the result of mathematical calculations.

	
•

	

Expansion/Replacement of One Object by Multiple Objects - For example a transformer in the mapping system could be exploded into a transformer with a switch and a network protector.

	
•

	

Creation of Aggregate Objects - One object may be used to represent a group of objects. For example, a recloser object may in fact represent the recloser along with a by-pass switch, a load switch, and a source switch. All of these component objects may be created and bundled into a single aggregate object during this phase.

	
•

	

Elimination of Un-Necessary Objects - Any object not explicitly ‘matched’ during this phase will be eliminated; thus, this stage acts as a filter.

	
•

	

Assignment of Core Properties - For example, phase, nominal status, NCG, and symbology can be assigned as default values for all devices.

	
•

	

Daughter Object Creation - Creating new entities based upon information taken from an existing object.

	
•

	

Classification of Objects as Background - Sets the location of an object to a background partition.

	
•

	

Diagnostic Messaging - Aids in debugging or as a method to configure customer specific error messages with customer defined attributes.

Model objects have handles (class and index), attributes and aliases, geometry, and optionally aggregate object specification, all of which are supported through the explosion preprocessor.

To understand the cell definitions, which specify how an object is recognized and processed during cell explosion, one should understand two fundamental ideas:

	
1.

	

"Parent" and "daughter" objects

	
2.

	

String expansion.

Parent and daughter objects

Those objects, which enter the cell explosion process from the parser (or the post-parse processing) and which are recognized (or matched) by a definition, are considered to be "parent" objects (or, at least, potential parents); any new graphic objects created by the cell definition which matched the parent are considered "daughter" objects.

There are 4 outcomes for an object after cell explosion:

	
1.

	

 The parent object may pass through and be modified by cell explosion without giving rise to daughter objects.

	
2.

	

The parent object may pass through cell explosion while giving rise to one or more daughter objects.

	
3.

	

The parent object may be eliminated by cell explosion yet give rise to daughter objects, which survive and proceed to the succeeding stages.

	
4.

	

The parent object may be eliminated by cell explosion and not give rise to daughter objects.

Note : Any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through this process; all other objects are eliminated.

Commonly, if the parent gives rise to daughter objects, the parent dies, but transfers some of its attributes to the resulting daughters through use of the ATT keyword.

The following illustration depicts outcomes 1 and 2 for an object:

[image:]

String expansion

When assigning new attributes, you may want the values for these new attributes to be formed from existing attributes--either by simply copying an existing value, or by combining and/or transforming the old values. This process is accomplished by "string expansion" which replaces or expands an attribute name into the full string representing that attribute’s value. In cell definitions, enclosing an attribute name in square brackets indicates that you intend for this attribute name to be expanded; e.g., the form "[FEEDER_ID]" will be replaced by the value of the FEEDER_ID attribute, such as "6992" (assuming that such an attribute exists for the matched object). In addition to this simple expansion, there are several specialized forms of string expansion that can be summarized as follows:

	
1.

	

Substring

	
•

	

Delimiter Based

Indicated by "<"or ">". This this form returns the substring before or after the first occurrence of the delimiting character. The delimiting character is the character immediately following the "<"or the ">".

For example, if TAG= "XYZ.553", then [<.[TAG]] returns the substring preceding the first period (".") in the TAG attribute value, in this case," XYZ". Likewise, [>.[TAG]] returns the substring following the period, which would be "553".

Note : When nesting a simple expansion form (e.g., [TAG]) within a delimiter based expansion form; you can discard the inner square brackets. Thus, "[<.TAG]" is equivalent to "[<.[TAG]]".

	
•

	

Position Based

Indicated by "@" -- this form returns the substring beginning and ending at the given character positions.

Using the example from above where TAG="XYZ.553", the notation [@(1:2)[TAG]] extracts the substring from the value of the TAG attribute, which begins with character position 1 (position 0 being the first character) and ends with character position 2. In other words, it extracts a two-character substring, beginning from the second position, returning the value "YZ"

Note : The character position can be specified relative to the end of the string by using the "$" character to represent the last position in the string. E.g., "[@($-1:$)[TAG]]" returns the last two characters "53". Also note that a single character can be extracted by specifying the start and end positions as the same character, e.g., "[@(2:2)[TAG]]" returns the third character, "Z".

	
2.

	

Codelist

These can be used to map or convert an input value into the corresponding output value.

	
•

	

Basic Lookup Table:

	

	

To create the "lookup table", we use the CODE keyword. The format for the table is:

CODE, <listname>,input value, outputvalue.

	

	

For example:

CODE, RANK_LIST, E, 1

CODE, RANK_LIST, R, 2

CODE, RANK_LIST, P, 4

	

	

 creates a lookup table with three entries or mappings.

	

	

(A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword, e.g., DEFAULT_CODE, RANK_LIST, 1 means that any input value other than E, R or P results in the output of a "1".)

	

	

To actually look up or convert a value, we use the codelist form of string expansion, indicated by a "%".

[%RANK_LIST.[RANK_CODE]]

	

	

will return "1" if the RANK_CODE attribute is "E"; "2" if the RANK_CODE is "R"; and "4" if the RANK_CODE is "P".

	
•

	

Database Lookup:

	

	

This works the same as the basic lookup table but the entries are stored in a database table. There are 2 formats for database lookups:

	
•

	

DBCODE

	

	

The table name (which also serves as the list name), the input column name, and the output column name are defined using the DBCODE keyword. The format for the DBCODE is:

	

	

DBCODE, <tablename>, <input column>,< output column>

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

	

	

means that there exists a database table called "feeder_ncg" which has an input value column called "feeder_name" and an output value column "ncg_id".

	
•

	

NAMED_DBCODE

	

	

NAMED_DBCODE is similar to DBCODE except it takes a list name that is different from the table name. It is used in cases where there is a need for 2 codelists based on the same database table but with different input and output columns. The format is:

	

	

NAMED_DBCODE, <listname>, <tablename>, <input column>,
<output column>

	

	

A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword. For example, DEFAULT_CODE, feeder_ncg, 1 means that any input value other than what has been defined results in the output of a "1". Additionally, a special DEFAULT_CODE value can be assigned with the value specified as "--INTEGER_SEQUENTIAL--".

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

	

	

Means if a lookup into the table named feeder_ncg does not have a match, the default action will be to select the maximum value of ncg_ids in the table, add one to the ncg_id, and create a new record with the given feeder name and the incremental maximum ncg_id.

	

	

Accessing the table is the same as the basic lookup table mentioned above.

	
•

	

Math Functions :

	

	

Mathematical functions can be calculated by using the input value to access a "pseudo- codelist." "List name" has one of the following values:

	

	

MATH_SIN

	

	

MATH_COS

	

	

MATH_TAN

	

	

MATH_ASIN

	

	

MATH_ACOS

	

	

MATH_ATAN

	

	

MATH_LOG

	

	

MATH_LOG10

	

	

MATH_EXP

	

	

MATH_SQRT

	

	

MATH_CEIL (round up to next greatest number)

	

	

MATH_FLOOR (round down to next lowest number)

	

	

MATH_FABS (absolute value, e.g., -4.5 becomes 4.5)

	

	

MATH_RPN (math function in reverse polish notation)

	

	

For example, to calculate the sine of an ANGLE attribute:

[%MATH_SIN.[ANGLE]]

	
•

	

Coordinate Lookup :

	

	

The coordinates of an object can be accessed using a form that mimics a codelist lookup:

	

	

[%COORDINATE.FIRSTX] returns the first X coordinate of the object

	

	

[%COORDINATE.LASTX] returns the last X coordinate of the object

	

	

[%COORDINATE.FIRSTY] returns the first Y coordinate of the object

	

	

[%COORDINATE.LASTY] returns the last Y coordinate of the object

	
3.

	

Default Value

A default value can be specified which will be returned if the result of string expansion would otherwise be an empty string. This is indicated by enclosing a default value between two caret symbols ("^").

For example: "[^PRIMARY^[PRI_CIRCUIT_ID]]" returns a value of "PRIMARY" in any case where the PRI_CIRCUIT_ID attribute is non-existent or empty.

If a default value is not specified, then a "String Expansion Error" message will occur.

	
4.

	

Special Attributes

Some properties of an object can be accessed as if they were attributes by using one of the special names given below, preceded by a double dollar sign:

CLS (cell number)

IDX (index number)

X1 (1st or primary X coordinate)

Y1 (1st or primary Y coordinate)

Xn (subsequent X coordinate)

Yn (subsequent Y coordinate)

COORD_CNT (number of coordinates)

MAP_CLASS (class number of partition)

MAP_NAME (full name of partition)

CELL_NAME (cell name - i.e. the set of instructions for an object)

CLS_NAME (actual name of class rather than number)

For example, [$$CELL_NAME] returns the name of the "cell" within the cell definition file that was matched by the current object.

	
5.

	

Handle Reference

One daughter object can access the class and index number of another daughter object by using the following two forms:

$<#>.CLS

$<#>.IDX

For example, in daughter object #2, the class number of daughter #1 can be accessed by the form: "[$1.CLS]" and index number of daughter #1 can be accessed by the form: "[$1.IDX]".

Note : A common practical application of this form of string expansion is to assign the DEVICE_CLS and DEVICE_IDX attributes of a SND attached to its corresponding transformer.

Available Cell Explosion Keywords

This section provides descriptions, syntax, and examples for available cell explosion keywords.

Global (outside all cell definitions)

	
•

	

CODE - Defines an entry in a code conversion lookup table. See String Expansion Section.

	
•

	

DBCODE - Defines an entry in a database table. See String Expansion Section.

	
•

	

DEFAULT_CODE - Sets default values for codelist. See String Expansion Section.

	
•

	

INCLUDE - Reads definitions from another file.

	

	

INCLUDE, <name of file to include>

INCLUDE, /users/xyz/data/xyz_devices.cel

	
•

	

NAMED_DBCODE - Allows for definitions of more than one codelist from a single database table.

	
•

	

TEMPLATE - Uses a template definition.

	
•

	

USE - Sets default values for an entity’s properties.

	

	

 USE, <KEYWORD>, <value>

USE, PHASE, abc

Shared (used by both parent objects & daughter graphic objects)

	
•

	

ATT[n] - Sets the value of an attribute. There is no limit on the number of ATT[n] records that can exist in the cell definitions. [n] is currently a placeholder, usually set to 0 (zero).

	

	

ATT[n],<att_name>, <att_value>

ATT0, feeder, [@(9:12) [ACAD_layer]]

ATT0, riser, N

	
•

	

ATTR_INDEX - The string that follows this keyword will be used to assign an index unique for an object of this object’s class; usually, the string will be formed by expansion of one or more attributes.

	

	

ATTR_INDEX, <n>

ATTR_INDEX,

	
•

	

BND_HANDLE - Indicates that the index for this object should be provided by the boundary-node handle manager.

	

	

BND_HANDLE, 1

	
•

	

CLASS - Sets the class of object to explicit value.

	

	

CLASS, <class name>

CLASS, Xfm

	
•

	

DATT[n] - Dynamic attribute name. [n] is currently a placeholder, usually set to 0 (zero).

	

	

DATT[n], <att_name>, <att_value>

DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

GEO_HANDLE - Indicates that a unique index should be generated based upon the object’s class and geographical coordinates.

	

	

GEO_HANDLE, 1

	
•

	

INDEX - Sets the index of object to an explicit value.

	

	

INDEX, <n>

INDEX, 533

	
•

	

MARK_BGD - Marks an object as background and sets its location to the background partition.

	

	

MARK_BGD, 1

	
•

	

MSG[n] (or MESSAGE[n]) - Prints a message to standard output when this definition is used, where [n] is either 0, 1, 2, or 3.

	

	

MSG[1|2|3], <message text> MESSAGE[1|2|3], <message text>

MSG1, Warning: Found stray fuse

MSG2, Handle: [$$CLS] . [$$IDX]

MSG3, At (X,Y) of ([$$X1],[$$Y1])

	
•

	

NCG - Set the entity’s Network Control Group (NCG) property. (Program-style preprocessor only)

	

	

NCG, <n>

NCG, [@(9:12)[ACAD_layer]]

	
•

	

NOMINAL_STATE - Sets the entity’s ‘NOMINAL_STATE’ property. The value can be an integer typically between 0 and 15 or the key words OPEN or CLOSED.

	

	

NOMINAL_STATE, <n>|OPEN|CLOSED

NOMINAL_STATE, CLOSED

	
•

	

OPT_ATT[n] - Sets an optional value of an attribute. Will not report a string error message if the value fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_ATT[n], <att_name>, <att_value>

OPT_ATT1, From_Node_Bnd, [NODE1_BND]

	
•

	

OPT_DATT[n] - Sets an optional dynamic attribute name. Will not report a string error message if the attribute name fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_DATT[n]

OPT_DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

 4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

PHASE - Sets the entity’s ‘PHASE’ property (e.g., to ABC).

	

	

PHASE, <n>

PHASE, [%PHASE_LIST.[@(6:8)[ACAD_layer]]]

	
•

	

STRING - Sets the value of the text string for this entity. (TEXT objects only)

	

	

STRING, <string>

STRING, [KVAR]

	
•

	

SUB_BND - Indicates that this object is a substation boundary node and that its index should be assigned based upon the supplied string (usually the feeder or circuit identifier).

SUB_BND, 1

	
•

	

SYM_ID - Sets the symbology-state-class to an explicit value, rather than its default value, which is the same as the class number.

	

	

SYM_ID, <n>

SYM_ID, 1304

	
•

	

VOLTS - Sets the entity’s ‘VOLTS’ property. (Program-style preprocessor only)

	

	

VOLTS, <n>

VOLTS, [voltage] 1000 *

Parent Object ("explosionDef") Only

	
•

	

AGGREGATE/_ POINT/_LINE/_TEXT - Creates a graphic object of the specified kind that becomes a component of the overall aggregate device. AGGREGATE and AGGREGATE_LINE require 2 coordinates; AGGREGATE_POINT and AGGREGATE_TEXT require one coordinate. All AGGREGATE definition types require an END_AGGREGATE. (Obsolete)

	

	

AGGREGATE, <n>

AGGREGATE, 4

	

	

AGGREGATE_ POINT, <n>

AGGREGATE_POINT, 1

	

	

AGGREGATE_ LINE, <n>

AGGREGATE_ LINE, 3

	

	

AGGREGATE_ TEXT, <n>

AGGREGATE_ TEXT, 2

	
•

	

CELL - Begins the definition for one device type. The cell definition file can contain many sets of cell definitions. All CELL definitions require an END_CELL.

	

	

CELL, <name>

CELL, uxfm2

	
•

	

END_CELL - Ends an explosion definition.

END_CELL

	
•

	

END_AGGREGATE - Ends an aggregate definition.

END_AGGREGATE

	
•

	

END_TEMP - Ends a template definition.

END_TEMP

	
•

	

MATT[n] - Matching attribute of the object to explode. [n] is currently a placeholder, usually set to 0 (zero). There is no limit on the number of MATT[n] records a cell explosion definition may have, but for the explosion to occur, all must match.

	

	

MATT[n],<attribute name>,<target attribute value>

MATTO, ACAD_objectType, INSERT

	
•

	

POINT/LINE/TEXT - Creates a "daughter" graphic object of the specified kind. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT, <n>

POINT, 3

	

	

LINE, <n>

LINE, 1

	

	

TEXT, <n>

TEXT, 5

	
•

	

POINT/LINE/TEXT WHEN <condition> - Creates a "daughter" graphic object of the specified kind when the given condition is met. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT WHEN <condition>

POINT WHEN

	

	

LINE WHEN <condition>

LINE WHEN

	

	

TEXT WHEN <condition>

TEXT WHEN

	
•

	

POINT/LINE/TEXT FOR
<variable> IN
<List of Values> - Creates zero, one or multiple graphic objects of the specified kind, one object for each value in the supplied list. Use <variable> within the definition as if it were an attribute name. A special variable called "$$ICOUNT" can also be used to retrieve the number of the iteration. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <variable> IN <list of values>

POINT FOR

	

	

LINE FOR <variable> IN <list of values>

LINE FOR

	

	

TEXT FOR <variable> IN <list of values>

TEXT FOR

	
•

	

POINT/LINE/TEXT FOR
<num-valu
e> TIMES - Creates zero, one or multiple graphic objects of the specified kind; number of objects specified by <num-values>. ($$ICOUNT can be used just as for the previous form). All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <numeric value> TIMES

POINT FOR

	

	

LINE FOR <numeric value> TIMES

LINE FOR

	

	

TEXT FOR <numeric value> TIMES

TEXT FOR

	
•

	

REQUEST_HANDLE - Indicates that the existing handle of this object should be replaced with one supplied by the Explosion manager’s "ExplodeHandle" class. (Primarily for ISFF)

REQUEST_HANDLE, 1

	
•

	

RMV[n] - Removes an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RMV[n]

RMV0, voltage

	
•

	

RNA[n] - Renames an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RNA[n], <att_name>, <new_att_name>

RNA0, amp_content, amp_cont

	
•

	

TEXT_SCALE - Specifies the scale factor for text. Used to allow the height of base text symbol to be used as a multiplier to the cell definition specified coordinates.

	

	

TEXT_SCALE, <n>

	

	

TEXT_SCALE, 1

	

	

for example with the TEXT_SCALE, 1 specified and the base text object has a specified height of 400 and the COORD1, 10, 30 is specified, the resulting coordinates will be 400x10, 400x30 or 4000, 12000.

	
•

	

USE_REFERENCE - Indicates that the index for this object should be based upon its corresponding reference object. (ISFF only) (Obsolete). For example:

	

	

USE_REFERENCE, 1

causes the FRAMME RB_REFPRMRY and RB_REFSCNDRY linkages to be used instead of the normal RB_PRIMRY and RB_SECNDRY.

Component "Daughter" Object ("explosionGrObject") Only

	
•

	

ABSOLUTE_COORDS - Indicates that coordinate values are specified in absolute, "real-world" numbers; this over-rides the default behavior which is for numbers used in COORD statements to be taken as relative to the insertion point of the parent object (i.e. this insertion point corresponds to COORD 0.0, 0.0).

	

	

ABSOLUTE_COORDS, 1

	
•

	

ANGLE - Sets the text rotation for this entity. Horizontal is zero and the angle proceeds counter clockwise. (TEXT objects only)

	

	

ANGLE, <a>

	

	

ANGLE, 90

	
•

	

COORD/COORD[n] - Sets relative/absolute coordinate of an object/endpoint.

	

	

COORD, <x>, <y>

	

	

COORD, 1.0, 2.5

	

	

COORD[n], <x>, <y>

	

	

COORD1, 0.0, 1.0
COORD2, 1.0, 2.0

	
•

	

COMPONENT[n] - Sets the aggregate sequence number and cell component number for a single component in the aggregate.

	

	

COMPONENT[n], <agg_seq_num>, <cell_comp_num>

	

	

COMPONENT1, 1, 2

	
•

	

END_AGGREGATE - Ends the definition of component graphic object.

	

	

END_AGGREGATE

	
•

	

HEIGHT - Sets the text height for this entity. (TEXT objects only)

	

	

HEIGHT, <h>

	

	

HEIGHT, 2

	
•

	

H_ORIENTATION - Sets the horizontal justification of text. Values can be LEFT, CENTER, or RIGHT, or 0, 1, or 2. Default is LEFT. (TEXT objects only)

	

	

H_ORIENTATION, <n>|LEFT|CENTER|RIGHT

	

	

H_ORIENTATION, LEFT

	
•

	

USE_ROTATION - Indicates that the rotation property of the original entity should be used to set the rotation for the component graphic object.

	

	

USE_ROTATION, 1

	
•

	

V_ORIENTATION - Sets the vertical justification of text. Values can be TOP, CENTER, or BOTTOM, or 0,1, or 2. Default is BOTTOM. (TEXT objects only)

	

	

V_ORIENTATION, <n>|TOP|CENTER|BOTTOM

	

	

V_ORIENTATION, 2

Special Attributes Set by Explode an Processed by mat2entityset.(script-preprocessor):

	
•

	

Alias - Sets an alias for an attribute (both script- and program-style preprocessors).

	

	

ATT[n], ALIAS[dbtype], <value>

	

	

ATT0, ALIAS[OPS], [LOC_NUM]

	
•

	

Diagram-id - Sets the Diagram Id .

	

	

ATT[n], DIAGRAM_ID, <value>

	

	

ATT1, DIAGRAM_ID, [IPID]

	
•

	

Group - Sets the Group code.

	

	

ATT[n], CES_PP_GROUP|GROUP|Group|group, <value>

	
•

	

Local

	

	

ATT[n], LOCAL|Local|local, <value>

	
•

	

Locations (not to be confused with LOCATIONS)

	

	

ATTN[n],CES_LOCATION, <value>

	

	

ATT1, CES_LOCATION, 4901.[MID]

	

	

ATTN[n], CES_LOCATION_DEFINITION, <value>

	

	

ATT1, CES_LOCATION_DEFINITION, 4901.[MID]

	

	

ATT[n], CES_LOCATION_NAME, <value>

	

	

ATT1, CES_LOCATION_NAME, Pole [^?^[SUPPORT_NO]]

	

	

ATT[n], CES_LOCATION_DESC, <value>

	

	

ATT1, CES_LOCATION_DESC, Pole defined by support/switch:~ [^?^[SUPPORT_NO]]/[^?^[SWITCH_NAME]]

	

	

ATT[n], CES_LOCATION_REFERENCE, <value>

	

	

ATT1, CES_LOCATION_REFERENCE, [%COORDINATE.FIRSTX],~ [%COORDINATE.FIRSTY]

 Network Control Group

	

	

ATTN[n], NCG|Ncg|ncg, <value>

	

	

ATT1, NCG, [%feeder_ncg.[^UNKNOWN^[DISTRICT]]_ ~ [%ncg_volt.[^UNKNOWN^[VOLT_LEV]]]]

	
•

	

Rank

	

	

ATT[n], RANK|Rank|rank, <value>

	

	

ATT1, RANK, [%MATH_RPN.[%RANKU.[^NO^[URBAN]]]~ [%RANKLC.[^UNKNOWN^[LINE_CATEGORY]]] + ~ [%RANKV.[^0^[VOLT_LEV]] [^0^[VOLT_LEV]]] + ~ [%RANKB11.[^0^[VOLT_LEV]] [^UNKNOWN^[DISTRICT]]] + ~ [%RANKP.[^RYB^[PHASING]]] +]

	
•

	

Physical Property

	

	

ATT[n], CES_PHYS_PROP|PHYS_PROP|Phys_Prop|phys_prop|physical_property, <value>

	

	

ATT0, CES_PHYS_PROP, [%MATH_RPN.[%PHYS_PROP.BACKBONE] [%PHYS_PROP.~
[^OH^[OH_UG]]] +]

	
•

	

Topology specific (see the Attribute Topology Users Guide for further discussion)

	

	

ATT[n], From_Node, <value>

	

	

ATT1, From_Node, [FROM_NODE]

	

	

ATT[n], To_Node, <value>

	

	

ATT1, To_Node, [TO_NODE]

	

	

ATT[n], Unique_id, <value>

	

	

ATT1, Unique_Id, [FROM_NODE]_[TO_NODE]_FID

	
•

	

Transition

	

	

ATT[n], TRANSITION_ID|Transition_ID|Transition_Id|transition_id, <value>

	

	

 ATT1, TRANSITION_ID, 120

	
•

	

Voltage

	

	

ATT[n], VOLTAGE|Voltage|voltage, <value>

	

	

ATT1, VOLTAGE, [%VOLTS.[^UNKNOWN^[OPERATING_VOLTAGE]]]

Model Preprocessor

T he preprocessor reads--or parses--the files generated by the extraction process and constructs an import file which accurately models the extracted portion. The end result of completing a preprocessor is a script that is capable of accepting customer source GIS data files and generating import files.

The Model Preprocessor can be broken into individual stages called: Parse, Post Parse, Cell Explosion, Post Explode, Topology Construction, Post Topology, and Model Build Import file generation.

[image:]The following figure illustrates the stages in the preprocessor:

Parse stage

The Parser reads the client GIS model from external files created by the Extraction process into a data structure known as an Entity Set. After this phase is completed, the resulting Entity Set will be a ‘skeleton’ for the complete model. The activities completed in this stage are not client specific; it will be more specific to a standard data file format (e.g., AutoCAD’s DXF format, Intergraph’s ISFF format, etc.). Each individual graphical object (e.g., point, line, or text) will be represented in an output file.

	
•

	

Post Parse : Client specific processing that is used to accommodate any modification of the data that may be required prior to Cell Explosion.

	
•

	

Cell Explosion : Cell explosion is the central phase of preprocessing. It is here that the conversion of the raw graphical objects to model objects is accomplished. The graphical objects are mapped to objects, which will appear in client’s final model.

	
•

	

Post Explode : Allows for client specific processing after Cell Explosion.

	
•

	

Topology Construction : The inter-device connectivity for all electrical objects is constructed in this stage. The connectivity can either be explicit (i.e. ‘To’ and ‘From’ node identifiers) or based on proximity.

	
•

	

Post Topology : The final opportunity for client specific processing.

	
•

	

Model Build Import File Generation

Cell Explosion

The central phase of preprocessing is the conversion of graphical objects into full-fledged model objects; this conversion from a graphical object to a model object can involve a wide range of operations. These operations are specified in a text file <client>_devices.cel, which is called the explosion definition file.

The operations that may be accomplished during this phase include the following:

	
•

	

Handle Assignment - This requires that a graphical entity be mapped to a particular class of model objects (e.g., switch, transformer, device annotation, road, water boundary, etc.) and that an index number, unique within that class, be assigned to this object.

	
•

	

Attribute Manipulation - Attributes can be added, removed or renamed. They can also be assigned new values based upon combinations of other attribute values or the result of mathematical calculations.

	
•

	

Expansion/Replacement of One Object by Multiple Objects - For example a transformer in the mapping system could be exploded into a transformer with a switch and a network protector.

	
•

	

Creation of Aggregate Objects - One object may be used to represent a group of objects. For example, a recloser object may in fact represent the recloser along with a by-pass switch, a load switch, and a source switch. All of these component objects may be created and bundled into a single aggregate object during this phase.

	
•

	

Elimination of Un-Necessary Objects - Any object not explicitly ‘matched’ during this phase will be eliminated; thus, this stage acts as a filter.

	
•

	

Assignment of Core Properties - For example, phase, nominal status, NCG, and symbology can be assigned as default values for all devices.

	
•

	

Daughter Object Creation - Creating new entities based upon information taken from an existing object.

	
•

	

Classification of Objects as Background - Sets the location of an object to a background partition.

	
•

	

Diagnostic Messaging - Aids in debugging or as a method to configure customer specific error messages with customer defined attributes.

Model objects have handles (class and index), attributes and aliases, geometry, and optionally aggregate object specification, all of which are supported through the explosion preprocessor.

To understand the cell definitions, which specify how an object is recognized and processed during cell explosion, one should understand two fundamental ideas:

	
1.

	

"Parent" and "daughter" objects

	
2.

	

String expansion.

Parent and daughter objects

Those objects, which enter the cell explosion process from the parser (or the post-parse processing) and which are recognized (or matched) by a definition, are considered to be "parent" objects (or, at least, potential parents); any new graphic objects created by the cell definition which matched the parent are considered "daughter" objects.

There are 4 outcomes for an object after cell explosion:

	
1.

	

 The parent object may pass through and be modified by cell explosion without giving rise to daughter objects.

	
2.

	

The parent object may pass through cell explosion while giving rise to one or more daughter objects.

	
3.

	

The parent object may be eliminated by cell explosion yet give rise to daughter objects, which survive and proceed to the succeeding stages.

	
4.

	

The parent object may be eliminated by cell explosion and not give rise to daughter objects.

Note : Any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through this process; all other objects are eliminated.

Commonly, if the parent gives rise to daughter objects, the parent dies, but transfers some of its attributes to the resulting daughters through use of the ATT keyword.

The following illustration depicts outcomes 1 and 2 for an object:

[image:]

String expansion

When assigning new attributes, you may want the values for these new attributes to be formed from existing attributes--either by simply copying an existing value, or by combining and/or transforming the old values. This process is accomplished by "string expansion" which replaces or expands an attribute name into the full string representing that attribute’s value. In cell definitions, enclosing an attribute name in square brackets indicates that you intend for this attribute name to be expanded; e.g., the form "[FEEDER_ID]" will be replaced by the value of the FEEDER_ID attribute, such as "6992" (assuming that such an attribute exists for the matched object). In addition to this simple expansion, there are several specialized forms of string expansion that can be summarized as follows:

	
1.

	

Substring

	
•

	

Delimiter Based

Indicated by "<"or ">". This this form returns the substring before or after the first occurrence of the delimiting character. The delimiting character is the character immediately following the "<"or the ">".

For example, if TAG= "XYZ.553", then [<.[TAG]] returns the substring preceding the first period (".") in the TAG attribute value, in this case," XYZ". Likewise, [>.[TAG]] returns the substring following the period, which would be "553".

Note : When nesting a simple expansion form (e.g., [TAG]) within a delimiter based expansion form; you can discard the inner square brackets. Thus, "[<.TAG]" is equivalent to "[<.[TAG]]".

	
•

	

Position Based

Indicated by "@" -- this form returns the substring beginning and ending at the given character positions.

Using the example from above where TAG="XYZ.553", the notation [@(1:2)[TAG]] extracts the substring from the value of the TAG attribute, which begins with character position 1 (position 0 being the first character) and ends with character position 2. In other words, it extracts a two-character substring, beginning from the second position, returning the value "YZ"

Note : The character position can be specified relative to the end of the string by using the "$" character to represent the last position in the string. E.g., "[@($-1:$)[TAG]]" returns the last two characters "53". Also note that a single character can be extracted by specifying the start and end positions as the same character, e.g., "[@(2:2)[TAG]]" returns the third character, "Z".

	
2.

	

Codelist

These can be used to map or convert an input value into the corresponding output value.

	
•

	

Basic Lookup Table:

	

	

To create the "lookup table", we use the CODE keyword. The format for the table is:

CODE, <listname>,input value, outputvalue.

	

	

For example:

CODE, RANK_LIST, E, 1

CODE, RANK_LIST, R, 2

CODE, RANK_LIST, P, 4

	

	

 creates a lookup table with three entries or mappings.

	

	

(A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword, e.g., DEFAULT_CODE, RANK_LIST, 1 means that any input value other than E, R or P results in the output of a "1".)

	

	

To actually look up or convert a value, we use the codelist form of string expansion, indicated by a "%".

[%RANK_LIST.[RANK_CODE]]

	

	

will return "1" if the RANK_CODE attribute is "E"; "2" if the RANK_CODE is "R"; and "4" if the RANK_CODE is "P".

	
•

	

Database Lookup:

	

	

This works the same as the basic lookup table but the entries are stored in a database table. There are 2 formats for database lookups:

	
•

	

DBCODE

	

	

The table name (which also serves as the list name), the input column name, and the output column name are defined using the DBCODE keyword. The format for the DBCODE is:

	

	

DBCODE, <tablename>, <input column>,< output column>

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

	

	

means that there exists a database table called "feeder_ncg" which has an input value column called "feeder_name" and an output value column "ncg_id".

	
•

	

NAMED_DBCODE

	

	

NAMED_DBCODE is similar to DBCODE except it takes a list name that is different from the table name. It is used in cases where there is a need for 2 codelists based on the same database table but with different input and output columns. The format is:

	

	

NAMED_DBCODE, <listname>, <tablename>, <input column>,
<output column>

	

	

A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword. For example, DEFAULT_CODE, feeder_ncg, 1 means that any input value other than what has been defined results in the output of a "1". Additionally, a special DEFAULT_CODE value can be assigned with the value specified as "--INTEGER_SEQUENTIAL--".

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

	

	

Means if a lookup into the table named feeder_ncg does not have a match, the default action will be to select the maximum value of ncg_ids in the table, add one to the ncg_id, and create a new record with the given feeder name and the incremental maximum ncg_id.

	

	

Accessing the table is the same as the basic lookup table mentioned above.

	
•

	

Math Functions :

	

	

Mathematical functions can be calculated by using the input value to access a "pseudo- codelist." "List name" has one of the following values:

	

	

MATH_SIN

	

	

MATH_COS

	

	

MATH_TAN

	

	

MATH_ASIN

	

	

MATH_ACOS

	

	

MATH_ATAN

	

	

MATH_LOG

	

	

MATH_LOG10

	

	

MATH_EXP

	

	

MATH_SQRT

	

	

MATH_CEIL (round up to next greatest number)

	

	

MATH_FLOOR (round down to next lowest number)

	

	

MATH_FABS (absolute value, e.g., -4.5 becomes 4.5)

	

	

MATH_RPN (math function in reverse polish notation)

	

	

For example, to calculate the sine of an ANGLE attribute:

[%MATH_SIN.[ANGLE]]

	
•

	

Coordinate Lookup :

	

	

The coordinates of an object can be accessed using a form that mimics a codelist lookup:

	

	

[%COORDINATE.FIRSTX] returns the first X coordinate of the object

	

	

[%COORDINATE.LASTX] returns the last X coordinate of the object

	

	

[%COORDINATE.FIRSTY] returns the first Y coordinate of the object

	

	

[%COORDINATE.LASTY] returns the last Y coordinate of the object

	
3.

	

Default Value

A default value can be specified which will be returned if the result of string expansion would otherwise be an empty string. This is indicated by enclosing a default value between two caret symbols ("^").

For example: "[^PRIMARY^[PRI_CIRCUIT_ID]]" returns a value of "PRIMARY" in any case where the PRI_CIRCUIT_ID attribute is non-existent or empty.

If a default value is not specified, then a "String Expansion Error" message will occur.

	
4.

	

Special Attributes

Some properties of an object can be accessed as if they were attributes by using one of the special names given below, preceded by a double dollar sign:

CLS (cell number)

IDX (index number)

X1 (1st or primary X coordinate)

Y1 (1st or primary Y coordinate)

Xn (subsequent X coordinate)

Yn (subsequent Y coordinate)

COORD_CNT (number of coordinates)

MAP_CLASS (class number of partition)

MAP_NAME (full name of partition)

CELL_NAME (cell name - i.e. the set of instructions for an object)

CLS_NAME (actual name of class rather than number)

For example, [$$CELL_NAME] returns the name of the "cell" within the cell definition file that was matched by the current object.

	
5.

	

Handle Reference

One daughter object can access the class and index number of another daughter object by using the following two forms:

$<#>.CLS

$<#>.IDX

For example, in daughter object #2, the class number of daughter #1 can be accessed by the form: "[$1.CLS]" and index number of daughter #1 can be accessed by the form: "[$1.IDX]".

Note : A common practical application of this form of string expansion is to assign the DEVICE_CLS and DEVICE_IDX attributes of a SND attached to its corresponding transformer.

Available Cell Explosion Keywords

This section provides descriptions, syntax, and examples for available cell explosion keywords.

Global (outside all cell definitions)

	
•

	

CODE - Defines an entry in a code conversion lookup table. See String Expansion Section.

	
•

	

DBCODE - Defines an entry in a database table. See String Expansion Section.

	
•

	

DEFAULT_CODE - Sets default values for codelist. See String Expansion Section.

	
•

	

INCLUDE - Reads definitions from another file.

	

	

INCLUDE, <name of file to include>

INCLUDE, /users/xyz/data/xyz_devices.cel

	
•

	

NAMED_DBCODE - Allows for definitions of more than one codelist from a single database table.

	
•

	

TEMPLATE - Uses a template definition.

	
•

	

USE - Sets default values for an entity’s properties.

	

	

 USE, <KEYWORD>, <value>

USE, PHASE, abc

Shared (used by both parent objects & daughter graphic objects)

	
•

	

ATT[n] - Sets the value of an attribute. There is no limit on the number of ATT[n] records that can exist in the cell definitions. [n] is currently a placeholder, usually set to 0 (zero).

	

	

ATT[n],<att_name>, <att_value>

ATT0, feeder, [@(9:12) [ACAD_layer]]

ATT0, riser, N

	
•

	

ATTR_INDEX - The string that follows this keyword will be used to assign an index unique for an object of this object’s class; usually, the string will be formed by expansion of one or more attributes.

	

	

ATTR_INDEX, <n>

ATTR_INDEX,

	
•

	

BND_HANDLE - Indicates that the index for this object should be provided by the boundary-node handle manager.

	

	

BND_HANDLE, 1

	
•

	

CLASS - Sets the class of object to explicit value.

	

	

CLASS, <class name>

CLASS, Xfm

	
•

	

DATT[n] - Dynamic attribute name. [n] is currently a placeholder, usually set to 0 (zero).

	

	

DATT[n], <att_name>, <att_value>

DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

GEO_HANDLE - Indicates that a unique index should be generated based upon the object’s class and geographical coordinates.

	

	

GEO_HANDLE, 1

	
•

	

INDEX - Sets the index of object to an explicit value.

	

	

INDEX, <n>

INDEX, 533

	
•

	

MARK_BGD - Marks an object as background and sets its location to the background partition.

	

	

MARK_BGD, 1

	
•

	

MSG[n] (or MESSAGE[n]) - Prints a message to standard output when this definition is used, where [n] is either 0, 1, 2, or 3.

	

	

MSG[1|2|3], <message text> MESSAGE[1|2|3], <message text>

MSG1, Warning: Found stray fuse

MSG2, Handle: [$$CLS] . [$$IDX]

MSG3, At (X,Y) of ([$$X1],[$$Y1])

	
•

	

NCG - Set the entity’s Network Control Group (NCG) property. (Program-style preprocessor only)

	

	

NCG, <n>

NCG, [@(9:12)[ACAD_layer]]

	
•

	

NOMINAL_STATE - Sets the entity’s ‘NOMINAL_STATE’ property. The value can be an integer typically between 0 and 15 or the key words OPEN or CLOSED.

	

	

NOMINAL_STATE, <n>|OPEN|CLOSED

NOMINAL_STATE, CLOSED

	
•

	

OPT_ATT[n] - Sets an optional value of an attribute. Will not report a string error message if the value fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_ATT[n], <att_name>, <att_value>

OPT_ATT1, From_Node_Bnd, [NODE1_BND]

	
•

	

OPT_DATT[n] - Sets an optional dynamic attribute name. Will not report a string error message if the attribute name fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_DATT[n]

OPT_DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

 4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

PHASE - Sets the entity’s ‘PHASE’ property (e.g., to ABC).

	

	

PHASE, <n>

PHASE, [%PHASE_LIST.[@(6:8)[ACAD_layer]]]

	
•

	

STRING - Sets the value of the text string for this entity. (TEXT objects only)

	

	

STRING, <string>

STRING, [KVAR]

	
•

	

SUB_BND - Indicates that this object is a substation boundary node and that its index should be assigned based upon the supplied string (usually the feeder or circuit identifier).

SUB_BND, 1

	
•

	

SYM_ID - Sets the symbology-state-class to an explicit value, rather than its default value, which is the same as the class number.

	

	

SYM_ID, <n>

SYM_ID, 1304

	
•

	

VOLTS - Sets the entity’s ‘VOLTS’ property. (Program-style preprocessor only)

	

	

VOLTS, <n>

VOLTS, [voltage] 1000 *

Parent Object ("explosionDef") Only

	
•

	

AGGREGATE/_ POINT/_LINE/_TEXT - Creates a graphic object of the specified kind that becomes a component of the overall aggregate device. AGGREGATE and AGGREGATE_LINE require 2 coordinates; AGGREGATE_POINT and AGGREGATE_TEXT require one coordinate. All AGGREGATE definition types require an END_AGGREGATE. (Obsolete)

	

	

AGGREGATE, <n>

AGGREGATE, 4

	

	

AGGREGATE_ POINT, <n>

AGGREGATE_POINT, 1

	

	

AGGREGATE_ LINE, <n>

AGGREGATE_ LINE, 3

	

	

AGGREGATE_ TEXT, <n>

AGGREGATE_ TEXT, 2

	
•

	

CELL - Begins the definition for one device type. The cell definition file can contain many sets of cell definitions. All CELL definitions require an END_CELL.

	

	

CELL, <name>

CELL, uxfm2

	
•

	

END_CELL - Ends an explosion definition.

END_CELL

	
•

	

END_AGGREGATE - Ends an aggregate definition.

END_AGGREGATE

	
•

	

END_TEMP - Ends a template definition.

END_TEMP

	
•

	

MATT[n] - Matching attribute of the object to explode. [n] is currently a placeholder, usually set to 0 (zero). There is no limit on the number of MATT[n] records a cell explosion definition may have, but for the explosion to occur, all must match.

	

	

MATT[n],<attribute name>,<target attribute value>

MATTO, ACAD_objectType, INSERT

	
•

	

POINT/LINE/TEXT - Creates a "daughter" graphic object of the specified kind. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT, <n>

POINT, 3

	

	

LINE, <n>

LINE, 1

	

	

TEXT, <n>

TEXT, 5

	
•

	

POINT/LINE/TEXT WHEN <condition> - Creates a "daughter" graphic object of the specified kind when the given condition is met. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT WHEN <condition>

POINT WHEN

	

	

LINE WHEN <condition>

LINE WHEN

	

	

TEXT WHEN <condition>

TEXT WHEN

	
•

	

POINT/LINE/TEXT FOR
<variable> IN
<List of Values> - Creates zero, one or multiple graphic objects of the specified kind, one object for each value in the supplied list. Use <variable> within the definition as if it were an attribute name. A special variable called "$$ICOUNT" can also be used to retrieve the number of the iteration. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <variable> IN <list of values>

POINT FOR

	

	

LINE FOR <variable> IN <list of values>

LINE FOR

	

	

TEXT FOR <variable> IN <list of values>

TEXT FOR

	
•

	

POINT/LINE/TEXT FOR
<num-valu
e> TIMES - Creates zero, one or multiple graphic objects of the specified kind; number of objects specified by <num-values>. ($$ICOUNT can be used just as for the previous form). All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <numeric value> TIMES

POINT FOR

	

	

LINE FOR <numeric value> TIMES

LINE FOR

	

	

TEXT FOR <numeric value> TIMES

TEXT FOR

	
•

	

REQUEST_HANDLE - Indicates that the existing handle of this object should be replaced with one supplied by the Explosion manager’s "ExplodeHandle" class. (Primarily for ISFF)

REQUEST_HANDLE, 1

	
•

	

RMV[n] - Removes an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RMV[n]

RMV0, voltage

	
•

	

RNA[n] - Renames an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RNA[n], <att_name>, <new_att_name>

RNA0, amp_content, amp_cont

	
•

	

TEXT_SCALE - Specifies the scale factor for text. Used to allow the height of base text symbol to be used as a multiplier to the cell definition specified coordinates.

	

	

TEXT_SCALE, <n>

	

	

TEXT_SCALE, 1

	

	

for example with the TEXT_SCALE, 1 specified and the base text object has a specified height of 400 and the COORD1, 10, 30 is specified, the resulting coordinates will be 400x10, 400x30 or 4000, 12000.

	
•

	

USE_REFERENCE - Indicates that the index for this object should be based upon its corresponding reference object. (ISFF only) (Obsolete). For example:

	

	

USE_REFERENCE, 1

causes the FRAMME RB_REFPRMRY and RB_REFSCNDRY linkages to be used instead of the normal RB_PRIMRY and RB_SECNDRY.

Component "Daughter" Object ("explosionGrObject") Only

	
•

	

ABSOLUTE_COORDS - Indicates that coordinate values are specified in absolute, "real-world" numbers; this over-rides the default behavior which is for numbers used in COORD statements to be taken as relative to the insertion point of the parent object (i.e. this insertion point corresponds to COORD 0.0, 0.0).

	

	

ABSOLUTE_COORDS, 1

	
•

	

ANGLE - Sets the text rotation for this entity. Horizontal is zero and the angle proceeds counter clockwise. (TEXT objects only)

	

	

ANGLE, <a>

	

	

ANGLE, 90

	
•

	

COORD/COORD[n] - Sets relative/absolute coordinate of an object/endpoint.

	

	

COORD, <x>, <y>

	

	

COORD, 1.0, 2.5

	

	

COORD[n], <x>, <y>

	

	

COORD1, 0.0, 1.0
COORD2, 1.0, 2.0

	
•

	

COMPONENT[n] - Sets the aggregate sequence number and cell component number for a single component in the aggregate.

	

	

COMPONENT[n], <agg_seq_num>, <cell_comp_num>

	

	

COMPONENT1, 1, 2

	
•

	

END_AGGREGATE - Ends the definition of component graphic object.

	

	

END_AGGREGATE

	
•

	

HEIGHT - Sets the text height for this entity. (TEXT objects only)

	

	

HEIGHT, <h>

	

	

HEIGHT, 2

	
•

	

H_ORIENTATION - Sets the horizontal justification of text. Values can be LEFT, CENTER, or RIGHT, or 0, 1, or 2. Default is LEFT. (TEXT objects only)

	

	

H_ORIENTATION, <n>|LEFT|CENTER|RIGHT

	

	

H_ORIENTATION, LEFT

	
•

	

USE_ROTATION - Indicates that the rotation property of the original entity should be used to set the rotation for the component graphic object.

	

	

USE_ROTATION, 1

	
•

	

V_ORIENTATION - Sets the vertical justification of text. Values can be TOP, CENTER, or BOTTOM, or 0,1, or 2. Default is BOTTOM. (TEXT objects only)

	

	

V_ORIENTATION, <n>|TOP|CENTER|BOTTOM

	

	

V_ORIENTATION, 2

Special Attributes Set by Explode an Processed by mat2entityset.(script-preprocessor):

	
•

	

Alias - Sets an alias for an attribute (both script- and program-style preprocessors).

	

	

ATT[n], ALIAS[dbtype], <value>

	

	

ATT0, ALIAS[OPS], [LOC_NUM]

	
•

	

Diagram-id - Sets the Diagram Id .

	

	

ATT[n], DIAGRAM_ID, <value>

	

	

ATT1, DIAGRAM_ID, [IPID]

	
•

	

Group - Sets the Group code.

	

	

ATT[n], CES_PP_GROUP|GROUP|Group|group, <value>

	
•

	

Local

	

	

ATT[n], LOCAL|Local|local, <value>

	
•

	

Locations (not to be confused with LOCATIONS)

	

	

ATTN[n],CES_LOCATION, <value>

	

	

ATT1, CES_LOCATION, 4901.[MID]

	

	

ATTN[n], CES_LOCATION_DEFINITION, <value>

	

	

ATT1, CES_LOCATION_DEFINITION, 4901.[MID]

	

	

ATT[n], CES_LOCATION_NAME, <value>

	

	

ATT1, CES_LOCATION_NAME, Pole [^?^[SUPPORT_NO]]

	

	

ATT[n], CES_LOCATION_DESC, <value>

	

	

ATT1, CES_LOCATION_DESC, Pole defined by support/switch:~ [^?^[SUPPORT_NO]]/[^?^[SWITCH_NAME]]

	

	

ATT[n], CES_LOCATION_REFERENCE, <value>

	

	

ATT1, CES_LOCATION_REFERENCE, [%COORDINATE.FIRSTX],~ [%COORDINATE.FIRSTY]

 Network Control Group

	

	

ATTN[n], NCG|Ncg|ncg, <value>

	

	

ATT1, NCG, [%feeder_ncg.[^UNKNOWN^[DISTRICT]]_ ~ [%ncg_volt.[^UNKNOWN^[VOLT_LEV]]]]

	
•

	

Rank

	

	

ATT[n], RANK|Rank|rank, <value>

	

	

ATT1, RANK, [%MATH_RPN.[%RANKU.[^NO^[URBAN]]]~ [%RANKLC.[^UNKNOWN^[LINE_CATEGORY]]] + ~ [%RANKV.[^0^[VOLT_LEV]] [^0^[VOLT_LEV]]] + ~ [%RANKB11.[^0^[VOLT_LEV]] [^UNKNOWN^[DISTRICT]]] + ~ [%RANKP.[^RYB^[PHASING]]] +]

	
•

	

Physical Property

	

	

ATT[n], CES_PHYS_PROP|PHYS_PROP|Phys_Prop|phys_prop|physical_property, <value>

	

	

ATT0, CES_PHYS_PROP, [%MATH_RPN.[%PHYS_PROP.BACKBONE] [%PHYS_PROP.~
[^OH^[OH_UG]]] +]

	
•

	

Topology specific (see the Attribute Topology Users Guide for further discussion)

	

	

ATT[n], From_Node, <value>

	

	

ATT1, From_Node, [FROM_NODE]

	

	

ATT[n], To_Node, <value>

	

	

ATT1, To_Node, [TO_NODE]

	

	

ATT[n], Unique_id, <value>

	

	

ATT1, Unique_Id, [FROM_NODE]_[TO_NODE]_FID

	
•

	

Transition

	

	

ATT[n], TRANSITION_ID|Transition_ID|Transition_Id|transition_id, <value>

	

	

 ATT1, TRANSITION_ID, 120

	
•

	

Voltage

	

	

ATT[n], VOLTAGE|Voltage|voltage, <value>

	

	

ATT1, VOLTAGE, [%VOLTS.[^UNKNOWN^[OPERATING_VOLTAGE]]]

Model Preprocessor

T he preprocessor reads--or parses--the files generated by the extraction process and constructs an import file which accurately models the extracted portion. The end result of completing a preprocessor is a script that is capable of accepting customer source GIS data files and generating import files.

The Model Preprocessor can be broken into individual stages called: Parse, Post Parse, Cell Explosion, Post Explode, Topology Construction, Post Topology, and Model Build Import file generation.

[image:]The following figure illustrates the stages in the preprocessor:

Parse stage

The Parser reads the client GIS model from external files created by the Extraction process into a data structure known as an Entity Set. After this phase is completed, the resulting Entity Set will be a ‘skeleton’ for the complete model. The activities completed in this stage are not client specific; it will be more specific to a standard data file format (e.g., AutoCAD’s DXF format, Intergraph’s ISFF format, etc.). Each individual graphical object (e.g., point, line, or text) will be represented in an output file.

	
•

	

Post Parse : Client specific processing that is used to accommodate any modification of the data that may be required prior to Cell Explosion.

	
•

	

Cell Explosion : Cell explosion is the central phase of preprocessing. It is here that the conversion of the raw graphical objects to model objects is accomplished. The graphical objects are mapped to objects, which will appear in client’s final model.

	
•

	

Post Explode : Allows for client specific processing after Cell Explosion.

	
•

	

Topology Construction : The inter-device connectivity for all electrical objects is constructed in this stage. The connectivity can either be explicit (i.e. ‘To’ and ‘From’ node identifiers) or based on proximity.

	
•

	

Post Topology : The final opportunity for client specific processing.

	
•

	

Model Build Import File Generation

Cell Explosion

The central phase of preprocessing is the conversion of graphical objects into full-fledged model objects; this conversion from a graphical object to a model object can involve a wide range of operations. These operations are specified in a text file <client>_devices.cel, which is called the explosion definition file.

The operations that may be accomplished during this phase include the following:

	
•

	

Handle Assignment - This requires that a graphical entity be mapped to a particular class of model objects (e.g., switch, transformer, device annotation, road, water boundary, etc.) and that an index number, unique within that class, be assigned to this object.

	
•

	

Attribute Manipulation - Attributes can be added, removed or renamed. They can also be assigned new values based upon combinations of other attribute values or the result of mathematical calculations.

	
•

	

Expansion/Replacement of One Object by Multiple Objects - For example a transformer in the mapping system could be exploded into a transformer with a switch and a network protector.

	
•

	

Creation of Aggregate Objects - One object may be used to represent a group of objects. For example, a recloser object may in fact represent the recloser along with a by-pass switch, a load switch, and a source switch. All of these component objects may be created and bundled into a single aggregate object during this phase.

	
•

	

Elimination of Un-Necessary Objects - Any object not explicitly ‘matched’ during this phase will be eliminated; thus, this stage acts as a filter.

	
•

	

Assignment of Core Properties - For example, phase, nominal status, NCG, and symbology can be assigned as default values for all devices.

	
•

	

Daughter Object Creation - Creating new entities based upon information taken from an existing object.

	
•

	

Classification of Objects as Background - Sets the location of an object to a background partition.

	
•

	

Diagnostic Messaging - Aids in debugging or as a method to configure customer specific error messages with customer defined attributes.

Model objects have handles (class and index), attributes and aliases, geometry, and optionally aggregate object specification, all of which are supported through the explosion preprocessor.

To understand the cell definitions, which specify how an object is recognized and processed during cell explosion, one should understand two fundamental ideas:

	
1.

	

"Parent" and "daughter" objects

	
2.

	

String expansion.

Parent and daughter objects

Those objects, which enter the cell explosion process from the parser (or the post-parse processing) and which are recognized (or matched) by a definition, are considered to be "parent" objects (or, at least, potential parents); any new graphic objects created by the cell definition which matched the parent are considered "daughter" objects.

There are 4 outcomes for an object after cell explosion:

	
1.

	

 The parent object may pass through and be modified by cell explosion without giving rise to daughter objects.

	
2.

	

The parent object may pass through cell explosion while giving rise to one or more daughter objects.

	
3.

	

The parent object may be eliminated by cell explosion yet give rise to daughter objects, which survive and proceed to the succeeding stages.

	
4.

	

The parent object may be eliminated by cell explosion and not give rise to daughter objects.

Note : Any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through this process; all other objects are eliminated.

Commonly, if the parent gives rise to daughter objects, the parent dies, but transfers some of its attributes to the resulting daughters through use of the ATT keyword.

The following illustration depicts outcomes 1 and 2 for an object:

[image:]

String expansion

When assigning new attributes, you may want the values for these new attributes to be formed from existing attributes--either by simply copying an existing value, or by combining and/or transforming the old values. This process is accomplished by "string expansion" which replaces or expands an attribute name into the full string representing that attribute’s value. In cell definitions, enclosing an attribute name in square brackets indicates that you intend for this attribute name to be expanded; e.g., the form "[FEEDER_ID]" will be replaced by the value of the FEEDER_ID attribute, such as "6992" (assuming that such an attribute exists for the matched object). In addition to this simple expansion, there are several specialized forms of string expansion that can be summarized as follows:

	
1.

	

Substring

	
•

	

Delimiter Based

Indicated by "<"or ">". This this form returns the substring before or after the first occurrence of the delimiting character. The delimiting character is the character immediately following the "<"or the ">".

For example, if TAG= "XYZ.553", then [<.[TAG]] returns the substring preceding the first period (".") in the TAG attribute value, in this case," XYZ". Likewise, [>.[TAG]] returns the substring following the period, which would be "553".

Note : When nesting a simple expansion form (e.g., [TAG]) within a delimiter based expansion form; you can discard the inner square brackets. Thus, "[<.TAG]" is equivalent to "[<.[TAG]]".

	
•

	

Position Based

Indicated by "@" -- this form returns the substring beginning and ending at the given character positions.

Using the example from above where TAG="XYZ.553", the notation [@(1:2)[TAG]] extracts the substring from the value of the TAG attribute, which begins with character position 1 (position 0 being the first character) and ends with character position 2. In other words, it extracts a two-character substring, beginning from the second position, returning the value "YZ"

Note : The character position can be specified relative to the end of the string by using the "$" character to represent the last position in the string. E.g., "[@($-1:$)[TAG]]" returns the last two characters "53". Also note that a single character can be extracted by specifying the start and end positions as the same character, e.g., "[@(2:2)[TAG]]" returns the third character, "Z".

	
2.

	

Codelist

These can be used to map or convert an input value into the corresponding output value.

	
•

	

Basic Lookup Table:

	

	

To create the "lookup table", we use the CODE keyword. The format for the table is:

CODE, <listname>,input value, outputvalue.

	

	

For example:

CODE, RANK_LIST, E, 1

CODE, RANK_LIST, R, 2

CODE, RANK_LIST, P, 4

	

	

 creates a lookup table with three entries or mappings.

	

	

(A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword, e.g., DEFAULT_CODE, RANK_LIST, 1 means that any input value other than E, R or P results in the output of a "1".)

	

	

To actually look up or convert a value, we use the codelist form of string expansion, indicated by a "%".

[%RANK_LIST.[RANK_CODE]]

	

	

will return "1" if the RANK_CODE attribute is "E"; "2" if the RANK_CODE is "R"; and "4" if the RANK_CODE is "P".

	
•

	

Database Lookup:

	

	

This works the same as the basic lookup table but the entries are stored in a database table. There are 2 formats for database lookups:

	
•

	

DBCODE

	

	

The table name (which also serves as the list name), the input column name, and the output column name are defined using the DBCODE keyword. The format for the DBCODE is:

	

	

DBCODE, <tablename>, <input column>,< output column>

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

	

	

means that there exists a database table called "feeder_ncg" which has an input value column called "feeder_name" and an output value column "ncg_id".

	
•

	

NAMED_DBCODE

	

	

NAMED_DBCODE is similar to DBCODE except it takes a list name that is different from the table name. It is used in cases where there is a need for 2 codelists based on the same database table but with different input and output columns. The format is:

	

	

NAMED_DBCODE, <listname>, <tablename>, <input column>,
<output column>

	

	

A default code, returned when the given input value is not in the table, can be defined for a list using the DEFAULT_CODE keyword. For example, DEFAULT_CODE, feeder_ncg, 1 means that any input value other than what has been defined results in the output of a "1". Additionally, a special DEFAULT_CODE value can be assigned with the value specified as "--INTEGER_SEQUENTIAL--".

	

	

For example:

	

	

DBCODE, feeder_ncg, feeder_name, ncg_id

DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

	

	

Means if a lookup into the table named feeder_ncg does not have a match, the default action will be to select the maximum value of ncg_ids in the table, add one to the ncg_id, and create a new record with the given feeder name and the incremental maximum ncg_id.

	

	

Accessing the table is the same as the basic lookup table mentioned above.

	
•

	

Math Functions :

	

	

Mathematical functions can be calculated by using the input value to access a "pseudo- codelist." "List name" has one of the following values:

	

	

MATH_SIN

	

	

MATH_COS

	

	

MATH_TAN

	

	

MATH_ASIN

	

	

MATH_ACOS

	

	

MATH_ATAN

	

	

MATH_LOG

	

	

MATH_LOG10

	

	

MATH_EXP

	

	

MATH_SQRT

	

	

MATH_CEIL (round up to next greatest number)

	

	

MATH_FLOOR (round down to next lowest number)

	

	

MATH_FABS (absolute value, e.g., -4.5 becomes 4.5)

	

	

MATH_RPN (math function in reverse polish notation)

	

	

For example, to calculate the sine of an ANGLE attribute:

[%MATH_SIN.[ANGLE]]

	
•

	

Coordinate Lookup :

	

	

The coordinates of an object can be accessed using a form that mimics a codelist lookup:

	

	

[%COORDINATE.FIRSTX] returns the first X coordinate of the object

	

	

[%COORDINATE.LASTX] returns the last X coordinate of the object

	

	

[%COORDINATE.FIRSTY] returns the first Y coordinate of the object

	

	

[%COORDINATE.LASTY] returns the last Y coordinate of the object

	
3.

	

Default Value

A default value can be specified which will be returned if the result of string expansion would otherwise be an empty string. This is indicated by enclosing a default value between two caret symbols ("^").

For example: "[^PRIMARY^[PRI_CIRCUIT_ID]]" returns a value of "PRIMARY" in any case where the PRI_CIRCUIT_ID attribute is non-existent or empty.

If a default value is not specified, then a "String Expansion Error" message will occur.

	
4.

	

Special Attributes

Some properties of an object can be accessed as if they were attributes by using one of the special names given below, preceded by a double dollar sign:

CLS (cell number)

IDX (index number)

X1 (1st or primary X coordinate)

Y1 (1st or primary Y coordinate)

Xn (subsequent X coordinate)

Yn (subsequent Y coordinate)

COORD_CNT (number of coordinates)

MAP_CLASS (class number of partition)

MAP_NAME (full name of partition)

CELL_NAME (cell name - i.e. the set of instructions for an object)

CLS_NAME (actual name of class rather than number)

For example, [$$CELL_NAME] returns the name of the "cell" within the cell definition file that was matched by the current object.

	
5.

	

Handle Reference

One daughter object can access the class and index number of another daughter object by using the following two forms:

$<#>.CLS

$<#>.IDX

For example, in daughter object #2, the class number of daughter #1 can be accessed by the form: "[$1.CLS]" and index number of daughter #1 can be accessed by the form: "[$1.IDX]".

Note : A common practical application of this form of string expansion is to assign the DEVICE_CLS and DEVICE_IDX attributes of a SND attached to its corresponding transformer.

Available Cell Explosion Keywords

This section provides descriptions, syntax, and examples for available cell explosion keywords.

Global (outside all cell definitions)

	
•

	

CODE - Defines an entry in a code conversion lookup table. See String Expansion Section.

	
•

	

DBCODE - Defines an entry in a database table. See String Expansion Section.

	
•

	

DEFAULT_CODE - Sets default values for codelist. See String Expansion Section.

	
•

	

INCLUDE - Reads definitions from another file.

	

	

INCLUDE, <name of file to include>

INCLUDE, /users/xyz/data/xyz_devices.cel

	
•

	

NAMED_DBCODE - Allows for definitions of more than one codelist from a single database table.

	
•

	

TEMPLATE - Uses a template definition.

	
•

	

USE - Sets default values for an entity’s properties.

	

	

 USE, <KEYWORD>, <value>

USE, PHASE, abc

Shared (used by both parent objects & daughter graphic objects)

	
•

	

ATT[n] - Sets the value of an attribute. There is no limit on the number of ATT[n] records that can exist in the cell definitions. [n] is currently a placeholder, usually set to 0 (zero).

	

	

ATT[n],<att_name>, <att_value>

ATT0, feeder, [@(9:12) [ACAD_layer]]

ATT0, riser, N

	
•

	

ATTR_INDEX - The string that follows this keyword will be used to assign an index unique for an object of this object’s class; usually, the string will be formed by expansion of one or more attributes.

	

	

ATTR_INDEX, <n>

ATTR_INDEX,

	
•

	

BND_HANDLE - Indicates that the index for this object should be provided by the boundary-node handle manager.

	

	

BND_HANDLE, 1

	
•

	

CLASS - Sets the class of object to explicit value.

	

	

CLASS, <class name>

CLASS, Xfm

	
•

	

DATT[n] - Dynamic attribute name. [n] is currently a placeholder, usually set to 0 (zero).

	

	

DATT[n], <att_name>, <att_value>

DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

GEO_HANDLE - Indicates that a unique index should be generated based upon the object’s class and geographical coordinates.

	

	

GEO_HANDLE, 1

	
•

	

INDEX - Sets the index of object to an explicit value.

	

	

INDEX, <n>

INDEX, 533

	
•

	

MARK_BGD - Marks an object as background and sets its location to the background partition.

	

	

MARK_BGD, 1

	
•

	

MSG[n] (or MESSAGE[n]) - Prints a message to standard output when this definition is used, where [n] is either 0, 1, 2, or 3.

	

	

MSG[1|2|3], <message text> MESSAGE[1|2|3], <message text>

MSG1, Warning: Found stray fuse

MSG2, Handle: [$$CLS] . [$$IDX]

MSG3, At (X,Y) of ([$$X1],[$$Y1])

	
•

	

NCG - Set the entity’s Network Control Group (NCG) property. (Program-style preprocessor only)

	

	

NCG, <n>

NCG, [@(9:12)[ACAD_layer]]

	
•

	

NOMINAL_STATE - Sets the entity’s ‘NOMINAL_STATE’ property. The value can be an integer typically between 0 and 15 or the key words OPEN or CLOSED.

	

	

NOMINAL_STATE, <n>|OPEN|CLOSED

NOMINAL_STATE, CLOSED

	
•

	

OPT_ATT[n] - Sets an optional value of an attribute. Will not report a string error message if the value fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_ATT[n], <att_name>, <att_value>

OPT_ATT1, From_Node_Bnd, [NODE1_BND]

	
•

	

OPT_DATT[n] - Sets an optional dynamic attribute name. Will not report a string error message if the attribute name fails on attribute expansion. [n] is currently a placeholder, usually set to 0 (zero).

	

	

OPT_DATT[n]

OPT_DATT1, [%LOCATION.[^0^[WITHIN_SITE_IPID]]],~

 4901.[^0^[WITHIN_SITE_IPID]]

	
•

	

PHASE - Sets the entity’s ‘PHASE’ property (e.g., to ABC).

	

	

PHASE, <n>

PHASE, [%PHASE_LIST.[@(6:8)[ACAD_layer]]]

	
•

	

STRING - Sets the value of the text string for this entity. (TEXT objects only)

	

	

STRING, <string>

STRING, [KVAR]

	
•

	

SUB_BND - Indicates that this object is a substation boundary node and that its index should be assigned based upon the supplied string (usually the feeder or circuit identifier).

SUB_BND, 1

	
•

	

SYM_ID - Sets the symbology-state-class to an explicit value, rather than its default value, which is the same as the class number.

	

	

SYM_ID, <n>

SYM_ID, 1304

	
•

	

VOLTS - Sets the entity’s ‘VOLTS’ property. (Program-style preprocessor only)

	

	

VOLTS, <n>

VOLTS, [voltage] 1000 *

Parent Object ("explosionDef") Only

	
•

	

AGGREGATE/_ POINT/_LINE/_TEXT - Creates a graphic object of the specified kind that becomes a component of the overall aggregate device. AGGREGATE and AGGREGATE_LINE require 2 coordinates; AGGREGATE_POINT and AGGREGATE_TEXT require one coordinate. All AGGREGATE definition types require an END_AGGREGATE. (Obsolete)

	

	

AGGREGATE, <n>

AGGREGATE, 4

	

	

AGGREGATE_ POINT, <n>

AGGREGATE_POINT, 1

	

	

AGGREGATE_ LINE, <n>

AGGREGATE_ LINE, 3

	

	

AGGREGATE_ TEXT, <n>

AGGREGATE_ TEXT, 2

	
•

	

CELL - Begins the definition for one device type. The cell definition file can contain many sets of cell definitions. All CELL definitions require an END_CELL.

	

	

CELL, <name>

CELL, uxfm2

	
•

	

END_CELL - Ends an explosion definition.

END_CELL

	
•

	

END_AGGREGATE - Ends an aggregate definition.

END_AGGREGATE

	
•

	

END_TEMP - Ends a template definition.

END_TEMP

	
•

	

MATT[n] - Matching attribute of the object to explode. [n] is currently a placeholder, usually set to 0 (zero). There is no limit on the number of MATT[n] records a cell explosion definition may have, but for the explosion to occur, all must match.

	

	

MATT[n],<attribute name>,<target attribute value>

MATTO, ACAD_objectType, INSERT

	
•

	

POINT/LINE/TEXT - Creates a "daughter" graphic object of the specified kind. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT, <n>

POINT, 3

	

	

LINE, <n>

LINE, 1

	

	

TEXT, <n>

TEXT, 5

	
•

	

POINT/LINE/TEXT WHEN <condition> - Creates a "daughter" graphic object of the specified kind when the given condition is met. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT WHEN <condition>

POINT WHEN

	

	

LINE WHEN <condition>

LINE WHEN

	

	

TEXT WHEN <condition>

TEXT WHEN

	
•

	

POINT/LINE/TEXT FOR
<variable> IN
<List of Values> - Creates zero, one or multiple graphic objects of the specified kind, one object for each value in the supplied list. Use <variable> within the definition as if it were an attribute name. A special variable called "$$ICOUNT" can also be used to retrieve the number of the iteration. All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <variable> IN <list of values>

POINT FOR

	

	

LINE FOR <variable> IN <list of values>

LINE FOR

	

	

TEXT FOR <variable> IN <list of values>

TEXT FOR

	
•

	

POINT/LINE/TEXT FOR
<num-valu
e> TIMES - Creates zero, one or multiple graphic objects of the specified kind; number of objects specified by <num-values>. ($$ICOUNT can be used just as for the previous form). All POINT/LINE/TEXT definitions require an END_POINT/LINE/TEXT.

	

	

POINT FOR <numeric value> TIMES

POINT FOR

	

	

LINE FOR <numeric value> TIMES

LINE FOR

	

	

TEXT FOR <numeric value> TIMES

TEXT FOR

	
•

	

REQUEST_HANDLE - Indicates that the existing handle of this object should be replaced with one supplied by the Explosion manager’s "ExplodeHandle" class. (Primarily for ISFF)

REQUEST_HANDLE, 1

	
•

	

RMV[n] - Removes an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RMV[n]

RMV0, voltage

	
•

	

RNA[n] - Renames an attribute. [n] is currently a placeholder, usually set to 0 (zero).

	

	

RNA[n], <att_name>, <new_att_name>

RNA0, amp_content, amp_cont

	
•

	

TEXT_SCALE - Specifies the scale factor for text. Used to allow the height of base text symbol to be used as a multiplier to the cell definition specified coordinates.

	

	

TEXT_SCALE, <n>

	

	

TEXT_SCALE, 1

	

	

for example with the TEXT_SCALE, 1 specified and the base text object has a specified height of 400 and the COORD1, 10, 30 is specified, the resulting coordinates will be 400x10, 400x30 or 4000, 12000.

	
•

	

USE_REFERENCE - Indicates that the index for this object should be based upon its corresponding reference object. (ISFF only) (Obsolete). For example:

	

	

USE_REFERENCE, 1

causes the FRAMME RB_REFPRMRY and RB_REFSCNDRY linkages to be used instead of the normal RB_PRIMRY and RB_SECNDRY.

Component "Daughter" Object ("explosionGrObject") Only

	
•

	

ABSOLUTE_COORDS - Indicates that coordinate values are specified in absolute, "real-world" numbers; this over-rides the default behavior which is for numbers used in COORD statements to be taken as relative to the insertion point of the parent object (i.e. this insertion point corresponds to COORD 0.0, 0.0).

	

	

ABSOLUTE_COORDS, 1

	
•

	

ANGLE - Sets the text rotation for this entity. Horizontal is zero and the angle proceeds counter clockwise. (TEXT objects only)

	

	

ANGLE, <a>

	

	

ANGLE, 90

	
•

	

COORD/COORD[n] - Sets relative/absolute coordinate of an object/endpoint.

	

	

COORD, <x>, <y>

	

	

COORD, 1.0, 2.5

	

	

COORD[n], <x>, <y>

	

	

COORD1, 0.0, 1.0
COORD2, 1.0, 2.0

	
•

	

COMPONENT[n] - Sets the aggregate sequence number and cell component number for a single component in the aggregate.

	

	

COMPONENT[n], <agg_seq_num>, <cell_comp_num>

	

	

COMPONENT1, 1, 2

	
•

	

END_AGGREGATE - Ends the definition of component graphic object.

	

	

END_AGGREGATE

	
•

	

HEIGHT - Sets the text height for this entity. (TEXT objects only)

	

	

HEIGHT, <h>

	

	

HEIGHT, 2

	
•

	

H_ORIENTATION - Sets the horizontal justification of text. Values can be LEFT, CENTER, or RIGHT, or 0, 1, or 2. Default is LEFT. (TEXT objects only)

	

	

H_ORIENTATION, <n>|LEFT|CENTER|RIGHT

	

	

H_ORIENTATION, LEFT

	
•

	

USE_ROTATION - Indicates that the rotation property of the original entity should be used to set the rotation for the component graphic object.

	

	

USE_ROTATION, 1

	
•

	

V_ORIENTATION - Sets the vertical justification of text. Values can be TOP, CENTER, or BOTTOM, or 0,1, or 2. Default is BOTTOM. (TEXT objects only)

	

	

V_ORIENTATION, <n>|TOP|CENTER|BOTTOM

	

	

V_ORIENTATION, 2

Special Attributes Set by Explode an Processed by mat2entityset.(script-preprocessor):

	
•

	

Alias - Sets an alias for an attribute (both script- and program-style preprocessors).

	

	

ATT[n], ALIAS[dbtype], <value>

	

	

ATT0, ALIAS[OPS], [LOC_NUM]

	
•

	

Diagram-id - Sets the Diagram Id .

	

	

ATT[n], DIAGRAM_ID, <value>

	

	

ATT1, DIAGRAM_ID, [IPID]

	
•

	

Group - Sets the Group code.

	

	

ATT[n], CES_PP_GROUP|GROUP|Group|group, <value>

	
•

	

Local

	

	

ATT[n], LOCAL|Local|local, <value>

	
•

	

Locations (not to be confused with LOCATIONS)

	

	

ATTN[n],CES_LOCATION, <value>

	

	

ATT1, CES_LOCATION, 4901.[MID]

	

	

ATTN[n], CES_LOCATION_DEFINITION, <value>

	

	

ATT1, CES_LOCATION_DEFINITION, 4901.[MID]

	

	

ATT[n], CES_LOCATION_NAME, <value>

	

	

ATT1, CES_LOCATION_NAME, Pole [^?^[SUPPORT_NO]]

	

	

ATT[n], CES_LOCATION_DESC, <value>

	

	

ATT1, CES_LOCATION_DESC, Pole defined by support/switch:~ [^?^[SUPPORT_NO]]/[^?^[SWITCH_NAME]]

	

	

ATT[n], CES_LOCATION_REFERENCE, <value>

	

	

ATT1, CES_LOCATION_REFERENCE, [%COORDINATE.FIRSTX],~ [%COORDINATE.FIRSTY]

 Network Control Group

	

	

ATTN[n], NCG|Ncg|ncg, <value>

	

	

ATT1, NCG, [%feeder_ncg.[^UNKNOWN^[DISTRICT]]_ ~ [%ncg_volt.[^UNKNOWN^[VOLT_LEV]]]]

	
•

	

Rank

	

	

ATT[n], RANK|Rank|rank, <value>

	

	

ATT1, RANK, [%MATH_RPN.[%RANKU.[^NO^[URBAN]]]~ [%RANKLC.[^UNKNOWN^[LINE_CATEGORY]]] + ~ [%RANKV.[^0^[VOLT_LEV]] [^0^[VOLT_LEV]]] + ~ [%RANKB11.[^0^[VOLT_LEV]] [^UNKNOWN^[DISTRICT]]] + ~ [%RANKP.[^RYB^[PHASING]]] +]

	
•

	

Physical Property

	

	

ATT[n], CES_PHYS_PROP|PHYS_PROP|Phys_Prop|phys_prop|physical_property, <value>

	

	

ATT0, CES_PHYS_PROP, [%MATH_RPN.[%PHYS_PROP.BACKBONE] [%PHYS_PROP.~
[^OH^[OH_UG]]] +]

	
•

	

Topology specific (see the Attribute Topology Users Guide for further discussion)

	

	

ATT[n], From_Node, <value>

	

	

ATT1, From_Node, [FROM_NODE]

	

	

ATT[n], To_Node, <value>

	

	

ATT1, To_Node, [TO_NODE]

	

	

ATT[n], Unique_id, <value>

	

	

ATT1, Unique_Id, [FROM_NODE]_[TO_NODE]_FID

	
•

	

Transition

	

	

ATT[n], TRANSITION_ID|Transition_ID|Transition_Id|transition_id, <value>

	

	

 ATT1, TRANSITION_ID, 120

	
•

	

Voltage

	

	

ATT[n], VOLTAGE|Voltage|voltage, <value>

	

	

ATT1, VOLTAGE, [%VOLTS.[^UNKNOWN^[OPERATING_VOLTAGE]]]

Format for the Explosion Definition File

Devices are recognized, or ‘matched’, and appropriate manipulations are made based upon the descriptions or definitions contained in an explosion definition text file.

The general format for a single cell definition is as follows:

CELL, <cell-name>

<match-criteria>

[<parent-object-actions>]

[<daughter-object-actions>]

END_CELL

Remember, any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through the explosion process (ATTO, CES_EXPLODE, Y); all other objects are eliminated.

Syntax

Cell Definition

	
1.

	

One statement per line (the ~ can be used to continue on more than one line).

	
2.

	

Comments begin with # and must be on a line by themselves.

	
3.

	

Lines begin with keywords (always upper case).

	
4.

	

Commas separate keywords and values.

Value fields can be:

	
•

	

Attribute substituted using the syntax [<att name>] where the value of the <att name> for the currently exploded object will be substituted in the value string. See the examples in the line definition above.

	
•

	

Math functions in Reverse Polish Notation (RPN) with space delimitation. The keywords which support RPN automatically are:

	
•

	

ANGLE

	
•

	

HEIGHT

	
•

	

H_ORIENTATION

	
•

	

INDEX

	
•

	

NCG

	
•

	

NOMINAL_STATE

	
•

	

SYMBOLOGY

	
•

	

VOLTS

	
•

	

V_ORIENTATION

	

	

For example, the following will be valid:

	

	

COORD, 100.0, 300.0 COORD, 100.0 [X_OFFSET] +, 300.0 [Y_OFFSET] +COORD, [X_OFFSET], [Y_OFFSET]

Math operators supported include +, -, *, /, % (modulus) and ^ (exponentiation).

During the Parse phase of the preprocessor, the customer’s raw data files are converted into an internal data structure known as an Entity Set wherein each individual graphical object is represented by an Entity object. Each Entity object is read into the cell file and is processed separately. When creating a cell definition file, to decrease processing time:

	
1.

	

Place filter cells at the top of the file. For example, cells with nothing but match criteria that will not be exploded.

	
2.

	

Place cells with most abundant objects near the top of the file. For example, if a file contains 20 switches, 10,000 text objects and 500 transformers, place the text objects first, transformers next, and finally the switches.

	
3.

	

Place most restrictive criteria cells for objects above general. Overhead transformers should be placed above generic transformers in the cell definition file.

Match Criteria

	
1.

	

Use keyword MATT[n].

	
2.

	

Basic form: MATT[n],<attribute name>,<target attribute value>.

	
3.

	

Attribute name can be replaced by a string expansion.

	
4.

	

Can use alternation of target values separated by |.

	

	

MATTO,[ACAD_layer],15kv-Bus|24kv-Bus|161kv-Bus

	
5.

	

Multiple match criteria are logically "AND" ed together. All MATT[n] must return true before that cell will be used. For example, for the following cell to be used for an Entity object, all 3 lines must return true:

 CELL, 01XF1

MATTO, ACAD_objectType, INSERT

MATTO, ACAD_blockName, 01XF1

MATTO, [@(1:3) [ACAD_layer]], PRI

…

Conditional Expressions

These have the form:

	

	

 ((Boolean-Expression) ? true value | false value)

	

	

ATT0, ALIAS[OPS], (([location]) ? [location]|D:[ATTR])

The supported syntax for Boolean expressions within cell-definition files is as follows:

<Expression> = <Expression> && <Expression> <Expression> || <Expression>!<Expression>(Expression)<String-Comparison><Numeric-Comparison><Term>

where

 <String-Comparison> = <String> == <String><String> != <String><String> < <String><String> > <String><String> <= <String><String> >= <String>

where

 <Numeric-Comparison> = <Number> .eq. <Number><Number> .ne. <Number><Number> .lt. <Number><Number> .le. <Number><Number> .gt. <Number><Number> .ge. <Number>

where

 <Term> = <String> | <Number> | <Function-Call>

 where

	

	

<String> = <Simple-String> | <Expand-Form>

 where

	

	

<Simple-String> = double-quoted string of alphanumeric characters. E.g., "553"

	

	

<Expand-Form> = attribute or property name enclosed in square brackets. E.g., [att_name]

	

	

<Number>

	

	

<Function-Call> = name of a standard function with argument(s) enclosed in matched parentheses.

Note : At present no standard functions have been implemented, so this feature should not be used.)

Operators are evaluated in the following order, with top most operators processed first. The operators used are:

!

< > <= > >= .lt. .gt. .le. .ge.

== != .eq. .ne.

&&

||

Examples:

([Layer] .eq. 501)

(([ObjectType] != "Primary Conductor") && ([FeederId] .ne. 6800))

(sin(Rotation) < 0.5)

(![UniqueId])

Format for the Explosion Definition File

Devices are recognized, or ‘matched’, and appropriate manipulations are made based upon the descriptions or definitions contained in an explosion definition text file.

The general format for a single cell definition is as follows:

CELL, <cell-name>

<match-criteria>

[<parent-object-actions>]

[<daughter-object-actions>]

END_CELL

Remember, any object that has an attribute named "CES_EXPLODED" with a value of "Y" will pass through the explosion process (ATTO, CES_EXPLODE, Y); all other objects are eliminated.

Syntax

Cell Definition

	
1.

	

One statement per line (the ~ can be used to continue on more than one line).

	
2.

	

Comments begin with # and must be on a line by themselves.

	
3.

	

Lines begin with keywords (always upper case).

	
4.

	

Commas separate keywords and values.

Value fields can be:

	
•

	

Attribute substituted using the syntax [<att name>] where the value of the <att name> for the currently exploded object will be substituted in the value string. See the examples in the line definition above.

	
•

	

Math functions in Reverse Polish Notation (RPN) with space delimitation. The keywords which support RPN automatically are:

	
•

	

ANGLE

	
•

	

HEIGHT

	
•

	

H_ORIENTATION

	
•

	

INDEX

	
•

	

NCG

	
•

	

NOMINAL_STATE

	
•

	

SYMBOLOGY

	
•

	

VOLTS

	
•

	

V_ORIENTATION

	

	

For example, the following will be valid:

	

	

COORD, 100.0, 300.0 COORD, 100.0 [X_OFFSET] +, 300.0 [Y_OFFSET] +COORD, [X_OFFSET], [Y_OFFSET]

Math operators supported include +, -, *, /, % (modulus) and ^ (exponentiation).

During the Parse phase of the preprocessor, the customer’s raw data files are converted into an internal data structure known as an Entity Set wherein each individual graphical object is represented by an Entity object. Each Entity object is read into the cell file and is processed separately. When creating a cell definition file, to decrease processing time:

	
1.

	

Place filter cells at the top of the file. For example, cells with nothing but match criteria that will not be exploded.

	
2.

	

Place cells with most abundant objects near the top of the file. For example, if a file contains 20 switches, 10,000 text objects and 500 transformers, place the text objects first, transformers next, and finally the switches.

	
3.

	

Place most restrictive criteria cells for objects above general. Overhead transformers should be placed above generic transformers in the cell definition file.

Match Criteria

	
1.

	

Use keyword MATT[n].

	
2.

	

Basic form: MATT[n],<attribute name>,<target attribute value>.

	
3.

	

Attribute name can be replaced by a string expansion.

	
4.

	

Can use alternation of target values separated by |.

	

	

MATTO,[ACAD_layer],15kv-Bus|24kv-Bus|161kv-Bus

	
5.

	

Multiple match criteria are logically "AND" ed together. All MATT[n] must return true before that cell will be used. For example, for the following cell to be used for an Entity object, all 3 lines must return true:

 CELL, 01XF1

MATTO, ACAD_objectType, INSERT

MATTO, ACAD_blockName, 01XF1

MATTO, [@(1:3) [ACAD_layer]], PRI

…

Conditional Expressions

These have the form:

	

	

 ((Boolean-Expression) ? true value | false value)

	

	

ATT0, ALIAS[OPS], (([location]) ? [location]|D:[ATTR])

The supported syntax for Boolean expressions within cell-definition files is as follows:

<Expression> = <Expression> && <Expression> <Expression> || <Expression>!<Expression>(Expression)<String-Comparison><Numeric-Comparison><Term>

where

 <String-Comparison> = <String> == <String><String> != <String><String> < <String><String> > <String><String> <= <String><String> >= <String>

where

 <Numeric-Comparison> = <Number> .eq. <Number><Number> .ne. <Number><Number> .lt. <Number><Number> .le. <Number><Number> .gt. <Number><Number> .ge. <Number>

where

 <Term> = <String> | <Number> | <Function-Call>

 where

	

	

<String> = <Simple-String> | <Expand-Form>

 where

	

	

<Simple-String> = double-quoted string of alphanumeric characters. E.g., "553"

	

	

<Expand-Form> = attribute or property name enclosed in square brackets. E.g., [att_name]

	

	

<Number>

	

	

<Function-Call> = name of a standard function with argument(s) enclosed in matched parentheses.

Note : At present no standard functions have been implemented, so this feature should not be used.)

Operators are evaluated in the following order, with top most operators processed first. The operators used are:

!

< > <= > >= .lt. .gt. .le. .ge.

== != .eq. .ne.

&&

||

Examples:

([Layer] .eq. 501)

(([ObjectType] != "Primary Conductor") && ([FeederId] .ne. 6800))

(sin(Rotation) < 0.5)

(![UniqueId])

Example of Cell Definitions

Tranformer w/Supply Node

 CELL, OverheadTransformer

 MATT0,CESMP_OBJ_CLASS, Transformer

 MATT0, [OhUg], OH

 MATT0, DIAGRAM_ID, Symbol

 LINE, 1

 ABSOLUTE_COORDS,1

 COORD1,[$$X1],[$$Y1]

 COORD2,[$$Xn],[$$Yn]

 # Definition attributes

 CLASS, xfm_oh

 SYM_ID, 2060[%phase_num.[^ABC^[Phase]]]

 ATTR_INDEX, [GUID]

 ATT0, ALIAS[OPS], [DeviceId]

 ATT0, ALIAS[GIS], [GisId]

 NCG, [%feeder_ncg.[CESMP_MAPNAME]]

 ATT0, NCG_FDR, [CESMP_MAPNAME]

 # Topology definition

 PHASE, [%phase_map.[^ABC^[Phase]]]

 NOMINAL_STATE, [%status_lookup.[^CLOSED^[NominalStatus]]]

 VOLTS, [%voltage.[^4160^[Voltage]]]

 PHY_PROPERTIES, [ces_physical_property]

 ATT0, From_Node, [_Connector0])

 ATT0, To_Node, [_Connector0]_SND

 RANK, [%phase_bit.[^ABC^[Phase]]]

[%voltage_bit.[%voltage.[^4160^[Voltage]]]] +

 # Attribute mapping

 OPT_ATT0, facility_id, [GisId]

 OPT_ATT0, device_name, [DeviceId]

 OPT_ATT0, feeder_id_1, [FeederName]

 OPT_ATT0, feeder_id_2, [FeederName2]

 # Explode this object

 ATT0, CES_EXPLODED, Y

 END_LINE

 POINT, 6

 CLASS, SND

 ATTR_INDEX, [GUID]

 PHASE, [%phase_map.[Phase]]

 SYM_ID, 994

 NCG, [%feeder_ncg.[CESMP_MAPNAME]]

 COORD, 0, -1

 ATT0, Unique_Id, [_Connector0]_SND

 ATT0, device_cls, [$1.CLS]

 ATT0, device_idx, [$1.IDX]

 ATT0, device_id, [DeviceId]

 ATT0, feeder, [$$MAP_NAME]

 ATT0, phases, [%phase_num.[Phase]]

 ATT0, ncg, [%feeder_ncg.[CESMP_MAPNAME]]

 ATT0, CES_EXPLODED, Y

 END_POINT

 END_CELL

Code Lookup Exampes

Below is an example of how a lookup table can be used to convert the GIS phase to a NMS phase:

 #

 # CODE phase_map

 #

 CODE, phase_map, 1, A

 CODE, phase_map, 2, B

 CODE, phase_map, 4, C

 CODE, phase_map, 3, AB

 CODE, phase_map, 5, AC

 CODE, phase_map, 6, BC

 CODE, phase_map, 7, ABC

 CODE, phase_map, A, A

 CODE, phase_map, B, B

 CODE, phase_map, C, C

 CODE, phase_map, AB, AB

 CODE, phase_map, BA, AB

 CODE, phase_map, AC, AC

 CODE, phase_map, CA, AC

 CODE, phase_map, BC, BC

 CODE, phase_map, CB, BC

 CODE, phase_map, ABC, ABC

 CODE, phase_map, CBA, ABC

 CODE, phase_map, BCA, ABC

 CODE, phase_map, BAC, ABC

 CODE, phase_map, CAB, ABC

 CODE, phase_map, Unknown, ABC

 CODE, phase_map, Null, ABC

 DEFAULT_CODE, phase_map, ABC

Below is an example of using a lookup table (a.k.a. codelist) that is stored in a database table.

 #

 # CODE feeder_ncg

 #

 DBCODE, feeder_ncg, feeder_name, ncg_id

 DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

Below is an example of using a single lookup table (a.k.a. codelist) that is stored in a database table where you need multiple fields returned.

 #

 # CODE pf_capacitor_data_kvar_rating_a

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_a, pf_capacitor_data, catalog_id, kvar_rating_a

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_a, 0

 #

 # CODE pf_capacitor_data_kvar_rating_b

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_b, pf_capacitor_data, catalog_id, kvar_rating_b

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_b, 0

 #

 # CODE pf_capacitor_data_kvar_rating_c

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_c, pf_capacitor_data, catalog_id, kvar_rating_c

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_c, 0

Example of Cell Definitions

Tranformer w/Supply Node

 CELL, OverheadTransformer

 MATT0,CESMP_OBJ_CLASS, Transformer

 MATT0, [OhUg], OH

 MATT0, DIAGRAM_ID, Symbol

 LINE, 1

 ABSOLUTE_COORDS,1

 COORD1,[$$X1],[$$Y1]

 COORD2,[$$Xn],[$$Yn]

 # Definition attributes

 CLASS, xfm_oh

 SYM_ID, 2060[%phase_num.[^ABC^[Phase]]]

 ATTR_INDEX, [GUID]

 ATT0, ALIAS[OPS], [DeviceId]

 ATT0, ALIAS[GIS], [GisId]

 NCG, [%feeder_ncg.[CESMP_MAPNAME]]

 ATT0, NCG_FDR, [CESMP_MAPNAME]

 # Topology definition

 PHASE, [%phase_map.[^ABC^[Phase]]]

 NOMINAL_STATE, [%status_lookup.[^CLOSED^[NominalStatus]]]

 VOLTS, [%voltage.[^4160^[Voltage]]]

 PHY_PROPERTIES, [ces_physical_property]

 ATT0, From_Node, [_Connector0])

 ATT0, To_Node, [_Connector0]_SND

 RANK, [%phase_bit.[^ABC^[Phase]]]

[%voltage_bit.[%voltage.[^4160^[Voltage]]]] +

 # Attribute mapping

 OPT_ATT0, facility_id, [GisId]

 OPT_ATT0, device_name, [DeviceId]

 OPT_ATT0, feeder_id_1, [FeederName]

 OPT_ATT0, feeder_id_2, [FeederName2]

 # Explode this object

 ATT0, CES_EXPLODED, Y

 END_LINE

 POINT, 6

 CLASS, SND

 ATTR_INDEX, [GUID]

 PHASE, [%phase_map.[Phase]]

 SYM_ID, 994

 NCG, [%feeder_ncg.[CESMP_MAPNAME]]

 COORD, 0, -1

 ATT0, Unique_Id, [_Connector0]_SND

 ATT0, device_cls, [$1.CLS]

 ATT0, device_idx, [$1.IDX]

 ATT0, device_id, [DeviceId]

 ATT0, feeder, [$$MAP_NAME]

 ATT0, phases, [%phase_num.[Phase]]

 ATT0, ncg, [%feeder_ncg.[CESMP_MAPNAME]]

 ATT0, CES_EXPLODED, Y

 END_POINT

 END_CELL

Code Lookup Exampes

Below is an example of how a lookup table can be used to convert the GIS phase to a NMS phase:

 #

 # CODE phase_map

 #

 CODE, phase_map, 1, A

 CODE, phase_map, 2, B

 CODE, phase_map, 4, C

 CODE, phase_map, 3, AB

 CODE, phase_map, 5, AC

 CODE, phase_map, 6, BC

 CODE, phase_map, 7, ABC

 CODE, phase_map, A, A

 CODE, phase_map, B, B

 CODE, phase_map, C, C

 CODE, phase_map, AB, AB

 CODE, phase_map, BA, AB

 CODE, phase_map, AC, AC

 CODE, phase_map, CA, AC

 CODE, phase_map, BC, BC

 CODE, phase_map, CB, BC

 CODE, phase_map, ABC, ABC

 CODE, phase_map, CBA, ABC

 CODE, phase_map, BCA, ABC

 CODE, phase_map, BAC, ABC

 CODE, phase_map, CAB, ABC

 CODE, phase_map, Unknown, ABC

 CODE, phase_map, Null, ABC

 DEFAULT_CODE, phase_map, ABC

Below is an example of using a lookup table (a.k.a. codelist) that is stored in a database table.

 #

 # CODE feeder_ncg

 #

 DBCODE, feeder_ncg, feeder_name, ncg_id

 DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

Below is an example of using a single lookup table (a.k.a. codelist) that is stored in a database table where you need multiple fields returned.

 #

 # CODE pf_capacitor_data_kvar_rating_a

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_a, pf_capacitor_data, catalog_id, kvar_rating_a

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_a, 0

 #

 # CODE pf_capacitor_data_kvar_rating_b

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_b, pf_capacitor_data, catalog_id, kvar_rating_b

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_b, 0

 #

 # CODE pf_capacitor_data_kvar_rating_c

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_c, pf_capacitor_data, catalog_id, kvar_rating_c

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_c, 0

Example of Cell Definitions

Tranformer w/Supply Node

 CELL, OverheadTransformer

 MATT0,CESMP_OBJ_CLASS, Transformer

 MATT0, [OhUg], OH

 MATT0, DIAGRAM_ID, Symbol

 LINE, 1

 ABSOLUTE_COORDS,1

 COORD1,[$$X1],[$$Y1]

 COORD2,[$$Xn],[$$Yn]

 # Definition attributes

 CLASS, xfm_oh

 SYM_ID, 2060[%phase_num.[^ABC^[Phase]]]

 ATTR_INDEX, [GUID]

 ATT0, ALIAS[OPS], [DeviceId]

 ATT0, ALIAS[GIS], [GisId]

 NCG, [%feeder_ncg.[CESMP_MAPNAME]]

 ATT0, NCG_FDR, [CESMP_MAPNAME]

 # Topology definition

 PHASE, [%phase_map.[^ABC^[Phase]]]

 NOMINAL_STATE, [%status_lookup.[^CLOSED^[NominalStatus]]]

 VOLTS, [%voltage.[^4160^[Voltage]]]

 PHY_PROPERTIES, [ces_physical_property]

 ATT0, From_Node, [_Connector0])

 ATT0, To_Node, [_Connector0]_SND

 RANK, [%phase_bit.[^ABC^[Phase]]]

[%voltage_bit.[%voltage.[^4160^[Voltage]]]] +

 # Attribute mapping

 OPT_ATT0, facility_id, [GisId]

 OPT_ATT0, device_name, [DeviceId]

 OPT_ATT0, feeder_id_1, [FeederName]

 OPT_ATT0, feeder_id_2, [FeederName2]

 # Explode this object

 ATT0, CES_EXPLODED, Y

 END_LINE

 POINT, 6

 CLASS, SND

 ATTR_INDEX, [GUID]

 PHASE, [%phase_map.[Phase]]

 SYM_ID, 994

 NCG, [%feeder_ncg.[CESMP_MAPNAME]]

 COORD, 0, -1

 ATT0, Unique_Id, [_Connector0]_SND

 ATT0, device_cls, [$1.CLS]

 ATT0, device_idx, [$1.IDX]

 ATT0, device_id, [DeviceId]

 ATT0, feeder, [$$MAP_NAME]

 ATT0, phases, [%phase_num.[Phase]]

 ATT0, ncg, [%feeder_ncg.[CESMP_MAPNAME]]

 ATT0, CES_EXPLODED, Y

 END_POINT

 END_CELL

Code Lookup Exampes

Below is an example of how a lookup table can be used to convert the GIS phase to a NMS phase:

 #

 # CODE phase_map

 #

 CODE, phase_map, 1, A

 CODE, phase_map, 2, B

 CODE, phase_map, 4, C

 CODE, phase_map, 3, AB

 CODE, phase_map, 5, AC

 CODE, phase_map, 6, BC

 CODE, phase_map, 7, ABC

 CODE, phase_map, A, A

 CODE, phase_map, B, B

 CODE, phase_map, C, C

 CODE, phase_map, AB, AB

 CODE, phase_map, BA, AB

 CODE, phase_map, AC, AC

 CODE, phase_map, CA, AC

 CODE, phase_map, BC, BC

 CODE, phase_map, CB, BC

 CODE, phase_map, ABC, ABC

 CODE, phase_map, CBA, ABC

 CODE, phase_map, BCA, ABC

 CODE, phase_map, BAC, ABC

 CODE, phase_map, CAB, ABC

 CODE, phase_map, Unknown, ABC

 CODE, phase_map, Null, ABC

 DEFAULT_CODE, phase_map, ABC

Below is an example of using a lookup table (a.k.a. codelist) that is stored in a database table.

 #

 # CODE feeder_ncg

 #

 DBCODE, feeder_ncg, feeder_name, ncg_id

 DEFAULT_CODE, feeder_ncg, --INTEGER_SEQUENTIAL--

Below is an example of using a single lookup table (a.k.a. codelist) that is stored in a database table where you need multiple fields returned.

 #

 # CODE pf_capacitor_data_kvar_rating_a

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_a, pf_capacitor_data, catalog_id, kvar_rating_a

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_a, 0

 #

 # CODE pf_capacitor_data_kvar_rating_b

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_b, pf_capacitor_data, catalog_id, kvar_rating_b

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_b, 0

 #

 # CODE pf_capacitor_data_kvar_rating_c

 #

 NAMED_DBCODE, pf_capacitor_data_kvar_rating_c, pf_capacitor_data, catalog_id, kvar_rating_c

 DEFAULT_CODE, pf_capacitor_data_kvar_rating_c, 0

Model Build Workbooks

The core model preprocessor configuration files are maintained and generated from the two model build workbooks, the NMS_System_Distribution_Model workbook and the Oracle Utilities Network Management System Power Engineering Woorkbook.

System Distribution Model Workbook

The modeling workbook contains many tabs to map a customer’s GIS data to the standard SPL OMS model. These tabs include device-mapping tabs, attribute-mapping tabs, and a "Tools" tab containing tools used to automate model and preprocessor configuration. Mapping is accomplished by assigning each GIS object a SPL OMS class based on specified criteria. Attributes associated with the GIS objects mapped are then also mapped to SPL OMS attributes in their appropriate attributes tab. The mapping information entered into these tabs will be used to generate a set of customer specific model and preprocessor configuration files.

The System Distribution Model workbook maintains and generates the following model configuration files:

	
•

	

Classes File

	
•

	

Inheritance File

	
•

	

Attribute Schema File

	
•

	

Attribute Configuration File

	
•

	

State Mapping File

	
•

	

Voltage Symbology File

	
•

	

Rank Configuration File

	
•

	

Hide/Display File

	
•

	

Declutter File

	
•

	

Electrical Layer Objects File

	
•

	

Landbase Layer Objects File

Model Configuration Files Generated by the Workbook

The modeling workbook is a tool used to generate model and preprocessor configuration files. Below is a list of all the files generated by the workbook with a brief description. Notice that <project> indicates that the files generated pertain to a specific project configuration.

	

File

	

Description

	

<project>_classes.dat

	

Contains all SPL OMS classes being used in the current workbook mapping.

	

<project>_inheritance.dat

	

Contains the inheritance structure of all classes being used in the current workbook mapping. This structure may include SPL required inheritance definitions.

	

<project>_schema_attributes.sql

	

Contains the schema definition for all attributes in the SPL OMS Model. Along with the schema definition, a view is also defined for each database table created. The view is created based on the display names provided in the attribute tabs.

	

<project>_attributes.sql

	

Contains the attribute mapping specified in each of the attribute tabs. This mapping is used during model build time to insert the specified attribute mapping into the appropriate SPL model tables.

	

<project>_ssm.sql

	

Contains a symbol to device mapping based on the nominal and current states of the device.

	

<project>_devices.cel

	

Contains the actual mapping criteria definition for all electrical devices. The criteria are derived from the information in the mapping tabs.

	

<project>_landbase.cel

	

Contains the actual mapping criteria definition for all landbase objects.

Mapping Tabs

There are ten object-mapping tabs in the workbook. These tabs are used to specify the GIS object and the exact criteria for a GIS object to map to the selected SPL OMS class. Below is a list of all the mapping tabs with a brief description.

	

Workbook Tab

	

Description

	

Core Nodes

	

This tab contains all SPL core nodes. These core nodes are used during CELL file generation. They will not be included in the classes and inheritance files.

	

Devices

	

Intended for the mapping definition/criteria of all electrical objects (Switches, Transformers and other operable devices).

	

Conductors

	

Intended for the mapping definition/criteria of all conductor objects.

	

Customer & Service

	

Intended for the mapping definition/criteria of all electrical service devices. Such as point of service, generators and meters.

	

Structures

	

Intended for the mapping of structure objects, such as manholes, poles and switchgear cabinets.

	

Landbase

	

Intended for mapping of all background parcel data.

	

Annotation

	

Used to map text objects from both the electrical and background layers to specific SPL classes.

	

Gas Devices

	

	

Gas Pipes

	

	

Gas Annotation

	

Mapping Syntax

To take advantage of the tools included in the workbook, the correct syntax must be used. The workbook is to be mapped using a simpler syntax than the CELL explosion language. When in doubt about specific syntax, you can always assume that if it conforms to the CELL explosion language, it will work for the workbook mapping.

Model Build Workbooks

The core model preprocessor configuration files are maintained and generated from the two model build workbooks, the NMS_System_Distribution_Model workbook and the Oracle Utilities Network Management System Power Engineering Woorkbook.

System Distribution Model Workbook

The modeling workbook contains many tabs to map a customer’s GIS data to the standard SPL OMS model. These tabs include device-mapping tabs, attribute-mapping tabs, and a "Tools" tab containing tools used to automate model and preprocessor configuration. Mapping is accomplished by assigning each GIS object a SPL OMS class based on specified criteria. Attributes associated with the GIS objects mapped are then also mapped to SPL OMS attributes in their appropriate attributes tab. The mapping information entered into these tabs will be used to generate a set of customer specific model and preprocessor configuration files.

The System Distribution Model workbook maintains and generates the following model configuration files:

	
•

	

Classes File

	
•

	

Inheritance File

	
•

	

Attribute Schema File

	
•

	

Attribute Configuration File

	
•

	

State Mapping File

	
•

	

Voltage Symbology File

	
•

	

Rank Configuration File

	
•

	

Hide/Display File

	
•

	

Declutter File

	
•

	

Electrical Layer Objects File

	
•

	

Landbase Layer Objects File

Model Configuration Files Generated by the Workbook

The modeling workbook is a tool used to generate model and preprocessor configuration files. Below is a list of all the files generated by the workbook with a brief description. Notice that <project> indicates that the files generated pertain to a specific project configuration.

	

File

	

Description

	

<project>_classes.dat

	

Contains all SPL OMS classes being used in the current workbook mapping.

	

<project>_inheritance.dat

	

Contains the inheritance structure of all classes being used in the current workbook mapping. This structure may include SPL required inheritance definitions.

	

<project>_schema_attributes.sql

	

Contains the schema definition for all attributes in the SPL OMS Model. Along with the schema definition, a view is also defined for each database table created. The view is created based on the display names provided in the attribute tabs.

	

<project>_attributes.sql

	

Contains the attribute mapping specified in each of the attribute tabs. This mapping is used during model build time to insert the specified attribute mapping into the appropriate SPL model tables.

	

<project>_ssm.sql

	

Contains a symbol to device mapping based on the nominal and current states of the device.

	

<project>_devices.cel

	

Contains the actual mapping criteria definition for all electrical devices. The criteria are derived from the information in the mapping tabs.

	

<project>_landbase.cel

	

Contains the actual mapping criteria definition for all landbase objects.

Mapping Tabs

There are ten object-mapping tabs in the workbook. These tabs are used to specify the GIS object and the exact criteria for a GIS object to map to the selected SPL OMS class. Below is a list of all the mapping tabs with a brief description.

	

Workbook Tab

	

Description

	

Core Nodes

	

This tab contains all SPL core nodes. These core nodes are used during CELL file generation. They will not be included in the classes and inheritance files.

	

Devices

	

Intended for the mapping definition/criteria of all electrical objects (Switches, Transformers and other operable devices).

	

Conductors

	

Intended for the mapping definition/criteria of all conductor objects.

	

Customer & Service

	

Intended for the mapping definition/criteria of all electrical service devices. Such as point of service, generators and meters.

	

Structures

	

Intended for the mapping of structure objects, such as manholes, poles and switchgear cabinets.

	

Landbase

	

Intended for mapping of all background parcel data.

	

Annotation

	

Used to map text objects from both the electrical and background layers to specific SPL classes.

	

Gas Devices

	

	

Gas Pipes

	

	

Gas Annotation

	

Mapping Syntax

To take advantage of the tools included in the workbook, the correct syntax must be used. The workbook is to be mapped using a simpler syntax than the CELL explosion language. When in doubt about specific syntax, you can always assume that if it conforms to the CELL explosion language, it will work for the workbook mapping.

Model Build Workbooks

The core model preprocessor configuration files are maintained and generated from the two model build workbooks, the NMS_System_Distribution_Model workbook and the Oracle Utilities Network Management System Power Engineering Woorkbook.

System Distribution Model Workbook

The modeling workbook contains many tabs to map a customer’s GIS data to the standard SPL OMS model. These tabs include device-mapping tabs, attribute-mapping tabs, and a "Tools" tab containing tools used to automate model and preprocessor configuration. Mapping is accomplished by assigning each GIS object a SPL OMS class based on specified criteria. Attributes associated with the GIS objects mapped are then also mapped to SPL OMS attributes in their appropriate attributes tab. The mapping information entered into these tabs will be used to generate a set of customer specific model and preprocessor configuration files.

The System Distribution Model workbook maintains and generates the following model configuration files:

	
•

	

Classes File

	
•

	

Inheritance File

	
•

	

Attribute Schema File

	
•

	

Attribute Configuration File

	
•

	

State Mapping File

	
•

	

Voltage Symbology File

	
•

	

Rank Configuration File

	
•

	

Hide/Display File

	
•

	

Declutter File

	
•

	

Electrical Layer Objects File

	
•

	

Landbase Layer Objects File

Model Configuration Files Generated by the Workbook

The modeling workbook is a tool used to generate model and preprocessor configuration files. Below is a list of all the files generated by the workbook with a brief description. Notice that <project> indicates that the files generated pertain to a specific project configuration.

	

File

	

Description

	

<project>_classes.dat

	

Contains all SPL OMS classes being used in the current workbook mapping.

	

<project>_inheritance.dat

	

Contains the inheritance structure of all classes being used in the current workbook mapping. This structure may include SPL required inheritance definitions.

	

<project>_schema_attributes.sql

	

Contains the schema definition for all attributes in the SPL OMS Model. Along with the schema definition, a view is also defined for each database table created. The view is created based on the display names provided in the attribute tabs.

	

<project>_attributes.sql

	

Contains the attribute mapping specified in each of the attribute tabs. This mapping is used during model build time to insert the specified attribute mapping into the appropriate SPL model tables.

	

<project>_ssm.sql

	

Contains a symbol to device mapping based on the nominal and current states of the device.

	

<project>_devices.cel

	

Contains the actual mapping criteria definition for all electrical devices. The criteria are derived from the information in the mapping tabs.

	

<project>_landbase.cel

	

Contains the actual mapping criteria definition for all landbase objects.

Mapping Tabs

There are ten object-mapping tabs in the workbook. These tabs are used to specify the GIS object and the exact criteria for a GIS object to map to the selected SPL OMS class. Below is a list of all the mapping tabs with a brief description.

	

Workbook Tab

	

Description

	

Core Nodes

	

This tab contains all SPL core nodes. These core nodes are used during CELL file generation. They will not be included in the classes and inheritance files.

	

Devices

	

Intended for the mapping definition/criteria of all electrical objects (Switches, Transformers and other operable devices).

	

Conductors

	

Intended for the mapping definition/criteria of all conductor objects.

	

Customer & Service

	

Intended for the mapping definition/criteria of all electrical service devices. Such as point of service, generators and meters.

	

Structures

	

Intended for the mapping of structure objects, such as manholes, poles and switchgear cabinets.

	

Landbase

	

Intended for mapping of all background parcel data.

	

Annotation

	

Used to map text objects from both the electrical and background layers to specific SPL classes.

	

Gas Devices

	

	

Gas Pipes

	

	

Gas Annotation

	

Mapping Syntax

To take advantage of the tools included in the workbook, the correct syntax must be used. The workbook is to be mapped using a simpler syntax than the CELL explosion language. When in doubt about specific syntax, you can always assume that if it conforms to the CELL explosion language, it will work for the workbook mapping.

Model Build Workbooks

The core model preprocessor configuration files are maintained and generated from the two model build workbooks, the NMS_System_Distribution_Model workbook and the Oracle Utilities Network Management System Power Engineering Woorkbook.

System Distribution Model Workbook

The modeling workbook contains many tabs to map a customer’s GIS data to the standard SPL OMS model. These tabs include device-mapping tabs, attribute-mapping tabs, and a "Tools" tab containing tools used to automate model and preprocessor configuration. Mapping is accomplished by assigning each GIS object a SPL OMS class based on specified criteria. Attributes associated with the GIS objects mapped are then also mapped to SPL OMS attributes in their appropriate attributes tab. The mapping information entered into these tabs will be used to generate a set of customer specific model and preprocessor configuration files.

The System Distribution Model workbook maintains and generates the following model configuration files:

	
•

	

Classes File

	
•

	

Inheritance File

	
•

	

Attribute Schema File

	
•

	

Attribute Configuration File

	
•

	

State Mapping File

	
•

	

Voltage Symbology File

	
•

	

Rank Configuration File

	
•

	

Hide/Display File

	
•

	

Declutter File

	
•

	

Electrical Layer Objects File

	
•

	

Landbase Layer Objects File

Model Configuration Files Generated by the Workbook

The modeling workbook is a tool used to generate model and preprocessor configuration files. Below is a list of all the files generated by the workbook with a brief description. Notice that <project> indicates that the files generated pertain to a specific project configuration.

	

File

	

Description

	

<project>_classes.dat

	

Contains all SPL OMS classes being used in the current workbook mapping.

	

<project>_inheritance.dat

	

Contains the inheritance structure of all classes being used in the current workbook mapping. This structure may include SPL required inheritance definitions.

	

<project>_schema_attributes.sql

	

Contains the schema definition for all attributes in the SPL OMS Model. Along with the schema definition, a view is also defined for each database table created. The view is created based on the display names provided in the attribute tabs.

	

<project>_attributes.sql

	

Contains the attribute mapping specified in each of the attribute tabs. This mapping is used during model build time to insert the specified attribute mapping into the appropriate SPL model tables.

	

<project>_ssm.sql

	

Contains a symbol to device mapping based on the nominal and current states of the device.

	

<project>_devices.cel

	

Contains the actual mapping criteria definition for all electrical devices. The criteria are derived from the information in the mapping tabs.

	

<project>_landbase.cel

	

Contains the actual mapping criteria definition for all landbase objects.

Mapping Tabs

There are ten object-mapping tabs in the workbook. These tabs are used to specify the GIS object and the exact criteria for a GIS object to map to the selected SPL OMS class. Below is a list of all the mapping tabs with a brief description.

	

Workbook Tab

	

Description

	

Core Nodes

	

This tab contains all SPL core nodes. These core nodes are used during CELL file generation. They will not be included in the classes and inheritance files.

	

Devices

	

Intended for the mapping definition/criteria of all electrical objects (Switches, Transformers and other operable devices).

	

Conductors

	

Intended for the mapping definition/criteria of all conductor objects.

	

Customer & Service

	

Intended for the mapping definition/criteria of all electrical service devices. Such as point of service, generators and meters.

	

Structures

	

Intended for the mapping of structure objects, such as manholes, poles and switchgear cabinets.

	

Landbase

	

Intended for mapping of all background parcel data.

	

Annotation

	

Used to map text objects from both the electrical and background layers to specific SPL classes.

	

Gas Devices

	

	

Gas Pipes

	

	

Gas Annotation

	

Mapping Syntax

To take advantage of the tools included in the workbook, the correct syntax must be used. The workbook is to be mapped using a simpler syntax than the CELL explosion language. When in doubt about specific syntax, you can always assume that if it conforms to the CELL explosion language, it will work for the workbook mapping.

Model Build Workbooks

The core model preprocessor configuration files are maintained and generated from the two model build workbooks, the NMS_System_Distribution_Model workbook and the Oracle Utilities Network Management System Power Engineering Woorkbook.

System Distribution Model Workbook

The modeling workbook contains many tabs to map a customer’s GIS data to the standard SPL OMS model. These tabs include device-mapping tabs, attribute-mapping tabs, and a "Tools" tab containing tools used to automate model and preprocessor configuration. Mapping is accomplished by assigning each GIS object a SPL OMS class based on specified criteria. Attributes associated with the GIS objects mapped are then also mapped to SPL OMS attributes in their appropriate attributes tab. The mapping information entered into these tabs will be used to generate a set of customer specific model and preprocessor configuration files.

The System Distribution Model workbook maintains and generates the following model configuration files:

	
•

	

Classes File

	
•

	

Inheritance File

	
•

	

Attribute Schema File

	
•

	

Attribute Configuration File

	
•

	

State Mapping File

	
•

	

Voltage Symbology File

	
•

	

Rank Configuration File

	
•

	

Hide/Display File

	
•

	

Declutter File

	
•

	

Electrical Layer Objects File

	
•

	

Landbase Layer Objects File

Model Configuration Files Generated by the Workbook

The modeling workbook is a tool used to generate model and preprocessor configuration files. Below is a list of all the files generated by the workbook with a brief description. Notice that <project> indicates that the files generated pertain to a specific project configuration.

	

File

	

Description

	

<project>_classes.dat

	

Contains all SPL OMS classes being used in the current workbook mapping.

	

<project>_inheritance.dat

	

Contains the inheritance structure of all classes being used in the current workbook mapping. This structure may include SPL required inheritance definitions.

	

<project>_schema_attributes.sql

	

Contains the schema definition for all attributes in the SPL OMS Model. Along with the schema definition, a view is also defined for each database table created. The view is created based on the display names provided in the attribute tabs.

	

<project>_attributes.sql

	

Contains the attribute mapping specified in each of the attribute tabs. This mapping is used during model build time to insert the specified attribute mapping into the appropriate SPL model tables.

	

<project>_ssm.sql

	

Contains a symbol to device mapping based on the nominal and current states of the device.

	

<project>_devices.cel

	

Contains the actual mapping criteria definition for all electrical devices. The criteria are derived from the information in the mapping tabs.

	

<project>_landbase.cel

	

Contains the actual mapping criteria definition for all landbase objects.

Mapping Tabs

There are ten object-mapping tabs in the workbook. These tabs are used to specify the GIS object and the exact criteria for a GIS object to map to the selected SPL OMS class. Below is a list of all the mapping tabs with a brief description.

	

Workbook Tab

	

Description

	

Core Nodes

	

This tab contains all SPL core nodes. These core nodes are used during CELL file generation. They will not be included in the classes and inheritance files.

	

Devices

	

Intended for the mapping definition/criteria of all electrical objects (Switches, Transformers and other operable devices).

	

Conductors

	

Intended for the mapping definition/criteria of all conductor objects.

	

Customer & Service

	

Intended for the mapping definition/criteria of all electrical service devices. Such as point of service, generators and meters.

	

Structures

	

Intended for the mapping of structure objects, such as manholes, poles and switchgear cabinets.

	

Landbase

	

Intended for mapping of all background parcel data.

	

Annotation

	

Used to map text objects from both the electrical and background layers to specific SPL classes.

	

Gas Devices

	

	

Gas Pipes

	

	

Gas Annotation

	

Mapping Syntax

To take advantage of the tools included in the workbook, the correct syntax must be used. The workbook is to be mapped using a simpler syntax than the CELL explosion language. When in doubt about specific syntax, you can always assume that if it conforms to the CELL explosion language, it will work for the workbook mapping.

Class Mapping Columns and Syntax

	

Column

	

Description

	

Parent Class

	

This is a locked column and should only be modified by SPL model engineers. This column is used to define the inheritance lattice. The class in this column defines the parent for the child found in the next column "Class Name". Multiple parents can be defined for a single class using a comma "," to separate the class names.

	

Class Name

	

This is a locked column and should only be modified by SPL model engineers. This column indicates the name of the class.

	

Attribute Table

	

This is a locked column and should only be modified by SPL model engineers. This column indicates the table in which the attributes associated with this class will be stored.

	

Class Number

	

This is a locked column and should only be modified by SPL model engineers. The number in this column indicates the class number of the SPL class.

	

Index

	

This column is used to specify the index to be used during CELL file generation. The syntax for this column is CELL explosion language syntax. The CELL file generated will always use attribute index (ATTR_INDEX) to specify an index for a specific object using the data found in this column. Example: [ATT_TransformerOH.OBJECTID]

	

Phase

	

The criteria specified in this column will be used during CELL file generation to specify a phase value to the device being processed. If this column is left blank, ABC phase will be used. Example: [ATT_TransformerOH.PHASES]

	

Nominal Status

	

The criteria specified in this column will be used during CELL file generation to specify the nominal status of the device as it is being processed. If this column is left blank, CLOSED will be used. Example:

[ATT_TransformerOH.NORMALLSTATE]

	

NCG

	

The criteria in this column will be used during CELL file generation to indicate the network control group of the device being processed. Example:

[%feeder_ncg.[ATT_TransformerOH.[CIRCUITID]]

	

From_Node

	

The criteria in this column will be used during CELL file generation to indicate the topological from connection. Example:

[OBJ_PORT_A]

	

To_Node

	

The criteria in this column will be used during CELL file generation to indicate the topological to connection. Example:

[OBJ_PORT_B]

	

Physical Properties

	

The criteria in this column will be used during CELL file generation to specify the special characteristics of this device such as lateral or backbone. Example: [%phys_prop.[ATT_TransformerOH.PROPERTIES]]

	

Rank

	

The criteria in this column will be used during CELL file generation to specify the rank to be used for hide display configuration. Example:

[%rank_bit_mask.[OBJ_CLASS]]

	

Capable Phases

	

The value in this pull down menu will be used during state mapping generation. It is used to indicate the possible phases a device can have. This information is important when generating the permutations needed for symbol mapping.

	

Gang Operated

	

The value in this pull down menu will be used during the generation of the inheritance lattice. If gang operated is selected, the class it is set for will contain an additional parent of "gang_operated".

	

Outage Stop Class

	

This value is not currently being used.

	

Symbology Enumerator

	

The criteria in this column will be used during CELL file generation to specify the symbology ID for the device. Example:

1050[%phs_num.[ATT_TransfomerOH.PHASES]]

	

Coordinate Definition

	

The criteria in this column will be used during CELL file generation. The CELL file generated will always use relative coordinates. If absolute coordinates are require, then the ABSOLUTE_COORDS, 1 key word must be specified. If this column is not populated then the following will be used:

COORD1, 0, 0

COORD2, 0, 10

Example:

ABSOLUTE_COORDS, 1

COORD1, [ATT_X1], [ATT_Y2]

COORD2, [ATT_X2], [ATT_Y2]

	

Add Text Mapping

	

The values in this column should only be added through the text- mapping window. The window starts by clicking on the column button ("Add Text Mapping"). Specify the row and column for the class the mapping is intended for. All information in the form is to be entered using CELL file syntax. The information entered for the text class mapped will be saved to the tab "Text Mapping". Multiple text classes can be added for each class. When a text class is mapped and saved from the text-mapping window, the text class used will be populated in the "Add Text Mapping" column.

	

Alias Definition

	

The criteria in this column will be used during CELL file generation. Example:

SW-[%sw_type.[ATT_Switch.FACILITY_TYPE]]

	

Display Name

	

The value in this column must be unique to the workbook and must not contain any spaces. This value is used as the display name for the control tool title.

	

GIS Object

	

The criteria in this column indicate the GIS object or feature class that will be used during the mapping in the CELL file (Example: MATT0, [ATT_TYPE], SWITCH). Multiple objects or GIS features can be separated by the "|" (OR) identifier. Example:

SubstationDevices|CircuitBreaker

	

GIS Attribute that qualifies extraction

	

The criteria in this column indicate the GIS attribute to test on during the mapping stage. Multiple attributes can be used. Multiple attributes will be "AND" ed together. To indicate that multiple attributes are to be tested, a new line must separate the attributes. The OR condition cannot be used. Example: (AND)

SubstationDevices.SUBTYPE

SubstationDevices.SCADACONTROLLED

	

GIS Attribute criteria for extraction

	

The criteria in this column indicate the GIS attribute value that must be found for the expression to be true. Multiple values can be listed in an OR condition separated by the "|" character. For an AND condition, the values must be separated using a new line. The amount of new lines must match the number of new lines in the previous column.

Example:

CircuitBreaker

SCADA Controlled

	

Comments

	

This column is intended for any additional comments desired to better inform the customer or model engineer of what is desired.

	

MP File Object

	

This column is not required. It is intended to provide more information about the object definition as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide more information about the attribute names as found in the MP file.

	

Special Processing

	

This column is used to indicate that special processing exists for a particular device mapping. The "Special Processing" tab should be populated with the special CELL file criteria to be added to the mapping. The "Display Name" column is used to indicate the link to the "Special Processing" tab.

	

Comments

	

This column is intended for any additional comments desired to better inform the customer or model engineer of what is desired.

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

Attribute Mapping Columns and Syntax

	

Column

	

Description

	

Attribute

	

The SPL OMS model attributes being mapped. This column is locked and should not be modified.

	

Example Value

	

Example information, where appropriated. This column is locked.

	

Data Type

	

The data type of the attribute being mapped. This column is locked and should only be changed by an SPL model engineer.

	

Required / Recommended

	

Indicates if this attribute is required or recommended and indicates by which module the attribute is required or recommended. The color is used to indicate if it is required or recommended.

	

Field Order

	

Not currently used.

	

Display Name

	

Specifies the name of the attribute, as it will be displayed in the Attribute Viewer. If one display name is set, it assumes all attributes will have a display name and uses the SPL attribute name if no display name is specified. Only attributes containing values will be displayed in the Attribute Viewer Tool.

	

GIS Class

	

Indicates the name of the GIS object or feature.

	

GIS Attribute

	

Indicates the name of the GIS attribute. This column is critical to correct attribute mapping in the CELL file. The prefix of ATT_ is not required for script style preprocessor as long as the "Use ATT_ Prefix" is selected in the "Tools" tab. Complex mapping should be done using lookups and/or conditional statements in CELL file syntax.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

	

MP File Objects

	

This column is not required. It is intended to provide additional information about the object as found in the MP file.

	

MP Qualifying Attributes

	

This column is not required. It is intended to provide additional information about the attribute as found in the MP file.

	

Special Processing

	

This column is not required.

	

Comment

	

Used to specify additional information that may be useful to the modeler or customer.

Text Mapping Window

The text-mapping window is to be used for text mapping when the text to be displayed is not included in the data as a separate object. This is true for most attribute based annotation GIS systems. The screen capture below is an example of how a text object can be created for a device class based on the value of an attribute.

[image:]

Generation Tools

[image:]

Code Lookups

All code lookups to be used in the mapping of the workbook must be specified in their appropriate tab in the workbook. This information is to be entered by the SPL model engineer. Lookups can be database lookups by specifying them as db code lookups in the appropriate CELL file syntax.

	

Electrical Code Lookups

	

Contains lookups to be included in the Electrical Layer Objects Cell File.

	

Landbase Code Lookups

	

Contains lookups to be included in the Landbase Layer Objects Cell File.

	

Gas Code Lookups

	

Contains lookups to be included in the Gas Layer Objects Cell File.

Code Lookups Example

[image:]

Special Processing Tabs

The Special Processing tabs are arranged according to the cell file they should be included in. A model engineer can use these tabs to add any special CELL file enhancement that cannot be fully generated by the workbook. This includes the addition of nodes such as FBD, FID, SRC, and SND nodes. There are two hooks for each CELL file block generated. One is at the device level, before the end of the first object’s END_LINE or END_POINT). The second is before the cellblock is over, before the END_CELL.

To specify that special processing is required, populate the Special Processing tab in the appropriate class-mapping tab with the display name of the class that requires special processing. The special processing to be used must be specified in a single cell at the appropriate level in the appropriate tab. The level at which this is added is indicated by the name of the special processing section. An example is provided below:

	

Electrical Special Processing

	

Special processing for all electrical objects found in sheets, "Devices", "Customer & Service", "Structures", "Annotation" and "Conductors".

	

Landbase Code Lookups

	

Special processing for all land base classes found in sheet "Landbase".

	

Gas Special Processing

	

Special processing for all gas mapping sheets.

Special Processing Example

[image:]

PowerFlow Engineering Data Workbook

The PowerFlow Engineering Data Workbook is an Excel spreadsheet used to gather and manage data required by the PowerFlow extensions and other DMS applications that are not generally available within the GIS and Oracle Utilities Network Management System. The Power Flow Engineering Data Workbook maintains data required to run the Power Flow Extensions, Suggested Switching, Optimal Power Flow, Feeder Load Management, and Fault Location Analysis applications.

The Power Flow Engineering Data Workbook defines the required data types, the data tables, and the table schemas. An MS Excel spreadsheet is used for each data type and its corresponding data table. Tabs (worksheets) in the Excel spreadsheet contain a description of the data table and the data table columns. Each data worksheet also contains one or more user-editable tables the user fills for each device type in the data model. The user simply edits the enterable table, adding a new row for each unique device type. For each completed worksheet, the user generates an SQL formatted ASCII text file from a push button on the TOOLS worksheet. The SQL formatted ASCII text files are used to import the Power Flow Engineering data into the Oracle Utilities Network Management System data model.

The Power Engineering workbook maintains and generates the following PowerFlow configuration tabs:

	
•

	

Sources

	
•

	

Line Catalog

	
•

	

Line Limits

	
•

	

Switch - Fuse Limits

	
•

	

Power Transformer Impedance

	
•

	

Power Transformer Taps

	
•

	

Power Transformer Limits

	
•

	

Customer Load

	
•

	

Capacitor Banks

	
•

	

Customer Hourly Load Profiles

	
•

	

Distributed Energy Resources

Power Engineering Catalog Data SQLs to be Generated

The Power Flow Engineering Data Workbook will generate a set of customer catalog data SQLs, and those files should be installed in the $CES_DATA_FILES directory (~/sql).

	

Data file

	

Description

	

~/sql/
<project>_powerflowengineeringdata.xlsm

	

This is the latest checked-in version of the
Power Flow Engineering Data workbook,
to be used for generating the customer
catalog data sql files.

	

~/sql/<project>_pf_sources.sql

	

Contains data pertaining to equivalent
source models for the source nodes in the
network.

	

~/sql/<project>_pf_line_catalog.sql

	

Impedance details of lines.

	

~/sql/<project>_pf_line_limits.sql

	

Line limit details.

	

~/sql/<project>_pf_switches.sql

	

Contains nominal ampacity data for
switches.

	

~/sql/<project>_pf_load_data.sql

	

Contains electrical characteristics of
customer loads.

	

~/sql/<project>_pf_load_profile_feeder.sql

	

Contains profiles for a full set of feeders.
This data is only used if load profiles are
configured to use feeder load profiles.
THIS IS NOT USED AT THIS TIME.

	

~/sql/<project>_pf_xfmrtypes.sql

	

Contains electrical characteristics data for
power, step and auto transformers

	

~/sql/<project>_pf_xfmrtaps.sql

	

Contains electrical characteristics data for
power, step and auto transformers

	

~/sql/<project>_pf_xfmrlimits.sql

	

Contains multiple ratings/limits for branch
flows based on seasons for transformers

	

~/sql/<project>_pf_capacitors.sql

	

Contains electrical characteristics of
capacitors

	

~/sql/<project>_pf_tempswitchcap.sql

	

Contains electrical characteristics of
temperature-regulated capacitors

	

~/sql/<project>_pf_hourly_load_profiles.sql

	

Contains load profiles for load classes (e.g.,
res, comm, ind). This data is only used if
load profiles are configured to use load
class profiles.

	

~/sql/<project>_pf_dist_gen_data.sql

	

Contains electrical characteristics of
distributed generation devices.

Model and Power Engineering Workbook Locations

An example of these workbooks is included in the Oracle Utilities Network Management System Oracle Power and Light example model and configuration included with every release package. You can find these two workbooks in the $CES_HOME/OPAL/Workbooks directory of the Oracle Utilities Network Management System system.

PowerFlow Engineering Data Workbook

The PowerFlow Engineering Data Workbook is an Excel spreadsheet used to gather and manage data required by the PowerFlow extensions and other DMS applications that are not generally available within the GIS and Oracle Utilities Network Management System. The Power Flow Engineering Data Workbook maintains data required to run the Power Flow Extensions, Suggested Switching, Optimal Power Flow, Feeder Load Management, and Fault Location Analysis applications.

The Power Flow Engineering Data Workbook defines the required data types, the data tables, and the table schemas. An MS Excel spreadsheet is used for each data type and its corresponding data table. Tabs (worksheets) in the Excel spreadsheet contain a description of the data table and the data table columns. Each data worksheet also contains one or more user-editable tables the user fills for each device type in the data model. The user simply edits the enterable table, adding a new row for each unique device type. For each completed worksheet, the user generates an SQL formatted ASCII text file from a push button on the TOOLS worksheet. The SQL formatted ASCII text files are used to import the Power Flow Engineering data into the Oracle Utilities Network Management System data model.

The Power Engineering workbook maintains and generates the following PowerFlow configuration tabs:

	
•

	

Sources

	
•

	

Line Catalog

	
•

	

Line Limits

	
•

	

Switch - Fuse Limits

	
•

	

Power Transformer Impedance

	
•

	

Power Transformer Taps

	
•

	

Power Transformer Limits

	
•

	

Customer Load

	
•

	

Capacitor Banks

	
•

	

Customer Hourly Load Profiles

	
•

	

Distributed Energy Resources

Power Engineering Catalog Data SQLs to be Generated

The Power Flow Engineering Data Workbook will generate a set of customer catalog data SQLs, and those files should be installed in the $CES_DATA_FILES directory (~/sql).

	

Data file

	

Description

	

~/sql/
<project>_powerflowengineeringdata.xlsm

	

This is the latest checked-in version of the
Power Flow Engineering Data workbook,
to be used for generating the customer
catalog data sql files.

	

~/sql/<project>_pf_sources.sql

	

Contains data pertaining to equivalent
source models for the source nodes in the
network.

	

~/sql/<project>_pf_line_catalog.sql

	

Impedance details of lines.

	

~/sql/<project>_pf_line_limits.sql

	

Line limit details.

	

~/sql/<project>_pf_switches.sql

	

Contains nominal ampacity data for
switches.

	

~/sql/<project>_pf_load_data.sql

	

Contains electrical characteristics of
customer loads.

	

~/sql/<project>_pf_load_profile_feeder.sql

	

Contains profiles for a full set of feeders.
This data is only used if load profiles are
configured to use feeder load profiles.
THIS IS NOT USED AT THIS TIME.

	

~/sql/<project>_pf_xfmrtypes.sql

	

Contains electrical characteristics data for
power, step and auto transformers

	

~/sql/<project>_pf_xfmrtaps.sql

	

Contains electrical characteristics data for
power, step and auto transformers

	

~/sql/<project>_pf_xfmrlimits.sql

	

Contains multiple ratings/limits for branch
flows based on seasons for transformers

	

~/sql/<project>_pf_capacitors.sql

	

Contains electrical characteristics of
capacitors

	

~/sql/<project>_pf_tempswitchcap.sql

	

Contains electrical characteristics of
temperature-regulated capacitors

	

~/sql/<project>_pf_hourly_load_profiles.sql

	

Contains load profiles for load classes (e.g.,
res, comm, ind). This data is only used if
load profiles are configured to use load
class profiles.

	

~/sql/<project>_pf_dist_gen_data.sql

	

Contains electrical characteristics of
distributed generation devices.

Model and Power Engineering Workbook Locations

An example of these workbooks is included in the Oracle Utilities Network Management System Oracle Power and Light example model and configuration included with every release package. You can find these two workbooks in the $CES_HOME/OPAL/Workbooks directory of the Oracle Utilities Network Management System system.

PowerFlow Engineering Data Workbook

The PowerFlow Engineering Data Workbook is an Excel spreadsheet used to gather and manage data required by the PowerFlow extensions and other DMS applications that are not generally available within the GIS and Oracle Utilities Network Management System. The Power Flow Engineering Data Workbook maintains data required to run the Power Flow Extensions, Suggested Switching, Optimal Power Flow, Feeder Load Management, and Fault Location Analysis applications.

The Power Flow Engineering Data Workbook defines the required data types, the data tables, and the table schemas. An MS Excel spreadsheet is used for each data type and its corresponding data table. Tabs (worksheets) in the Excel spreadsheet contain a description of the data table and the data table columns. Each data worksheet also contains one or more user-editable tables the user fills for each device type in the data model. The user simply edits the enterable table, adding a new row for each unique device type. For each completed worksheet, the user generates an SQL formatted ASCII text file from a push button on the TOOLS worksheet. The SQL formatted ASCII text files are used to import the Power Flow Engineering data into the Oracle Utilities Network Management System data model.

The Power Engineering workbook maintains and generates the following PowerFlow configuration tabs:

	
•

	

Sources

	
•

	

Line Catalog

	
•

	

Line Limits

	
•

	

Switch - Fuse Limits

	
•

	

Power Transformer Impedance

	
•

	

Power Transformer Taps

	
•

	

Power Transformer Limits

	
•

	

Customer Load

	
•

	

Capacitor Banks

	
•

	

Customer Hourly Load Profiles

	
•

	

Distributed Energy Resources

Power Engineering Catalog Data SQLs to be Generated

The Power Flow Engineering Data Workbook will generate a set of customer catalog data SQLs, and those files should be installed in the $CES_DATA_FILES directory (~/sql).

	

Data file

	

Description

	

~/sql/
<project>_powerflowengineeringdata.xlsm

	

This is the latest checked-in version of the
Power Flow Engineering Data workbook,
to be used for generating the customer
catalog data sql files.

	

~/sql/<project>_pf_sources.sql

	

Contains data pertaining to equivalent
source models for the source nodes in the
network.

	

~/sql/<project>_pf_line_catalog.sql

	

Impedance details of lines.

	

~/sql/<project>_pf_line_limits.sql

	

Line limit details.

	

~/sql/<project>_pf_switches.sql

	

Contains nominal ampacity data for
switches.

	

~/sql/<project>_pf_load_data.sql

	

Contains electrical characteristics of
customer loads.

	

~/sql/<project>_pf_load_profile_feeder.sql

	

Contains profiles for a full set of feeders.
This data is only used if load profiles are
configured to use feeder load profiles.
THIS IS NOT USED AT THIS TIME.

	

~/sql/<project>_pf_xfmrtypes.sql

	

Contains electrical characteristics data for
power, step and auto transformers

	

~/sql/<project>_pf_xfmrtaps.sql

	

Contains electrical characteristics data for
power, step and auto transformers

	

~/sql/<project>_pf_xfmrlimits.sql

	

Contains multiple ratings/limits for branch
flows based on seasons for transformers

	

~/sql/<project>_pf_capacitors.sql

	

Contains electrical characteristics of
capacitors

	

~/sql/<project>_pf_tempswitchcap.sql

	

Contains electrical characteristics of
temperature-regulated capacitors

	

~/sql/<project>_pf_hourly_load_profiles.sql

	

Contains load profiles for load classes (e.g.,
res, comm, ind). This data is only used if
load profiles are configured to use load
class profiles.

	

~/sql/<project>_pf_dist_gen_data.sql

	

Contains electrical characteristics of
distributed generation devices.

Model and Power Engineering Workbook Locations

An example of these workbooks is included in the Oracle Utilities Network Management System Oracle Power and Light example model and configuration included with every release package. You can find these two workbooks in the $CES_HOME/OPAL/Workbooks directory of the Oracle Utilities Network Management System system.

Model Manipulation Applications and Scripts

After a customer has built a model, there may be times when certain scripts or applications may need to be run to clean up errors that have been introduced into the model or to remove obsolete devices or maps. There are several scripts and applications that exist to do this model manipulation. These scripts and applications are described below.

DBCleanup

Most customers should run the DBCleanup application periodically. It examines the modeling database tables and looks for duplicate active rows, orphaned objects, and inconsistencies in the ALTERNATE_VIEWS table. If any of these problems are discovered, the application will attempt to fix the data so that it is consistent with the rest of the database tables.

ces_delete_map.ces

The ces_delete_map.ces script allows the user to remove an obsolete map from the model. It creates a patch that is processed by MBService that will deactivate the map itself and all devices contained in it. This script should be used sparingly.

ces_delete_object.ces

The ces_delete_object.ces script allows the user to deactivate all instances of a single, specified device in all the maps in which it appears. It creates a patch that is processed by MBService to remove all the instances of the device.

ces_delete_branch_obj.ces

The ces_delete_branch_obj.ces script also allows the user to deactivate all instances of a single, specified device from all the maps in which it appears. However, this script directly modifies the modeling database tables, potentially leaving the services in a state that is inconsistent with the current information in the database. After this script is used, either all services should be re-started or MBService should be re-started and then all the maps involved with the deleted object should be re-built. After MBService re-builds the maps, it will send out notifications to the other services to bring them all into sync.

ces_delete_patch.ces

The ces_delete_patch.ces script allows the user to delete a single patch or a range of patches that exist in the database. The script directly modifies the modeling database tables, potentially leaving the services in a state that is inconsistent with the current information in the database. After this script is used, either all services should be re-started or MBService should be re-started and then all the maps involved with the deleted patches should be re-built. After MBService re-builds the maps, it will send out notifications to the other services to bring them all into sync.

mb_purge.ces

The mb_purge.ces script can be used to reduce the size of the modeling tables in the database. It will remove old, inactive rows as specified by the user.

AuditLog

The AuditLog application works with the scripts and applications defined above to keep a persistent record in the database of the data manipulation activities that have been going on when a customer uses any of these scripts or applications. The information is stored in the MODEL_AUDIT_LOG database table and can be useful when trying to help support a customer with corrupted data by helping to provide a better scenario of the activities that might reproduce the problem.

Schematics

Oracle Utilities Network Management System- Schematics can automatically generate orthogonal schematic overviews of the nominal network.

Model Requirements for Schematics

In order to use Oracle Utilities Network Management System Schematics, the following is required of the data model:

	
•

	

All substations must have the same partition class.

	
•

	

The substation partition class must only be used by substations.

	
•

	

All boundaries between feeders and substations are designated with a distinct class of devices.

Schematic Limitations

Since Oracle Utilities Network Management System Schematics uses a splayed-tree representation of the nominal network, it is necessarily geared towards radial networks and will have difficulty representing nominally looped, parallel or meshed areas. Oracle Utilities Network Management System Schematics is also geared towards simple network objects (i.e. a switch) and cannot keep related devices in close proximity (i.e., the internals of a switching cabinet).

Configuring Schematics

	
•

	

All schematic configuration is controlled via command-line options which are passed to the schematic-generator, schematica. The script that contains the configuration is normally called <project_name>_create_schematics.ces

	
•

	

The script must perform these three actions:

	
•

	

Remove any previous schematic import files.

	
•

	

Call schematica with all of the configured options.

	
•

	

Process all generated import files.

The following table describes all of the command line options.

	

Command Line Option

	

Description

	

-mapPrefix <prefix>

	

Prepend all generated schematic maps with this prefix. Required.

	

-ptncls <#>

	

Partition class to use for all generated schematics. Required.

	

-validFeederStartClass <list of classes>

	

List of classes that designate the start of a feeder. Required.

	

-addStop <list of classes>

	

Include these classes as well as those specified via -stop

	

-balanceSubstations

	

Shift feeders around a substation until there are similar NUMBERS on each valid side.

	

-boundingBoxCls <class name>

	

Create a box of this class to indicate the substation- overviews extents. If unset, the box is not drawn.

	

-boundingBoxLabelCls <class name>

	

Create a label of this class, with the substation’s name. Default is branch.

	

-branchWidth <dist>

	

Distance between two network branches that share a common upstream port. (see Figure 1 below)

	

-camelHumpHeight

	

Relative height (in terms of tier-height) of conductor-crossover bumps. Value between 1 and 0. (See Figure 4 below)

	

-camelHumpWidth

	

Relative width (in terms of branchWidth) of conductor-crossover bumps. Value between 1 and 0.

	

-classesToLabel <list of classes>

	

List of classes for which the schematic-generator should create and place annotation.

	

-connectionClass <class name>

	

Device class to use when creating a branch to span two or more non-conductor devices. (Must be a non-electrical branch)

	

-coordSystem <#>

	

The coordinate system the schematic generator will assign all schematics. Should not be an existing value. Defaults to the current maximum coord_system + 1

	

-db <DBService prefix>

	

Force the schematic-generator to use the DBService that has the specified prefix (i.e. -db MB will use MBDBService)

	

-dch

	

(Disable Camel-humps) Don’t create camel-humps where conductors cross

	

-defaultConductorSymbology <valid symbol class>

	

Use this symbol class when attempting to write out any conductor that has a symbol class of 0.

	

-defaultFeederDirection <north|south|east|west>

	

If the schematic-generator is unable to determine the direction for a feeder, it will use this value. No default. If this option is NOT specified, the schematic-generator will ignore any feeder for which it can not determine a direction.

	

-deviceGaps <class name> <scale factor>

	

Scales all diagrams of the specified classes by the specified amounts

	

-deviceScaling <class name> <scale> <offset>

	

Scale all diagrams of the specified classes as well as shift them along their parent feeder’s axis. Default scaling is 1.0, default offset is 0.0

	

-deviceHeight <#>

	

Size of all non-conductor electrical branches. (See figures following this table.)

	

-excluded <class name>

	

Any classes specified here will be excluded from the generated schematic map.

	

-fastCrossovers

	

Use a faster, but less accurate algorithm to determine where conductors intersect.

	

-fbdBounded

	

Use this option if all feeder-heads have FID on one port and an FBD on the other.

	

-feederDirection <north|south|east|west>

	

Have ALL feeders extend in the specified direction.

	

-feederNameTable <table name> <column name>

	

The specified table for each feeder’s FID, annotated with the value found in the specified column. For single-circuit schematics, the feeder name is used as part of the generated map’s name.

	

-feederHeight <#>

	

Minimum distance between a substation and the first device of a feeder. (See figures following this table.)

	

-feederTextScale <#>

	

Amount to scale all feeder-name annotation.

	

-feederOffset <#>

	

Distance between adjacent feeders. Default is branchWidth*10. (See figures following this table.)

	

-feederPrefix <comma-delimited list of strings>

	

Only process substations whose map names contain the specified strings

	

-geographicSubstations | -gs <table name> <column name>

	

Use this option when all substations are modeled in the geographic world.

Schematica will search the specified table for all classes listed in -substationNodeClasses and set the substation name based on the value in the specified column.

(This option must be used in conjunction with -substationNodeClasses)

	

-globalScaleFactor <#>

	

Increases the size of all objects and all overviews by this amount.

	

-invisibleClasses <list of classes>

	

List of classes (that never have symbology - i.e. zero-impedence conductors) that the schematic-generator should ignore when attempting to connect a feeder to its parent substation.

	

-intersubOffset <#>

	

Minimum distance between parallel sub-to-sub conductors. Defaults to tier-height or device-height*2, whichever is greater. (See figures following this table.)

	

-labelClasses <class name>

	

Use this text class when creating device annotation if the class <device_class_name>_t2 does not exist. Text class to use for all generated annotation. (See figures following this table.)

	

-noFeederToFeeder

	

Do not connect up feeder-to-feeder tie-points. (See figures following this table.)

	

-noIntraFeederConnections

	

Do not connect up bypass tie-points

	

-noPrune

	

Keep all devices in a feeder, not just those attached to open-points.

	

-noSubstations

	

Do not draw substations. Instead draw all feeders in the same map in one or more rows. (See -maxRowWidth)

	

-noSubToSub

	

Do not connect up sub-to-sub tie-points.

	

-orientation <ANY|HORIZONTAL|VERTICAL|ROUND_ROBIN|NONE>

	

Align all feeders according to the value. (ANY = normal feeder directions, HORIZONTAL = move all north/south-ward feeders to east/west, VERTICAL = move all east/west-ward feeders to north/south sides, ROUND_ROBIN = evenly distribute the feeders around the substation, NONE = move ALL feeders to side specified by "-feederDirection") Default is ANY.

	

-overviewName <string>

	

The names of all resulting schematic maps will take the form <map prefix>_<overview name>_<substation name>

	

-placeSubsByConnection

	

Attempt to position substations with the greatest number of common connections closest to each other.

	

-priorityClasses <list of classes>

	

Keep the specified list of classes as close to the main trunk of the generated schematic tree as possible.

	

-reorientDeviceClasses <list of classes>

	

Ensure that diagrams for the specified classes are always oriented from left to right. (Use this if symbols appear upside-down.)

	

-scaleFactor <#>

	

Multiplies the size of all conditions by this amount.

	

-skipEmptyFeeders

	

Do not draw feeders that contain an exceedingly small number of devices (< 10 devices)

	

-sort <GEO|SPAN>

	

Arrange feeders either geographically (using only the anchor points of each feeder) or arrange them to minimize the distance feeder-to-feeder tiepoint connections must span.

Values: GEO|SPAN GEO = geographic ordering, SPAN = minimal spanning tie points. Default is GEO

	

-startAtFID

	

Use when all feeder heads are modeled to have an FID attached.

	

-stop <list of classes>

	

List of all device classes the schematic-generator should not trace past.

	

-subSpacing <#>

	

Minimum distance between substations. No default. (See figures following this table.)

	

-substationBoxSize <#>

	

Create a square of the specified size and scale the original substation schematic to place inside. Default is 1000. (See figures following this table.)

	

-substationBoxCls <class number>

	

Create a box of this class-type around the substation. No default. If not specified, there will be no visible box around the substation.(See figures following this table.)

	

-substationName <database table name> <table column name>

	

Do not model substations. Instead, search the specified table for each feeder’s FID and group them into substations based on the values in the specified column

	

-substationNodeClasses | -snc <list of class names>

	

When used in conjunction with -geographicSubstations, it specifies what type of nodes to initiate substation tracing from. Generally, the value should be SRC.

	

-substationPtnCls <#>

	

Only process substations with this specific partition-class. No default.

	

-substationTextScale <value>

	

Amount to scale the size of the substation label.

	

-substationTransitionClass <list of classes>

	

The set of classes that designate the transition between feeder and substation. Defaults to hyper_node.

	

-tapDeviceOffset <value>

	

Distance to offset single devices from the main trunk.

	

-textOffset <#>

	

Distance (along the feeder’s main axis) to pull all device annotation. Default is 0. (See figures following this table.)

	

-textScale <#>

	

Scale all device annotation by this amount.

	

-tierHeight <#>

	

The distance (along the feeder’s axis) a conductor will span. Default is 50. (See figures following this table.)

	

-tilebasedmaps | -tbm

	

Calculate the geographic orientation of each feeder based on the coordinates of the all open points, not on the base map’s extents.

	

-voltage <minimum voltage> <max voltage>

	

Only process devices that fall into the specified voltage range.

	

-weightClass [<class name> <weight>…>

	

Tells the schematic-generator to process certain classes of objects sooner when creating its internal schematic tree. If weight < 0, process later. If weight > 0, process sooner.

Note: <list of classes> format: [-]class name[+],[-]class name[+],....] [-] exclude this class (and all descendents if '+' is used) [+] include all descendents.

The following figure shows the deviceHeight, branchWidth, and feederOffset.

The following figure shows substationBoxSize, feederHeight, tierHeight, and connectionClass.

[image:]

The following figure shows a feeder-to-feeder connection.

[image:]

The following figure shows camelHumpWidth, camelHumpHeight, device annotation, and textOffset.

[image:]

The following figure shows subspacing.

[image:]

The following figure shows intersubOffset.

[image:]

Generating Schematics

To create schematics, the customer-specific script <project>_post_build.ces must have a call to <project>_create_schematics.ces.

The Post-Build Process

After the build process has processed the final map, it calls <project>_post_build.ces. If there is an entry for create-schematics, it calls it at this time.

Creating the Import Files

Once invoked, the schematic generator loads in the entire nominal network model and attempts to group all feeders with their parent substations. After it finishes determining the layout and spacing for all feeders and substations, it writes out one import file for each substation.

Processing the Import Files

After the schematic-generator creates the import files, the schematic script compares the most recent previous version of each file. If no changes are detected, it skips the map. Otherwise it proceeds to build the import file as per the normal model-build process.

In Construction Pending / Device Decommissioning (ICP)

Oracle Utilities Network Management System supports the modeling and visualization of devices that are in-construction as well as devices that are marked for decommissioning. ICP can be used for commissioning new construction (such as road widening) and should not be used for nominal-state changes (such as feeder load balancing).

Device Lifecycles

In a GIS system, a device will fall in to one of four possible states:

	

Device State in GIS

	

Description

	

Install

	

Objects that are proposed construction or new objects to be commissioned at a future date

	

Existing

	

All objects that are in the GIS as-built and commissioned

	

Remove

	

Objects that are commissioned today and are part of the active model however there is a construction plan to remove these objects

	

Retired

	

All objects that have been completely de-commissioned. These devices will not exist in the real-time system.

Model Requirements for ICP

In order to use In Construction Pending (ICP), each affected device must have an additional value listed in their physical_properties entry inside the import file, as shown below:

	

Device State in GIS

	

Required Physical_Properties Value in Import files

	

Install

	

Construction

	

Existing

	

NA

	

Remove

	

Decommission

	

Retired

	

NA

The model preprocessor calculates these values and writes them out into import files.

Note: Model Extractors must be modified to not filter out devices in the "Install" state.

Model Builds and Commissioned/Decommissioned Devices

The Commissioning Tool moves devices between "Not Commissioned" and "Commissioned" as well as "Not Decommissioned" and "Decommissioned".

If an operator commissions a device, marked as Construction, a model build will not reset the commissioning state (i.e., Subsequent model builds will not undo changes made by the Commissioning Tool).

Effect of ICP Devices on Network Topology

Devices affect the network’s topology as follows:

	

Device State

	

Commissioned / Decommissioned

	

Does Device affect Network Model

	

Install

	

Not commissioned

	

No.

	

Install

	

Commissioned

	

Yes. As normal existing device.

	

Remove

	

Not decommissioned

	

Yes. As normal existing device.

	

Remove

	

Decommissioned

	

No.

ICP Device Symbology

The Viewer will hide certain ICP-marked devices and display certain ICP devices with additional symbology.

	

Device State

	

Commissioned / Decommissioned

	

Default Visibility

	

Special symbology

	

Install

	

Not commissioned

	

Hidden

	

Yes.

	

Install

	

Commissioned

	

Visible

	

Yes

	

Existing

	

NA

	

Visible

	

No

	

Remove

	

Not decommissioned

	

Visible

	

Yes

	

Remove

	

Decommissioned

	

Hidden

	

Yes

Note: See the User Guide section on "Using the Operator’s Workspace Viewer" for more information on ICP symbology and how to use the Commissioning Tool.

Auto Throw-Over Switch Configuration (ATO)

Oracle Utilities Network Management System supports the modeling and visualization of Auto Throw-Over (ATO) devices. Critical customers such as hospitals, manufacturing, financial and emergency services, require higher level of power quality and reliability. These customers are normally provided with a primary and backup source of power to improve the reliability. Utilities deploy automatic throw over devices to switch the load to backup source when the primary source is not available. Often these devices have automatic restoration feature where the load is fed by the primary source when primary source is energized after an outage.

Model Requirements for ATOs

In order configure ATOs in the Oracle Utilities Network Management System, the Model Build process needs to know what two devices are controlled by the ATO controller. One device must be identified as the primary or preferred feed, which would be normally closed, and the other device would be the secondary or alternate feed, which would be normally open. These relationships and control behaviors are modeled in the ATO_CONTROLLERS table, as shown below:

	

Field

	

Format

	

Comments

	

H_CLS

	

N

	

Class part of the ATO controller handle.

Required.

	

H_IDX

	

N

	

Index part of the ATO controller handle.

Required.

	

PARTITION

	

N

	

ATO controller partition.

	

CONTROL_FUNCTION

	

V32

	

ATO control function identifier.

Required.

Values:

	
•

	

2dev - 2 ATO Devices and no auto-restore

	
•

	

2dev_arc - 2 ATO Devices, auto-restore, no momentary on restore operation

	
•

	

2dev_momentary_acr - 2 ATO Devices, auto-restore, and will create a momentary on restore operation

	

ATO1_CLS

	

N

	

Class part of the handle of the primary ATO device.

Required.

	

ATO1_IDX

	

N

	

Index part of the handle of the primary ATO device.

Required.

	

ATO2_CLS

	

N

	

Class part of the handle of the secondary ATO device.

Optional.

	

ATO2_IDX

	

N

	

Index part of the handle of the secondary ATO device.

Optional.

	

PARAM1

	

N

	

Delay (in seconds) until primary ATO device is opened during throwover - Optional.

	

PARAM2

	

N

	

Delay (in seconds) until secondary ATO device is opened during auto-return (ignored by control function "2dev" but column presence is still required) - Optional.

	

PARAM3

	

N

	

Delay (in seconds) between operating primary and secondary ATO devices. If not configured, there is no delay. -Optional.

	

BIRTH

	

D

	

Birth date of when the object is activated into the model

	

BIRTH_PATCH

	

N

	

Patch which activated this object

	

DEATH

	

D

	

Death date of when the object is de-activated from the model

	

DEATH_PATCH

	

N

	

Patch which de-activated this object

	

ACTIVE

	

V1

	

Active flag

Summary Object Configuration

Summary Objects are objects in one world (i.e., Geographic World) that reflect events or conditions in another world (i.e., Substation World). For example, a substation fence in the geographic world may display the conditions existing on objects within the substation in the internal world view of the substation (i.e., an outage on a breaker in the substation would be reflected on the fence in the geographic world).

To configure this functionality, you need to configure three areas of the model:

	
1.

	

Verify that summaryobjects is on the DDService in the ~/etc/system.dat file.

	
2.

	

Verify that product_srs_rules.sql has a config rule for summaryObject set to "yes".

	
3.

	

Verify that all object classes you wish to have summary events reflected on are in the project condition rules file (i.e., substation_fences).

	
4.

	

Substation fences, when build, must define a location in the .mb file. For example:

	

	

ADD substation_fence 2 {

	

	

 LOCATION = <10210.2>;

	

	

 ALIAS[OPS] = "SUB_Lake";

	

	

 DIAGRAM[1022] (1022) = {

	

	

 SYMBOLOGY = 101;

	

	

 HEIGHT = 500.000000;

	

	

 GEOMETRY = {

	

	

 (2270311.397232,460321.122269),

	

	

 (2270311.397232,459286.466476),

	

	

 (2271217.293103,459286.466476),

	

	

 (2271217.293103,460321.122269),

	

	

 (2270311.397232,460321.122269)

	

	

 };

	

	

 };

	

	

 ATTRIBUTE[Latitude]=" 40.92498";

	

	

 ATTRIBUTE[Longitude]=" -81.40776";

	

	

};

	

	

	

	

ADD LOCATION <10210.2> {

	

	

 NAME = "SUB_Lake";

	

	

 DESC = "Lake Substation";

	

	

 REFERENCE = (2270311.397232,460321.122269);

	

	

};

	
5.

	

All objects in the substation partition that you want the events and conditions reflected on the substation fence must belong to the same location. For example:

	

	

ADD rack_circuit_br 1500 {

	

	

 PHYSICAL_PROPERTY = SUB;

	

	

 VOLTAGE = 13800;

	

	

 NCG = 63;

	

	

 PHASES = 7;

	

	

 LOCATION = <10210.2>;

	

	

 PORT_A = <444.2523.2>;

	

	

 PORT_B = <444.2522.2>;

	

	

 ALIAS[GIS] = "Circuit Breaker.270";

	

	

 ALIAS[OPS] = "BR241XFM";

	

	

 DIAGRAM[1094] (1094) = {

	

	

 RANK = 65544;

	

	

 SYMBOLOGY = 10507;

	

	

 HEIGHT = 500.000000;

	

	

 GEOMETRY = {

	

	

 (205.811207,412.902928),

	

	

 (205.811207,391.655951)

	

	

 };

	

	

 };

	

	

 ATTRIBUTE[gmd_location] = "Lake Substation";

	

	

 ATTRIBUTE[gmd_comment] = "0.0000";

	

	

Symbology

The Viewer displays all model objects and conditions as symbols, either vector symbols or raster symbols. This Symbology system is made up of four types of symbology:

	
•

	

Firm Line Symbols (Symbol Ids from 30,000 - 99,999)

	
•

	

Non-Firm Line Symbols (Symbol Ids from 100 - 2100)

	
•

	

Soft Symbols (Symbology Ids from 2100 - 29,999)

	
•

	

Pixmap Symbols (Symbology Ids same as Soft Symbols

Firm and Non-Firm line symbols are generally used for linear objects like conductors, roads, and boundaries. Soft symbols and pixmap symbols are generally used for devices (switches, transformers, capacitors, etc.) and other "point" devices.

Firm Symbols

Firm symbols have a five digit SIN, LSDCC. Each digit defines an aspect of the 1D symbol that is drawn in the Viewer. The first digit defines the long dash length, L. The second digit defines the space length, S. The third digit represents the dash pattern, D. The last two digits define the color code, CC. Firm symbols are indicated by SINs ranging from 30000 to 99999.

L - Long Dash Length. The long dash length is the continuous part of the line between the spaces and short dashes, if any. This digit determines how many pixels the long dash will be. It must be 3 or greater to classify as a firm symbol.

	

D Value

	

Description

	

Sketch

	

0

	

No short dashes

1

	

One point, one pixel

	

_______ . ________

	

2

	

Two points, one pixel each

	

______ . . _______

	

3

	

Three points, one pixel each

	

_____ . . . ______

	

4

	

One short dash, 1 * S

	

_______ _ ________

	

5

	

Two short dashes, each 1 * S

	

______ _ _ _______

	

6

	

Three short dashes, each 1 * S

	

_____ _ _ _ ______

	

7

	

One short dash, 2 * S

	

_______ __ _______

	

8

	

Two short dashes, each 2 * S

	

______ __ __ _____

	

9

	

Three short dashes, each 2 * S

	

____ __ __ __ ____

S - Space Length. The space length is the gap between long dashes and short dashes. This digit defines the pixel length of the space as L=S*2. An S value of zero results in a solid line even when the dash pattern is greater than zero.

	

S Value

	

Length (pixels)

	

0

	

0 (No Space)

	

1

	

2

	

2

	

4

	

3

	

6

	

4

	

8

	

5

	

10

	

6

	

12

	

7

	

14

	

8

	

16

	

9

	

18

D - Dash Pattern. The short dash pattern defines the number and size of short dashes in the line. There can be from zero to three short dashes in each line pattern. The short dashes can be one pixel points, space sized dashes or double space sized dashes.

CC - Color Code. The line color is specified by a two digit color code. These colors and the color code appear at the bottom of the Symbology Editor. Note that black appears as 100 on the Symbology Editor but the actual color code is 00.

	

CODE

	

COLOR

	

CODE

	

COLOR

	

CODE

	

COLOR

	

CODE

	

COLOR

	

100

	

black

	

21

	

grey60

	

43

	

coral2

	

65

	

darkgreen

	

01

	

white

	

22

	

grey70

	

44

	

yellow1

	

66

	

seagreen

	

02

	

red

	

23

	

grey80

	

45

	

yellow2

	

67

	

firebrick

	

03

	

yellow

	

24

	

grey90

	

46

	

blue4

	

68

	

tomato

	

04

	

green

	

25

	

red1

	

48

	

orange1

	

69

	

lightgoldenrod

	

05

	

cyan

	

26

	

red2

	

49

	

orange2

	

70

	

goldenrod1

	

06

	

blue

	

27

	

red3

	

50

	

brown4

	

71

	

hotpink1

	

07

	

magenta

	

28

	

red4

	

51

	

magenta1

	

73

	

magenta4

	

08

	

orange

	

29

	

limegreen

	

52

	

magenta3

	

74

	

chocolate4

	

09

	

pink

	

30

	

turquoise

	

53

	

steelblue1

	

75

	

wheat1

	

10

	

tan

	

31

	

violet

	

54

	

steelblue2

	

76

	

thistle4

	

11

	

grey

	

32

	

violetred

	

55

	

cyan4

	

77

	

steelblue

	

11

	

gray

	

33

	

deeppink

	

56

	

orange4

	

78

	

maroon4

	

12

	

navy

	

34

	

aquamarine

	

57

	

yellow4

	

79

	

coral1

	

13

	

brown

	

35

	

khaki

	

58

	

moccasin

	

80

	

deeppink1

	

14

	

purple

	

36

	

goldenrod

	

59

	

ltpink

	

81

	

laurellee

	

15

	

salmon

	

37

	

gold

	

60

	

deepskyblue

	

82

	

slategrey

	

16

	

grey10

	

38

	

coral

	

61

	

mediumaqua

	

83

	

royalblue

	

17

	

grey20

	

39

	

maroon

	

62

	

snow1

	

84

	

orchid

	

18

	

grey30

	

40

	

wheat

	

63

	

blue1

	

85

	

dkorange

	

19

	

grey40

	

41

	

green3

	

64

	

cadetblue

	

99

	

eaudenil

	

20

	

grey50

	

42

	

green4

	

	

	

	

Non-firm Symbols

Non-firm symbols have a four digit SIN, LLCC. The first two digits represent the line style, LL. The last two digits represent the line color, CC. If the SIN is less than 1000, assume a zero before the first digit. Non-firm symbols have SINs between 100 and 2100.

LL - Line style. Choose a line style number based on the desired dash pattern and background color. Dash pattern refers to the alternating number of pixels to draw of specified color and background color. The first number draws the prescribed color, CC; the second number draws the background color; the third number, if any, draws the prescribed color and so on.

	

Line Style Number

	

Dash Pattern (pixels)

	

Background Color

	

1

	

None

	

Transparent

	

11

	

10,1

	

Transparent

	

12

	

10,1,2,1

	

Transparent

	

13

	

10,1,2,1,2,1

	

Transparent

	

14

	

10,1,2,1,2,1,2,1

	

Transparent

	

15

	

20,10

	

Grey30

	

16

	

50,10,10,10

	

Grey30

	

17

	

75,10,10,10,10,10,10,10

	

Grey30

	

18

	

2,4

	

Transparent

	

19

	

15,15

	

Black

	

20

	

15,15

	

White

CC - Color Code. The color codes are the same as those listed firm symbols. Use the color code to prescribe the foreground color of the dash pattern. The SIN 106 is drawn in the Viewer as a solid blue line. The SIN 1614 is drawn in the Viewer as a dashed line with 50 pixels of purple, 10 pixels of gray30, 10 pixels of purple and 10 pixels of gray30.

1D Width Multiplier

The width multiplier increases the thickness of the firm or non-firm 1D symbol. Add one or more digits ranging from 1 to 29999 to the base SIN to increase the width of the line drawn on the Viewer. The multiplier increases the width of the line proportionally to the map scale so that the line width increases and decreases with zoom level. If no multiplier is specified, the line width is always one pixel regardless of zoom level. The actual width of the symbol in pixels is calculated at run time. Note that the results of the multiplier vary with each model.

The width multiplier is added to the beginning or left side of the base SIN starting with the sixth digit. Since nonfarm SINs only have four digits, a zero must be added prior to adding the multiplier. For example, 5001324 is a non-firm symbol with base SIN 1324. The width multiplier is 50. The extra zero is a placeholder only. The firm symbol 5045733 with base SIN 45733 also has a width multiplier of 50. Divide the symbol id number by 100,000 to determine the width multiplier.

Soft Symbology

The Symbology File specified by the $SYMBOLOGY_SET server environment variable represent aspects (devices, crew assignments, etc.) of the operations model.

The format of the symboloy file is:

[image:]

[image:]

[image:]

[image:]

Pixmap Symbols

Use $NMS_CONFIG/jconfig/ops/viewer/properties/RasterSymbols.properties to specify the image file to use for a given symbol. For example:

This contains a mapping of symbols that should be

displayed as raster images

The first file is the normal image. If a second image is listed,

it is for the selected image. example:

#14042=sym_green_truck.gif,sym_green_truck_sel.gif

#14042=sym_crew.gif

#14043=sym_red_green_truck.gif

#14044=sym_orange_truck.gif

Power Flow Data Requirements and Maintenance

This section describes the Power Flow Extensions Data Input process and the customer data requirements and associated database schema. The data will be used by all DMS applications, including Power Flow Extensions, Suggested Switching, Optimal Power Flow, Feeder Load Management, Short Circuit Analysis, and Fault Location Analysis. It is intended to assist the customer during the Power Flow Extensions data modeling process. It is meant as an introduction, rather than a comprehensive reference. It includes the following subsections:

	
•

	

Power Flow Extensions Data Import Process - this section describes the basic process and data sources used during the data import process.

	
•

	

Modeling Device Data - this section explains the basic data requirements and relevant database tables required to model device data.

	
•

	

Modeling Load Data -this section explains the basic data requirements and relevant database tables required to model load data.

	
•

	

Catalog tables, Required GIS attributes, Power Flow Attribute Views, Default Data Tables, and Configuration Tables - these sections contain the table schemas required for the Power Flow Extensions.

	
•

	

Power Flow Engineering Data Workbook - this section describes the power flow engineering workbook contents, and workbook maintenance and update process

	
•

	

Power Flow Engineering Data Maintenance - this section provides a list of high-level command line options that can be used with PFService to dynamically update the engineering data

Power Flow Extensions Data Import Process

Data for power flow applications is built as part of the normal model-build process.

The catalog tables contain electrical characteristic data for represented device types in the electrical
distribution system. Customer data for these catalog tables are captured through the Power Flow
Engineering Data workbook.

The device attribute views are created based on data in the GIS attribute tables and the customer-
provided catalog tables. These views map each relevant network device to class and index attribute
keys in the
network_components table. They may have to be tailored as per the project and the availability of data in both the GIS and catalog tables. The data requirements for each device type are discussed in the Modeling Device Data section below.

Modeling Device Data

The creation of device-specific attribute data-sets (either database views or tables) is an important step in the Power Flow Data Modeling process. As mentioned earlier, this process relies on the availability of data from two sources, viz., GIS attribute tables and device catalog tables. This section discusses the device information that is used for this process.

Sources

The customer must provide an equivalent source model for each source node defined in the data model. These source nodes represent constant voltage buses that are used to determine energization of the system and are generally located at feeder heads, the substation secondary bus generation sources, or the substation primary side bus. The required equivalent source parameters must represent an equivalent impedance looking up into the transmission system from the source node in question, in addition to voltage magnitude and angle. It is possible to model equivalent sources as zero impedance (i.e., 'infinite bus'), but this will impact the accuracy of short circuit calculations provided by the Power Flow Extensions.

The pf_source_view is created based on the data available in the source GIS attribute table (att_generator), the device id tables (network_nodes, feeders), and the customer catalog table (pf_equivalent_sources).

Line Impedences

The customer must provide line data in one of three ways:

	
•

	

The first and preferred way is to provide the phase impedance data for each three-phase line type. The phase impedance data must be the self and mutual impedance and shunt susceptance for each phase. The phase impedance data must be provided in the pf_line_ph_impedance table. Oracle Utilities Network Management System Power Flow Extensions supports the modeling of symmetric and asymmetric lines. Lines are considered symmetric when the 3 phases have the same conductor type. Lines are considered asymmetric when the 3 phases have at least two different conductor types.

	
•

	

The second way is to provide the sequence impedance data for each line. The sequence impedance table data must be the positive and zero sequence impedances and shunt susceptance for each line. The sequence impedance data must be provided in the pf_line_seq_impedance table.

	
•

	

The third way only applies to overhead lines and is used to provide the conductor and construction types for each line. The preprocessor uses Carson's Modified Equations to calculate phase impedance data from these inputs. This data must be provided in the pf_cond_types, pf_oh_cond_types, pf_oh_conductor_spacing, and pf_oh_cond_catalog tables. pf_cond_types contains the conductor characteristics. pf_oh_cond_types contains the phase-wise conductor type description (as catalogued in the pf_cond_types table). The pf_oh_conductor_spacing table contains the phase-wise spacing (coordinates) information for an overhead line type. The pf_oh_cond_catalog table contains the conductor types (as per pf_oh_cond_types) and conductor spacing type (as per pf_oh_ conductor_spacing) mappings of all overhead lines.

The GIS attribute table for overhead lines is att_oh_elec_line_seg.

Transformers and Regulators

Oracle Utilities Network Management System Power Flow Extensions supports explicit modeling of multiple forms of power transformers, such as auto transformers, load-tap-changing transformers, step-up/step-down transformers and regulators. Each of these types of transformers and regulators require transformer characteristic data provided in the pf_xfmr_types and pf_ltc_xfmr tables, which are read by the Model Preprocessor which in turn writes the PF_XFMR and PF_XFMR_TANKS tables, which are read by the Power Flow Service.

Capacitors and Reactors

Shunt (capacitor/reactor) parameters must be provided from the customer's data source(s), typically the GIS. These parameters are defined in the PF_CAPACITOR_DATA table, which will be accessed by the Model Preprocessor, which in turn will write the PF_CAPACITORS table, which will be read directly by the Power Flow Service.

Oracle supports the following types of shunt regulation:

	
•

	

Voltage switched capacitors : local or remote bus regulation

	
•

	

Current switched capacitors : local line or cable regulation

	
•

	

KVAR switched capacitors : local line or cable regulation

	
•

	

Power-factor switched capacitors : local line or cable regulation

	
•

	

Temperature switched capacitors : on and off temperature

	
•

	

Time of day switched capacitors : on and off time of day.

	
•

	

Fixed capacitor:
no regulation

	
•

	

Capacitor sequence control

The supplied data for each shunt must indicate which type of regulation is to be used and the corresponding control attributes.

Modeling Loads

Load modeling consists of basic load data which is used to determine average loading levels and load profile data, which is used to provide detailed information for load variation over time.

Basic Load Data

During modeling efforts, loads must be assigned to specific equipment types. The preferred approach is to insert a load (supply node) at the secondary of each underground and overhead distribution transformer. Supply nodes may also be created at primary metering points for cases where there is no transformation or transformation is unknown or customer-owned.

For each load, a utilization factor can be specified, which represents the average loading level for the rated size of the transformer. For the most accurate power flow results, this data should be based on per-instance consumption data, which can often be obtained from historical billing information by dividing the total energy consumption of attached customers by the billing period and transformer rating.

The power flow data for load is defined using the table pf_load_data, which is read by the Model Preprocessor, which in turn writes the pf_loads table, which is read by the Power Flow Service.

Load Profile Data

Load profile data is used to model how load changes over time. A single load profile represents the change in load levels over a 24-hour period. Multiple profiles may be associated with a single load to represent different load behavior for different types of day (e.g., weekday, weekend) and for different seasons. The use of load profile data improves the accuracy of the DMS applications by providing more realistic loading scenarios for the current or predicted analysis time period. For example, profiles are used to verify switch plans, determine suggested switching recommendations, and generate daily and seasonal peak limit alarms.

The Oracle Utilities Network Management System supports a variety of sources of load profile data such as load class profiles or individual transformer profiles. Once processed, all profile data is placed in the pf_load_interval_data and pf_loadtype_data tables. The profile_id field of the pf_loads table points to the data in these tables.

Load Class Profiles

Load class profiles represent typical load changes over time for a particular type or class of load, such as residential, commercial and industrial. This type of profile data can be obtained from general sources, or the customer can collect this data from typical customers or feeders. When using load class profiles, the load level at each load point is determined by combining the rated kVA with the load utilization factor and the class profile associated with that load. Load class profiles are useful where detailed data for each load is unavailable.

Transformer Profiles

Modern Meter Data Management (MDM) systems make it possible to collect detailed power usage histories for each customer. By aggregating individual meter loads to each service transformer, it is possible to create detailed load profiles for each transformer location. This data can be derived from either representative historical conditions or using predictive values, if the MDM system has this capability.

When using transformer profiles, all load data is derived from these profiles and basic load data such as the utilization factor is not used. The load profile input data can include both kW and kVAr values for load over the 24 hour period.

Modeling Loads

Load modeling consists of basic load data which is used to determine average loading levels and load profile data, which is used to provide detailed information for load variation over time.

Basic Load Data

During modeling efforts, loads must be assigned to specific equipment types. The preferred approach is to insert a load (supply node) at the secondary of each underground and overhead distribution transformer. Supply nodes may also be created at primary metering points for cases where there is no transformation or transformation is unknown or customer-owned.

For each load, a utilization factor can be specified, which represents the average loading level for the rated size of the transformer. For the most accurate power flow results, this data should be based on per-instance consumption data, which can often be obtained from historical billing information by dividing the total energy consumption of attached customers by the billing period and transformer rating.

The power flow data for load is defined using the table pf_load_data, which is read by the Model Preprocessor, which in turn writes the pf_loads table, which is read by the Power Flow Service.

Load Profile Data

Load profile data is used to model how load changes over time. A single load profile represents the change in load levels over a 24-hour period. Multiple profiles may be associated with a single load to represent different load behavior for different types of day (e.g., weekday, weekend) and for different seasons. The use of load profile data improves the accuracy of the DMS applications by providing more realistic loading scenarios for the current or predicted analysis time period. For example, profiles are used to verify switch plans, determine suggested switching recommendations, and generate daily and seasonal peak limit alarms.

The Oracle Utilities Network Management System supports a variety of sources of load profile data such as load class profiles or individual transformer profiles. Once processed, all profile data is placed in the pf_load_interval_data and pf_loadtype_data tables. The profile_id field of the pf_loads table points to the data in these tables.

Load Class Profiles

Load class profiles represent typical load changes over time for a particular type or class of load, such as residential, commercial and industrial. This type of profile data can be obtained from general sources, or the customer can collect this data from typical customers or feeders. When using load class profiles, the load level at each load point is determined by combining the rated kVA with the load utilization factor and the class profile associated with that load. Load class profiles are useful where detailed data for each load is unavailable.

Transformer Profiles

Modern Meter Data Management (MDM) systems make it possible to collect detailed power usage histories for each customer. By aggregating individual meter loads to each service transformer, it is possible to create detailed load profiles for each transformer location. This data can be derived from either representative historical conditions or using predictive values, if the MDM system has this capability.

When using transformer profiles, all load data is derived from these profiles and basic load data such as the utilization factor is not used. The load profile input data can include both kW and kVAr values for load over the 24 hour period.

Modeling Loads

Load modeling consists of basic load data which is used to determine average loading levels and load profile data, which is used to provide detailed information for load variation over time.

Basic Load Data

During modeling efforts, loads must be assigned to specific equipment types. The preferred approach is to insert a load (supply node) at the secondary of each underground and overhead distribution transformer. Supply nodes may also be created at primary metering points for cases where there is no transformation or transformation is unknown or customer-owned.

For each load, a utilization factor can be specified, which represents the average loading level for the rated size of the transformer. For the most accurate power flow results, this data should be based on per-instance consumption data, which can often be obtained from historical billing information by dividing the total energy consumption of attached customers by the billing period and transformer rating.

The power flow data for load is defined using the table pf_load_data, which is read by the Model Preprocessor, which in turn writes the pf_loads table, which is read by the Power Flow Service.

Load Profile Data

Load profile data is used to model how load changes over time. A single load profile represents the change in load levels over a 24-hour period. Multiple profiles may be associated with a single load to represent different load behavior for different types of day (e.g., weekday, weekend) and for different seasons. The use of load profile data improves the accuracy of the DMS applications by providing more realistic loading scenarios for the current or predicted analysis time period. For example, profiles are used to verify switch plans, determine suggested switching recommendations, and generate daily and seasonal peak limit alarms.

The Oracle Utilities Network Management System supports a variety of sources of load profile data such as load class profiles or individual transformer profiles. Once processed, all profile data is placed in the pf_load_interval_data and pf_loadtype_data tables. The profile_id field of the pf_loads table points to the data in these tables.

Load Class Profiles

Load class profiles represent typical load changes over time for a particular type or class of load, such as residential, commercial and industrial. This type of profile data can be obtained from general sources, or the customer can collect this data from typical customers or feeders. When using load class profiles, the load level at each load point is determined by combining the rated kVA with the load utilization factor and the class profile associated with that load. Load class profiles are useful where detailed data for each load is unavailable.

Transformer Profiles

Modern Meter Data Management (MDM) systems make it possible to collect detailed power usage histories for each customer. By aggregating individual meter loads to each service transformer, it is possible to create detailed load profiles for each transformer location. This data can be derived from either representative historical conditions or using predictive values, if the MDM system has this capability.

When using transformer profiles, all load data is derived from these profiles and basic load data such as the utilization factor is not used. The load profile input data can include both kW and kVAr values for load over the 24 hour period.

Modeling Loads

Load modeling consists of basic load data which is used to determine average loading levels and load profile data, which is used to provide detailed information for load variation over time.

Basic Load Data

During modeling efforts, loads must be assigned to specific equipment types. The preferred approach is to insert a load (supply node) at the secondary of each underground and overhead distribution transformer. Supply nodes may also be created at primary metering points for cases where there is no transformation or transformation is unknown or customer-owned.

For each load, a utilization factor can be specified, which represents the average loading level for the rated size of the transformer. For the most accurate power flow results, this data should be based on per-instance consumption data, which can often be obtained from historical billing information by dividing the total energy consumption of attached customers by the billing period and transformer rating.

The power flow data for load is defined using the table pf_load_data, which is read by the Model Preprocessor, which in turn writes the pf_loads table, which is read by the Power Flow Service.

Load Profile Data

Load profile data is used to model how load changes over time. A single load profile represents the change in load levels over a 24-hour period. Multiple profiles may be associated with a single load to represent different load behavior for different types of day (e.g., weekday, weekend) and for different seasons. The use of load profile data improves the accuracy of the DMS applications by providing more realistic loading scenarios for the current or predicted analysis time period. For example, profiles are used to verify switch plans, determine suggested switching recommendations, and generate daily and seasonal peak limit alarms.

The Oracle Utilities Network Management System supports a variety of sources of load profile data such as load class profiles or individual transformer profiles. Once processed, all profile data is placed in the pf_load_interval_data and pf_loadtype_data tables. The profile_id field of the pf_loads table points to the data in these tables.

Load Class Profiles

Load class profiles represent typical load changes over time for a particular type or class of load, such as residential, commercial and industrial. This type of profile data can be obtained from general sources, or the customer can collect this data from typical customers or feeders. When using load class profiles, the load level at each load point is determined by combining the rated kVA with the load utilization factor and the class profile associated with that load. Load class profiles are useful where detailed data for each load is unavailable.

Transformer Profiles

Modern Meter Data Management (MDM) systems make it possible to collect detailed power usage histories for each customer. By aggregating individual meter loads to each service transformer, it is possible to create detailed load profiles for each transformer location. This data can be derived from either representative historical conditions or using predictive values, if the MDM system has this capability.

When using transformer profiles, all load data is derived from these profiles and basic load data such as the utilization factor is not used. The load profile input data can include both kW and kVAr values for load over the 24 hour period.

Modeling Loads

Load modeling consists of basic load data which is used to determine average loading levels and load profile data, which is used to provide detailed information for load variation over time.

Basic Load Data

During modeling efforts, loads must be assigned to specific equipment types. The preferred approach is to insert a load (supply node) at the secondary of each underground and overhead distribution transformer. Supply nodes may also be created at primary metering points for cases where there is no transformation or transformation is unknown or customer-owned.

For each load, a utilization factor can be specified, which represents the average loading level for the rated size of the transformer. For the most accurate power flow results, this data should be based on per-instance consumption data, which can often be obtained from historical billing information by dividing the total energy consumption of attached customers by the billing period and transformer rating.

The power flow data for load is defined using the table pf_load_data, which is read by the Model Preprocessor, which in turn writes the pf_loads table, which is read by the Power Flow Service.

Load Profile Data

Load profile data is used to model how load changes over time. A single load profile represents the change in load levels over a 24-hour period. Multiple profiles may be associated with a single load to represent different load behavior for different types of day (e.g., weekday, weekend) and for different seasons. The use of load profile data improves the accuracy of the DMS applications by providing more realistic loading scenarios for the current or predicted analysis time period. For example, profiles are used to verify switch plans, determine suggested switching recommendations, and generate daily and seasonal peak limit alarms.

The Oracle Utilities Network Management System supports a variety of sources of load profile data such as load class profiles or individual transformer profiles. Once processed, all profile data is placed in the pf_load_interval_data and pf_loadtype_data tables. The profile_id field of the pf_loads table points to the data in these tables.

Load Class Profiles

Load class profiles represent typical load changes over time for a particular type or class of load, such as residential, commercial and industrial. This type of profile data can be obtained from general sources, or the customer can collect this data from typical customers or feeders. When using load class profiles, the load level at each load point is determined by combining the rated kVA with the load utilization factor and the class profile associated with that load. Load class profiles are useful where detailed data for each load is unavailable.

Transformer Profiles

Modern Meter Data Management (MDM) systems make it possible to collect detailed power usage histories for each customer. By aggregating individual meter loads to each service transformer, it is possible to create detailed load profiles for each transformer location. This data can be derived from either representative historical conditions or using predictive values, if the MDM system has this capability.

When using transformer profiles, all load data is derived from these profiles and basic load data such as the utilization factor is not used. The load profile input data can include both kW and kVAr values for load over the 24 hour period.

Catalog Tables

The catalog tables identified in this section must all be populated by the customer. The Power Flow Data Engineering Excel workbook should be used as a template to assist the customer in identifying source data locations (planning power flow data, database tables etc.), defining a data export mechanism, and specifying the Oracle table names, columns, and data formats into which the source data must be imported. See the example workbook in the Oracle Utilities Network Management System product directory location: $CES_HOME/OPAL/workbooks.

Configuration Tables

pf_seasons

This table will store the seasonal peak load information and define the seasons. One entry in this table is required for every season of every load zone. A load zone consists of a group of all loads that have their load profiles maintained according to the same temperature measurement point. There could be only one load zone for the entire system, or there could be several. The customer directly populates this table from seasonal data.

	

Attributes

	

Description

	

season_Number

	

Varchar2

	

20

	

Season number

	

Zone

	

Varchar2

	

20

	

Zone number

	

Season_peak

	

Varchar2

	

20

	

Season peak load in KVA

	

peak_day

	

Varchar2

	

20

	

Day of seasonal peak load

	

peak_month

	

Varchar2

	

20

	

Month of seasonal peak load

	

peak_load_period

	

Varchar2

	

20

	

Load period of seasonal peak

	

peak_day_type

	

Varchar2

	

20

	

Day type of seasonal peak

	

peak_temp

	

Varchar2

	

20

	

Peak temperature in °F or °C

srs_rules

	

Attributes

	

Description

	

Nom_Temp

	

Varchar2

	

50

	

Nominal temperature for use when maintaining the load profile.

	

DAYTYPE_X

	

Varchar2

	

100

	

Identifies the day type of the current day, where 'X' is the number of the day type represented by this field.

DAYTYPE_X Attribute

The following table provides examples for the DAYTYPE_X attributes of the pfs_rules table.

	

Parameter

	

Value

	

DAYTYPE_0

	

WEEKDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY

	

DAYTYPE_1

	

 WEEKEND, SUNDAY, SATURDAY

	

DAYTYPE_2

	

SEASONALPEAK

Day types can be configured by day name and days. Each day should appear exactly once in the set of daytypes. In the table above:

	
•

	

All weekdays are of day DAYTYPE_0.

	
•

	

All weekend are of DAYTYPE_1.

	
•

	

Seasonal peaks are of DAYTYPE_2.

For more information on srs_rules table configuration, refer to the
Chapter 14
,
Distribution Management Application Configuration
.

Configuration Tables

pf_seasons

This table will store the seasonal peak load information and define the seasons. One entry in this table is required for every season of every load zone. A load zone consists of a group of all loads that have their load profiles maintained according to the same temperature measurement point. There could be only one load zone for the entire system, or there could be several. The customer directly populates this table from seasonal data.

	

Attributes

	

Description

	

season_Number

	

Varchar2

	

20

	

Season number

	

Zone

	

Varchar2

	

20

	

Zone number

	

Season_peak

	

Varchar2

	

20

	

Season peak load in KVA

	

peak_day

	

Varchar2

	

20

	

Day of seasonal peak load

	

peak_month

	

Varchar2

	

20

	

Month of seasonal peak load

	

peak_load_period

	

Varchar2

	

20

	

Load period of seasonal peak

	

peak_day_type

	

Varchar2

	

20

	

Day type of seasonal peak

	

peak_temp

	

Varchar2

	

20

	

Peak temperature in °F or °C

srs_rules

	

Attributes

	

Description

	

Nom_Temp

	

Varchar2

	

50

	

Nominal temperature for use when maintaining the load profile.

	

DAYTYPE_X

	

Varchar2

	

100

	

Identifies the day type of the current day, where 'X' is the number of the day type represented by this field.

DAYTYPE_X Attribute

The following table provides examples for the DAYTYPE_X attributes of the pfs_rules table.

	

Parameter

	

Value

	

DAYTYPE_0

	

WEEKDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY

	

DAYTYPE_1

	

 WEEKEND, SUNDAY, SATURDAY

	

DAYTYPE_2

	

SEASONALPEAK

Day types can be configured by day name and days. Each day should appear exactly once in the set of daytypes. In the table above:

	
•

	

All weekdays are of day DAYTYPE_0.

	
•

	

All weekend are of DAYTYPE_1.

	
•

	

Seasonal peaks are of DAYTYPE_2.

For more information on srs_rules table configuration, refer to the
Chapter 14
,
Distribution Management Application Configuration
.

Configuration Tables

pf_seasons

This table will store the seasonal peak load information and define the seasons. One entry in this table is required for every season of every load zone. A load zone consists of a group of all loads that have their load profiles maintained according to the same temperature measurement point. There could be only one load zone for the entire system, or there could be several. The customer directly populates this table from seasonal data.

	

Attributes

	

Description

	

season_Number

	

Varchar2

	

20

	

Season number

	

Zone

	

Varchar2

	

20

	

Zone number

	

Season_peak

	

Varchar2

	

20

	

Season peak load in KVA

	

peak_day

	

Varchar2

	

20

	

Day of seasonal peak load

	

peak_month

	

Varchar2

	

20

	

Month of seasonal peak load

	

peak_load_period

	

Varchar2

	

20

	

Load period of seasonal peak

	

peak_day_type

	

Varchar2

	

20

	

Day type of seasonal peak

	

peak_temp

	

Varchar2

	

20

	

Peak temperature in °F or °C

srs_rules

	

Attributes

	

Description

	

Nom_Temp

	

Varchar2

	

50

	

Nominal temperature for use when maintaining the load profile.

	

DAYTYPE_X

	

Varchar2

	

100

	

Identifies the day type of the current day, where 'X' is the number of the day type represented by this field.

DAYTYPE_X Attribute

The following table provides examples for the DAYTYPE_X attributes of the pfs_rules table.

	

Parameter

	

Value

	

DAYTYPE_0

	

WEEKDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY

	

DAYTYPE_1

	

 WEEKEND, SUNDAY, SATURDAY

	

DAYTYPE_2

	

SEASONALPEAK

Day types can be configured by day name and days. Each day should appear exactly once in the set of daytypes. In the table above:

	
•

	

All weekdays are of day DAYTYPE_0.

	
•

	

All weekend are of DAYTYPE_1.

	
•

	

Seasonal peaks are of DAYTYPE_2.

For more information on srs_rules table configuration, refer to the
Chapter 14
,
Distribution Management Application Configuration
.

Power Flow Engineering Data Maintenance

To refresh the DMS applications with the updated data, you must restart PFService. PFService may be restarted at the Unix command prompt with:

 Action any.PFService restart

The users are also able to update some type of DMS data with PFService running:

	
•

	

To re-initialize system source data with PFService running, execute:

 Action any.PFService updatesystemsources

	
•

	

To re-initialize reload system load data with PFService running, execute:

 Action any.PFService updatesystemloads

	
•

	

To re-initialize system capacitor data with PFService running, execute:

 Action any.PFService updatesystemshunts

	
•

	

To re-initialize system transformer data with PFService running, execute:

 Action any.PFService updatesystemxfmrs

	
•

	

To re-forecast Feeder Load Management data with new equipment ratings after a model build, execute:

 Action any.PFService flm reforecast

Spatially Enabling the Data Model for Advanced Spatial Analytics

The ces_parameters table contains a set of attributes that are used to enable the NMS electrical model for Oracle Utilities Advanced Spatial Analytics. The following table describes these attributes.

	

ces_parameters attribute

	

Description

	

MBS_GEO_SRID

	

The Oracle Spatial reference ID for the geographic spatial layer.

	

MBS_GEO_MINX

MBS_GEO_MAXX

MBS_GEO_MINY

MBS_GEO_MAXY

	

The minimum and maximum values for the two coordinate systems.

	

MBS_LL_SRID

	

The Oracle Spatial reference ID for the lat/long spatial layer.

	

MBS_GEO_CSMAP_COORDSYS

	

The CS_MAP-defined geographic coordinate system.

	

MBS_LL_CSMAP_COORDSYS

	

The CS_MAP-defined lat/long coordinate system.

NMS CIM Import and Export Tools

NMS has two tools to support import and exporting CIM data: cim2mp and CIMExporter, respectively.

CIM Import

The CIM import processor, cim2mp.ces, feeds directly into the standard NMS model build process. It takes a CIM-formatted file and converts it into an NMS model preprocessor (mp) file. Once the files are in the .mp file format, the Model Engineer configures the rest of the model interface just as they would with any GIS-supplied .mp file.

Usage:

	

	

cim2mp.ces

cim_file mpfile

	

	

Example:

	

	

cim2mp.ces 3513.rdf 3513.mp

CIM Export

The CIM export tool, CIMExporter.ces, exports a specific set of components from the NMS .mb file in CIM/IEC .xml/.rdf file format. The resulting file should be able to be imported by a CIM-compliant model consumer.

Usage:

	

	

CIMExporter.ces

mbfile cim_file

Example:

	

	

CIMExporter.ces 3513.mb 3513.rdf

The CIMExporter.ces configuration file, CIMExport.properties, is located in the $NMS_HOME/ sql directory. The product version of this properties file is installed by default. Copy the product file to your project/sql directory and make any changes needed. Run nms-install-config to install the project/sql version into the $NMS_HOME/sql directory.

Note : running nms-install-config will overwrite the product version.

CIMExport.properties can be used to:

	
1.

	

 map NMS classes to CIM classes

	
2.

	

 specify the NMS attributes to map to CIM attributes

	
3.

	

 enable catalog lookup for powerflow line values

Database Maintenance

As general maintenance, you should establish a schedule to analyze tables, defragment your database, and purge historical/unnecessary data (then re-analyze the tables). You should also set up a schedule to backup your database and archive the backups.

This chapter describes all of these processes as well as the process of reconciling differences in database requirements when you upgrade your model to a new release of Oracle Utilities Network Management System.

It includes the following topics:

	
•

	

Oracle Configuration

	
•

	

Purging Historical Data

	
•

	

Applying Migrations

Oracle Configuration

The following database settings are suggested for at least a minimum level of performance for an Oracle database. Any of these suggestions can be disregarded if an experienced Oracle DBA determines that other settings may offer better overall system performance. However, if any changes are made to any suggested parameters, performance of the system may be affected.

Indexes

Indexes should not be placed on the same physical disk as the data resides. If disk striping is being used then this requirement is not as critical, and may be ignored if enough disks are being employed.

Generating Statistics

As mentioned in a previous section of this chapter, tables should be analyzed periodically. The frequency can be determined by an experienced DBA, but it is suggested that this be done at least weekly. This ensures that the Oracle statistics will be kept up to date for all of the database tables.

Oracle Parameter settings

The Oracle Utilities Network Management System requires the Oracle RDBMS has enough memory to support the expected end user performance. Oracle RDBMS can automatically manage shared memory, but it is suggested that the following parameter be set to define the total amount of memory that is available.

	
•

	

sga_target - This parameter should be set to at least 1G and could be set higher depending on the size of the database

Make Tablespaces Locally Managed

Dictionary managed tablespaces are more expensive on performance. It is suggested that the Oracle Utilities Network Management System tablespaces be setup as locally managed.

Block Size

If possible, the disk block size of the database should be a minimum of16K, but could be set larger on recommendations from an experienced DBA.

Purging Historical Data

As tables continue to grow, many of their rows become "inactive." The "inactive" data could be historical outage data (completed and/or cancelled outages) or old model build data that is no longer needed.

You should develop a plan to purge the extraneous data from the operational tablespaces (back it up or delete it) on a regular basis. After the data is purged, re-analyze these tables. This process requires proper planning and design because you do not want to lose important information required for reporting or troubleshooting.

Guidelines and Considerations

When developing your plan, it is helpful to understand how the purging process works.

From the facilities tables in the operations database, the usage statement is:

mb_purge.ces [-runfile] [-rows <integer>]

 [-days <integer> | -date <MMDDYY>]

 [-purge] [-analyze] [-table <table_name>]

 [-debug] [-showme]

This script can purge obsolete data from model build tables or update Oracle statistics for the tables. The age of data is determined by the DEATH column.

Parameters are described below:

	
•

	

If the -purge option is provided, an SQL file called mb_purge.sql is generated. When this SQL file is executed (by using the -runfile option described below), all obsolete rows are deleted.

	
•

	

If the -runfile option is provided, the mb_purge.sql file is executed. If this parameter is not specified, no tables are purged.

	
•

	

Use the -rows parameter to limit how much data is deleted with each command, to prevent filling up the rollback segment.

	
•

	

Use either of the following options to specify the range of data:

	
•

	

-days : All rows older than this many days are removed.

	
•

	

-date : All rows older than the given date are removed.

	
•

	

If -analyze is provided, the Oracle statistics are updated.

	
•

	

If a table is provided to the script in -table, then the script is only executed against that table. Otherwise, all tables that have a DEATH_PATCH column are processed.

	
•

	

The -debug option prints out extra information for debugging purposes.

	
•

	

If the -showme option is used, the script just prints out the number of rows that could be purged from each eligible table.

Compatibility

An Oracle Utilities Network Management System schema is not backward compatible with Oracle Utilities Network Management System applications. Schema changes occur and are modified as the code and database move forward in time.

For example, it is unlikely that a database which has been migrated or built at version 1.7.10 code level will work with version 1.8.0 code level. However, data models are forward compatible, because Oracle Utilities Network Management System applications can migrate the database forward, making the necessary changes.

Thus, when backing up the database, you should note the Oracle Utilities Network Management System release level that was last operating against the database dump. That way, if there are other systems with older code, the data model is not imported into those systems and problems are not introduced.

Software

The Oracle Utilities Network Management System software is likely to be the most static data on the system. It should only be changing with upgrades. The need for software backup is generally low if the software is installed on several machines locally, but a weekly backup may be needed if there are maintenance scripts and SQL files being updated.

Map Files

Map files are replicated on a number of machines throughout the network, but they will change frequently. Data model files should be backed up once per week at minimum or nightly for frequently changing files.

Compatibility

An Oracle Utilities Network Management System schema is not backward compatible with Oracle Utilities Network Management System applications. Schema changes occur and are modified as the code and database move forward in time.

For example, it is unlikely that a database which has been migrated or built at version 1.7.10 code level will work with version 1.8.0 code level. However, data models are forward compatible, because Oracle Utilities Network Management System applications can migrate the database forward, making the necessary changes.

Thus, when backing up the database, you should note the Oracle Utilities Network Management System release level that was last operating against the database dump. That way, if there are other systems with older code, the data model is not imported into those systems and problems are not introduced.

Software

The Oracle Utilities Network Management System software is likely to be the most static data on the system. It should only be changing with upgrades. The need for software backup is generally low if the software is installed on several machines locally, but a weekly backup may be needed if there are maintenance scripts and SQL files being updated.

Map Files

Map files are replicated on a number of machines throughout the network, but they will change frequently. Data model files should be backed up once per week at minimum or nightly for frequently changing files.

Compatibility

An Oracle Utilities Network Management System schema is not backward compatible with Oracle Utilities Network Management System applications. Schema changes occur and are modified as the code and database move forward in time.

For example, it is unlikely that a database which has been migrated or built at version 1.7.10 code level will work with version 1.8.0 code level. However, data models are forward compatible, because Oracle Utilities Network Management System applications can migrate the database forward, making the necessary changes.

Thus, when backing up the database, you should note the Oracle Utilities Network Management System release level that was last operating against the database dump. That way, if there are other systems with older code, the data model is not imported into those systems and problems are not introduced.

Software

The Oracle Utilities Network Management System software is likely to be the most static data on the system. It should only be changing with upgrades. The need for software backup is generally low if the software is installed on several machines locally, but a weekly backup may be needed if there are maintenance scripts and SQL files being updated.

Map Files

Map files are replicated on a number of machines throughout the network, but they will change frequently. Data model files should be backed up once per week at minimum or nightly for frequently changing files.

Applying Migrations

The Apply Migrations process migrates the model of an older Oracle Utilities Network Management System release to that of a new software version. Based on a release level identifier, the migration process determines the differences between the current model and that of a new release. After the installation of a new release of software, and the loading of a copy of your existing production database, you will need to do the following:

	
•

	

Execute the $CES_HOME/bin/ces_setup.ces script

This script will call another script called ces_apply_migrations.ces, which determines the differences between the release level of the software and the model database. This script then determines the required and optional migrations by accounting for differences in the release database requirements.

Manual Migrations

If a manual migration is required, the ces_setup.ces script will stop at that point and alert the user of the required manual migration. When this occurs, please see the corresponding manual migration file in the $NMS_HOME/migration/manual directory for details on what is required for this migration. The files in this directory are named XXXXX.txt where XXXXX = the bug or PR number.

The $NMS_CONFIG/migration/data/<project>_config_ready.dat file serves as a "sign-off" document for the Oracle Utilities Network Management System project team. As you determine that a manual migration has been completed (or is not needed for your system), you must add the corresponding Bug numbers to the $NMS_CONFIG/migration/data/<project>_config_ready.dat file putting one Bug number per line. Once you have edited this file, you can run $CES_HOME/bin/nms-install-config to copy it to the $NMS_HOME/migration/data directory or manually copy the file there if you prefer. This signals the migration script that this particular manual migration has been completed. Once the file has been properly copied to $NMS_HOME/migration/data, you need to rerun the ces_setup.ces script. Continue this process until all manual and automated migrations are executed.

It should be noted that the bug numbers indicated as part of the manual migration may not match up with the bug numbers found in the PFD (Product Fix Document) documents that were supplied with the release. This is due to the fact that when corrections are merged from one release to another, separate bugs are created for each release. The migrations however always refer back to the original bug, which may not have been for the release that your project is currently on. When resolving manual migration issues, always refer back to the text files placed in the $NMS_HOME/migration/manual directory and not the PFD document associated to that bug fix.

Command Line Options

The ces_apply_migrations.ces script can be initiated directly from the command line in order to view some of the things that it will be doing when started from the ces_setup.ces script. The following table describes all of the command line options for this script.

	

Option

	

Description

	

-debug

	

Displays debug information.

	

-showme

	

List all processes that would be executed, but do not actually execute any programs or SQL files.

	

-needConfig

	

Displays a list of migrations that are required by a project.

	

-listMigrations

	

Displays a list of migrations needed without applying them.

Note : The ces_apply_migrations script should not be run without any command-line arguments since that would cause the migrations to actually be executed. The command-line arguments listed above are to be used with the script so that it can be run in a "show only" mode but won't actually do the migrations.

Installing Migration Files

The data files that are required for the migration process are installed in the $NMS_HOME/ migration/data directory. After making changes to the project-specific $NMS_CONFIG/migration/data/<project>_config_ready.dat file and an optional special $NMS_CONFIG/migration/data/<project>_migration.dat file, run nms-install-config script to install them into the $NMS_HOME/migration/data directory.

The Migration Process

The ces_apply_migrations.ces script determines the database differences by comparing the database release level in the ces_parameters table with the software release levels found in the software_release_id.dat and software_release_levels.dat files. Based on these differences, it will create a list containing all of the necessary migrations.

The migration process, or ces_apply_migrations.ces, finds the necessary migrations in the $NMS_HOME/migration/data/pr_migration.dat file and the $NMS_HOME/migration/data/product_pr_migration.dat file, which contains the list of PRs, releases, patch levels, and configuration types. If there are project-specific migrations, then a optional <project>_pr_migration.dat file is also used.

The pr_migration.dat files resemble the following example:

	

PR

	

Release

	

Patch

	

Required

	

Config Required

	

Script Exists

	

ConfigType

19254

	

5.5

	

3

	

Y

	

Y

	

Y

	

config_sql

	

19831

	

6.0

	

3

	

Y

	

N

	

Y

	

schema_sql

The following table describes the pr_migration.dat file columns.

	

Column

	

Description

	

PR

	

Bug or Problem Report (PR) number for the migration.

	

Release

	

Migration release level, two numbers not including the first digit. For example, release 1.8.1 would be just 8.1 in this field.

	

Patch

	

Migration patch level. If the release if 1.8.1.2, then the Patch would be 2.

	

Required

	

Whether or not this migration is required for the system to function properly. If set to Y, all projects would be forced to execute this migration when encountered. A value of N means that the migration is optional, and it would be skipped for any projects that do not list it within their <proj>_config_ready.dat file.

	

Config Required

	

Whether or not configuration is required by a project for the system to function properly. This value is set to Y whenever a change is made that requires configuration work. For instance, if a new required column is added to a configuration table, the population of this new column properly is the domain of the project engineer, not the developer. Setting this field to Y will flag to all project engineers that this migration requires their attention before the migration can be executed. The specific instructions for configuration migration must be documented in the PR's Migration section in gnats. Project engineers signify that the configuration has been examined and completed by added this migration PR to the <proj>_config_ready.dat file.

	

Script Exists

	

Indicates whether a script exists for the migration. For example, if a script exists for PR 19254, then there is a script pr19254_migration.ces that performs the migration. Not all migrations involve explicit scripts. As an example, a configuration table change would normally not require a migration. However, if it is important that a new configuration column be properly populated, this must be flagged for project engineers. This is done by adding the PR to pr_migration.dat, setting Config Required to Y and Script Exists to N. Even though there is no migration script, the migration process will not proceed until the project engineer has signified that the configuration is complete by adding the PR to the <proj>_config_ready.dat file.

	

Config Type

	

Describes the type of configuration change. Valid values are:

	
•

	

config_sql - A configuration SQL file has changed.

	
•

	

schema_sql - A schema SQL file has changed.

	
•

	

retain_sql - A retain SQL file has changed.

	
•

	

core_sql - A core (required) data SQL file has changed.

	
•

	

data - Model (facilities) data is being migrated.

	
•

	

app_defaults - New or obsolete application default options.

	
•

	

map_rebuild - The migration script will regenerate map files.

	
•

	

metafile_rebuild - The script will regenerate all map metafiles.

	
•

	

service_restart - Services must be restarted.

	
•

	

environment_restart - All user environments must be restarted.

Correcting Warnings and Errors

The table below shows the corrections for some possible errors you might receive when running the ces_apply_migrations.ces script.

	

Warning

	

Remedy

	

WARNING THE FOLLOWING MIGRATIONS NEED CONFIGURATION

PR_NUMBER RELEASE_PATCH

	

This warning is displayed when migrations requiring manual changes are found. To determine the necessary changes, refer to the corresponding file in the $NMS_HOME/migration/manual directory. After making the manual changes, add the PR number to the $NMS_CONFIG/migration/<project>_config_ready.dat file.

	

DATABASE RELEASE LEVEL IS GREATER THAN SOURCE RELEASE LEVEL

MIGRATING BACKWARDS NOT SUPPORTED

	

This error indicates that the schema level of the database is greater than the runtime executables that are being used. You can return to a prior release if you execute the ces_setup.ces script with the -clean command line option and perform a model build. You should not return to a prior release without running a ces_setup.ces -clean and a model build, for there may be unresolved problems that could cause system instability.

The Migration Process

The ces_apply_migrations.ces script determines the database differences by comparing the database release level in the ces_parameters table with the software release levels found in the software_release_id.dat and software_release_levels.dat files. Based on these differences, it will create a list containing all of the necessary migrations.

The migration process, or ces_apply_migrations.ces, finds the necessary migrations in the $NMS_HOME/migration/data/pr_migration.dat file and the $NMS_HOME/migration/data/product_pr_migration.dat file, which contains the list of PRs, releases, patch levels, and configuration types. If there are project-specific migrations, then a optional <project>_pr_migration.dat file is also used.

The pr_migration.dat files resemble the following example:

	

PR

	

Release

	

Patch

	

Required

	

Config Required

	

Script Exists

	

ConfigType

19254

	

5.5

	

3

	

Y

	

Y

	

Y

	

config_sql

	

19831

	

6.0

	

3

	

Y

	

N

	

Y

	

schema_sql

The following table describes the pr_migration.dat file columns.

	

Column

	

Description

	

PR

	

Bug or Problem Report (PR) number for the migration.

	

Release

	

Migration release level, two numbers not including the first digit. For example, release 1.8.1 would be just 8.1 in this field.

	

Patch

	

Migration patch level. If the release if 1.8.1.2, then the Patch would be 2.

	

Required

	

Whether or not this migration is required for the system to function properly. If set to Y, all projects would be forced to execute this migration when encountered. A value of N means that the migration is optional, and it would be skipped for any projects that do not list it within their <proj>_config_ready.dat file.

	

Config Required

	

Whether or not configuration is required by a project for the system to function properly. This value is set to Y whenever a change is made that requires configuration work. For instance, if a new required column is added to a configuration table, the population of this new column properly is the domain of the project engineer, not the developer. Setting this field to Y will flag to all project engineers that this migration requires their attention before the migration can be executed. The specific instructions for configuration migration must be documented in the PR's Migration section in gnats. Project engineers signify that the configuration has been examined and completed by added this migration PR to the <proj>_config_ready.dat file.

	

Script Exists

	

Indicates whether a script exists for the migration. For example, if a script exists for PR 19254, then there is a script pr19254_migration.ces that performs the migration. Not all migrations involve explicit scripts. As an example, a configuration table change would normally not require a migration. However, if it is important that a new configuration column be properly populated, this must be flagged for project engineers. This is done by adding the PR to pr_migration.dat, setting Config Required to Y and Script Exists to N. Even though there is no migration script, the migration process will not proceed until the project engineer has signified that the configuration is complete by adding the PR to the <proj>_config_ready.dat file.

	

Config Type

	

Describes the type of configuration change. Valid values are:

	
•

	

config_sql - A configuration SQL file has changed.

	
•

	

schema_sql - A schema SQL file has changed.

	
•

	

retain_sql - A retain SQL file has changed.

	
•

	

core_sql - A core (required) data SQL file has changed.

	
•

	

data - Model (facilities) data is being migrated.

	
•

	

app_defaults - New or obsolete application default options.

	
•

	

map_rebuild - The migration script will regenerate map files.

	
•

	

metafile_rebuild - The script will regenerate all map metafiles.

	
•

	

service_restart - Services must be restarted.

	
•

	

environment_restart - All user environments must be restarted.

Correcting Warnings and Errors

The table below shows the corrections for some possible errors you might receive when running the ces_apply_migrations.ces script.

	

Warning

	

Remedy

	

WARNING THE FOLLOWING MIGRATIONS NEED CONFIGURATION

PR_NUMBER RELEASE_PATCH

	

This warning is displayed when migrations requiring manual changes are found. To determine the necessary changes, refer to the corresponding file in the $NMS_HOME/migration/manual directory. After making the manual changes, add the PR number to the $NMS_CONFIG/migration/<project>_config_ready.dat file.

	

DATABASE RELEASE LEVEL IS GREATER THAN SOURCE RELEASE LEVEL

MIGRATING BACKWARDS NOT SUPPORTED

	

This error indicates that the schema level of the database is greater than the runtime executables that are being used. You can return to a prior release if you execute the ces_setup.ces script with the -clean command line option and perform a model build. You should not return to a prior release without running a ces_setup.ces -clean and a model build, for there may be unresolved problems that could cause system instability.

Troubleshooting and Support

If you experience problems with your Oracle Utilities Network Management System, there are a number of tools and resources available to help you identify and resolve problems. These include log files, core files, Knowledge Management Documents available on My Oracle Support, and Oracle Customer Support.

This chapter includes the following topics:

	
•

	

Log Files

	
•

	

Core Files

	
•

	

Troubleshooting an Issue

	
•

	

Contacting Oracle Support

Log Files

	
•

	

The log files are the best tools for tracking down the source of a problem. Very seldom does something crash or a tool behave strangely without an entry being logged. There are many different types of log files created by the application software or other 3rd party products. The sections below describe the locations and naming conventions for these logs. Before reporting an issue to Oracle Customer Support, please review the log files for critical information that may help Oracle Customer Support solve your problem.

Oracle Utilities Network Management System Log Files

Application log files are located in the directory specified by the CES_LOG_DIR environment variable located in the ~/.nmsrc file.

Note : CES_LOG_DIR = $NMS_HOME/logs by default.

	
•

	

There will be one log file in this directory for each actively running service.

	
•

	

After a process has been stopped and restarted, the old log file for that particular server is moved to the old_log subdirectory within the CES_LOG_DIR directory.

	
•

	

After the number of days specified in $CES_DAYS_TO_LOG, old log files for a given process in the $CES_LOG_DIR/old_log directory will be purged on the next attempt to start that process. The default for CES_DAYS_TO_LOG is 7 (days). Thus, old logs will only be retained for 1 week by default.

Oracle Utilities Network Management System Log File Naming Conventions

Within the log directory, the following naming conventions apply:

	
•

	

There is one log file for each Service actively executing on the server. Service logs are named <Service Name>.<date>.<time>.log. Example log files would be:

 DBService.2010052898.111721.log

 DDService.20100528.111800.log

Trimming and Archiving Application Oracle Utilities Network Management System Log Files

As log files grow, they generally need to be removed or archived. When determining the maximum size and content of log files, consider your company's needs:

	
•

	

If accounting files need to be kept for an audit, a larger log file is justifiable. Backups of those files might even be in order.

	
•

	

After the number of days specified in $CES_DAYS_TO_LOG (environment variable), the old log files for a given process in the $CES_LOG_DIR/old_log directory will be purged on the next attempt to start that process. The default for $CES_DAYS_TO_LOG is 7 (days). Thus, old logs will only be retained for 1 week by default.

Issues like these should be carefully assessed, and you should develop a policy around your company's specific needs.

Java Application Server Log Files

The WebLogic server log files are written to the following location:

	
•

	

BEA_HOME/user_projects/DOMAIN_NAME

where:

	
•

	

BEA_HOME - Oracle WebLogic Server installation directory

	
•

	

DOMAIN_NAME - WebLogic domain name used for Oracle Utilities Network Management System

	
•

	

SERVER_NAME - WebLogic server name used for Oracle Utilities Network Management System

Java Client Application Logs

Java client applications executing on a user's desktop by default do not generate log files. To obtain their output (error messages, exceptions and debug information) the Windows Java console can be used but it must first be enabled.

Use following steps to enable the Java console in Windows:

	
1.

	

Open the Control Panel (Start -> Settings -> Control Panel).

	
2.

	

Open the Java Control Panel by double-clicking on the Java icon in the Control Panel.

	
3.

	

Select the Advanced tab of the Java Control Panel.

	
4.

	

Set Java console parameter to 'Show console' (Java console will be started maximized) or 'Hide console' (Java console will be started minimized).

	
5.

	

Under Settings -> Debugging, enable tracing and logging. The default location for a java log is %USERPROFILE%\Application Data\Sun\Java\Deployment\log.

	
6.

	

Press OK.

Isis Log Files

There are two types of Isis log files:

	
•

	

An Isis startup log, which logs everything before protos is completely started, should it exit for some reason. The isisboot program starts isis (isis in turn starts protos) using the nohup command, which makes protos immune to hang-ups, like exiting the terminal after starting Isis. The startup log is called isis.log and can be found in $NMS_HOME/etc/run_isis. If you cannot start Isis, check this log.

	
•

	

The protos log contains log information for the running protos process. This file is site- specific, and the name is based on the site number and port number of the machine on which protos is running. The log for the protos process can be found in $CES_LOG_DIR/run.isis/<site #>.logdir/<site #>_protos.<date>.<time>.log.

	
•

	

When Isis is restarted, the old log files will be archived into the $CES_LOG_DIR/run.isis/ <site#>.logdir/old_log directory. The will be automatically removed after $CES_DAYS_TO_LOG if/when Isis is restarted.

Oracle RDBMS Log Files

Many times, there is an error in an Application log file that points to some sort of database problem. DBService may log that at a certain time the database was unavailable to answer queries. Look in the database logs to find the answer. These logs can alert you to problems with the RDBMS configuration, software, and operations. Other instances of a dbservice (TCDBService, PFDBServicee, MBDBService may also have configured and running. Each of these should be reviewed for errors.

Refer to the Oracle RDBMS documentation for locations and instructions for viewing Oracle RDBMS logs.

Operating System Log Files

Another place to look for problems is in the operating system logs.

Refer to the operating-system-specific documentation for locations and instructions for viewing operating system logs (generally various forms of syslog - like /var/log/messages for Linux).

It is generally recommended that syslog be turned on for a production system. In particular, the Oracle Utilities Network Management System uses the syslog to track fatal errors and log the start/stop time of every Oracle Utilities Network Management System-specific Unix process.

Entries like the following can be useful when trying to track down which application binary a particular Unix process ID belongs to:

	
•

	

May 30 12:47:57 msp-pelin01 CES::corbagateway[26346]: my_address = (2/7:26346.0)

	
•

	

May 30 12:48:00 msp-pelin01 CES::corbagateway[26346]: **INFO*** [corbagateway-26346] for [msp-pelin01] exiting....

Core Files

On Unix, if a process has either committed an error or over-taxed the system resources, the O/S will kill it rather than letting it take down the operating system. When this happens, the operating system dumps the contents of the memory occupied by the process into a file named "core." These files can sometimes be analyzed to better understand the reason for the failure.

Normally, you should question the production of a core file to see if there are any extraneous reasons why the O/S is dumping a process. If you do not find anything, retrieve the core file and analyze it.

See
Core File Naming Configuration
 for OS specific information about core file naming.

Searching for Core Files

To search for core files, complete these steps:

	
1.

	

Search for core files with the find command:

 $ find . -name core* -exec ls -l {} \;

Expected result:

 -rw------- 1 ces users 32216692 Oct 15 16:05 ./core

This executes an "ls -l" on any files found in the tree starting from the current working directory. This should be done from the $NMS_HOME directory and (if it differs from $NMS_HOME) the $HOME directory.

If a service cores, the core file can be found in the $CES_LOG_DIR/SavedCores or (if SMService failed or is not configured with a CoreScript to detect and/or move the core file) the $CES_LOG_DIR/run.<service> directory. Note that SMService will rename a service core file to <hostname>-<service>-<date>.<time>.core to minimize the chance of core files overwriting each other.

	
2.

	

Type the following to determine where a core file came from:

 $ file ./core

Below is a sample result from an AIX server:

 core: AIX core file fulldump 64-bit, JMService - received SIGBUS

The core file referenced above is the result of a JMService core dump. The output gives:

	
•

	

the file name (which is always "core"),

	
•

	

which program/process the file came from (JMService), and

	
•

	

optionally, the message that the program received from the OS (SIGBUS).

	
3.

	

Generally the most useful thing you can do is to identify what is called the core stack trace-- the specific functions that where called (in order) leading up to the violation that caused the operating system to generate the core file. The stack trace is often a useful piece of information that, if available, should be captured for later analysis. Details on navigating a core trace can be found later in this document.

	
4.

	

Use the strings command to get some more information out of the file, if possible. Type:

$ strings core | head

Sometimes the messages returned, such as "Out of memory" or "I/O error," give an idea of what might have happened.

Troubleshooting an Issue

A good first diagnosis is to run the Unix "top" command or equivalent (topas on AIX or /usr/ bin/prstat on Solaris). This will display information such as what processes are running, current memory usage, and free memory.

There are several logs that are useful for troubleshooting. These include service logs, SMService logs, and PID logs. The directory specified by CES_LOG_DIR environment variable provides information for where the logs are located.

Service Logs

Customer Support will often ask about service logs. Looking for DBService errors is a common starting place in determining if the problem is a database issue or a services issue. DBService errors can appear in DBService, TCDBService, and MBDBService or some other *DBService, depending upon which service is having a problem interacting with the database.

If a particular service cores, Customer Support will want to know if the service has any error messages in the log file right before it failed. The most relevant portion of the log is the text concerning what happened right before the dump. Often, there are important messages explaining why the service exited.

SMService Log

Another key service log is the SMService log. This log records if/when SMService attempts to restart other services.

PID Logs

PID logs are files with an integer value suffixed by .log. When they are generated, they also create a <pid>.out file. The .out file is unnecessary and can be removed. <pid> logs are generated in one of two ways.

	
•

	

cmd snapshot command . This will create <pid> logs for all Isis processes currently running, whether they are services or tools. They appear in the following locations: services will appear in the $CES_LOG_DIR/run.<service> directory of the user that starts services. Tools will appear in the directory where ceslogin was started (typically the HOME directory of the user). If a tool is started from the command line, it will appear in the directory where the tool was started.

	
•

	

kill -usr2 <pid> . This will NOT actually kill the tool.It will send a signal to the processs which will create a <pid>.log for that one PID, however.

Note: You can do this multiple times, and the logs will append additional dumps into the same log file as long as the process continues to run. It will not remove or replace logs upon additional snapshots of the same process. Customer Service recommends that these logs be cleaned up upon the end of investigating an issue.

Service Logs

Customer Support will often ask about service logs. Looking for DBService errors is a common starting place in determining if the problem is a database issue or a services issue. DBService errors can appear in DBService, TCDBService, and MBDBService or some other *DBService, depending upon which service is having a problem interacting with the database.

If a particular service cores, Customer Support will want to know if the service has any error messages in the log file right before it failed. The most relevant portion of the log is the text concerning what happened right before the dump. Often, there are important messages explaining why the service exited.

SMService Log

Another key service log is the SMService log. This log records if/when SMService attempts to restart other services.

PID Logs

PID logs are files with an integer value suffixed by .log. When they are generated, they also create a <pid>.out file. The .out file is unnecessary and can be removed. <pid> logs are generated in one of two ways.

	
•

	

cmd snapshot command . This will create <pid> logs for all Isis processes currently running, whether they are services or tools. They appear in the following locations: services will appear in the $CES_LOG_DIR/run.<service> directory of the user that starts services. Tools will appear in the directory where ceslogin was started (typically the HOME directory of the user). If a tool is started from the command line, it will appear in the directory where the tool was started.

	
•

	

kill -usr2 <pid> . This will NOT actually kill the tool.It will send a signal to the processs which will create a <pid>.log for that one PID, however.

Note: You can do this multiple times, and the logs will append additional dumps into the same log file as long as the process continues to run. It will not remove or replace logs upon additional snapshots of the same process. Customer Service recommends that these logs be cleaned up upon the end of investigating an issue.

Service Logs

Customer Support will often ask about service logs. Looking for DBService errors is a common starting place in determining if the problem is a database issue or a services issue. DBService errors can appear in DBService, TCDBService, and MBDBService or some other *DBService, depending upon which service is having a problem interacting with the database.

If a particular service cores, Customer Support will want to know if the service has any error messages in the log file right before it failed. The most relevant portion of the log is the text concerning what happened right before the dump. Often, there are important messages explaining why the service exited.

SMService Log

Another key service log is the SMService log. This log records if/when SMService attempts to restart other services.

PID Logs

PID logs are files with an integer value suffixed by .log. When they are generated, they also create a <pid>.out file. The .out file is unnecessary and can be removed. <pid> logs are generated in one of two ways.

	
•

	

cmd snapshot command . This will create <pid> logs for all Isis processes currently running, whether they are services or tools. They appear in the following locations: services will appear in the $CES_LOG_DIR/run.<service> directory of the user that starts services. Tools will appear in the directory where ceslogin was started (typically the HOME directory of the user). If a tool is started from the command line, it will appear in the directory where the tool was started.

	
•

	

kill -usr2 <pid> . This will NOT actually kill the tool.It will send a signal to the processs which will create a <pid>.log for that one PID, however.

Note: You can do this multiple times, and the logs will append additional dumps into the same log file as long as the process continues to run. It will not remove or replace logs upon additional snapshots of the same process. Customer Service recommends that these logs be cleaned up upon the end of investigating an issue.

Using the Action Command to Start a New Log File

There is also a feature that uses the Action command to start a new log file without stopping anything. This can be very useful in isolating a portion of the log file when recreating a problem. The command is:

Action any.<NMS_ISIS_process_name> relog

For example: Action any.JMService relog

The Action command can also be used to turn debug on and off for services or tools. This can also be used with the relog feature to better isolate debug for a particular user scenario.

The following command will turn debug on:

 Action any.<service> debug 1

The following command will turn debug off:

 Action any.<service> debug 0

Core Files

Core files are other useful tools for troubleshooting. Core files are located in the CES_LOG_DIR/
run.<service> directory in the username that started services, or in the directory where a tool was started (usually the home directory of the user).

After performing a " kill -usr2" on a hung process, following it up with a "kill -abrt
<pid>" can be useful. This will cause the process to dump core and the process will be dead.

Note : Always use "kill -usr2" before "kill -abrt" because the -abrt option terminates the process. Make sure it is ok to terminate the process before attempting "kill -abrt."

The command " file core" will generally (depending on the operating system involved) identify which process generated the core. Later core files can overwrite earlier core files. Renaming the core file to something like core.<process> can prevent this.

SMService can be set up to automatically find, rename, and consolidate core files into a single directory ($CES_LOG_DIR/SavedCores by default). You can change what happens to core files captured by SMService by modifying the sms_core_save.ces script.

When a tool or service cores, the investigation is helped by sending the stack trace in the incident report. A stack trace can be generated using the dbx (Solaris and AIX) or gdb (Linux) tool. The syntax is as follows:

Solaris:

dbx <path to binary directory> <path to corefile>

AIX:

dbx -d 10000 <path to binary directory> <path to corefile>

Linux :

gbx <path to binary directory> <path to corefile>

For example:

dbx $CES_HOME/bin/JMService ~/run.JMService/core.

Press the space bar until you get a prompt and then type the following commands:

Solaris:

where

threads

dump

regs

quit

AIX:

where

thread

dump

registers

quit

Linux:

where

info threads

info locals

info all-reg

thread apply all where

Then include the results of these commands when you report the incident.

monitor_ps_sizes.ces

The monitor_ps_sizes.ces script monitors the size of processes to identify potential leaks. It performs periodic snapshots of all running processes and warns the user of any processes that have grown greater than the specified size. It supports the following command-line options:

	

Option

	

Description

	

-n <program names>

	

 A comma-separated list of program names to monitor

	

-l <line number>

	

The line number that specifies the stable size in the process-size log file. Default: 3 (line numbers begin counting with 1)

	

-l <line number>

	

The line number that specifies the stable size in the process-size log file. Default: 3 (line numbers begin counting with 1)

	

-p <number>

	

The number of seconds to wait between snapshots. Default: 3600 (seconds)

	

-g <number>

	

The growth factor that triggers a report. Default: 1.75 (floating point numbers greater than 1 are valid)

	

-R <number>

	

The minimum process size that can be reported. Default: 5000 (units reported by ps)

	

-G <number>

	

A warning about a process is guaranteed to be generated if the process exceeds this size. Default: 40000 (units reported by ps)

	

-P <number>

	

The minimum number of seconds to wait between warnings. Default: 0 (seconds)

	

-O <number>

	

The maximum number of seconds to retain log files.Default: 172800 (seconds) if 0, old log files are not erased.

	

-u <email names>

	

A comma-separated list of users to email when there are processes warnings. Default: no email sent.

	

-s <email subject line>

	

The subject line to use to title email warnings about processes that are too big. Default: "process size warning for prod_model"

	

-a <command>

	

Command to perform on process when generating a warning. You can pass the program's name and/or PID via #PID# and #PROGRAM#

	

-A

	

Log the command's output

For example, to monitor JMService and MTService for user 'nms' when either gets larger than 500 meg or grows by 10%, use:

monitor_ps_sizes.ces -n MTService,JMService -fnms -p30 -R500000 -g1.1

Additional Troubleshooting Information

Additional troubleshooting information can be found on My Oracle Support at:

 http://support.oracle.com

Contacting Oracle Support

For support please contact Oracle Support at:

http://www.oracle.com/support/index.html

Setting Up Oracle Business Intelligence

This chapter describes how to set up Oracle Business Intelligence for Utilities for use with Oracle Utilities Network Management System. It includes the following topics:

	
•

	

Installing Business Intelligence

	
•

	

Installing Oracle Utilities Network Management System Business Intelligence Extractors

	
•

	

Running Oracle Utilities Network Management System Business Intelligence Extractors

	
•

	

Migrating from Performance Mart to Oracle Business Intelligence

Installing Business Intelligence

Installation of the Business Intelligence component is covered in a separate installation guide that comes with the Business Intelligence Media Pack download.

Note : If you are upgrading from a previous PerformanceMart data warehouse, please reference the
Migrating from Performance Mart to Oracle Business Intelligence
 for details on the upgrade process.

Oracle Business Intelligence must be properly installed before you can perform the remaining procedures described in this chapter.

Installing Oracle Utilities Network Management System Business Intelligence Extractors

If extracting from separate Oracle Utilities Network Management System environments into a common BI environment, export the optional CES_BI_DATA_SOURCE environment variable to distinguish between them. The default setting of this is 4. See
Migrating from Performance Mart to Oracle Business Intelligence
 for more details.

To install the business intelligence extractors, run the install_business_intelligence script. Once this script has been run, use the refresh_business_intelligence script for any subsequent configuration and schema changes. This script generates a log file, create_bi_extractors.log, which lists any errors.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Running Oracle Utilities Network Management System Business Intelligence Extractors

Extractor Overview

This section explains the extractor scripts, which should be configured to run in scheduled cron jobs. Each of these scripts creates a set of extract files, which are direct queries from NMS database views. The mapping of these views to BI database tables is documented with Oracle database comments. Access them by performing the following query in the NMS Database:

SELECT * FROM user_tab_comments WHERE table_name LIKE '%MODIFY_V' AND comments IS NOT NULL;

bi_common_extractor

This extracts the model-related information like devices and control zones. This script is designed to be run daily, after model changes.

bi_event_extractor

This extracts completed outages and call information. This script is designed to be run daily.

bi_customer_extractor

This extracts customer information. This script is designed to be run daily, after customer data changes.

bi_feeder_extractor

This extracts feeder load information. This script is designed to be run hourly to report average hourly loads.

bi_switch_extractor

This extracts planned switching information. This script is designed to be run daily to report switching activity.

nrt_extractor

This extracts current outage, call, and storm information. This script is designed to be run 3 to 4 times an hour, throughout the day.

Notes about Extractors

These scripts create extract .dat and .ctl files in the configured bi_extract_dir directory (recommended as $HOME/extract). These files will be read by the Business Intelligence import process.

Each script generates a log file named, for example, bi_common_extractor.log, which should list any errors.

To schedule the daily extracts (bi_common_extractor, bi_event_extractor, bi_switch_extractor and bi_event_extractor), they schedule them to run in the following order:

	
1.

	

bi_event_extractor

	
2.

	

bi_switch_extractor

	
3.

	

bi_common_extractor

	
4.

	

bi_customer_extractor

Note : The bi_feeder_extractor should not be run more frequently than once an hour, and the nrt_extractor can be scheduled to run every 15 minutes. The order that these two extractors run does not matter.

Importing Oracle Utilities Network Management System Extract Files

The extract files created by running the Oracle Utilities Network Management System Extractors must be moved to the directory specified in the EditFP.tcl script that is executed when Business Intelligence is installed. There are various mechanisms that a System Administrator can use to copy these files, including FTP scripts and Cross Mounting hard drives. However, Oracle does not provide any scripts to copy extract files, so a customer is responsible for putting these in place.

Once the extract files have been copied to the appropriate import directory, the Oracle Utilities Network Management System Process Flows described in the Oracle Utilities Network Management System Facts and Dimensions chapter of the Business Intelligence documentation need to be run to load the data contained in the files. The process flows corresponding to each extract program is documented in this chapter, and the import process and how to automate it is described in the Oracle Warehouse Builder chapter of the Business Intelligence documentation.

After importing the data, then the various Oracle Utilities Network Management System zones and portals that a customer has created can be opened or refreshed to view the Oracle Utilities Network Management System data in Business Intelligence.

The next steps are a method to import from the extracted files using a function call in sqlplus.

	
1.

	

Install the Function NMS_EXEC_WF_FNC to Execute Process Flows from SQLPLUS

	
•

	

For 10g, install the script nms_exec_wf_fnc_10.sql

 sqlplus birepownuser/birepownpasswd@birepown_instance < nms_exec_wf_fnc_10.sql > nms_exec_wf_fnc_10.sql.log

	
•

	

For 11g install the script nms_exec_wf_fnc_11.sql

sqlplus birepownuser/birepownpasswd@birepown_instance < nms_exec_wf_fnc_11.sql > nms_exec_wf_fnc_11.sql.log

	
2.

	

Make sure the following environment variables are set:

	
•

	

BIREPOWN_USER - BI Repository User

	
•

	

BIREPOWN_PASSWD - BI Repository Password

	
•

	

BIREPOWN_INSTANCE - SQL*Net connection to the BI Repository Database

	
3.

	

Run the Import Into DWADM Schema from the Extracted Files. For the daily extracts, set the following scripts to run on schedule after the entire daily extract has run, in the following order:

1. bi_customer_import - call this script after the bi_customer_extractor runs.

2. bi_common_import - call this script after the bi_common_extractor runs.

3. bi_switch_import - call this script after the bi_switch_extractor runs.

4. bi_event_import - call this script after the bi_event_extractor runs.

For the other two extracts, set the import to run after the extract has taken place:

	
•

	

bi_feeder_import - call this script after the bi_feeder_extractor runs.

	
•

	

bi_nrt_import - call this script after the nrt_extractor runs.

Migrating from Performance Mart to Oracle Business Intelligence

This section provides an overview of the schema differences that you must be aware of when migrating from Performance Mart to Oracle Business Intelligence.

In version 1.9 of the Oracle Utilities Network Management System, the Performance Mart and Executive Dashboard modules were replaced with Oracle Business Intelligence version 2.2.1. This section describes the differences between the two products, how to migrate an existing 1.7.10 Performance Mart database to Oracle Business Intelligence, and provides some guidelines on how to easily migrate existing reports to run against the Oracle Business Intelligence database.

For information not covered in this document, the Oracle Business Intelligence documentation is available for all supported releases, including the Oracle Utilities Network Management System Facts and Dimensions chapter that describes the schema and extraction processes that will be covered in this guide.

Schema Differences

The Oracle Business Intelligence database naming system is different than the Performance Mart schema, so every Oracle Utilities Network Management System object has a new name. Also, Oracle Business Intelligence utilizes a very strict star-schema approach, so many of the Command Centricity foreign key relationships do not exist.

Performance Mart Schema

The Performance Mart schema is a hybrid star-schema/relational model that was convenient for use with Executive Dashboard, and detail trouble reporting.

Oracle Business Intelligence Schema

Unlike Performance Mart, the Oracle Business Intelligence Schema utilizes exclusively a Star schema representation. This enables the Oracle Business Intelligence framework to efficiently create queries against the database tables, and allows for an efficient generic load process.

The following figure shows the star schema diagram for the Customer Outage Fact. This fact corresponds with the SERVICE_POINT_SUPPLY_NODES table in the Performance Mart schema. If you compare the relationships here with the relationships above, you will notice a lot more foreign keys in this document, but nothing related more than one step away from the basic fact table.

The other major difference between Performance Mart and Oracle Business Intelligence is the use of generic field names in the tables. This is done to allow different customers to extract different fields without having to change the user interface or extractor code. For example, the Device information is stored in the DEVICE_DETAILS table in Performance Mart and in the CD_DEVICE table in Oracle Business Intelligence.

The following table lists the fields in each table and how they map from one to another

	

Device_Details

	

CD_Device

	

DV_CLS

	

SRC_DEVICE_CLS

	

DV_IDX

	

SRC_DEVICE_IDX

	

DV_CODE

	

DEVICE_NAME

	

DV_VOLTAGE

	

Unmapped

	

DV_TYPE

	

DEVICE_CLASS_CD

	

DV_DESC

	

DEVICE_CLASS_DESCR

	

DV_ACTIVE

	

Unmapped

	

	

DEVICE_TYPE_CD

	

	

DEVICE_TYPE_DESCR

	

	

UDF1_CD

	

	

UDF1_DESCR

	

	

UDF2_CD

	

	

UDF2_DESCR

	

	

UDF3_CD

	

	

UDF3_DESCR

	

	

UDF4_CD

	

	

UDF4_DESCR

	

	

UDF5_CD

	

	

UDF5_DESCR

	

	

UDF6_CD

	

	

UDF6_DESCR

	

	

UDF7_CD

	

	

UDF7_DESCR

	

	

UDF8_CD

	

	

UDF8_DESCR

	

	

UDF9_CD

	

	

UDF9_DESCR

	

	

UDF10_CD

	

	

UDF10_DESCR

Schema Differences

The Oracle Business Intelligence database naming system is different than the Performance Mart schema, so every Oracle Utilities Network Management System object has a new name. Also, Oracle Business Intelligence utilizes a very strict star-schema approach, so many of the Command Centricity foreign key relationships do not exist.

Performance Mart Schema

The Performance Mart schema is a hybrid star-schema/relational model that was convenient for use with Executive Dashboard, and detail trouble reporting.

Oracle Business Intelligence Schema

Unlike Performance Mart, the Oracle Business Intelligence Schema utilizes exclusively a Star schema representation. This enables the Oracle Business Intelligence framework to efficiently create queries against the database tables, and allows for an efficient generic load process.

The following figure shows the star schema diagram for the Customer Outage Fact. This fact corresponds with the SERVICE_POINT_SUPPLY_NODES table in the Performance Mart schema. If you compare the relationships here with the relationships above, you will notice a lot more foreign keys in this document, but nothing related more than one step away from the basic fact table.

The other major difference between Performance Mart and Oracle Business Intelligence is the use of generic field names in the tables. This is done to allow different customers to extract different fields without having to change the user interface or extractor code. For example, the Device information is stored in the DEVICE_DETAILS table in Performance Mart and in the CD_DEVICE table in Oracle Business Intelligence.

The following table lists the fields in each table and how they map from one to another

	

Device_Details

	

CD_Device

	

DV_CLS

	

SRC_DEVICE_CLS

	

DV_IDX

	

SRC_DEVICE_IDX

	

DV_CODE

	

DEVICE_NAME

	

DV_VOLTAGE

	

Unmapped

	

DV_TYPE

	

DEVICE_CLASS_CD

	

DV_DESC

	

DEVICE_CLASS_DESCR

	

DV_ACTIVE

	

Unmapped

	

	

DEVICE_TYPE_CD

	

	

DEVICE_TYPE_DESCR

	

	

UDF1_CD

	

	

UDF1_DESCR

	

	

UDF2_CD

	

	

UDF2_DESCR

	

	

UDF3_CD

	

	

UDF3_DESCR

	

	

UDF4_CD

	

	

UDF4_DESCR

	

	

UDF5_CD

	

	

UDF5_DESCR

	

	

UDF6_CD

	

	

UDF6_DESCR

	

	

UDF7_CD

	

	

UDF7_DESCR

	

	

UDF8_CD

	

	

UDF8_DESCR

	

	

UDF9_CD

	

	

UDF9_DESCR

	

	

UDF10_CD

	

	

UDF10_DESCR

Schema Differences

The Oracle Business Intelligence database naming system is different than the Performance Mart schema, so every Oracle Utilities Network Management System object has a new name. Also, Oracle Business Intelligence utilizes a very strict star-schema approach, so many of the Command Centricity foreign key relationships do not exist.

Performance Mart Schema

The Performance Mart schema is a hybrid star-schema/relational model that was convenient for use with Executive Dashboard, and detail trouble reporting.

Oracle Business Intelligence Schema

Unlike Performance Mart, the Oracle Business Intelligence Schema utilizes exclusively a Star schema representation. This enables the Oracle Business Intelligence framework to efficiently create queries against the database tables, and allows for an efficient generic load process.

The following figure shows the star schema diagram for the Customer Outage Fact. This fact corresponds with the SERVICE_POINT_SUPPLY_NODES table in the Performance Mart schema. If you compare the relationships here with the relationships above, you will notice a lot more foreign keys in this document, but nothing related more than one step away from the basic fact table.

The other major difference between Performance Mart and Oracle Business Intelligence is the use of generic field names in the tables. This is done to allow different customers to extract different fields without having to change the user interface or extractor code. For example, the Device information is stored in the DEVICE_DETAILS table in Performance Mart and in the CD_DEVICE table in Oracle Business Intelligence.

The following table lists the fields in each table and how they map from one to another

	

Device_Details

	

CD_Device

	

DV_CLS

	

SRC_DEVICE_CLS

	

DV_IDX

	

SRC_DEVICE_IDX

	

DV_CODE

	

DEVICE_NAME

	

DV_VOLTAGE

	

Unmapped

	

DV_TYPE

	

DEVICE_CLASS_CD

	

DV_DESC

	

DEVICE_CLASS_DESCR

	

DV_ACTIVE

	

Unmapped

	

	

DEVICE_TYPE_CD

	

	

DEVICE_TYPE_DESCR

	

	

UDF1_CD

	

	

UDF1_DESCR

	

	

UDF2_CD

	

	

UDF2_DESCR

	

	

UDF3_CD

	

	

UDF3_DESCR

	

	

UDF4_CD

	

	

UDF4_DESCR

	

	

UDF5_CD

	

	

UDF5_DESCR

	

	

UDF6_CD

	

	

UDF6_DESCR

	

	

UDF7_CD

	

	

UDF7_DESCR

	

	

UDF8_CD

	

	

UDF8_DESCR

	

	

UDF9_CD

	

	

UDF9_DESCR

	

	

UDF10_CD

	

	

UDF10_DESCR

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

Performance Mart to BI Mapping

The following tables show how the default migration routine will move data from Performance Mart tables to Oracle Business Intelligence tables. Performance Mart tables not listed here will not be migrated to Oracle Business Intelligence. Project configuration changes done during the actual migration can change how these columns are migrated, so this list should not be used as a definitive guide to a specific project implementation.

CU_SERVICE_LOCATION_DETAILS

The data in the CU_SERVICE_LOCATION_DETAILS table is migrated to three different BI tables: CD_ACCT, CD_ADDR and CD_PREM. The following table shows which fields go into which table. The CU_SERV_LOC_KEY is used as the primary key in each of these tables.

	

CU_SERVICE_LOCATION_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_serv_loc_key

	

cd_acct

	

acct_key

	

cu_serv_account_number

	

cd_acct

	

src_acct_id

	

cu_serv_loc_id

	

cd_acct

	

acct_info

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_addr

	

addr_key

	

cu_serv_addr_1

	

cd_addr

	

addr_line1

	

cu_serv_addr_2

	

cd_addr

	

addr_line3

	

cu_serv_addr_3

	

cd_addr

	

addr_line4

	

cu_serv_city

	

cd_addr

	

udf1_cd, udf1_descr

	

cu_serv_postcode_1

	

cd_addr

	

udf3_cd

	

cu_serv_postcode_1 || cu_serv_postcode_2

	

cd_addr

	

udf3_descr

	

cu_serv_state

	

cd_addr

	

udf4_cd, udf4_descr

	

cu_serv_loc_id

	

cd_addr

	

src_addr_id

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

	

cu_serv_loc_key

	

cd_prem

	

prem_key

	

cu_serv_loc_id

	

cd_prem

	

src_prem_id

	

cu_serv_type

	

cd_prem

	

udf2_cd, udf2_descr

	

cu_serv_life_support

	

cd_prem

	

udf3_cd, udf3_descr

	

cu_serv_c_priority

	

cd_prem

	

udf6_cd, udf6_descr

	

cu_serv_d_priority

	

cd_prem

	

udf7_cd, udf7_descr

	

cu_serv_k_priority

	

cd_prem

	

udf8_cd, udf8_descr

	

record_birth_time

	

cd_addr

	

eff_start_dttm

	

record_death_time

	

cd_addr

	

eff_end_dttm

CU_CUSTOMER_DETAILS

The data in the CU_CUSTOMER_DETAILS table is migrated to the CD_PER table in BI. The CU_CUST_KEY is used as the primary key in this table.

	

CU_CUSTOMER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_cust_key

	

cd_per

	

per_key

	

cu_cust_id

	

cd_per

	

src_per_id

	

cu_cust_name

	

cd_per

	

per_name, per_info

	

cu_cust_home_ac || cu_cust_home_phone

	

cd_per

	

per_phone_nbr

	

record_birth_time

	

cd_per

	

eff_start_dttm

	

record_death_time

	

cd_per

	

eff_end_dttm

CU_METER_DETAILS

The data in the CU_METER_DETAILS table is migrated to the CD_METER table in BI. The CU_METER_KEY is used as the primary key in this table.

	

CU_METER_DETAILS Field

	

BI Table Name

	

BI Field Name

	

cu_meter_key

	

cd_meter

	

meter_key

	

cu_meter_id

	

cd_meter

	

src_meter_id, meter_info

	

record_birth_time

	

cd_meter

	

eff_start_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

REPORTING_ELEMENTS - Cities

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CITY' is migrated to the CD_CITY table in BI. The RE_KEY is used as the primary key in this table

	

REPORTING_ELEMENTS Field

	

BI Table Name

	

BI Field Name

	

re_key

	

cd_city

	

city_key

	

substr(re_name, 1, instr(re_name, ','))

	

cd_city

	

src_city

	

substr(re_name, instr(re_name, ',') + 2)

	

cd_city

	

src_state

	

'United States of America'

	

cd_city

	

src_country

	

record_birth_time

	

cd_city

	

update_dttm

REPORTING_ELEMENTS/REPORTING_HIERARCHY - Control Zones

The data in the REPORTING_ELEMENTS table where the RE_TYPE = 'CIR' is joined to the REPORTING_HIERARCHY_V view and this data is migrated to the CD_CONTROL_ZONE table in BI. The RH_KEY in the REPORTING_HIERARCHY table is used as the primary key in this table.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

reporting_hierarhcy_v.rh_key

	

cd_ctrl_zone

	

ctrl_zone_key

	

reporting_elements.re_number

	

cd_ctrl_zone

	

src_ncg_id

	

reporting_elements.re_type

	

cd_ctrl_zone

	

hierarchy_type

	

reporting_elements.re_name

	

cd_ctrl_zone

	

ctrl_zone_name

	

reporting_elements_1.re_number

	

cd_ctrl_zone

	

uf1_cd

	

reporting_hierarhcy_v.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

reporting_elements_2.re_number

	

cd_ctrl_zone

	

udf2_cd

	

reporting_hierarhcy_v.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

reporting_elements_3.re_number

	

cd_ctrl_zone

	

udf3_cd

	

reporting_hierarhcy_v.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

reporting_elements_4.re_number

	

cd_ctrl_zone

	

udf4_cd

	

reporting_hierarhcy_v.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

reporting_elements_5.re_number

	

cd_ctrl_zone

	

udf5_cd

	

reporting_hierarhcy_v.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

reporting_elements_6.re_number

	

cd_ctrl_zone

	

udf6_cd

	

reporting_hierarhcy_v.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

record_birth_time

	

cd_ctrl_zone

	

update_dttm

	

record_death_time

	

cd_meter

	

eff_end_dttm

CREW_DETAILS

The data in the CREW_DETAILS table is migrated to the CD_CREW table in BI. The CR_KEY is used as the primary key in this table.

	

CREW_DETAILS

	

BI Table Name

	

BI Field Name

	

cr_key

	

cd_crew

	

crew_key, src_crew_id

	

cr_crew_code

	

cd_crew

	

crew_cd

	

record_birth_time

	

cd_crew

	

eff_start_dttm

	

record_death_time

	

cd_crew

	

eff_end_dttm

DEVICE_DETAILS

The data in the DEVICE_DETAILS table is migrated to the CD_DEVICE table in BI. The DV_KEY is used as the primary key in this table. Also, during the population, data for the Device Type fields that is not in Performance Mart is queried from the CLASSES table in the Oracle Utilities Network Management System database and populated into BI. If historical data does not exist for a specific class in Oracle Utilities Network Management System anymore, then these fields will be left blank.

	

DEVICE_DETAILS Field

	

BI Table Name

	

BI Field Name

	

dv_key

	

cd_device

	

device_key

	

dv_cls

	

cd_device

	

src_device_cls

	

dv_idx

	

cd_device

	

src_device_idx

	

dv_code

	

cd_device

	

device_name

	

dv_type

	

cd_device

	

device_class_cd

	

dv_desc

	

cd_device

	

device_class_descr

	

classes.c_type

	

cd_device

	

device_type_cd, device_type_descr

	

record_birth_time

	

cd_device

	

eff_start_dttm

	

record_death_time

	

cd_device

	

eff_end_dttm

Oracle Utilities Network Management System Users

No data exists in Performance Mart for Oracle Utilities Network Management System Users, so during the migration process, the current records in the CES_USERS table will be migrated to the CD_USER table in BI. The primary key will be populated from the SPL_USER_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

CES_USERS Field

	

BI Table Name

	

BI Field Name

	

user_name

	

cd_user

	

user_cd

	

full_name

	

cd_user

	

user_descr

	

sysdate

	

cd_user

	

eff_start_dttm

	

31-DEC-4000

	

cd_user

	

eff_end_dttm

Event Statuses

No data exists in Performance Mart for Event Statuses, so during the migration process, the current records in the TE_STATUSES and TE_STATUS_GROUPS tables will be migrated to the CD_USER table in BI. The primary key will be populated from the TRANS_STATUS field in the TE_STATUSES table.

	

NMS Field

	

BI Table Name

	

BI Field Name

	

te_statuses.trans_status + 1

	

cd_event_status

	

event_status_key

	

te_statuses.trans_status

	

cd_event_status

	

src_status

	

te_status_groups.description

	

cd_event_status

	

event_status_cd

	

te_statuses.description

	

cd_event_status

	

event_status_descr

	

Sysdate

	

cd_event_status

	

update_dttm

EVENT_CALL_FACTS

The data in the EVENT_CALL_FACTS table is migrated to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RST_CALL. The following table shows which fields go into which table. The ECF_KEY is used as the primary key in each of these tables. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RST_CALL table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

ecf_key

	

cd_call_info

	

call_info_key

	

ecf_incident_number

	

cd_call_info

	

src_incident_id

	

ecf_last_name

	

cd_call_info

	

caller_name

	

ecf_phone_number

	

cd_call_info

	

phone_nbr

	

ecf_complaint

	

cd_call_info

	

Complaint

	

ecf_operator_comment

	

cd_call_info

	

Comments

	

sysdate

	

cd_call_info

	

update_dttm

	

ecf_key

	

cf_rst_call

	

rst_call_key, call_info_key

	

ecf_incident_number

	

cf_rst_call

	

src_incident_id

	

e_key

	

cf_rst_call

	

event_key

	

ecf_account_number

	

cd_acct

	

src_acct_id

	

ecf_total_priority

	

cf_rst_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

ecf_user_name

	

cd_user

	

user_cd

EVENT_DETAILS

The data in the EVENT_DETAILS table is migrated to two different BI tables, one dimension and one fact: CD_EVENT and CF_RST_JOB. The EVENT_PICKLIST table is also joined to the EVENT_DETAILS table and data in this table is migrated to the CD_EVENT table. The following table shows which fields go into which table. The E_KEY is used as the primary key in each of these tables. For the BI tables below that are not either CD_EVENT or CF_RST_JOB, the mapping is done by using the foreign key in the CF_RST_JOB table. For example, to get the ECF_ACCOUNT_NUMBER, the CF_RST_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

e_key

	

cd_event

	

event_key

	

e_outage_number

	

cd_event

	

src_nbr

	

e_event_idx

	

cd_event

	

event_nbr

	

e_ops_exclude_reason

	

cd_event

	

exclude_reason

	

e_operator_comment

	

cd_event

	

operator_comment

	

e_valid_state_key

	

cd_event

	

event_state_descr

	

e_event_status

	

cd_event

	

event_state_cd

	

e_street_address || ',' || e_city_state

	

cd_event

	

first_call_addr

	

event_picklist.remedy_om

	

cd_event

	

remedy_cd

	

e_trouble_code

	

cd_event

	

trouble_cd_list

	

e_outage_cause_selection1

	

cd_event

	

udf1_cd, udf1_descr

	

e_outage_cause_selection2

	

cd_event

	

udf2_cd, udf2_descr

	

e_outage_cause_selection3

	

cd_event

	

udf3_cd, udf3_descr

	

e_outage_cause_selection4

	

cd_event

	

udf4_cd, udf4_descr

	

e_outage_cause_selection5

	

cd_event

	

udf5_cd, udf5_descr

	

e_outage_cause_selection6

	

cd_event

	

udf6_cd, udf6_descr

	

e_outage_cause_selection7

	

cd_event

	

udf7_cd, udf7_descr

	

e_outage_cause_selection8

	

cd_event

	

udf8_cd, udf8_descr

	

e_outage_cause

	

cd_event

	

udf9_cd, udf9_descr

	

e_outage_cause_selection

	

cd_event

	

udf10_cd, udf10_descr

	

e_key

	

cf_rst_job

	

rst_job_key, event_key

	

e_outage_number

	

cf_rst_job

	

src_job_nbr

	

e_status + 1

	

cf_rst_job

	

event_status_key

	

e_begin_time

	

cf_rst_job

	

begin_dttm

	

e_completion_time

	

cf_rst_job

	

rst_dttm

	

e_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

e_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

e_ops_exclude_flag

	

cf_rst_job

	

oms_exclude_ind

	

e_cancel_flag

	

cf_rst_job

	

cancelled_ind

	

re_key

	

cf_rst_job

	

ctrl_zone_key

	

dv_key

	

cf_rst_job

	

device_key

	

e_crew_id1

	

cd_crew

	

src_crew_id

	

e_est_num_cust

	

cf_rst_job

	

udm1

Customer Outage

Customer Outage information is stored in three key tables in Performance Mart: SERVICE_POINT_SUPPLY_NODES, EVENT_SUPPLY_NODES and EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be migrated to the CF_CUST_RST_OUTG table in BI. The primary key will be populated from the SPL_CUST_RST_OUTG_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

Performance Mart Field

	

BI Table Name

	

BI Field Name

	

service_point_supply_nodes.e_key

	

cf_cust_rst_outg

	

event_key

	

customer_service_points.cu_serv_ loc_key

	

cf_cust_rst_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_ key

	

cf_cust_rst_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_rst_outg

	

meter_key

	

service_point_supply_nodes.cu_ begin_time

	

cf_cust_rst_outg

	

begin_dttm

	

service_point_supply_nodes.cu_ completion_time

	

cf_cust_rst_outg

	

rst_dttm

	

event_supply_nodes.re_key

	

cf_cust_rst_outg

	

ctrl_zone_key

	

event_details.re_key

	

cf_cust_rst_outg

	

cause_ctrl_zone_key

	

service_point_supply_nodes.cu_ duration

	

cf_cust_rst_outg

	

outg_duration, cmi

	

event_details.e_num_momentaries

	

cf_cust_rst_outg

	

num_momentary

	

event_supply_nodes.dv_key

	

cf_cust_rst_outg

	

aff_device_key

	

event_details.dv_key

	

cf_cust_rst_outg

	

cause_device_key

EVENT_CREWS

The data in the EVENT_CREWS table is migrated to the CF_RST_CREW table. The primary key will be populated from the SPL_RST_CREW_SEQ.NEXTVAL sequence that is normally used by the BI load process.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

cr_key

	

cf_rst_crew

	

crew_key

	

e_key

	

cf_rst_crew

	

event_key

	

ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

ecr_crew_work_dur

	

cf_rst_crew

	

WORK_ DURATION

	

ecr_crew_assn_dur

	

cf_rst_crew

	

ASSIGN_ DURATION

	

ecr_crew_disp_dur

	

cf_rst_crew

	

DISPATCH_ DURATION

	

ecr_crew_inroute_dur

	

cf_rst_crew

	

INROUTE_ DURATION

INDICE

The INIDICE table in Performance Mart is not migrated in the normal migration script. This is because the Indice calculations can be performed for a specific month by running this SQL*Plus command, replacing the 31-JAN-2004 with a month to calculate indice data for:

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', to_date('31-JAN-2004', 'DD-MON-YYYY'), 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

The INDICE data is now stored in two BI tables: CF_CTRL_ZONE_OUTG and CF_CITY_OUTG. The records in the INDICE table that have an RE_KEY with a 'CIR' type will be stored in the CF_CTRL_ZONE_OUTG table, and those with a 'CITY' type will be stored in the CF_CITY_OUTG table.

These two tables also store the data that was stored in the REPORTING_ELEMENT_FACTS table for customer counts.

The following table defines the BI CF_CTRL_ZONE_OUTG table, and describes if possible where the corresponding data use to exist in Performance Mart. The fields in the CF_CITY_OUTG table have similar descriptions, so they will not be described here.

	

BI Field Name

	

Description

	

Corresponding Performance Mart Field

	

CTRL_ZONE_KEY

	

Foreign Key to the Control Zone Table.

	

INDICE.RE_KEY

	

TMED_IND

	

Does this calculation include data that was excluded due to occurring during a Major Event

	

INDICE..TMED_EXCLUDED

	

SNAP_TYPE_CD

	

Snapshot Type (M - Month, Y - Year, …)

	

N/A

	

SNAPSHOT_DATE_KEY

	

Date that the Indice data was calculated

	

INDICE.INDICE_DATE

	

BEGIN_DATE_KEY

	

Begin Date of the Period for which Indice calculations were performed

	

N/A

	

END_DATE_KEY

	

End Date of the Period for which Indice calculations were performed

	

N/A

	

NUM_CUST_SERVED

	

Average Number of Customers that were present in the Region during the Period

	

REPORTING_ELEMENTS_ FACTS. REF_CUSTOMERS_SERVED

	

NUM_SUST_INTRPT

	

Total Number of Sustained Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION > 5

	

NUM_MOM_INTRPT

	

Total Number of Momentary Interruptions during the snapshot period

	

SUM(INDICE. INTERRUPTIONS) where DURATION < 5

	

CMI

	

Total Customer Minutes Interrupted during the snapshot period

	

SUM(INDICE. INTERRUPTIONS * INDICE.DURATION)

	

NUM_MULT_SUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of Sustained interruptions during the snapshot period.

	

Calculated when a CEMI report is run.

	

NUM_MULT_CUST_INTRPT

	

Total number of Customers that Experienced more than a certain number of sustained or momentary interruptions during the snapshot period.

	

Calculated when a CEMSMI report is run.

	

SAIDI

	

SAIDI

	

Calculated when a SAIDI report is run.

	

CAIDI

	

CAIDI

	

Calculated when a CAIDI report is run.

	

SAIFI

	

SAIFI

	

Calculated when a SAIFI report is run.

	

CEMI

	

CEMI

	

Calculated when a CEMI report is run.

	

CEMSMI

	

CEMSMI

	

Calculated when a CEMSMI report is run.

	

CAIFI

	

CAIFI

	

Calculated when a CAIFI report is run.

	

MAIFI

	

MAIFI

	

Calculated when a MAIFI report is run.

	

MAIFIE

	

MAIFIe

	

Calculated when a MAIFIE report is run.

	

ASAI

	

ASAI

	

Calculated when a ASAI report is run.

	

ACI

	

ACI

	

Calculated when a ACI report is run.

	

MSAIFI

	

MSAIFI

	

Calculated when a MSAIFI report is run.

	

NUM_EVENT

	

Number of Distinct Events in Oracle Utilities Network Management System during the snapshot period

	

COUNT(DISTINCT INDICE.EVENT_KEY)

	

NUM_CUST_INTRPT

	

Total number of Customers that experienced one or more interruptions during the period

	

COUNT(DISTINCT INDICE.CUSTOMER)

	

NUM_MOM_E_INTRPT

	

Total number of Momentary Events that proceeded a lockout

	

SUM(INDICE.MAIFIE_INTERRUPTIONS)

NRT Table Mapping

The NRT data will not be migrated from the Performance Mart database, as this is transitional data and will need to be populated from the Oracle Utilities Network Management System database once a system is upgraded to support the BI extraction process.

However, the following table mappings are here to help with report conversion projects, and will map how the data would have been migrated if the Performance Mart NRT tables were migrated. Most the data from the NRT tables will be mapped to CF*RECENT* tables, with the exception that some textual data will be stored in either the CD_EVENT or CD_CALL_INFO tables, as described in the following sections.

Also, if a field is not listed in a mapping, then the data is not extracted from the Network Management System database to the BI database with the default product extractors. If missing data is required, then a project configuration change to the Oracle Utilities Network Management System extractors will have to be made to get the data into one of the UDF/UDM fields available in BI.

NRT_EVENT_CALL_FACTS

The data in the NRT_EVENT_CALL_FACTS table exists to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RECENT_CALL. The following table shows which fields go into which table. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RECENT_CALL table. For example, to get the NRT_ECF_ACCOUNT_NUMBER, the CF_RECENT_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

NRT_EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecf_incident_number

	

cd_call_info

	

src_incident_id

	

nrt_ecf_last_name and nrt_ecf_first_name

	

cd_call_info

	

caller_name

	

nrt_ecf_area_cod and nrt_ecf_phone_number and nrt_ecf_phone_extension

	

cd_call_info

	

phone_nbr

	

nrt_ecf_complaint

	

cd_call_info

	

Complaint

	

nrt_ecf_operator_comment

	

cd_call_info

	

Comments

	

nrt_ech_short_desc

	

cd_call_info

	

udf3_descr

	

nrt_active

	

cd_call_info

	

udf1_cd

	

	

	

	

nrt_ecf_incident_number

	

cf_recent_call

	

src_incident_id

	

nrt_ecf_account_number

	

cd_acct

	

src_acct_id

	

nrt_ecf_total_priority

	

cf_recent_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

nrt_user_name

	

cd_user

	

user_cd

NRT_EVENT_DETAILS

The data in the NRT_EVENT_DETAILS table is available in two different BI tables, one dimension and one fact: CD_EVENT and CF_RECENT_JOB. The following table shows which fields go into which table.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

nrt_outage_number

	

cd_event

	

src_nbr

	

nrt_event_idx

	

cd_event

	

event_nbr

	

nrt_ops_exclude_reason

	

cd_event

	

exclude_reason

	

nrt_operator_comment

	

cd_event

	

operator_comment

	

nrt_valid_state_key

	

cd_event

	

event_state_descr

	

nrt_event_status

	

cd_event

	

event_state_cd

	

nrt_street_address || ',' || nrt_city_state

	

cd_event

	

first_call_addr

	

nrt_trouble_code

	

cd_event

	

trouble_cd_list

	

X_coord

	

cd_event

	

X_coordinate

	

Y_coord

	

cd_event

	

Y_coordinate

	

	

	

	

nrt_outage_number

	

cf_recent_job

	

src_job_nbr

	

nrt_status + 1

	

cf_recent_job

	

event_status_key

	

nrt_begin_time

	

cf_recent_job

	

begin_dttm

	

nrt_completion_time

	

cf_recent_job

	

rst_dttm

	

nrt_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

nrt_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

nrt_ops_exclude_flag

	

cf_recent_job

	

oms_exclude_ind

	

nrt_cancel_flag

	

cf_recent_job

	

cancelled_ind

	

re_key

	

cf_recent_job

	

ctrl_zone_key

	

dv_key

	

cf_recent_job

	

device_key

	

nrt_ops_cust

	

cf_recent_job

	

udm1

NRT Customer Outage

Customer Outage information is stored in three key NRT tables in Performance Mart: NRT_SERVICE_POINT_SUPPLY_NODES, NRT_EVENT_SUPPLY_NODES and NRT_EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be available in the CF_CUST_RECENT_OUTG table in BI.

	

NRT Fields

	

BI Table Name

	

BI Field Name

	

customer_service_points.cu_serv_loc_key

	

cf_cust_nrt_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_key

	

cf_cust_nrt_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_nrt_outg

	

meter_key

	

nt_event_supply_nodes.nrt_outage_time

	

cf_cust_recent_outg

	

begin_dttm

	

nrt_eventsupply_nodes.when_restored_time

	

cf_cust_recent_outg

	

rst_dttm

	

nrt_event_supply_nodes.re_key

	

cf_cust_recent_outg

	

ctrl_zone_key

	

nrt_event_details.re_key

	

cf_cust_recent_outg

	

cause_ctrl_zone_key

	

nrt_event_supply_nodes.nrt_esn_duration

	

cf_cust_recent_outg

	

outg_duration

	

nrt_event_supply_nodes.dv_key

	

cf_cust_recent_outg

	

aff_device_key

	

nrt_event_details.dv_key

	

cf_cust_recent_outg

	

cause_device_key

	

nrt_event_supply_nodes.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

nrt_event_supply_nodes.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

nrt_event_supply_nodes.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

nrt_event_supply_nodes.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

nrt_event_supply_nodes.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

nrt_event_supply_nodes.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

nrt_event_supply_nodes.num_crit_c_cust_ out

	

cd_prem

	

count(*) where udf6_cd = 1

	

nrt_event_supply_nodes.num_crit_d_cust_ out

	

cd_prem

	

count(*) where udf7_cd = 1

	

nrt_event_supply_nodes.num_crit_k_cust_ out

	

cd_prem

	

count(*) where udf8_cd = 1

NRT_EVENT_CREWS

The data in the NRT_EVENT_CREWS table is available in the CF_RECENT_CREW table.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_work_dur

	

cf_recent_crew

	

WORK_ DURATION

	

nrt_ecr_crew_assn_dur

	

cf_recent_crew

	

ASSIGN_ DURATION

	

nrt_ecr_crew_disp_dur

	

cf_recent_crew

	

DISPATCH_ DURATION

	

nrt_ecr_crew_inroute_dur

	

cf_recent_crew

	

INROUTE_ DURATION

NRT Table Mapping

The NRT data will not be migrated from the Performance Mart database, as this is transitional data and will need to be populated from the Oracle Utilities Network Management System database once a system is upgraded to support the BI extraction process.

However, the following table mappings are here to help with report conversion projects, and will map how the data would have been migrated if the Performance Mart NRT tables were migrated. Most the data from the NRT tables will be mapped to CF*RECENT* tables, with the exception that some textual data will be stored in either the CD_EVENT or CD_CALL_INFO tables, as described in the following sections.

Also, if a field is not listed in a mapping, then the data is not extracted from the Network Management System database to the BI database with the default product extractors. If missing data is required, then a project configuration change to the Oracle Utilities Network Management System extractors will have to be made to get the data into one of the UDF/UDM fields available in BI.

NRT_EVENT_CALL_FACTS

The data in the NRT_EVENT_CALL_FACTS table exists to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RECENT_CALL. The following table shows which fields go into which table. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RECENT_CALL table. For example, to get the NRT_ECF_ACCOUNT_NUMBER, the CF_RECENT_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

NRT_EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecf_incident_number

	

cd_call_info

	

src_incident_id

	

nrt_ecf_last_name and nrt_ecf_first_name

	

cd_call_info

	

caller_name

	

nrt_ecf_area_cod and nrt_ecf_phone_number and nrt_ecf_phone_extension

	

cd_call_info

	

phone_nbr

	

nrt_ecf_complaint

	

cd_call_info

	

Complaint

	

nrt_ecf_operator_comment

	

cd_call_info

	

Comments

	

nrt_ech_short_desc

	

cd_call_info

	

udf3_descr

	

nrt_active

	

cd_call_info

	

udf1_cd

	

	

	

	

nrt_ecf_incident_number

	

cf_recent_call

	

src_incident_id

	

nrt_ecf_account_number

	

cd_acct

	

src_acct_id

	

nrt_ecf_total_priority

	

cf_recent_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

nrt_user_name

	

cd_user

	

user_cd

NRT_EVENT_DETAILS

The data in the NRT_EVENT_DETAILS table is available in two different BI tables, one dimension and one fact: CD_EVENT and CF_RECENT_JOB. The following table shows which fields go into which table.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

nrt_outage_number

	

cd_event

	

src_nbr

	

nrt_event_idx

	

cd_event

	

event_nbr

	

nrt_ops_exclude_reason

	

cd_event

	

exclude_reason

	

nrt_operator_comment

	

cd_event

	

operator_comment

	

nrt_valid_state_key

	

cd_event

	

event_state_descr

	

nrt_event_status

	

cd_event

	

event_state_cd

	

nrt_street_address || ',' || nrt_city_state

	

cd_event

	

first_call_addr

	

nrt_trouble_code

	

cd_event

	

trouble_cd_list

	

X_coord

	

cd_event

	

X_coordinate

	

Y_coord

	

cd_event

	

Y_coordinate

	

	

	

	

nrt_outage_number

	

cf_recent_job

	

src_job_nbr

	

nrt_status + 1

	

cf_recent_job

	

event_status_key

	

nrt_begin_time

	

cf_recent_job

	

begin_dttm

	

nrt_completion_time

	

cf_recent_job

	

rst_dttm

	

nrt_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

nrt_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

nrt_ops_exclude_flag

	

cf_recent_job

	

oms_exclude_ind

	

nrt_cancel_flag

	

cf_recent_job

	

cancelled_ind

	

re_key

	

cf_recent_job

	

ctrl_zone_key

	

dv_key

	

cf_recent_job

	

device_key

	

nrt_ops_cust

	

cf_recent_job

	

udm1

NRT Customer Outage

Customer Outage information is stored in three key NRT tables in Performance Mart: NRT_SERVICE_POINT_SUPPLY_NODES, NRT_EVENT_SUPPLY_NODES and NRT_EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be available in the CF_CUST_RECENT_OUTG table in BI.

	

NRT Fields

	

BI Table Name

	

BI Field Name

	

customer_service_points.cu_serv_loc_key

	

cf_cust_nrt_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_key

	

cf_cust_nrt_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_nrt_outg

	

meter_key

	

nt_event_supply_nodes.nrt_outage_time

	

cf_cust_recent_outg

	

begin_dttm

	

nrt_eventsupply_nodes.when_restored_time

	

cf_cust_recent_outg

	

rst_dttm

	

nrt_event_supply_nodes.re_key

	

cf_cust_recent_outg

	

ctrl_zone_key

	

nrt_event_details.re_key

	

cf_cust_recent_outg

	

cause_ctrl_zone_key

	

nrt_event_supply_nodes.nrt_esn_duration

	

cf_cust_recent_outg

	

outg_duration

	

nrt_event_supply_nodes.dv_key

	

cf_cust_recent_outg

	

aff_device_key

	

nrt_event_details.dv_key

	

cf_cust_recent_outg

	

cause_device_key

	

nrt_event_supply_nodes.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

nrt_event_supply_nodes.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

nrt_event_supply_nodes.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

nrt_event_supply_nodes.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

nrt_event_supply_nodes.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

nrt_event_supply_nodes.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

nrt_event_supply_nodes.num_crit_c_cust_ out

	

cd_prem

	

count(*) where udf6_cd = 1

	

nrt_event_supply_nodes.num_crit_d_cust_ out

	

cd_prem

	

count(*) where udf7_cd = 1

	

nrt_event_supply_nodes.num_crit_k_cust_ out

	

cd_prem

	

count(*) where udf8_cd = 1

NRT_EVENT_CREWS

The data in the NRT_EVENT_CREWS table is available in the CF_RECENT_CREW table.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_work_dur

	

cf_recent_crew

	

WORK_ DURATION

	

nrt_ecr_crew_assn_dur

	

cf_recent_crew

	

ASSIGN_ DURATION

	

nrt_ecr_crew_disp_dur

	

cf_recent_crew

	

DISPATCH_ DURATION

	

nrt_ecr_crew_inroute_dur

	

cf_recent_crew

	

INROUTE_ DURATION

NRT Table Mapping

The NRT data will not be migrated from the Performance Mart database, as this is transitional data and will need to be populated from the Oracle Utilities Network Management System database once a system is upgraded to support the BI extraction process.

However, the following table mappings are here to help with report conversion projects, and will map how the data would have been migrated if the Performance Mart NRT tables were migrated. Most the data from the NRT tables will be mapped to CF*RECENT* tables, with the exception that some textual data will be stored in either the CD_EVENT or CD_CALL_INFO tables, as described in the following sections.

Also, if a field is not listed in a mapping, then the data is not extracted from the Network Management System database to the BI database with the default product extractors. If missing data is required, then a project configuration change to the Oracle Utilities Network Management System extractors will have to be made to get the data into one of the UDF/UDM fields available in BI.

NRT_EVENT_CALL_FACTS

The data in the NRT_EVENT_CALL_FACTS table exists to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RECENT_CALL. The following table shows which fields go into which table. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RECENT_CALL table. For example, to get the NRT_ECF_ACCOUNT_NUMBER, the CF_RECENT_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

NRT_EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecf_incident_number

	

cd_call_info

	

src_incident_id

	

nrt_ecf_last_name and nrt_ecf_first_name

	

cd_call_info

	

caller_name

	

nrt_ecf_area_cod and nrt_ecf_phone_number and nrt_ecf_phone_extension

	

cd_call_info

	

phone_nbr

	

nrt_ecf_complaint

	

cd_call_info

	

Complaint

	

nrt_ecf_operator_comment

	

cd_call_info

	

Comments

	

nrt_ech_short_desc

	

cd_call_info

	

udf3_descr

	

nrt_active

	

cd_call_info

	

udf1_cd

	

	

	

	

nrt_ecf_incident_number

	

cf_recent_call

	

src_incident_id

	

nrt_ecf_account_number

	

cd_acct

	

src_acct_id

	

nrt_ecf_total_priority

	

cf_recent_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

nrt_user_name

	

cd_user

	

user_cd

NRT_EVENT_DETAILS

The data in the NRT_EVENT_DETAILS table is available in two different BI tables, one dimension and one fact: CD_EVENT and CF_RECENT_JOB. The following table shows which fields go into which table.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

nrt_outage_number

	

cd_event

	

src_nbr

	

nrt_event_idx

	

cd_event

	

event_nbr

	

nrt_ops_exclude_reason

	

cd_event

	

exclude_reason

	

nrt_operator_comment

	

cd_event

	

operator_comment

	

nrt_valid_state_key

	

cd_event

	

event_state_descr

	

nrt_event_status

	

cd_event

	

event_state_cd

	

nrt_street_address || ',' || nrt_city_state

	

cd_event

	

first_call_addr

	

nrt_trouble_code

	

cd_event

	

trouble_cd_list

	

X_coord

	

cd_event

	

X_coordinate

	

Y_coord

	

cd_event

	

Y_coordinate

	

	

	

	

nrt_outage_number

	

cf_recent_job

	

src_job_nbr

	

nrt_status + 1

	

cf_recent_job

	

event_status_key

	

nrt_begin_time

	

cf_recent_job

	

begin_dttm

	

nrt_completion_time

	

cf_recent_job

	

rst_dttm

	

nrt_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

nrt_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

nrt_ops_exclude_flag

	

cf_recent_job

	

oms_exclude_ind

	

nrt_cancel_flag

	

cf_recent_job

	

cancelled_ind

	

re_key

	

cf_recent_job

	

ctrl_zone_key

	

dv_key

	

cf_recent_job

	

device_key

	

nrt_ops_cust

	

cf_recent_job

	

udm1

NRT Customer Outage

Customer Outage information is stored in three key NRT tables in Performance Mart: NRT_SERVICE_POINT_SUPPLY_NODES, NRT_EVENT_SUPPLY_NODES and NRT_EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be available in the CF_CUST_RECENT_OUTG table in BI.

	

NRT Fields

	

BI Table Name

	

BI Field Name

	

customer_service_points.cu_serv_loc_key

	

cf_cust_nrt_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_key

	

cf_cust_nrt_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_nrt_outg

	

meter_key

	

nt_event_supply_nodes.nrt_outage_time

	

cf_cust_recent_outg

	

begin_dttm

	

nrt_eventsupply_nodes.when_restored_time

	

cf_cust_recent_outg

	

rst_dttm

	

nrt_event_supply_nodes.re_key

	

cf_cust_recent_outg

	

ctrl_zone_key

	

nrt_event_details.re_key

	

cf_cust_recent_outg

	

cause_ctrl_zone_key

	

nrt_event_supply_nodes.nrt_esn_duration

	

cf_cust_recent_outg

	

outg_duration

	

nrt_event_supply_nodes.dv_key

	

cf_cust_recent_outg

	

aff_device_key

	

nrt_event_details.dv_key

	

cf_cust_recent_outg

	

cause_device_key

	

nrt_event_supply_nodes.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

nrt_event_supply_nodes.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

nrt_event_supply_nodes.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

nrt_event_supply_nodes.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

nrt_event_supply_nodes.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

nrt_event_supply_nodes.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

nrt_event_supply_nodes.num_crit_c_cust_ out

	

cd_prem

	

count(*) where udf6_cd = 1

	

nrt_event_supply_nodes.num_crit_d_cust_ out

	

cd_prem

	

count(*) where udf7_cd = 1

	

nrt_event_supply_nodes.num_crit_k_cust_ out

	

cd_prem

	

count(*) where udf8_cd = 1

NRT_EVENT_CREWS

The data in the NRT_EVENT_CREWS table is available in the CF_RECENT_CREW table.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_work_dur

	

cf_recent_crew

	

WORK_ DURATION

	

nrt_ecr_crew_assn_dur

	

cf_recent_crew

	

ASSIGN_ DURATION

	

nrt_ecr_crew_disp_dur

	

cf_recent_crew

	

DISPATCH_ DURATION

	

nrt_ecr_crew_inroute_dur

	

cf_recent_crew

	

INROUTE_ DURATION

NRT Table Mapping

The NRT data will not be migrated from the Performance Mart database, as this is transitional data and will need to be populated from the Oracle Utilities Network Management System database once a system is upgraded to support the BI extraction process.

However, the following table mappings are here to help with report conversion projects, and will map how the data would have been migrated if the Performance Mart NRT tables were migrated. Most the data from the NRT tables will be mapped to CF*RECENT* tables, with the exception that some textual data will be stored in either the CD_EVENT or CD_CALL_INFO tables, as described in the following sections.

Also, if a field is not listed in a mapping, then the data is not extracted from the Network Management System database to the BI database with the default product extractors. If missing data is required, then a project configuration change to the Oracle Utilities Network Management System extractors will have to be made to get the data into one of the UDF/UDM fields available in BI.

NRT_EVENT_CALL_FACTS

The data in the NRT_EVENT_CALL_FACTS table exists to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RECENT_CALL. The following table shows which fields go into which table. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RECENT_CALL table. For example, to get the NRT_ECF_ACCOUNT_NUMBER, the CF_RECENT_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

NRT_EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecf_incident_number

	

cd_call_info

	

src_incident_id

	

nrt_ecf_last_name and nrt_ecf_first_name

	

cd_call_info

	

caller_name

	

nrt_ecf_area_cod and nrt_ecf_phone_number and nrt_ecf_phone_extension

	

cd_call_info

	

phone_nbr

	

nrt_ecf_complaint

	

cd_call_info

	

Complaint

	

nrt_ecf_operator_comment

	

cd_call_info

	

Comments

	

nrt_ech_short_desc

	

cd_call_info

	

udf3_descr

	

nrt_active

	

cd_call_info

	

udf1_cd

	

	

	

	

nrt_ecf_incident_number

	

cf_recent_call

	

src_incident_id

	

nrt_ecf_account_number

	

cd_acct

	

src_acct_id

	

nrt_ecf_total_priority

	

cf_recent_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

nrt_user_name

	

cd_user

	

user_cd

NRT_EVENT_DETAILS

The data in the NRT_EVENT_DETAILS table is available in two different BI tables, one dimension and one fact: CD_EVENT and CF_RECENT_JOB. The following table shows which fields go into which table.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

nrt_outage_number

	

cd_event

	

src_nbr

	

nrt_event_idx

	

cd_event

	

event_nbr

	

nrt_ops_exclude_reason

	

cd_event

	

exclude_reason

	

nrt_operator_comment

	

cd_event

	

operator_comment

	

nrt_valid_state_key

	

cd_event

	

event_state_descr

	

nrt_event_status

	

cd_event

	

event_state_cd

	

nrt_street_address || ',' || nrt_city_state

	

cd_event

	

first_call_addr

	

nrt_trouble_code

	

cd_event

	

trouble_cd_list

	

X_coord

	

cd_event

	

X_coordinate

	

Y_coord

	

cd_event

	

Y_coordinate

	

	

	

	

nrt_outage_number

	

cf_recent_job

	

src_job_nbr

	

nrt_status + 1

	

cf_recent_job

	

event_status_key

	

nrt_begin_time

	

cf_recent_job

	

begin_dttm

	

nrt_completion_time

	

cf_recent_job

	

rst_dttm

	

nrt_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

nrt_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

nrt_ops_exclude_flag

	

cf_recent_job

	

oms_exclude_ind

	

nrt_cancel_flag

	

cf_recent_job

	

cancelled_ind

	

re_key

	

cf_recent_job

	

ctrl_zone_key

	

dv_key

	

cf_recent_job

	

device_key

	

nrt_ops_cust

	

cf_recent_job

	

udm1

NRT Customer Outage

Customer Outage information is stored in three key NRT tables in Performance Mart: NRT_SERVICE_POINT_SUPPLY_NODES, NRT_EVENT_SUPPLY_NODES and NRT_EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be available in the CF_CUST_RECENT_OUTG table in BI.

	

NRT Fields

	

BI Table Name

	

BI Field Name

	

customer_service_points.cu_serv_loc_key

	

cf_cust_nrt_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_key

	

cf_cust_nrt_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_nrt_outg

	

meter_key

	

nt_event_supply_nodes.nrt_outage_time

	

cf_cust_recent_outg

	

begin_dttm

	

nrt_eventsupply_nodes.when_restored_time

	

cf_cust_recent_outg

	

rst_dttm

	

nrt_event_supply_nodes.re_key

	

cf_cust_recent_outg

	

ctrl_zone_key

	

nrt_event_details.re_key

	

cf_cust_recent_outg

	

cause_ctrl_zone_key

	

nrt_event_supply_nodes.nrt_esn_duration

	

cf_cust_recent_outg

	

outg_duration

	

nrt_event_supply_nodes.dv_key

	

cf_cust_recent_outg

	

aff_device_key

	

nrt_event_details.dv_key

	

cf_cust_recent_outg

	

cause_device_key

	

nrt_event_supply_nodes.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

nrt_event_supply_nodes.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

nrt_event_supply_nodes.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

nrt_event_supply_nodes.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

nrt_event_supply_nodes.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

nrt_event_supply_nodes.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

nrt_event_supply_nodes.num_crit_c_cust_ out

	

cd_prem

	

count(*) where udf6_cd = 1

	

nrt_event_supply_nodes.num_crit_d_cust_ out

	

cd_prem

	

count(*) where udf7_cd = 1

	

nrt_event_supply_nodes.num_crit_k_cust_ out

	

cd_prem

	

count(*) where udf8_cd = 1

NRT_EVENT_CREWS

The data in the NRT_EVENT_CREWS table is available in the CF_RECENT_CREW table.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_work_dur

	

cf_recent_crew

	

WORK_ DURATION

	

nrt_ecr_crew_assn_dur

	

cf_recent_crew

	

ASSIGN_ DURATION

	

nrt_ecr_crew_disp_dur

	

cf_recent_crew

	

DISPATCH_ DURATION

	

nrt_ecr_crew_inroute_dur

	

cf_recent_crew

	

INROUTE_ DURATION

NRT Table Mapping

The NRT data will not be migrated from the Performance Mart database, as this is transitional data and will need to be populated from the Oracle Utilities Network Management System database once a system is upgraded to support the BI extraction process.

However, the following table mappings are here to help with report conversion projects, and will map how the data would have been migrated if the Performance Mart NRT tables were migrated. Most the data from the NRT tables will be mapped to CF*RECENT* tables, with the exception that some textual data will be stored in either the CD_EVENT or CD_CALL_INFO tables, as described in the following sections.

Also, if a field is not listed in a mapping, then the data is not extracted from the Network Management System database to the BI database with the default product extractors. If missing data is required, then a project configuration change to the Oracle Utilities Network Management System extractors will have to be made to get the data into one of the UDF/UDM fields available in BI.

NRT_EVENT_CALL_FACTS

The data in the NRT_EVENT_CALL_FACTS table exists to two different BI tables, one dimension and one fact: CD_CALL_INFO and CF_RECENT_CALL. The following table shows which fields go into which table. For the BI tables below that are not CD_CALL_INFO or CF_RST_CALL, the mapping is done by using the foreign key in the CF_RECENT_CALL table. For example, to get the NRT_ECF_ACCOUNT_NUMBER, the CF_RECENT_CALL table would be joined to the CD_ACCT table by ACCT_KEY.

	

NRT_EVENT_CALL_FACTS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecf_incident_number

	

cd_call_info

	

src_incident_id

	

nrt_ecf_last_name and nrt_ecf_first_name

	

cd_call_info

	

caller_name

	

nrt_ecf_area_cod and nrt_ecf_phone_number and nrt_ecf_phone_extension

	

cd_call_info

	

phone_nbr

	

nrt_ecf_complaint

	

cd_call_info

	

Complaint

	

nrt_ecf_operator_comment

	

cd_call_info

	

Comments

	

nrt_ech_short_desc

	

cd_call_info

	

udf3_descr

	

nrt_active

	

cd_call_info

	

udf1_cd

	

	

	

	

nrt_ecf_incident_number

	

cf_recent_call

	

src_incident_id

	

nrt_ecf_account_number

	

cd_acct

	

src_acct_id

	

nrt_ecf_total_priority

	

cf_recent_call

	

priority_ind

	

ecf_called_time (Date)

	

cd_date

	

cal_dt

	

ecf_called_time (Time)

	

cd_time

	

src_time

	

nrt_user_name

	

cd_user

	

user_cd

NRT_EVENT_DETAILS

The data in the NRT_EVENT_DETAILS table is available in two different BI tables, one dimension and one fact: CD_EVENT and CF_RECENT_JOB. The following table shows which fields go into which table.

	

EVENT_DETAILS Field

	

BI Table Name

	

BI Field Name

	

nrt_outage_number

	

cd_event

	

src_nbr

	

nrt_event_idx

	

cd_event

	

event_nbr

	

nrt_ops_exclude_reason

	

cd_event

	

exclude_reason

	

nrt_operator_comment

	

cd_event

	

operator_comment

	

nrt_valid_state_key

	

cd_event

	

event_state_descr

	

nrt_event_status

	

cd_event

	

event_state_cd

	

nrt_street_address || ',' || nrt_city_state

	

cd_event

	

first_call_addr

	

nrt_trouble_code

	

cd_event

	

trouble_cd_list

	

X_coord

	

cd_event

	

X_coordinate

	

Y_coord

	

cd_event

	

Y_coordinate

	

	

	

	

nrt_outage_number

	

cf_recent_job

	

src_job_nbr

	

nrt_status + 1

	

cf_recent_job

	

event_status_key

	

nrt_begin_time

	

cf_recent_job

	

begin_dttm

	

nrt_completion_time

	

cf_recent_job

	

rst_dttm

	

nrt_est_restore_time (est_rst_date_key)

	

cd_date

	

cal_dt

	

nrt_est_restore_time (est_rst_time_key)

	

cd_time

	

src_time

	

nrt_ops_exclude_flag

	

cf_recent_job

	

oms_exclude_ind

	

nrt_cancel_flag

	

cf_recent_job

	

cancelled_ind

	

re_key

	

cf_recent_job

	

ctrl_zone_key

	

dv_key

	

cf_recent_job

	

device_key

	

nrt_ops_cust

	

cf_recent_job

	

udm1

NRT Customer Outage

Customer Outage information is stored in three key NRT tables in Performance Mart: NRT_SERVICE_POINT_SUPPLY_NODES, NRT_EVENT_SUPPLY_NODES and NRT_EVENT_DETAILS. Data from each of these tables as well as Customer Keys in the CUSTOMER_SERVICE_POINTS table will be available in the CF_CUST_RECENT_OUTG table in BI.

	

NRT Fields

	

BI Table Name

	

BI Field Name

	

customer_service_points.cu_serv_loc_key

	

cf_cust_nrt_outg

	

acct_key, prem_key, addr_key

	

customer_service_points.cu_cust_key

	

cf_cust_nrt_outg

	

per_key

	

customer_service_points.cu_meter_key

	

cf_cust_nrt_outg

	

meter_key

	

nt_event_supply_nodes.nrt_outage_time

	

cf_cust_recent_outg

	

begin_dttm

	

nrt_eventsupply_nodes.when_restored_time

	

cf_cust_recent_outg

	

rst_dttm

	

nrt_event_supply_nodes.re_key

	

cf_cust_recent_outg

	

ctrl_zone_key

	

nrt_event_details.re_key

	

cf_cust_recent_outg

	

cause_ctrl_zone_key

	

nrt_event_supply_nodes.nrt_esn_duration

	

cf_cust_recent_outg

	

outg_duration

	

nrt_event_supply_nodes.dv_key

	

cf_cust_recent_outg

	

aff_device_key

	

nrt_event_details.dv_key

	

cf_cust_recent_outg

	

cause_device_key

	

nrt_event_supply_nodes.level1_name

	

cd_ctrl_zone

	

udf1_descr

	

nrt_event_supply_nodes.level2_name

	

cd_ctrl_zone

	

udf2_descr

	

nrt_event_supply_nodes.level3_name

	

cd_ctrl_zone

	

udf3_descr

	

nrt_event_supply_nodes.level4_name

	

cd_ctrl_zone

	

udf4_descr

	

nrt_event_supply_nodes.level5_name

	

cd_ctrl_zone

	

udf5_descr

	

nrt_event_supply_nodes.level6_name

	

cd_ctrl_zone

	

udf6_descr

	

nrt_event_supply_nodes.num_crit_c_cust_ out

	

cd_prem

	

count(*) where udf6_cd = 1

	

nrt_event_supply_nodes.num_crit_d_cust_ out

	

cd_prem

	

count(*) where udf7_cd = 1

	

nrt_event_supply_nodes.num_crit_k_cust_ out

	

cd_prem

	

count(*) where udf8_cd = 1

NRT_EVENT_CREWS

The data in the NRT_EVENT_CREWS table is available in the CF_RECENT_CREW table.

	

EVENT_CREWS Field

	

BI Table Name

	

BI Field Name

	

nrt_ecr_crew_assn_time (assign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_assn_time (assign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_uassn_time (unassign_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_uassn_time (unassign_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_acpt_time (accept_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_acpt_time (accept_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_arrv_time (arrive_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_arrv_time (arrive_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_cmpl_time (cmpl_date_key)

	

cd_date

	

cal_dt

	

nrt_ecr_crew_cmpl_time (cmpl_time_key)

	

cd_time

	

src_time

	

nrt_ecr_crew_assn_user (assign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_uassn_user (unassign_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_acpt_user (accept_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_arrv_user (arrive_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_cmpl_user (cmpl_user_key)

	

cd_user

	

user_cd

	

nrt_ecr_crew_work_dur

	

cf_recent_crew

	

WORK_ DURATION

	

nrt_ecr_crew_assn_dur

	

cf_recent_crew

	

ASSIGN_ DURATION

	

nrt_ecr_crew_disp_dur

	

cf_recent_crew

	

DISPATCH_ DURATION

	

nrt_ecr_crew_inroute_dur

	

cf_recent_crew

	

INROUTE_ DURATION

Migration Requirements

Before running the migration script, make sure that:

	
•

	

The current Performance Mart and Oracle Utilities Network Management System databases must be accessible to the BI database using database links that will be created in the BI DWADM database account.

	
•

	

The BI database must be installed following the installation instructions in the Oracle Business
Intelligence Installation Guide.

	
•

	

The following Unix environment variables point to the Performance Mart and Oracle Utilities Network Management System database.

CES_DM_USER - Oracle Username for the Performance Mart Database

CES_DM_PASSWD - Password for the CES_DM_USER user

CES_DM_INSTANCE - SQL*Net connection to the Performance Mart Database

RDBMS_USER - Oracle Username for the Oracle Utilities Network Management System Database

RDBMS_PASSWD - Password for the RDBMS_USER user

RDBMS_HOST - SQL*Net connection to the Oracle Utilities Network Management System Database

	
•

	

The following two environment variables can be set if the default settings create errors when the migration script is run.

	
•

	

CES_DM_DBLINK - Name of the Database Link created in the BI Oracle account to point to the Performance Mart Database. If this is not set, then the value in the CES_DM_INSTANCE environment variable is used.

	
•

	

CES_OPS_DBLINK - Name of the Database Link created in the BI Oracle account to point to the Oracle Utilities Network Management System Database. If this is not set, then the value in the RDBMS_HOST environment variable is used.

	
•

	

Verify that you have adequate storage. The storage requirements for the BI database will be similar to the current storage requirements for the Performance Mart database. So if the data in Performance Mart takes up 5 GB of space, then a good estimate for BI storage requirement will be 5 GB.

	
•

	

The following additional Unix environment variables must be set:

	
•

	

CES_BI_USER - Oracle Username that owns the BI data tables. Normally this will be DWADM.

	
•

	

CES_BI_PASSWD - Password for the CES_BI_USER user.

	
•

	

CES_BI_INSTANCE - SQL*Net connection to the BI Database.

	
•

	

CES_BI_DATA_SOURCE - Data Source Indicator that will be used when storing the migrated records in the BI tables. This should match the value in the AP_MIN_VALUE field in the APPLICATION_PARAMS table where the AP_NAME = 'DATA_SOURCE_INDICATOR'. The default setting of this is 4.

	
•

	

CES_SQL_FILES - Directory name where the Oracle Utilities Network Management System SQL files are stored. Normally this will be $HOME/sql. This is used by the migration script to find the project sql files.

Running the Migration Script

The migration script, migrate_business_intelligence, will exist in the $HOME/bin directory of the Oracle Utilities Network Management System Unix account. It can be run from this directory, as long as the requirements mentioned in the preceding section are complete.

The migration script takes no parameters, and can be run from the bin directory using this command.

nohup ./migrate_business_intelligence>migrate_business_intelligence.out&

This will create two log files. The migrate_business_intelligence.out log file can be monitored while the script is running, and the migrate_business_intelligence.log file will be updated once the migration script is completed.

For project-specific migration issues, the following two files will be called from the migration script: project_migrate_bi_dim.sql and project_migrate_bi_fact.sql. The project_migrate_bi_dim.sql will be called after all of the dimension tables are populated by the product migration script, but before the fact tables are populated, so that records will exist in all of the dimension tables for foreign keys in the fact tables. Then the project_migrate_bi_fact.sql will be called after the fact tables are populated, but before the BI Sequences are reset. If either of these two files don't exist in the sql directory, the following messages may appear in the output file:

SP2-0310: unable to open file "project_migrate_bi_dim.sql"

SP2-0310: unable to open file "project_migrate_bi_fact.sql"

If either of these two messages appear, and the corresponding project migration script has not been created, then these errors can be ignored.

Once the migration completes, there should be data in the following BI tables, matching the records that exist in Performance Mart.

	
•

	

cd_acct

	
•

	

cd_addr

	
•

	

cd_call_info

	
•

	

cd_city

	
•

	

cd_crew

	
•

	

cd_ctrl_zone

	
•

	

cd_device

	
•

	

cd_event

	
•

	

cd_event_status

	
•

	

cd_meter

	
•

	

cd_per

	
•

	

cd_prem

	
•

	

cd_snl

	
•

	

cd_user

	
•

	

cf_cust_rst_outg

	
•

	

cf_rst_job

	
•

	

cf_rst_call

	
•

	

cf_rst_crew

If data is migrated from Performance Mart to BI, then the datafiles generated by the initial extractor runs of all the extractors must not be loaded into BI. Otherwise, all of the active records already stored in BI will be marked inactive, and new records generated, causing a large increase in record counts in the BI tables with no benefit. For this reason, the Oracle Utilities Network Management System must be shutdown while the migration is run and the new BI extractors must be run once. Otherwise, the potential exists for losing data that changed after the migration was run but before the new BI extractors are initially run.

To work around this issue, the LAST_START_DATE and LAST_COMPLETE_DATE in the BI_EXTRACTOR_LOG table in the Oracle Utilities Network Management System database can be updated with this command once the last Performance Mart extract is run.

UPDATE bi_extractor_log

SET last_start_date = SYSDATE, last_complete_date = SYSDATE

WHERE extractor_name NOT LIKE 'NRT%';

Note that to do this update, the Oracle Utilities Network Management System database must have been migrated and the install_business_intelligence script run to create the BI extractor code.

Troubleshooting Migration Issues

The following sections describe some common troubleshooting scenarios and the resolution.

Cannot Delete from CD_USER table

If the BI Demo environment was installed, then existing records in the CC&B fact tables can point to existing records in the CD_USER table, which will keep the delete of the CD_USER records from running. The migration script deletes all of the OMS data, but does not modify any existing CC&B or EAM records. So if you need to delete the CC&B data in order to delete the demo records in the CD_USER table, the following deletes must be done in the BI database prior to running the migration script:

delete from CF_FT;

delete from CF_CASE;

delete from CF_CASE_LOG;

delete from CF_CC;

This will not delete all of the CC&B demo data, but will delete the records that refer to CD_USER records that the migration script needs to delete.

No Data in the CF_RECENT* tables

As mentioned in the NRT Table Mapping section above, the NRT data is not migrated during the migration run. This data will be populated by extracting the NRT data from the Oracle Utilities Network Management System database and loading it into the BI Database.

No Data in the CF_CTRL_ZONE_OUTG, CF_CITY_OUTG or CF_OUTG tables

The CF_CTRL_ZONE_OUTG and CF_CITY_OUTG tables are a replacement for the INDICE table in Performance Mart. However, the data in these tables can be calculated based on the records in the CF_CUST_RST_OUTG tables, so migration of this data was not done. If records are required for these tables in the BI database, then the SPL_OMS_SNAPSHOT_PKG.SPL_CTRL_ZONE_OUTG_SNAP_FNC or the SPL_OMS_SNAPSHOT_PKG.SPL_CITY_OUTG_SNAP_FNC can be run for the periods that data is required for.

The CF_OUTG table is a snapshot table, that must be refreshed every hour by running the SPL_OMS_SNAPSHOT_PKG.SPL_OUTG_SNAP_FNC function from OWB. As this data is not available in Performance Mart, no migration was possible. This data will need to be captured from the running BI database as it is used.

Troubleshooting Migration Issues

The following sections describe some common troubleshooting scenarios and the resolution.

Cannot Delete from CD_USER table

If the BI Demo environment was installed, then existing records in the CC&B fact tables can point to existing records in the CD_USER table, which will keep the delete of the CD_USER records from running. The migration script deletes all of the OMS data, but does not modify any existing CC&B or EAM records. So if you need to delete the CC&B data in order to delete the demo records in the CD_USER table, the following deletes must be done in the BI database prior to running the migration script:

delete from CF_FT;

delete from CF_CASE;

delete from CF_CASE_LOG;

delete from CF_CC;

This will not delete all of the CC&B demo data, but will delete the records that refer to CD_USER records that the migration script needs to delete.

No Data in the CF_RECENT* tables

As mentioned in the NRT Table Mapping section above, the NRT data is not migrated during the migration run. This data will be populated by extracting the NRT data from the Oracle Utilities Network Management System database and loading it into the BI Database.

No Data in the CF_CTRL_ZONE_OUTG, CF_CITY_OUTG or CF_OUTG tables

The CF_CTRL_ZONE_OUTG and CF_CITY_OUTG tables are a replacement for the INDICE table in Performance Mart. However, the data in these tables can be calculated based on the records in the CF_CUST_RST_OUTG tables, so migration of this data was not done. If records are required for these tables in the BI database, then the SPL_OMS_SNAPSHOT_PKG.SPL_CTRL_ZONE_OUTG_SNAP_FNC or the SPL_OMS_SNAPSHOT_PKG.SPL_CITY_OUTG_SNAP_FNC can be run for the periods that data is required for.

The CF_OUTG table is a snapshot table, that must be refreshed every hour by running the SPL_OMS_SNAPSHOT_PKG.SPL_OUTG_SNAP_FNC function from OWB. As this data is not available in Performance Mart, no migration was possible. This data will need to be captured from the running BI database as it is used.

Troubleshooting Migration Issues

The following sections describe some common troubleshooting scenarios and the resolution.

Cannot Delete from CD_USER table

If the BI Demo environment was installed, then existing records in the CC&B fact tables can point to existing records in the CD_USER table, which will keep the delete of the CD_USER records from running. The migration script deletes all of the OMS data, but does not modify any existing CC&B or EAM records. So if you need to delete the CC&B data in order to delete the demo records in the CD_USER table, the following deletes must be done in the BI database prior to running the migration script:

delete from CF_FT;

delete from CF_CASE;

delete from CF_CASE_LOG;

delete from CF_CC;

This will not delete all of the CC&B demo data, but will delete the records that refer to CD_USER records that the migration script needs to delete.

No Data in the CF_RECENT* tables

As mentioned in the NRT Table Mapping section above, the NRT data is not migrated during the migration run. This data will be populated by extracting the NRT data from the Oracle Utilities Network Management System database and loading it into the BI Database.

No Data in the CF_CTRL_ZONE_OUTG, CF_CITY_OUTG or CF_OUTG tables

The CF_CTRL_ZONE_OUTG and CF_CITY_OUTG tables are a replacement for the INDICE table in Performance Mart. However, the data in these tables can be calculated based on the records in the CF_CUST_RST_OUTG tables, so migration of this data was not done. If records are required for these tables in the BI database, then the SPL_OMS_SNAPSHOT_PKG.SPL_CTRL_ZONE_OUTG_SNAP_FNC or the SPL_OMS_SNAPSHOT_PKG.SPL_CITY_OUTG_SNAP_FNC can be run for the periods that data is required for.

The CF_OUTG table is a snapshot table, that must be refreshed every hour by running the SPL_OMS_SNAPSHOT_PKG.SPL_OUTG_SNAP_FNC function from OWB. As this data is not available in Performance Mart, no migration was possible. This data will need to be captured from the running BI database as it is used.

Troubleshooting Migration Issues

The following sections describe some common troubleshooting scenarios and the resolution.

Cannot Delete from CD_USER table

If the BI Demo environment was installed, then existing records in the CC&B fact tables can point to existing records in the CD_USER table, which will keep the delete of the CD_USER records from running. The migration script deletes all of the OMS data, but does not modify any existing CC&B or EAM records. So if you need to delete the CC&B data in order to delete the demo records in the CD_USER table, the following deletes must be done in the BI database prior to running the migration script:

delete from CF_FT;

delete from CF_CASE;

delete from CF_CASE_LOG;

delete from CF_CC;

This will not delete all of the CC&B demo data, but will delete the records that refer to CD_USER records that the migration script needs to delete.

No Data in the CF_RECENT* tables

As mentioned in the NRT Table Mapping section above, the NRT data is not migrated during the migration run. This data will be populated by extracting the NRT data from the Oracle Utilities Network Management System database and loading it into the BI Database.

No Data in the CF_CTRL_ZONE_OUTG, CF_CITY_OUTG or CF_OUTG tables

The CF_CTRL_ZONE_OUTG and CF_CITY_OUTG tables are a replacement for the INDICE table in Performance Mart. However, the data in these tables can be calculated based on the records in the CF_CUST_RST_OUTG tables, so migration of this data was not done. If records are required for these tables in the BI database, then the SPL_OMS_SNAPSHOT_PKG.SPL_CTRL_ZONE_OUTG_SNAP_FNC or the SPL_OMS_SNAPSHOT_PKG.SPL_CITY_OUTG_SNAP_FNC can be run for the periods that data is required for.

The CF_OUTG table is a snapshot table, that must be refreshed every hour by running the SPL_OMS_SNAPSHOT_PKG.SPL_OUTG_SNAP_FNC function from OWB. As this data is not available in Performance Mart, no migration was possible. This data will need to be captured from the running BI database as it is used.

Snapshots

This section presents an example call to populate snapshot tables CF_CTRL_ZONE_OUTG and CF_CITY_OUTG for last month. This really only needs to be run once a month, sometime after the last changes are made to data in Oracle Utilities Network Management System for the previous month and extracted to BI.

Control Zone Outage Snapshot

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', ADD_MONTHS(LAST_DAY(SYSDATE), -1),

 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

City Outage Snapshot

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', ADD_MONTHS(LAST_DAY(SYSDATE), -1),

 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

To create a Daily Indice record set, you would change the P_SNAP_TYPE_CD, which is now 'M' for Monthly, to 'D' for Daily, and also change ADD_MONTHS(LAST_DAY(SYSDATE), -1) to TRUNC(SYSDATE - 1) to create statistics for yesterday.

The CF_OUTG table is populated from a Workflow that you can schedule to run. It takes information from the CF*RECENT tables, and calculates an hourly snapshot, so this can be scheduled to run after the RECENT records have been loaded once an hour.

For more information on Snapshots and their parameters, please see the Oracle Business Intelligence Help. To display the online help, press the button ([image:]) located in the Business Intelligence Action Bar at the top of any portal screen.

Snapshots

This section presents an example call to populate snapshot tables CF_CTRL_ZONE_OUTG and CF_CITY_OUTG for last month. This really only needs to be run once a month, sometime after the last changes are made to data in Oracle Utilities Network Management System for the previous month and extracted to BI.

Control Zone Outage Snapshot

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', ADD_MONTHS(LAST_DAY(SYSDATE), -1),

 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

City Outage Snapshot

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', ADD_MONTHS(LAST_DAY(SYSDATE), -1),

 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

To create a Daily Indice record set, you would change the P_SNAP_TYPE_CD, which is now 'M' for Monthly, to 'D' for Daily, and also change ADD_MONTHS(LAST_DAY(SYSDATE), -1) to TRUNC(SYSDATE - 1) to create statistics for yesterday.

The CF_OUTG table is populated from a Workflow that you can schedule to run. It takes information from the CF*RECENT tables, and calculates an hourly snapshot, so this can be scheduled to run after the RECENT records have been loaded once an hour.

For more information on Snapshots and their parameters, please see the Oracle Business Intelligence Help. To display the online help, press the button ([image:]) located in the Business Intelligence Action Bar at the top of any portal screen.

Snapshots

This section presents an example call to populate snapshot tables CF_CTRL_ZONE_OUTG and CF_CITY_OUTG for last month. This really only needs to be run once a month, sometime after the last changes are made to data in Oracle Utilities Network Management System for the previous month and extracted to BI.

Control Zone Outage Snapshot

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_ctrl_zone_outg_snap_fnc(FALSE, 'M', ADD_MONTHS(LAST_DAY(SYSDATE), -1),

 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

City Outage Snapshot

declare temp NUMBER;

begin

 temp := SPL_OMS_SNAPSHOT_PKG.spl_city_outg_snap_fnc(FALSE, 'M', ADD_MONTHS(LAST_DAY(SYSDATE), -1),

 4, 1, NULL, 3, 5, 'NORM');

 commit;

end;

/

To create a Daily Indice record set, you would change the P_SNAP_TYPE_CD, which is now 'M' for Monthly, to 'D' for Daily, and also change ADD_MONTHS(LAST_DAY(SYSDATE), -1) to TRUNC(SYSDATE - 1) to create statistics for yesterday.

The CF_OUTG table is populated from a Workflow that you can schedule to run. It takes information from the CF*RECENT tables, and calculates an hourly snapshot, so this can be scheduled to run after the RECENT records have been loaded once an hour.

For more information on Snapshots and their parameters, please see the Oracle Business Intelligence Help. To display the online help, press the button ([image:]) located in the Business Intelligence Action Bar at the top of any portal screen.

User Authentication

This chapter describes how to configure authentication of users for the Oracle Utilities Network Management System (NMS) applications.

	
•

	

Overview of Authentication

	
•

	

Configuring the WebLogic Security Realm

	
•

	

Configuring Authentication Using WebLogic Internal Users/Groups

	
•

	

Configuring Authentication Using an ActiveDirectory Provider

	
•

	

Configuring Authentication Using an OpenLDAP Provider

Overview of Authentication

To use NMS, a user has to be configured for both authentication and authorization.

Authentication (i.e., user names and passwords) for Oracle Utilities Network Management System is handled by WebLogic, and is accomplished by configuring authentication providers in WebLogic’s default security realm. This is a simplification from previous releases, where user names and passwords were kept in database tables, or where LDAP or Active Directory information had to be configured in SQL files.

Authorization (i.e., what applications a user is allowed to use, with what role or user type, or whether the user is allowed to login to the NMS at all) is handled by the Configuration Assistant. See chapter 16 of the Oracle Utilities Network Management System User’s Guide for more information on the use of the Configuration Assistant.

Most installations will want to configure WebLogic to use an external authentication source, such as Active Directory or LDAP. These servers are often readily available on most corporate networks, they provide advantages for enforcing security policies (e.g., password complexity and aging), and the login names and passwords are already familiar to the end users. In the case that a more simple solution is required, WebLogic internal users and groups can be used to authenticate against the NMS, although this is not recommended for production environments.

Any user that appears in the users and groups in WebLogic’s default security realm tab can be configured to login to NMS, with the following two conditions:

	
•

	

The user must exist in the WebLogic group nmsuser (the name of this group can be changed in $NMS_CONFIG/jconfig/build.properties, if necessary).

	
•

	

The user must be added to NMS through the Configuration Assistant. This will add the user to the CES_USER and USER_PERMISSIONS tables.

Without both of these conditions being met, the application will return that the user is unauthorized.

Configuring the WebLogic Security Realm

	
1.

	

Login to the WebLogic Administration Console

	
2.

	

In the Domain Structure pane, click on Security Realms.

	
3.

	

Click on the default security realm (typically called myrealm).

	
4.

	

Click on the Providers tab.

	
5.

	

Click on DefaultAuthenticator.

	
6.

	

Change Control Flag so it is set to OPTIONAL.

Configuring Authentication Using WebLogic Internal Users/ Groups

The following steps can be used to create users and groups directly in the WebLogic default security realm.

	
1.

	

Login to the WebLogic Administration Console

	
2.

	

In the Domain Structure pane, click on Security Realms

	
3.

	

Click on the default security realm (typically called myrealm).

	
4.

	

Click on the Users and Groups tab, and then click on the Groups tab.

	
5.

	

Click on the New button to create a new group.

	
6.

	

Enter the following group properties:

Name:
nmsuser

Description: Group membership for NMS login.

Provider: DefaultAuthenticator

	
7.

	

For each user to be created, click on the Users tab, and press the New button to create a new user. Enter the following user properties:

Name: juser

Description: Joe User

Provider: DefaultAuthenticator

Password: *****

Confirm Password: *****

Note: User names must be unique. Passwords must contain at least one special character.

	
8.

	

For each user created, click on that user name in the list of users. Clickthe Groups tab, select the nmsuser group from the list of available groups, and move it to the Chosen list by using the > button. Click Save.

Configuring Authentication Using an Active Directory Provider

This section provides an example for how to connect WebLogic to an Active Directory. The specifics of your Active Directory domain may differ from the example given, so consult with your Active Directory administrator to find the correct values, and refer to the WebLogic documentation for specifics on each option.

	
1.

	

Login to the WebLogic Administration Console.

	
2.

	

In the Domain Structure pane, click on Security Realms.

	
3.

	

Click on the default security realm (typically called myrealm).

	
4.

	

Click on the Providers tab and click the New button.

	
5.

	

Provide a name for the provider (for example, "nms-provider"), and select ActiveDirectoryAuthenticator as the type.

	
6.

	

Click the name of the newly created provider.

	
7.

	

Under the Configuration tab, select the Common tab, and set Control Flag to Optional.

	
8.

	

Click Save.

	
9.

	

Under the Configuration tab, select the Provider Specific tab, and set desired values that match your Active Directory configuration.

Examples:

	

	

Connection

	

	

Host: server.example.com

	

	

Port: 389

	

	

Principal: cn=Administrator,cn=Users,dc=example,dc=com

	

	

Credential: (the password used to connect to the account defined by Principal)

	

	

Users

	

	

User Base DN: cn=Users,dc=example,dc=com

	

	

User From Name Filter: (&(samAccountName=%u)(objectclass=user))

	

	

User Name Attribute: samAccountName

	

	

User Object Class: user

	

	

	

	

Groups

	

	

Group Base DN: cn=Groups,dc=example,dc=com

	

	

Group From Name Filter: (&(cn=%g)(objectclass=group))

	
10.

	

Click Save.

	
11.

	

In the Change Center, click Activate Changes.

	
12.

	

Restart the AdminServer.

	
13.

	

IMPORTANT: Verify that the users and groups from the Active Directory are configured by looking at the Users and Groups tab under the default security realm. If not, adjust the configuration.

Configuring Authentication Using an OpenLDAP Provider

This section provides an example of how to connect WebLogic to an OpenLDAP server. The specifics of your OpenLDAP directory may differ from the example given, so consult with your LDAP administrator to find the correct values, and refer to the WebLogic documentation for specifics on each option.

	
1.

	

Login to the WebLogic Administration Console.

	
2.

	

In the Domain Structure pane, click on Security Realms.

	
3.

	

Click the default security realm (typically called myrealm).

	
4.

	

Click the Providers tab and press the New button.

	
5.

	

Provide a name for the provider (for example, "nms-provider"), and select OpenLDAPAuthenticator as the type.

	
6.

	

Click the name of the newly created provider.

	
7.

	

Under the Configuration tab, select the Common tab, and set Control Flag to Optional.

	
8.

	

Click Save.

	
9.

	

Under the Configuration tab, select the Provider Specific tab, and set desired values that match your LDAP Directory configuration.

Examples:

	

	

Connection

	

	

Host: server.example.com

	

	

Port: 389

	

	

Principal: cn=Manager,dc=example,dc=com

	

	

Credential: (the password used to connect to the account defined by Principal)

	

	

	

	

Users

	

	

User Base DN: ou=Users,dc=example,dc=com

	

	

User from Name Filter: (&(uid=%u)(objectclass=inetOrgPerson))

	

	

User Name Attribute: uid

	

	

User Object Class: inetOrgPerson

	

	

	

	

Groups

	

	

Group Base DN: ou=groups,dc=example,dc=com

	

	

Group From Name Filter: (&(cn=%g)(objectclass=groupOfNames))

	
10.

	

Click Save.

	
11.

	

In the Change Center, click Activate Changes.

	
12.

	

Restart the AdminServer.

	
13.

	

IMPORTANT: Verify that the users and groups from the LDAP server are configured by looking at the Users and Groups tab under the default security realm. If not, adjust the configuration.

Fault Location, Isolation, and Service Restoration Administration

This chapter describes how to configure and administer Fault Location, Isolation, and Service Restoration (FLISR). It includes the following topics:

	
•

	

Introduction

	
•

	

Fault Location, Isolation, and Service Restoration Timeline

	
•

	

Software Architecture Overview

	
•

	

Configuring Classes and Inheritance

	
•

	

SRS Rules

	
•

	

High Level Messages

	
•

	

Troubleshooting

Introduction

The intended audience for this document is the system administrators responsible for maintaining the Oracle Utilities Network Management System.

Fault Location, Isolation, and Service Restoration Timeline

These figures show the sequence of events in a Fault Location, Isolation, and Service Restoration scenario. The following figure shows the various scenarios in the momentary processing.

Note: RO is created only if customer supply nodes are de-energized as a result of the operation.

Once an RO is created, the Fault Location, Isolation, and Service Restoration processing sequence shown in the following figure is initiated.

The control sequence (starting at around 25 seconds) is only performed in automatic mode. In manual mode an operator must initiate the control sequence.

Timings in the above diagram are only indicative. Actual values will depend on the complexity of the solution required and the responsiveness of the isolate/restore controls sent to SCADA. The following timings are deterministic:

	
•

	

The delay allowed for demand scans. This is configurable and defaults to 10 seconds

	
•

	

The maximum time allowed for the solution in automatic mode. This is configurable and defaults to 15 seconds. If the solution takes longer to solve than this time, Fault Location, Isolation, and Service Restoration will not automatically execute the control sequence. The option for an operator to manually initiate the control sequence is preserved though.

	
•

	

Maximum time allowed for automatic operations after the lockout is: Demand scan delay + 15 seconds (25 seconds in the default configuration).

	
•

	

Wait times for Auto-Reclose operations. These are 20 seconds.

Software Architecture Overview

This section describes the role of various software components in implementing the Fault Location, Isolation, and Service Restoration functionality:

	

Component

	

Description

	

DDService

	

Tracks SCADA measurements, device operations and Conditions. DDService is the starting point for Fault Location, Isolation, and Service Restoration events. When a device trips, a pending operation is created. When the lockout occurs a completed device operation is sent to MTService. If the breaker is able to reclose - only a momentary event is created.DDService is also responsible for executing Fault Location, Isolation, and Service Restoration switch plans, both in manual and automatic mode. In manual mode the request to execute the switch plan can be initiated by the operator from the Switch Sheet Editor tool. In automatic mode the Fault Location, Isolation, and Service Restoration sub-system requests the switch sheet execution by DDService

	

PFService

	

The core of Fault Location, Isolation, and Service Restoration functionality. It contains most of the Fault Location, Isolation, and Service Restoration sub-system.

Its initial task is to process device operations from DDService and determine the extent of energisation changes in the modelThese changes are also calculated by MTService and propagated to JMService for outage processing.

If the device operation is a trip, the Fault Location, Isolation, and Service Restoration sub-system will perform an initial trace to initiate a demand scan of affected RTUs.

The bulk of Fault Location, Isolation, and Service Restoration processing is triggered by JMService deciding that event has de-energised customers. In this scenario JMService instructs PFService to initiate Fault Location, Isolation, and Service Restoration processing. PFService then calculates the various isolate and restore scenarios and populates the database tables with the solutions.

	

JMService

	

Receives notifications from MTService about changes in energization on the network. JMService will determine if these changes de-energises customers and if so creates an outage event and informs PFService that Fault Location, Isolation, and Service Restoration processing of that event is required.

	

WorkAgenda

	

Monitors notifications from JMService about the creation, update and completion of events. WorkAgenda is configured to highlight Fault Location, Isolation, and Service Restoration events in various ways:

	
•

	

Events detected as potential Fault Location, Isolation, and Service Restoration events are highlighted with a yellow background. The background stays yellow until a Fault Location, Isolation, and Service Restoration solution is found or a further determination indicates that the event cannot be considered an FLISR event (e.g., all restoring switches or feeders are Fault Location, Isolation, and Service Restoration disabled)

	
•

	

Events for which a viable Fault Location, Isolation, and Service Restoration solution is found are highlighted with a pink background.

	
•

	

Events for which a Fault Location, Isolation, and Service Restoration solution is found, but the solution includes overloads on restoring feeders, are highlighted with a light blue background.

	

FLISR

	

Provides a summary of the Fault Location, Isolation, and Service Restoration solution for an event. If an event is found to have a Fault Location, Isolation, and Service Restoration solution, the operator can examine the details of that solution by using this tool.

This tool primarily reads the database tables to determine the solution information calculated by PFService.

The operator can also manually write, append and/or overwrite the generated switch plan.

	

Switching

	

Once a solution is found for the Fault Location, Isolation, and Service Restoration event, a switch plan can be created to execute the solution. The switch plan can be created (and executed) automatically, or it can be created manually. In either scenario the switch plan can be viewed from the Switch Sheet Editor.

In manual mode the operator can request that DDService execute the plan.

In both manual and automatic mode the operator can watch the results of DDService performing a switch plan execution.

Configuring Classes and Inheritance

Fault Location, Isolation, and Service Restoration utilizes standard class names to determine various features in the model. Devices in a model can be configured to the Fault Location, Isolation, and Service Restoration classes using class inheritance.

The following table lists the classes supported by Fault Location, Isolation, and Service Restoration:

	

Class Name

	

Purpose

	

flisr_cb

	

Set of SCADA devices that are protective. These are the SCADA devices that can trip when a fault is detected.

	

flisr_sectionalizer

	

Set of devices that are SCADA controllable, but are not protective. These devices:

	
•

	

Might have fault indicators on them in order to give better indication of fault locations on the feeder

	
•

	

Will be considered for isolate and restore devices

	

flisr_fuse

	

Set of non-SCADA protective devices. These are considered when determining loads and limiting devices

	

flisr_load

	

Set of devices that are loads on the network - typically distribution transformers.

	

flisr_cogen

	

Set of devices on the network that provide additional supply.

	

conductor

	

Set of conductor classes on the network. These are considered when determining limiting devices.

	

block_flisr

	

Condition classes. These define tags and conditions that automatically prohibit Fault Location, Isolation, and Service Restoration operations on a device.

Database Views

In order to determine loads and limiting devices Fault Location, Isolation, and Service Restoration needs to know basic load profile information about all devices. The following database VIEWS are required:

FLISR_TRANSFORMER

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

kva_rating

	

FLOAT

	

Transformer rating in kVA

	

partition

	

INTEGER

	

Model partition for device

FLISR_CONDUCTOR

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

FLISR_SWITCH

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

	

flisr_enabled

	

CHAR

	

Whether FLISR is enabled for this switch (Y or N)

	

fla_enabled

	

CHAR

	

Whether Fault Location Analysis is enabled for this switch (Y or N)

Database Views

In order to determine loads and limiting devices Fault Location, Isolation, and Service Restoration needs to know basic load profile information about all devices. The following database VIEWS are required:

FLISR_TRANSFORMER

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

kva_rating

	

FLOAT

	

Transformer rating in kVA

	

partition

	

INTEGER

	

Model partition for device

FLISR_CONDUCTOR

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

FLISR_SWITCH

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

	

flisr_enabled

	

CHAR

	

Whether FLISR is enabled for this switch (Y or N)

	

fla_enabled

	

CHAR

	

Whether Fault Location Analysis is enabled for this switch (Y or N)

Database Views

In order to determine loads and limiting devices Fault Location, Isolation, and Service Restoration needs to know basic load profile information about all devices. The following database VIEWS are required:

FLISR_TRANSFORMER

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

kva_rating

	

FLOAT

	

Transformer rating in kVA

	

partition

	

INTEGER

	

Model partition for device

FLISR_CONDUCTOR

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

FLISR_SWITCH

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

	

flisr_enabled

	

CHAR

	

Whether FLISR is enabled for this switch (Y or N)

	

fla_enabled

	

CHAR

	

Whether Fault Location Analysis is enabled for this switch (Y or N)

Database Views

In order to determine loads and limiting devices Fault Location, Isolation, and Service Restoration needs to know basic load profile information about all devices. The following database VIEWS are required:

FLISR_TRANSFORMER

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

kva_rating

	

FLOAT

	

Transformer rating in kVA

	

partition

	

INTEGER

	

Model partition for device

FLISR_CONDUCTOR

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

FLISR_SWITCH

	

h_cls

	

INTEGER

	

Class number of device

	

h_idx

	

INTEGER

	

Index number of device

	

amp_rating

	

FLOAT

	

Device’s rating in amps

	

voltage

	

FLOAT

	

Device’s nominal voltage in kV

	

partition

	

INTEGER

	

Model partition for device

	

flisr_enabled

	

CHAR

	

Whether FLISR is enabled for this switch (Y or N)

	

fla_enabled

	

CHAR

	

Whether Fault Location Analysis is enabled for this switch (Y or N)

SRS Rules

The following SRS Rules configure Fault Location, Isolation, and Service Restoration functionality and options:

	

Rule Name

	

Description

	

allowFlisrAutoMode

	

Allow the operators to put Fault Location, Isolation, and Service Restoration into auto-mode

	

autoRecloseMeasurementName

	

SCADA attribute used to indicate recloser suppression

	

earthLeakageMeasurementName

	

SCADA attribute for earth leakage

	

failedQualityBitmask

	

The bitmask to apply to quality codes to determine if quality is bad.

	

faultIndicatorMeasurementName

	

SCADA attribute for Fault Indicators

	

flisrDemandScanThreshold

	

Time to wait for demand scans

	

flisrDisableMeasurementName

	

SCADA attribute that indicates Fault Location, Isolation, and Service Restoration should be disabled

	

flisrKVATolerance

	

KVA Tolerance when comparing loads against ratings

	

flisrMode

	

Start up mode for Fault Location, Isolation, and Service Restoration

	

flisrSwitchPlanType

	

Type of switch plans to use for Fault Location, Isolation, and Service Restoration

	

flisrTemplateArEnable

	

Template containing Fault Location, Isolation, and Service Restoration Reclose Enable actions

	

flisrTemplateArSuppress

	

Template containing FLISR Reclose Suppress actions

	

flisrTemplateBase

	

Template for FLISR switch plans

	

flisrTemplateDisable

	

Template containing FLISR Disable actions

	

flisrTemplateEnable

	

Template containing FLISR Enable actions

	

flisrTemplateIsolate

	

Template containing FLISR Isolate actions

	

flisrTemplateRestore

	

Template containing FLISR Restore actions

	

flisrTemplateWait

	

Template containing FLISR Reclose Wait actions

	

manualOperationMeasurementName

	

SCADA attribute that indicates manual operation of a device

	

maxFlisrSolutionTime

	

How long we allow for solutions in automatic mode

	

mvarMeasurementName

	

SCADA attribute for current MVAR

	

mwMeasurementName

	

SCADA attribute for current MW

	

preTripMvarMeasurementName

	

SCADA attribute for pre-trip MVAR

	

preTripMwMeasurementName

	

SCADA attribute for pre-trip MW

	

recloseLockoutMeasurementName

	

SCADA attribute used to show recloser lockouts

High Level Messages

PFService accepts the following High Level messages:

Action any.PFService <command> <arguments>

Where:

	

Command

	

Arguments

	

Description

	

debug FLISR

	

<N>

	

Sets the debug level: 0 = off1 = demand scan & timing info2 = Trace3 = Detailed Information regarding solution4 = Full debug

	

flisr kva_tolerance

	

<N>

	

Sets the capacity tolerance to allow. Where <N> is the new tolerance in kVA

	

flisr base_flows

	

	

Outputs the base conductor flow information

	

flisr ties

	

	

Outputs the ties (open) point summary

	

flisr alarms

	

	

Forces a check for the Fault Location, Isolation, and Service Restoration disabled device alarms

	

flisr check

	

ON/OFF

	

Toggle Fault Location, Isolation, and Service Restoration check mode on/off

	

flisr reload

	

	

Reload measurement configuration

	

flisr dump

	

	

Write internal data structures into log

Troubleshooting

The following high-level messages can be used to turn timing and demand scan information on/ off. This is useful in determining that Fault Location Isolation Service Restoration is scanning the correct RTUs and that timing goals are being achieved.

To turn on the messages:

Action any.PFService debug FLISR 1

To turn off the messages:

Action any.PFService debug FLISR 0

Distribution Management Application Configuration

This chapter provides an overview of the configuration and maintenance of Oracle Utilities
Distribution Management System applications. It includes the following topics:

	
•

	

Environment Settings

	
•

	

Configuring Oracle Utilities Network Management Services

	
•

	

Power Flow Rules Settings

For DMS installation instructions, see the Oracle Utilities Network Management System Installation Guide.

Environment Settings

This section describes how the Oracle Utilities Network Management System Distribution
Management services are configured. These settings should be configured for the applications
listed below.

	
•

	

Feeder Load Management

	
•

	

Fault Location Isolation & Service Restoration (FLISR)

	
•

	

Fault Location Analysis

	
•

	

Power Flow Extensions

	
•

	

Suggested Switching

	
•

	

Volt/VAr Optimization

	
•

	

Web Switching

Configuring Oracle Utilities Network Management Services

PFService - Power Flow Service

The main application that runs the majority of the Oracle Utilities Network Management System Distribution Management business logic is the Power Flow service. If your environment will be running any applications listed in the previous section (except Web Switching and FLISR), you must add the Power Flow Service as a system service by updating the $NMS_HOME/etc/system.dat file. There are 3 main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Powerflow Service. Search for PFService in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order for the Powerflow Service to be properly monitored by SMService.

The command line options for PFService are:

	
•

	

hourlyProfiles : PFService should be run with this option to activate the load interval data functionality

	
•

	

incrSolveCutoff: similar to the MTService -incrSolveCutoff. Default value is 1000 switches. The PFService and MTService parameters should be tuned separately, since PFService performs more actions as part of the solve.

	
•

	

pfdbs : Use a dedicated database connection, rather than the common pool. Requires a corresponding PFDBService instance to be defined in system.dat

Configuring Oracle Utilities Network Management Services

PFService - Power Flow Service

The main application that runs the majority of the Oracle Utilities Network Management System Distribution Management business logic is the Power Flow service. If your environment will be running any applications listed in the previous section (except Web Switching and FLISR), you must add the Power Flow Service as a system service by updating the $NMS_HOME/etc/system.dat file. There are 3 main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Powerflow Service. Search for PFService in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order for the Powerflow Service to be properly monitored by SMService.

The command line options for PFService are:

	
•

	

hourlyProfiles : PFService should be run with this option to activate the load interval data functionality

	
•

	

incrSolveCutoff: similar to the MTService -incrSolveCutoff. Default value is 1000 switches. The PFService and MTService parameters should be tuned separately, since PFService performs more actions as part of the solve.

	
•

	

pfdbs : Use a dedicated database connection, rather than the common pool. Requires a corresponding PFDBService instance to be defined in system.dat

Power Flow Rules Settings

This section lists Power Flow rules parameters, their description and typical configuration values/ ranges. Oracle Utilities Network Management System Distribution Management applications use srs_rules parameters with a SET_NAME of ‘PFS’ to configure what kind of data sets are used and how the application results are computed and displayed.

To view and edit Power Flow Rules, use the Event Management Rules tab in the Configuration Assistant. Expand the Power Flow Related Rule item in the left panel to display the rule categories. Refer to the following sections for rule descriptions by category:

	
•

	

Dynamic Line Ratings Rules

	
•

	

Fault Location Analysis Rules

	
•

	

Feeder Load Management Rules

	
•

	

Load Scaling Rules

	
•

	

SCADA Measurement Rules

	
•

	

Suggested Switching Rules

	
•

	

Other Power Flow Rules

Dynamic Line Ratings Rules

	

Parameters

	

Description

	

 alarmLevel

	

Threshold for normal alarms. Typical val: 85

	

calculationFrequency

	

Calulataion frquency for Dynamic Ratings processing. Typical
val: 60

	

criticalLevel

	

Threshold for critical alarms. Typical val: 95

	

daytimeHour

	

Number of daytime hours. Typical val: 7

	

feederExitDeadband

	

Limit deadband for feeder exit alarms. Typical val: 5.0

	

nighttimeHour

	

Number of nighttime hours. Typical val: 7

	

subtxLineDeadband

	

Limit deadband for sub tx line alarms. Typical val: 5.0

	

summerMonth

	

Month at which summer begins. Typical val: 5

	

winterMonth

	

Month at which winter begins. Typical val: 10

	

xfmrGroupDeadband

	

Limit deadband for xfmr group alarms. Typical val: 5.0

Fault Location Analysis Rules

	

Parameters

	

Description

	

FLA_PICKUP_SCALE_FACTOR

	

Scale factor of pickup current used in fault location analysis.
Typical val: 1.2

Feeder Load Management Rules

	

Parameters

	

Description

	

AlarmPri

	

Priority to use when creating normal alarms. Typical val: 8

	

ANALOG_PRECISION

	

Analog precision percentage. Typical val: 5

	

CritAlarmPri

	

Priority to use when creating critical alarms. Typical val: 5

	

CYCLE_TIME

	

Cycle time for periodic powerflow solution (in secs). Typical
val: 100000

	

DISPLAY_VOLTAGE_TYPE

	

Powerflow results voltage display base. 0=secondary voltage
level, 1=primary voltage level. Typical val: 0

	

EMERGENCY_LIMITS

	

Indicates whether to use Emergency limits when determining violations. Typical value: No (normal limits are used)

	

FLM_BACKFEED_VIOLATION_WEI
GHT

	

Weight factor for backfeed violation. Typical val: 0.0

	

FLM_CONDUCTOR_VIOLATION_W
EIGHT

	

Weight factor for conductor violation. Typical val: 0.2

	

FLM_DAILY_PEAK_HOUR

	

The daily peak hour used by feeder load management. Typical
val: 1

	

FLM_DISTRIBUTION_TRANSFORM
ER_

VIOLATION_WEIGHT

	

Weight factor for distribution transformer violation. Typical
val: 0.1

	

FLM_FEEDER_BREAKER_VIOLATI
ON_WEIGHT

	

Weight factor for feeder breaker violation. Typical val: 0.2

	

FLM_LOAD_IMBALANCE_VIOLATI
ON_WEIGHT

	

Weight factor for load imblance violation. Typical val: 0.0

	

FLM_OVER_VOLT_VIOLATION_WE
IGHT

	

Weight factor for voltage overlimit violation. Typical val:0.1

	

FLM_POWER_TRANSFORMER_VIO
LATION_WEIGHT

	

Weight factor for power transformer violation. Typical val:
0.2

	

FLM_SWITCHES_VIOLATION_WEI
GHT

	

Weight factor for switch violation. Typical val: 0.1

	

FLM_UNDER_VOLT_VIOLATION_
WEIGHT

	

Weight factor for voltage underlimit violation . Typical val:0.1

	

FLM_WARNING_THRESHOLD

	

Warning Threshold for feeder load management. Typical Val:
0.8

	

FLM_WARNING_WEIGHT

	

Weight factor for warning in feeder load management.
Typical val: 0.05

	

SCADA_DELAY_TIME

	

Indicates how long FLM must wait before re-solving PowerFlow on an island affected by topology changes. This allows time for SCADA analogs to filter through for the change, so that the system will use the updated values in the solution. It also allows multiple topology changes in the same island to be aggregated into a single solve. The base product is configured with a value of 30 seconds. If no value is specified, the system defaults to 15 seconds.

	

SEC_VOLTAGE_BASE

	

Secondary voltage base (in V). Typical val: 120

	

VHILIMIT

	

Percent high voltage limit value. Typical val: 1.08

	

VLOLIMIT

	

Percent low voltage limit value. Typical val: 1.08

Load Scaling Rules

	

Parameters

	

Description

	

DAYTYPE_0

	

Weekday load profile scenarios. Typical val: WEEKEND,
SEASON_1, SEASON_2, SEASON_3, SEASON_4,
SUNDAY, SATURDAY

	

DAYTYPE_1

	

Weekend load profile scenarios. Typical val: WEEKDAY,
SEASON_1, SEASON_2, SEASON_3, SEASON_4,
MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRIDAY

	

DAYTYPE_2

	

Seasonal peak load profile scenarios. Typical val:
SEASONALPEAK,SEASON_1, SEASON_2, SEASON_3,
SEASON_4

	

DAYTYPE_3

	

Holiday load profile scenarios. Typical val: DATE, 7-4, 12-24

	

DAYTYPE_4

	

Default load profile scenarios. Typical val: DEFAULT

	

LOADTYPE,0,0

LOADTYPE,0,1

LOADTYPE,0,2

LOADTYPE,0,3

LOADTYPE,0,4

LOADTYPE,0,5

LOADTYPE,1,0

LOADTYPE,1,1

LOADTYPE,1,2

LOADTYPE,1,3

LOADTYPE,1,4

LOADTYPE,1,5

LOADTYPE,2,0

LOADTYPE,2,1

LOADTYPE,2,2

LOADTYPE,2,3

LOADTYPE,2,4

LOADTYPE,2,5

LOADTYPE,3,0

LOADTYPE,3,1

LOADTYPE,3,2

LOADTYPE,3,3

LOADTYPE,3,4

LOADTYPE,3,5

LOADTYPE,4,0

LOADTYPE,4,1

LOADTYPE,4,2

LOADTYPE,4,3

LOADTYPE,4,4

LOADTYPE,4,5

	

Voltage computation parameter for load model of loadtype 0.
Typical val: 1

Typical val: 1

Typical val: 0

Typical val: 0

Typical val: 1

Typical val: 0

Typical val: 0

Typical val: 0.6

Typical val: 0

Typical val: 0.4

Typical val: 0.6

Typical val: 0

Typical val: 0.4

Typical val: 0.5

Typical val: 0

Typical val: 0.5

Typical val: 0.5

Typical val: 0

Typical val: 0.5

Typical val: 0.4

Typical val: 0

Typical val: 0.6

Typical val: 0.4

Typical val: 0

Typical val: 0.6

Typical val: 0

Typical val: 0

Typical val: 1

Typical val: 0

Typical val: 0

	

INTDATA_NUMLOADPERIODS

	

Defines number of intervals in one day for load interval data
processing. Typical val: 24

	

SUMMER_DATE

	

Summer start date for season-dependent load types. Typical
val: 05 01

	

WINTER_DATE

	

Winter start date for season-dependent load types. Typical
val: 05 01

SCADA Measurement Rules

	

Parameters

	

Description

	

_PF_MEAS_AMPS

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of 3-ph circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1012

scale factor: 1.0

	

_PF_MEAS_AMPS_A

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of A-ph
circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1013

scale factor: 1.0

	

_PF_MEAS_AMPS_B

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of B-ph
circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1014

scale factor: 1.0

	

_PF_MEAS_AMPS_C

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of C-ph
circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1015

scale factor: 1.0

	

_PF_MEAS_AMPS_SUM

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current summation measurement of 3-ph circuit.

Typical values:

attribute: 1096

scale factor: 1.0

	

_PF_MEAS_ANGLE

	

Specifies the SCADA attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) number for average phase angle of 3-ph circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians. Typical values:

attribute: 1092

scale factor (for degrees): 57.2958 (for radians)

	

_PF_MEAS_ANGLE_A

	

Specficies the SCADA attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) for phase angle of phase A circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians.

Typical values:

attribute: 1093

scale factor (for degrees): 57.2958 (for radians)

	

_PF_MEAS_ANGLE_B

	

Specifies the SCADA attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) for phase angle of phase B circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians.

Typical values:

attribute: 1094

scale factor (for degrees): 57.2958 (for radians)

	

_PF_MEAS_ANGLE_C

	

Attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) for phase angle of phase C circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians.

Typical values:

attribute: 1095

scale factor (for degrees): 57.2958 (for radians)

	

_PF_MEAS_CAP_POSITION

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for capacitor position of 3-ph
circuit.

Typical values:

attribute: 1800

scale factor: 1.0

	

_PF_MEAS_CAP_AUTO

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for capacitor bank regulation
status.

Typical values:

attribute: 1851

scale factor: 1.0

	

_PF_MEAS_KVAR

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of 3-ph
circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1032

scale factor: 1.0

	

_PF_MEAS_KVAR_A

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of A-ph
circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1033

scale factor: 1.0

	

_PF_MEAS_KVAR_B

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of 3-ph
circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1032

scale factor: 1.0

	

_PF_MEAS_KVAR_C

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of C-ph
circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1032

scale factor: 1.0

	

_PF_MEAS_KW

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of 3-ph
circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1044

scale factor: 1.0

	

_PF_MEAS_KW_A

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) active power (kW) of A-ph circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1045

scale factor: 1.0

	

_PF_MEAS_KW_B

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of B-ph
circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1046

scale factor: 1.0

	

_PF_MEAS_KW_C

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of C-ph
circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1047

scale factor: 1.0

	

_PF_MEAS_NUM_SEQ_CAP

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of C-ph
circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1047

scale factor: 1.0

Attribute number for num sequential capacitors. Typical val:
1856

	

_PF_MEAS_PF

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of 3-ph circuit.

Typical values:

attribute: 1088

scale factor: 1.0

	

_PF_MEAS_PF_A

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of A-ph circuit.

Typical values:

attribute: 1089

scale factor: 1.0

	

_PF_MEAS_PF_B

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of of B-ph circuit.

Typical values:

attribute: 1090

scale factor: 1.0

	

_PF_MEAS_PF_C

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of of C-ph circuit.

Typical values:

attribute: 1091

scale factor: 1.0

	

_PF_MEAS_PHASE_KV

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of 3-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1104

scale factor: 1.0

	

_PF_MEAS_PHASE_KV_A

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of A-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1105

scale factor: 1.0

	

_PF_MEAS_PHASE_KV_B

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of B-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1106

scale factor: 1.0

	

_PF_MEAS_PHASE_KV_C

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of C-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1107

scale factor: 1.0

	

_PF_MEAS_TAP_POSITION

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap position of 3-ph circuit.

Typical values:

attribute: 1807

scale factor: 1.0

	

_PF_MEAS_TAP_PRI

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap position of primary.

Typical values:

attribute: 1853

scale factor: 1.0

	

_PF_MEAS_TAP_AUTO

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap regulation status.

Typical values:

attribute: 1852

scale factor: 1.0

	

_PF_MEAS_TAP_SEC

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap position of secondary.

Typical values:

attribute: 1854

scale factor: 1.0

	

_PF_MEAS_TAP_TER

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tertiary.

Typical values:

attribute: 1855

scale factor: 1.0

	

_PF_MEAS_TEMPERATURE

	

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for temperature.

Typical values:

attribute: 1900

scale factor: 1.0

Suggested Switching Rules

	

Parameters

	

Description

	

SS_ACT_KEY_ISOLATE_OPEN

	

Defines the action key for the isolate open operation. Typical
val: 580

	

SS_ACT_KEY_ISOLATE_TAG

	

Defines the action key for the isolate tag operation. Typical
val: 100

	

SS_ACT_KEY_RESTORE_CLOSE

	

Defines the action key for the restore close operation. Typical
val: 260

	

SS_ACT_KEY_RESTORE_OPEN

	

Defines the action key for the restore open operation. Typical
val: 580

	

SS_MAX_SUGGESTED_PLAN

	

Maximum number of plans created by Suggested Switching.
Typical val: 10

	

SS_WEIGHT_BRANCH_OVERLOAD

	

Feeder unloading weighting factor for branch overloads.
Typical val: 100.0

	

SS_WEIGHT_CAPACITY_MARGIN

	

Feeder unloading weighting factor for capacity margi

	

SS_WEIGHT_SWITCH_OPERATION

	

Feeder unloading weighting factor for switch operation.
Typical val: 10.0

Other Power Flow Rules

	

Parameters

	

Description

	

CAPSW_ENABLE

	

Flag that determines whether sw. capacitors are enabled as
controls. Typical val: yes (for Enable)

	

MAX_REALTIME_PFOBJECT

	

The maximum number powerflow engine instances that can
be created. Restricts the number of concurrent powerflow
solutions that can be running. Further solutions will be
delayed until an existing instance finishes its solve. Typical val:
10

	

MIN_LINE_LENGTH

	

Minimum line length. If the length is less that the value, set its
length to minimum value. Typical val: 10.0

Java Application Configuration

The intended audience for this chapter is the system administrators responsible for making customer specific configuration changes to Oracle Utilities Network Management System java applications. This chapter includes the following topics:

	
•

	

Overview

	
•

	

Making Changes to Java Application Configuration

	
•

	

Deploying Configuration Changes

	
•

	

Java Tool Configuration

	
•

	

Advanced GUI Configuration

	
•

	

Advanced Configuration Options

	
•

	

JBot DataStore Reference guide

	
•

	

Oracle Fusion Client Platform Configuration

	
•

	

Application Customization

	
•

	

Installing the Web Switching BI Publisher Report Package

Overview

The Oracle Utilities Network Management System Java applications are configured by using the standard product configuration with overrides that are specific to a customer. This chapter describes where the Java application configuration files reside as well as how to update and deploy changes to these files to an Oracle Utilities Network Management System Web Gateway.

Making Changes to Java Application Configuration

After executing the installation procedures outlined in the Oracle Utilities Network Management System Installation Guide, the product configuration files for all Java applications will be stored in ${CES_HOME}/dist/baseconfig. To make a change to any Java configuration file, you will need to copy the file to ${NMS_CONFIG}/jconfig, using the same directory structure as it exists in the product directory. For example, to change the AMRInterface.properties file, copy it from ${CES_HOME}/dist/baseconfig/product/server/ to ${NMS_CONFIG}/jconfig/server. Make the customer specific changes on the copied version. Do not change the product version.

If a java property file is changed, it is only necessary for the customer version to include the changed lines. Any line in a property file that is not overridden by a customer-specific line will use the product value. Other file types, such as XML documents, need to be complete replacements of the product versions.

Deploying Configuration Changes

These steps are required after changes have been made to a customer’s Java application configuration after the initial installation of the Oracle Utilities Network Management System.

The ${NMS_CONFIG}/jconfig/build.properties file contains various properties that control the configuration build process. The following is a list of the commonly modified values:

	

project.name

	

The name of the project/customer. This is displayed in the Help About dialog of any Java GUI applications to identify the application as being configured for this particular customer.

	

project.tag

	

This is a CVS tag or other identifier used to identify a particular build of the customer-specific configuration. This is also displayed on the Help About dialog of any Java GUI applications to identify a customer-specific configuration deployment.

	

dir.localization

	

If the configuration is based off of a localized (non-English language) version, enter the directory of the localization configuration. Otherwise leave this commented out.

	

dir.config.deploy

	

This is the directory where runtime configuration jar files will be created. The default is a staging area ($NMS_HOME/java/deploy), but it is also possible to configure these runtime files to be deployed directly to the application server. Uncomment and update the WebLogic sections if this is desired.

After making customer specific changes to the java application configuration files and also setting up the build.properties file for your environment, create the runtime configuration jar files by running the following command:

nms-install-config --java

This will create the cesejb.ear file. If the cesejb.ear file is to be deployed to a staging area, they will need to be copied to the appropriate directory for the java application server (i.e., WebLogic) to deploy them. See the instructions below for deploying the changed configuration to your specific Java Application server.

In addition, this command will create nms-amr.ear and nms-mwm.ear files. These files contain Oracle Utilities Network Management System MultiSpeak Adapter and Oracle Utilities NMS-MWM Adapter, respectively. See the instructions below for deploying the applications to your specific Java Application server. Substitute the name of the file being deployed for the cesejb.ear when following the instruction steps.

Deploying to WebLogic Application Server

To deploy the Oracle Utilities Network Management System application in your domain, follow these steps:

	
1.

	

Access the WebLogic Server Administration Console by entering the following URL:

http://hostname:port/console

Here hostname represents the DNS name or IP address of the Administration Server, and port represents the number of the port on which the Administration Server is listening for requests (port 7001 by default).

	
2.

	

If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.

	
3.

	

In the left pane of the Administration Console, select Deployments.

	
4.

	

If a previous release of Oracle Utilities Network Management System (cesejb) is in the table, select the checkbox to the far left of the deployed cesejb application. Click the Delete button at the top or bottom of the Deployments table to delete the cesejb application, then click Yes to confirm your decision.

	
5.

	

In the right pane, click Install.

	
6.

	

In the Install Application Assistant, locate the cesejb.ear to install. This will be in the directory listed in your build.properties setting "dir.config.deploy".

	
7.

	

Click Next.

	
8.

	

Specify that you want to target the installation as an application.

	
9.

	

Click Next.

	
10.

	

Select the servers and/or cluster to which you want to deploy the application.

Note: If you have not created additional Managed Servers or clusters, you will not see this assistant page.

	
11.

	

Click Next.

	
12.

	

Click Next.

	
13.

	

Review the configuration settings you have specified, and click Finish to complete the installation.

	
14.

	

To activate these changes, in the Change Center of the Administration Console, click Activate Changes.

Java Tool Configuration

Overview

JBot is a system developed by the Oracle Utilities Network Management System group for representing GUI forms as XML documents. Product versions of files are stored in ${CES_HOME}/dist/baseconfig. Project versions are stored under ${NMS_CONFIG}/
jconfig.

This document contains a description of the configuration needed for all Oracle Utilities Network Management System Java Tools. This includes configuration to:

	
•

	

Organize all Java Swing Components visually.

	
•

	

Attach language-independent text and tooltips to the Components.

	
•

	

Attach specific logic to user actions on the Components.

	
•

	

Display specific pieces of data held in memory on the Components.

	
•

	

Set Components' enabled/editable status dependent upon tool-specific States.

Java Tool Configuration

Overview

JBot is a system developed by the Oracle Utilities Network Management System group for representing GUI forms as XML documents. Product versions of files are stored in ${CES_HOME}/dist/baseconfig. Project versions are stored under ${NMS_CONFIG}/
jconfig.

This document contains a description of the configuration needed for all Oracle Utilities Network Management System Java Tools. This includes configuration to:

	
•

	

Organize all Java Swing Components visually.

	
•

	

Attach language-independent text and tooltips to the Components.

	
•

	

Attach specific logic to user actions on the Components.

	
•

	

Display specific pieces of data held in memory on the Components.

	
•

	

Set Components' enabled/editable status dependent upon tool-specific States.

Glossary of Terms

	

Term

	

Definition

	

Attribute

	

XML key that describes the positioning of the Component to be added. Attributes look like this: <TAG attribute_name = some value...>.

	

Command

	

Specific piece of functionality created by Oracle Utilities Network Management System that is executed when a user acts on the GUI.

	

Component

	

A member of (or Oracle Utilities Network Management System enhancement to) the standard Java Swing package, including TextFields, TextAreas, Buttons, Tables, Trees, Panels, etc.

	

Data Store

	

Collection of data that may be accessed by any Command and displayed by any Component.

	

Java

	

Object-oriented, platform-independent computer language developed by Sun Microsystems.

	

Properties

	

Standard Java configuration text file. The properties files define all text and tooltips for each Component.

	

Swing

	

Java library of standard visual Components.

	

Tag

	

XML key that describes the Component to be added. Tags look like this: <tag_name>.

	

Tool

	

A grouping of Oracle Utilities Network Management System -specific functionality that can be used as an Application or an Applet.

	

Tool State

	

Tool-specific milestones, set as internal flags, that may be used to configure Components' enabled/editable statuses. (POPULATED, ASSIGNED, and CLEARED are all examples of Tool States.)

	

XML

	

eXtensible Markup Language. Industry standard meta-language used by Oracle Utilities Network Management System for GUI configuration.

	

XML Schema

	

A validation document that is used by the XML parser to validate the XML file.

Component Gallery

This section contains a sample image of each Component, a description of the Component and the Component's name, which is used in the Component's XML tag.

	

Component Name/
XML Tag

	

Description

	

Button

	

Single clicking on a button will perform a defined Action.

	

CheckBox

	

Allows an item to be marked as selected.

	

CheckBoxMenuItem

	

A menu item that has a checkbox next to it when it is selected. It is configured just like a MenuItem.

	

CollapsiblePanel

	

Collapsible in the horizontal or vertical direction. The purpose is to save screen real estate. The image and the title are configurable.

	

ComboBox

	

A list of elements that defaults to showing one element. To select from all of the elements, click on the arrow. The purpose of this Component is to save screen real estate and to only allow the user a finite set of options.

	

ControlZoneSelector

	

Popup display of a Control Zone tree, displaying a specified (default 3) # of levels of the control zone hierarchy to allow user selection of a control zone.

	

CrewIconsPanel

	

Specialized panel for Crew Actions window.

	

DateTimeSelector

	

Pop up (actually more of a dropdown) calendar that allows the user to specify the date/time. It will follow the specified date/time format set in ces_datefmt.

	

Label

	

Text description that is associated with another Component, frequently a TextField.

	

LabelIndicator

	

Label whose icon changes with the change in the tool status.

	

List

	

Lists can be single or multi-select. The list box will be scrollable when the number of elements exceed the size of the list.

	

MainPanel, SubPanel

	

Several Components are placed on a panel to control a section of the GUI.

	

Menu

	

Element of a MenuBar that can have MenuItems, RadioButtonMenuItem, CheckBoxMenuItem, or SubMenu, and Separators (horizontal delimiters).

	

MenuBar

	

Bar at the top of a panel that contains one or more Menu elements.

	

MenuItem

	

Standard text or icon option in a Menu.

	

PasswordField

	

A field that works just as a TextField except that it displays asterisks instead of the characters typed.

	

PopupMenu

	

Right-click menu with a number of menu items which when selected performs a defined action.

	

RadioButtonMenuItem

	

A choice on a menu that is part of a group where only one can be selected at a time. It is configured just like a MenuItem.

	

RadioGroup

	

Similar to a CheckBox, but only one item can be selected at a time.

	

ScrollPane

	

It provides a scrollable view of a set of Components. When screen real estate is limited, it is used to display a set of Components that is large or whose size can change dynamically.

	

Slider

	

A Component that lets the user enter a numeric value bounded by a minimum and maximum value.

	

StatusBar

	

Displays messages to the user. It contains a Oracle Utilities Network Management System icon, and can also have a progress bar and text and label indicators.

	

SplitPane

	

Split the two panels by a divider that can be dragged in either direction to increase or decrease the size of each panel.

	

Table

	

Data is displayed in a tabular format. They can support single or multi-row selection, and cells can display icons and DateTimeSelectors in addition to dates and strings.

	

TabbedPane

	

A component that lets the user switch between a group of components by clicking on a tab with a given title and/or icon. Contains one or more Tabs.

	

TextArea

	

Allows the user to enter text on multiple lines. When the number of lines exceeds the viewing area, then the Component is scrollable.

	

TextField

	

Allows the user to enter text.

	

TextIndicator

	

Changes the displayed text when the tool status changes.

	

ToggleButton

	

A two-state button that stays in the pressed position the first time it is clicked. The button returns to the unpressed position the second time it is clicked.

	

ToolBar

	

Component below a MenuBar on a panel. It can be automatically generated from the MenuBar by setting <ToolBar use_menu="true"/> . Also contains ToolBarItems and Separators.

	

ToolBarItem

	

Element of a ToolBar, generally with a specified icon.

	

ToolContainer

	

Allows a tool to be contained by another tool.

	

Tree

	

Data can be presented in a hierarchical order. If a parent has children, then the parent can be opened to display the children or closed to hide them.

	

TreeTable

	

A combination of the tree Component and the table Component. This allows a tree to be displayed with multiple columns. Attributes available: name="unique component name" class="fully qualified class name that overrides com.splwg.oms.jbot.component.JBotPaneTreeTable" See Tree Table XML for sample configuration.

	

ViewerPanel

	

Specialized panel used by the Viewer tool.

Configuration Files

	
•

	

Most of the GUI configuration is configured through the XML file. There is some data that is stored in the database for convenience such as drop down values and sorting and filtering.

	
•

	

Most of the attributes in the XML file are either required or have a default value.

	
•

	

XML files are validated through an XML schema file.

	
•

	

All properties configuration files will follow a base-plus-delta hierarchy so that, for example, a certain property may be configured for the Oracle Utilities Network Management System product configuration. If a specific project desires to change that property's value, they need only configure that property, not the entire property file.

XML schema and XML File

This schema document describes all the information that is required to create an XML file, what each element has as its child elements, their attributes and the restriction on them. This schema follows a naming convention:

	
•

	

Elements - Every word starts with a capital letter .

	
•

	

Attributes - Every word starts with a small letter and they are separated by underscores.

Most of the GUI components are configured by specifying two child elements.

	
•

	

ComponentTagPlacement - The attributes for placement of the component on its parent panel.

	
•

	

ComponentTagBehavior - Other properties not related to placement of the component.

Standard JBot tool XML configuration

	

	

<
JbotToolApp
>

	

	

<
GlobalProperties
/>

	

	

<ToolBehavior/>

	

	

<
MainPanel
>

	

	

<
MenuBar
>

	

	

(
The

definition

of

the

GUI

goes

here
)

	

	

<
BaseProperties
>

	

	

<
Commands
>

	

	

<
Imports
>

	

	

<
DataStores
>

	

	

<
Dialogs
>

	

	

</
BaseProperties
>

	

	

<
JBotToolApp
>

	
•

	

<
GlobalProperties
>: This section defines properties that are used for tool specific configuration values. All values possible are listed in the product XML files where applicable.

	
•

	

<
ToolBehavior
>: Typically defines what commands to run upon opening or closing the dialog.

	
•

	

<
MainPanel
>: Defines the GUI layout of the tool.

	
•

	

<
BaseProperties
>: Contains the configuration that matches JBot names with Java classes.

	
•

	

<
Commands
>: This section defines a command. If a command is used either by the tool or by a dialog called from the tool, it must be listed here. It is preferable that commands are referred to by class name directly. In that case, the Commands section is not needed.

	
•

	

<
Imports
>: This section defines paths for commands so that a command can be used without specifying the full path.

Command Usage Examples

It is preferable to refer to Commands by the class name rather than define the name in CommandClass.

For example, the following two commands are equivalent.

	

	

<Command name="CMD_FOO"/>

	

	

…

	

	

<CommandClass name="CMD_FOO" class="com.splwg.oms.client.workagenda.FooCommand"/>

	

	

	

	

OR

	

	

	

	

<Command name="com.splwg.oms.client.workagenda.FooCommand"/>

However, if there is an Import section, the system will attempt to find the command in each package. Thus, the following:

	

	

<Command name="com.splwg.oms.client.workagenda.FooCommand"/>

becomes:

	

	

	

	

<Command name="FooCommand">

	

	

	

	

...

	

	

	

	

<Imports>

	

	

 <Import name="com.splwg.oms.client.workagenda"/>

	

	

</Imports>

	
•

	

<
Datastores
>: All datastores that are used by the tool or any dialogs called by this tool must be listed here. However, a tool is allowed to use a datastore defined by a different tool, as long as the other tool is loaded first. There are also some instances where a datastore can be defined in the code. This is mainly the case in the crew tools.

	
•

	

<
Dialogs
>: All dialogs that can be displayed by this tool must be listed in this section. Also, if any dialogs are displayed from other dialogs defined also must be listed here.

	
•

	

<
Adapters
>: This section is no longer necessary. If an existing JBot configuration file has this section, it can be removed without a problem. If such a tag does exist, it is ignored.

Configuration Files

	
•

	

Most of the GUI configuration is configured through the XML file. There is some data that is stored in the database for convenience such as drop down values and sorting and filtering.

	
•

	

Most of the attributes in the XML file are either required or have a default value.

	
•

	

XML files are validated through an XML schema file.

	
•

	

All properties configuration files will follow a base-plus-delta hierarchy so that, for example, a certain property may be configured for the Oracle Utilities Network Management System product configuration. If a specific project desires to change that property's value, they need only configure that property, not the entire property file.

XML schema and XML File

This schema document describes all the information that is required to create an XML file, what each element has as its child elements, their attributes and the restriction on them. This schema follows a naming convention:

	
•

	

Elements - Every word starts with a capital letter .

	
•

	

Attributes - Every word starts with a small letter and they are separated by underscores.

Most of the GUI components are configured by specifying two child elements.

	
•

	

ComponentTagPlacement - The attributes for placement of the component on its parent panel.

	
•

	

ComponentTagBehavior - Other properties not related to placement of the component.

Standard JBot tool XML configuration

	

	

<
JbotToolApp
>

	

	

<
GlobalProperties
/>

	

	

<ToolBehavior/>

	

	

<
MainPanel
>

	

	

<
MenuBar
>

	

	

(
The

definition

of

the

GUI

goes

here
)

	

	

<
BaseProperties
>

	

	

<
Commands
>

	

	

<
Imports
>

	

	

<
DataStores
>

	

	

<
Dialogs
>

	

	

</
BaseProperties
>

	

	

<
JBotToolApp
>

	
•

	

<
GlobalProperties
>: This section defines properties that are used for tool specific configuration values. All values possible are listed in the product XML files where applicable.

	
•

	

<
ToolBehavior
>: Typically defines what commands to run upon opening or closing the dialog.

	
•

	

<
MainPanel
>: Defines the GUI layout of the tool.

	
•

	

<
BaseProperties
>: Contains the configuration that matches JBot names with Java classes.

	
•

	

<
Commands
>: This section defines a command. If a command is used either by the tool or by a dialog called from the tool, it must be listed here. It is preferable that commands are referred to by class name directly. In that case, the Commands section is not needed.

	
•

	

<
Imports
>: This section defines paths for commands so that a command can be used without specifying the full path.

Command Usage Examples

It is preferable to refer to Commands by the class name rather than define the name in CommandClass.

For example, the following two commands are equivalent.

	

	

<Command name="CMD_FOO"/>

	

	

…

	

	

<CommandClass name="CMD_FOO" class="com.splwg.oms.client.workagenda.FooCommand"/>

	

	

	

	

OR

	

	

	

	

<Command name="com.splwg.oms.client.workagenda.FooCommand"/>

However, if there is an Import section, the system will attempt to find the command in each package. Thus, the following:

	

	

<Command name="com.splwg.oms.client.workagenda.FooCommand"/>

becomes:

	

	

	

	

<Command name="FooCommand">

	

	

	

	

...

	

	

	

	

<Imports>

	

	

 <Import name="com.splwg.oms.client.workagenda"/>

	

	

</Imports>

	
•

	

<
Datastores
>: All datastores that are used by the tool or any dialogs called by this tool must be listed here. However, a tool is allowed to use a datastore defined by a different tool, as long as the other tool is loaded first. There are also some instances where a datastore can be defined in the code. This is mainly the case in the crew tools.

	
•

	

<
Dialogs
>: All dialogs that can be displayed by this tool must be listed in this section. Also, if any dialogs are displayed from other dialogs defined also must be listed here.

	
•

	

<
Adapters
>: This section is no longer necessary. If an existing JBot configuration file has this section, it can be removed without a problem. If such a tag does exist, it is ignored.

Configuration Files

	
•

	

Most of the GUI configuration is configured through the XML file. There is some data that is stored in the database for convenience such as drop down values and sorting and filtering.

	
•

	

Most of the attributes in the XML file are either required or have a default value.

	
•

	

XML files are validated through an XML schema file.

	
•

	

All properties configuration files will follow a base-plus-delta hierarchy so that, for example, a certain property may be configured for the Oracle Utilities Network Management System product configuration. If a specific project desires to change that property's value, they need only configure that property, not the entire property file.

XML schema and XML File

This schema document describes all the information that is required to create an XML file, what each element has as its child elements, their attributes and the restriction on them. This schema follows a naming convention:

	
•

	

Elements - Every word starts with a capital letter .

	
•

	

Attributes - Every word starts with a small letter and they are separated by underscores.

Most of the GUI components are configured by specifying two child elements.

	
•

	

ComponentTagPlacement - The attributes for placement of the component on its parent panel.

	
•

	

ComponentTagBehavior - Other properties not related to placement of the component.

Standard JBot tool XML configuration

	

	

<
JbotToolApp
>

	

	

<
GlobalProperties
/>

	

	

<ToolBehavior/>

	

	

<
MainPanel
>

	

	

<
MenuBar
>

	

	

(
The

definition

of

the

GUI

goes

here
)

	

	

<
BaseProperties
>

	

	

<
Commands
>

	

	

<
Imports
>

	

	

<
DataStores
>

	

	

<
Dialogs
>

	

	

</
BaseProperties
>

	

	

<
JBotToolApp
>

	
•

	

<
GlobalProperties
>: This section defines properties that are used for tool specific configuration values. All values possible are listed in the product XML files where applicable.

	
•

	

<
ToolBehavior
>: Typically defines what commands to run upon opening or closing the dialog.

	
•

	

<
MainPanel
>: Defines the GUI layout of the tool.

	
•

	

<
BaseProperties
>: Contains the configuration that matches JBot names with Java classes.

	
•

	

<
Commands
>: This section defines a command. If a command is used either by the tool or by a dialog called from the tool, it must be listed here. It is preferable that commands are referred to by class name directly. In that case, the Commands section is not needed.

	
•

	

<
Imports
>: This section defines paths for commands so that a command can be used without specifying the full path.

Command Usage Examples

It is preferable to refer to Commands by the class name rather than define the name in CommandClass.

For example, the following two commands are equivalent.

	

	

<Command name="CMD_FOO"/>

	

	

…

	

	

<CommandClass name="CMD_FOO" class="com.splwg.oms.client.workagenda.FooCommand"/>

	

	

	

	

OR

	

	

	

	

<Command name="com.splwg.oms.client.workagenda.FooCommand"/>

However, if there is an Import section, the system will attempt to find the command in each package. Thus, the following:

	

	

<Command name="com.splwg.oms.client.workagenda.FooCommand"/>

becomes:

	

	

	

	

<Command name="FooCommand">

	

	

	

	

...

	

	

	

	

<Imports>

	

	

 <Import name="com.splwg.oms.client.workagenda"/>

	

	

</Imports>

	
•

	

<
Datastores
>: All datastores that are used by the tool or any dialogs called by this tool must be listed here. However, a tool is allowed to use a datastore defined by a different tool, as long as the other tool is loaded first. There are also some instances where a datastore can be defined in the code. This is mainly the case in the crew tools.

	
•

	

<
Dialogs
>: All dialogs that can be displayed by this tool must be listed in this section. Also, if any dialogs are displayed from other dialogs defined also must be listed here.

	
•

	

<
Adapters
>: This section is no longer necessary. If an existing JBot configuration file has this section, it can be removed without a problem. If such a tag does exist, it is ignored.

Include Elements

Runtime Include Elements

This uses standard XML based xi:include tags. The included files are delivered to the client and they are combined by the application at runtime. This allows for specific XML code that is repeated to be defined once, but used in multiple places.

To define an include file, xmlns, xmlns:xsi, and xsi:schemaLocation must be defined.

For example given this XML fragment:

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS">

should be changed to:

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS"

	

	

 xmlns="http://www.ces.com"

	

	

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

	

	

 xsi:schemaLocation="http://www.ces.com http://localhost/xml/jbot.xsd">

	

	

XML code that will be used by multiple tools

	

	

...

	

	

</Perform>

The include files should be saved with an .xml extension.

To reference this file in another XML file, use the following syntax:

	

	

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

	

	

 href="/SafetyStartup.xml" parse="xml"/>

	

	

...

This allows the second XML document to use the XML code defined in the include file. The above example defines filters that will be used by multiple tools within Web Switching. Therefore when filters need to be changed, they can be changed once and it will be applied to all tools that are using the include file.

Build time Include Elements

The main limitation on xi:include tags is that they can only be used to insert a single element. While that approach works fine in the body of a JBot configuration, it doesn't work well for inserting tool properties, actions, or datastores.

In these cases, it is easier to use the build time based <Include> element. In this case the build process that creates the nms_config.jar file will perform the inclusions.

These include files should be saved without any extra attributes, and saved with an .inc extension.

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS">

	

	

...

To reference the file, use the following syntax:

	

	

<Include name="SafetyStartup.inc"/>

Include Elements

Runtime Include Elements

This uses standard XML based xi:include tags. The included files are delivered to the client and they are combined by the application at runtime. This allows for specific XML code that is repeated to be defined once, but used in multiple places.

To define an include file, xmlns, xmlns:xsi, and xsi:schemaLocation must be defined.

For example given this XML fragment:

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS">

should be changed to:

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS"

	

	

 xmlns="http://www.ces.com"

	

	

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

	

	

 xsi:schemaLocation="http://www.ces.com http://localhost/xml/jbot.xsd">

	

	

XML code that will be used by multiple tools

	

	

...

	

	

</Perform>

The include files should be saved with an .xml extension.

To reference this file in another XML file, use the following syntax:

	

	

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

	

	

 href="/SafetyStartup.xml" parse="xml"/>

	

	

...

This allows the second XML document to use the XML code defined in the include file. The above example defines filters that will be used by multiple tools within Web Switching. Therefore when filters need to be changed, they can be changed once and it will be applied to all tools that are using the include file.

Build time Include Elements

The main limitation on xi:include tags is that they can only be used to insert a single element. While that approach works fine in the body of a JBot configuration, it doesn't work well for inserting tool properties, actions, or datastores.

In these cases, it is easier to use the build time based <Include> element. In this case the build process that creates the nms_config.jar file will perform the inclusions.

These include files should be saved without any extra attributes, and saved with an .inc extension.

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS">

	

	

...

To reference the file, use the following syntax:

	

	

<Include name="SafetyStartup.inc"/>

Include Elements

Runtime Include Elements

This uses standard XML based xi:include tags. The included files are delivered to the client and they are combined by the application at runtime. This allows for specific XML code that is repeated to be defined once, but used in multiple places.

To define an include file, xmlns, xmlns:xsi, and xsi:schemaLocation must be defined.

For example given this XML fragment:

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS">

should be changed to:

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS"

	

	

 xmlns="http://www.ces.com"

	

	

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

	

	

 xsi:schemaLocation="http://www.ces.com http://localhost/xml/jbot.xsd">

	

	

XML code that will be used by multiple tools

	

	

...

	

	

</Perform>

The include files should be saved with an .xml extension.

To reference this file in another XML file, use the following syntax:

	

	

<xi:include xmlns:xi="http://www.w3.org/2001/XInclude"

	

	

 href="/SafetyStartup.xml" parse="xml"/>

	

	

...

This allows the second XML document to use the XML code defined in the include file. The above example defines filters that will be used by multiple tools within Web Switching. Therefore when filters need to be changed, they can be changed once and it will be applied to all tools that are using the include file.

Build time Include Elements

The main limitation on xi:include tags is that they can only be used to insert a single element. While that approach works fine in the body of a JBot configuration, it doesn't work well for inserting tool properties, actions, or datastores.

In these cases, it is easier to use the build time based <Include> element. In this case the build process that creates the nms_config.jar file will perform the inclusions.

These include files should be saved without any extra attributes, and saved with an .inc extension.

	

	

<Perform name="HLM" category="onMessage" type="APPLY_SAFETY_FILTERS">

	

	

...

To reference the file, use the following syntax:

	

	

<Include name="SafetyStartup.inc"/>

Locale-Specific Properties File

Property Naming Convention

The <toolname>_<language>_<locale>.properties file contains all language related properties for the Components. They are identified with the syntax: KEY.property = value string.

	

Property

	

Component Type

	

Description

	

Syntax

	

Example

	

Text

	

All Actions

	

String displayed on the Button that invokes the Action.

	

ACT_KEY.text = string

	

ACT_SET_START_DATE.text = set starting date

	

text Radio

	

Button group members, table headers, combo box entries

	

String displayed on the piece of a larger Component.

	

RBG_KEY.ENTRY_KEY.tex t = string

	

RBG_OUTAGE_TABLE.H_IDX.te xt = Device index

	

tooltip

	

All Components and Actions

	

Tool tip string.

	

KEY.tooltip = string

	

ACT_SET_START_DATE.tooltip = Set the starting date to the current date

When there is no locale, the tool tries these file names.

	
1.

	

<toolname>.properties

	
2.

	

<toolname>_en_US.properties

If there is a locale defined, the tools will try these file names.

	
1.

	

<toolname>_<language>_<locale>.properties

	
2.

	

<toolname>_<language>.properties

	
3.

	

<toolname>.properties

Locale-Specific Properties File

Property Naming Convention

The <toolname>_<language>_<locale>.properties file contains all language related properties for the Components. They are identified with the syntax: KEY.property = value string.

	

Property

	

Component Type

	

Description

	

Syntax

	

Example

	

Text

	

All Actions

	

String displayed on the Button that invokes the Action.

	

ACT_KEY.text = string

	

ACT_SET_START_DATE.text = set starting date

	

text Radio

	

Button group members, table headers, combo box entries

	

String displayed on the piece of a larger Component.

	

RBG_KEY.ENTRY_KEY.tex t = string

	

RBG_OUTAGE_TABLE.H_IDX.te xt = Device index

	

tooltip

	

All Components and Actions

	

Tool tip string.

	

KEY.tooltip = string

	

ACT_SET_START_DATE.tooltip = Set the starting date to the current date

When there is no locale, the tool tries these file names.

	
1.

	

<toolname>.properties

	
2.

	

<toolname>_en_US.properties

If there is a locale defined, the tools will try these file names.

	
1.

	

<toolname>_<language>_<locale>.properties

	
2.

	

<toolname>_<language>.properties

	
3.

	

<toolname>.properties

Reserved Words

Here are some reserved words that you may use in property files. It is recommended that when used, it should be placed at the top of the file.

	

reserved word

	

What it does

	

include

	

List of additional property files to read in. This list must be separated by spaces.

	

includeList

	

Returns the list of property files that were read in. This value is set by the PropertyReader class and cannot be overridden.

	

includeListCount

	

Number of property files read in. This value is set by the PropertyReaderclass and cannot be overridden.

Sample use of include is in MessageCode_en_US.properties file.

	

	

List the other files to include as part of reading in

	

	

this property file. Just the base name is needed.

	

	

Must be space delimited only!

	

	

include = CoreResources

JBot Commands

JBot commands are operations performed as a result of an event. Some examples of events are button presses, table editing and row selecting. Commands are defined in a "Perform" tag. The actual options for the Perform tags vary with the component type.

Here is an example of configuring a command to be run when a menu is selected:

	

	

<MenuItem name="MNU_EMERGENCY_CONTENT_SELECTION" icon="Preferences16.gif">

	

	

 <PressPerform>

	

	

 <Command value="CMD_DISPLAY_DIALOG">

	

	

 <Config name="dialog" value="DLG_EMERGENCY_CONTENT_SELECTION"/>

	

	

 </Command>

	

	

 </PressPerform>

	

	

</MenuItem>

This will display the dialog DLG_EMERGENCY_CONTENT_SELECTION .

There are many JBot commands available. These are documented in the $CES_HOME/
documentation/java/jbot_commands.html.

JBot Actions

JBot actions allow you to define a list of commands that can be reused multiple times in a configuration. Defining a command directly on a component works well if there is only one place where the command is needed. However, if there are multiple places where the same commands are called, such as a menu item and a button, this provides a way to only define the action once.

Actions should be defined in the ToolBehavior or DialogBehavior tags.

<Action name="ACT_PRINT">

 <Command value="CMD_DISPLAY_DIALOG">

 <Config name="dialog"
value="DLG_PLANNED_REPORT_CONTENT_SELECTION"/>

 </Command>

 <Command value="CMD_GENERATE_REPORT" when="GENERATE_REPORT">

 <Config name="report_location" value="/Webswitching/
PlannedSwitching/PlannedSwitching.xdo"/>

 <Config name="parameter_datastore"
value="DS_PLANNED_REPORT_CONTENT"/>

 <Config name="base_file_name" value="SwitchPlan"/>

 <Config name="file_description" value="report"/>

 <Config name="show_progress_dialog" value="true"/>

 <Config name="dest_file_reference" value="REPORT_FILE_REF"/>

 <Config name="dest_datastore"
value="DS_PLANNED_REPORT_CONTENT"/>

 </Command>

</Action>

Then to use this action, the CMD_EXCECUTE_ACTION command should be called:

<MenuItem name="MNU_PLANNED_PRINT" icon="Print16.gif"
accelerator="control P">

 <PressPerform>

 <Command value="CMD_EXECUTE_ACTION">

 <Config name="action" value="ACT_PRINT"/>

 </Command>

 </PressPerform>

</MenuItem>

The action is run just like another jbot command. Other commands or actions can also be defined before or after the action command, just like any other jbot command.

Actions can also call other actions, by using the CMD_EXECUTE_ACTION from within another action.

It is also possible for actions to take parameters. See the following example:

<Action name="ACT_GGENERATE">

 <Command value="CMD_GENERATE_REPORT" when="GENERATE_REPORT">

 <Config name="report_location" value="/Webswitching/
PlannedSwitching/$REPORT_NAME$.xdo"/>

 <Config name="parameter_datastore"
value="DS_PLANNED_REPORT_CONTENT"/>

 <Config name="base_file_name" value="SwitchPlan"/>

 <Config name="file_description" value="report"/>

 <Config name="show_progress_dialog" value="true"/>

 <Config name="dest_file_reference" value="REPORT_FILE_REF"/>

 <Config name="dest_datastore"
value="DS_PLANNED_REPORT_CONTENT"/>

 </Command>

</Action>

...

<MenuItem name="MNU_PLANNED_PRINT" icon="Print16.gif"
accelerator="control P">

 <PressPerform>

 <Command value="CMD_EXECUTE_ACTION">

 <Config name="action" value="ACT_PRINT"/>

 <Config name="$REPORT_NAME$" value="PlannedSwitching"/>

 </Command>

 </PressPerform>

</MenuItem>

This will replace the token $REPORT_NAME$ with the value PlannedSwitching. Any text in the configuration can be replaced this way. You cannot, however, replace the Command names themselves.

If you wish to use an Action defined in a different XML file there are two options.

The first option is if you wish to run the action in the other tool. In that case, you can use the "runInTool" option, like other commands. However, if you wish to run the action in the current tool, even though it is defined in another tool, use the tool config option.

Advanced GUI Configuration

Laying Out Components

The Layout values are based on Java's GridBagLayout component.

Advanced GUI Configuration

Laying Out Components

The Layout values are based on Java's GridBagLayout component.

Modify Fill

The fill value is a string. When set to BOTH, the component will fill its entire x,y coordinates. When set to NONE, the component will fit only the area that it needs to. For example, if a button is set to NONE, then the button will only fill around the text. To be even more specific, if two text letters are on a button, then it will be smaller than if there are six text letters on the button.

Fill can also be specified to be HORIZONTAL or VERTICAL for specific fill in one direction. Note that for labels, fill should generally be set to NONE. If it is not NONE, then attempts to right-justify the label by setting the anchor to "EAST" will fail.

Modify Insets

Insets are given as four different values: top, bottom, left, and right. Each of these values will buffer a component from all other components. For example, if all of the values are 2, then the component will be two pixels on all four sides from the closest components.

Modify Weight

The weight is given as x and y values. The x stands for horizontal and y stands for vertical. The weight indicates how much to stretch the component relative to the other components on the frame.

Choosing the Font

Labels can have their font defined by the optional tag under the <LabelBehavior> tag.

	

	

<
LabelBehavior
>

	

	

<
Font

name
=
"Tahoma-BOLD-24"
/>

	

	

</
LabelBehavior
>

The following is a copy from the javadoc Font.decode(), which is used by the Oracle Utilities Network Management System code.

To ensure that this method returns the desired Font, format the name parameter in one of these ways:

	
•

	

fontname-style-pointsize

	
•

	

fontname-pointsize

	
•

	

fontname-style

	
•

	

fontname

	
•

	

fontname style pointsize

	
•

	

fontname pointsize

	
•

	

fontname style

	
•

	

fontname

in which style is one of the four case-insensitive strings: "PLAIN", "BOLD", "BOLDITALIC", or "ITALIC", and pointsize is a positive decimal integer representation of the point size. For example, if you want a font that is Arial, bold, with a point size of 18, you would call this method with: "Arial-BOLD-18".

If a style name field is not one of the valid style strings, it is interpreted as part of the font name, and the default style is used.

Only one of ' ' or '-' may be used to separate fields in the input. The identified separator is the one closest to the end of the string that separates a valid pointsize or a valid style name from the rest of the string. Null (empty) pointsize and style fields are treated as valid fields with the default value for that field.

Some font names may include the separator characters ' ' or '-'. If str is not formed with three components (e.g., style or pointsize fields are not present in str) and fontname contains the separator character, then these characters may be interpreted as separators. In this case, the font name may not be properly recognised.

The default size is 12 and the default style is PLAIN. If the name does not specify a valid size, the returned Font has a size of 12. If the name does not specify a valid style, the returned Font has a style of PLAIN. If you do not specify a valid font name in the name argument, this method will return a font with the family name "Dialog".

Bold and Italic Labels

Labels can be defined as plain, bold, italic, or bold italic. This is done by the optional tag under the <LabelBehavior> tag.

This is an example of an italic label:

<Label name="LBL_ITALIC_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

This is an example of a bold label:

<Label name="LBL_BOLD_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

This is an example of a label that is neither bold or italic:

<Label name="LBL_NORMAL_TEXT">

<LabelPlacement start="0,relative"/>

</Label>

This is an example of a label that is both bold and italic:

<Label name="LBL_BOLD_ITALIC_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

Modify Weight

The weight is given as x and y values. The x stands for horizontal and y stands for vertical. The weight indicates how much to stretch the component relative to the other components on the frame.

Choosing the Font

Labels can have their font defined by the optional tag under the <LabelBehavior> tag.

	

	

<
LabelBehavior
>

	

	

<
Font

name
=
"Tahoma-BOLD-24"
/>

	

	

</
LabelBehavior
>

The following is a copy from the javadoc Font.decode(), which is used by the Oracle Utilities Network Management System code.

To ensure that this method returns the desired Font, format the name parameter in one of these ways:

	
•

	

fontname-style-pointsize

	
•

	

fontname-pointsize

	
•

	

fontname-style

	
•

	

fontname

	
•

	

fontname style pointsize

	
•

	

fontname pointsize

	
•

	

fontname style

	
•

	

fontname

in which style is one of the four case-insensitive strings: "PLAIN", "BOLD", "BOLDITALIC", or "ITALIC", and pointsize is a positive decimal integer representation of the point size. For example, if you want a font that is Arial, bold, with a point size of 18, you would call this method with: "Arial-BOLD-18".

If a style name field is not one of the valid style strings, it is interpreted as part of the font name, and the default style is used.

Only one of ' ' or '-' may be used to separate fields in the input. The identified separator is the one closest to the end of the string that separates a valid pointsize or a valid style name from the rest of the string. Null (empty) pointsize and style fields are treated as valid fields with the default value for that field.

Some font names may include the separator characters ' ' or '-'. If str is not formed with three components (e.g., style or pointsize fields are not present in str) and fontname contains the separator character, then these characters may be interpreted as separators. In this case, the font name may not be properly recognised.

The default size is 12 and the default style is PLAIN. If the name does not specify a valid size, the returned Font has a size of 12. If the name does not specify a valid style, the returned Font has a style of PLAIN. If you do not specify a valid font name in the name argument, this method will return a font with the family name "Dialog".

Bold and Italic Labels

Labels can be defined as plain, bold, italic, or bold italic. This is done by the optional tag under the <LabelBehavior> tag.

This is an example of an italic label:

<Label name="LBL_ITALIC_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

This is an example of a bold label:

<Label name="LBL_BOLD_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

This is an example of a label that is neither bold or italic:

<Label name="LBL_NORMAL_TEXT">

<LabelPlacement start="0,relative"/>

</Label>

This is an example of a label that is both bold and italic:

<Label name="LBL_BOLD_ITALIC_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

Modify Weight

The weight is given as x and y values. The x stands for horizontal and y stands for vertical. The weight indicates how much to stretch the component relative to the other components on the frame.

Choosing the Font

Labels can have their font defined by the optional tag under the <LabelBehavior> tag.

	

	

<
LabelBehavior
>

	

	

<
Font

name
=
"Tahoma-BOLD-24"
/>

	

	

</
LabelBehavior
>

The following is a copy from the javadoc Font.decode(), which is used by the Oracle Utilities Network Management System code.

To ensure that this method returns the desired Font, format the name parameter in one of these ways:

	
•

	

fontname-style-pointsize

	
•

	

fontname-pointsize

	
•

	

fontname-style

	
•

	

fontname

	
•

	

fontname style pointsize

	
•

	

fontname pointsize

	
•

	

fontname style

	
•

	

fontname

in which style is one of the four case-insensitive strings: "PLAIN", "BOLD", "BOLDITALIC", or "ITALIC", and pointsize is a positive decimal integer representation of the point size. For example, if you want a font that is Arial, bold, with a point size of 18, you would call this method with: "Arial-BOLD-18".

If a style name field is not one of the valid style strings, it is interpreted as part of the font name, and the default style is used.

Only one of ' ' or '-' may be used to separate fields in the input. The identified separator is the one closest to the end of the string that separates a valid pointsize or a valid style name from the rest of the string. Null (empty) pointsize and style fields are treated as valid fields with the default value for that field.

Some font names may include the separator characters ' ' or '-'. If str is not formed with three components (e.g., style or pointsize fields are not present in str) and fontname contains the separator character, then these characters may be interpreted as separators. In this case, the font name may not be properly recognised.

The default size is 12 and the default style is PLAIN. If the name does not specify a valid size, the returned Font has a size of 12. If the name does not specify a valid style, the returned Font has a style of PLAIN. If you do not specify a valid font name in the name argument, this method will return a font with the family name "Dialog".

Bold and Italic Labels

Labels can be defined as plain, bold, italic, or bold italic. This is done by the optional tag under the <LabelBehavior> tag.

This is an example of an italic label:

<Label name="LBL_ITALIC_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

This is an example of a bold label:

<Label name="LBL_BOLD_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

This is an example of a label that is neither bold or italic:

<Label name="LBL_NORMAL_TEXT">

<LabelPlacement start="0,relative"/>

</Label>

This is an example of a label that is both bold and italic:

<Label name="LBL_BOLD_ITALIC_TEXT">

<LabelPlacement start="0,relative"/>

<LabelBehavior>

</LabelBehavior>

</Label>

Advanced Configuration Options

This section describes some of the more complicated concepts about the configuration in different components that need special mention so as to make it easier to understand and configure them.

JTable

	
1.

	

Column editor - A column in a table can be specified to have a different component for editing its cells. The valid components that can be specified are a ComboBox, a CheckBox, a TextField, or a TableCellTextArea. When a column has a different editor, such as a ComboBox, then all the rows in the table have a ComboBox for that column. A specific editor, rather than the default one, is generally specified when we want that column to be editable. When an editor is specified for a column, we should make sure that we provide all the necessary configuration options for that editor.

	
2.

	

Column and row Popup menus - This option specifies the name of the right click pop up menus, which would show up when a user right clicks on a column header or one of the rows of the table. The name should be a valid name as per the name of the pop up menus that are already created while parsing the XML file.

	
3.

	

Status Keys - The background and the foreground color of the rows in the table is configurable as per the status of that row. For each status a foreground and a background color is specified in the XML file and a list of all the possible statuses for which we want the background and foreground colors to change are provided by status keys. The status keys are specific to the table and they should be valid values in a column of the data store from which the table obtains its data.

	
4.

	

Column visibility - the Column element allows a Visible sub-element with attributes for "initial" and "when," which behave like the Visible elements available for other Components.

Column Justification

In tables, text is typically left justified and numbers are typically right justified. It is possible to override the justification on a per-column basis by using the justification attribute:

<Column key="EVENT_IDX" justification="left"/>

The options are:

	
•

	

left : the column is left justified.

	
•

	

right : the column is right justified.

	
•

	

center : the column is center justified.

	
•

	

general : numbers are right justified and other data is left justified.

The default is "general"

Text Wrapping

To wrap text in a column, set the WrapText element to true:

<Column key="swmanStep.operationOutcome">

 <Editable initial="true"/>

 <WrapText initial="true"/>

 <Editor>

 <TableCellTextArea/>

 </Editor>

</Column>

To make a wrapped column editable, use the TableCellTextArea editor:

<Column key="swmanStep.operationOutcome">

 <Editable initial="true"/>

 <WrapText initial="true"/>

 <Editor>

 <TableCellTextArea/>

 </Editor>

</Column>

Preferred Column Widths

To set columns within an auto-resized table to use a preferred column width, a minimum and max column width will need to be specified. Thus, the column can be resized within the limits of the minimum and maximum setting. When the table is initially displayed, it uses the preferred size, which is the existing "width" property setting.

Example:

XML - Table Behavior Definition

<TableBehavior auto_resize_columns="true" data_source="DS_EXAMPLE">

<Column key="Idx" />

<Column key="Cls" />

<Column key="Description" />

</TableBehavior>

Property - Table Column Settings

TBL_EXAMPLE.Idx.text=Number

 TBL_EXAMPLE.Idx.minimum_width=10

 TBL_EXAMPLE.Idx.width=90

 TBL_EXAMPLE.Idx.maximum_width=150

TBL_EXAMPLT.Cls.text=Type

 TBL_EXAMPLT.Cls.minimum_width=10

 TBL_EXAMPLT.Cls.width=90

 TBL_EXAMPLT.Cls.maximum_width=150

TBL_EXAMPLT.Description.text=Description

In this case, the table will be initially drawn with the first two columns having a width of "90" and the Description column spanning to utilize the rest of the space given to the JTable component. The first two columns can be resized, but only down to a width of 10 and up to 150. If the entire table is squished, the Description column will be cut down until all the columns have reached their preferred width. At which point all the columns will be squished at the same rate. Since the Description column does not have a preferred width, the width of the label ("Description") is used.

Defining Column Headers

A column header can be defined as either text or an icon. See the following example:

 TBL_WA_ALARMS.STATUS.text = Status

 TBL_WA_ALARMS.STATUS.icon = status.png

 TBL_WA_ALARMS.STATUS.tooltip = Event Status

The image file specified for an icon should exist in the tool’s images configuration directory, along with all other image files.

Define a .text value for all column headers, including those defined as icons. The .text value will be used in various dialogs where the column name is displayed.

The tooltip is used to define a message that will pop up when the mouse is hovered over a column header. If an icon is defined, and a tooltip is not, the system will automatically use the .text value as the tooltip.

Performing Actions When Tools and Dialogs Open or Close

If a command or a list of commands needs to be run in response to a window action, such as a tool opening or closing, it can be defined using the <ToolBehavior> and <DialogBehavior> tags. These tags use a <Perform> subtag that takes a name and a category. The "name" attribute should be "Window" and the category name will be either windowOpened or windowClosing. windowOpened will allow the users to run code when the window opens for the first time. windowClosing will run when the users has requested that the tool close, but before the system actually closes the window (to allow the system to validate data, etc.). Other window events can also be caught. Please see the javadocs for java.awt.event.WindowListener for the complete list (the methods in that class can be used as the "category" attribute in this tag).

Here is an example on running a command when a tool opens:

<ToolBehavior>

<Perform name="Window" category="windowOpened">

<Command value="CMD_DO_SOMETHING"/>

</Perform>

</ToolBehavior>

Here is an example of a command running when a tool closes:

<ToolBehavior>

<Perform name="Window" category="windowClosing">

<Command value="CMD_EXIT"/>

</Perform>

</ToolBehavior>

Setting component height and widths normally, the size of the tool, along with the weight and fill attributes determine the size of the components. However, sometimes it is necessary to have a component be a certain size. To do this, specify a component_width and component_height attributes in the behavior tag. See the following example:

<Table name="TBL_WA_SUMMARY">

<TablePlacement start="0,0" width="8" height="1" weight="1,0"

 fill="HORIZONTAL" insets="2,2,2,2" anchor="NORTHWEST"/>

<TableBehavior data_source="DS_WA_SUMMARY" resize_columns="true"

 auto_resize_columns="false" component_height="59">

Calculated Fields

JBot has a rather complicated way of defining text substitution and formatting of fields. Normally, a component refers to a column as it exists in a datastore. (For example, DS_TABLE.code refers to the column code in the datastore DS_TABLE.) This section has examples of most of the different combinations that can be done with calculated fields. For each example, the field name and a sample output is given. The output uses the following datastore as its source:

	

Status

	

Priority

	

Code

	

Date

	

A

	

1

	

N

	

1/2/08 12:33

	

B

	

4

	

O

	

1/4/07 3:33

	

C

	

10

	

	

1/4/07 3:33

	

D

	

20

	

Q

	

1/4/07 3:33

Calculated fields are indicated by preceding the field with a #. The format is:

	

	

#field1, field2, …%[format definition]

The format definition is based on the java.text.MessageFormat class. (Please see the javadoc page for more information.)

Examples of calculated fields

Concatenating two fields together with a comma separating them :

	

	

#Status,Code%{0},{1}

	

	

A,N

	

	

B,O

	

	

C,

	

	

D,Q

Concatenating two or more fields together with a space separating them:

	

	

#Status,Code%{0} {1}

	

	

A N

	

	

B O

	

	

C

	

	

D Q

Replacing a field’s value with another value :

	

	

 #Status%{0}||A|Status 1|B|Status B

	

	

 Status 1

	

	

 Status B

	

	

 C

	

	

 D

Note : If a value isn’t defined, then the original value is used. In the example above, if the value of the Status field is ‘A’ then it is replaced with ‘Status 1’ and if the value is ‘B’ then it is replaced with ‘Status B’. Otherwise, it is unchanged.

Replacing a field’s value with a value from a property file :

Add the following lines to the JBotFormat_en_US.properties files:

	

	

 STATUS.A = Status 1

	

	

 STATUS.B = Status B

Then follow this example:

	

	

 #Status%{0}|||STATUS

	

	

 Status 1

	

	

 Status B

	

	

 C

	

	

 D

Replacing an integer code with a string :

 #Priority%{0,choice,1#Priority A|5#Priority B|10# Priority C}

 1, 4, 10, 20

 Priority A, Priority B, Priority C, Priority C

Note that if the value is greater than the last choice, it will use the last choice. Likewise if a value is less than the first value, it will use the first value. Otherwise, it will use the largest lookup value that is not greater than the original value.

Performing a conditional :

	

	

 #Status,Code,Priority %{0=B?1:2}

	

	

 1

	

	

 O

	

	

 10

	

	

 20

	

	

Performing a conditional if a value is null :

	

	

 # Code,Status%{0=null?1:0}

	

	

 N

	

	

 O

	

	

 C

	

	

 Q

Displaying date and time fields :

The date and time fields use the formatting that is indicated in CentricityTool.properties for the date, time, and datetime fields. The following examples assume that the configured format is MM/dd/yy HH:mm.

	

Format

	

Value

	

Date%{0}

	

01/02/08 12:33

	

Date%(0,date}

	

01/02/08

	

Date%(0,date,long}

	

01/02/08 12:33

	

Date%(0,time}

	

12:33

How many % do I need?

A percent character (%) defines the start of a format.

A single % means that the original value should be used for both equality testing (such as cell filtering) and sorting. In other words if two source values are mapped to the same display value, then the underlying value will be used for things like cell filtering. If there is a unique mapping, however, performance is the best with this option.

A double (%%) means that the formatted value should be used for equality testing, but for sorting purposes the underlying value should be used. This would be appropriate for priority text strings. For example, if you had a priority field that got mapped to "Emergency", "Priority", "Routine", and "Planned," it would allow the sorting based underlying code instead of alphabetically.

A triple (%%%) means that the formatted value should be used both for equality testing and for sorting.

Build Process for XML and Properties Files

The build process will copy and/or merge all of the .xml and .properties files from the product and project directories to $NMS_HOME/java/working. The build process will then jar up all the files. For XML documents that exist in both the product and project directory, the one in the project directory takes precedence. XML files are not merged during the build process. Properties files however, are handled differently. The build process combines project and product files with the same name into one generated file. Here is an example of how this works:

Project Version of the file:

…

BTN_CREW_ICONS.text = Crew Icons

...

Product Version of the file:

…

Workspace.text = Env Mgr

LBL_CONNECTION_STATUS.text = Connection Status

BTN_CREW_ICONS.text = Crew Actions

ONLINE.text = Online

OFFLINE.text = Offline

…

Generated Version:

Generated from
projects\jconfig\ops\workspace\properties\Workspace_en_US.properties

$Id: Workspace_en_US.properties,v 1.3 $

BTN_CREW_ICONS.text = Crew Icons

…

Generated from
product\jconfig\ops\workspace\properties\Workspace_en_US.properties

Workspace.text = Env Mgr

LBL_CONNECTION_STATUS.text = Connection Status

ONLINE.text = Online

OFFLINE.text = Offline

…

Note that the BTN_CREW_ICONS.text that was in the original product file is not merged into the generated file. Therefore the project value is used by the application.

If a project overrides a line, it will be removed from the generated product definitions. If a project only duplicates but does not change the product configuration, then the line is removed from the project configuration in the generated file.

Calculated Fields

JBot has a rather complicated way of defining text substitution and formatting of fields. Normally, a component refers to a column as it exists in a datastore. (For example, DS_TABLE.code refers to the column code in the datastore DS_TABLE.) This section has examples of most of the different combinations that can be done with calculated fields. For each example, the field name and a sample output is given. The output uses the following datastore as its source:

	

Status

	

Priority

	

Code

	

Date

	

A

	

1

	

N

	

1/2/08 12:33

	

B

	

4

	

O

	

1/4/07 3:33

	

C

	

10

	

	

1/4/07 3:33

	

D

	

20

	

Q

	

1/4/07 3:33

Calculated fields are indicated by preceding the field with a #. The format is:

	

	

#field1, field2, …%[format definition]

The format definition is based on the java.text.MessageFormat class. (Please see the javadoc page for more information.)

Examples of calculated fields

Concatenating two fields together with a comma separating them :

	

	

#Status,Code%{0},{1}

	

	

A,N

	

	

B,O

	

	

C,

	

	

D,Q

Concatenating two or more fields together with a space separating them:

	

	

#Status,Code%{0} {1}

	

	

A N

	

	

B O

	

	

C

	

	

D Q

Replacing a field’s value with another value :

	

	

 #Status%{0}||A|Status 1|B|Status B

	

	

 Status 1

	

	

 Status B

	

	

 C

	

	

 D

Note : If a value isn’t defined, then the original value is used. In the example above, if the value of the Status field is ‘A’ then it is replaced with ‘Status 1’ and if the value is ‘B’ then it is replaced with ‘Status B’. Otherwise, it is unchanged.

Replacing a field’s value with a value from a property file :

Add the following lines to the JBotFormat_en_US.properties files:

	

	

 STATUS.A = Status 1

	

	

 STATUS.B = Status B

Then follow this example:

	

	

 #Status%{0}|||STATUS

	

	

 Status 1

	

	

 Status B

	

	

 C

	

	

 D

Replacing an integer code with a string :

 #Priority%{0,choice,1#Priority A|5#Priority B|10# Priority C}

 1, 4, 10, 20

 Priority A, Priority B, Priority C, Priority C

Note that if the value is greater than the last choice, it will use the last choice. Likewise if a value is less than the first value, it will use the first value. Otherwise, it will use the largest lookup value that is not greater than the original value.

Performing a conditional :

	

	

 #Status,Code,Priority %{0=B?1:2}

	

	

 1

	

	

 O

	

	

 10

	

	

 20

	

	

Performing a conditional if a value is null :

	

	

 # Code,Status%{0=null?1:0}

	

	

 N

	

	

 O

	

	

 C

	

	

 Q

Displaying date and time fields :

The date and time fields use the formatting that is indicated in CentricityTool.properties for the date, time, and datetime fields. The following examples assume that the configured format is MM/dd/yy HH:mm.

	

Format

	

Value

	

Date%{0}

	

01/02/08 12:33

	

Date%(0,date}

	

01/02/08

	

Date%(0,date,long}

	

01/02/08 12:33

	

Date%(0,time}

	

12:33

How many % do I need?

A percent character (%) defines the start of a format.

A single % means that the original value should be used for both equality testing (such as cell filtering) and sorting. In other words if two source values are mapped to the same display value, then the underlying value will be used for things like cell filtering. If there is a unique mapping, however, performance is the best with this option.

A double (%%) means that the formatted value should be used for equality testing, but for sorting purposes the underlying value should be used. This would be appropriate for priority text strings. For example, if you had a priority field that got mapped to "Emergency", "Priority", "Routine", and "Planned," it would allow the sorting based underlying code instead of alphabetically.

A triple (%%%) means that the formatted value should be used both for equality testing and for sorting.

Build Process for XML and Properties Files

The build process will copy and/or merge all of the .xml and .properties files from the product and project directories to $NMS_HOME/java/working. The build process will then jar up all the files. For XML documents that exist in both the product and project directory, the one in the project directory takes precedence. XML files are not merged during the build process. Properties files however, are handled differently. The build process combines project and product files with the same name into one generated file. Here is an example of how this works:

Project Version of the file:

…

BTN_CREW_ICONS.text = Crew Icons

...

Product Version of the file:

…

Workspace.text = Env Mgr

LBL_CONNECTION_STATUS.text = Connection Status

BTN_CREW_ICONS.text = Crew Actions

ONLINE.text = Online

OFFLINE.text = Offline

…

Generated Version:

Generated from
projects\jconfig\ops\workspace\properties\Workspace_en_US.properties

$Id: Workspace_en_US.properties,v 1.3 $

BTN_CREW_ICONS.text = Crew Icons

…

Generated from
product\jconfig\ops\workspace\properties\Workspace_en_US.properties

Workspace.text = Env Mgr

LBL_CONNECTION_STATUS.text = Connection Status

ONLINE.text = Online

OFFLINE.text = Offline

…

Note that the BTN_CREW_ICONS.text that was in the original product file is not merged into the generated file. Therefore the project value is used by the application.

If a project overrides a line, it will be removed from the generated product definitions. If a project only duplicates but does not change the product configuration, then the line is removed from the project configuration in the generated file.

Calculated Fields

JBot has a rather complicated way of defining text substitution and formatting of fields. Normally, a component refers to a column as it exists in a datastore. (For example, DS_TABLE.code refers to the column code in the datastore DS_TABLE.) This section has examples of most of the different combinations that can be done with calculated fields. For each example, the field name and a sample output is given. The output uses the following datastore as its source:

	

Status

	

Priority

	

Code

	

Date

	

A

	

1

	

N

	

1/2/08 12:33

	

B

	

4

	

O

	

1/4/07 3:33

	

C

	

10

	

	

1/4/07 3:33

	

D

	

20

	

Q

	

1/4/07 3:33

Calculated fields are indicated by preceding the field with a #. The format is:

	

	

#field1, field2, …%[format definition]

The format definition is based on the java.text.MessageFormat class. (Please see the javadoc page for more information.)

Examples of calculated fields

Concatenating two fields together with a comma separating them :

	

	

#Status,Code%{0},{1}

	

	

A,N

	

	

B,O

	

	

C,

	

	

D,Q

Concatenating two or more fields together with a space separating them:

	

	

#Status,Code%{0} {1}

	

	

A N

	

	

B O

	

	

C

	

	

D Q

Replacing a field’s value with another value :

	

	

 #Status%{0}||A|Status 1|B|Status B

	

	

 Status 1

	

	

 Status B

	

	

 C

	

	

 D

Note : If a value isn’t defined, then the original value is used. In the example above, if the value of the Status field is ‘A’ then it is replaced with ‘Status 1’ and if the value is ‘B’ then it is replaced with ‘Status B’. Otherwise, it is unchanged.

Replacing a field’s value with a value from a property file :

Add the following lines to the JBotFormat_en_US.properties files:

	

	

 STATUS.A = Status 1

	

	

 STATUS.B = Status B

Then follow this example:

	

	

 #Status%{0}|||STATUS

	

	

 Status 1

	

	

 Status B

	

	

 C

	

	

 D

Replacing an integer code with a string :

 #Priority%{0,choice,1#Priority A|5#Priority B|10# Priority C}

 1, 4, 10, 20

 Priority A, Priority B, Priority C, Priority C

Note that if the value is greater than the last choice, it will use the last choice. Likewise if a value is less than the first value, it will use the first value. Otherwise, it will use the largest lookup value that is not greater than the original value.

Performing a conditional :

	

	

 #Status,Code,Priority %{0=B?1:2}

	

	

 1

	

	

 O

	

	

 10

	

	

 20

	

	

Performing a conditional if a value is null :

	

	

 # Code,Status%{0=null?1:0}

	

	

 N

	

	

 O

	

	

 C

	

	

 Q

Displaying date and time fields :

The date and time fields use the formatting that is indicated in CentricityTool.properties for the date, time, and datetime fields. The following examples assume that the configured format is MM/dd/yy HH:mm.

	

Format

	

Value

	

Date%{0}

	

01/02/08 12:33

	

Date%(0,date}

	

01/02/08

	

Date%(0,date,long}

	

01/02/08 12:33

	

Date%(0,time}

	

12:33

How many % do I need?

A percent character (%) defines the start of a format.

A single % means that the original value should be used for both equality testing (such as cell filtering) and sorting. In other words if two source values are mapped to the same display value, then the underlying value will be used for things like cell filtering. If there is a unique mapping, however, performance is the best with this option.

A double (%%) means that the formatted value should be used for equality testing, but for sorting purposes the underlying value should be used. This would be appropriate for priority text strings. For example, if you had a priority field that got mapped to "Emergency", "Priority", "Routine", and "Planned," it would allow the sorting based underlying code instead of alphabetically.

A triple (%%%) means that the formatted value should be used both for equality testing and for sorting.

Build Process for XML and Properties Files

The build process will copy and/or merge all of the .xml and .properties files from the product and project directories to $NMS_HOME/java/working. The build process will then jar up all the files. For XML documents that exist in both the product and project directory, the one in the project directory takes precedence. XML files are not merged during the build process. Properties files however, are handled differently. The build process combines project and product files with the same name into one generated file. Here is an example of how this works:

Project Version of the file:

…

BTN_CREW_ICONS.text = Crew Icons

...

Product Version of the file:

…

Workspace.text = Env Mgr

LBL_CONNECTION_STATUS.text = Connection Status

BTN_CREW_ICONS.text = Crew Actions

ONLINE.text = Online

OFFLINE.text = Offline

…

Generated Version:

Generated from
projects\jconfig\ops\workspace\properties\Workspace_en_US.properties

$Id: Workspace_en_US.properties,v 1.3 $

BTN_CREW_ICONS.text = Crew Icons

…

Generated from
product\jconfig\ops\workspace\properties\Workspace_en_US.properties

Workspace.text = Env Mgr

LBL_CONNECTION_STATUS.text = Connection Status

ONLINE.text = Online

OFFLINE.text = Offline

…

Note that the BTN_CREW_ICONS.text that was in the original product file is not merged into the generated file. Therefore the project value is used by the application.

If a project overrides a line, it will be removed from the generated product definitions. If a project only duplicates but does not change the product configuration, then the line is removed from the project configuration in the generated file.

Testing the Java Client Configuration

This section details how to test Java client configuration without deploying the changes to an app server. Changes can be made locally on a client Microsoft Windows machine and immediately tested.

	
1.

	

First, install the client Windows installer for the application to be configured. These can be found under the Optional Microsoft Windows Applications. The directions below assume that the client is installed to c:\OracleNMS, and the project name is OPAL. The location and the project name can be changed as appropriate.

	
2.

	

On the NMS server machine, do the following:

cd $NMS_CONFIG

zip -r $HOME/nms_config.zip jconfig

cd $NMS_HOME

zip -r $HOME/java.zip java

	
3.

	

Next, transfer them to the client machine.

Unzip nms_config.zip
to
 c:\OracleNMS\OPAL

Unzip java.zip
to
 c:\OracleNMS\

	
4.

	

Install Apache Ant version 1.8.2. Be sure to put the ant bin directory on the system path. For example, if Apache Ant is installed to C:\apache-ant-1.8.2, add C:\apache-ant-1.8.2\bin to the system path.

	
5.

	

Create two environment variables (using the Windows control panel):

	
•

	

NMS_CONFIG=c:\OracleNMS\OPAL

	
•

	

NMS_HOME=c:\OracleNMS

	
6.

	

For the application that is to be configured, the .lax file needs to be modified. For example, to work with Web Workspace, edit the following:

	
•

	

C:\OracleNMS\WebWorkspace\WebWorkspace.lax

	
7.

	

Change the line:

lax.class.path=nms-boot.jar;nmslib/nms_corba.jar;lax.jar

to

lax.class.path=nms-boot.jar;nmslib/ nms_corba.jar;lax.jar;c:\OracleNMS\java\working\config

You can then modify the configuration in c:\OracleNMS\OPAL\jconfig

To test out changes do:

cd c:\OracleNMS\OPAL\jconfig

ant clean config

or

ant config

ant clean all will regenerate all of the configuration. You will need to do that when updating to a new release. ant config can be used within a session to only update the files that have changed.

	
8.

	

Finally, run the application as normal. The system will use the local configuration instead of the configuration on the server.

JBot DataStore Reference guide

To aid the implementer in determining the available columns for a datastore, it’s possible to create a report that contains all the current values of a datastore for a running system. Because each system can have different configured columns, it is necessary to create this documentation from a running system.

Creating the JBot DataStore Report

	
1.

	

Start the java application you wish to document. Ensure that the tools you are interested in are populated.

	
2.

	

Bring up a shell window as the nms user on the nms server.

	
3.

	

Type:
Action any.publisher* ejb jbot_report c:/OracleNMS/
datastore_report.txt

This will create the datastore report on all client machines that are logged in. If you wish to change the location that the report will be stored, change the above command.

Reading the datastore report

The report contains all the datastores that are currently valid for the application, along with all of the valid columns.

See the following excerpt from the report, which describes the DS_WA_ALARMS datastore from Workagenda.

Datastore : :DS_WA_ALARMS

 CUSTOMER_NAME=

 COND_PHASES=B

 COND_STATUS_NAME=RDO

 EST_REST_TIME=07/27/09 14:02

 DEVICE_ALIAS=xfm_oh_JO-9976

 CTRL_ZONE_NAME_5=JO CO 9362

 CTRL_ZONE_NAME_6=

 CRIT_K=1

 CAUSE=MANUAL

 TROUBLE_CODE=

 Y_REF=14169164

 ADDR_STREET=

 DEVICE_HDL=com.ces.corba.CES.Handle@7fc8a0

 CREW_ID=

 EMERGENCY=

 CONDITION_STATUS=<null>

 DESCRIPTION=Device Operation (by spl3)

 FEEDER_ALIAS=9362

 CRIT_D=0

 CRIT_C=0

 MSG_TYPE=1

 LIFE_SUPPORT=0

 COND_STATUS=4

 CTRL_ZONE_NAME_4=JO CO SUB 93

 CTRL_ZONE_NAME_3=JO CO

 SENT_TO_MOBILE=Y

 CTRL_ZONE_NAME_2=METRO

 CTRL_ZONE_NAME_1=PRODUCT

 CUST_CALL=0

 CRIT_3=0

 CRIT_1=0

 ALARM_CLS=1303

 CRIT_2=0

 CUST_CRIT=1

 USER_CUST_OUT=2

 INCIDENT_TYPE=OUT

 PRIP=0

 EST_REPAIR_TIME=

 PRIW=0

 ALARM_IDX=2753

 OPERATOR_COMMENT=

 DISP_ADDRESS=9362

 NUMB=2753

 GENERIC_COL_1=

 EVENT_IDX=2750

 SORT_COL_9=0

 SORT_COL_8=0

 STATE_VALUE=2

 PRISW=0

 PRIORITY=0

 SORT_COL_1=0

 SORT_COL_3=1

 SORT_COL_2=0

 RELATED_EVENT_TYPE=

 SORT_COL_5=0

 SORT_COL_4=0

 SORT_COL_7=0

 VALID_STATE_KEY=130

 SORT_COL_6=0

 DISPATCH_COUNT=0

 ADDR_BUILDING=

 REVENUE=0

 PRIE=0

 AMR_REQUESTED=N

 ACTION_IDS=[220, 340, 250, 200, 140, 260, 370, 230, 360, 330, 240, 120]

 IS_NON_OUTAGE=false

 CIRCUIT=N/A

 TROUBLE_QUEUE=

 FIRST_CREW_TIME=

 RULE_SET=

 WEIGHTED_NUM_CUST=2

 NCG=10

 INC_OUTAGE=N

 PARTITION=1001

 X_REF=1127557

 DEV_CLS_NAME=xfm_oh

 HIGHEST_INCIDENT_PRIORITY=0

 ROUTE_ID=N/A

 REFERRAL_GROUP=

 RELATED_EVENT=0

 CRIT_TOT=0

 ALARM_HDL=1303.2753

 PREVIOUS_STATE_KEY=0

 STATUS=UAS

 GROUP_TYPE=

 EVENT_HDL=com.ces.corba.CES.Handle@14cadc4

 SHEET_NUM=

 ADDR_CITY=

 TAGS=N

 EST_SOURCE=S

 EXTERNAL_ID=

 COMPLETION_TIME=

 CUST_PHONE=

 DISTRICT=

 FEEDER_HDL=com.ces.corba.CES.Handle@1243618

 FIRST_INC_TIME=

 OUTAGE_TIME=07/23/09 19:59

 OFFICE=

 CUSTOMERS_OUT=2

 ERT_USER=

 APPLIED_RULE=0

 #global:sort_name=

 #global:filter_name=To Do

Note that some of the columns listed are objects that would never be printed. For example, see the excerpt below:

crew.zone_hdl=com.ces.corba.CES.Handle@1646de5

 crew.zone_hdl.class_number=4802

 crew.zone_hdl.app=0

 crew.zone_hdl.instance_number=1001094

The crew.zone_hdl is an object that would not be displayed. That object contains the class_number, instance_number, and app, which can be displayed.

JBot Login Process Configuration

JBot tools have a standard login tool that is used for all products.

The login tool is responsible for determining which user type the user should log in as and verifying the password if LDAP integration is turned off.

To configure a tool to use the login tool, the product_name global property should be set in the tools configuration to the value as it exists in product column of the ENV_CODE table.

Here is an example of configuring Web Callentry to use the login tool:

<
JBot
Tool width="830" height="900">

 <GlobalProperties>

 <StringProperty name="product_name" value="WCE"/>

 </GlobalProperties>

 ...

Any name can be configured, so if new applications are developed, there do not have to be any code changes to support the login tool for them.

Here is a list of the current codes:

	
•

	

CREW (Web Workspace)

	
•

	

SWITCHING (Web Request)

	
•

	

STORM (Storm Management)

	
•

	

SERVICE_ALERT (Service Alert)

	
•

	

OMS_CONFIG_TOOL (Configuration Assistant)

	
•

	

WCB (Web Callbacks)

Oracle Fusion Client Platform Configuration

The main client application window for Web Workspace and Web Switching can be configured by using a separate XML file. Here is an example:

<dockingPositions xmlns="http://nms.oracle.com"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://nms.oracle.com http://
localhost/xml/docking.xsd"

 bounds="30,0,1220,942" maximized="false">

 <WEST floatSize="1003" dockSize="1210">

 <box>

 <leafBox height="300" width="400">

 <dockable dockWidth="400" floatHeight="300"
floatOrientation="-1" dockHeight="300"
ID="com.splwg.oms.client.crew.CrewIcons" floatWidth="400"/>

 <dockable dockWidth="400" floatHeight="300"
floatOrientation="-1" dockHeight="300"
ID="com.splwg.oms.client.authority.Authority" floatWidth="400"/>

 </leafBox>

 </box>

 </WEST>

 <EAST floatSize="180" dockSize="275">

 <box>

 <leafBox height="300" width="400">

 <dockable dockWidth="400" floatHeight="300"
floatOrientation="-1" dockHeight="300"
ID="com.splwg.oms.client.workspace.Workspace" floatWidth="400"/>

 </leafBox>

 </box>

 </EAST>

 <NORTH floatSize="180" dockSize="490">

 <box>

 <leafBox height="300" width="400">

 <dockable dockWidth="400" floatHeight="300"
floatOrientation="-1" dockHeight="300"
ID="com.splwg.oms.client.workagenda.WorkAgenda" floatWidth="400"/>

 </leafBox>

 </box>

 </NORTH>

 <SOUTH floatSize="180" dockSize="250"/>

</dockingPositions>

The file should be saved as the name of the application, with docking. For example, the name of the file for Web Workspace would be Workspace_docking.xml.

The easiest way to modify this file is to arrange the windows the way you wish, then exit the system. Bring up Windows Explorer, and locate c:\Documents and Settings\[user]
\.nms\system11.0.0.0.0\o.ide.11.1.1.1.33.53.67\windowinglayout.xml

From that file, cut and paste the dockingPositions element to the configuration file. Note that the <dockingPositions> element should include the attributes listed above, although they are not in the windowingLayout.xml.

The "bounds" dockingPositions attribute specifies the position and size of the master frame. The numbers are the x, y, width, and height of the master frame.

The "maximized" attribute specifies if the frame should start maximized.

The default docking for applications that do not have a specific docking configuration is defined by jconfig/global/xml/JbotTool_docking.xml.

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Application Customization

The Oracle Utilities Network Management System application is configured by using XML to define the various java components and actions to be displayed. This document explains how to extend the application by providing custom commands that can be configured as part of an Oracle Utilities Network Management System tool, and how to call Oracle Utilities Network Management System commands from an external system.

Prerequisites

This assumes the user is familiar with programming in Java and with Oracle Utilities Network Management System configuration.

The demo commands and tool are included as part of the OPAL configuration. Therefore, this documentation assumes that either the OPAL model is used, or all the demo tools and configuration are copied to the correct project directory.

Setup

To run these examples, the following should be added to WorkspaceMenuBarTool. This will add a button to Web Workspace to display the demo tool:

<MenuItem name="MNUITM_DEMO" hide_icon="true">

 <PressPerform>

 <Command value="DisplayToolCommand">

 <Config name="tool" value="DemoTool"/>

 <Config name="class" value="com.splwg.oms.jbot.JBotTool"/>

 </Command>

 </PressPerform>

 </MenuItem>

Overview

This is an example tool with various text fields, a table, and some buttons that demonstrate how to integrate into an Oracle Utilities Network Management System application.

The "Hello World" button displays a dialog.

The sum example will add two numbers and save them in a third field.

The final example shows how to access and change data.

The example code is in $NMS_CONFIG/jconfig/java/src. This is where any custom commands should be saved.

Access to data in Oracle Utilities Network Management System is done saved in "datastores." These are bound to the actual java swing components.

The demo tool is saved to $NMS_CONFIG/jconfig/ops/test/xml/DemoTool.xml.

Hello World

The following is a simple command to display a dialog box displaying text:

See $NMS_CONFIG/jconfig/java/src/demo/HelloWorldCommand.java:

package demo;

import com.splwg.oms.jbot.JBotCommand;

import javax.swing.JOptionPane;

public class HelloWorldCommand extends JBotCommand {

 public void execute() {

 JOptionPane.showMessageDialog(null, "Hello World!");

 }

}

AddCommand

This command is an example of reading two values from the system and saving it to a third value.

package demo;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This command adds two numbers

 */

public class AddCommand extends JBotCommand {

 public void execute() {

 // This parameter must exist or else an error will occur

 String var1 = getRequiredParameter("var1");

 // If this parameter does not exist, the value will be null

 String var2 = getParameter("var2");

 String result = getRequiredParameter("result");

 double retVal;

 try {

 String number1 = (String)getDataSourceValue(var1);

 retVal = Double.parseDouble(number1);

 if (var2 != null) {

 String number2 = (String)getDataSourceValue(var2);

 retVal += Double.parseDouble(number2);

 }

 setDataSourceValue(result, retVal);

 } catch (Exception e) {

 AWTEvent awtEvent = (AWTEvent)getJBotEvent().getEvent();

 Component component = (Component)awtEvent.getSource();

 JOptionPane.showMessageDialog(component,

 "Could not add the numbers",
"Error",

 JOptionPane.ERROR_MESSAGE);

 setAbort(true);

 }

 }

}

IncrementCommand

This example shows how to read and write to multiple rows in a datastore:

package demo;

import com.splwg.oms.jbot.IDataRow;

import com.splwg.oms.jbot.IDataStore;

import com.splwg.oms.jbot.JBotCommand;

import java.awt.AWTEvent;

import java.awt.Component;

import javax.swing.JOptionPane;

/**

 * This example show how to access and update a datastore that has
multiple

 * rows.

 */

public class IncrementCommand extends JBotCommand {

 public void execute() {

 IDataStore ds = getDataStore("DS_DEMO_TABLE");

 synchronized(ds.getLockObject()) {

 for (IDataRow row : ds) {

 Integer count = (Integer) row.getValue("count");

 row.setValue("count", Integer.valueOf(count + 1));
}

 }

 ds.notifyObservers();

 }

}

Using Additional Libraries

If additional client libraries are needed, they should be saved to $NMS_CONFIG/java/lib. Any jar files in this directory will be unjarred, and included as part of nms_config.jar.

Invoking Commands from an External System

Commands can be invoked by sending high level messages, either by using the "Action" command or by using a web service. (It is recommended that the web service be used for production use).

A listener for a high level message is defined as follows:

 <Perform name="HLM" type="display_message">

 <Command value="demo.DisplayMessageCommand"/>

 </Perform>

This should be defined in the ToolBehavior portion of the tool you wish to integrate with.

The type is an arbitrary identifier of the action.

This can be invoked by running the following from the Oracle Utilities Network Management System server:

Action -add_soap USER.* display_message
"
Hello world
"

USER should be replaced with the username of nms user.

Here is the command that is called from this configuration:

package demo;

import com.splwg.oms.jbot.HLMEvent;

import com.splwg.oms.jbot.JBotCommand;

import java.util.List;

import javax.swing.JOptionPane;

/**

 * This displays a message to the user from an external system

 */

public class DisplayMessageCommand extends JBotCommand {

 public void execute() {

 HLMEvent hlmEvent = (HLMEvent) getEvent();

 List<String> args = hlmEvent.getMessage().getArgs();

 String message = args.get(0);

 JOptionPane.showMessageDialog(null, message);

 }

}

Invoking Commands Using a Web Service

This should be invoked by using the sendHLM webservice message.

The wsdl for the web service is located as follows:

	
•

	

For Weblogic:

http://nms-server:7001/MessageBean?wsdl

(Replace nms-server with the dns name or IP address of the Oracle Utilities Network Management System system to connect to.)

JbotCommand Methods

These are commands that can be called from a JBot command:

getParameter

protected java.lang.String getParameter(java.lang.String key)

This returns the value of a configuration option for this command.

getDefaultmeter

protected java.lang.String
getDefaultParameter(java.lang.String key,

 java.lang.String defaultValue)

getBooleanParameter

protected boolean
getBooleanParameter(java.lang.String key,

 boolean defaultValue)

getRequiredBooleanParameter

protected boolean
getRequiredBooleanParameter(java.lang.String key)

getRequiredParameter

protected java.lang.String
getRequiredParameter(java.lang.String key)

This returns the value of a configuration option for this command. If it does not exist, it throws a JBotException.

getParameterSubset

protected java.util.SortedMap<java.lang.String,java.lang.String>
getParameterSubset(java.lang.String prefix)

This will return the parameters in alphabetical order that start with the given prefix.

Parameters:

prefix
- Prefix of the parameter to match.

Returns:

A sorted map of parameters

execute

public abstract void
execute()

 throws java.lang.Exception

This is the method invoked by the CommandProcessor when the Command is executed.

Throws:

java.lang.Exception

getName

public java.lang.String
getName()

Returns command String key.

Returns:

java.lang.String

supressBusyCursor

public boolean supressBusyCursor()

Return True if this command should not display the hourglass. This should only be set to true if the command is very fast.

getEvent

public java.lang.Object getEvent()

Returns original event object. It could be any swing events for example.

Returns:

java.lang.Object

setStatusFlag

public void setStatusFlag(java.lang.String flag,

 boolean status)

Set the specified status flag in the DataManager. These statuses determine validation, JButtons' enabled status, etc.

Parameters:

flag - the status value

status - the boolean status

getStatusFlag

public boolean getStatusFlag(java.lang.String flag)

Get the value of the specified status flag in the DataManager. These statuses determine validation, JButtons' status, etc.

Parameters:

flag - the status value

Returns:

True if flag is true, False if flag not found or flag is false.

fireStatusChanges

public void fireStatusChanges()

Notifies all interested Components that the Tool's statuses have changed.

getDataStore

public IDataStore getDataStore(java.lang.String dataStoreKey)

Returns the DataStore with the specified key.

Parameters:

dataStoreKey - the String key that describes the DataStore

Returns:

the DataStore

getCurrentDataRow

public final IDataRow getCurrentDataRow(java.lang.String dataStore)

A convenience method that will get the current datarow of a datastore.

Parameters:

dataStore - the name of the data store.

getJBotEvent

public JBotEvent getJBotEvent()

Returns JBotEvent object.

Returns:

com.ces.jbot.JBotEvent

isAbort

public boolean isAbort()

Indicates whether processing of additional commands in this package should be aborted.

setAbort

protected void setAbort(boolean b)

If true, instructs the command processor to not process any additional commands for this event.

getDataSourceValue

protected java.lang.Object getDataSourceValue(java.lang.String
dataSource)

Returns the value of a datasource in the form of [datastore].[column name].

Parameters:

dataSource - the datasource

Returns:

the value

setDataSourceValue

protected void setDataSourceValue(java.lang.String dataSource,

 java.lang.Object value)

Installing the Web Switching BI
Publisher Report Package

Product configuration has a package version of the Web Switching reports used for printing and print previewing. This package can be found in the nms_configuration.zip file and once unzipped and installed, will be found under the following folder:

	
•

	

$NMS_CONFIG/jconfig/ops/bi_publisher/WebSwitching

This folder contains archive files that will need to be uploaded to BI Publisher Catalog. The next set of steps will guide you through this process:

Default Installation

Following are installation steps when parameter 'WEB_bipub.reportFolder' is not set.

	
1.

	

Log into BI
Publisher (http://<BIP server name>:9704/xmlpserver/) as the Administrator from a browser that has access to the WebSwitching folder. The files it contains can be copied from its default installation directory to a PC of your choice.

	
2.

	
navigating to the JDBC Connection
 page under the Data Sources section, and then click Add Data Source.

	
3.

	

Type in the name WebSwitching.

	
4.

	

Set the Driver Type to Oracle 9i/10g/11g.

	
5.

	

Set the Database Driver Class to oracle.jdbc.OracleDriver.

	
6.

	

Set the Connection string to:jdbc:oracle:thin:@<
your machine
>:1521:<
the ORACLE_SID
>

	
7.

	

Set the Username and password to match the RDBMS_USER and RDBMS_PASSWD values.

	
8.

	

Click Test Connection and verify that it is properly configured.

	
9.

	

Click Apply.

	
10.

	

From the BI
Publisher
Catalog page, select Shared Folders from the folders tree..

	
11.

	

On top of the folders section, click the New drop down and select Folder from the list.

	
12.

	

Enter WebSwitching as the folder name, then click the Create button. The new folder is added.

	
13.

	

Expand the new WebSwitching folder. In the task section on the bottom left side of the page, click the Upload link.

	
14.

	

Browse to the WebSwitching report package folder and upload the archive WebSwitching.xsbz, which contains the subtemplate file.

Note: when uploading, select the "Overwrite existing report" option followed by the Upload button.

	
15.

	

Go back to the "Shared Folder/WebSwitching" in the catalog page. Upload the following files from the WebSwitching report package:

	
•

	

WebSwitching.xdmz

	
•

	

PlannedSheet.xdoz

	
•

	

OutageCorrectionSheet.xdoz

	
•

	

TemplateSheet.xdoz

	
16.

	

From the Web Switching application, you should now be able to print and preview reports.

Multiple Environment Installation

It is recommended that you first install Web Switching reports for single environment before running the following steps.

	
1.

	

Configure the <reportFolder> parameter ‘WEB_bipub.reportFolder’ in CES_PARAMETERS table to a desired environment name. It could have values like ‘Test’, Training’ ‘Production’ and ‘TST_SPANISH’.

	
2.

	

Follow Default Installation steps 1 and 2.

	
3.

	

Type in the name <reportFolder>.

	
4.

	

Follow Default Installation steps 4-11.

	
5.

	

Enter a folder name using the configured ‘WEB_bipub.reportFolder’ value. Click Create.

	
6.

	

A new folder will be added to the page. Expand the newly created folder and follow Default Installation steps 11-15.

	
7.

	

Go back to the "Shared Folder/<reportFolder/>WebSwitching" in the catalog page. Upload the following files from the WebSwitching report package:

	
•

	

WebSwitching.xdmz

	
•

	

PlannedSheet.xdoz

	
•

	

OutageCorrectionSheet.xdoz

	
•

	

TemplateSheet.xdoz

	
8.

	

Edit newly uploaded WebSwitching.xdm and change ‘Default Data Source’ to the <reportFolder>.

	
9.

	

Edit OutageCorrectionSheet.xdo. From the toolbar. Changed the data model to the newly modified WebSwitching.xdm.

By default, the main template imports the subtemplate from "Shared Folder/WebSwitching/ WebSwitching.xsb. If it does not exist or you wish to change it to the newly updated subtemplate, edit the report and click Edit below the OutageCorrectionSheet layout to change the import path. Select the Help option from the pull-down for more in-depth information on editing templates.

Do this step for the rest of the reports.

	
10.

	

Restart the WebLogic, DBService and JMService.

	
11.

	

From the Web Switching application, you should now be able to print and preview reports.

Altering and/or Translating the Web Switching report

Adding XLIFF translation file

The Web Switching reports used for printing can be easily translated to alternate languages or the labels updated to something more appropriate to the project. Simply edit the report layout, open the ‘Layout Properties’ page and click Extract Translation. Within this XML file you will find a number of <trans-unit> elements with <source> and <target> sub-elements. Update the <target> entry with your translated or altered label. If you wish to create a language specific version of the XLIFF file, name the translated report file according to the following standard for all languages except Chinese and Portuguese (Brazil):

WebSwitching_<language_code>.xlf

<language_code> is the two-letter ISO language code (in lower case).

Important : Except for the three locales noted below, do not include the territory code in the file name.

For Chinese (China), Chinese (Taiwan), and Portuguese (Brazil) you must use the language code and territory code in the translated file name as follows:

WebSwitching_zh_CN.xlf

WebSwitching_zh_TW.xlf

WebSwitching_pt_BR.xlf

For more information on translating reports, see the section Translating Reports in the Oracle Business Intelligence Publisher User's Guide.

In order to utilize a language specific XLIFF file, the WEB_ bipub.locale parameter has to be set correctly in the CES_PARAMETERS table. Example:

WEB_ bipub.locale = en-US

This setting would cause BI
Publisher to look for the following translation file:

WebSwitching_en.xlf

Updating the Subtemplate and Template files

The subtemplate and template files can also be altered to accommodate project requirements.

From the BI
Publisher
Reports tab, install the Template Builder by selecting and executing the downloaded executable. Once installed, use Microsoft Word to edit the subtemplate and template files. Labels and the layout of data entries can be easily manipulated from this editor. A new pull-down called Oracle
BI
Publisher will be added to MS Word. Select the Help option from the pull-down for more in-depth information on editing templates.

Updating the report file

The template uses data extracted from queries defined in the BI
Publisher data model. For Web Switching this report file is called WebSwitching.xdm. This file can be found within the WebSwitching folder. Within this file you will find a number of queries which are used to gather all the data displayed in the report. The MS-Word BIP Template Editor utilizes this schema file to assist you in adding elements to the template. The WebSwitching.xdm data model should only be altered if additional data is required in the print or print preview report.

Altering and/or Translating the Web Switching report

Adding XLIFF translation file

The Web Switching reports used for printing can be easily translated to alternate languages or the labels updated to something more appropriate to the project. Simply edit the report layout, open the ‘Layout Properties’ page and click Extract Translation. Within this XML file you will find a number of <trans-unit> elements with <source> and <target> sub-elements. Update the <target> entry with your translated or altered label. If you wish to create a language specific version of the XLIFF file, name the translated report file according to the following standard for all languages except Chinese and Portuguese (Brazil):

WebSwitching_<language_code>.xlf

<language_code> is the two-letter ISO language code (in lower case).

Important : Except for the three locales noted below, do not include the territory code in the file name.

For Chinese (China), Chinese (Taiwan), and Portuguese (Brazil) you must use the language code and territory code in the translated file name as follows:

WebSwitching_zh_CN.xlf

WebSwitching_zh_TW.xlf

WebSwitching_pt_BR.xlf

For more information on translating reports, see the section Translating Reports in the Oracle Business Intelligence Publisher User's Guide.

In order to utilize a language specific XLIFF file, the WEB_ bipub.locale parameter has to be set correctly in the CES_PARAMETERS table. Example:

WEB_ bipub.locale = en-US

This setting would cause BI
Publisher to look for the following translation file:

WebSwitching_en.xlf

Updating the Subtemplate and Template files

The subtemplate and template files can also be altered to accommodate project requirements.

From the BI
Publisher
Reports tab, install the Template Builder by selecting and executing the downloaded executable. Once installed, use Microsoft Word to edit the subtemplate and template files. Labels and the layout of data entries can be easily manipulated from this editor. A new pull-down called Oracle
BI
Publisher will be added to MS Word. Select the Help option from the pull-down for more in-depth information on editing templates.

Updating the report file

The template uses data extracted from queries defined in the BI
Publisher data model. For Web Switching this report file is called WebSwitching.xdm. This file can be found within the WebSwitching folder. Within this file you will find a number of queries which are used to gather all the data displayed in the report. The MS-Word BIP Template Editor utilizes this schema file to assist you in adding elements to the template. The WebSwitching.xdm data model should only be altered if additional data is required in the print or print preview report.

Altering and/or Translating the Web Switching report

Adding XLIFF translation file

The Web Switching reports used for printing can be easily translated to alternate languages or the labels updated to something more appropriate to the project. Simply edit the report layout, open the ‘Layout Properties’ page and click Extract Translation. Within this XML file you will find a number of <trans-unit> elements with <source> and <target> sub-elements. Update the <target> entry with your translated or altered label. If you wish to create a language specific version of the XLIFF file, name the translated report file according to the following standard for all languages except Chinese and Portuguese (Brazil):

WebSwitching_<language_code>.xlf

<language_code> is the two-letter ISO language code (in lower case).

Important : Except for the three locales noted below, do not include the territory code in the file name.

For Chinese (China), Chinese (Taiwan), and Portuguese (Brazil) you must use the language code and territory code in the translated file name as follows:

WebSwitching_zh_CN.xlf

WebSwitching_zh_TW.xlf

WebSwitching_pt_BR.xlf

For more information on translating reports, see the section Translating Reports in the Oracle Business Intelligence Publisher User's Guide.

In order to utilize a language specific XLIFF file, the WEB_ bipub.locale parameter has to be set correctly in the CES_PARAMETERS table. Example:

WEB_ bipub.locale = en-US

This setting would cause BI
Publisher to look for the following translation file:

WebSwitching_en.xlf

Updating the Subtemplate and Template files

The subtemplate and template files can also be altered to accommodate project requirements.

From the BI
Publisher
Reports tab, install the Template Builder by selecting and executing the downloaded executable. Once installed, use Microsoft Word to edit the subtemplate and template files. Labels and the layout of data entries can be easily manipulated from this editor. A new pull-down called Oracle
BI
Publisher will be added to MS Word. Select the Help option from the pull-down for more in-depth information on editing templates.

Updating the report file

The template uses data extracted from queries defined in the BI
Publisher data model. For Web Switching this report file is called WebSwitching.xdm. This file can be found within the WebSwitching folder. Within this file you will find a number of queries which are used to gather all the data displayed in the report. The MS-Word BIP Template Editor utilizes this schema file to assist you in adding elements to the template. The WebSwitching.xdm data model should only be altered if additional data is required in the print or print preview report.

Altering and/or Translating the Web Switching report

Adding XLIFF translation file

The Web Switching reports used for printing can be easily translated to alternate languages or the labels updated to something more appropriate to the project. Simply edit the report layout, open the ‘Layout Properties’ page and click Extract Translation. Within this XML file you will find a number of <trans-unit> elements with <source> and <target> sub-elements. Update the <target> entry with your translated or altered label. If you wish to create a language specific version of the XLIFF file, name the translated report file according to the following standard for all languages except Chinese and Portuguese (Brazil):

WebSwitching_<language_code>.xlf

<language_code> is the two-letter ISO language code (in lower case).

Important : Except for the three locales noted below, do not include the territory code in the file name.

For Chinese (China), Chinese (Taiwan), and Portuguese (Brazil) you must use the language code and territory code in the translated file name as follows:

WebSwitching_zh_CN.xlf

WebSwitching_zh_TW.xlf

WebSwitching_pt_BR.xlf

For more information on translating reports, see the section Translating Reports in the Oracle Business Intelligence Publisher User's Guide.

In order to utilize a language specific XLIFF file, the WEB_ bipub.locale parameter has to be set correctly in the CES_PARAMETERS table. Example:

WEB_ bipub.locale = en-US

This setting would cause BI
Publisher to look for the following translation file:

WebSwitching_en.xlf

Updating the Subtemplate and Template files

The subtemplate and template files can also be altered to accommodate project requirements.

From the BI
Publisher
Reports tab, install the Template Builder by selecting and executing the downloaded executable. Once installed, use Microsoft Word to edit the subtemplate and template files. Labels and the layout of data entries can be easily manipulated from this editor. A new pull-down called Oracle
BI
Publisher will be added to MS Word. Select the Help option from the pull-down for more in-depth information on editing templates.

Updating the report file

The template uses data extracted from queries defined in the BI
Publisher data model. For Web Switching this report file is called WebSwitching.xdm. This file can be found within the WebSwitching folder. Within this file you will find a number of queries which are used to gather all the data displayed in the report. The MS-Word BIP Template Editor utilizes this schema file to assist you in adding elements to the template. The WebSwitching.xdm data model should only be altered if additional data is required in the print or print preview report.

Contents of the WebSwitching Folder

	
•

	

oracle_sig_logo.gif

	
•

	

Oracle logo used in the header of the generated report.

	
•

	

WebSwitching.xdm

	
•

	

WebSwitching.xdm: BI Publisher data model. This file defines the data that is used by all the reports. It contains all the queries that are used to pull the data from the database. This includes Web Switching, Event, Crew, Customer and Web Safety information.

	
•

	

WebSwitching.xsbz

	
•

	

WebSwitching.xsb: BI Publisher subtemplate. This file is consists of template definitions for all the common section of a Web Switching report that are called from all the Web Switching report templates.

	
•

	

PlannedSheet.xdoz

	
•

	

PlannedSheet.xdo: BI Publisher report file. This file defines the data model, layout, properties and the translations available for Planned and Emergency Sheet report.

	
•

	

PlannedSheet.rtf: BI Publisher report template file. This file includes the PlannedSheet-specific layout of the data within the report.

	
•

	

OutageCorrectionSheet.xdoz

	
•

	

OutageCorrectionSheet.xdo: BI Publisher report file. This file defines the data model, layout, properties and the translations available for the Outage Correction Sheet report.

	
•

	

OutageCorrectionSheet.rtf: BI Publisher report template file. This file includes the OutageCorrectionSheet-specific layout of the data within the report.

	
•

	

TemplateSheet.xdoz

	
•

	

TemplateSheet.xdo: BI Publisher report file. This file defines the data model, layout, properties and the translations available for the Template Sheet report.

	
•

	

TemplateSheet.rtf: BI Publisher report template file. This file includes the TemplateSheet-specific layout of the data within the report.

Control Tool Configuration

The intended audience for this chapter are project engineers or software engineers responsible for configuring the Oracle Network Management System (NMS) Control Tool. This chapter includes the following topics:

	
•

	

Overview

	
•

	

CONTROL_ACT Database Table Configuration

	
•

	

The Control.xml File

	
•

	

PROJECT_CONTROL_ACTIONS.inc

Overview

The Control Tool affects many different aspects of the NMS system including tools, such as Web Switching and Web Safety, as well as services, such as DDService, PFService, and SwService. Due to the interactions with the various components, the Control Tool configuration includes database table configuration as well as JBot XML configuration typical of the other Java-based tools.

CONTROL_ACT Database Table Configuration

The CONTROL_ACT database table contains the definitions for each control action used in the Control Tool, as well as some actions used exclusively by Web Switching and Web Safety.

Definition

	
•

	

act_key - a unique index for the record.

	
•

	

act_cls - the action type for the action (see below)

	
•

	

act_idx - the action identifier (see below)

	
•

	

action_name - the name of the JBot Action to be executed for this record

	
•

	

 next_act_key - the act_key of the next action to executelabel - The label to display on the Control Tool

	
•

	

instruct_label - the label for the instruct version of the action on the Control Tool, if desired

	
•

	

switching_desc - the text displayed for the action in Web Switching steps

	
•

	

switching_code - the short code used when entering manual steps in Web Switching

	
•

	

description - the description displayed in Web Switching, User Log, and Event Log

	
•

	

undo_act_key - the act_key of the undo action, used when creating go-back steps in Web Switching

Valid values for act_cls/act_idx pairs:

	

act_cls

	

act_idx

	

Description

	

CONDADD

	

tag, note, <condition name>

	

Add a condition of the passed type

	

CONDDLG

	

tag, note, <condition name>

	

Display the edit dialog of conditions of the passed type.

	

CONDREM

	

tag, note, <condition name>

	

Remove a condition of the passed type.

	

Commissioning

	

Action

	

A commissioning action (automatically added by the Commissioning Tool). Use the commissioning action in the action_name (WSW_STEP_COMMISSION, WSW_STEP_DECOMMISSION, WSW_STEP_UNDO_COMMISSION, WSW_STEP_UNDO_DECOMMISSION)

	

DDS

	

CLOSE, OPEN

	

Close or open the device.

	

DDS

	

EARTH, EARTH_DW

	

Place or remove an earth/ground on the device. If the device is a switch, the Control Tool will display a side selection dialog.

	

DDS

	

MOMENTARY

	

Create a momentary on the device.

	

FLISR

	

ISOLATE_RESTORE

	

A FLISR Isolate & Restore block (automatically added when creating a FLISR plan.

	

HLMsg

	

NOOP

	

Comment steps. Also used as the first step of an aggregate.

	

JMS

	

<none>

	

An automatic JMService event step, used in the Event Log and User Log.

	

MTS

	

DISABLE_FLISR, ENABLE_FLISR

	

Disable or enable FLISR for the device.

	

Manual

	

NOOP

	

Manual steps.

	

NOOP

	

20, 30, <Number of seconds to wait>

	

Wait the specified number of steps. Used in FLISR to wait for SCADA responses.

	

SRS

	

PO_DOWN, PO_HERE, PO_UP

	

Move the outage downstream, to here, or upstream.

	

START

	

ControlEdit

	

Perform a model edit.

	

Safety

	

Action

	

Safety actions. Use the action_name column to specify the action (issue, unissue, release, complete, abort)

	

ScadaCtrl

	

<1 and the attribute number, 2 and the attribute number>

	

Send a SCADA control for the passed digital attribute. Use 1 + the attribute to clear, and 2+ the attribute to set. For example, for attribute 3 (AutoReclose), you would set the act_idx to 13 to clear AutoReclose, and 23 to set AutoReclose.

	

Switching

	

Block

	

A Switching block. Use the action_name to specify the type of block (WSW_BLOCK_CONSTRUCTION, WSW_BLOCK_CUSTOM, WSW_BLOCK_DEFAULT, WSW_BLOCK_FAULT_LOCATION, WSW_BLOCK_ISOLATE, WSW_BLOCK_MAINTENANCE, WSW_BLOCK_NOMINAL, WSW_BLOCK_RESTORE)

CONTROL_ACT Database Table Configuration

The CONTROL_ACT database table contains the definitions for each control action used in the Control Tool, as well as some actions used exclusively by Web Switching and Web Safety.

Definition

	
•

	

act_key - a unique index for the record.

	
•

	

act_cls - the action type for the action (see below)

	
•

	

act_idx - the action identifier (see below)

	
•

	

action_name - the name of the JBot Action to be executed for this record

	
•

	

 next_act_key - the act_key of the next action to executelabel - The label to display on the Control Tool

	
•

	

instruct_label - the label for the instruct version of the action on the Control Tool, if desired

	
•

	

switching_desc - the text displayed for the action in Web Switching steps

	
•

	

switching_code - the short code used when entering manual steps in Web Switching

	
•

	

description - the description displayed in Web Switching, User Log, and Event Log

	
•

	

undo_act_key - the act_key of the undo action, used when creating go-back steps in Web Switching

Valid values for act_cls/act_idx pairs:

	

act_cls

	

act_idx

	

Description

	

CONDADD

	

tag, note, <condition name>

	

Add a condition of the passed type

	

CONDDLG

	

tag, note, <condition name>

	

Display the edit dialog of conditions of the passed type.

	

CONDREM

	

tag, note, <condition name>

	

Remove a condition of the passed type.

	

Commissioning

	

Action

	

A commissioning action (automatically added by the Commissioning Tool). Use the commissioning action in the action_name (WSW_STEP_COMMISSION, WSW_STEP_DECOMMISSION, WSW_STEP_UNDO_COMMISSION, WSW_STEP_UNDO_DECOMMISSION)

	

DDS

	

CLOSE, OPEN

	

Close or open the device.

	

DDS

	

EARTH, EARTH_DW

	

Place or remove an earth/ground on the device. If the device is a switch, the Control Tool will display a side selection dialog.

	

DDS

	

MOMENTARY

	

Create a momentary on the device.

	

FLISR

	

ISOLATE_RESTORE

	

A FLISR Isolate & Restore block (automatically added when creating a FLISR plan.

	

HLMsg

	

NOOP

	

Comment steps. Also used as the first step of an aggregate.

	

JMS

	

<none>

	

An automatic JMService event step, used in the Event Log and User Log.

	

MTS

	

DISABLE_FLISR, ENABLE_FLISR

	

Disable or enable FLISR for the device.

	

Manual

	

NOOP

	

Manual steps.

	

NOOP

	

20, 30, <Number of seconds to wait>

	

Wait the specified number of steps. Used in FLISR to wait for SCADA responses.

	

SRS

	

PO_DOWN, PO_HERE, PO_UP

	

Move the outage downstream, to here, or upstream.

	

START

	

ControlEdit

	

Perform a model edit.

	

Safety

	

Action

	

Safety actions. Use the action_name column to specify the action (issue, unissue, release, complete, abort)

	

ScadaCtrl

	

<1 and the attribute number, 2 and the attribute number>

	

Send a SCADA control for the passed digital attribute. Use 1 + the attribute to clear, and 2+ the attribute to set. For example, for attribute 3 (AutoReclose), you would set the act_idx to 13 to clear AutoReclose, and 23 to set AutoReclose.

	

Switching

	

Block

	

A Switching block. Use the action_name to specify the type of block (WSW_BLOCK_CONSTRUCTION, WSW_BLOCK_CUSTOM, WSW_BLOCK_DEFAULT, WSW_BLOCK_FAULT_LOCATION, WSW_BLOCK_ISOLATE, WSW_BLOCK_MAINTENANCE, WSW_BLOCK_NOMINAL, WSW_BLOCK_RESTORE)

The Control.xml File

Once you have defined the control actions, you need to specify which buttons to appear on the Control Tool for the device classes. You also need to map these buttons to the control actions that were defined in the CONTROL_ACT table, and you need to create JBot actions to match the CONTROL_ACT.action_name values.

Set up your <Button> or <PopupMenuItem> element like any other JBot button, but with a few important differences:

	
•

	

Use the data_source attribute to list "DS_LABELS.
<the button name>
" or "DS_LABELS.
<the button name>
:INSTRUCT" to use the CONTROL_ACT.label or CONTROL_ACT.instruct_label.

	
•

	

Set the <Visible> element based on the inheritance or the device class itself. It is recommended that you set up parent classes in your <project>_inheritance.dat for each logical grouping of device classes that will have different Control Tool options, then use those in these "when" clauses. For example:

	

	

<Visible initial="false"
when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS ==
'control_tool_switch'}"/>

	

	

<Visible initial="false"
when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS ==
'control_tool_breaker'}"/>

	

	

<Visible initial="false" when="{DS_CONTROL_TOOL.DEVICE_CLASS in
('generator')}"/>

	
•

	

Add <ControlActions> and <ControlAction> elements to list the CONTROL_ACT keys to use for each device class or group of device classes. List the actions in order and use the "when" clause so the Control Tool knows which CONTROL_ACT record you want to use for each device class. For example, you may configure different actions and button labels for an Open button (Disconnect Generator, Disconnect Jumper, Open Switch, etc.):

	

	

<ControlActions>

<ControlAction key="170" when="{DS_CONTROL_TOOL.DEVICE_CLASS in
('generator')}"/>

<ControlAction key="210" when="{DS_CONTROL_TOOL.DEVICE_CLASS in
('inline_jumper','p_p_jumper','rack_sub_jumper','sub_jumper')}"/>

<ControlAction key="580" when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS ==
'switch'}"/>

	

	

</ControlActions>

	
•

	

List the JBot actions to perform in the <PressPerform> element. For operations and other actions you record in switching, you should always add an ACT_BEGIN_ACTION and an ACT_END_ACTION call to set flags, reset the control tool, and prepare it for the next user action. Note: buttons that only display other tools do not need the ACT_BEGIN_ACTION and ACT_END_ACTION actions. Pass the $INSTRUCT_FLAG$ to the ACT_BEGIN_ACTION as true if this is an instruct button. Pass the $SEND_TO_SWITCHING$ flag to the ACT_END_ACTION if this actions should be recorded in Switching or the Misc Log.

	
•

	

List the JBot action you configured as the CONTROL_ACT.action_name between the ACT_BEGIN_ACTION and ACT_END_ACTION actions. For example:

<PressPerform>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_BEGIN_ACTION"/>

 <Config name="$INSTRUCT_FLAG$" value="true"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_OPEN"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_END_ACTION"/>

 <Config name="$SEND_TO_SWITCHING$" value="true"/>

 </Command>

</PressPerform>

Example

<PopupMenuItem name="BTN_INSTRUCT_OPEN_DEVICE" class="javax.swing.JMenuItem" data_source="DS_LABELS.BTN_INSTRUCT_OPEN_DEVICE:INSTRUCT">

 <Enabled initial="false" when="OPEN_DEVICE and (DS_CONTROL_DEFAULT.CURRENT_MODE == 'RT')"/>

 <Visible initial="false" when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS == 'switch'}"/>

 <ControlActions>

 <ControlAction key="170" when="{DS_CONTROL_TOOL.DEVICE_CLASS in ('generator')}"/>

 <ControlAction key="210" when="{DS_CONTROL_TOOL.DEVICE_CLASS in ('inline_jumper','p_p_jumper','rack_sub_jumper','sub_jumper')}"/>

 <ControlAction key="580" when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS == 'switch'}"/>

 </ControlActions>

 <ValidValues>

 <RunGroup run_group="CHECK_OPERATION_TIME"/>

 </ValidValues>

 <PressPerform>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_BEGIN_ACTION"/>

 <Config name="$INSTRUCT_FLAG$" value="true"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_OPEN"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_END_ACTION"/>

 <Config name="$SEND_TO_SWITCHING$" value="true"/>

 </Command>

 </PressPerform>

</PopupMenuItem>

Commonly Used Flags and Datastore Values

Commonly used flags and datastore values that can be used in when clauses:

	
•

	

OPEN_DEVICE /CLOSE_DEVICE - open/close is a valid action based on the state of the device.

	
•

	

DS_CONTROL_DEFAULT.CURRENT_MODE - "RT" (i.e., real-time) or "STUDY"

	
•

	

DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS - a set of all parent classes for the selected device.

	
•

	

DS_CONTROL_TOOL.DEVICE_CLASS - the selected device class name

	
•

	

HAS_<
condition class name
> - whether a condition of the class (capitalized) is active on the device. (Example: HAS_INSTRUCT, HAS_TAG, HAS_NOTE, etc.)

	
•

	

HAS_<
condition
>_<
status 0-10
> - whether a condition with status 0-10 is active on the device. (Example: HAS_INFO_0, HAS_HOLD_2, etc.)

	
•

	

SCADA_OPERATED - if there is SCADA telemetry on the device status point

	
•

	

HAS_<SCADA measurement> - whether the device has a SCADA measurement (analog or digital) with the name (capitalized). (Example: HAS_AUTORECLOSE, HAS_AMPS, etc.)

	
•

	

<SCADA measurement>_ON /<SCADA measurement>_OFF - whether the digital measurement is ON or OFF. (Example: AUTORECLOSE_ON, AUTORECLOSE_OFF, FAULT_INDICATOR_ON, etc.)

	
•

	

DS_LOGIN_ENTRY.WEB_SWITCHING_ENABLED - "true" or "false"

	
•

	

FROM_SWITCHING - whether the action is being instructed or completed from Web Switching

	
•

	

INSTRUCT_ONLY - whether the action being executed is an Instruct (as opposed to a Complete)

The Control.xml File

Once you have defined the control actions, you need to specify which buttons to appear on the Control Tool for the device classes. You also need to map these buttons to the control actions that were defined in the CONTROL_ACT table, and you need to create JBot actions to match the CONTROL_ACT.action_name values.

Set up your <Button> or <PopupMenuItem> element like any other JBot button, but with a few important differences:

	
•

	

Use the data_source attribute to list "DS_LABELS.
<the button name>
" or "DS_LABELS.
<the button name>
:INSTRUCT" to use the CONTROL_ACT.label or CONTROL_ACT.instruct_label.

	
•

	

Set the <Visible> element based on the inheritance or the device class itself. It is recommended that you set up parent classes in your <project>_inheritance.dat for each logical grouping of device classes that will have different Control Tool options, then use those in these "when" clauses. For example:

	

	

<Visible initial="false"
when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS ==
'control_tool_switch'}"/>

	

	

<Visible initial="false"
when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS ==
'control_tool_breaker'}"/>

	

	

<Visible initial="false" when="{DS_CONTROL_TOOL.DEVICE_CLASS in
('generator')}"/>

	
•

	

Add <ControlActions> and <ControlAction> elements to list the CONTROL_ACT keys to use for each device class or group of device classes. List the actions in order and use the "when" clause so the Control Tool knows which CONTROL_ACT record you want to use for each device class. For example, you may configure different actions and button labels for an Open button (Disconnect Generator, Disconnect Jumper, Open Switch, etc.):

	

	

<ControlActions>

<ControlAction key="170" when="{DS_CONTROL_TOOL.DEVICE_CLASS in
('generator')}"/>

<ControlAction key="210" when="{DS_CONTROL_TOOL.DEVICE_CLASS in
('inline_jumper','p_p_jumper','rack_sub_jumper','sub_jumper')}"/>

<ControlAction key="580" when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS ==
'switch'}"/>

	

	

</ControlActions>

	
•

	

List the JBot actions to perform in the <PressPerform> element. For operations and other actions you record in switching, you should always add an ACT_BEGIN_ACTION and an ACT_END_ACTION call to set flags, reset the control tool, and prepare it for the next user action. Note: buttons that only display other tools do not need the ACT_BEGIN_ACTION and ACT_END_ACTION actions. Pass the $INSTRUCT_FLAG$ to the ACT_BEGIN_ACTION as true if this is an instruct button. Pass the $SEND_TO_SWITCHING$ flag to the ACT_END_ACTION if this actions should be recorded in Switching or the Misc Log.

	
•

	

List the JBot action you configured as the CONTROL_ACT.action_name between the ACT_BEGIN_ACTION and ACT_END_ACTION actions. For example:

<PressPerform>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_BEGIN_ACTION"/>

 <Config name="$INSTRUCT_FLAG$" value="true"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_OPEN"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_END_ACTION"/>

 <Config name="$SEND_TO_SWITCHING$" value="true"/>

 </Command>

</PressPerform>

Example

<PopupMenuItem name="BTN_INSTRUCT_OPEN_DEVICE" class="javax.swing.JMenuItem" data_source="DS_LABELS.BTN_INSTRUCT_OPEN_DEVICE:INSTRUCT">

 <Enabled initial="false" when="OPEN_DEVICE and (DS_CONTROL_DEFAULT.CURRENT_MODE == 'RT')"/>

 <Visible initial="false" when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS == 'switch'}"/>

 <ControlActions>

 <ControlAction key="170" when="{DS_CONTROL_TOOL.DEVICE_CLASS in ('generator')}"/>

 <ControlAction key="210" when="{DS_CONTROL_TOOL.DEVICE_CLASS in ('inline_jumper','p_p_jumper','rack_sub_jumper','sub_jumper')}"/>

 <ControlAction key="580" when="{DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS == 'switch'}"/>

 </ControlActions>

 <ValidValues>

 <RunGroup run_group="CHECK_OPERATION_TIME"/>

 </ValidValues>

 <PressPerform>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_BEGIN_ACTION"/>

 <Config name="$INSTRUCT_FLAG$" value="true"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_OPEN"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_END_ACTION"/>

 <Config name="$SEND_TO_SWITCHING$" value="true"/>

 </Command>

 </PressPerform>

</PopupMenuItem>

Commonly Used Flags and Datastore Values

Commonly used flags and datastore values that can be used in when clauses:

	
•

	

OPEN_DEVICE /CLOSE_DEVICE - open/close is a valid action based on the state of the device.

	
•

	

DS_CONTROL_DEFAULT.CURRENT_MODE - "RT" (i.e., real-time) or "STUDY"

	
•

	

DS_CONTROL_TOOL.DEVICE_CLASS_PARENTS - a set of all parent classes for the selected device.

	
•

	

DS_CONTROL_TOOL.DEVICE_CLASS - the selected device class name

	
•

	

HAS_<
condition class name
> - whether a condition of the class (capitalized) is active on the device. (Example: HAS_INSTRUCT, HAS_TAG, HAS_NOTE, etc.)

	
•

	

HAS_<
condition
>_<
status 0-10
> - whether a condition with status 0-10 is active on the device. (Example: HAS_INFO_0, HAS_HOLD_2, etc.)

	
•

	

SCADA_OPERATED - if there is SCADA telemetry on the device status point

	
•

	

HAS_<SCADA measurement> - whether the device has a SCADA measurement (analog or digital) with the name (capitalized). (Example: HAS_AUTORECLOSE, HAS_AMPS, etc.)

	
•

	

<SCADA measurement>_ON /<SCADA measurement>_OFF - whether the digital measurement is ON or OFF. (Example: AUTORECLOSE_ON, AUTORECLOSE_OFF, FAULT_INDICATOR_ON, etc.)

	
•

	

DS_LOGIN_ENTRY.WEB_SWITCHING_ENABLED - "true" or "false"

	
•

	

FROM_SWITCHING - whether the action is being instructed or completed from Web Switching

	
•

	

INSTRUCT_ONLY - whether the action being executed is an Instruct (as opposed to a Complete)

PROJECT_CONTROL_ACTIONS.inc

The product Control.xml file includes the CONTROL_ACTIONS.inc file, which contains all of the product <Action> definitions. Project-specific actions should be defined in a PROJECT_CONTROL_ACTIONS.inc file.

Note: You may find it useful to use the CONTROL_ACTIONS.inc as an example.

The following example illustrates how to define an action to add an Information tag. The condition class, info, is defined in the CLASSES table.

<Action name="ACT_ADD_INFO">

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_ADD_CONDITION"/>

 <Config name="$CONDITION_CLASS$" value="info"/>

 </Command>

</Action>

Web Switching executes actions when you instruct or complete steps in Web Switching; therefore, if there is any validation needed to prevent execution or completion of steps based on device states, you should add it to the <Action> element, using DisplayErrorCommand. You may add any number of specific error messages.

If you wanted, for example, to enforce that the system can only place an informational tag on a device that has no active instructs, then you could add the following:

<Action name="ACT_ADD_INFO">

 <Command value="DisplayErrorCommand" when="HAS_INSTRUCT">

 <Config name="message_code" value="CANNOT_HAVE_INSTRUCT"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_ADD_CONDITION"/>

 <Config name="$CONDITION_CLASS$" value="info"/>

 </Command>

</Action>

And in MessageCode_en_US.properties, you would need the following:

CANNOT_HAVE_INSTRUCT=Cannot perform this action when an instruct is present.

CANNOT_HAVE_INSTRUCT.title=Action Failed

Or you might only want to perform that check for instructs if the user is not instructing the current action:

<Action name="ACT_ADD_INFO">

 <Command value="DisplayErrorCommand" when="!INSTRUCT_ONLY and HAS_INSTRUCT">

 <Config name="message_code" value="CANNOT_HAVE_INSTRUCT"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_ADD_CONDITION"/>

 <Config name="$CONDITION_CLASS$" value="info"/>

 </Command>

</Action>

And if, for example, you also wanted to make sure the tool is in study mode, you could add another specialized message, either before or after the other message:

<Action name="ACT_ADD_INFO">

 <Command value="DisplayErrorCommand" when="!INSTRUCT_ONLY and HAS_INSTRUCT">

 <Config name="message_code" value="CANNOT_HAVE_INSTRUCT"/>

 </Command>

 <Command value="DisplayErrorCommand" when="DS_CONTROL_DEFAULT.CURRENT_MODE == 'RT'">

 <Config name="message_code" value="CANNOT_USE_RT"/>

 </Command>

 <Command value="ExecuteActionCommand">

 <Config name="action" value="ACT_ADD_CONDITION"/>

 <Config name="$CONDITION_CLASS$" value="info"/>

 </Command>

</Action>

and:

CANNOT_USE_RT=Cannot perform this action in real-time mode.

CANNOT_USE_RT.title=Action Failed

Web Switching Management Configuration

This chapter describes how to configure and administer Web Switching Management. It includes the following topics:

	
•

	

Configuring Classes and Inheritance

	
•

	

Database Views

	
•

	

Database Data Tables

	
•

	

Database Configuration Tables

	
•

	

Global Web Switching Parameters

	
•

	

GUI Configuration Overview

	
•

	

Switching Sheets

	
•

	

Switching Steps

	
•

	

Web Safety

	
•

	

High Level Messages

	
•

	

Troubleshooting

Configuring Classes and Inheritance

Web Switching Management utilizes standard classes to define the switching sheet types.

The following table lists the classes utilized by Web Switching Management:

	

Class Name

	

Purpose

	

switch_sheet_step

	

The class is used for switching step handles. This class is defined as part of the core classes and should not be changed.

	

switch_sheet_planned

	

The sheet class used for Planned switching sheet handles. This class is defined as part of the core classes and should not be changed.

	

switch_sheet_emergency

	

The sheet class used for Emergency switching sheet handles. This class is defined as part of the core classes and should not be changed.

	

switch_sheet_fault

	

This sheet class is not used by Product configuration, but it is defined as part of the core classes. This class can be redefined and given a new name if the project wants a new switching sheet type. The switching sheet class numbers are referenced in the SWMAN_SHEET_CLS database configuration table.

	

oc_switch_sheet

	

The sheet class used for Outage Correction switching sheet handles. This class is defined as part of the core classes and should not be changed.

	

flisr_switch_sheet

	

The sheet class used for FLISR switching sheet handles. This class is defined as part of the core classes and should not be changed.

	

switch_template

	

The sheet class used for Template switching sheet handles. This class is defined as part of the core classes and should not be changed.

	

switch_sheet

	

This class is used to give the Planned, Emergency, FLISR and Outage Correction sheet types their unique switching sheet numbers. The next_free_index value for this class in the CLASSES table defines the next available sheet number to use for these four sheet types. Since all four of these sheet types gather their switching sheet numbers from the same pool, none of them can have identical sheet numbers. For more information, see Sheet Types.

For Product configuration, this class also is set up to inherit from classes switch_sheet_planned, switch_sheet_emergency and switch_sheet_fault. This inheritance defines whether events are associated to the steps recorded into the sheets. Events are associated to steps so that events follow the steps if they are moved from one sheet to another. If you define a new Planned or Emergency sheet type for your project, then you will need to add that new class to the list of classes that the switch_sheet class inherits from.

	

switch_misc

	

The sheet class used for the Miscellaneous Log handle. This class is defined as part of the core classes and should not be changed.

	

ss_isolate

	

This class inherits from the list of device class types that should be used to generate isolation steps for the Generate Isolate Steps button option found on the conductor based Control Tools. When looking for isolation points and a device of the inherited class type is found, then switching steps to open and tag the device will be generated. For more information, see Generate Isolation Steps.

	

ss_secure

	

This class inherits from the list of device class types that should be used to generate tagging switching steps for devices that are already open. When selecting the Generate Isolate Steps option on the conductor based Control Tool and a device of the inherited device class is traced to and found open, then it will be tagged. For more information, see Generate Isolation Steps.

	

safety_num_INFO

	

The safety document class used for INFO safety document handles. The safety document classes are referenced in the SWMAN_SAFETY_TYPES database configuration table.

	

safety_num_CLEAR

	

The safety document class used for CLEAR safety document handles.

	

safety_num_HOLD

	

The safety document class used for HOLD safety document handles.

	

safety_num_HOT

	

The safety document class used for HOT safety document handles.

	

safety_num_WARN

	

The safety document class used for WARN safety document handles.

Database Views

The following database views are used by Web Switching Management.

SWMAN_EVENT_ASSOC_TYPE

This table maps the event association types to names. Projects should only change these records if they wish to change the names of the associations.

SWMAN_SAFETY_TYPE_ACTIONS

This table maps the various types of step actions that can be associated to each safety document type. For instance CONDADD/hold actions can only be associated to HOLD documents, which DDS/OPEN operations can be associated to HOLD, CLEAR and HOT safety documents. This table controls these association rules.

SWMAN_SAFETY_TYPES

This table defines all the different types of safety documents configured for a project. Product configuration includes HOLD, Clearance, Informational, HOT and Warning safety document types. This table defines the following for each safety document type:

	
•

	

The JBot tool panel and dialog that should be displayed when loading a safety document of this type.

	
•

	

The numbering pool the safety document should use when generating unique document numbers. Product is configured to have each document type get their unique document numbers from separate numbering pools.

	
•

	

The short description of each safety document type.

SWMAN_SHEET_CATEGORY

This table defines the list of sheet categories that every sheet type has to inherit from. Projects should not have any reason to alter the records in this table as they are pre-defined. The table should only be used to look up the description for each of the sheet categories. For instance, all sheets of category PLANNED will generate planned events when completing switching steps that impact customers. Each of the categories has pre-defined rules that define how the switching sheets should behave

SWMAN_SHEET_CLS

This table defines the types of switching sheets configured for a project. This table defines the following for each switching sheet type:

	
•

	

The sheet category the sheet type should inherit from.

	
•

	

The JBot tool panel that should be displayed when loading a sheet of this type.

	
•

	

The display order of the sheet types in the New Switching Sheet dialog.

	
•

	

The numbering pool the sheet should use when generating unique sheet numbers. For instance Planned and Emergency sheets get their sheet numbers from the same numbering pool.

	
•

	

The description of each sheet type. This description is displayed on the New Switching Sheet dialog.

SWMAN_STEP_STATE_MAPPING

This table is used by FLISR to map step state keys to a value of 0, 1, 2 or 16. "0" indicates that the step has no state. "1" refers to any step in a completed state and "2" is in reference to instructed states.

Database Data Tables

The following database data tables are used by Web Switching Management to store data related to switching sheets and safety documents. Web Switching was designed in such a way that none of the data tables should need to be redefined by a project unless a field needs to be increased in size. The actual fields in each of the tables should not be altered by a project. For more information on the tables, refer to the Web Switching Management chapter of the Data Definition document. This Data Definition document needs to be created and generated based on the table, view and column comments.

SWMAN_AUDIT_LOG

This table stores all the audit log entries for the switching sheets and safety documents. Safety documents also get their audit log entries from the SWMAN_STEP table. This would include when conditions are applied and removed for a document.

SWMAN_DELETED_CUSTOMER

This table stores a list of customers that were deleted from a sheet's impacted customer list. These customers are not actually deleted from the model. They are just marked as being removed from the impacted customer list.

SWMAN_IMPACTED_SUPPLY_NODES

This table stores the list of supply nodes impacted by a switching sheet's steps. In most cases, this list is generated manually by a user and is generated against the user's Study session.

SWMAN_PATCHES

This table will normally only ever have one record and that's the last model edit or build patch that was processed by the Web Switching service. The service determines the devices affected by the patch listed and flags any steps related to those devices. This table is used by internal processing and does not contain any data that may be displayed to a user.

SWMAN_SAFETY_DOC_EXTNS

This table stores the values of any entry fields configured on the safety document GUI that is not part of the base SWMAN_SAFETY_DOCS data table. This table is a key/value pair type of data table and may include values for comment fields, option menus and check boxes.

SWMAN_SAFETY_DOCS

This is the core data table for all the safety documents. This data table includes all the core information about the safety document like what state it is in, what sheet it is associated to, the crew is was issued to and whether it had been deleted or not.

SWMAN_SHEET

This is the core data table for all the switching sheets. This data table includes all the core information about the switching sheet like what state it is in, the sheet's version, the master device associated to the sheet, Start and Finish dates and other key elements pertaining to the sheet. The general rule is that if any value on the switching sheet has any code based processing, then it gets included in this table. Values that are just for display purposes would go into the SWMAN_SHEET_EXTN table.

SWMAN_SHEET_DOCUMENTS

This table stores all the external documents that have attached to the switching sheet. The documents are stored as BLOBs in this table. The table also includes a user description about the attachment, the file name and the size of the file.

SWMAN_SHEET_EXTN

This table stores the values of any entry fields configured on the switching sheet GUI that is not part of the base SWMAN_SHEET data table. This table is a key/value pair type of data table and may include values for comment fields, option menus and check boxes.

SWMAN_SHEET_EXTN_HIST

This table stores the current extension values for a sheet when the sheet is copied just before its version is incremented. This table is used to determine the differences between two switching sheet versions. Currently, there is no mechanism in place to display these differences to the user on the GUI. This table is being populated for reporting and diagnosis purposes only.

SWMAN_SHEET_HIST

This table stores a copy of the current sheet just before its version is incremented. This table is used to determine the differences between two switching sheet versions. Currently, there is no mechanism in place to display these differences to the user on the GUI. This table is being populated for reporting and diagnosis purposes only.

SWMAN_SHEET_VIEW_AREA

This table maintains the list of view areas that have been created and associated to each of the switching sheets.

SWMAN_STEP

This is the core data table for all the switching sheet steps. This data table includes all the core information about the switching sheet steps like what state the step is in, the sheet version the step was added under, the device associated to the step, and other key elements pertaining to the steps. The general rule is that if any value within the step has any code based processing, then it gets included in this table. Values that are just for display purposes would go into the SWMAN_STEP_EXTN table.

SWMAN_STEP_EXTN

This table stores the values of any entry fields configured within the switching sheet steps list that is not part of the base SWMAN_STEP data table. This table is a key/value pair type of data table and may include values for comment fields, option menus and check boxes.

Database Configuration Tables

The following database configuration tables are used by Web Switching Management to store configuration settings related to switching sheets and safety documents.

SWMAN_EVENT_ASSOC_TYPE

This table maps the event association types to names. Projects should only change these records if they wish to change the names of the associations.

SWMAN_SAFETY_TYPE_ACTIONS

This table maps the various types of step actions that can be associated to each safety document type. For instance CONDADD/hold actions can only be associated to HOLD documents, which DDS/OPEN operations can be associated to HOLD, CLEAR and HOT safety documents. This table controls these association rules.

SWMAN_SAFETY_TYPES

This table defines all the different types of safety documents configured for a project. Product configuration includes HOLD, Clearance, Informational, HOT and Warning safety document types. This table defines the following for each safety document type:

	
•

	

The JBot tool panel and dialog that should be displayed when loading a safety document of this type.

	
•

	

The numbering pool the safety document should use when generating unique document numbers. Product is configured to have each document type get their unique document numbers from separate numbering pools.

	
•

	

The short description of each safety document type.

SWMAN_SHEET_CATEGORY

This table defines the list of sheet categories that every sheet type has to inherit from. Projects should not have any reason to alter the records in this table as they are pre-defined. The table should only be used to look up the description for each of the sheet categories. For instance, all sheets of category PLANNED will generate planned events when completing switching steps that impact customers. Each of the categories has pre-defined rules that define how the switching sheets should behave.

SWMAN_SHEET_CLS

This table defines the types of switching sheets configured for a project. This table defines the following for each switching sheet type:

	
•

	

The sheet category the sheet type should inherit from.

	
•

	

The JBot tool panel that should be displayed when loading a sheet of this type.

	
•

	

The display order of the sheet types in the New Switching Sheet dialog.

	
•

	

The numbering pool the sheet should use when generating unique sheet numbers. For instance Planned and Emergency sheets get their sheet numbers from the same numbering pool.

	
•

	

The description of each sheet type. This description is displayed on the New Switching Sheet dialog.

SWMAN_STEP_STATE_MAPPING

This table is used by FLISR to map step state keys to a value of 0, 1, 2 or 16. "0" indicates that the step has no state. "1" refers to any step in a completed state and "2" is in reference to instructed states.

Global Web Switching Parameters

The following global Web Switching Management rules apply to all sheet types:

SwmanParameters.properties

	

Rule Name

	

Valid Values

	

Description

	

sheet.copy.num_types

	

Number

	

The number of sheet copy-clear field rules defined. The sheet.copy rules define the fields that should be cleared in a switching sheet when it is copied.

	

sheet.copy.type#.class

	

Number

	

The class of switching sheet that has sheet copy-clear field rules.

	

sheet.copy.type#.clear_extns

	

Comma Delimited List

	

A comma delimited list of switching sheet extension field names that should be cleared when a switching sheet is copied.

	

sheet.copy.type#.clear_step_extns

	

Comma Delimited List

	

A comma delimited list of switching sheet step extension fields that should be cleared when a switching sheet is copied.

	

safety.copy.num_types

	

Number

	

The number of safety copy-clear field rules defined. The safety.copy rules define the fields that should be cleared in a safety document when it is copied.

	

safety.copy.type#.name

	

String

	

The safety document type that has safety copy-clear field rules.

	

safety.copy.type#.clear_extns

	

Comma Delimited List

	

A comma delimited list of safety document extension fields that should be cleared when a safety document is copied.

	

step.openActKey

	

Control Tool Act Key

	

This act key is assigned to a step when an OPEN device operation message is processed by the Web Switching service. This can happen when a device is opened by a SCADA system.

	

step.closeActKey

	

Control Tool Act Key

	

This act key is assigned to a step when an CLOSE device operation message is processed by the Web Switching service. This can happen when a device is closed by a SCADA system.

	

step.crew.backToMasterDev

	

true/false

	

This option defines whether the crew should migrate back to the switching sheet's master device within the viewer when a step has been instructed and completed. If set to false, the crew will remain on the last instructed device after it has been completed.

	

STEP_STATE_SCADA_INSTR UCTED

	

Control Tool Act Key

	

This act key is used by internal processing to determine when a step has been SCADA Instructed.

	

STEP_STATE_INSTRUCTED

	

Control Tool Act Key

	

This act key is used by internal processing to determine if a step has been instructed.

	

STEP_STATE_COMPLETED

	

Control Tool Act Key

	

This act key is used by internal processing to determine if a step has been completed.

	

SWMANSHEET_TITLE_JBOT _CONFIG_VALUE

	

JBot Text Field Name

	

This field is used to populate the tab of each sheet. This field is normally hidden within the sheet Request and is a calculated field pulling values from multiple parts of the switching sheet.

	

SWMANSHEET_TITLE_JBOT _CONFIG_PARAM

	

JBot Flag Name

	

This is the flag to check to determine if the sheet has been edited or not. If it has been edited, then change the sheet tab to an italicized text.

	

sheet.requireFuzzyAuthority

	

true/false

	

If this parameter is set to true, then the user is required to take authority of the FUZZY zone to see switching sheets that are not associated to a modeled device. This parameter only comes into play when the environment is setup to filter switching sheets within the Open Switching Sheet list based on zones of authority.

	

sheetList.plannedAndExcludeDel etedAndOldSheets sheetList.excludeDeletedAndOldSheets

	

String Value

	

These are where clauses that are added to the end of the query when gathering switching sheet data for the Open and New Sheet lists. The syntax is in JPQL. The query looks like this:

Select o from SwmanSheetView o

This is querying data from the swman_sheet table and swman_sheet_extn view.

Example:

JOIN o.swmanSheetCls sheetCls

JOIN sheetCls.sheetCategory
sheetCategory WHERE
sheetCategory.sheetCategoryName =
com.splwg.oms.model.entity.swman.Sw
manSheetCategoryName.PLANNED and
(o.completedDate is null or
o.completedDate + 60 >=
CURRENT_DATE) and o.stateKey not in
(255)

	
•

	

Limit the Completed sheets to 60 days.

	
•

	

StateKey 255 = Deleted sheet state.

GUI Configuration Overview

The bulk of the Web Switching and Web Safety GUI configuration can be found in the jconfig/ ops/webswitching directory. The configuration is spread across many files. This allows projects to customize bits and pieces of the configuration without having to define a custom version of the entire tool configuration. If at all possible, projects should inherit from Product as much as possible so that upgrades and patch installations are more easily applied to a project. The following tables describe the main modules used to configure the applications. Each of the configuration modules has an xml and properties file associated to it.

Web Switching

	

Name

	

Description

	

SwmanEntities.inc

	

This file includes a number of XML entities that are used throughout the Web Switching xml configuration files. The entities are used to give state key numbers readable names so that the configuration can be more easily followed. Instead of displaying a number in the confi-guration, a name is displayed.

Changing the states and such to reference one entity also makes up-dating the configuration easier. If your project has defined a different switching sheet state for instance, then the single entity will only need to be altered instead of each instance where the entity is referenced.

	

SwmanBaseProperties

	

This module defines all the imports, datastores and dialogs used by each of the switching sheet types.

	

SwmanEmergencyTool, SwmanPlan-nedTool, SwmanMiscLogTool, Swman-TemplateTool, SwmanOutageCorrec-tionTool

	

Each of these modules defines the tool behavior for each of the switching sheet types. The modules also include all of the other modules used to build the GUI configuration for each of the switching sheet types.

	

SwmanToolBar

	

The switching sheet Menu/Toolbar configuration.

	

SwmanRequest

	

The switching sheet's Request tab configuration.

	

SwmanSteps

	

The switching steps Table configuration. Each of the step columns are defined in this module.

	

SwmanStepsPopupMenu

	

The right click switching Steps table context menu configuration.

	

SwmanStepsHeader

	

The switching steps toolbar button definitions.

	

SwmanHeader

	

The switching steps Event List and Crew List configuration.

	

SwmanEventsPopupMenu

	

The right click Events List table context menu configuration.

	

SwmanCrewsPopupMenu

	

The right click Crew List table context menu configuration.

	

SwmanImpactedCustomers

	

The switching sheet's Impacted Customers tab configuration.

	

SwmanImpactedCustomersP opupMenu

	

The right click Impacted Customers table context menu configuration.

	

SwmanSheetOverlaps

	

The switching sheet's Overlaps tab configuration.

	

SwmanExternalDocuments

	

The switching sheet's External Documents tab configuration.

	

SwmanExternalDocumentsP opupMenu

	

The right click External Documents table context menu configuration.

	

SwmanViewAreas

	

The switching sheet's View Areas tab configuration.

	

SwmanViewAreaPopupMen u

	

The right click View Areas table context menu configuration.

	

SwmanSafety

	

The switching sheet's Safety Documents tab configuration.

	

SwmanTracking

	

The switching sheet's tracking panel configuration on the Track-ing/Audit Log tab.

	

SwmanAuditLog

	

The switching sheet's audit log panel configuration on the Track-ing/Audit Log tab.

	

SwmanStatusBar

	

The switching sheet's status bar configuration.

Web Safety

	

Name

	

Description

	

SafetyBaseProperties

	

This module defines all the imports, datastores and dialogs used by each of the safety document types.

	

SafetyTool

	

This module defines the tool behavior for each of the safety document types. The modules also include all of the other modules used to build the GUI configuration for each of the safety document types.

	

SafetyTitle

	

The title configuration for all the safety document types.

	

SafetyToolbar

	

The safety document toolbar configuration.

	

SafetyBody

	

The document configuration for each of the safety document types. This module includes conditional checks for each of the safety document types to determine when to display components on the GUI as not all of the safety documents have the exact same GUI layout.

Switching Sheets

Sheet Types

Each of the switching sheet types are defined in the SWMAN_SHEET_CLS configuration table. Each switching sheet type has its own class. See Configuring Classes and Inheritance for further details on adding a class.

Within the SWMAN_SHEET_CLS configuration table, define which JBot tool configuration should be used when the sheet is loaded within the Web Workspace or Web Request environment. The switching sheet types can either share the same configuration or have their own. For instance, multiple Planned switching sheet types can all use the same SwmanPlannedTool definition and then within the tool configuration, define minor differences between the types based on the class of switching sheet being displayed.

Switching Sheets

Sheet Types

Each of the switching sheet types are defined in the SWMAN_SHEET_CLS configuration table. Each switching sheet type has its own class. See Configuring Classes and Inheritance for further details on adding a class.

Within the SWMAN_SHEET_CLS configuration table, define which JBot tool configuration should be used when the sheet is loaded within the Web Workspace or Web Request environment. The switching sheet types can either share the same configuration or have their own. For instance, multiple Planned switching sheet types can all use the same SwmanPlannedTool definition and then within the tool configuration, define minor differences between the types based on the class of switching sheet being displayed.

State Transitions

State transitions for the switching sheets and their individual steps are all configured in the TE State Transition database tables where the "app" value to each of the tables is set to "WSW". See tables te_valid_states, te_status_groups, te_statuses, te_state_transitions, te_state_actions, te_expressions, te_init_state_rules, te_state_callbacks, and te_state_cb_args for more information.

Do not cross reference step and sheet states. Keep them completely separate. For example, create a state for the step Completed state and another state for the sheet Completed state. Do not try to use a single state for both the sheets and the steps.

Web Switching sheets support the following callbacks.

	

Callback Action Name

	

Description

	

safety_state_check

	

Determine if the sheet's associated safety documents are in the completed state. Switching sheets should not be completed when there are outstanding safety documents still issued to crews.

	

unrestored_pln_check

	

Determine if the switching sheet has any unrestored Planned events associated to it. In most cases, Planned switching sheets should not leave customers out of power.

	

create_switching_job

	

Create the Master switching sheet event that is normally used for Planned switching sheets.

	

complete_switching_job

	

Complete the Master and any Planned events associated to the switching sheet. This callback is normally used by Planned switching sheets.

The following is an example for the Issue state:

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, can_undo,

 error_code)

VALUES

 ('WSW', 130, 232, 'PRE_ENTER', 'safety_state_check', 'Y', 'N', - 130);

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, can_undo,

 error_code)

VALUES

 ('WSW', 140, 232, 'PRE_ENTER', 'unrestored_pln_check', 'Y', 'N', - 140);

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, can_undo,

 error_code)

VALUES

 ('WSW', 160, 232, 'PRE_ENTER', 'complete_switching_job', 'Y', 'N', - 160);

The error_codes are used to display distinct dialog messages to the user when the action fails. The messages for these error codes are configured in the MessageCode_en_US.properties file.

The following is an example for error code "-130", which was referenced in the above te_state_callbacks example.

OmsClientException.WSW.STATE.CALLBACK.130 = Not all safety documents are completed

OmsClientException.WSW.STATE.CALLBACK.130.title = State Transition Failed

Sheet Data Fields

Data fields in this case are in reference to the fields found on the Request tab of the sheet. Data fields can be found anywhere on the sheet, but Product configuration has grouped the majority of them to one tab. The data fields are either stored in the SWMAN_SHEET or SWMAN_SHEET_EXTN tables.

The following are examples of how to reference a value from each of the tables.

SWMAN_SHEET

data_source="DS_SWITCHING_SHEET_LOCAL.deviceAlias"

For more information on the list of available data source values, refer to the DS_SWITCHING_SHEET datastore documentation.

SWMAN_SHEET_EXTN

data_source="DS_SWITCHING_SHEET_LOCAL.getExtnAttrByName.FEEDER_NAME.st ringValue"

For the switching sheet extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "feeder_name" does not map to the same value as "FEEDER_NAME".

All fields not stored in the core SWMAN_SHEET table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Sheet Data Fields

Data fields in this case are in reference to the fields found on the Request tab of the sheet. Data fields can be found anywhere on the sheet, but Product configuration has grouped the majority of them to one tab. The data fields are either stored in the SWMAN_SHEET or SWMAN_SHEET_EXTN tables.

The following are examples of how to reference a value from each of the tables.

SWMAN_SHEET

data_source="DS_SWITCHING_SHEET_LOCAL.deviceAlias"

For more information on the list of available data source values, refer to the DS_SWITCHING_SHEET datastore documentation.

SWMAN_SHEET_EXTN

data_source="DS_SWITCHING_SHEET_LOCAL.getExtnAttrByName.FEEDER_NAME.st ringValue"

For the switching sheet extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "feeder_name" does not map to the same value as "FEEDER_NAME".

All fields not stored in the core SWMAN_SHEET table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Sheet Data Fields

Data fields in this case are in reference to the fields found on the Request tab of the sheet. Data fields can be found anywhere on the sheet, but Product configuration has grouped the majority of them to one tab. The data fields are either stored in the SWMAN_SHEET or SWMAN_SHEET_EXTN tables.

The following are examples of how to reference a value from each of the tables.

SWMAN_SHEET

data_source="DS_SWITCHING_SHEET_LOCAL.deviceAlias"

For more information on the list of available data source values, refer to the DS_SWITCHING_SHEET datastore documentation.

SWMAN_SHEET_EXTN

data_source="DS_SWITCHING_SHEET_LOCAL.getExtnAttrByName.FEEDER_NAME.st ringValue"

For the switching sheet extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "feeder_name" does not map to the same value as "FEEDER_NAME".

All fields not stored in the core SWMAN_SHEET table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Open Switching Sheet List

The Open Switching Sheet list is populated through the DS_OPEN_SWITCHING_SHEET_TEMPLATE datastore, which is populated from the table SWMAN_SHEET and the database view SWMAN_SHEET_LIST_EXTN. The amount of data displayed in this list should be kept to a reasonable level. The more data that is displayed, the longer it will take the dialog to be displayed. For more information on limiting the amount of data queried from the database, see the Global Web Switching Parameters section.

Product has two clauses defined to limit the amount of data returned to the client to be displayed in the list. They are named "sheetList.plannedAndExcludeDeletedAndOldSheets" and "sheetList.excludeDeletedAndOldSheets". Projects can define any number of these where clauses and have separately configured options on the Open Switching Sheet list to display different sets of switching sheets. The filters can also be used by different login environments to limit the switching sheet list based on type or even state.

The Open Switching Sheet list is initiated from the Web Workspace or Web Request Menu/ Toolbar. The command that initiates that request is DisplayOpenNMSDialogCommand. This is the command that takes the name of the where clause you wish to use to gather the data from the database. Refer to the NMS Commands documentation for further details about this command.

Not only should the where clauses be used to limit the amount of data being passed to the client, but the database view SWMAN_SHEET_LIST_EXTN should also be defined with only the extension fields that are displayed on the Open Switching Sheet list. Query for data not displayed on the GUI is wasteful and should be avoided.

New Switching Sheet List

The New Switching Sheet type list is populated through the DS_SWITCHING_SHEET_CLS datastore, which is populated from the SWMAN_SHEET_CLS table. The pre-created sheet list displayed on this dialog is populated through the DS_OPEN_SWITCHING_SHEET_TEMPLATE datastore, which is populated from the table SWMAN_SHEET and the database view SWMAN_SHEET_LIST_EXTN. The amount of data displayed in this list should be kept to a reasonable level. The more data that is displayed, the longer it will take the dialog to be displayed. For more information on limiting the amount of data queried from the database, see the Global Web Switching Parameters and the Open Switching Sheet List sections.

The New Switching Sheet list is initiated from the Web Workspace or Web Request Menu/ Toolbar. The command that initiates that request is DisplayNewNMSDialogCommand. This command accepts a where clause name to use to gather the data from the database. The same where clauses used by the DisplayOpenNMSDialogCommand can be used with this command as well. Refer to the NMS Commands documentation for further details about this command.

Model Verification

The Web Switching service initiates a query each time it receives a notification of a model build or edit. When this notification comes through, the following query is initiated:

SELECT sheet.switch_sheet_cls, sheet.switch_sheet_idx,

 step.step_cls, step.step_idx

FROM swman_sheet sheet, swman_step step,

 network_components nc, swman_patches sp

WHERE sheet.seq_sheet_id = step.seq_sheet_id AND

 // Exclude Block steps

 step.parent_step_id IS NOT NULL AND

 ((step.dev_cls = nc.h_cls AND step.dev_idx = nc.h_idx) OR

 (step.gnd_node_cls = nc.port_a_cls AND

 step.gnd_node_idx = nc.port_a_idx) OR

 (step.gnd_node_cls = nc.port_b_cls AND

 step.gnd_node_idx = nc.port_b_idx)) AND

 (nc.death > sp.patch_time OR nc.birth > sp.patch_time) AND

 // Where the sheet and step are not in a termination state

 step.state_key NOT IN (<<List of terminal step states>>) AND

 sheet.state_key NOT IN (<<List of terminal sheet states>>)

ORDER BY step.seq_sheet_id, step.step_idx

The MB_EDIT field in the SWMAN_STEP table is updated for each of the step records returned by this query. These steps will have to be validated by the user before switching sheet step executions can continue in the switching sheet.

Versioning

Switching sheet versioning can occur manually or automatically. Product configuration is setup to automatically check in the switching sheet when it reaches the Issued state. This is done by initiating a call to the command CheckInSheetVersionCommand.

The version of a switching sheet will be automatically incremented when steps are manipulated (added, cut, pasted or deleted) within the sheet and when the switching sheet field CHECKED_IN has been set to "Y". This field is stored in the SWMAN_SHEET table. The JBot flag VERSION_CHECKED_IN is set based on the value of the CHECKED_IN field. This flag is used by the JBot configuration to determine when to initiate commands based on version control.

Product configuration has been setup to increment the version automatically if any of the fields on the Request tab are altered. This is done by initiating the call to the command IncrementVersionCommand. This command will only execute if the switching sheet's CHECKED_IN database field is set to "Y".

The current version of the switching sheet is stored in the REVISION field of the SWMAN_SHEET database table.

Overlaps

The switching sheet overlaps list uses the DS_OVERLAPS datastore. This datastore is populated from the SWMAN_OVERLAPS database view. The database view is defined in the product/sql/product_schema_web_swsheets.sql file. This same view is used by the Global Overlaps list, so any changes to this view will impact that list as well.

Product is configured to only include sheets classified under the category of PLANNED. The list is also filtered based on the state of the sheet. The list of state keys is included in the view definition. If any switching sheet states have been added to a projects configuration, this view may need to be redefined by the project.

External Documents

The switching sheet external documents list uses the DS_EXTERNAL_DOCUMENTS datastore. This datastore is populated from the SWMAN_SHEET_DOCUMENTS database table.

The External Documents functionality cannot be altered other than changing the column labels and sensitivity of the button options. The command DisplayFileChooserCommand, is used to gather files to be included in the list. Any changes to the file list are not saved to the database until the switching sheet is saved.

Generate Isolation Steps

The JBot command GenerateIsolateStepsCommand is used from the Control Tool to create a set of steps to isolate a piece of conductor within the model. The steps are generated based on the session the command was initiated from. If the Control Tool is in Real Time, then the Real Time model is used. If the Control Tool is in Study mode, then the user's study session is used. You also need to have a switching plan pre-created and in record mode in order to accept the generated steps. Both the session and the switching sheet requirements cannot be altered.

At this time, the command only supports isolating a conductor. The command uses the classes ss_isolate and ss_secure to determine what device types to create switching steps for. The command arguments determine the types of steps to generate for the isolate and secure device types. For more information, see the command documentation.

Switching Steps

State Transitions

State transitions for the switching sheet steps are all configured in the TE State Transition database tables where the "app" value to each of the tables is set to "WSW". See tables te_valid_states, te_status_groups, te_statuses, te_state_transitions, te_state_actions, te_expressions, te_init_state_rules, te_state_callbacks, and te_state_cb_args for more information.

Do not cross reference step and sheet states. Keep them completely separate. For example, create a state for the step Completed state and another state for the sheet Completed state. Do not try to use a single state for both the sheets and the steps.

Switching Steps

State Transitions

State transitions for the switching sheet steps are all configured in the TE State Transition database tables where the "app" value to each of the tables is set to "WSW". See tables te_valid_states, te_status_groups, te_statuses, te_state_transitions, te_state_actions, te_expressions, te_init_state_rules, te_state_callbacks, and te_state_cb_args for more information.

Do not cross reference step and sheet states. Keep them completely separate. For example, create a state for the step Completed state and another state for the sheet Completed state. Do not try to use a single state for both the sheets and the steps.

Control Tool Actions

Web Switching Management uses the same rules that the Control Tool uses to determine if a control action is valid or not. Product configuration is configured to keep the two tools in synch. If the Control Tool does not allow an Open operation on a device, then a switching step with that same action will not allow the operation either. To get around this, the JBot flag FROM_SWITCHING can be used within the control/xml/Control.xml file and its include files to give actions alternate rules when the action originates from Web Switching Management. For more information, see the Control Tool Configuration chapter.

Step Columns

Switching step column data is either stored in the SWMAN_STEP or SWMAN_STEP_EXTN tables. Here are examples of how to reference a value from each of the tables.

SWMAN_STEP

key="swmanStep.comments"

For more information on the list of available data source values, refer to the DS_STEPS datastore documentation.

SWMAN_STEP_EXTN

key="swmanStep.getExtnAttrByName.details.stringValue"

For the switching step extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "Details" does not map to the same value as "details".

All fields not stored in the core SWMAN_STEP table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Device attributes (Addresses)

One specialized capability that the switching steps have not related to step execution is the ability to update device attribute information. When the command SaveAttributesCommand is called with a switching step extension field name, the value updated in the step for that device is propagated to the other steps in the steps list and is also passed to the device's associated attribute table. From this point on, when the device is used to record switching steps, the newly saved attribute information is displayed. In Product configuration, we utilize this feature for device address information, which is normally stored in the LOCATION field of the attribute tables. The location data is accessed through the database view ATT_ADDRESS. This view is model specific and has to be defined by each project. Here is an example of the view, which should be placed into the projects sql/<project>_schema_web_swsheets.sql file:

CREATE OR REPLACE VIEW att_address

 (h_cls, h_idx, att_name, att_value)

AS (

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_breaker where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_bus_bar where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_elbow where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_fuse where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_switch where active = 'Y'

);

Each project should add any additional device types that are configured to be included in recordable device operations.

The model attributes updated by Web Switching will be removed each time the attribute is updated from the GIS. This update can be setup to be ignored if a GIS update comes through with the old attribute value. In other words, we retain the attribute update from Web Switching as long as the GIS attribute value coming in is different. For more information, see chapter Building the System Data Model.

Step Columns

Switching step column data is either stored in the SWMAN_STEP or SWMAN_STEP_EXTN tables. Here are examples of how to reference a value from each of the tables.

SWMAN_STEP

key="swmanStep.comments"

For more information on the list of available data source values, refer to the DS_STEPS datastore documentation.

SWMAN_STEP_EXTN

key="swmanStep.getExtnAttrByName.details.stringValue"

For the switching step extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "Details" does not map to the same value as "details".

All fields not stored in the core SWMAN_STEP table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Device attributes (Addresses)

One specialized capability that the switching steps have not related to step execution is the ability to update device attribute information. When the command SaveAttributesCommand is called with a switching step extension field name, the value updated in the step for that device is propagated to the other steps in the steps list and is also passed to the device's associated attribute table. From this point on, when the device is used to record switching steps, the newly saved attribute information is displayed. In Product configuration, we utilize this feature for device address information, which is normally stored in the LOCATION field of the attribute tables. The location data is accessed through the database view ATT_ADDRESS. This view is model specific and has to be defined by each project. Here is an example of the view, which should be placed into the projects sql/<project>_schema_web_swsheets.sql file:

CREATE OR REPLACE VIEW att_address

 (h_cls, h_idx, att_name, att_value)

AS (

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_breaker where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_bus_bar where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_elbow where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_fuse where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_switch where active = 'Y'

);

Each project should add any additional device types that are configured to be included in recordable device operations.

The model attributes updated by Web Switching will be removed each time the attribute is updated from the GIS. This update can be setup to be ignored if a GIS update comes through with the old attribute value. In other words, we retain the attribute update from Web Switching as long as the GIS attribute value coming in is different. For more information, see chapter Building the System Data Model.

Step Columns

Switching step column data is either stored in the SWMAN_STEP or SWMAN_STEP_EXTN tables. Here are examples of how to reference a value from each of the tables.

SWMAN_STEP

key="swmanStep.comments"

For more information on the list of available data source values, refer to the DS_STEPS datastore documentation.

SWMAN_STEP_EXTN

key="swmanStep.getExtnAttrByName.details.stringValue"

For the switching step extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "Details" does not map to the same value as "details".

All fields not stored in the core SWMAN_STEP table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Device attributes (Addresses)

One specialized capability that the switching steps have not related to step execution is the ability to update device attribute information. When the command SaveAttributesCommand is called with a switching step extension field name, the value updated in the step for that device is propagated to the other steps in the steps list and is also passed to the device's associated attribute table. From this point on, when the device is used to record switching steps, the newly saved attribute information is displayed. In Product configuration, we utilize this feature for device address information, which is normally stored in the LOCATION field of the attribute tables. The location data is accessed through the database view ATT_ADDRESS. This view is model specific and has to be defined by each project. Here is an example of the view, which should be placed into the projects sql/<project>_schema_web_swsheets.sql file:

CREATE OR REPLACE VIEW att_address

 (h_cls, h_idx, att_name, att_value)

AS (

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_breaker where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_bus_bar where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_elbow where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_fuse where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_switch where active = 'Y'

);

Each project should add any additional device types that are configured to be included in recordable device operations.

The model attributes updated by Web Switching will be removed each time the attribute is updated from the GIS. This update can be setup to be ignored if a GIS update comes through with the old attribute value. In other words, we retain the attribute update from Web Switching as long as the GIS attribute value coming in is different. For more information, see chapter Building the System Data Model.

Step Columns

Switching step column data is either stored in the SWMAN_STEP or SWMAN_STEP_EXTN tables. Here are examples of how to reference a value from each of the tables.

SWMAN_STEP

key="swmanStep.comments"

For more information on the list of available data source values, refer to the DS_STEPS datastore documentation.

SWMAN_STEP_EXTN

key="swmanStep.getExtnAttrByName.details.stringValue"

For the switching step extension values, the attribute key name will be stored in the ATTRIBUTE_NAME field of the table record and from our previous example, the value will be stored in the STRING_VALUE field of that same record. The attribute name is case sensitive, so "Details" does not map to the same value as "details".

All fields not stored in the core SWMAN_STEP table are stored as key/value pairs into this table. The application was designed this way so that fields can be added to the GUI without having to make database schema changes.

Device attributes (Addresses)

One specialized capability that the switching steps have not related to step execution is the ability to update device attribute information. When the command SaveAttributesCommand is called with a switching step extension field name, the value updated in the step for that device is propagated to the other steps in the steps list and is also passed to the device's associated attribute table. From this point on, when the device is used to record switching steps, the newly saved attribute information is displayed. In Product configuration, we utilize this feature for device address information, which is normally stored in the LOCATION field of the attribute tables. The location data is accessed through the database view ATT_ADDRESS. This view is model specific and has to be defined by each project. Here is an example of the view, which should be placed into the projects sql/<project>_schema_web_swsheets.sql file:

CREATE OR REPLACE VIEW att_address

 (h_cls, h_idx, att_name, att_value)

AS (

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_breaker where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_bus_bar where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_elbow where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_fuse where active = 'Y'

 UNION

 SELECT h_cls, h_idx, 'location', to_char(location)

 FROM att_switch where active = 'Y'

);

Each project should add any additional device types that are configured to be included in recordable device operations.

The model attributes updated by Web Switching will be removed each time the attribute is updated from the GIS. This update can be setup to be ignored if a GIS update comes through with the old attribute value. In other words, we retain the attribute update from Web Switching as long as the GIS attribute value coming in is different. For more information, see chapter Building the System Data Model.

Web Safety

State Transitions

State transitions for the safety documents are all configured in the TE State Transition database tables where the "app" value to each of the tables is set to "SF". See tables te_valid_states, te_status_groups, te_statuses, te_state_transitions, te_state_actions, te_expressions, te_init_state_rules, te_state_callbacks, and te_state_cb_args for more information.

Web Safety supports the following callbacks:

	

Callback Action Name

	

Description

	

check_safety_crew

	

Determine if a crew has been assigned to the document. This check is optional and can be configured to cause the transition to fail if a crew is not assigned.

	

update_safety_conditions

	

This action is used to update the status of the conditions associated to the safety document. This action requires an argument called STATUS. The status argument takes a number value. A status value of zero returns the condition back to normal so that it can be manipulated by the Control Tool. The condition cannot be removed when its status is in anything other than status zero. The status value of the condition can be used to change the symbol of the condition within the viewer.

The following is an example for the Issue state:

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, error_code)

VALUES

 ('SF', 100, 110, 'PRE_ENTER', 'check_safety_crew', 'Y', -120);

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, error_code)

VALUES

 ('SF', 110, 110, 'PRE_ENTER', 'update_safety_conditions', 'Y', - 100);

INSERT INTO te_state_cb_args

 (app, cb_key, arg_key, arg_name, arg_value)

VALUES

 ('SF', 110, 100, 'STATUS', '1');

The error_codes are used to display distinct dialog messages to the user when the action fails. The messages for these error codes are configured in the MessageCode_en_US.properties file. Here is an example for error code "-120", which was referenced in the above te_state_callbacks example.

OmsClientException.SF.STATE.CALLBACK.120 = Safety document has to be assigned to a crew

OmsClientException.SF.STATE.CALLBACK.120.title = State Transition Failed

Web Safety

State Transitions

State transitions for the safety documents are all configured in the TE State Transition database tables where the "app" value to each of the tables is set to "SF". See tables te_valid_states, te_status_groups, te_statuses, te_state_transitions, te_state_actions, te_expressions, te_init_state_rules, te_state_callbacks, and te_state_cb_args for more information.

Web Safety supports the following callbacks:

	

Callback Action Name

	

Description

	

check_safety_crew

	

Determine if a crew has been assigned to the document. This check is optional and can be configured to cause the transition to fail if a crew is not assigned.

	

update_safety_conditions

	

This action is used to update the status of the conditions associated to the safety document. This action requires an argument called STATUS. The status argument takes a number value. A status value of zero returns the condition back to normal so that it can be manipulated by the Control Tool. The condition cannot be removed when its status is in anything other than status zero. The status value of the condition can be used to change the symbol of the condition within the viewer.

The following is an example for the Issue state:

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, error_code)

VALUES

 ('SF', 100, 110, 'PRE_ENTER', 'check_safety_crew', 'Y', -120);

INSERT INTO te_state_callbacks

 (app, cb_key, state_key, condition, action, abort_on_fail, error_code)

VALUES

 ('SF', 110, 110, 'PRE_ENTER', 'update_safety_conditions', 'Y', - 100);

INSERT INTO te_state_cb_args

 (app, cb_key, arg_key, arg_name, arg_value)

VALUES

 ('SF', 110, 100, 'STATUS', '1');

The error_codes are used to display distinct dialog messages to the user when the action fails. The messages for these error codes are configured in the MessageCode_en_US.properties file. Here is an example for error code "-120", which was referenced in the above te_state_callbacks example.

OmsClientException.SF.STATE.CALLBACK.120 = Safety document has to be assigned to a crew

OmsClientException.SF.STATE.CALLBACK.120.title = State Transition Failed

Safety Document Data Fields

Data fields in this case are in reference to the fields found on the safety document that are not being pulled from the associated switching sheet. Data fields can be found anywhere on the safety document. The data fields are stored in the SWMAN_SAFETY_DOC_EXTNS table. Here is an example of how to reference a value from that table.

data_source="DS_SAFETY_DOCUMENT_LOCAL.doc.getExtnAttrByName.DESCRIPTIO N.stringValue"

For more information on the list of available data source values, refer to the DS_SAFETY_DOCUMENT datastore documentation.

High Level Messages

The Switching Service (SwService) is used to process FLISR switching requests and also accepts the following High Level messages:

Action any.SwService <command> <arguments>

Where:

	

Command

	

Arguments

	

Description

	

debug

	

<N>

	

Sets the debug level:

	
•

	

0 = Debug off

	
•

	

1 = Debug on

	
•

	

2 = Further details about database queries

	
•

	

3 = Full debug

	

relock [Sheet Handle]

	

	

When no argument is given, then unlock all the switching sheets and send a request to each of the clients asking them to reestablish their single user switching sheet locks. This command can be used to clear up any orphaned locks that may still be active after an application lost network connectivity or crashed.

When a switching sheet handle in the form of "<Sheet Cls>.<Sheet Idx>" is given, then only that one sheet is unlocked.

Troubleshooting

Through high-level Action messages debug can be turned on or off for parts of Web Switching Management. The debug categories can be used to debug configuration issues as well as runtime issues.

Web Switching Management debug category names:

	

Category Name

	

Debug Description

	

STEP.EXECUTE

	

Step Executions.

	

SHEET

	

General debug category wrapped around most actions pertaining to a switching sheet.

	

LOCK_OBJECT

	

Sheet Locking and Unlocking.

	

SAFETY

	

Safety documents.

	

SHEET.EVENT_ASSOC

	

Event associations.

	

STEPS.EDIT

	

Step editing.

	

HLMESSAGE

	

Not just for Web Switching, but this debug category displays debug about High Level message processing.

	

SHEET.REVISION

	

Switching sheet revisions.

	

VALIDATION

	

Validation rules.

	

STEP

	

General debug category wrapped around most actions pertaining to a single switching step.

	

STEP.REVISION

	

Switching sheet step revisions.

	

STEPS

	

General debug category wrapped around most actions pertaining to the switching steps.

	

IMPACTED_CUSTOMERS

	

Impacted Customers.

To turn on debug for a category:

Action any.publisher ejb debug <Category Name>=1

To turn off the messages:

Action any.publisher ejb debug <Category Name>=0

To turn on and off debug for all categories:

Action any.publisher ejb debug 1

Action any.publisher ejb debug 0

Building Custom Applications

The intended audience for this chapter are software programmers responsible for building interfaces and applications that interact with the Oracle Utilities Network Management System. This chapter includes the following topics:

	
•

	

Overview

	
•

	

Prerequisites

	
•

	

Compiling C++ Code Using the Software Development Kit

Overview

This chapter describes how to build C++ and Java applications that interact with the Oracle Utilities Network Management System using the Oracle Utilities Network Management System Software Development Kit (SDK).

Most Oracle Utilities Network Management System implementations will require at least one custom built application, a model interface, while other implementations may have addition interfaces and other programs that interact with the Oracle Utilities Network Management System. To support the implementation of these interfaces and programs, the Oracle Utilities Network Management System has provided a Software Development Kit. The Software Development Kit is installed into the $CES_HOME/build directory and is pointed to using the .nmsrc environment variable $NMS_BUILD.

There are two subcomponents to the Software Development Kit:

	

$NMS_BUILD/make

	

The make rules to support the architecture and platform configuration.

	

$NMS_BUILD/include

	

The C++ header files required to interact with the Oracle Utilities Network Management System.

	

$CES_HOME/sdk/ java/lib

	

The jar files containing compiled Java classes required to interact with the Oracle Utilities Network Management System.

	

$CES_HOME/sdk/ java/docs

	

Documentation for the Oracle Utilities Network Management System Java API.

	

$CES_HOME/sdk/ java/samples

	

Sample Java applications. In this release, a sample MultiSpeak- based AMR or AVL adapter is included.

Note the following regarding usage of the Oracle Utilities Network Management System Software Development Kit:

	
•

	

The SDK interfaces are not documented and are for use as-is.

	
•

	

The SDK interfaces may change from release to release with no guarantees of forward or backward compatibility.

	
•

	

The use of the SDK can impact the running Oracle Utilities Network Management System based on what is programmed with the SDK. Impacts may include performance issues, system lock ups, system instability, data loss, and changes to system functionality. It is recommend that you heavily test any interfaces or programs you create and judge the impact on the Oracle Utilities Network Management System and understand these interfaces and programs should be considered "use at your own risk".

	
•

	

The SDK may not be used to reverse engineer the features and functionality of the Oracle Utilities Network Management System.

Prerequisites

In addition to the prerequisites required to run the Oracle Utilities Network Management System, the following are required to use the Oracle Utilities Network Management System Software Development Kit:

	
•

	

GNU Make

	
•

	

Apache Ant

	
•

	

JDK

	
•

	

Java EE 6 SDK

See the Oracle Utilities Network Management System Quick Install Guide for version information.

Verify that your .nmsrc was generated using the template from $CES_HOME/templates/ nmsrc.template and that the environment variable $NMS_BUILD is set to $CES_HOME/build.

Compiling C++ Code Using the Software Development Kit

Place the C++ source code to build the custom interface or program in a subdirectory of the $NMS_CONFIG directory, typically $NMS_CONFIG/apps. The executables resulting from the compile will be generated into the $NMS_CONFIG/bin directory via the Makefile so the nms-install-config process can copy them to the runtime directory, $NMS_HOME/bin. If you create custom shared libraries, these need to be copied into $NMS_CONFIG/lib so they also are available for nms-install-config to copy them to the runtime directory, $NMS_HOME/lib.

The following is an example Makefile for the $NMS_CONFIG/apps directory:

[image:]

The target executable file in this example is CustomInterface and the C++ source code to compile is CustomInterface.C.

From the command prompt within the $NMS_CONFIG/apps directory, build the custom program with "make clean" to remove old compiled binaries and "make" to compile and install the binaries into the $NMS_CONFIG/bin directory.

Below is an example of what the output from the make system will look like as a result or running these two commands.

[image:]

Note : By default, project compiles produce debug builds. To improve performance, you can change to optimized mode by adding the following to the.profile configuration file in your compilation environment:

	

	

 export NMS_COMPILE_OPTIMIZED=1

After you have successfully compiled the custom application, run
nms-install-config
 to
pick up the executables from the $NMS_CONFIG/bin and install them into $NMS_HOME/bin.

Building sample AMR and AVL adapter

Source code for the sample adapter is located in the $CES_HOME/sdk/java/samples/amr directory.

Follow these steps to build the sample adapter:

	
1.

	

Change the directory to $CES_HOME/sdk/java/samples/amr.

	
2.

	

In the build.properties file, modify the properties ' nms.sdk.dir' and 'javaee6.sdk.dir' to point respectively to Oracle Utilities NMS SDK ($CES_HOME/
sdk) and Java EE 6 SDK locations.

	
3.

	

Execute the command ' ant clean all' to build the application.

If the build is successful, the file demo.ear will be created in the $CES_HOME/sdk/java/
samples/amr/build directory.

In order to run the sample adapter, the Oracle JDBC driver and Apache log4j package must be available on the application server where the adapter will be deployed.

The sample adapter uses the same configuration options as the Oracle Utilities Network Management MultiSpeak Adapter. See Chapter 9, MultiSpeak Adapter, of the Oracle Utilities Network Management Adapters Guide for configuration and deployment instructions.

images/x_expanded.png

images/x_08_System_Data_Model.10.59.3.png
feeder-to-feeder connection

9

images/x_08_System_Data_Model.10.46.3.png
W)tk G tom bt Fmat Took Qs kot
DSHe BRY YRBI [0 Q= £ 45 law
€201 @@ e o0 M) i

= Creutsrea

o coeBruEEE
Joowe B G | atosess N N OOE

e i 5 < - €
e —— i g

2 bersu cooe e S)
- s_rmm_

s

s ATT CucutBissiar SUBSTATIOND

- ‘s—m_

SbstsonDevces
ATT Pole SNE PONT USER_DEF i T

CO0E it sutch o

St Jo SUBIYPE
SubsatiorQovices 'ATT SNE_DEVICE COMMENT_Tx
T Pole SUBTYPE

SubstatorDevces

o S cuns e S o user e

- m—u_
rrrer— o o PO SIS
e o .

e vt S T oE e PO e

B s e Bt e
& e o Rt L s

- u_mniﬂ_
8l
B - RS
- w_nm_
ol i = 2

4R et o okops Gl i it A wEa o 1 ooom ot

images/x_08_System_Data_Model.10.04.07.png

images/x_08_09_IntersubOffset.png
Intersuboffeet
Bi%ia Q

images/x_18_Building_Custom_Applications.20.4.2.png
[rms-vminms1> cd “/0PAL/apps

Ims-un:ms1> nake clean

Irn - *.0 *" core _pure® anon,out so_locations *.sl *.50 *.a

[rm <F \&* 3log *.third *.third,

Irn ~r ptrepository cix repository Tenplates.IB SurkS_cache tempinc

I ~F 0PRL_preprocessar-

Ims-vm:ms> Ts

[Hakefile OPAL_inp_exp.C 0PAL_preprocessor.C OPAL_preprocessor.h

Ims-un:nnst> nake onsite

[0PR_preprocessor.o

lg0+ “pedantic - -Ual] ~Unc-Fornat-y2k -Voverloaded-virtual -Upointer-arith -Ucal

jst-align -lhrite-strings -Uno-long-long ~lisign-promo g -IDIFFUSION NOTIFIES
“ILINUX -1_REENTRANT -IP_THRERIS ~IHAS_XT -DFAULT_RESTORATION -IGSORP_VERSI

(0= ~1/users/rms./nms/product/1.10,0.0/bu 18/ include ~1/users/nnst/rws/product|

1/1,10,0.071s15/include -/opt /ons-10.1/irclude —c OPAL preprocessar.C

It Bai1ding DPAL preprocessor:

lg0+ ~pedant.ic - -Ual] ~Uno-Fornat-u2k -Voverloaded-virtual -Upointer-arith -Ucal

st-alion -thrite-strings -Uno-long-lang Msigr-prom g -DDIFFUSION NOTIFIES
“ILINUX - REENTRANT -IP_THRERIS ~IHAS_XT -DFAULT_RESTORATION -IGSORP_VERSI

(0= ~1/users/ms./nms/product/1.,10,0.0/bul &/ include ~1/users/nnst /s /product|

1/1,10.0.0/1s15/include -L/opt /ons-10.1/include -L/users/rost/ms/product/L.

10:0.0/11b -0 OPRL_preprocessor OPAL preprocessor.o -IPp I -k -lfpp |

[fopt/ons=10.1/11b ~Txrttable -lpdsuti] -lxrttablestub -L/opt/cms-10.1/1ib -1¥pn

“lCrey -Ifp -IService -INB -lGriinds -lintersys it -lurapper -IBase -

1foss ~L/users/msl/nms/product/1.10,0,0/11b ~L/users/nast/rms/product /1.,10,0.0/|

i515/11b -1i515X -lisis -lisis_tack native -1CndLine -L/opt/ons-10.1/1ib -Lirn|

<1 -I¥p -Diext. -L/opt/ons-10,1/1ib ~IXt <IXI1 -lpthread -1d] -L/opt/ons-10|

L1/1ib -lgsompes -lgsosm

[Building and Lirking Cos OPAL_inp_exp:

lg0+ -pedantic - -Ual] ~Unc-Forna-uk ~Voverloaded-virtual -Upointer-arith -Ucal

[st-alion -thrite-strings -Uno-long-long Msign-prom g -DDIFFUSION NOTIFIES
“ILINX -_REENTRANT -IP_THRERDS -THAS_XT -DFAULT_RESTORATION -IS0RP_VERSI|

(0= ~1/users/ms./nms/product/1.,10,0.0/bul &/ includs ~1/users/nst/nws/product|

1/1,10.0.071s15/include’ -L/opt/oms-10.1/include -L/users/rast/ms/product/L.

[10:0,0711b - OPAL_ivp_exp OPFL_ivp exp.C -1Fp -IHv -Its -Ifpp -L/opt/ons-|

10,1/11b -Larttable “lpdiuti -Lirttablestub -L/opt/ons-10,1/1ib ~IXpm_-ICrew

FIFp -1Service -IMB -IGriindou -lintersysxt -lurappér -1Base -lfoss -L/|

lusers/mas1/nms/product/1.10,0,0/11b ~L/users/nasL/ras/product/1.10,0.0/isis/11b

CLis15X “lisis ~lisis_tack native -1CadLine -L/opt/ons-10.1/1ib -Li -Lia -1

lp -ext —L/opt/one-10.1/Tib ~I¥e -IXLL -Ipthread -ld] -L/opt/ons-10.1/1ib -|

lgsaspre -lgsom

% 0P reprecesso. 0PLin.x5 ../bin

topics/x_17_Building_Custom_Applications.19.5.html

Building sample AMR and AVL adapter

Source code for the sample adapter is located in the $CES_HOME/sdk/java/samples/amr directory.

Follow these steps to build the sample adapter:

		

1.

		

Change the directory to $CES_HOME/sdk/java/samples/amr.

		

2.

		

In the build.properties file, modify the properties ' nms.sdk.dir' and 'javaee6.sdk.dir' to point respectively to Oracle Utilities NMS SDK ($CES_HOME/

sdk) and Java EE 6 SDK locations.

		

3.

		

Execute the command ' ant clean all' to build the application.

If the build is successful, the file demo.ear will be created in the $CES_HOME/sdk/java/

samples/amr/build directory.

In order to run the sample adapter, the Oracle JDBC driver and Apache log4j package must be available on the application server where the adapter will be deployed.

The sample adapter uses the same configuration options as the Oracle Utilities Network Management MultiSpeak Adapter. See Chapter 9, MultiSpeak Adapter, of the Oracle Utilities Network Management Adapters Guide for configuration and deployment instructions.

topics/x_17_Building_Custom_Applications.19.4.html

Compiling C++ Code Using the Software Development Kit

Place the C++ source code to build the custom interface or program in a subdirectory of the $NMS_CONFIG directory, typically $NMS_CONFIG/apps. The executables resulting from the compile will be generated into the $NMS_CONFIG/bin directory via the Makefile so the nms-install-config process can copy them to the runtime directory, $NMS_HOME/bin. If you create custom shared libraries, these need to be copied into $NMS_CONFIG/lib so they also are available for nms-install-config to copy them to the runtime directory, $NMS_HOME/lib.

The following is an example Makefile for the $NMS_CONFIG/apps directory:

[image:]

The target executable file in this example is CustomInterface and the C++ source code to compile is CustomInterface.C.

From the command prompt within the $NMS_CONFIG/apps directory, build the custom program with "make clean" to remove old compiled binaries and "make" to compile and install the binaries into the $NMS_CONFIG/bin directory.

Below is an example of what the output from the make system will look like as a result or running these two commands.

[image:]

Note : By default, project compiles produce debug builds. To improve performance, you can change to optimized mode by adding the following to the.profile configuration file in your compilation environment:

		

		

 export NMS_COMPILE_OPTIMIZED=1

After you have successfully compiled the custom application, run

nms-install-config

 to

pick up the executables from the $NMS_CONFIG/bin and install them into $NMS_HOME/bin.

topics/x_17_Building_Custom_Applications.19.3.html

Prerequisites

In addition to the prerequisites required to run the Oracle Utilities Network Management System, the following are required to use the Oracle Utilities Network Management System Software Development Kit:

		

•

		

GNU Make

		

•

		

Apache Ant

		

•

		

JDK

		

•

		

Java EE 6 SDK

See the Oracle Utilities Network Management System Quick Install Guide for version information.

Verify that your .nmsrc was generated using the template from $CES_HOME/templates/ nmsrc.template and that the environment variable $NMS_BUILD is set to $CES_HOME/build.

topics/x_17_Building_Custom_Applications.19.2.html

Overview

This chapter describes how to build C++ and Java applications that interact with the Oracle Utilities Network Management System using the Oracle Utilities Network Management System Software Development Kit (SDK).

Most Oracle Utilities Network Management System implementations will require at least one custom built application, a model interface, while other implementations may have addition interfaces and other programs that interact with the Oracle Utilities Network Management System. To support the implementation of these interfaces and programs, the Oracle Utilities Network Management System has provided a Software Development Kit. The Software Development Kit is installed into the $CES_HOME/build directory and is pointed to using the .nmsrc environment variable $NMS_BUILD.

There are two subcomponents to the Software Development Kit:

		

$NMS_BUILD/make

		

The make rules to support the architecture and platform configuration.

		

$NMS_BUILD/include

		

The C++ header files required to interact with the Oracle Utilities Network Management System.

		

$CES_HOME/sdk/ java/lib

		

The jar files containing compiled Java classes required to interact with the Oracle Utilities Network Management System.

		

$CES_HOME/sdk/ java/docs

		

Documentation for the Oracle Utilities Network Management System Java API.

		

$CES_HOME/sdk/ java/samples

		

Sample Java applications. In this release, a sample MultiSpeak- based AMR or AVL adapter is included.

Note the following regarding usage of the Oracle Utilities Network Management System Software Development Kit:

		

•

		

The SDK interfaces are not documented and are for use as-is.

		

•

		

The SDK interfaces may change from release to release with no guarantees of forward or backward compatibility.

		

•

		

The use of the SDK can impact the running Oracle Utilities Network Management System based on what is programmed with the SDK. Impacts may include performance issues, system lock ups, system instability, data loss, and changes to system functionality. It is recommend that you heavily test any interfaces or programs you create and judge the impact on the Oracle Utilities Network Management System and understand these interfaces and programs should be considered "use at your own risk".

		

•

		

The SDK may not be used to reverse engineer the features and functionality of the Oracle Utilities Network Management System.

topics/x_17_Building_Custom_Applications.19.1.html

Building Custom Applications

The intended audience for this chapter are software programmers responsible for building interfaces and applications that interact with the Oracle Utilities Network Management System. This chapter includes the following topics:

		

•

		

Overview

		

•

		

Prerequisites

		

•

		

Compiling C++ Code Using the Software Development Kit

images/x_seebttm.png

images/x_08_System_Data_Model.10.46.2.png
[ercmmorAvaaaorn) rse| oot
[rcomorassaorat av s <] V]

[sy iepor o, s ente

e]
— |

|_Dovces + antace | _ommemte miconty |

images/x_prev.png

images/x_13_FLISR.15.3.2.png
e o it et et

b Pttt st

s
e

FLISR Time Line

(et

oo | [

e -

¥

P

s il 5-0mmane 510w s
= i
o i =3 =)
Jotoe et e . . s

images/x_08_System_Data_Model.10.04.06.png

images/x_08_System_Data_Model.10.04.01.png

images/x_08_System_Data_Model.10.46.4.png
o et Fomat Took (ta o b

Spocia Processing
Circulreaker DeviceL
1D, PF_ATT_1, [ATT_{OBJ.CLASS]| PowerFla]

cuass, FeD
ATTR_INDEX,IATT_{OBJ CLASS| OBJECT_ID]
NOMRAL STATE, CLOSED

PHASE, ABC

NCG. [feeder. ey [OB)_CLASS| CRCUT]

ATID, COLOR, [FEEDER_COLOR [ATT {08 CLASS| CREUT]|
'ATTD, Unique_d, [ATT_{OBU._CLASS] OBJECT 10]

ATID, POWER_FLOW, ATT_POWERFLOW]

len_ponT

Circutrsaker ObjciLovel

images/x_08_System_Data_Model.10.41.2.png
The Cell Explosion Process

B o g
S
. B
o2 g

i

images/x_18_Building_Custom_Applications.20.4.1.png
FEREERR AR ER R AR EER R AR AR R R R R R R R R R R R R E R IR E R R R
4

Example $NMS_CONFIG/apps directory Makefile

+
LT T T T T e T T T T e
Include compiler and architecture dependent Uakefils parameters.
HAS_GUI = YES

include §(NMS_BUILD) fmake/make. rules

LOCALLIBS = § (PE_LTE) §(MV_LIB) §(SUPFORT_LIBS) §(ME_LIE) §(GRWINDOW LT

Source for all run-time spplications
sources = \

Custonlnterface.C
$(SOURCES: .C=. 5 (0BI_EXT))
CustonInterfaces (EXE_EXT)

oBaECTS
EROGRAM

T LI e T P T P T P T P T IR PP TR e e
Targets

include §(STHMPLE_PROGRAM_MAKE)

all:: § (PROGRAY)
@ 4f [! -d S (NMS_CONFIG) /bin® J; then \
mkdir § (NMS_CONEIG) /bin; \
£

P § (PROGRAM) § (NMS_CONFIG) /bin

images/x_08_04_DeviceHeight.png
branchWidth

images/x_08_System_Data_Model.10.59.2.png
= —

a—

S

:).- terHelght

5w

images/x_next.png

images/x_08_System_Data_Model.10.77.4.png
+ Too<panglestrin
Draws the text, "<string>", at (x,). The text formatting is defined by the 't record and must be defined prior to
the 'T" record.

T2.00.0 0.0 "W
Draw the text "SW" at (20) with specified text attributes.

@0 62
©0)

©0)

POLYGON a
. Mooy
Defines the first coordinate for a filled polygon. This record must precede the " action.

5 22 Set the pen color o grey70.
M 0.0 2.0 First point of the polygon for the xfme

.+ Pooy
Defines the next coordinate for a filled polygon. Use this action to specify as many points as necessary. This
record follows the M action and precedes the F action.

P-1.7 -1.0
P 1.7 -1.0 Remaining points of the polygon for the xfmr

. Fooay
Defines the last coordinate for a filled polygon. This record follows the P* action and is the same as the M
action. It finishes and fills the polygon.

F 0.0 2.0
Finish and il the polygon. The result is the transformer symbol, xfmr.

©02)

(17,10) 17,10)

ARC

* a<oqpaadiusx<begin angle=<end angle>
Draws a direular arc at (x,) with radius from begin angle to end angle.

SCALED OBJECTS (line, circle, box, polygon)
. SWaws
Defines the scaled line width as a percentage of the distance between anchor points.
. N
No scale option for lines, circles, boxes or polygons. This must be defined on the same line as the object this
record applies to.
+ Z<Ab>or<A2>or<o<y>
Overrides the default focus point of a line, circle, box or polygon. This must be defined on the same line as the
scaled object this record applies to.

images/x_08_System_Data_Model.10.46.1.png
oo 1| ot 2 2| o a3 e | s cerc 203 |

images/x_13_FLISR.15.3.1.png
Momentary Processing

e B

images/x_seertlow.png

topics/x_14_DMS_Configuration.16.4.html

Power Flow Rules Settings

This section lists Power Flow rules parameters, their description and typical configuration values/ ranges. Oracle Utilities Network Management System Distribution Management applications use srs_rules parameters with a SET_NAME of ‘PFS’ to configure what kind of data sets are used and how the application results are computed and displayed.

To view and edit Power Flow Rules, use the Event Management Rules tab in the Configuration Assistant. Expand the Power Flow Related Rule item in the left panel to display the rule categories. Refer to the following sections for rule descriptions by category:

		

•

		

Dynamic Line Ratings Rules

		

•

		

Fault Location Analysis Rules

		

•

		

Feeder Load Management Rules

		

•

		

Load Scaling Rules

		

•

		

SCADA Measurement Rules

		

•

		

Suggested Switching Rules

		

•

		

Other Power Flow Rules

Dynamic Line Ratings Rules

		

Parameters

		

Description

		

 alarmLevel

		

Threshold for normal alarms. Typical val: 85

		

calculationFrequency

		

Calulataion frquency for Dynamic Ratings processing. Typical

val: 60

		

criticalLevel

		

Threshold for critical alarms. Typical val: 95

		

daytimeHour

		

Number of daytime hours. Typical val: 7

		

feederExitDeadband

		

Limit deadband for feeder exit alarms. Typical val: 5.0

		

nighttimeHour

		

Number of nighttime hours. Typical val: 7

		

subtxLineDeadband

		

Limit deadband for sub tx line alarms. Typical val: 5.0

		

summerMonth

		

Month at which summer begins. Typical val: 5

		

winterMonth

		

Month at which winter begins. Typical val: 10

		

xfmrGroupDeadband

		

Limit deadband for xfmr group alarms. Typical val: 5.0

Fault Location Analysis Rules

		

Parameters

		

Description

		

FLA_PICKUP_SCALE_FACTOR

		

Scale factor of pickup current used in fault location analysis.

Typical val: 1.2

Feeder Load Management Rules

		

Parameters

		

Description

		

AlarmPri

		

Priority to use when creating normal alarms. Typical val: 8

		

ANALOG_PRECISION

		

Analog precision percentage. Typical val: 5

		

CritAlarmPri

		

Priority to use when creating critical alarms. Typical val: 5

		

CYCLE_TIME

		

Cycle time for periodic powerflow solution (in secs). Typical

val: 100000

		

DISPLAY_VOLTAGE_TYPE

		

Powerflow results voltage display base. 0=secondary voltage

level, 1=primary voltage level. Typical val: 0

		

EMERGENCY_LIMITS

		

Indicates whether to use Emergency limits when determining violations. Typical value: No (normal limits are used)

		

FLM_BACKFEED_VIOLATION_WEI

GHT

		

Weight factor for backfeed violation. Typical val: 0.0

		

FLM_CONDUCTOR_VIOLATION_W

EIGHT

		

Weight factor for conductor violation. Typical val: 0.2

		

FLM_DAILY_PEAK_HOUR

		

The daily peak hour used by feeder load management. Typical

val: 1

		

FLM_DISTRIBUTION_TRANSFORM

ER_

VIOLATION_WEIGHT

		

Weight factor for distribution transformer violation. Typical

val: 0.1

		

FLM_FEEDER_BREAKER_VIOLATI

ON_WEIGHT

		

Weight factor for feeder breaker violation. Typical val: 0.2

		

FLM_LOAD_IMBALANCE_VIOLATI

ON_WEIGHT

		

Weight factor for load imblance violation. Typical val: 0.0

		

FLM_OVER_VOLT_VIOLATION_WE

IGHT

		

Weight factor for voltage overlimit violation. Typical val:0.1

		

FLM_POWER_TRANSFORMER_VIO

LATION_WEIGHT

		

Weight factor for power transformer violation. Typical val:

0.2

		

FLM_SWITCHES_VIOLATION_WEI

GHT

		

Weight factor for switch violation. Typical val: 0.1

		

FLM_UNDER_VOLT_VIOLATION_

WEIGHT

		

Weight factor for voltage underlimit violation . Typical val:0.1

		

FLM_WARNING_THRESHOLD

		

Warning Threshold for feeder load management. Typical Val:

0.8

		

FLM_WARNING_WEIGHT

		

Weight factor for warning in feeder load management.

Typical val: 0.05

		

SCADA_DELAY_TIME

		

Indicates how long FLM must wait before re-solving PowerFlow on an island affected by topology changes. This allows time for SCADA analogs to filter through for the change, so that the system will use the updated values in the solution. It also allows multiple topology changes in the same island to be aggregated into a single solve. The base product is configured with a value of 30 seconds. If no value is specified, the system defaults to 15 seconds.

		

SEC_VOLTAGE_BASE

		

Secondary voltage base (in V). Typical val: 120

		

VHILIMIT

		

Percent high voltage limit value. Typical val: 1.08

		

VLOLIMIT

		

Percent low voltage limit value. Typical val: 1.08

Load Scaling Rules

		

Parameters

		

Description

		

DAYTYPE_0

		

Weekday load profile scenarios. Typical val: WEEKEND,

SEASON_1, SEASON_2, SEASON_3, SEASON_4,

SUNDAY, SATURDAY

		

DAYTYPE_1

		

Weekend load profile scenarios. Typical val: WEEKDAY,

SEASON_1, SEASON_2, SEASON_3, SEASON_4,

MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY

		

DAYTYPE_2

		

Seasonal peak load profile scenarios. Typical val:

SEASONALPEAK,SEASON_1, SEASON_2, SEASON_3,

SEASON_4

		

DAYTYPE_3

		

Holiday load profile scenarios. Typical val: DATE, 7-4, 12-24

		

DAYTYPE_4

		

Default load profile scenarios. Typical val: DEFAULT

		

LOADTYPE,0,0

LOADTYPE,0,1

LOADTYPE,0,2

LOADTYPE,0,3

LOADTYPE,0,4

LOADTYPE,0,5

LOADTYPE,1,0

LOADTYPE,1,1

LOADTYPE,1,2

LOADTYPE,1,3

LOADTYPE,1,4

LOADTYPE,1,5

LOADTYPE,2,0

LOADTYPE,2,1

LOADTYPE,2,2

LOADTYPE,2,3

LOADTYPE,2,4

LOADTYPE,2,5

LOADTYPE,3,0

LOADTYPE,3,1

LOADTYPE,3,2

LOADTYPE,3,3

LOADTYPE,3,4

LOADTYPE,3,5

LOADTYPE,4,0

LOADTYPE,4,1

LOADTYPE,4,2

LOADTYPE,4,3

LOADTYPE,4,4

LOADTYPE,4,5

		

Voltage computation parameter for load model of loadtype 0.

Typical val: 1

Typical val: 1

Typical val: 0

Typical val: 0

Typical val: 1

Typical val: 0

Typical val: 0

Typical val: 0.6

Typical val: 0

Typical val: 0.4

Typical val: 0.6

Typical val: 0

Typical val: 0.4

Typical val: 0.5

Typical val: 0

Typical val: 0.5

Typical val: 0.5

Typical val: 0

Typical val: 0.5

Typical val: 0.4

Typical val: 0

Typical val: 0.6

Typical val: 0.4

Typical val: 0

Typical val: 0.6

Typical val: 0

Typical val: 0

Typical val: 1

Typical val: 0

Typical val: 0

		

INTDATA_NUMLOADPERIODS

		

Defines number of intervals in one day for load interval data

processing. Typical val: 24

		

SUMMER_DATE

		

Summer start date for season-dependent load types. Typical

val: 05 01

		

WINTER_DATE

		

Winter start date for season-dependent load types. Typical

val: 05 01

SCADA Measurement Rules

		

Parameters

		

Description

		

_PF_MEAS_AMPS

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of 3-ph circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1012

scale factor: 1.0

		

_PF_MEAS_AMPS_A

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of A-ph

circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1013

scale factor: 1.0

		

_PF_MEAS_AMPS_B

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of B-ph

circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1014

scale factor: 1.0

		

_PF_MEAS_AMPS_C

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current measurement of C-ph

circuit. Powerflow expects current flow data as Amps.

Typical values:

attribute: 1015

scale factor: 1.0

		

_PF_MEAS_AMPS_SUM

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for current summation measurement of 3-ph circuit.

Typical values:

attribute: 1096

scale factor: 1.0

		

_PF_MEAS_ANGLE

		

Specifies the SCADA attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) number for average phase angle of 3-ph circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians. Typical values:

attribute: 1092

scale factor (for degrees): 57.2958 (for radians)

		

_PF_MEAS_ANGLE_A

		

Specficies the SCADA attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) for phase angle of phase A circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians.

Typical values:

attribute: 1093

scale factor (for degrees): 57.2958 (for radians)

		

_PF_MEAS_ANGLE_B

		

Specifies the SCADA attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) for phase angle of phase B circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians.

Typical values:

attribute: 1094

scale factor (for degrees): 57.2958 (for radians)

		

_PF_MEAS_ANGLE_C

		

Attribute number (in rule_value_integer_1) and scale factor (in rule_value_2) for phase angle of phase C circuit. Powerflow expects phase angle in degrees. Use scaling factor (in rule_value_2) if SCADA provides radians.

Typical values:

attribute: 1095

scale factor (for degrees): 57.2958 (for radians)

		

_PF_MEAS_CAP_POSITION

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for capacitor position of 3-ph

circuit.

Typical values:

attribute: 1800

scale factor: 1.0

		

_PF_MEAS_CAP_AUTO

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for capacitor bank regulation

status.

Typical values:

attribute: 1851

scale factor: 1.0

		

_PF_MEAS_KVAR

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of 3-ph

circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1032

scale factor: 1.0

		

_PF_MEAS_KVAR_A

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of A-ph

circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1033

scale factor: 1.0

		

_PF_MEAS_KVAR_B

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of 3-ph

circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1032

scale factor: 1.0

		

_PF_MEAS_KVAR_C

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for reactive power (kVAr) of C-ph

circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1032

scale factor: 1.0

		

_PF_MEAS_KW

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of 3-ph

circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1044

scale factor: 1.0

		

_PF_MEAS_KW_A

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) active power (kW) of A-ph circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1045

scale factor: 1.0

		

_PF_MEAS_KW_B

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of B-ph

circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1046

scale factor: 1.0

		

_PF_MEAS_KW_C

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of C-ph

circuit. If SCADA provides Watts or MW, a scaling factor should be applied.

Typical values:

attribute: 1047

scale factor: 1.0

		

_PF_MEAS_NUM_SEQ_CAP

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for active power (kW) of C-ph

circuit. If SCADA provides Var or MVar, a scaling factor should be applied.

Typical values:

attribute: 1047

scale factor: 1.0

Attribute number for num sequential capacitors. Typical val:

1856

		

_PF_MEAS_PF

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of 3-ph circuit.

Typical values:

attribute: 1088

scale factor: 1.0

		

_PF_MEAS_PF_A

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of A-ph circuit.

Typical values:

attribute: 1089

scale factor: 1.0

		

_PF_MEAS_PF_B

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of of B-ph circuit.

Typical values:

attribute: 1090

scale factor: 1.0

		

_PF_MEAS_PF_C

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for Power Factor of of C-ph circuit.

Typical values:

attribute: 1091

scale factor: 1.0

		

_PF_MEAS_PHASE_KV

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of 3-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1104

scale factor: 1.0

		

_PF_MEAS_PHASE_KV_A

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of A-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1105

scale factor: 1.0

		

_PF_MEAS_PHASE_KV_B

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of B-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1106

scale factor: 1.0

		

_PF_MEAS_PHASE_KV_C

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for phase (phase-to-netural) voltage (kV) of C-ph circuit. Powerflow expects kV. If SCADA provides Volts, MV, or line (phase-to-phase) voltage, a scaling factor must be applied.

Typical values:

attribute: 1107

scale factor: 1.0

		

_PF_MEAS_TAP_POSITION

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap position of 3-ph circuit.

Typical values:

attribute: 1807

scale factor: 1.0

		

_PF_MEAS_TAP_PRI

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap position of primary.

Typical values:

attribute: 1853

scale factor: 1.0

		

_PF_MEAS_TAP_AUTO

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap regulation status.

Typical values:

attribute: 1852

scale factor: 1.0

		

_PF_MEAS_TAP_SEC

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tap position of secondary.

Typical values:

attribute: 1854

scale factor: 1.0

		

_PF_MEAS_TAP_TER

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for tertiary.

Typical values:

attribute: 1855

scale factor: 1.0

		

_PF_MEAS_TEMPERATURE

		

Specifies the SCADA attribute (in rule_value_integer_1) and scale factor (in rule_value_2) for temperature.

Typical values:

attribute: 1900

scale factor: 1.0

Suggested Switching Rules

		

Parameters

		

Description

		

SS_ACT_KEY_ISOLATE_OPEN

		

Defines the action key for the isolate open operation. Typical

val: 580

		

SS_ACT_KEY_ISOLATE_TAG

		

Defines the action key for the isolate tag operation. Typical

val: 100

		

SS_ACT_KEY_RESTORE_CLOSE

		

Defines the action key for the restore close operation. Typical

val: 260

		

SS_ACT_KEY_RESTORE_OPEN

		

Defines the action key for the restore open operation. Typical

val: 580

		

SS_MAX_SUGGESTED_PLAN

		

Maximum number of plans created by Suggested Switching.

Typical val: 10

		

SS_WEIGHT_BRANCH_OVERLOAD

		

Feeder unloading weighting factor for branch overloads.

Typical val: 100.0

		

SS_WEIGHT_CAPACITY_MARGIN

		

Feeder unloading weighting factor for capacity margi

		

SS_WEIGHT_SWITCH_OPERATION

		

Feeder unloading weighting factor for switch operation.

Typical val: 10.0

Other Power Flow Rules

		

Parameters

		

Description

		

CAPSW_ENABLE

		

Flag that determines whether sw. capacitors are enabled as

controls. Typical val: yes (for Enable)

		

MAX_REALTIME_PFOBJECT

		

The maximum number powerflow engine instances that can

be created. Restricts the number of concurrent powerflow

solutions that can be running. Further solutions will be

delayed until an existing instance finishes its solve. Typical val:

10

		

MIN_LINE_LENGTH

		

Minimum line length. If the length is less that the value, set its

length to minimum value. Typical val: 10.0

topics/x_14_DMS_Configuration.16.3.html

Configuring Oracle Utilities Network Management Services

PFService - Power Flow Service

The main application that runs the majority of the Oracle Utilities Network Management System

Distribution Management business logic is the Power Flow service. If your environment will be

running any a

pplications listed in the previous section (except Web Switching and FLISR), you must add the Power Flow Service as a system service by updating the $NMS_HOME/etc/system.dat file. There are 3 main sections where this service needs to be defined: the service, program and instance sections. See the $CES_HOME/templates/system.dat.template file for examples of how to configure the Powerflow Service. Search for PFService in the file and copy those lines to $NMS_HOME/etc/system.dat file. Make sure all lines are uncommented so that they are active. You must restart the system services in order for the Powerflow Service to be properly monitored by SMService.

The command line options for PFService are:

		

•

		

hourlyProfiles : PFService should be run with this option to activate the load interval data functionality

		

•

		

incrSolveCutoff: similar to the MTService -incrSolveCutoff. Default value is 1000 switches. The PFService and MTService parameters should be tuned separately, since PFService performs more actions as part of the solve.

		

•

		

pfdbs : Use a dedicated database connection, rather than the common pool. Requires a corresponding PFDBService instance to be defined in system.dat

topics/x_14_DMS_Configuration.16.2.html

Environment Settings

This section describes how the Oracle Utilities Network Management System Distribution

Management services are configured. These settings should be configured for the applications

listed below.

		

•

		

Feeder Load Management

		

•

		

Fault Location Isolation & Service Restoration (FLISR)

		

•

		

Fault Location Analysis

		

•

		

Power Flow Extensions

		

•

		

Suggested Switching

		

•

		

Volt/VAr Optimization

		

•

		

Web Switching

topics/x_14_DMS_Configuration.16.1.html

Distribution Management Application Configuration

This chapter provides an overview of the configuration and maintenance of Oracle Utilities

Distribution Management System applications. It includes the following topics:

		

•

		

Environment Settings

		

•

		

Configuring Oracle Utilities Network Management Services

		

•

		

Power Flow Rules Settings

For DMS installation instructions, see the Oracle Utilities Network Management System Installation Guide.

images/x_nextx.png

images/x_08_System_Data_Model.10.04.02.png

images/x_08_System_Data_Model.10.04.10.png

images/x_08_System_Data_Model.10.59.5.png

images/x_seeright.png

images/x_index.png
Index |

images/x_08_System_Data_Model.10.59.4.png
camelHumpWidth camelHumpHeight

device annotation

images/x_08_System_Data_Model.10.04.03.png

images/x_indexx.png

images/x_08_System_Data_Model.10.04.12.png

images/x_01_System_Overview.03.12.2.png
Data Center Femote

S50 Bl == E"
=y g
e Ll
B T o =y IR
[I 1! 5]
{ RDBMss«v-r Pmmucnnnunlxcln-b-r TestTrain/DR Unix Cluster
S O | coimatwr syoiom Sorver
R eEE
R wi

images/x_08_System_Data_Model.10.77.1.png
<project > SYMBOLS sym consists of a header and a description for each soft symbol. The beginning of the
headeris designated by "SH" and consists of a symbol number, name and type in the following format:

SH<symbol type><symbol_code><symbol name>
« symbol_type:a point, ora line, L.

* symbol_code: the unique symbol identification number (SIN)

« symbol_name: a text string that names the symbol.

S P 2200 xfur SH 1 2201 switch
Defines the point xfmr Defines the line switch

SIN 200 SIN 2201

A1 x> <y>

A required record that defines the first anchor point of a line symbol or the only anchor point for a point symbol.
AL00 AL -10 0

Default focus point for xfmr First anchor point for switch

A2 x> <y>

A required record for line symbols that defines the second anchor point.

‘The anchor points determine the default focus point for line and point symbols. The default focus point for line
symbols is the midpoint between the two anchor points, Al and A2. The anchor point, Al is the default focus
‘point for point symbols. Once the drawing coordinates are determined, the symbol is scaled and rotated around its
focus point.

A2 10 0
Second anchor point for switch. Default focus point (0.0)

CF <foreground color number> <background color number>
A required record that defines the colors used for filled objects and double dash lines. The foreground color for
filled objects is the line color and the background color i the fill color. The color numbers are CES standard colors
listed with the firm symbols and at the bottom of the Symbology Editor.

P30 cF1o0
ime foreground color =3 (yellow) switch foreground color = 1 (white)
xfmr background color =0 (black) switch background color =0 (black)

images/x_04_Isis_Configuration.06.03.1.png
TN

ISISPORT - 2024

iy

chamcELL-

PRODUCTION TEST BED

evmceuL- chneceLL| crn_ceui-
TRAINT TRAINZ TRAlG.

images/x_08_System_Data_Model.10.04.04.png

images/x_tocx.png

images/x_08_System_Data_Model.10.41.1.png
STAGES IN THE CES PREPROCESSOR,

images/x_08_System_Data_Model.10.04.11.png

images/x_collapse.png

images/x_01_System_Overview.03.12.1.png
o otz

Dimptchers [

o P -

B Server

1 RDBVS Sarvr
S Websgeicason

Son Sorer
Ui Ropacaion Sevr
e Vaecicon

Crace ROEM Server
Sen Serr
UnicAppicaion Sever
e Wesepicin

images/x_17_Building_Custom_Applications.19.4.1.png
FEREERR AR RR AR EER R R R R R R R R R R E R R R R R U R H R IR R
4

Example $NMS_CONFIG/apps directory Makefile

+
LT T T T T P T T I e
4 Include compiler and architecture dependent Uakefils parameters.
HAS_GUI = YES

include §(NMS_BUILD) fmake/make. rules

LOCALLIBS = § (PE_LTE) §(MV_LIB) §(SUPFORT_LIBS) §(ME_LIE) §(GRWINDOW LT

Source for all run-time spplications
sources = \

Custonlnterfacs.C
5 (SOURCES: .C=.5 (0BI_EXT))
CustonInterface$ (EXE_EXT)

oBaECTS
EROGRAM

LI T T e T P T T T T IR P I TR e e
Targets

include §(STHPLE_PROGRAM_MAKE)

all:: § (PROGRAY)
@4f [! -a S (NMS_CONFIG) /bin® J; then \
mkdir § (NMS_CONEIG) /bin; \
£

P § (PROGRAM) § (NMS_CONFIG) /bin

images/x_08_System_Data_Model.10.40.1.png
Customer GIS

Exportfles

Preprocessor

s

CES importfiles

o)

ROBMS.

..‘/}

MBService

1.5

Map fies

images/x_08_System_Data_Model.10.04.05.png

images/x_08_System_Data_Model.10.59.6.png
IntersubOffsst

images/x_08_System_Data_Model.10.04.09.png

images/x_08_System_Data_Model.10.22.2.png

images/logobar.png
ORACLE

images/x_08_System_Data_Model.10.59.1.png

images/x_17_Building_Custom_Applications.19.4.2.png
[rms-vminms1> cd “/0PAL/apps

Ims-un:ms1> nake clean

Irn - .0 *" core _pure® anon,out so_locations *.sl *.50 *.a

Irn =F \V* 3log *,third *.third,”

Irn ~r¥ ptrepository cxx repository Tenplates.IB SurkS_cache tempinc

I/ ~F OPRL_preprocessar-

Ims-vm:ms) Ts

[Hakefile OPAL_inp_exp.C 0PAL preprocessor.C OPAL preprocessor.h

Ims-un:nst> nake onsite

[0PR_preprocessor.o

lg0+ “pedantic -0 “Ual] ~Unc-Fornat-y2k -Voverloadsd-virtual -Upointer-arith -Ucal

jst-align -lhrite-strings -Uno-long-long ~lsign-prom -3 -IDIFFUSION NOTIFIES
“ILINUX -1_REENTRANT -IP_THRERDS ~THAS_XT -DFAULT_RESTORATION -IGS0RP_VERSI|

(0= ~1/users/ms./nms/product/1.10,0.0/bul &/ include ~1/users/nnst/rws/product|

[/1.10.0.07si5/include -/opt/ons-10.1/irclude ¢ OPALpreprocessar.C

It Bai1ding DPAL preprocessor:

lg0+ ~pedant.ic - ~Ual] ~Unc-Fornat-y2k -Voverloadsd-virtual -Upointer-arith -Ucal

st-align -thrite-strings -Uno-long-long Msigr-prom g -DDIFFUSION NOTIFIES
“ILINUX -1_REENTRANT -IP_THRERDS ~THAS_XT -DFAULT_RESTORATION -IG30RP_VERSI|

(0= ~1/users/rms./nms/product/1.10,0.0/bul &/ include ~1/users/nnst /e /product|

1/1.10,0.0/1s15/include -L/opt/ons-10.1/include -L/users/rost/ms/product/L.

[10:0.0/1ib -0 OPRL_preprocessor OPAL preprocessor.o ~IPp I -k -lfpp |

[7apt/ons=10.1/11b ~Txrttable ~lpdsuti] ~lxrttablestub -L/opt/cns-10.1/1ib -Lkpn

“lCrey -IFp -IService -INB -lGriindos -lintersys st -lurapper -IBase -

1foss -L/users/ms1/nms/product/1.10.0,0/11b ~L/users/nast/rms/product /1.10,0.0/|

i515/11b -1is15X -lisis -lisis_tack native -1CndLine -L/opt/ons-10.1/1ib -Lirn|

<1k -I¥p -Diext. -L/opt/ons-10,1/1ib ~IXt ~IXI1 -lpthread -1d] -L/opt/ons-10|

L1/1ib -lgsospes -lgsom

[Building and Lirking Cos OPAL_inp_exp:

lg0+ -pedantic - -Ual] ~Unc-Fornai-uk ~Voverloaded-virtual -Upointer-arith -Ucal

st-alion -thrite-strings -Uo-long-long Msign-prom g -DDIFFUSION NOTIFIES
“ILINUX -_REENTRANT -IP_THRERDS -THAS_XT -DFAULT_RESTORATION -IS0RP_VERSI|

(0= ~1users/ms/nms/product/1.,10,0,0/bul 18/ include ~1/users/nst/rws/product|

1/1,10.0.071s15/include -L/opt/oms-10.1/include -L/users/rast/mms/product/L.

[10:0.0711b -0 OPAL_ivp_exp OPFL_inp exp.C -1Fp -IHv -It -IRpp -L/opt/ons-|

10,1/1ib -Larttable “lpdautil Lirttablestub -L/cpt/ons-10,1/1ib ~IXpm_-1Crew

FIFp -1Service -IMB -IGriindou -lintersysxt -lurappér -lBase -lfoss -L/|

lusers/mas1/nms/product/1.10,0,0/11b ~L/users/nasL/ras/product/1.10,0.0/isis/1ib

CLis15X “lisis “lisis_tack native -1CadLine -L/opt/ons-10.1/1ib -Li -Lin -1

lp -ext —L/opt/one-10.1/Tib 1Nt -IXLL -Ipthread -1d] -L/opt/ons-10.1/1ib -|

lgsasp+e -lgso

o 0L roprecesso. 0PL_in.ex5 ../bin

images/cover.png
ORACLE
UTILITIES

Oracle Utilities
Network Management System

Configuration Guide

Release 1.11.0
Part Number E24670-01
July, 2011

Copyright © 1999, 2011 Oracle Corporation. All Rights Reserved.
e ———

images/x_08_System_Data_Model.10.04.13.png

images/x_11_BI.13.07.1.png
ReseEsimated
Rosare)

Do (Bogin, Restrs,
EdmusdResine)

Conol Zne
Atfected Cussng)

Devie Affcted,
Casing)

Pasm

e

Cuomes gy

Premise

Do

oM Exclude
] o)

Exchu

w2

vont

B

Aceot

St
Plamned
(ngenerse)
Hearere
Duen
p—
an
Caneeled
Clagpnsra)

images/x_08_System_Data_Model.10.21.1.png
cuomtones

u_seice_ports

u_serice locsons

cu oot e

G peters

images/x_seertup.png

images/x_11_BI.13.13.1.png
rd

images/x_seelflow.png

images/x_print.png

images/x_08_05_TierHeight.png
3+ tierHeight

'S
w |
connectionClass ©

bl

images/x_08_System_Data_Model.10.77.3.png
CIRCLE
+ Coocynadius
Draws a filled circle with center (x, y) and a specified radius.

cooa2s €0.00.0 .3
Draw a black filled circle at (00) with radius 2.5 Draw a black filled circle at (0,0) with radius 3

©0) (60)

o cao<yndius
Draws an open circle with center (x.y) and a specified radius.

€6.30.0 .3
Draw an open dircle with center (6.30) with radius 3

BOX ulr,m m.;,

o B abeybadg2angle
Draws a filled box between the opposite comers, (x1, y1) and (x2,

with the specified angle of rolation.
(52)

B 1.0 -2.0 5.0 2.0 0.0

Draw ablack filled box

00
(1-2)
o byl 2<angle>
Draws an open box between the opposite corners, (1, y1) and (x2, y2), with the specified angle of rotation.
TEXT
o teheight=<width=<vertical jus

ion><horizontal_justification>

Sets the height and width of the text at a specified justification. Vertical and horizontal justification have the
following values:

0-left or bottom

1- center

2-right or top.

The text is drawn with the ‘T" record, but the 't record must be defined first.

s 1 pencolor=white
D 1.0 -2.0 5.0 2.0 diagonal line

£1.01.000

Define text attributes with vertical justification = 0 and hori
zontal justification =0

62

00)

images/x_toc.png

images/x_prevx.png

images/x_08_System_Data_Model.10.22.1.png
/0o

images/x_08_System_Data_Model.10.04.08.png

images/x_08_System_Data_Model.10.77.2.png
se

Denotes the end of the symbol header and the beginning of the symbol body containing description lines. Each
description line defines a new aspect of the soft symbol including color changes, line style changes, draw actions
and movements. The end of the symbol body is designated by the end of the file or the beginning of a new symbol.

sB

sB

Signifies the end of the header and the beginning of the symbol body for both symbols.

‘The following are valid actions for the symbol body:
PEN

s<color_number>

Sets the pen to a specified color that cannot be overridden by the Viewer selection color. If a symbol drawn
with this pen is selected in the Viewer, it does not blink or change colors. The color_number is one of the CES.
standard colors listed with the firm symbols and at the bottom o the Symbology Editor.

s 100
Set pen color to black for switch

50 <color_number>

Sets the pen to a specified color that can be overridden by the Viewer selection color. If a symbol drawn with

this pen is selected in the Viewer, it blinks or changes color. The color_number is one of the CES standard col-

ors listed with the firm symbols and at the bottom of the Symbology Editor.

s0 100
Set pen color to black for xfmr

LINE

W <width>
‘Specifies the line width. The results of this value varies for each model.

W1
Set the line width to 1 for switch

L <line_style number><length><length><length>...

Sets the fine style and dash pattern.

Valid values for <11ne_style_number>are:

1-solid

2- dash; alternate between specified color and transparent

3-double dash; alternate between foreground color and background color

‘The <1ength> parameters are optional. They specify the segment lengths for the dash pattem. There can be
many <length> parameters but the last one must be equal {0 zero.

L1
Setline sty to 1, or solid, for switch

D byl
Drawsa line symbol between two points (x1, y1) and (<2, y2)
D 0.00.0 6.0 0.0 on i

Draw a sold line with a width of 1 sarting at (00) endi
(60) for switch

images/x_08_System_Data_Model.10.23.1.png
C &1 Customer Modeling Examples

Cireut 2 ————— K Cireut 3

Internal

Circuit 1 —T us
Circuta
Secondary.
Metering

OO

Aternate
) H—EO— Mansiomers
Primary
Metering

Dual
Rates

Circut5

Ciruit 8

images/x_blank.png

