
Oracle® Demantra
Analytical Engine Guide
Release 12.2
 Part No. E44444-05

August 2016

Oracle Demantra Analytical Engine Guide, Release 12.2

Part No. E44444-05

Copyright © 1999, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Greg Watkins

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Oracle customers that have purchased support have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trsif you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

 iii

Contents

Send Us Your Comments

Preface

1 Introduction to the Analytical Engine
Overview... 1-1
Engine Modes: DP and PE...1-2
What the Engine Does... 1-3
Forecast Modes.. 1-3
Engine Profiles.. 1-4
Specifying the Demand Stream in an Engine Profile.. 1-8
Maintaining Engine Versions... 1-10
Illegal Characters in Demantra... 1-11

2 Basic Concepts
Overview of Forecasting... 2-1
Causal Factors.. 2-2
Promotions (PE Mode Only)... 2-6
Forecasting Models and the Engine Flow... 2-8
The Forecast Tree... 2-8
Influence and Switching Effects (PE Mode Only)..2-13
Combination-Specific Settings... 2-16
The Forecast Data.. 2-21

3 Configuring the Analytical Engine
General Data Requirements.. 3-1

iv

Structure and Requirements of the Forecast Tree.. 3-2
Split Forecast by Series... 3-4
Configuring SALES_DATA node-splitting..3-4
Guidelines for the Forecast Tree... 3-5
Guidelines for Causal Factors... 3-6

4 Configuring the Forecast Tree
Configuring the Forecast Tree...4-1
Pooled Time Series.. 4-5
Defining Influence and Competition (PE Mode Only)..4-8
Defining the Forecast Tree for Service Parts Planning Supersessions.................................... 4-9
Specifying Additional Parameters.. 4-10

5 Configuring Causal Factors
Notes About Causal Factors.. 5-1
Creating a Global Factor..5-3
Creating a Local Causal Factor.. 5-5
Configuring Global and Local Causal Factors..5-6
About Activity Shape Modeling... 5-11
Enabling Activity Shape Modeling.. 5-13
Deleting a Causal Factor..5-14

6 Configuring Promotions and Promotional Causal Factors
Base Behavior.. 6-1
Customizing the Promotion Levels...6-3
Loading Historical Promotions... 6-3
How the Analytical Engine Uses Promotions...6-4
Configuring Promotional Causal Factors... 6-8
Adjusting the Promotion Dates.. 6-13
About Promotion Shape Modeling... 6-15
Enabling Promotion Shape Modeling.. 6-15

7 Tuning the Analytical Engine
Editing Engine Parameters.. 7-1
Creating or Renaming Engine Profiles... 7-3
Tuning Analytics... 7-4
Tuning Performance.. 7-6
Reconfiguring the sales_data_engine Table... 7-11
Enabling Engine Models Globally... 7-14

 v

Configuring the Engine Mode.. 7-16
Advanced Analytics (Nodal Tuning).. 7-16
Forecast Tree Check... 7-16

8 Using the Engine Administrator and Running the Engine
Before Running the Analytical Engine... 8-2
General Notes about Running the Analytical Engine..8-3
Deploying the Analytical Engine..8-3
Configuring Engine Settings.. 8-3
Deploying Demantra CDP RAC Services...8-6
Running the Analytical Engine from the Start Menu.. 8-6
Running the Analytical Engine from the Command Line... 8-7
Running the Analytical Engine from a Workflow... 8-8
Stopping an Analytical Engine Run... 8-8
Running the Simulation Engine... 8-8
Running Engine Starter... 8-9
Troubleshooting.. 8-9
Oracle Wallet Troubleshooting...8-12
Viewing the Engine Log.. 8-14
Examining Engine Results.. 8-14
Running the Engine in Recovery Mode..8-16
Stopping the Engine.. 8-16

9 Engine Details
Preparing the Database... 9-1
Promotion Effectiveness Engine Phases .. 9-2
The Forecasting Process.. 9-6
Comparing Forecast Modes...9-19
Engine Components and High-Level Flow.. 9-20
Details of the Distributed Engine... 9-23

10 Engine Parameters
About Engine Parameters.. 10-1
Analytical Engine Parameters... 10-1

11 Theoretical Engine Models
Introduction... 11-2
Flags on Causal Factors... 11-2
ARIX.. 11-3

vi

ARLOGISTIC.. 11-4
ARX.. 11-5
BWINT... 11-5
CMREGR... 11-7
DMULT.. 11-9
ELOG... 11-10
FCROST... 11-12
HOLT... 11-13
ICMREGR.. 11-15
IREGR.. 11-16
LOG... 11-17
LOGISTIC... 11-18
Moving Average.. 11-19
MRIDGE.. 11-20
NAIVE... 11-21
REGR... 11-23

Index

 vii

Send Us Your Comments

 Oracle Demantra Analytical Engine Guide, Release 12.2
Part No. E44444-05

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 ix

Preface

Intended Audience
Welcome to Release 12.2 of the Oracle Demantra Analytical Engine Guide.

See Related Information Sources on page xi for more Oracle E-Business Suite product
information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trsif you are hearing impaired.

Structure
1 Introduction to the Analytical Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes the role the Analytical Engine plays in the simulating forecasts. It
also describes how the Analytical Engine functions generally and the different engine
modes.

2 Basic Concepts

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

x

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter introduces the basic concepts involved with configuring the Analytical
Engine.

3 Configuring the Analytical Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to configure the Analytical Engine. It also introduces
guidelines for configuring the forecast tree, causal factors, and the configure to order
(CTO) feature.

4 Configuring the Forecast Tree

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to configure the forecast tree. In the case of PE mode, it also
describes how to configure the influence relationships, and competition among the
combinations.

5 Configuring Causal Factors

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to create causal factors, configure them, and populate them
with data. It also describes the predefined causal factors provided by Demantra.

6 Configuring Promotions and Promotional Causal Factors

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to configure promotions and promotional causal factors in
the Business Modeler.

7 Tuning the Analytical Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

It is usually necessary to adjust some parameters to configure the Analytical Engine
correctly before running it the first time. Other adjustments can be made later to
optimize the behavior and performance.

8 Using the Engine Administrator and Running the Engine

 xi

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

Before you run the Analytical Engine for the first time, it is useful to ensure that you
have configured it correctly. This chapter describes how to administer the Analytical
Engine.

9 Engine Details

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter provides details on the Analytical Engine, for the benefit of advanced
users.

10 Engine Parameters

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes the Analytical Engine parameters that you can see in Business
Modeler and lists their default values, if any.

11 Theoretical Engine Models

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter contains reference information for the theoretical models that the
Analytical Engine uses.

Related Information Sources
Oracle Demantra products share business and setup information with other Oracle
Applications products. Therefore, refer to other user guides when you set up and use
Oracle Demantra.

User Guides Related to All Products:

• Oracle Applications User Guide

• Oracle Applications Developer's Guide

• Oracle E-Business Suite Concepts

User Guides Related to Oracle Demantra:

• Oracle Demantra User's Guide

xii

• Oracle Demantra Installation Guide

• Oracle Demantra Implementation Guide

• Oracle Demantra Demand Management User's Guide

• Oracle Demantra Deduction and Settlement Management User's Guide

• Oracle Demantra Trade Promotion Planning User's Guide

Integration Repository
 The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

 The Oracle Integration Repository is shipped as part of the Oracle E-Business Suite. As
your instance is patched, the repository is automatically updated with content
appropriate for the precise revisions of interfaces in your environment.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Introduction to the Analytical Engine 1-1

1
Introduction to the Analytical Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes the role the Analytical Engine plays in the simulating forecasts. It
also describes how the Analytical Engine functions generally and the different engine
modes.

This chapter covers the following topics:

• Overview

• Engine Modes: DP and PE

• What the Engine Does

• Forecast Modes

• Engine Profiles

• Specifying the Demand Stream in an Engine Profile

• Maintaining Engine Versions

• Illegal Characters in Demantra

Overview
The Oracle Analytical Engine is an advanced Analytical Engine capable of
multidimensional forecasting with mixed modeling techniques. The system is designed
for large-scale installations handling analysis and modeling of tens to hundreds of
thousands of different demand patterns.

The following figure shows an overview of how a Demantra solution uses the
Analytical Engine:

1-2 Oracle Demantra Analytical Engine Guide

Within a Demantra solution, the Analytical Engine runs periodically (in the
background), reading data from the Demantra database and generating forecast data.
The forecaster uses a worksheet to view the forecast and make adjustments, saving
those changes to the database. The updated forecast is available to all users with the
appropriate authorization.

The preceding figure is not meant to show hardware configuration, which is discussed
in the Oracle Demantra Installation Guide, rather than in this manual. You should be
aware, however, that the Analytical Engine can be used in a distributed mode.
Specifically, your system may include the Distributed Engine, where the Analytical
Engine is registered on multiple machines, all with access to the Demantra database. In
this mode, the Analytical Engine automatically distributes its work across multiple
machines simultaneously. This maximizes processing power and reduces bottlenecks.
For more information about the distributed engine, see the Oracle Demantra Installation
Guide.

Engine Modes: DP and PE
Oracle provides two different modes of the Analytical Engine:

• In PE mode, the engine is suitable for use with Promotion Effectiveness.

• In DP mode, the engine is suitable for use in demand planning applications.

Introduction to the Analytical Engine 1-3

What the Engine Does
The Analytical Engine accesses the database and reads the historical demand and data
from the causal factors (such as seasons, price changes, and specific events such as
promotions [in the case of Promotion Effectiveness). It then generates a forecast for all
or specific item-location combinations. Wherever possible, it generates the forecast at
the lowest possible allowed level (such as SKU-store). If necessary, it aggregates data so
that it can generate a forecast at a higher level and split it to the lower level as needed.
The forecast tree (which you configure) controls how the Analytical Engine aggregates
and splits data when performing this task.

When working on a node of the forecast tree, the Analytical Engine uses a set of engine
models, which are mathematical forecasting models. It considers how well each of those
models works for that node and it statistically combines the best results, and generates
the forecast from that. Advanced users may choose to adjust parameters that control
how the individual models work; see "Theoretical Engine Models" for details on the
models. Advanced users can also adjust how the Analytical Engine treats different
nodes in the forecast tree.

In PE mode, the Analytical Engine also decomposes the forecast into the following:

• The baseline forecast (the forecast that would apply if no promotions were planned
for the future)

• Direct effects (uplifts on item-location combinations due to promotions for those
combinations).

• Switching effects (positive and negative effects on combinations due to promotions
for other combinations)

See also

"Basic Concepts" "Engine Details"

Forecast Modes
The Analytical Engine can run in three modes: batch, simulation, or subset forecast.

Note: The Analytical Engine can run in only one mode at a time.

• In batch mode, the Analytical Engine considers all the item-location combinations
and generates a forecast for all of them (with a few exceptions, noted in the next
chapter). In a typical implementation, the engine automatically runs in batch mode
regularly. Batch mode should be run separately of data load, typically after new
data is imported.

1-4 Oracle Demantra Analytical Engine Guide

• In simulation mode, the Analytical Engine considers only a subset of the
combinations. In this mode, the engine (called the Simulation Engine) waits for
simulation requests and then processes them.

In simulation mode, a user runs a worksheet and submits a simulation request for
some or all of the combinations in it. The simulation request is processed in the
background but generally fairly soon. When the simulation is done, Demantra
alerts the user, who can then accept or reject the results.

In this mode, the user is usually performing a "what if" analysis, which refers to
making some changes within the worksheet and then performing the simulation to
see whether those changes have the desired effect. This process can be repeated
until the optimum results are achieved.

It is also possible to run simulations programmatically from within a workflow.

• In Subset Forecasting mode, the main differences are as follows:

The column into which the engine will write into will be based on the Parent Batch
profile associated with this profile; it will not receive its own set of columns and
forecast versions.

When engine is run using a subset type engine forecast, the existing (latest) forecast
column for the parent profile will be used. No new engine version will be
generated; when completed the engine will still appear the same column as latest
version.

For more information about forecast modes, refer to Comparing Forecast Modes in this
document.

"Running the Engine from the Start Menu"

Engine Profiles
Each engine profile is a set of parameters with specific values, causal factors, forecasting
models, and a forecast tree. Engine profiles are available to quickly change the
functioning of the Analytical Engine dependent on the type of forecasts you want to
develop. Oracle Demantra provides some predefined profiles, and you can define
additional engine profiles, as needed. When you run the Analytical Engine, you specify
the engine profile to use.

The predefined profiles are as follows:

Base
This engine profile is the standard default Demantra engine.

Batch
The batch engine profile uses the same forecast tree and causal factors as the Base

Introduction to the Analytical Engine 1-5

engine, but the system parameters can be modified individually to reflect a different
demand stream or other customization without modifying the Base.

Booking Forecast
The Booking Forecast engine profile uses the same forecast tree and causal factors as the
default Demantra engine, but the system parameters can be modified individually to
reflect a different demand stream or other customization without modifying the Base.

DSR POS Forecast
The DSR POS Forecast engine profile supports the Demand Signal Repository Point of
Sale functionality. It uses the same forecast tree and causal factors as the default
Demantra engine, but the system parameters can be modified individually to reflect a
different demand stream or other customization without modifying the Base.

Forecast Install Base
This engine supports the forecasting of install base under contract, a service parts
forecasting function.

The forecast tree is defined as follows:

Level Item Level Location Level

1 Lowest Item Lowest Location

2 Item Organization

3 Item Organization Type

4 Highest Item Highest Location

The causal factors associated with this engine profile are:

• Constant

• Trend

• Consensus Forecast

All other causal factors are disabled.

Forecast Spares Demand
This engine profile supports forecasting of spares at an organization. It executes on the

1-6 Oracle Demantra Analytical Engine Guide

data and combination tables used by the Spares general level.

The forecast tree is defined as follows:

Level Item Level Location Level

1 Lowest Spares Level Lowest Location

2 Latest Revision Organization

3 Latest Revision Organization Type

4 Highest Item Highest Location

The causal factors are defined as follows:

• All existing defaults

• Install Base Under Contract

Forecast Non-Unit Maintenance Plan (UMP) Work Orders
This engine profile supports forecasting of work orders not associated with standard
maintenance activity and service requests. The work order projection can be used as an
input for processes outside this application generating future visits not linked to
standard maintenance activity.

Forecast tree for new profile will be set as follows:

Level Item Level Location Level

1 Lowest Item Level Lowest Location Level

2 Asset Group Lowest Location Level

3 Highest Fictive Level Highest Fictive Level

Engine Parameters

The following parameters differentiate this profile from other profiles:

• Min_fore_level=1

• Max_fore_level=2

Introduction to the Analytical Engine 1-7

• Parameter 'PopulationExtraFilter' will be configured to filter out only work orders
associated with non-Unit Maintenance Plan (UMP) visits. The parameter should be
set to a filter on the Visit Type level to only include the members which represent
non-maintenance activity.

Refer to Engine Parameters, page 10-1 for details about PopulationExtraFilter.

Simulation
This engine profile is the standard default simulation engine.

Simulation Install Base
The Simulation Install Base is a child of the Forecast Install Base engine profile. Should
be used when generating a simulation on Install Base.

Simulation Spares Demand
The Simulation Spares Demand profile is a child of the Forecast Spares Demand engine
profile. Should be used when generating a simulation on Spares Demand.

To create an engine profile:
When you create an engine profile, it is associated with a specific init_params table. It
must not be the same table used by the other engine profiles. To check which
init_params tables are in use, you can use the sql command select * from
engine_profiles;

1. Navigate to System Parameters.

Business Modeler > Parameters > System Parameters.

The System Parameters window appears.

2. Select the Engine tab.

The existing engine profiles are displayed in the Engine Profile drop-down menu.

3. Click New.

The Create Engine Profile dialog box appears.

4. Select the engine profile you would like to use as a base for your new profile, if
desired.

5. In the Profile Name field, enter the name of the engine profile.

6. In the Init Params Table Name, enter the init params table to be associated with this
engine profile.

1-8 Oracle Demantra Analytical Engine Guide

7. In the Profile Type field, select the appropriate profile type: Batch, Simulation
Engine, or Subset Forecasting.

8. If you have selected Simulation Engine or Subset Forecasting as the Profile Type,
use the Select Parent batch Profile list to assign the appropriate parent profile.

Note: When choosing a Subset Forecasting profile it is
recommended the same profile be chosen as profile it is based on
and parent profile. If base and parent profiles are not the same, all
parameters of newly created profile need to be reviewed to ensure
settings are valid and match configuration of parent profile. For
more information, refer to Subset Forecasting Mode Characteristics.

9. Click OK.

The engine profile is saved.

Related Topics
Configuring the Analytical Engine, page 3-x

Engine Parameters, page 10-1

Specifying the Demand Stream in an Engine Profile
 Statistical forecasts are calculated by analyzing a historical data stream to find trends
and seasonal patterns in the data, and then projecting those trends and patterns into the
future. One of the keys to this process is the historical data stream. This data stream is
typically referred to as the demand stream. Often there are several options for which data
stream to use, with typical examples being shipments, orders, and consumption data.

The decision on which demand stream to use is typically based on:

• Availability of data

• Quality of data

• Business problem being addressed

Sometimes, it is desirable to create forecasts based on historical data taken from more
than one demand stream. Some sample scenarios are the following:

• A health food company wants to base its production forecast on orders. Orders are
readily available for all stock keeping units (SKUs) and customers. This data serves
as the basis for generating a forecast. For key customers, point of sales consumption
data is available. This information gives the best insight on true weekly
consumption and consumer behavior. For these customers, it is desired to generate

Introduction to the Analytical Engine 1-9

a forecast based on the point of sales data. This forecast can be compared with the
order-based forecast as well as allow vendor managed inventory (VMI)
relationships. Ad hoc what if analysis (simulation) is required for both data
streams.

• A home goods company wishes to generate two forecasts. One forecast is based on
shipments, while the second is based on consumer orders. The two forecasts are
then compared. Areas with large differences are analyzed for forecasting anomalies.
Order data is available weekly, while, due to data collection limitations, shipment
information is only available every two weeks. This requires that the forecast
generated based on shipments be run every 2 weeks while the order forecast is run
weekly. Customer IT best practice requires the system to be able to display 5
versions of the order forecast and 8 versions of the shipment forecast.

Controlling which data series is used as the demand stream by the Oracle Demantra
Analytical Engine is done by configuring the quantity_form system parameter. The
quantity_form parameter contains an expression that is used by the engine to retrieve
and aggregate demand stream data from the SALES_DATA table. Changing the
expression results in different demand streams, or different combinations of demand
streams, being used as the basis for generating the forecast.

To define the quantity_form parameter for an engine profile:
1. Navigate to System Parameters.

Business Modeler > Parameters > System Parameters.

The System Parameters window appears.

2. Select the Engine tab

3. Select the forecast from the Engine Profiles drop-down menu.

4. Navigate to the Data Manipulation sub tab.

5. Specify the expression in the Value column for the quantity_form profile row. The
expression can be simple or complex. Make sure the quantity_form expression for a
specific engine profile points to database columns containing the historical demand
stream desired for the profile.

The default syntax is: greatest(nvl(pseudo_sale,actual_quantity)*(1 +
nvl(demand_fact,0)),0). This expression checks for the availability of user overrides
stored in the pseudo_sale column. If they exist, these overrides supersede the
historical sales found in the actual_quantity column. Any user defined % increase is
then applied.

Example
• This is an example of a simple expression:

1-10 Oracle Demantra Analytical Engine Guide

actual_quantity

Note: When running the Analytical Engine the expression will
be wrapped by a 'sum' function, therefore aggregation
functions should not be explicitly included in the expression.

• This is an example of a more complex expression:

nvl(pseudo_sale,nvl(shipments,orders))

Here user overrides take precedent. If no user overrides are present, the
expression uses shipments where available, otherwise it defaults to orders.

• To use a different demand stream such as booking, enter the following
expression:

nvl(pseudo_sale,actual_quantity)*(1 + nvl(demand_fact,0))

• For a Spares Forecasting demand stream (not based on the SALES_DATA
table), the following expression represents a possible configuration:

nvl(nvl(spf_shipment_over, spf_shipment_in),0)

6. Click Save.

Note: When specifying quantity_form definitions, it is strongly
recommended that the expression be constructed such that it prevents
negative values.

Maintaining Engine Versions
The engine maintains the quantity of most recent engine versions defined in system
parameter profile_forecasts_versions. For each of these versions, a full complement of
columns is kept in SALES_DATA and PROMOTION_DATA. If a specific Engine Profile
does not have a profile_forecasts_versions parameter, then the parameter value found
in the system parameter active_forecast_versions is inserted into the profile during the
engine run.

To define the number of engine versions maintained:
1. Navigate to system parameters.

Business Modeler > Parameters > System Parameters.

The System Parameters window appears.

2. Select the Engine tab

Introduction to the Analytical Engine 1-11

3. Select the forecast from the Engine Profiles drop-down menu.

4. Navigate to the Time sub tab.

5. The parameter named profile_forecasts_versions, located on the Time sub tab
controls the number of forecast versions for the given Engine Profile. The default
value is 5.

Illegal Characters in Demantra
Within Demantra, do not use the following special characters:

Single quote (')

Double quote (")

Ampersand (&)

If you use these characters, unexpected results may occur.

Basic Concepts 2-1

2
Basic Concepts

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter introduces the basic concepts involved with configuring the Analytical
Engine.

This chapter covers the following topics:

• Overview of Forecasting

• Causal Factors

• Promotions (PE Mode Only)

• Forecasting Models and the Engine Flow

• The Forecast Tree

• Influence and Switching Effects (PE Mode Only)

• Combination-Specific Settings

• The Forecast Data

Overview of Forecasting
The Analytical Engine generates a forecast that considers the historical demand and the
causal factors.

In this process, the Analytical Engine calculates a set of coefficients that describe how
each causal factor affects demand for each item-location combination, over time. The
Analytical Engine then uses those coefficients, along with future values for the causal
factors, to determine the forecast.

You do not see or work with the coefficients directly, but you may find it helpful to see
the general equation to which they apply:

D = constant + A1*CF1 + A2*CF2 + A3*CF3 + ...

2-2 Oracle Demantra Analytical Engine Guide

Where:

• D is the demand for a specific combination.

• constant is the constant demand for that combination, independent of time.

• CF1, CF2, CF3, and so on are the causal factors in the system. Some of them are
local and apply just to this combination; others are global. All of them vary with
time.

• A1, A2, A3, and so on are the coefficients that the Analytical Engine calculates for
this combination. These are the same for all dates.

Demantra uses an equation like this for each combination. The Analytical Engine solves
all the equations simultaneously and calculates the coefficients, which it then uses to
generate the forecast.

 After the forecast is generated the following information may be available:

• Base forecast

• Lift Forecast

• Item node, Location node, and the Level ID for the forecast

• Models used successfully for the forecast

• Models, which the engine attempted to use for the forecast and failed

• How the forecast was generated

• Metrics demonstrating quality of the forecast

Causal Factors
Causal factors provide information about historical events that are expected to recur in
the future. Causal factors cause demand to deviate from a trend. More specifically, a
causal factor is a time-varying quantity (such as price, season, or day of the week) that
affects demand. Demantra requires historical data for causal factors, as well as future
data that describes expected occurrences that will affect demand.

Note: The Analytical Engine uses multiple theoretical models, and not
all of them consider causal factors; see "Forecasting Models and the
Engine Flow".

Basic Concepts 2-3

Types of Causal Factors
Demantra uses the following general types of causal factors:

• Global causal factors (global factors) apply to all item-location combinations. For
example, a season is a global causal factor. Most Demantra implementation use
global factors. Oracle provides a set of base causal factors; see "Base Causal Factors".

• Local causal factors apply to specific item-location combinations. For example, a
discount applied to a specific item in a specific sales region is a local causal factor.
Price is another local causal factor.

Local causal factors include activities, which are a special kind of local causal factor
that supports activity shape modeling; see "Activities and Activity Shape Modeling".

• (For PE mode only) Promotional causal factors apply to specific item-location
combinations and to specific promotions. Promotional causal factors are available
only within Promotion Effectiveness. Promotional causal factors are based on the
attributes of the promotions in the system. You can use promotional causal factors
to perform promotional shape modeling. See "Configuring Promotions and
Promotional Causal Factors".

Base Causal Factors
Demantra provides the following base causal factors. Except for Price, these are all
global causals; Price is local:

• Constant

• t (time)

• Causal factors that correspond to the months of the year. The names of these causal
factors depend on the time resolution:

• d1, d2, ..., d12 (if the time resolution is monthly or weekly)

• m1, m2, ... m12 (if the time resolution is daily)

• Causal factors that correspond to the days of the week (included only if the time
resolution is daily): d1, d2, ..., d7

• Price

For these causal factors (except Price), Demantra provides data (for many years in the
future) and the correct configuration. You should not edit or delete these causal factors.
In the case of Price, you need to make sure that the sales_data table contains the price
information that this causal factor uses.

2-4 Oracle Demantra Analytical Engine Guide

Data and Configuration Details
Demantra requires the following information for each causal factor:

• Data for the causal factor for each time bucket, past and future.

• Configuration details on how the Analytical Engine should use this causal factor.
Here you make the causal factor known to the Analytical Engine, and you specify
how the engine should use it.

For reference, the following table summarizes where this information is stored:

Causal factor type Location of data Configuration details

Global factors Column in Inputs table Causal Factors screen of the
Forecast Tree Editor

Local causal factors
other than activities

Column in sales_data table or
SQL expression that
aggregates data from that
table

Activities Column in sales_data table

Promotional causal
factors (For PE mode
only)

Aggregation function
retrieves data from the
promotion_data and
promotion tables

Promotional Causal Factors screen
of the Forecast Tree Editor

Activities and Activity Shape Modeling
The Demantra activity shape modeling feature helps you easily reapply a demand profile
that has a distinct shape over time. For any causal factor, Demantra requires past and
future data. In the case of causal factors such as price and seasons, it is a simple process
to obtain and load the data. Other causal factors are more difficult to describe
mathematically. For example, when you run a promotional activity on a product, you
may see a demand curve like the following:

Basic Concepts 2-5

If you plan a future activity that is similar to this historic activity, you would expect it to
create similar demand. In general, shape modeling lets you do the following:

• Identify a historic demand curve as a reusable curve

• Create another instance of that curve starting at some future date, creating a new
activity

Demantra internally represents the shape as a linear combination of as many as eight
Oracle proprietary shapes. Then the Analytical Engine automatically uses this demand
shape along with all the other data in the system to determine the forecast.

By default, the Analytical Engine averages the most recent data for a given shape with
the stored information about that shape, which is an average of all the past observations
of this shape. Users can control this, by forcing the Analytical Engine to rescale the
generated shape to align with the recent data. Specifically, the user can indicate the
number of buckets for which the shape alignment should occur, starting with the
beginning of the shape. Typically the user specifies either 0 (the default) or the length of
the shape (to realign the entire shape).

2-6 Oracle Demantra Analytical Engine Guide

Note: Shape modeling capabilities are different in the two engine
modes:

• In DP mode, the engine supports only activity shape modeling.

• In PE mode, the engine supports both activity shape modeling and
promotional shape modeling. See "About Promotion Shape
Modeling".

See "Engine Modes: DP and PE".

See also

"Configuring Causal Factors"

"Configuring Promotions and Promotional Causal Factors" (PE only)

Promotions (PE Mode Only)
A promotion is an occurrence that starts at a specific date, has a certain duration, and
has a certain time-varying affect on sales. Specifically, within Promotion Effectiveness, a
promotion is associated with one or more item-location combinations (at any
aggregation level) for a given time bucket or buckets. A given combination can have
multiple promotions at any given time bucket.

As with sales data, promotion data can be imported. Depending on how your system is
configured, Promotion Effectiveness may continue to import new promotions or users
might create promotions within the Promotion Effectiveness user interface. Promotion
Effectiveness displays promotions in the Activity Browser in the worksheets; here users
create, edit, and remove promotions.

Promotion Attributes
The Analytical Engine does not use the promotions directly. Rather it uses the
promotion attributes, such as discount amount, display type, and so on, each of which
can have a different effect on demand. The Analytical Engine converts the values of the
promotion attributes to promotional causal factors.

During implementation, you specify the attributes that promotions can have, and you
specify rules for converting attribute values into causal factors. When users create
promotions within Promotion Effectiveness, they specify values for these attributes.

Promotion Dates
Promotion Effectiveness assumes that a promotion has an effect between its start and
end dates, as provided to Demantra, but typically the promotion has an actual effect in
a slightly different span of time, as in the following example:

Basic Concepts 2-7

There is often a lag between the demand and the promotion associated with that
demand. Typically this lag is larger with order data than with point of sale (POS) data,
because retailers place orders further in advance. But there is often a lag even with POS
data because customers know about an upcoming promotion and often delay normal
purchases until the promotion occurs.

Accordingly, Promotion Effectiveness supports a couple of adjustments:

• First, you can specify an overall shift, which forces the Analytical Engine to shift the
promotion dates globally by a specific number of time buckets. In the example
above, the shift is -1 bucket.

This shift time applies to all the promotions (but not to other causal factors).

• Second, you can lengthen or "stretch" the span of a promotion by specifying an
additional number of time buckets on either end of the promotion. In the preceding
example, we added two time buckets to the start of the promotion.

Note: Users may want to add lift or other overrides to the
promotion. It is important to remember before the Analytical
Engine has been run, the database contains records only for the
actual promotion dates; these records are created when the
promotion is created. So overrides can be entered only on those
dates.

After the engine has been run, however, the database has records
for the additional dates as well and overrides can then be entered.

Promotion Hierarchy
For the benefit of users who are creating or managing promotions, you can provide a

2-8 Oracle Demantra Analytical Engine Guide

hierarchy that helps the users group the promotions. Then, within a worksheet, the
Activity Browser can display that hierarchy, as in the following example:

The Analytical Engine ignores the hierarchy itself. For the engine, the important
consideration is the promotion attributes, as noted earlier.

Promotions and Promotion Shape Modeling
In addition to performing shape modeling for activities, the Promotion Effectiveness
supports shape modeling for promotions. Specifically, you enable shape modeling for
individual promotional causal factors, as needed.

As with ordinary activity shape modeling, Demantra internally represents the shape as
a linear combination of the shapes. Then the Analytical Engine automatically uses this
demand shape along with all the other data in the system to determine the forecast.

Forecasting Models and the Engine Flow
The Analytical Engine uses a set of theoretical models, each of which evaluates some or
all of the data. Most, but not all, of these models use causal factors. The models are
documented in "Theoretical Engine Models".

The Analytical Engine follows a specific process of examining the data, checking for
outliers and so on, evaluating the usefulness of each theoretical model, and generating
the forecast. This process is described in detail in The Forecasting Process, page 9-6.

Demantra supports multiple Analytical Engine profiles. These engine profiles can be
configured to generate forecasts for different scenarios such as service parts planning.
These engine profiles are described in detail in Engine Profiles, page 1-4.

Demantra provides parameters to control both the theoretical models and the overall
engine flow. See Tuning the Analytical Engine, page 7-x; only advanced users should
adjust these parameters.

The Forecast Tree
In general, forecasting is most accurate when it can be performed at the lowest possible
allowed aggregation level. However, sometimes there is not enough data at that level
for all combinations. For those combinations, the Analytical Engine aggregates the data
to a higher level and tries to generate a forecast there. The purpose of the forecast tree is
to organize data for this process.

Basic Concepts 2-9

Note: The Analytical Engine also considers flags on different
combinations; see "Combination-Specific Settings".

A forecast tree is associated with each of the configured batch engine profiles, thereby
providing unique forecasting results for different forecast scenarios such as service
parts planning.

As noted in "Levels", you define aggregation levels for use in worksheets. You use some
of these levels to build the forecast tree. For PE mode, you also use the forecast tree to
define the influence relationships.

Basics
Whenever the Analytical Engine generates a forecast at an aggregate level, it
automatically splits the forecast for the parent node across the child nodes, again using
the structure of the forecast tree. The proport mechanism controls how the aggregated
forecast is split. For information on tuning proport, see "Proport Mechanism".

Each node in the forecast tree aggregates both by items and by locations. The following
example shows a small part of a forecast tree.

The bold boxes show the nodes at which the Analytical Engine is forecasting.

• In this example, there is enough data at the SKU-store level for SKU 001 and
SKU 002; the Analytical Engine can generate a forecast at that level for those SKUs.

• On the other hand, there is less data for SKU 003, so the Analytical Engine
aggregates data for that SKU across all the stores in Region AA, generates the
forecast for those SKUs at the SKU-region level, and then splits to the store level.

 Accuracy Metrics for Forecasts
 While generating the forecasts, the Analytical Engine also generates the accuracy
metrics for the forecast to provide information regarding the quality of the forecast. The
Analytical Engine generates the quality measures for forecasted combinations based on
analysis of past forecasts, as the quality of a forecast is largely indeterminable without
performing sample tests on the forecast data. Accuracy metrics generated by the

2-10 Oracle Demantra Analytical Engine Guide

Analytical Engine are known as in-sample metrics.

In-sample accuracy metrics use the following formulas to judge the quality of the
generated forecast for all spares considered in that run:

• MAPE Mean (Absolute Percentage Error): Represented by mean (abs (Series - Fit))
/ mean (abs (Series))

• RMSE Root (Mean Squared Error): Represented by sqrt {sum (Resid. ^ 2) /
(LengthSeries - Complexity)}

• PBias (Percentage Bias): Represented by sum (Resid) / sum (Series)

• Relative_Error (Relative Error): Represented by median (abs (Series. / Fit-1))

 The observations made by the Analytical Engine using the above-mentioned formulas
are stored in the MDP_MATRIX table.

Additional out-of-sample error calculation can be done using a stand alone error
calculation process. For more details refer to Out of Sample Error Calculations in this
document.

 For a forecast tree, the accuracy metrics allocate down to the lowest level of the tree.

Example
The following figure depicts a forecast tree, where each node represents aggregated
data, both by items and by locations.

Node F has a forecast at the lowest level. Therefore, all accuracy metrics generated at
node F would be assigned to the member data for node F.

Node G has a forecast at the lowest level. Therefore, all accuracy metrics generated at
node G would be assigned to the member data for node G.

Node H failed at the lowest level and the forecast eventually is generated at node D.
The accuracy metrics from node D should be allocated to all nodes that get a forecast
from node D. Node G will get the accuracy metrics from node D, whereas node H will

Basic Concepts 2-11

not receive the same from node D.

Forecast Tree Example
The following list describes a possible forecast tree.

1. Highest level: all items and all locations, aggregated together

2. All items-Division

3. Brand-Division

4. Brand-Region

5. SKU-Region

6. Lowest level: SKU-Store

Finding the Effects of Promotions (PE Mode Only)
For PE mode, the forecast tree must also be organized to support how the Analytical
Engine identifies the effects of promotions. When you set up the forecast tree, you
identify levels in the tree that the Analytical Engine can use in specific ways, as follows:

• The influence range level (IRL); see "Influence Ranges".

• The influence group level (IGL); see "Influence Groups".

• The lowest promotion level (LPL), which is lower than (or the same as) the IGL.
This specifies the level at which promotions can be meaningfully aggregated
together. For any node in the LPL, all promotions are assumed to have the same
attribute values.

Out of Sample Error Calculations
Service Parts Forecasting makes use of both in-sample MAPE, see Accuracy Metrics for
Forecasts in this document and out-of-sample MAPE, a calculated metric that occurs
later, not during the batch engine run. SPF MAPE (out-of-sample) compares the actual
sales data as it becomes available in the system to the forecast for a specified time
period, and displays the difference as a percentage. This value is based on the forecast
that is sent to Service Parts Planning (determined by SPF Final Forecast) and then
archived in Demantra. It is a combination of the analytical forecast, the calculated
forecast, and any user overrides.

Formula: sum (absolute value | Actual Demand - Lagged Forecast | / (Actual Demand)
/ Number of Observations For example, a forecast is generated monthly and the total
average quantity for each of the first six months of 2010 is 2000 units, resulting in
forecast of January of 2000 units Actual sales for January were lower; 1634. Therefore,

2-12 Oracle Demantra Analytical Engine Guide

this series would display a value of 22.4% (the result of abs(2000-1634)/1634).
Additional example: A forecast is generated weekly. The expected demand for the first
week in March is 300, but the actual demand was 346. Therefore, this series would
display a value of 13.3% (the result of abs(300-346)/346). If either demand or the forecast
is zero (0), then the value would be 0%. If both forecast and demand are zero, then the
value would be 100%.

The SPF Calc Forecast Accuracy seeded workflow is used to calculate error and
variability associated with Service Parts Forecasting. This workflow can be called
ad-hoc when accuracy measures should be generated. The seeded workflow is
configured to aggregate information at levels Organization and Latest revision for the
last four periods of history. The first three series pairs generate an accuracy measure for
the final, analytical and calculated forecast streams by comparing the latest archived
forecast with actual usage values. The last series pairs compare the last two archived
versions of the final forecast with each other to determine forecast variability. If
additional error calculation processes are required, it is recommended that additional
steps be added to this workflow or separate workflows be created to call the
APPROC_CALC_ACCURACY stored procedure.

APPROC_CALC_ACCURACY Stored Procedure
Error calculation is called from the procedure APPROC_CALC_ACCURACY. The
procedure has two parameters as inputs defining the aggregation level at which the
calculation is done. Each level defines an aggregation dimension. When calculating
error for series on sales_data, one level from the item and one level from the location
dimension should be specified. If the series being compared reside on a General Level
data table, one of the levels specified can reside on the General Level. Levels should be
specified by the internal ID of the level being referenced. The calculation start and end
period are integers specifying which range periods should be aggregated together when
calculating the error.

These parameters are relative to the current end of history date specified by the
max_sales_date parameter. A value of 0 would match this date, a value of -1 would be
one period prior to this date and a value of 5 would be five periods after this date. For
example, if the last four periods of history should participate in the calculations, the
values -3 and 0 should be assigned to the start and end parameters respectively. The
series groups define the groups of three series associated with the calculation. As
defined in the previous formula, the difference between series 1 and series 2 are
aggregated to the defined levels and time range and then divided by the total of series
one for the same aggregation. The resulting value is written to the third series which is
the output series.

All three series in a group must reside on the same data model dimension, the first two
residing on a data table and the third residing on the combination table associated with
the two. For example, if series 1 and 2 are associated with the Service Part data table, the
third series must be associated with the Service Part Matrix table. Up to five series
groups may be defined. Each series group can refer to a different data table and
dimension.

Basic Concepts 2-13

Inputs are:

• Calculation Aggregation Level 1

• Calculation Aggregation Level 2

• Calculation Start Period

• Calculation End Period

• Series group 1: Inputs 1, Input 2 and Output

• Series group 2: Inputs 1, Input 2 and Output

• Series group 3: Inputs 1, Input 2 and Output

• Series group 4: Inputs 1, Input 2 and Output

• Series group 5: Inputs 1, Input 2 and Output

The parameters p_use_parallel_hint and p_num_parallel_jobs define the parallel run of
the APPROC_CALC_ACCURACY procedure. These parameters are used to improve
performance of MAPE calculation.

The parameter p_num_parallel_jobs indicates the number of parallel jobs when MAPE
is executed. The value of this parameter must be larger than 1. The maximum value of
the p_num_parallel_jobs is JOB_QUEUE_PROCESSES in your Oracle database
configuration.

The parameter p_use_parallel_hint can be 0 or 1. When p_use_parallel_hint is set to 0,
no parallel hints will be used. When p_use_parallel_hint is 1, the parallel hints on the
result matrix table will be used. The number of parallel hints in this case is equal to
p_num_parallel_jobs.

Influence and Switching Effects (PE Mode Only)
To describe how the item-location combinations affect each other, you specify the
influence ranges, influence groups, competitive item groups, and competitive location
groups.

Influence Ranges
When you define the forecast tree, you specify the influence ranges (IR). To do so, you
specify the influence range level (IRL); each node within the IRL is an influence range.

Each influence range is a set of combinations that do not interact with combinations
within any other IR. The influence ranges control how far the Analytical Engine looks for
influence when promotions are run. This determines the breadth of the causality. An
influence range is a set of item-location combinations that potentially interact with each

2-14 Oracle Demantra Analytical Engine Guide

other but not with combinations of other IRs. Typically each IR represents a different
geographical area.

No information is available above the IRL to calculate effects of promotions. Therefore,
if for certain nodes the Analytical Engine generates a forecast above the IRL, the
forecast for those nodes includes only the baseline forecast.

Influence Groups
When you define the forecast tree, you also specify the influence groups (IG), which are
subdivisions of the influence ranges. To do so, you specify the influence group level (
IGL); each node within the IGL is an influence group.

Each influence group consists of an item group and a location group with the following
behavior:

• An item group (I) is a set of items that relate identically to all other items. In
particular, the items within an item group compete in the same way with items of
other item groups. These items are interchangeable, as far as promotions are
concerned. For example, suppose that an item group is diet colas. A promotion on
any diet cola has the same effect on sales of non-diet colas, for example.

• Similarly, a location group (G) is a set of locations that relate identically to all other
locations.

Using these definitions, the engine can calculate the following three causal factors for
each lowest-level combination:

self Influence caused by promotions on this combination.

own Influence caused by other combinations within the same IG.

other Influence caused by all other combinations within the IR.

The Analytical Engine uses these causal factors internally to calculate the switching
effects caused by promotions.

No information is available above the IGL to calculate switching effects. Therefore, if for
certain nodes the Analytical Engine generates a forecast above the IGL, the forecast for
those nodes includes only the baseline forecast and the direct effects.

Competitive Item Groups (CI) and Competitive Location Groups (CL)
Typically, you also define competitive item groups (CI) and competitive location groups
(CL):

• A competitive item group (CI) is a set of item groups that compete with each other.

Basic Concepts 2-15

For example, diet beverages could be a CI that contains the following three item
groups: diet colas, diet fruit juices, other diet beverages. Non-diet beverages could
be another CI.

• A competitive location group (CL) is a set of location groups that compete with each
other.

You do not define these groups directly in the forecast tree. Instead, you set them via
parameters. The Analytical Engine does not aggregate data to the CI and CL, so it is not
strictly necessary to make them consistent with the rest of the forecast tree; they must of
course, be at a higher aggregation level than the item and location groups, respectively.

Switching Effects
A switching effect occurs when a sale for a given item-location combination affects sales
for another item-location combination. Promotion Effectiveness uses the preceding
classification system to describe different switching effects. Each effect is associated
with relationships between one item-location combination and others.

Effect* CI item group (I) CL location group (L)

Brand
switching
(or category
switching)

different different by
definition

same same or different

Channel
switching

different different by
definition

different different by definition

Product
switching

same same same same

same different same same

same different different different by definition

Store switching same same or
different

same different

same same different different by definition

*Depending on how you define CI, CL, I, and L, the names of these effects may or may not be
appropriate. You can rename these effects by renaming the series that display them.

Notice that if the CI and CL each have only one member, there is no competition, and
the only effects that can be seen are product switching and store switching.

2-16 Oracle Demantra Analytical Engine Guide

For simple example, consider a single store and the following item groups and
competitive item groups:

• If a promotion is run for a diet cola (item in I1), that can have the following effects:

• Effect on sales of other diet colas at this store. Because both items are within the
same item group, this is a case of product switching.

• Effect on sales of diet juices (I2) at this store. This is another case of product
switching. The items are in different item groups but are in the same CI (CI1).

• Effect on sales of non-diet colas (I3) at this store. Because non-diet colas are in a
different CI than the diet colas, this is a case of category switching.

Combination-Specific Settings
The Analytical Engine also considers specific settings that vary from combination to
combination, which are stored in the mdp_matrix table and which are affected by global
parameters. This section provides an overview of the key settings, which are provided
to support users who want closer control over the forecast. You can create levels or
series that use these settings, as needed. Not all settings are meant to be changed
directly.

Fictive Status
Demantra sets a flag for each combination to indicate whether that combination is real
or not. In mdp_matrix, the is_fictive flag has one of the following values:

Value General meaning

1 Combination is fictive (not real). This combination was created via Member
Management.

Basic Concepts 2-17

Value General meaning

0 Combination is real and it has non zero sales data.

2 Combination is real but all sales are zero or null.

3 Errors occurred while loading this combination.

The Analytical Engine does not use this flag directly, and users should not edit it.

Age
Each combination is either young, live, or dead, depending on the relative age of its
sales data. Demantra uses two cutoff dates to determine the age of a combination:

The dying date is controlled by the dying_time parameter, and the mature date is
controlled by the mature_age parameter. Both parameters are global.

Demantra automatically uses these cutoff dates as follows:

• If there are no sales for the combination after the dying date, the combination is
considered dead.

• If there are no sales for the combination before the mature date, the combination is
considered young.

• Otherwise, the combination is live or active.

See "Engine Parameters".

The parameters used to determine if a combination is active, dead or young are:

• hist_glob_prop

• dying_time

• mature_age

2-18 Oracle Demantra Analytical Engine Guide

At times there is a business need to override these global definitions. Typically this
would be for specific items and locations for which a more or less reactive status change
is desired. For example: The majority of combinations should be deactivated if they
have not sold in three months. However, seasonal items require a different setting, and
should not be deactivated unless they have not sold for more than a year. These
parameters are set globally, but can be overridden individually per combination.

The User-Controlled Do_Fore Flag
Demantra provides a combination-specific flag with which advanced end users can
control how the Analytical Engine works on individual combinations. This flag is in the
mdp_matrix table and is called do_fore. In order to enable users to set this flag, you
generally create an editable series that uses this flag. Users can set this flag to any of the
following values:

Value Meaning

0 The Analytical Engine will ignore this combination

1 The Analytical Engine will consider the combination. This is the default value.

2 The Analytical Engine will create a placeholder forecast for this combination
that consists of zero values (which is useful if the user wants to create an
override). The engine will otherwise ignore this combination. You typically
use this setting for combinations created through Member Management.

The sole purpose of the do_fore flag is to give users a way to control the prediction
status of the combination, as described next. The do_fore flag is not used directly by the
Analytical Engine.

Prediction Status
In mdp_matrix, the prediction_status indicator of a combination instructs the Analytical
Engine how to handle this combination. The following values are possible:

Value Affect on the Engine Comments

No Forecast (96) The Analytical Engine
ignores this combination.

For future use; this setting cannot
currently be achieved or used.

Basic Concepts 2-19

Value Affect on the Engine Comments

Create Zero
Forecast (97)

The Analytical Engine
creates a zero forecast but
otherwise ignores the
combination.

Young (98) The Analytical Engine
creates a zero forecast but
otherwise ignores the
combination.

Sales for this combination are too new to
be used for prediction.

Dead (99) The Analytical Engine
creates a zero forecast but
otherwise ignores the
combination.

Sales for this combination are not recent
enough to be used for prediction.

Live or Active (1) The Analytical Engine uses
this combination for
forecasting.

Demantra automatically sets the prediction_status indicator and users should not
change it.

How Prediction Status Is Set for Fictive Combinations
For fictive combinations (is_fictive = 1), Demantra automatically sets the prediction status
to 98.

How Prediction Status Is Set for Real Combinations
The proport mechanism considers all real combinations (is_fictive equal to 0 or 2). It
automatically sets the prediction status indicator for each combination based on the age
of the combination and the do_fore setting of the combination. Specifically, it sets the
prediction_status indicator as follows:

do_fore is 0 do_fore is 1 do_fore is 2

Combination is dead prediction_status is 99 prediction_status is
99

prediction_status is 97

Combination is
young

prediction_status is
98

2-20 Oracle Demantra Analytical Engine Guide

do_fore is 0 do_fore is 1 do_fore is 2

Combination is live prediction_status is
1

Aggregation Flags
As noted in "The Forecast Tree", the Analytical Engine sometimes needs to aggregate
lowest level data in order to create a more accurate forecast. You can control, per
combination, whether this combination should be aggregated to a higher level.

• If data for a specific combination is not aggregated, then that
combination is not forecasted.

• Whenever the Analytical Engine aggregates data for any
combination during forecasting, the engine also splits some of the
forecast to that combination, according to the stored proportions of
that combination.

Demantra provides three flags so that you can specify different rules based on the age
of the combination. The flags are as follows:

Flag When used

do_aggri If combination is live

aggri_98 If combination is young

aggri_99 If combination is dead

Each of these flags (in mdp_matrix) specifies whether to aggregate data for this
combination during forecasting.

Other Combination-Specific Settings
Demantra provides many parameters that control how the Analytical Engine behaves.
By default, these parameters affect all the combinations in the forecast tree. Through the
user interfaces, an advanced user can set analytical parameters for individual
combinations if needed.

Basic Concepts 2-21

The Forecast Data
The Analytical Engine writes the current forecast to one of the following fields in
sales_data: Fore_0, Fore_1, Fore_2, and so on.

Note: For PE mode, this is the baseline forecast.

The Analytical Engine cycles through these columns. Each time, it writes the current
forecast into one column (overwriting the oldest forecast). The Analytical Engine then
adds a row to the forecast_history table that describes this forecast and that indicates
which column it is stored in.

The number of saved forecasts is specified by the active_forecasts_versions parameter.

Forecast Decomposition (PE Mode Only)
For PE mode, the Analytical Engine also populates the following database fields in
promotion_data to show the effects of the promotions. These fields show the effects of a
given promotion on a given combination, at a given date:

Field Purpose

fore_0_uplift Direct lift on a combination during the promotion dates, due to a
promotion specifically associated with that combination.

fore_0_pre_effect Direct lift on this combination before the promotion dates, due to a
promotion specifically associated with that combination.

fore_0_post_effect Direct lift on this combination after the promotion dates, due to a
promotion specifically associated with that combination.

fore_0_brand Effects of brand or category switching as described in "Switching
Effects".

fore_0_sw_channel Effects of channel switching on this combination, at this date, due to
this promotion.

fore_0_product Effects of product switching on this combination, at this date, due to
this promotion.

fore_0_store Effects of store switching on this combination, at this date, due to this
promotion.

For the benefit of the users, you create series that use these data fields. Be sure to

2-22 Oracle Demantra Analytical Engine Guide

provide series names that make sense to the users and that are appropriate for the
business.

Forecast Versions (for Batch Runs)
As noted earlier, Demantra keeps a number of previous forecasts (as specified by the
active_forecasts_versions system parameter). The most recent batch forecast is
numbered 0, the previous one is numbered 1, and so on. When the Analytical Engine
generates a new forecast, it moves the previous ones to different columns in the
database. See "Engine Parameters".

Each series you create is implicitly or explicitly associated with a specific forecast
version or multiple forecast versions. Typically, the large majority of series are
associated with the most recent forecast, but it is often useful to configure some series to
capture information associated with a previous forecast, or to compare multiple
forecasts.

Note: If you need to display present and past versions of other data,
you can configure and run rolling data sessions, which copy data from
one series to another as specified. See "Configuring Rolling Data".

For information on active_forecasts_versions, see "Non-Engine
Parameters".

Configuring the Analytical Engine 3-1

3
Configuring the Analytical Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to configure the Analytical Engine. It also introduces
guidelines for configuring the forecast tree, causal factors, and the configure to order
(CTO) feature.

This chapter covers the following topics:

• General Data Requirements

• Structure and Requirements of the Forecast Tree

• Split Forecast by Series

• Configuring SALES_DATA node-splitting

• Guidelines for the Forecast Tree

• Guidelines for Causal Factors

General Data Requirements
All the sales and causal factor data should be as complete as possible. In particular, if
you do not have complete causal factor data, you may have problems like the following:

• If a causal factor does not have values for future dates, it may not have a desired
effect on forecasts. For example, if the Analytical Engine has learned that changes in
price have an impact on sales, and the price causal factor is not extended into the
future, this implies that the future price is zero. In this case, there will be a shift in
the forecast values (presumably upwards: free items "sell" well). To overcome this
problem, the fill-causals method can be used by checking the fill-causal option for
that causal factor.

• Likewise, if the historical data is not long enough to learn the influence of all

3-2 Oracle Demantra Analytical Engine Guide

seasonal causal factors, the forecast for a missing seasonal period (for example
month) may have an unexpected jump.

In general, point-of-sale (POS) data is preferable to orders. POS data is continuous, in
contrast to order data, which is more sporadic, and it is easier to generate forecasts from
POS data.

If you are using the Analytical Engine in PE mode, note that it is also hard to detect
switching effects in order data, and the lags between promotion dates and their effects
are more variable.

Structure and Requirements of the Forecast Tree
Within the forecast tree, all item levels of the tree must belong to the same item
hierarchy of the same item dimension, and all location levels must belong to the
location hierarchy of the same location dimension. For example, consider the following
set of item levels:

Here, the SKU dimension includes nine hierarchies. If you include the Life Cycle level
in the forecast tree, that means that the only other levels you can include are SKU and
SKU Type. (A true implementation would have many more levels with more nesting.)

A given level can be included in multiple, adjacent levels of the forecast tree. For
example, if the lowest forecast level consists of SKUs and stores, the next level above
that could be the SKUs and regions. See "Forecast Tree Example".

After you specify the levels in the forecast tree, you must indicate which levels the
Analytical Engine should use for various purposes, during the forecasting process.
Specifically, you must indicate the following levels in the forecast tree:

Configuring the Analytical Engine 3-3

Engine
mode

Level Description Requirements

Both Highest fictive
level (HFL)

Level at which data is
completely aggregated.
Includes the item HFL and the
location HFL.

Created automatically.

PE mode
only

Influence range
level (IRL)

Defines the influence ranges.
Each node of this level is a
different influence range.
Typically each IR represents a
different geographical area.

Must be above the
influence group level
(IGL).

This is usually above the
maximum forecast level.

Oracle recommends that it
is at least two levels above
the IGL.

Both Maximum
forecast level

Highest aggregation level at
which the Analytical Engine
runs.

Must be at or above the
minimum forecast level.

PE mode
only

Influence group
level (IGL)

Defines the influence groups.
Each node of this level is a
different influence group.

Must be at or above the
lowest promotion level
(LPL).

Must be consistent with the
item groups and location
groups that you define in
"Defining Influence and
Competition (PE Mode
Only)".

Oracle recommends that it
is two levels above the
LPL.

Both Minimum
forecast level

Lowest aggregation level at
which the Analytical Engine
runs.

PE mode
only

lowest promotion
level (LPL)

Lowest level at which
promotions can have different
attribute values from other.

Must be at or below the
minimum forecast level.

Note: General levels are also valid in the forecast tree. For more

3-4 Oracle Demantra Analytical Engine Guide

information, see "Levels".

Split Forecast by Series
Demantra time dependant information (including sales and forecast data) is always
stored at the lowest possible item, location, and time granularity. And since the forecast
engine is typically run at a higher level, forecast allocation or "splitting" must occur.
There are two ways the engine can split higher level forecast to the lowest levels. The
"matrix proportion" method splits node data according to calculated monthly
proportions. These proportions are based on average historical monthly sales.

If the sales history for Item A and Item B, as a percentage at a given location, has
averaged 70/30 (70% Item A, 30% Item B), then by the matrix proportion method, when
forecasted together in aggregate, the engine will allocate a future forecast for these
items using the same proportion. However, there are circumstances where this method
is not appropriate. Some items may have no sales history, or require more granular and
varying allocation rules than the monthly proportions would allow.

If new item models are replacements of existing models, a sales manager may want to
modify the forecast allocation from what those previous sales histories would dictate.
For example, the new Item B may have significant improvements over the old one, and
the expectation is that a split between the two would instead be 40/60. The
ProportionSeries parameter allows users to modify forecast allocation rules for this kind
of situation. It allows you to use a "series-based proportion" method for splitting higher
level forecast. The user must first choose which series will be used as provided by the
forecast allocation logic. In addition, users must explicitly specify which combinations
are to use the Series Based proportions. In cases where an aggregated forecast has both
Matrix and Series based proportions, Matrix based proportions will occur.

Configuring SALES_DATA node-splitting
1. Open the Business Modeler and go to the Engine > Proport subtab.

2. Set the ProportionSeries parameter to the internal name of a series that will be used
for apportioning node-splitting

3. Open a worksheet that includes the population for which a series-based split is
desired, and add the series Engine Proportion Method to the worksheet.

4. Change the value of the series Engine Proportion Method from "Matrix Based
Proportions" to "Series Based Proportions".

5. Save Updates.

Configuring the Analytical Engine 3-5

Guidelines for the Forecast Tree
When creating a forecast tree, it is important to consider the following guidelines.

• The forecast tree should include an appropriate number of levels that can be
forecasted.

The forecast tree should contain 3 to 6 levels on which the engine can traverse and
forecast. This number does not include any levels below the minimum forecast level
and does not include the HFL.

• The forecast levels should be meaningful to the business.

The levels of the forecast tree need to have meaningfully changing data sets per
level in order to be effective. A move from level to level should substantially
increase the amount of data that is being analyzed by the Analytical Engine while
maintaining an aggregation method that makes sense from a business perspective.
A good guideline is to have each parent node aggregate between 3 to 12 lower level
nodes (on average).

• The minimum and maximum forecast levels should contain reasonable and
relevant data.

The minimum forecast level should have enough data to facilitate a forecast
desirable by the customer. For instance, if exponential smoothing is not desired,
then try to ensure that the lowest level has a long enough sales history for a
non-exponential smoothing model to be active.

The maximum forecast level should still be disaggregated enough to maintain some
data granularity. As a general rule, none of the maximum forecast level nodes
should contain more than five percent of the total data set; this means the
maximum forecast level should have at least 20 nodes, and perhaps more.

• It is useful for the forecast tree to include the level on which accuracy is measured,
if possible.

Accuracy is often measured at a specific level. Often the best results can be seen if
the forecast is also done at this level. This is not always true or possible but the
option should be seriously considered.

• The TLMO (the level just below the top level, called top level minus one), affects
performance, because it is the level for which the Analytical Engine generates the
sales_data_engine table. (In the case of the Distributed Engine, Demantra creates
multiple, temporary versions of this table.) As a consequence:

• When you are using the Distributed Engine, each engine task (distributed
process) receives one or more nodes of the TLMO. In order to take best
advantage of the distributed mode, it is advisable for the TLMO to have many
nodes and to ensure that none of them contains too many lowest level

3-6 Oracle Demantra Analytical Engine Guide

combinations.

• If the nodes of the TLMO are comparatively small, the Analytical Engine
generates sales_data_engine more quickly, which reduces run time.

• If the nodes of the TLMO are comparatively small, simulation can run more
quickly, for two reasons: because the Analytical Engine searches smaller
amounts of data and because sales_data_engine is generated more quickly.

• When you plan the forecast tree for PE mode, consider how you will set the LPL,
IGL, and IRL. It is generally good to have a large number of influence ranges, each
of which has a relatively small number of influence groups. Because the effect of
promotions cannot be evaluated above the IRL, that means the IRL should be a
fairly high level in the tree. To minimize the number of influence groups per
influence range, the IGL should be fairly close to IRL.

Guidelines for Causal Factors
• It is important to avoid introducing too many causal factors, for mathematical

reasons. For a given combination, if Demantra has more causal factors than sales
data points, then it is mathematically impossible to calculate the coefficients for that
combination. And as you approach the mathematical limits, the computation
becomes progressively more difficult.

It is desirable to have a ratio of about 3 to 5 data points per causal factor. For
mathematical reasons, you must have at least 2 more data points than causal factors
for any given combination.

For example, in a monthly system, if you have two years' worth of data, that
represents about 24 data points (maximum) for any combination. It would be
desirable to have no more than 8 causal factors for any combination.

It is useful to count up the causal factors you plan to use and to discard any that are
not truly needed, if the count is too high. Remember that you typically need the
base causal factors (see "Base Causal Factors") in addition to any other causal factors
you add, so be sure to include those in your count.

• Using either shape modeling feature adds causal factors, so consider carefully when
to use these features. When you model a causal factor as a shape, the data for that
causal factor is replaced by as many as eight shapes internally. Each internal shape
is a causal factor. You can limit the number of shapes that the Analytical Engine
uses internally.

• Shape modeling generally requires continuous data: POS data rather than orders.
Each shape that you model should also be multiple time buckets in length;
otherwise, there is no real shape to use.

Configuring the Analytical Engine 3-7

• The causal factors should not be co-linear; that is, they should not have a significant
degree of dependence on each other. If the causal factors are co-linear, that
introduces numerical instability and the Analytical Engine can produce unreliable
results.

Additional Guidelines for PE Mode Only
• Note that when you transpose a promotional causal factor (such as a qualitative

attribute), that creates additional causal factors (one for each value of the attribute).
See "How the Analytical Engine Uses Promotions".

• As you create promotional causal factors, consider maintenance issues. You may
not have complete control over the original location and form of the promotional
data, and you may need to write procedures to maintain the promotional tables that
the Analytical Engine uses.

• Pay attention to the order in which the Analytical Engine processes the promotional
causal factors, which can have an impact on performance. For example, if you need
to filter data, it is better to do so earlier rather than later. See "How the Analytical
Engine Uses Promotions".

Configuring the Forecast Tree 4-1

4
Configuring the Forecast Tree

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to configure the forecast tree. In the case of PE mode, it also
describes how to configure the influence relationships, and competition among the
combinations.

This chapter covers the following topics:

• Configuring the Forecast Tree

• Pooled Time Series

• Defining Influence and Competition (PE Mode Only)

• Defining the Forecast Tree for Service Parts Planning Supersessions

• Specifying Additional Parameters

Configuring the Forecast Tree
Caution: The Promotion Optimization engine uses levels in the Oracle
Demantra forecast tree, and uses their names rather than their internal
identifiers. This means that if you change the name of a level, you must
rebuild the forecast tree to make sure that Promotion Optimization can
find the level (because the forecast tree is not automatically
synchronized with the level definitions).

If you are not using Promotion Optimization, you would need to
rebuild the forecast tree only if you remove a level or add a new level
that you want to include in the forecast tree.

See also

"Basic Concepts"

4-2 Oracle Demantra Analytical Engine Guide

"Guidelines for the Forecast Tree"

To configure the forecast tree:
1. Click Engine > Forecast Tree. Or click the Forecast Tree button.

The Configure Forecast Tree Engine Profiles dialog box appears.

2. Select the engine profile for the forecast tree you want to modify and click OK.

The Forecast Tree Editor displays lists of all the item and location levels that you
have created in the system.

Note: General levels can also be selected in the forecast tree instead
of an item or location level. For example, in the case of service parts
planning, the general level "Lowest spf Level" and "SPF Latest
Revision" are selected as item levels. For general levels to be
available in forecast tree configuration, the engine profile must
refer to a general level data table. The engine parameter
EngDimDef_ItemOrLoc determines whether the general levels will
appear in the item or location dimension of the forecast tree.

Configuring the Forecast Tree 4-3

You use this dialog box to select the item levels and location levels to include in the
forecast tree.

Note: As you select item and location levels in the following steps, add
levels from the lowest level to the highest. Business Modeler
automatically adds the highest fictive level to each list.

You can have different number of elements in these two lists.

3. Select the item levels to be included in the forecast tree. To do so, use the two lists at
the top of the dialog box. Use any of the following techniques:

• In the left list, double-click a row.

• Click a row and then click Add.

• Click Add All to transfer all items.

4. Select the location levels to be included in the forecast tree. Use the two lists at the
bottom of the forecast tree, and use any of the methods described in the previous
step.

5. When you have finished selecting levels, click Save.

6. Click Next.

The Forecast Tree Editor displays a dialog box that you use to build the forecast tree

4-4 Oracle Demantra Analytical Engine Guide

itself.

In this dialog box, each row corresponds to a level in the forecast tree. In turn, a
level in the forecast tree consists of one item level and one location level.

Note: As you build the forecast tree, add levels from the lowest level to the
highest. Business Modeler automatically adds the HFL, if you do
not do so explicitly.

7. To create a level in the forecast tree, do the following:

1. Click Add.

2. In the drop down list in the Item Order column, select an item level.

3. In the drop down list in the Location Order column, select a location level.

8. Add more levels to the forecast tree as needed, and then click Save.

9. Click Exit or click Next.

If your system includes Promotion Effectiveness, the Forecast Tree Promotion
Levels screen appears. This screen displays the forecast levels as created in the
previous screen.

Configuring the Forecast Tree 4-5

10. (PE mode only) On this screen, specify the following:

• Level to use as the lowest promotional level (LPL). This is the lowest
aggregation level the Analytical Engine will consider when evaluating the
effects of promotions.

• Level that defines the influence groups. This is the influence group level (IGL).
This indirectly specifies the item groups and location groups.

• Level that defines the influence ranges. This is the influence range level (IRL).

• If the system includes modules AFDM, PTP or TPO, an additional screen is
available. This screen controls whether the engine simply aggregates data when
forecasting at higher levels or whether it groups aggregated data nodes into
longer time series.

• As a default, the Forecast Detail and Forecast Range should be set to the same
levels as those in the dialog with title "Forecast Tree (page 2)." For additional
information regarding modifications of this screen see Pooled Time Series
Below.

For example, in the row that should corresponds to the influence range level, select
Influence Range from the drop down list in Promotion Level Type.

Note: To establish the LPL and IGL at the same level, select the
option Lowest Promotion Level & Influence Group.

11. Do one of the following:

• Click Next. Business Modeler next displays the Causal Factors dialog box; see
"Configuring Global and Local Causal Factors".

• Click Exit. You can return later to configure causal factors.

See also

"Guidelines for the Forecast Tree"

Pooled Time Series
When the forecast tree calculation encounters a node for which it cannot generate a
forecast, it traverses up to the next highest forecast tree node to generate the forecast.
The engine then allocates an appropriate value back down, according to a proportional
algorithm. For example, if a particular product/store did not have enough historical
data, then the forecast engine would aggregate data at a higher level, such as
product/region, generate a forecast at this level, then allocate a proportional amount of
that back down to the product/store node.

4-6 Oracle Demantra Analytical Engine Guide

One issue with this approach is that the product/region contains information that has
been aggregated (summed), and aggregated data is often smoothed, resulting in less
granular information being available. This can cause granular historical behavior as
well as causal factor information to be factored out of the forecast. For example, the
product/region node may be an aggregate of a number of different stores, and if there is
specific historical pattern for that store--say, that the location always has a sales spike at
a particular time of year-- then that information would become smoothed over when
forecasting at an aggregate level.

Pooling a times series is a way of supplying the engine with more information than
what would have been available without summing several nodes together. Instead of
aggregating the data at a higher level node, it concatenates, or "pools" the data, allowing
it to evaluate all the more granular data points together. The figures below show an
example of these different types of data:

Raw Data

Aggregated Data

Pooled Data

• Forecast the initial demand for a new product in an existing store (with no sales
history) based on how other products pooled together at the same store

• Forecast the initial demand for existing products in a new store, based on sales at
similar stores

• Better capture the lifecycle of short lifecycle products.

• Help capture the impact of a promotion type that is new to a product by leveraging
its historical impact on similar products

• Capture overlapping product introductions, phase out and allocation complexities
within a product family

• Better forecast new products with overlapping lifecycles

In addition to making up for limited sales histories, another key reason for using pooled

Configuring the Forecast Tree 4-7

time series analysis is to increase the chance for utilizing data relating to irregular
occurrences, or "events." Events can be simple actions, such as a change of a price at a
store, or more rare events such as natural disasters. Each event may cause an increase or
decrease in demand, and the pooled time series calculation is better able to reflect this
when evaluating historical demand.

Additional Information: For combinations with sufficient history it is
still recommended the combination be forecasted independently and
not in a pooled manner. Pooled information may average the behavior
across several combinations and be less accurate than focusing on the
data of a specific combination.

Configuring the Forecast Tree for Pooled Time Series
When configuring the forecast tree for Pooled Time Series, an additional configuration
must be made in the forecast tree. For each forecast tree level, a Forecast Detail and a
Forecast Range must be defined. Forecast Detail is the data aggregation to be used
during forecast generation. For example, if a region has three stores, when setting detail
to level region, the forecast node value will be the aggregation of the three stores.

The Forecast Range defines how Forecast Detail nodes are pooled together to form
larger data sets with additional information. A Forecast Range can be set to the same
value as the Forecast Detail. In this case, data is aggregated to the Detail node and a
forecast is generated for that node independently. If Forecast Range is set higher than
Forecast Detail, more than one Detail node will be pooled and concatenated together,
and then forecasted together. If the above region detail level is associated with a range
level of country, then all aggregated region information will be pooled together and
forecasted rather than each region-based node independently.

In the example below, we see that the Item/Site detail level is associated with two range
levels. The first forecast tree level (where Range and Detail are set the same: Item/Site --
Item/Site) means that when the forecast calculation is trying to generate a forecast for
the Item/Site detail level, it will generate a forecast at each Item/Site node individually.
However, if the forecast fails at a specific Item/Site node, then the next forecast tree level
will be used. At this next level, Range is greater than Detail (Item/Site – Item/Customer).
This tells the forecast calculation to generate a forecast for Item/Site using the all the
Item/Sites in the range of Item/Customer.

The following replaces Step 8 in the procedure above.

8. Click Next.

1. Click Add.

2. In the drop down list under Detail Levels, select an item and location level.

3. In the drop down list under Range Levels, select an item and location level.

4-8 Oracle Demantra Analytical Engine Guide

Defining Influence and Competition (PE Mode Only)
To describe how the item-location combinations affect each other, you specify the
following information:

• The level of the forecast tree to use as the IRL; each node within the IRL is an
influence range.

• The level of the forecast tree to use as the IGL; each node within the IGL is an
influence group. This indirectly specifies the item groups (I) and location groups
(L).

• The level of the forecast tree to use as the LPL.

• The levels to use as the competition item groups (CI) and the competition location
groups (CL). You specify these via parameters.

For the first three tasks, see "Configuring the Forecast Tree". To define the CI and CL,
do the following:

1. For each level you create, Business Modeler creates a row in the group_tables table
for each level. Make a note of the level ID of the levels that you want to use as the
CI and CL.

2. Navigate to the Parameters > System Parameters > Engine > Shell parameters. Each

Configuring the Forecast Tree 4-9

value should be a level ID as given in the group_tables table.

Parameter Purpose

COMPETITION_ITEM Specify the level whose members are the
competitive item groups.

COMPETITION_LOCATION Specify the level whose members are the
competitive location groups.

The CI and CL should be consistent with the item groups and location groups.
Specifically, any lowest level items within a given item group must belong to the
same competitive item group. The easiest way to follow this rule is to set the CI
equal to an item level that is higher than I and that is within the same hierarchy. A
similar rule applies for the locations.

See also

"Switching Effects"

"Guidelines for the Forecast Tree"

Defining the Forecast Tree for Service Parts Planning Supersessions
Service Parts Forecasting supports the superseding of old parts with new parts, know as
supersessions in EBS Service Parts Planning. The Forecast Spares Demand engine
profile has been defined to use this functionality. In particular, the Forecast Spares
Demand engine profile forecasts on the t_ep_spf_data table instead of SALES_DATA. In
addition, service parts forecasting also refers to two engine parameters to configure the
forecast. They are:

• GLPropSuperSessionMethod: Defines the method general level proportions use to
allocate proportions during supersessions. When set to the default for each period,
proportions are allocated completely to the member with the latest starting date. If
set to All Active Revisions for each period, proportions are allocated equally among
all active members.

• EngKeyDef_Supersession: Key used to aggregate members belonging to the same
supersession set. When set to the same value as EngKeyDefPK, the proport
calculates proportions for each lowest-level member processed by the engine
individually and no special handling of supersessions is done. If set above the level
defined by EngKeyDefPK, then calculation of proportions is done at this aggregated
level considered the supersession and all underlying combinations receive the same
proportional values.

For more information about these engine parameters, see Analytical Engine Parameters,

4-10 Oracle Demantra Analytical Engine Guide

page 10-1.

Specifying Additional Parameters
Use the Business Modeler user interface to set the following additional engine
parameters, if needed:

Parameter Purpose

max_fore_level The maximum level on the forecast tree at which a
forecast may be produced. Upon failure at this level,
the NAIVE model will be used, if enabled.

For PE mode:

• This level is usually below the IRL.

• Sometimes the natural top forecast level does not
make a good choice of IRL, and a more aggregated
level would be better for the IRL. This new level
may be too high for forecasting, but it is useful for
calculating indirect effects. In such a case, set
max_fore_level to the highest level to use for
forecasting, and the IRL to the higher level.

min_fore_level Minimum forecast level that the engine will forecast.
From that level down, the engine will split the forecast
using the precalculated proportions in the mdp_matrix
table.

The engine does not necessarily create the forecast at
this level. If the results are not good at this level (for a
portion of the forecast tree), the Analytical Engine
moves to a higher node of the forecast tree, creates a
forecast there, and splits down to the minimum forecast
level. As before, the engine splits using the
precalculated proportions in the mdp_matrix table.

For PE mode, this level must be at or above the LPL.

For information on these parameters, see "Engine Parameters".

The Forecast Tree Editor displays a dialog box that you use to build the forecast tree
itself. The Forecast Tree Editor displays lists of all the item and location levels that you
have created in the system.

Configuring Causal Factors 5-1

5
Configuring Causal Factors

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to create causal factors, configure them, and populate them
with data. It also describes the predefined causal factors provided by Demantra.

This chapter covers the following topics:

• Notes About Causal Factors

• Creating a Global Factor

• Creating a Local Causal Factor

• Configuring Global and Local Causal Factors

• About Activity Shape Modeling

• Enabling Activity Shape Modeling

• Deleting a Causal Factor

Notes About Causal Factors
For each causal factor, you must provide data for all time buckets, both historical and in
the future. Depending on the type of causal factor, this data is stored in different
locations in the database. Causal factors are associated with a specific batch engine
profile.

Causal factor type Location of data How to edit the table

Global factors Column in Inputs table Business Modeler

Third-party database tool

5-2 Oracle Demantra Analytical Engine Guide

Causal factor type Location of data How to edit the table

Local causal factors
other than activities

Column in the sales_data
table or SQL expression that
aggregates data from that
table

Third-party database tool

Activities Column in the sales_data
table

Third-party database tool

Causal Factors and Engine Models
The Analytical Engine uses a set of theoretical models, each of which evaluates some or
all of the data. When you configure a causal factor, you specify the following flags to
specify which models should consider that causal factor:

Flag * Meaning

short For use by the short models (BWINT, IREGR, LOGREGR,
LOGISTIC, and REGR). These models use all causal factors
that they are given.

long For use by the long models (ARLOGISTIC, CMREGR, ELOG,
ICMREGR, and MRIDGE). These models examine all the
causal factors they are given, but choose the ones that give the
best results.

non seasonal For use by the non seasonal models (ARIX and ARX). The only
causal factors that should be flagged as non seasonal are ones
that are not a predictable function of time. For example, price
varies with time, but randomly, so price should be flagged as
non seasonal.

multiplicative group 1 For use only by the DMULT model. If you are using this
model, each causal factor should use one of these flags.

Typically you place causal factors that vary on a daily basis
into one group and place all others in the other group. No
causal factor should be in both groups. See "Theoretical
Engine Models".

multiplicative group 2

* Name of flag as displayed in the Causal Factors screen.

Not all models use these flags. Models not listed here do not use causal factors.

Configuring Causal Factors 5-3

Typical Flags for Causal Factors
Typically you initially flag causal factors as follows:

Causal
Factor

Short Long Non-Se
asonal

Multiplicat
ive Group
1

Multiplic
ative
Group 2

base (predefined)
causal factors

CONSTANT yes yes yes no no

t yes yes no yes no

d1, ... d12* or
m1, ... m12**

yes yes no no yes

d1, ... d7** yes yes no yes no

price yes yes yes yes no

your added causal
factors

If factor is a
predictable
function of
time

usually
not

yes no if factor
varies by
day

if factor
varies by
month

If factor is not
a predictable
function of
time

usually
not

yes yes no no

*Included only if time resolution is monthly or weekly.

**Included only if time resolution is daily.

Important: In many cases, these flags have to be adjusted. Contact
Oracle for assistance.

Creating a Global Factor
A global causal factor has time-varying data that applies in the same way to all items
and locations.

5-4 Oracle Demantra Analytical Engine Guide

To create a global causal factor:
1. Do one of the following:

• Go into the database and add a column to the Inputs table.

• Create the global causal factor within the Business Modeler user interface, as
follows:

1. Click Data Model > Global Factors > Options to access the global factor user
interface.

2. Click Data Model > Global Factors > New Factor. The New Factor dialog
box appears.

3. Type in the factor name.

4. Click Add New Factor.

5. Click Cancel to close the dialog box. The Business Modeler adds a new
column to the Inputs table.

2. Load data into the new column by using a script, a database tool, or the Business
Modeler.

To use the Business Modeler, do the following
3. Click Data Model > Global Factors > Options.

4. Click Data Model > Choose Factor. Or click the Choose Factor button.

5. The Choose Factor dialog box appears.

6. Check the check box for each of the causal factors you wish to view. Make sure that
Date is selected so that you can see the dates along with the causal factor data.

7. Click OK.

8. Click Data Model > Global Factors > View. Or click the Create View button.

Business Modeler displays a table that shows the value of each global factor over
time. This table displays one row for each base time bucket in the planning horizon.
Each column corresponds to one global factor.

Configuring Causal Factors 5-5

9. Select the cell or cells to be edited. The editable cells are colored white. When
selected, the cells turn yellow.

10. Click Data Model > Global Factors > Edit Data. Or click the Edit Data button.

The Edit Data dialog box appears.

11. Type the number required and click OK.

The data appears in each highlighted cell.

12. Click Save to save your changes.

13. Click Cancel to close the dialog box.

14. Configure the global factor as described in "Configuring Global and Local Causal
Factors".

See also

Creating a Local Causal Factor, page 5-5

"Base Causal Factors"

Creating a Local Causal Factor
A local causal factor has time-varying data that is potentially different for each
item-location combination.

5-6 Oracle Demantra Analytical Engine Guide

To create data for a local causal factor:
1. If the sales_data table does not include a column that contains the data you want to

use as a causal factor, go into the database and add the desired column.

2. Load data into the new column by using a script or by a database tool.

3. Configure the new causal factor as described in "Configuring Global and Local
Causal Factors".

See also

"Creating a Global Factor"

Setting up the price causal factor:
The predefined price causal factor uses the field item_price in the sales_data table. You
should make sure that this data is available.

Transpose Function

This allows one causal to be converted into several causals using a transpose function,
with different transpose values in different periods resulting in engine accepting
multiple causals instead of one. Transpose function should only refer to sales_data and
mdp_matrix tables. Transpose is done after information is aggregated and it is
important to ensure underlying values are consistent.

Configuring Global and Local Causal Factors
Here you provide information about how the Analytical Engine should use each global
and local causal factor.

To configure a causal factor:
1. Click Engine > Forecast Tree. Or click the Forecast Tree button.

2. Select the batch engine profile for which you want to configure causal factors and
click OK.

Note: The simulation engine profiles inherit the causal factor
settings from the parent batch engine profile.

3. Click Next repeatedly until you reach the Causal Factors dialog box.

4. If the causal factor is not yet listed here, do the following:

1. Click Add.

Configuring Causal Factors 5-7

A new line is displayed.

2. Describe the new causal factor by specifying the following:

Factor Name Depends on the type of causal factor:

• For a global factor: name of an existing column in the
Inputs table.

• For a local causal factor, this can be the name of an
existing column in the sales_data table. The factor name
can also just be a name; in this case, you must specify
an expression in the Local Function field.

• For an activity: name of a column in the sales_data
table. Business Modeler adds this column automatically
if it does not yet exist.

Factor Type Choose one of the following:

• global

• local

• activity (a special kind of local causal factor that
supports shape modeling)

Do not use the event choice, which is an older
implementation of the more general local choice. The price
option is useful only for the predefined price causal factor.

3. Specify how the Analytical Engine should use the causal factor. To do so,
specify the following values:

Short Usually you enable this check box only for the following
global causal factors: Constant, t, d1, ... d12. See "Typical
Flags for Causal Factors".

Long Usually you enable this check box for all causal factors.
See "Typical Flags for Causal Factors".

5-8 Oracle Demantra Analytical Engine Guide

Multiplicative Group 1 Enable this check box to include this causal factor in the
first multiplicative group for use by the DMULT model;
you should enable this check box for at least one causal
factor.

Typically you place causal factors that vary on a daily
basis into one group and place all others in the other
group. No causal factor should be in both groups. see
"Theoretical Engine Models".

This setting affects only the DMULT model.

Multiplicative Group 2 Enable this check box to include this causal factor in the
second multiplicative group for use by the DMULT
model; you should enable this check box for at least one
causal factor.

This setting affects only the DMULT model.

Non Seasonal Enable this check box if the data associated with this
causal factor is not known to be a predictable function
of time. For example, price varies with time, but
randomly, so price should be flagged as non seasonal.
See "Typical Flags for Causal Factors".

Fill Causals Specifies whether Demantra should interpolate when
values are missing for a date. The missing local causal
factor will receive the average of its nearest two
non-missing neighbors.

For example:

• If the causal values are 1, missing, and 2, then
Demantra replaces the missing value with 1.5.

• If the causal values are 1, missing, missing, missing,
and 2, then Demantra replaces each missing value
with 1.5.

Scale Causals Specifies whether Demantra should scale causal factors
to match weekly values. This parameter is only used
when viewing weekly data by calendar month. For
more information, see Viewing Weekly Data by
Calendar Month.

Configuring Causal Factors 5-9

Trend Causal This indicates that a causal factor is to be used to model
trending. It allows trending information to be adjusted,
ensuring a more accurate trend analysis, in cases where
rows may be missing or omitted. This option should be
selected for all casual factors used to model any sort of
trending behavior.

Shape Indicator Only for activities. Specifies whether Demantra should
perform shape analysis and calculations on this activity.

Omit Seasonal Only for activities. This option specifies whether to
nullify values of the global seasonal causal factors for
the time buckets during which the causal factor occurs.
Specifically this refers to the causal factors d1—d12 or
d1—d7 and m1—m12. For example, if you have
monthly data and you omit seasonal effects for a given
causal factor Promo1, that means that Demantra
switches off the causal factors for the duration of
Promo1.

By omitting seasonal effects, you enable Demantra to
capture the shape more clearly for the analysis. This
option is suitable only if you expect the effect of this
causal factor to be much stronger than the seasonal
effects.

If causal factors overlap each other, then Demantra
gives precedence to the causal factor that you have
flagged to omit seasonal effects.

5-10 Oracle Demantra Analytical Engine Guide

Local Function Only for local causal factors. An SQL expression that
describes how to aggregate causal factor data from the
lowest level data. Use one of the following SQL
aggregating functions:

• Min

• Max

• Sum

• Avg

Within the expression, refer to the name of the causal
factor (the column name in which the causal factor is
stored).

Within the expression, you can also refer to fields in the
mdp_matrix table.

You can also include tokens of the form
#FORE@<Version>#. See "Server Expression Functions
and Operators".

4. Add comments to the Comments field, if desired.

5. Click Validate to check the validity of the configuration.

6. Click Save to save changes.

Note: To return the screen to the latest pre-saved state and reset
any other changes, click Retrieve.

7. Do one of the following:

• Click Next.

If you created any activities, Business Modeler displays a message indicating
the name of the series that it automatically creates for each activity.

For PE mode, then the Business Modeler displays the Promotional Causal
Factors dialog box. See "Configuring Promotional Causal Factors".

• Click Exit.

See also

Configuring Causal Factors 5-11

"Configuring Promotional Causal Factors"

"Base Causal Factors"

About Activity Shape Modeling
In shape modeling, you capture the profile of the demand over the duration of a
promotion. The Analytical Engine models the overall demand as a linear combination
of Oracle proprietary shapes, as many as eight shapes; this information replaces the
normal causal factor that would have been used instead. The Analytical Engine
calculates the coefficients for each shape, for each relevant combination.

Remember that when you enable shape modeling for a causal factor, the single causal
factor is replaced by up to eight causal factors. To keep the number of causal factors
down, you can specify the maximum number of shapes permitted for activity shape
modeling.

Note: Shape modeling capabilities are different in the two engine
modes:

• In DP mode, the engine supports only activity shape modeling.

• In PE mode, the engine supports both activity shape modeling and
promotional shape modeling. See "About Promotion Shape
Modeling".

See "Engine Modes: DP and PE".

Shape Alignment
Each stored shape is an average of the past instances of that particular shape. It is
important to understand that the stored information consists of both the shape and the
actual amplitude of the curve.

When the Analytical Engine observes the beginning of a new instance of a given shape,
it is necessary to decide how to set the amplitude of the new curve that it generates. By
default, the engine assumes that the amplitude of the stored shape should be taken into
consideration. Therefore, when the Analytical Engine generates the new shape, it
averages the new data together with the stored shape, as follows:

5-12 Oracle Demantra Analytical Engine Guide

The default behavior is appropriate when the history contains many instances of a
given shape. When the shape is new to the system, however, it is more appropriate to
force the Analytical Engine to re-scale the generated shape so that it aligns with the
most recent observations:

To force this realignment you use the QAD (quantity alignment duration) series
associated with the shape. This series specifies the number of time buckets during
which this alignment should occur, starting with the beginning of the shape. If you
need to align the shape, you generally should align the entire shape; that is, you set the
series equal to the expected length of the shape.

Samples of Activity Shape Modeling
To see samples, use the UPGRADE_TO_SHAPE_MODELLING procedure, which does
the following:

• It creates two sample activity causal factors: Product_launch and Price_change.

• It creates four series for the benefit of end users:

Configuring Causal Factors 5-13

• Price_change

• Price_change_QAD

• Product_launch

• Product_launch_QAD

See also

"Enabling Activity Shape Modeling"

Enabling Activity Shape Modeling

To enable activity shape modeling:
1. For each specific shape you want to represent, create the causal factor data, as

described in "Creating a Local Causal Factor".

2. Configure this causal factor as type Activity, as described in "Configuring Global
and Local Causal Factors".

When you configure this causal factor as an activity (named, for example, Product
Launch), the Business Modeler automatically creates two series that constitute the
user interface for the activity. These series are as follows:

Generic name / Example
name

Purpose

Causal-factor-name/
ProductLaunch

Lets the user indicate the start and duration of the activity
associated with a specific combination. Within this series,
for each date, the user chooses "Start" or "Active" from a
drop-down menu to specify the promotion start and
continuation dates. The default is "None," meaning no
promotion. The user identifies past activities and marks
where future activities will occur.

5-14 Oracle Demantra Analytical Engine Guide

Generic name / Example
name

Purpose

Causal-factor-name_QAD/
ProductLaunch_QAD

Controls whether the Analytical Engine re-scales the
generated shape to align with the amplitude of the most
recent observed instance of this shape, for a given
combination.

By default, this is zero, and the Analytical Engine averages
the most recent data with the stored shape, which is an
average of all the past observations of this shape.

When the shape is "new" to the system, the user should
set ProductLaunch_QAD equal to the typical length of the
activity, so that the new data takes precedence.

3. Add these series to a worksheet at the appropriate aggregation level.

4. Edit the Causal-factor-name series to identify when the activity occurred and when it
will occur and save the changes.

5. If appropriate, use the Causal-factor-name_QAD series to control whether to realign
the shape. Edit the series and save the changes.

6. To specify the maximum number of Oracle proprietary shapes that the Analytical
Engine can use for activity shape modeling, set the NumShapes parameter.

7. Run the Analytical Engine as usual.

See also

"About Activity Shape Modeling"

Deleting a Causal Factor

To delete a causal factor:
1. Click Engine > Forecast Tree. Or click the Forecast Tree button.

2. Select the Engine Profile that contains the causal factor you want to delete and click
OK.

3. Click Next repeatedly until you reach the Causal Factors dialog box or (PE mode
only) the Promotional Causal Factors dialog box.

4. Click the causal factor you want to delete.

Configuring Causal Factors 5-15

5. Click Delete.

6. Business Modeler asks for confirmation. Click Yes or No.

See also

"Configuring Global and Local Causal Factors"

"Configuring Promotional Causal Factors"

Configuring Promotions and Promotional Causal Factors 6-1

6
Configuring Promotions and Promotional

Causal Factors

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes how to configure promotions and promotional causal factors in
the Business Modeler.

This chapter covers the following topics:

• Base Behavior

• Customizing the Promotion Levels

• Loading Historical Promotions

• How the Analytical Engine Uses Promotions

• Configuring Promotional Causal Factors

• Adjusting the Promotion Dates

• About Promotion Shape Modeling

• Enabling Promotion Shape Modeling

Base Behavior
The Demantra installer automatically defines the following required promotion levels:

6-2 Oracle Demantra Analytical Engine Guide

These levels have the following purposes:

Level Purpose Permitted
Customization

Promotion Defines the promotions themselves. This
level must define all the possible attributes
that can be associated with promotions.

This level must include the Population
attribute, which specifies the item-location
combinations and the time span with which
the promotion is associated.

Add attributes only.

Promotion Status Controls the following:

Whether the promotion is used in
forecasting.

Whether users can edit the promotion.

How DSM uses the promotion.

See "Promotion Status".

Promotion Type

Scenarios Provides optional organizational structure,
for the benefit of users, particularly within
a worksheet.

Any change is allowed.

Optimization Goal For use by the Promotion Optimization module only; see the Oracle
Demantra Release Notes.

Plans Provides optional organizational structure,
for the benefit of users, particularly within
a worksheet.

Any change is allowed.

Promotion Status
The values of Promotion Status are as follows:

Configuring Promotions and Promotional Causal Factors 6-3

Meaning

Status In forecasts In worksheets In DSM

Unplanned The Analytical Engine
does not consider this
promotion.

Users can edit the
promotion.

DSM considers this
promotion to be
uncommitted.

Planned The Analytical Engine
does consider this
promotion. Committed The user who

committed this
promotion can edit it.

DSM considers this
promotion to be
committed

Running Nobody can edit the
promotion.

The promotion is
currently running.

Unmatched The promotion has
ended but has not yet
been matched to an
invoice.

Matched The promotion has
ended and has been
matched to an invoice.

For information on DSM, see the Oracle Demantra Deduction and Settlement Management
User's Guide.

Customizing the Promotion Levels
You typically customize the promotion levels by adding attributes, although other
changes are also permitted; see "Base Behavior". To customize the promotion levels, you
use the Business Modeler.

You should also configure the Activity Browser of the worksheets, which displays a
hierarchy of promotions. The Activity Browser has the same structure for all
worksheets. To configure it, you use the Business Modeler.

For information, see "Configuring the Activity Browser"

Loading Historical Promotions
To load historical promotions, use the Integration Interface Wizard, described in "Series
and Level Integration". Create and execute an integration interface that loads both the

6-4 Oracle Demantra Analytical Engine Guide

promotion members (via a level profile) and any promotion data (via a data profile).

How the Analytical Engine Uses Promotions
The Analytical Engine does not directly use the promotions for forecasting. Instead, it
converts their attributes to promotional causal factors, which it then converts to normal
causal factors.

In this process, it uses the configuration information that you provide in the Business
Modeler. For each promotional causal factor, the key options are as follows:

• Column Name Expression

• Filter

• Transpose by Column

• Merge Function

• Aggregation Function

It is important to understand how the Analytical Engine uses these options. The
following sections describe how the Analytical Engine starts with promotions and
converts them to causal factors. For more details on the engine flow, see "Engine
Details".

These options use expressions that refer to promotion data. Note that these expressions
can refer only to the tables that are used by the levels within the hierarchy of the
analytical general level (promotion). For example: promotion_data or promotion.

For information on setting these options, see "Configuring Promotional Causal Factors".

Kinds of Attributes
In this discussion, it is useful to consider the general kinds of promotional attributes
that the Analytical Engine can use:

• Quantitative attributes such as discount. These attributes have numeric values that
the Analytical Engine can use in their present form. The Analytical Engine assumes
that the effects of these attributes is correlated with the value of the attribute. For
example, if discount1 is larger than discount2, then discount1 has a larger effect on
demand than discount2.

The Analytical Engine does not assume that the correlation has a positive sense.

• Boolean attributes, where the attribute either has a value or does not have a value.

• Qualitative attributes, where the attribute can have one value from a given set of
values. The set of values is unordered, which means that even if the values are

Configuring Promotions and Promotional Causal Factors 6-5

numeric, there is no intrinsic meaning in the relative sizes. For example, you might
use numeric color codes 4 and 5, but color 5 does not have a larger effect on
demand than color 4.

Demantra converts this kind of attribute into a set of unrelated causal factors. For
example, color code 4 is one causal factor and color code 5 is another. For any given
promotion, this causal factor either has a value or does not have a value.

Step 1: Aggregate Promotion Attributes to the LPL
The lowest promotion level (LPL) is a level in the forecast tree. Specifically, it is the
lowest level at which promotions can have different attribute values from other, and it
must be at or below the minimum forecast level.

The Analytical Engine retrieves the promotional causal factor data and aggregates it to
the LPL, as specified by the Column Name Expression. You use an aggregating
expression like the following example:
max(promotion_data.discount)

Note: As with all the options discussed here, the expression can refer
only to tables that are used by the levels within the hierarchy of the
analytical general level (promotion). For example: promotion_data or
promotion.

As a general rule, an expression that uses the max function is probably appropriate in
most cases, because promotions should have the same attribute values below the LPL,
by definition.

Step 2: Applying Filters
Sometimes you need to convert one set of promotional causal factor data into multiple
causal factors. To do so, you use a Filter expression, an aggregating expression that
evaluates to true or false. The promotional causal factor uses only the data for which the
expression is true. You typically create multiple promotional causal factors, each with a
different filter expression that uses a different part of the source data.

For example, consider the following promotional data. This table contains one row for
each promotion for a given combination and time bucket. (For simplicity, the table
shows only one combination, one time bucket, and three promotions.) The
promotion_data table shows values of attributes (promo_type and discount) associated
with those promotions.

Item Location Date Promotion Promo_type Discount

100 333 1 214 1 15

6-6 Oracle Demantra Analytical Engine Guide

Item Location Date Promotion Promo_type Discount

100 333 1 296 2 5

100 333 1 340 3 10

Suppose that we have configured the following promotional causal factors:

Factor Name Column Name Expression

Special Discount max(promotion_data.discount) max(promotion_data.promo_
type=3)

Discount max(promotion_data.discount) max(promotion_data.promo_
type<>3)

Internally, Demantra would convert the promotion attributes to the following
promotional causal factors:

Item Location Date Promotion Special
Discount

Discount

100 333 1 214 0 15

100 333 1 296 0 5

100 333 1 340 10 0

Step 3: Transposing Promotion Attributes
Next, the Analytical Engine considers the Transpose by Column setting, which you use
for qualitative promotion attributes. This setting converts a single promotion attribute
into multiple causal factors. For quantitative or Boolean attributes, specify 0, which
means that Promotion Effectiveness can use the attributes as casual factors in their
present form.

For example, suppose that promotions use different "delivery types," which correspond
to different mechanisms such as circulars, extra product samples, coupons, and so on.
Each of these mechanisms might have a different affect on sales. Suppose we have the
following example data in the promotion_data table:

Configuring Promotions and Promotional Causal Factors 6-7

Item Location Date Promotion Delivery_type

150 344 1 214 4

150 344 1 296 5

150 344 1 340 6

Because delivery_type is a qualitative attribute, it is generally appropriate to transpose
it. We could configure a Delivery Type promotional causal factor, as follows:

Factor Name Column Name
Expression

Filter Transpose by Column

Delivery Type max(promotion_data.D
elivery_type)

null max(promotion_data.Deliver
y_type)

Note that Transpose by Column must be an aggregating expression.

Using this configuration data, Demantra would internally convert the preceding
promotion attributes into the following set of promotional causal factors:

Item Location Date Promotio
n

Delivery
Type(4)

Delivery
Type(5)

Delivery
Type(6)

150 344 1 214 4 0 0

150 344 1 296 0 5 0

150 344 1 340 0 0 6

You may want to transpose by a promotion attribute (as in this example) or by
members of a level in the promotion hierarchy.

Note: If you use the members of a level to transpose an attribute, be
sure to first filter out the default member (which has an ID of 0) of that
level.

Step 4: Merging Across Promotions
Next the Analytical Engine uses the Merge Function setting, which describes how to

6-8 Oracle Demantra Analytical Engine Guide

merge promotional causal factors that occur on the same date at the same item-location
combination (thus merging across all the promotions for that combination and date).

For Merge Function, you can choose one of the functions provided by Business
Modeler.

The way that you merge depends upon the meaning of the data in the promotional
causal factor. For example, if you have multiple discounts on the same date, you would
want to merge them by the compound rule (so that 10% and 20% are merged to 28%).

Step 5: Aggregating Attributes within the IGL
The influence group level (IGL) is another level in the forecast tree. The Analytical
Engine uses this level to simplify the computational problem. It creates the following
three historical promotional causal factors for each node in the forecast tree:

self Influence on this node caused by attributes on this node

own Influence on this node caused by other nodes within the same IG

other Influence on this node caused by all other IGs within the IR

In this last step, the Analytical Engine uses the Aggregation Function option, which
describes how to aggregate the promotional causal factor to the IGL.

Note: The Analytical Engine uses the same option whenever it needs to
aggregate to higher levels for forecasting purposes.

For Aggregation Function, you can choose one of the functions provided by Business
Modeler.

Configuring Promotional Causal Factors
This section describes how to configure promotional causal factors. You can do most of
the work within the Business Modeler, but it is necessary to go into the database for the
final steps.

Note: Causals participating in Optimization require these additional
settings

• Opti_Causal_Type

• 0=Value

Configuring Promotions and Promotional Causal Factors 6-9

• 1=Price Discount %

• 2=Spent

• 3=Boolean

• 4=Price Decrease $

• Opti_Causal_Type

• 0=Value

• 1=Price Discount %

• 2=Spent

• 3=Boolean

• 4=Price Decrease $

• Opti_Causal_Output= The promotion table column containing
optimized causal result.

• Opti_Transpose_Output=The promotion table column containing
optimized causal transpose result.

Note: The engine only evaluates causals with direct effect. Causals with
indirect effects are not evaluated.

Analytical Recommendations
• Limited Number of Causals

• Quantitative or Boolean Causals only

• Qualitative Causals supported through Transpose

To configure promotional causal factors:
1. Click Engine > Forecast Tree. Or click the Forecast Tree button.

2. Click Next repeatedly until you reach the Promotional Causal Factors screen.

Each row in this screen specifies a promotional causal factor.

3. To add a new promotional causal factor for Promotion Effectiveness, click Add.

6-10 Oracle Demantra Analytical Engine Guide

A new line is added.

4. Describe the promotional causal factor by specifying the following:

Factor Name Name of the promotional causal factor. This name should consist
only of alphanumeric characters.

Column Name
Expression

An expression that retrieves the causal factor (promotional
attribute) data and aggregates it to the LPL. For example:

max(promotion_type.is_ad)

An expression that uses the max function is probably appropriate
in all cases, because promotions should have the same attribute
values below the LPL, by definition. See "Step 1: Aggregate
Promotion Attributes to the LPL".

Filter An aggregating expression that returns the true or false value. This
expression filters out promotion data that should not be used for
this promotional causal factor; that is, the promotional causal factor
uses only the rows for which this expression returns true. See "Step
2: Applying Filters".

Transpose by
Column

An aggregating expression that returns the values by which the
data is to be transposed. You usually transpose an attribute only if
it is qualitative. To avoid transposing, use the value 0.

See "Step 3: Transposing Promotion Attributes".

Note: If you use the members of a level to transpose an
attribute, be sure to first filter out the default member (which
has an ID of 0).

Configuring Promotions and Promotional Causal Factors 6-11

Merge Function Specifies how Oracle Demantra should internally merge
promotions of the same kind that apply to the same item, location,
and time. Click one of the following:

• Compound (Use only for numeric causal factors. All values
must be greater than or equal to 0 and less than 1; otherwise,
this function throws an error.)

• WAVR (Weighted average. Use only for numeric causal
factors. If you use this option, also specify Merge Function
Column.)

• Boolean (Use for boolean causal factors or for transposed
causal factors.)

See "Step 4: Merging Across Promotions".

Merge Function
Column

Applies only if you select WAVR for the merge function. Specifies
the weights to use when performing a weighted average.

The preceding expressions can refer only to the tables that can be logically linked to levels
within the hierarchy of the analytical general level (promotion). For example:
promotion_data or promotion

Causal From
Expression

Specifies which tables the causal will be referencing. Should
include all tables referenced in Column Name Expression, Filter
and Transpose.

Causal Where
Expression

Should only be used if Causal From Expression is populated.
Specifies logical links between tables defined in Causal From
Expression to promotion and promotion_data tables. For example
promotion_data.promotion_type_id =
promotion_type.promotion_type_id and
promotion_data.promotion_id=promotion.promotion_id

6-12 Oracle Demantra Analytical Engine Guide

Aggregation
Function

Specifies how Demantra should internally aggregate this
promotional causal factor across combinations, whenever it is
necessary do so. Click one of the following:

• WAVR (Weighted Average. For the weights, Demantra uses
the stored proportions of the combinations)

• Boolean (Typically you use this if you have transposed a causal
factor.)

• Sum

See "Step 5: Aggregating Attributes within the IGL".

Priority Ignore this field.

Influence Specifies the effect of this promotional causal factor on other
members. Click one of the following options:

• Has effect on other members (this causal factor can affect other
combinations, in addition to the combinations with which it is
associated)

• Has direct effect only (this causal factor affects only the specific
combinations with which it is associated)

• Has only indirect effect (this causal factor affects only the
combinations with which it is not associated)

5. Describe how the Analytical Engine should use this promotional causal factor. To
do so, specify the following values:

Short Usually you enable this check box only for the following global
causal factors: Constant, t, d1, ... d12. See "Causal Factors and
Engine Models".

Long Usually you enable this check box for all causal factors. See
"Causal Factors and Engine Models".

Multiplicative Group
1, Multiplicative
Group 2

Ignore these options, which do not affect promotional causal
factors.

Configuring Promotions and Promotional Causal Factors 6-13

Non Seasonal Enable this check box if the data associated with this causal factor
is not known to be a predictable function of time. For example,
price varies with time, but randomly, so price should be flagged
as non seasonal. See "Causal Factors and Engine Models".

Self Shape Indicator Enable this check box if this promotion causal factor should be
represented as a shape. See "About Promotion Shape Modeling".

IG Shape Indicator Enable this check box if this promotion causal factor should be
represented via shape modeling when it is aggregated to the IGL.

Omit Seasonal Enable this check box if you want to nullify values of the global
seasonal causal factors for the time buckets during which the
causal factor occurs. Specifically this refers to the causal factors d1
—d12 or d1—d7 and m1—m12. For example, if you have monthly
data and you omit seasonal effects for a given causal factor
Promo1, that means that Demantra switches off the causal factors
for the duration of Promo1.

By omitting seasonal effects, you enable Demantra to capture the
promotion shape more clearly for the shape analysis. This option
is suitable only if you expect the effect of this causal factor to be
much stronger than the seasonal effects.

If causal factors overlap each other, then Demantra gives
precedence to the causal factor that you have flagged to omit
seasonal effects.

Num Shapes Specify the maximum number of allowed shape causal factors for
the engine to use for a given node in the forecast tree, for this
promotional causal factor. Use an integer from 0 to 8, inclusive.

6. Click Validate to check the validity of the configuration.

7. Click Save.

8. Now you can return to previous dialog boxes to make further changes. Or click
Finish to exit.

Adjusting the Promotion Dates
By default, Promotion Effectiveness assumes that a promotion has an effect between its
start and end dates, as provided to Oracle Demantra. Typically the promotion has an
actual effect in a slightly different span of time, as in the following example:

6-14 Oracle Demantra Analytical Engine Guide

You can adjust the dates used by the Analytical Engine in two complementary ways:

• To move the end date of the promotion, set ShiftDynPromoDate to a different end
date.

Note: Alternatively, to specify an overall shift in time for all
promotions, set the ShiftPromoCausals parameter.

• To stretch a promotion by adding time buckets to the beginning or end, do the
following.

• Decide which attribute or attributes have pre and post-promotional effects.

• Enable shape modeling for those promotional causal factors; see "About
Promotion Shape Modeling".

• For those promotional causal factors, set Num Shapes equal to 1.

• The user must change the pre_effect and post_effect settings of the
combination, which default to zero. These settings (in mdp_matrix) specify the
number of buckets to search backwards and forwards outside the promotion
dates. In the preceding example, we set pre_effect equal to 2.

Typically you also set the ShiftPromoMaxValue parameter, to make sure that you adjust
the dates of promotions in the near future (rather than adjusting only historical
promotions).

See also

"How the Analytical Engine Uses Promotions"

"Configuring Global and Local Causal Factors"

Configuring Promotions and Promotional Causal Factors 6-15

"Deleting a Causal Factor"

About Promotion Shape Modeling
In shape modeling, you capture the profile of the demand over the duration of a
promotion. The Analytical Engine models the overall demand as a linear combination
of Oracle proprietary shapes, as many as eight shapes; this information replaces the
normal causal factor that would have been used instead. The Analytical Engine
automatically associates a different shape with each value of the promotional attribute
that uses shape modeling. The Analytical Engine calculates the coefficients for each
shape, for each relevant combination.

Note: The feature described here is available in addition to activity shape
modeling; see "About Activity Shape Modeling".

When to Enable Shape Modeling
You should enable shape modeling only if the following are all true:

• The demand data is continuous (point-of-sale data rather than order data).

• The typical length of a promotion is more than one time bucket.

• You need to search for pre and post effects of promotions.

Other Considerations
Remember that when you enable shape modeling for a promotional causal factor, the
single promotion causal factor is replaced by up to eight causal factors. If the
promotional causal factor is transposed, that adds even more causal factors: up to eight
for each column that the transpose creates.

To keep the number of causal factors down, you can specify the maximum number of
shapes permitted for any given promotional causal factor.

Enabling Promotion Shape Modeling

To enable promotion shape modeling:
1. Identify the promotional causal factors that you want to represent as shapes.

2. On the Promotional Causal Factors screen, make sure to check the Self Shape
Indicator option for each of those promotional causal factors.

3. Consider also setting the following options.

6-16 Oracle Demantra Analytical Engine Guide

• IG Shape Indicator

• Omit Seasonal

• Num Shapes

Tuning the Analytical Engine 7-1

7
Tuning the Analytical Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

It is usually necessary to adjust some parameters to configure the Analytical Engine
correctly before running it the first time. Other adjustments can be made later to
optimize the behavior and performance.

This chapter covers the following topics:

• Editing Engine Parameters

• Creating or Renaming Engine Profiles

• Tuning Analytics

• Tuning Performance

• Reconfiguring the sales_data_engine Table

• Enabling Engine Models Globally

• Configuring the Engine Mode

• Advanced Analytics (Nodal Tuning)

• Forecast Tree Check

Editing Engine Parameters
To tune the Analytical Engine, you modify values of two types of engine parameters:

• Global parameters that apply to the engine or to most or all of the forecasting
models. For convenience, you define engine profiles , which are sets of engine
parameters with specific values. Demantra provides some predefined profiles for
different purposes, and you can define additional engine profiles, as needed.

• Parameters that apply to specific forecast models.

7-2 Oracle Demantra Analytical Engine Guide

To edit the global engine parameters:
1. Log onto the Business Modeler.

2. Click Parameters > System Parameters. The System Parameters dialog box appears.

3. Click the Engine tab.

4. From the Engine Profile drop-down, select the engine profile whose parameter
settings you want to adjust.

5. Find the parameter of interest. The dialog box provides find, sort, and filter
capabilities to help you with this. See "Engine Parameters".

6. To change the value of the parameter, click the Value field for that parameter. Type
the new value or select a value from the drop-down menu.

7. Click Save to save your changes to this profile.

8. Click Close.

To edit specific model parameters:
To edit most model-specific parameters, you must work directly within the Demantra
database. For information on the parameters and their locations in the database, see
"Engine Parameters".

See also

"Creating or Renaming Engine Profiles"

"Tuning Analytics"

"Enabling Engine Models Globally"

Tuning the Analytical Engine 7-3

Creating or Renaming Engine Profiles

Engine Profiles and Parameter Inheritance
When the engine is run with a specific engine profile, it references any parameter
settings associated with that profile. Profile settings that are not found are inherited
from other profiles.

For Batch engine profiles, any parameters that are not found in the profile will receive
values from the Base engine profile. For Simulation and Subset engine profiles, any
parameters that are not found in the profile are referenced in that parameter's parent
batch profile. If the parameter is found in the parent batch profile, then that value will
be used. Otherwise, the values from the Base engine profile are used.

The same logic is applied when displaying engine parameters in the Business Modeler.
If a parameter exists in for the specified profile, its value is shown. If the parameter is
not found then values based on inheritance are displayed instead.

To create or rename an engine profile:
1. Log onto the Business Modeler.

2. Click Parameters > System Parameters. The System Parameters dialog box appears.

3. Click the Engine tab.

4. Do one of the following:

• To rename an existing profile, click the profile from the Engine Profiles list and
then click Edit.

• To create a new profile, click New.

5. Enter a (new) name for the profile.

See also

"Editing Engine Parameters"

 "Tuning Analytics"

6. When creating a new Engine Profile, determine whether it is to be a batch or a
simulation profile. A simulation profile must be attached to a parent batch forecast,
because the simulation is stored in the sim_val column matching the batch parent
profile.

Example
For example, a simulation with the batch parent profile ID of 3 is stored in the
sim_val_3 column. The internal profile ID can be found in ENGINE_PROFILES

7-4 Oracle Demantra Analytical Engine Guide

table.

7. If this is a simulation profile, select the Simulation Engine Profile check box.

8. If the new profile is a simulation profile, select the Parent batch Profile from the
drop-down menu.

9. Click OK.

Tuning Analytics
For basic parameters related to the forecast tree, see "Specifying Additional
Parameters". For information on all parameters (including default values), see "Engine
Parameters".

Analytical Parameters
The following parameters control analytics:

Parameter Purpose

UseNonNegRegr Specifies whether to allow negative coefficients. Most of the
models use this parameter.

In cases with multiple, possibly co-varying causal factors, the
Analytical Engine sometimes finds a solution that includes a
large positive coefficient for one causal and a large negative
coefficient for another causal factor, so that they nearly cancel
one another.

Mathematically, this solution may be good. But a negative
coefficient means that the demand acts in the opposite sense to
the causal factor; that is, demand drops when the causal factor
increases. And a negative coefficient does not make sense in the
vast majority of cases. This means that it is generally good
practice to disable negative coefficients.

ShapeSign Specifies the signs for the shape causal factors when using them
in non negative regression.

NumShapes Specifies the maximum number of allowed shape causal factors
for the engine to use for a given node in the forecast tree. Use
an integer from 0 to 8, inclusive. This applies to activity shape
modeling (rather than to promotional shape modeling).

Tuning the Analytical Engine 7-5

Parameter Purpose

CannibalizationIgnore Controls whether the Analytical Engine will calculate switching
effects (cannibalization). You can use this parameter to switch
off that calculation in order to check that the Analytical Engine
is calculating the basic lift appropriately.

Parameters Related to Promotional Causal Factors (PE Mode Only)
The following parameters are related to promotional causal factors:

Parameter Purpose

PromotionStartDate Earliest date for which promotion data can be considered
reliable.

ShiftDynPromoDate A date that overrides the default end_date column from
the promotion date, thereby shifting the end date of the
promotion. It can be an sql expression that returns a date
value.

Alternatively, to specify an overall shift in time for all
promotions, set the ShiftPromoCausals parameter.

See "Adjusting the Promotion Dates".

Parameters Related to Validation (PE Mode Only)
The Analytical Engine applies different forecasting models to each node of the forecast
tree, calculates the uplift for each node, and uses that uplift to check whether the model
is appropriate for that node. If not, the model is not used for the node.

The Analytical Engine can discard a model for a given node for either of two reasons:

• The model generated an uplift that was beyond the upper allowed bound, as
specified by the UpperUpliftBound parameter.

• The model generated too many exceptional uplifts. An uplift is considered
"exceptional" if it exceeds the lower bound specified by the LowerUpliftBound
parameter. The AllowableExceptions parameter controls how many exceptional
uplifts are permitted.

7-6 Oracle Demantra Analytical Engine Guide

Parameters Related to Output (PE Mode Only)
The following parameters control the output of Promotion Effectiveness forecast values:

Parameter Purpose

NormalizeResults Specifies whether to normalize the historical engine results
so that the observed baseline values are preserved. If you
normalize the engine results, note that the Analytical Engine
writes these results to different fields in promotion_data
than it does otherwise. See "Key Tables".

WriteMissingDatesUplift Specifies whether to write uplifts for dates that are missing
from sales_data. If you specify no, then the Analytical
Engine writes uplifts only for dates that already have sales.
However, the uplifts will not necessarily add up to the total
uplift.

UpliftThresholdValue Specifies a threshold for uplift values. If the Analytical
Engine calculates uplift values below this threshold, those
values are dropped rather than being written to the
database.

UpliftThresholdMethod Specifies whether the previous threshold is expressed as an
absolute value or as a percentage of baseline.

See also

"Editing Engine Parameters"

"Creating or Renaming Engine Profiles"

Tuning Performance
To improve the performance of the Analytical Engine, check the settings of the
following parameters. To access these parameters in Business Modeler, click Parameters
> System Parameters and then click the Database tab.

Basic Engine Parameters for Performance
The following engine parameters are critical to good performance. Make sure they are
set appropriately for your configuration.

Tuning the Analytical Engine 7-7

Parameter Purpose

min_fore_level Minimum forecast level that the engine will forecast. For
PE, this must be at or above the lowest promotional level
(LPL). Make sure this is defined appropriately for your
forecast tree.

start_new_run Specifies whether to start a new Analytical Engine run or
to perform an engine recovery. Use yes or prompt.

node_forecast_details Specifies whether the Analytical Engine should write
forecast data for each node (the NODE_FORECAST table),
before splitting to lower levels. Writing to this table slows
the engine, so you should switch off this option unless you
have tested that the impact is acceptable.

WriteIntermediateResults Specifies whether to enable the advanced analytics
function, which is available only on the desktop. Make sure
this option is off unless you have tested that it does not
interfere unduly with performance.

BulkLoaderBlockSize Specifies the minimum number of rows that Analytical
Engine loads at one time, when writing to the database.
The larger this is, the more quickly the data is loaded, but
there is greater risk if the database connection is lost.

For a high-volume system, use 20,000.

BulkLoaderEnableRecovery Specifies whether Oracle Bulk Loader should perform
recovery after a lost database connection. For a
high-volume system, use 0.

Parameters That Can Speed Performance
The following parameters can help the Analytical Engine run more quickly by omitting
processing steps. You should change these only if you are sure that doing so will not
cause problems.

7-8 Oracle Demantra Analytical Engine Guide

Parameter Purpose

ForecastGenerationHorizon Specifies what historical fit data the engine will write to the
database. If this parameter is 0, the engine writes the
forecast only. If this parameter is a positive integer N, the
engine writes the last N historical fit values.

ResetForeVals Controls the method of clearing current forecast values for
the forecast version currently being generated. If set to Yes
(default), then all combinations with prediction status of
97, 98, or 99, fore = 2, will get null forecast values and
active combinations will be overwritten by the new
forecast. If set to No, then the existing forecast for inactive
combinations will not be cleared. If set to All, then all
combinations will have their forecast cleared regardless of
prediction status. Note that setting this parameter to 'All'
may substantially increase engine run time. If you want to
reset the forecast outside the engine date range, set this
option to All.

The individual engines perform this function during the
run. Each engine produces a list of the inactive nodes for
the branch/simulation it is processing and adds special
rows for the bulk loader. Procedures
ProcessTempSaleTable and ProcessTempPromoTable
perform the resetting. They update the configured data
table and the PROMTION_DATA table. Engine parameter
DBHintInitialForeClean applies only to the functionality of
Engine Manager parameter DeleteIsSelfRows.

If set to All, then besides resetting all inactive
combinations, the engine will reset all non-updated rows
during the current run for active combinations as well. The
procedure detects which rows were not updated according
to the LAST_UPDATE_DATE column. The option "All"
cannot be used with EngineOutputThreshold>0 in the
same engine profile.

RunInsertUnits Specifies whether the Analytical Engine calls the
INSERT_UNITS procedure at the start of an engine run.
This procedure makes sure the engine has rows to write
into when generating the forecast.

For information on all procedures, see "Database
Procedures".

Tuning the Analytical Engine 7-9

Parameter Purpose

BatchRunMode Applies to PE mode, and applies to both batch run and
simulation run. Specifies the kind of forecasting to do:

• 0=run the forecast against only the learning
(estimation)

• 1=run the promotion forecast (the normal setting)

• 2=perform an estimation and promotion forecast run
(fast simulation; this option uses previously cached
data)

For options 0 and 2, the Analytical Engine performs fewer
scans. (For details on the engine flow, see "Promotion
Effectiveness Engine Phases".)

align_sales_data_levels_in_loadin
g

Specifies whether to adjust the sales_data table for direct
use by the engine (instead of the sales_data_engine table).

• 0=no (do not adjust the sales_data table for direct use
by the engine)

• 1=yes (adjust the sales_data table)

For information on this parameter, see "Non-Engine
Parameters".

start_date Beginning of historical data used by the engine. Used
together with parameter HistoryLength. If left at default
01/01/1995, may require the engine to find first period of
real history in historical demand. For larger environments
this can add significant time to the engine run. It is
strongly recommended this parameter be reset to
beginning actual date where history begins.

The engine divider uses Fast Divider functionality. The engine uses the
ENGINE_BRANCH_LIST table to determine the actual branch, not the BRANCH_ID
column of the configured combination table. Each time the engine processes a branch, it
updates the BRANCH_ID column with the actual allocation.

Database Partitioning for the Engine
You can partition the database so that the Analytical Engine can access data more
rapidly. Specifically, you can place different parts of the sales_data, mdp_matrix, and
promotion_data tables on different partitions, so that each partition corresponds to a

7-10 Oracle Demantra Analytical Engine Guide

potentially different item and/or location.

The overall process is as follows:

1. Create the partitions and move rows to them as needed. This is beyond the scope of
this documentation.

2. To partition only by item, choose a database column that you can use to subdivide
the records by item. This column must exist in the sales_data, mdp_matrix, and (in
the case of Promotion Effectiveness) promotion_data tables and must have the same
name in each of these tables.

For example, it might be suitable to partition by brand. The brand information is
available in mdp_matrix as (for example) the t_ep_p2a_ep_id field. You would have
to replicate this column to the sales_data and promotion_data tables as well,
perhaps by a database trigger.

Similarly, to partition only by location, choose a database column that you can use
to subdivide the records by location.

To partition by item and by location, choose a database column that you can use to
subdivide the records by item and another column that subdivides them by
location.

3. Set the following parameters so that the Analytical Engine can find the partition on
which any combination resides:

Parameter Purpose

PartitionColumnItem Specifies the name of the column that partitions the
data by item.

PartitionColumnLoc Specifies the name of the column that partitions the
data by location.

Other Database Considerations
Pay attention to the indexes of sales_data and mdp_matrix tables.

Also, for Oracle databases, Demantra writes to multiple tablespaces, as specified during
installation. The tablespace assignments are controlled by parameters, which you can
edit through the Business Modeler. Make sure that these parameters refer to tablespaces
within the appropriate database user, and make sure each has enough storage.

Note: Oracle recommends that you use the standard names for these
tablespaces, as documented in the Oracle Demantra Installation Guide.

Tuning the Analytical Engine 7-11

Then it is easier for you to share your database with Oracle Support
Services in case of problems.

Additional parameters control the default initial sizes and how much storage is added.

Parameter Description

initial_param Default initial size of system tablespaces.

next_param Incremental amount of storage that is added to a tablespace
when more space is needed.

tablespace Tablespace used for the sales table.

indexspace Database index space that stores the forecast table indexes, as
specified during installation.

simulationspace Tablespace used for simulation data.

simulationindexspace Tablespace used for simulation index data.

sales_data_engine_index_space Tablespace used for the index of sales_data_engine.

sales_data_engine_space Tablespace used for sales_data_engine table.

*For information on these parameters, see "Non-Engine Parameters".

Reconfiguring the sales_data_engine Table
The Analytical Engine creates and uses a table (or view) called sales_data_engine. You
can control how the Analytical Engine does this, in order to improve performance.

• You can adjust the sales_data table for direct use by the Analytical Engine, so that
the sales_data_engine table is not needed.

• Normally, the Analytical Engine internally creates the sales_data_engine table for
its own use, and creating this table can be time-consuming. You can speed up the
engine by configuring it to use the sales_data table instead of the sales_data_engine
table.

• Normally, when the Analytical Engine runs, it joins sales_data_engine (or its
synonym) with the mdp_matrix table. This is not always necessary, and you can
prevent this join to speed up the Analytical Engine.

7-12 Oracle Demantra Analytical Engine Guide

The following table lists the key parameters and some typical settings:

Parameter Description Normal
batch
run

Normal
simulati
on

Faster
engine run*

Fast
simulatio
n*

align_sales_dat
a_levels_in_loa
ding**

Specifies whether to
adjust the sales_data
table for direct use by
the engine (instead of the
sales_data_engine table).

• 0=no (do not adjust
sales_data)

• 1=yes

0 0 1 1

SdeCreateSwit
ch

Specifies the type of
logic to use in order to
create the
sales_data_engine table.

• 0=Use internal
engine logic

• 1=Use external logic,
as specified by
stored @ procedures,
create_process_tem
p_table,
create_object and
drop_object @
procedures. These
procedures may be
modified by
consultants.

0 0 1 1

Tuning the Analytical Engine 7-13

Parameter Description Normal
batch
run

Normal
simulati
on

Faster
engine run*

Fast
simulatio
n*

SdeAnalyzeSw
itch

Specifies the type of
logic to use in order to
analyze the
sales_data_engine table.

• 0=no. The engine
assumes analyze is
already performed
and creates indexes
as part of external
procedures.

• 1=yes. The engine
analyzes and creates
indexes. This is the
default value.

1 1 0 0

SdeCreateJoin Specifies whether the
Analytical Engine
should join
sales_data_engine (or its
synonym) and
mdp_matrix during its
run.

• 0=no (do not join
these tables)

• 1=yes (join these
tables; this is the
default)

0 0 0 1

*See "Additional Steps". Also note that fast simulation forecasts future uplift only. **For
information on this parameter, see "Non-Engine Parameters".

Additional Steps:
1. Configure the forecast tree as you normally would. See "Configuring the Forecast

Tree".

2. In the database, create a synonym for sales_data. The name of synonym should be
sales_data_engine or whatever synonym you plan to use.

7-14 Oracle Demantra Analytical Engine Guide

3. Rewrite the following database procedures as needed:

• create_process_temp_table

• create_object

• drop_object

4. Consult Demantra for assistance.

5. Test that you have configured the engine correctly.

1. Add new records to sales_data, in any of the following ways: by loading via the
Data Model Wizard, by running integration, or by chaining.

2. Run the engine.

3. Check the sales_data table and make sure of the following:

• This table should have a column for every level in the forecast tree,

• This table should have a column named do_aggri.

• This table should have should include non-null data in these columns for at
least some of the records.

Enabling Engine Models Globally
Demantra provides a set of theoretical engine models that the Analytical Engine uses
when it creates a forecast. Usually you do not make changes, but you can specify which
models to use, as well as set basic parameters for each model.

Caution: Only advanced users should make these changes.

When the Analytical Engine runs, it may use a subset of these models on any particular
combination. The engine tests each model for applicability; see "The Forecasting
Process".

Note: Optimization can only use linear generalized coefficients

To enable models for the Analytical Engine to use:
1. Log onto the Business Modeler.

2. Click Engine > Model Library.

Tuning the Analytical Engine 7-15

The following dialog box appears.

3. Select the batch engine profile to be associated with the model library
configurations.

4. For each model, do the following:

• To enable the Analytical Engine to use this model, make sure the Active check
box is checked. For details on these models, see "Theoretical Engine Models".
Note that not all models are supported with any given Analytical Engine.

• The other two settings control the minimum and maximum number of non zero
observations that a combination must have in order for the Analytical Engine to
consider using this model for this combination. To specify these values, type
integers into the Min Len and Max Len fields.

Note: Min Len must be equal to or greater than the number of
causal factors in the forecast, except for the HOLT and FCROST
models, which do not use causal factors.

5. Click Save and then click Close.

7-16 Oracle Demantra Analytical Engine Guide

Configuring the Engine Mode
Oracle provides two different modes of the Analytical Engine:

• The DP mode is for use with Demand Planner or other planning products.

• The PE mode is for use with Promotion Effectiveness.

To specify the engine mode
The RUNMODE parameter specifies the mode of the Analytical Engine to use:

• Use 1 to specify the PE mode.

• Use 0 to specify the DP mode.

If you use this setting, also be sure that you have defined the forecast tree appropriately.
In particular, make sure that the LPL (PROMO_AGGR_LEVEL) is the same as the
minimum forecast level. To set this, use the forecast tree editor in the Business Modeler.

See also

"Troubleshooting"

Advanced Analytics (Nodal Tuning)
Normally, the Analytical Engine uses the same options for every node in the forecast
tree, but you can make certain adjustments for individual nodes, if necessary. This task
is recommended only for advanced users in conjunction with Oracle Support.

Of the models you specify for a given node, when the Analytical Engine runs, it may
use a subset of these models, as described in "The Forecasting Process". The Analytical
Engine indicates (in the models column of mdp_matrix) the models that it used.

To enable advanced analytics :
1. Set the usemodelspernode and UseParamsPerNode parameters to yes.

2. Then for each node of the forecast tree, you can specify engine models and engine
parameters for different nodes in the forecast tree. To do so, you use the Analytics
window.

Forecast Tree Check
The Forecast Tree Check process ensures that the engine tree configuration and its
levels are valid. The forecast tree levels and additional definitions are defined in the
Business Modeler. The Forecast Tree Check verifies that each node has only one parent

Tuning the Analytical Engine 7-17

node in the engine level hierarchy, essentially ensuring a clean parent child relationship
between all levels participating in the forecasting process.

The engine enforces this hierarchy to ensure that, when dividing the overall batch
process into smaller tasks, a node will not be forecasted by two different tasks when
going up levels in the forecast tree. This avoids database server deadlocks when more
than one engine tries to update the same combination and ensures consistent results as
each forecast node receives its forecast from a single source.

You run the Forecast Tree Check from the Engine Manager by specifying a Run Mode
of '10' (Tree Check). Other run modes that the Engine Manager supports include 1
(Batch) and 99 (Simulation).

The Forecast Tree Check process is run from the command line.

Using the Engine Administrator and Running the Engine 8-1

8
Using the Engine Administrator and

Running the Engine

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

Before you run the Analytical Engine for the first time, it is useful to ensure that you
have configured it correctly. This chapter describes how to administer the Analytical
Engine.

This chapter covers the following topics:

• Before Running the Analytical Engine

• General Notes about Running the Analytical Engine

• Deploying the Analytical Engine

• Configuring Engine Settings

• Deploying Demantra CDP RAC Services

• Running the Analytical Engine from the Start Menu

• Running the Analytical Engine from the Command Line

• Running the Analytical Engine from a Workflow

• Stopping an Analytical Engine Run

• Running the Simulation Engine

• Running Engine Starter

• Troubleshooting

• Oracle Wallet Troubleshooting

• Viewing the Engine Log

• Examining Engine Results

8-2 Oracle Demantra Analytical Engine Guide

• Running the Engine in Recovery Mode

• Stopping the Engine

Before Running the Analytical Engine
Before you run the Analytical Engine for the first time, it is useful to ensure that you
have configured it correctly.

• Make sure that you have installed the correct version of the Analytical Engine and
that you have set the RUNMODE parameter correctly; see "Configuring the Engine
Mode".

• Make sure the engine is deployed on all the machines where you want to use it. See
"Deploying the Analytical Engine."

• Make sure that you have enough (and not too many) observations for every node in
your forecast tree, as needed by the engine models you plan to use.

If a node is left with no suitable model, the Analytical Engine will not forecast on
that node. Instead it will forecast at a higher level, if possible.

• Various configurable fields contain parts of SQL queries used by the engine during
run and may fail the engine if configured incorrectly. Common reasons for failures
are misspellings, references to non existent columns, or using functions or syntax
not compatible with the database server.

To check all your engine-related SQL, check the following tables:

• In the Init_Params_* tables, check the parameters quantity_form and UpTime.

The default expression for quantity_form transforms negative values to zero.
This is considered best practice, and should be modified only if there is a direct
need for the Analytical Engine to see negative demand and for negative
proportions to be calculated. Care must be taken when enabling negative
proportions, as allocation using negative proportions may result in violation of
business rules.

• In the causal_factors table, the Local_Funct column uses SQL.

• (For PE mode) In the m3_causal_factors table, many settings here use SQL.

• Make sure that the database is configured correctly, specifically the table extents.
Also, if you have loaded the Demantra schema from a dump file, make sure that the
current database contains table spaces with the same names as in the original
database.

Using the Engine Administrator and Running the Engine 8-3

General Notes about Running the Analytical Engine
• The first engine run takes longer than later runs. This is because the Analytical

Engine must set up internal tables on its initial run. You can reduce the length of
time of the first engine run; see "Reconfiguring the sales_data_engine Table".

• You cannot run the Analytical Engine in batch mode unless the Business Logic
Engine is closed and no simulation is running.

Also see

"Introduction to the Analytical Engine"

Deploying the Analytical Engine
The installer deploys the Analytical Engine for you, but in case of problems, you can
deploy the engine manually. To do so, run the batch file Demantra_root/Demand
Planner/Analytical Engines/bin\RegEngine.bat.

For information on deploying the Analytical Engine, refer to "Deploying the Demantra
Analytical Engine" in the Demantra Installation guide.

Configuring Engine Settings
Engine configuration settings are edited in the Engine Settings window and saved in
the file named Settings.xml. When the engine starts, it reads the settings from this file.
Settings.xml can also be edited manually using an XML editor.

To open the Engine Settings window:
1. Start the Engine Administrator.

2. Click Settings > Configure Engine Settings. Or click the Configure Engine Settings
button.

The Engine Settings window appears.

8-4 Oracle Demantra Analytical Engine Guide

To load settings:
1. Click Open.

2. Select Settings.xml from the bin directory of the Analytical Engine.

The Settings File field displays the location of Settings.xml.

3. Complete the fields as needed; see "Engine Settings".

4. To save your settings, click Save.

5. To register your settings, click Register.

Engine Settings:
You can configure the following settings.

Using the Engine Administrator and Running the Engine 8-5

Setting Meaning

Selected computers where
engines will run

The Engine Manager tries to create and initialize all the Engines
specified in this list.

You can choose one or more machines on which the Analytical
Engine has been installed. These machines must also be
running the appropriate database client software, so that they
can communicate with the Demantra database.

In order to run the Analytical Engine on multiple machines,
your system must include the Distributed Engine.

Engine Manager Log Settings

File name Path and filename of the log file that will record errors from the
Engine Manager.

Output Target Select either stdout or File.

If you choose stdout, the output is sent to the Log File window.
In this case, you can still save the log to a file, from the Run
Engine window.

Log Groups Specifies what level of details to log for a specific Log Group.

Omit file name and line
number

Select this option if you do not want the engine log file to
include this information.

Omit Time Select this option if you do not want the engine log file to
include this information.

Engine Log Settings

File name Path and filename of the log file that will record errors from the
engine itself.

Analytical Log Group This field should be left blank during standard engine runs. If
you encounter a problem when running the engine, you may be
instructed by Oracle Support to enter a specific value in this
field. This will enable a greater level of detail in the engine log
file, but should be done only when troubleshooting engine
issues.

Omit file name and line
number

Select this option if you do not want the engine log file to
include this information.

8-6 Oracle Demantra Analytical Engine Guide

Setting Meaning

Omit Time Select this option if you do not want the engine log file to
include this information.

Deploying Demantra CDP RAC Services
The Demantra CDP RAC Services feature allows the system to override the default
RAC load balancing method to improve performance of the Analytical Engine in a RAC
environment. This enhancement is available only when using the Oracle Demantra
Consumption-Driven Planning (CDP) module, when running Real Application Clusters
(RAC) on one of Oracle's Engineered Systems platforms (for example, Exadata).
Additionally, this feature is currently available only in the 64-bit version of the
Analytical Engine and the cluster-enabled version of the Batch Logic Engine (BLE),
which runs with the 64-bit version of the Analytical Engine.

By default, Analytical Engine connection requests to the RAC services are dispatched in
a "round robin" fashion. That is, each connection is established as needed and none of
the connections has priority over another. Since the Analytical Engine creates more than
one connection, each connection could be handled by a different RAC service, which
can increase network traffic between the different RAC nodes and affect overall
performance. By using the CDP RAC services feature, all of the connections created by a
specific engine task can use the same RAC service, thereby decreasing network traffic
and improving system performance.

For information on enabling the CDP RAC Services, refer to "Real Application Clusters
(RAC) Advanced Setup with Oracle Wallet" in the Oracle Demantra Installation Guide.

Running the Analytical Engine from the Start Menu
For information on deploying the Analytical Engine, see "Deploying the Demantra
Analytical Engine" in the Demantra Installation Guide.

To run the Analytical Engine from the Start menu:
1. To run the engine in batch mode: on the Start menu, click Programs. Then click

Demantra > Demantra Spectrum release > Analytical Engine.

See also

"Running the Engine from the Command Line"

Using the Engine Administrator and Running the Engine 8-7

Running the Analytical Engine from the Command Line

Running the Analytical Engine with Oracle Wallet Defined:
1. Run the EngineStarter script once for each host machine, either as background

process or in a different shell/command console. This must be repeated if
EngineStarter was killed, the shell from which it was run was aborted or the host on
which it was running was restarted.

Note: Oracle recommends that you configure EngineStarter as a
service that runs automatically whenever a machine is restarted.

For example:
./EngineStarter.sh &

Engine Starter will register itself as active in the Database and listen for requests.

2. Run the Start_Engine2K script with a profile ID as a parameter to start a batch run.

For example:
./Start_Engine2K.sh [Profile ID]

Engine Manager searches the database for active Engine Starters and uses them to
spawn Analytical Engine processes as needed.

Running the Analytical Engine without a Defined Oracle Wallet:
1. Run the EngineStarter script once for each host machine, either as background

process or in a different shell/command console with the database connection
details.

For example:
./EngineStarter.sh [DB host address]:[port]/[service name] [user]
[password] &

Engine Starter will register itself as active in the Database and listen for requests.

2. Run the "Start_Engine2K" script with a profile ID as parameter to start a batch run.

For example:
./Start_Engine2K.sh [Profile Id] [DB host address]:[port]/[service
name] [user] [password]

Warning: This is not a secure method for running the Analytical
Engine and should be avoided.

8-8 Oracle Demantra Analytical Engine Guide

Running the Analytical Engine from a Workflow
1. EngineStarter must be running as background process before the Demantra

application and workflow are started. This can be done either manually from a
console, or automated via startup scripts of the host operating system.

2. Engine Manager must be physically located on the same host as the Demantra
Application Server.

3. Make sure the SYS_PARAMS.EngineBasePath parameter is set correctly, pointing to
the Engine Root Directory where all scripts are located.

4. You must use Engine scripts to either start or stop an Analytical Engine run. Either
Start_Simulation2K, Start_Engine2K or KillEngine should be used from within
workflow steps. Use the appropriate script extension and foreword/backward slash
for the host operating syswtem.Usually the parent workflow step implements a
condition step to determine the type of operating system and branch to the
appropriate execution step.

5. Any custom or existing executable step calling one of the Engine scripts must be
preceded with the new path token, pointing to where Engine scripts are located,
rather than a hardcoded path or the old token pointing to the Demantra application
base path.

For example:
#EngineBasePath#\Start_Simulation2K.bat

Stopping an Analytical Engine Run
Run the KillEngine script to stop an existing run. For example when Engine is running
in simulation mode and user wants to start a batch run. Engine Starter will not be killed.

Running the Simulation Engine
1. Make sure that Engine Starter is running.

2. Run the Start_Simulation2K script to start the simulation Engine either with or
without database connection details (depending on the setup method).

For Example:
./Start_Simulation2K.sh
./Start_Simulation2K.sh [DB host address]:[port]/[service name]
[user] [password]

Using the Engine Administrator and Running the Engine 8-9

Running Engine Starter
Engine Starter should be executed once on each engine host.

Engine Starter script can handle 0, 3, 4 or 5 command line parameters. Any other
number will display the error and usage string.

If you run Engine Starter with one argument you will get the usage details. For
example:
EngineStarter.bat [parameter]

To start Engine Starter use the following commend:
EngineStarter.bat [mandatory CONNSTR] [mandatory USERNAME] [
mandatory PASSWORD] [optional STARTER_ID] [optional ENGINES_NUM]

Examples:
EngineStarter.bat
EngineStarter.bat [DB host address]:[port]/[service name] [user]
[password]
EngineStarter.bat [DB host address]:[port]/[service name] [user]
[password] [Starter ID] [Num Engines]
EngineStarter.bat [DB host address]:[port]/[service name] [user]
[password] [Starter ID] [Num Engines]

Possible Failures:

1. Cannot connect to the database:

Solution: Check Oracle wallet setup or provided connection details.

2. Failed to create a queue for the chosen starter ID.

Solution: Check that chosen ID is not over eight characters, as it is
appended/prepended with some additional chars and should eventually be a valid
table name. Check that no invalid characters are part of the chosen ID. Try
manually setting the starter ID in the setenv script to something short and simple
like "starter1" or directly pass this ID via command line.

Troubleshooting
This section contains tips that address specific error conditions that you could
encounter:

• If the Analytical Engine fails to run, see the list in "Before Running the Analytical
Engine".

• If the engine failed while running an SQL statement, check the following logs:

• manager.log

8-10 Oracle Demantra Analytical Engine Guide

• engine2k.log

Find the offending SQL and try running it within a third-party database tool to
identify the problem.

If the engine iterator failed, resulting in the error "node not found in map," that
indicates a problem in the mdp_matrix table. Usually, this means that you need to
set the align_sales_data_levels_in_loading parameter to true and then run the
MDP_ADD procedure. (For information on this parameter, see "Non-Engine
Parameters".)

• If the Analytical Engine run does not finish and gives a message saying that it is
stacked at some node or that it "does not have a usable number of observations,"
this means that the mdp_matrix table is not in a good state. To correct the problem,
run the MDP_ADD procedure.

• If the Engine Log displays the message "Can not initialize caches" that may mean
that your database is too large for the given number of branches. Reconfigure the
engine to run on more branches and try running it again.

• If the Analytical Engine fails or generates errors when processing large amounts of
data, make sure the MaxEngMemory parameter is set to zero.

• PE only: If you receive a message like "ERROR Node not found in map", that means
that something is wrong with synchronization between sales_data and mdp_matrix.
To correct the problem, truncate mdp_matrix and run the MDP_ADD procedure.

• If the Analytical Engine takes an unreasonably long amount of time to create the
sales_data_engine or the promotion_data table, make sure that you have done an
analyze table on these tables.

• If you receive a message such as "Description: ORA-00959: tablespace
'TS_SALES_DATA' does not exist," that typically means the dump file you installed
refers to different table spaces than you have in the current database. Reassign the
Demantra table spaces by changing the parameters that control them:

• indexspace

• sales_data_engine_index_space

• sales_data_engine_space

• simulationindexspace

• simulationspace

• tablespace

Using the Engine Administrator and Running the Engine 8-11

For information on these parameters, see "Non-Engine Parameters".

Validating Input Parameters
Validating engine and model input parameters is used to identify the source of errors
caused by configuration issues and errors. This streamlines and shortens the
troubleshooting process and reduces the need for support.

• Parameters:

1. The Analytical Engine loads the 'Parameters' data from the PARAMETERS
table.

2. The engine then loads the 'Parameters' data from 'Parameters Daily.xml',
'Parameters Monthly.xml', or 'Parameters Weekly.xml' depending on 'timeunit'.

• InitParams:

1. The Analytical Engine loads the 'InitParams' data from INIT_PARAM_0 table.

2. Then the engine loads the 'InitParameters' data from 'Init Params 0 Daily.xml',
'Init Params 0 Monthly.xml', or 'Init Params 0 Weekly.xml' values.

The Analytical Engine loops through parameters from xml, validates them against the
database parameters, fixes the collected parameters, or adds the missing parameters in
the database.

The validation rules are configurable. If they belong to the current run, you can specify
the parameter group, and the restrictions by which the parameters are compared.

If any of the input parameters fails the validation, the system replaces the erroneous
parameters with the default value if the restriction does not contain '?'. Otherwise, the
system simply generates a warning message to inform the user of the erroneous input
parameter.

Note: Demantra supports only the following type "double" validations
for parameters:

• 1 - All the groups - always validate

• 2 - DP batch

• 3 - PE batch

• 4 - DP simulation

• 5 - PE simulation

8-12 Oracle Demantra Analytical Engine Guide

Example 1
<Entry>
 <Key argument="AllowNegative"/>
 <Value type="double" argument="0"/>
 <Validate group="1" restrict="=1,=0"/>
</Entry>

The above-mentioned validation means "Allow Negative" parameter of type "double"
with default value "0". The validation belongs to group "1" thereby run during all
engine runs and its value can either be "1" or "0"

Example 2
<Entry>
 <Key argument="lead"/>
 <Value type="double" argument="52"/>
 <Validate group="3,4" restrict=">0,?<=100"/>
</Entry>

The above-mentioned validation means "lead" parameter of type "double" with default
value "52" belongs to group 3 and 4, for which the value must be greater than "0" and
less or equal to "100". The "?" means that it is not mandatory to fix the parameter if it is
greater than "100". If under 0 the parameter would warn the user and replace the value
with 52 while if greater than 100 a warning will be generated but not override would
occur.

Example 3
<Entry>
 <Key argument="PROMO_AGGR_LEVEL"/>
 <Value type="double"/>
 <Validate group="3,5" restrict=""/>
</Entry>

The above-mentioned validation means "PROMO_AGGR_LEVEL" parameter of type
double with no default parameter belongs to group 3 and 4, and the validation is done
through custom function. The engine will quit running if the validation fails

To add the custom function to the process, you should add your function to
..\Common\Util\Validation Functions.cpp.

Then add the name and address of this function to the array of function pointers, so that
the application can execute this function dynamically:
m_mPoint2Function["PROMO_AGGR_LEVEL"]=
PromoAggrLevel;m_mPoint2Function["PROMO_AGGR_LEVEL"]= PromoAggrLevel;

Oracle Wallet Troubleshooting
Once the setup process have completed successfully. Verify that the TNS_ADMIN
directory contains both tnsnames.ora and sqlnet.ora then follow the steps below to
validate the DB connection setup.

Verifying the Wallet Connection on Windows:
1. After completing the setup process successfully CD into the Engine Root directory.

Using the Engine Administrator and Running the Engine 8-13

2. Run the setenv.bat batch that was generated by setup process.

3. Run "tnsping %ENG_CONNECTION%" – Tnsping should complete successfully.

4. Run "sqlplus /@%ENG_CONNECTION%" – Sqlplus should connect successfully
and allow you to run queries against the configured schema.

Verifying the Wallet Connection on UNIX, Linux or Solaris:
1. After completing the setup process successfully CD into the Engine Root directory.

2. Run the setenv.sh script that was generated by setup process.

3. Run "tnsping $ENG_CONNECTION" – Tnsping should complete successfully.

4. Run "sqlplus /@$ENG_CONNECTION" – Sqlplus should connect successfully and
allow you to run queries against the configured schema.

Possible Issues:
• Either tnsping or sqlplus are not found.

Solution: Make sure you have the ORACLE_HOME environment set up correctly
and that you have the ORACLE_HOME\bin directory in your PATH variable.

• Script tnsping fails.

Solution: Verify that contents of "tns_names.ora" are correct as quoted below.

• Script sqlplus fails to connect

Verify that contents of sqlnet.ora are correct as quoted below. If they are and the
reported error is about incorrect username/password, please redo the setup or
recreate the wallet with the correct user/password credentials.

Example TNS_NAMES.ORA File
DEM_CONN = (DESCRIPTION= (ADDRESS =
 (PROTOCOL = tcp)
 (HOST = myserver.mydomain.com)
 (PORT = 1521))
 (CONNECT_DATA = (SERVER = DEDICATED) (SERVICE_NAME = myservice)))

8-14 Oracle Demantra Analytical Engine Guide

Example SQLNET.ORA File
SQLNET.AUTHENTICATION_SERVICES = (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES,EZCONNECT)
WALLET_LOCATION = (SOURCE = (METHOD = FILE) (METHOD_DATA = (DIRECTORY =
%TNS_ADMIN%)))
SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

Note: The directory for wallet is pointing to the same directory as set
for the environment variable TNS_ADMIN and contains the wallet files
(cwallet.soo and ewallet.p12).

Viewing the Engine Log
The log viewer helps you debug the engine run. The log for the Analytical Engine
appears in a text file in the directory Demantra_root/Demand Planner/Analytical
Engines/bin.

To open the log file viewer:
1. Start the Engine Administrator.

2. Click the View log file button.

To view a log file as it is:
1. Click the Open with Tree View button.

2. When the Processors check box is chosen in Log Groups, you can view the log file
with processors tree assistance. If you click on a processor in the right side of the
Log File window, you are brought to the corresponding line in the log file.

Examining Engine Results
This section contains assorted tips on viewing and understanding the engine results
from a more technical point of view.

Seeing What Level the Forecasting Was Done
When forecasting, the Analytical Engine writes information to the mdp_matrix table to
indicate where it performs the forecast. For each combination, it writes this information
to the following columns:

• level_id is the strategy in the forecast tree where the forecast for this combination

Using the Engine Administrator and Running the Engine 8-15

was generated. Strategy includes data aggregation level referred to as detail node
and possible pooling of detail nodes into longer time series referred to as range.

• item_node is the item member in that detail level.

• loc_node is the location member in that detail level.

Seeing if Any Nodes Were Not Forecasted
To see if any nodes failed to receive a forecast, run the following SQL:
SELECT level_id, COUNT(*) FROM MDP_MATRIX WHERE prediction_status=1
GROUP BY level_id

Explanation: At the start of the run, the engine iterates through all nodes able to be
forecasted and sets their level_id to the fictive level. As it forecasts the nodes, it resets
the level_id back to normal. At the end of the run, if you have nodes with a level_id =
fictive level, those nodes did not get a forecast.

Possible reasons:

• The forecast tree might not be well formed.

• There might not be any models that can work on at the Top Forecast Level.

• There might be nodes that do not have the correct number of observations for the
models.

• Naive forecasting might be off; see "Forecast Failure".

Writing Intermediate Results
In a batch run, the Analytical Engine can write intermediate results to the database, to
help you determine the source of a problem. To enable this, set the
WriteIntermediateResults parameter to yes (1) and then run the engine. When this flag
is enabled, the Analytical Engine writes intermediate results to the INTERM_RESULTS
table.

Warning: Use this feature only with help of Oracle consulting. This
feature may greatly inflate the engine run time.

You can also configure the engine to write forecast data for each node, before splitting
to lower levels. This data is written to the NODE_FORECAST table, which includes
information on how each model was used for that node. To enable this, set the
node_forecast_details parameter to forecast is written with model details (1) before
running the engine.

To edit these parameters, use the Business Modeler.

8-16 Oracle Demantra Analytical Engine Guide

Running the Engine in Recovery Mode
Internally, the Analytical Engine records information to indicate its current processing
stage. As a result, if the previous engine run did not complete, you can run recovery,
and the Analytical Engine will continue from where it was interrupted.

To run the engine in recovery mode:
1. In the Business Modeler, set the start_new_run parameter to either No or Prompt.

2. Start the Analytical Engine as described in "Running the Engine from the Start
Menu".

Stopping the Engine
Normally the Analytical Engine stops on its own when it has completed processing.

If you are automating processes, you may want to make sure that the Analytical Engine
is not running, before starting it again.

In the directory Demantra_root/Demand Planner/Analytical Engines, there is a batch
file that you can use to kill the engine manager (and therefore the engine as well). This
is called KillEngine.bat.

Tip: After killing the Analytical Engine, it is advisable to wait about 10
seconds before starting a new one.

Engine Details 9-1

9
Engine Details

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter provides details on the Analytical Engine, for the benefit of advanced
users.

This chapter covers the following topics:

• Preparing the Database

• Promotion Effectiveness Engine Phases

• The Forecasting Process

• Comparing Forecast Modes

• Engine Components and High-Level Flow

• Details of the Distributed Engine

Preparing the Database
At the start of an engine run, the Analytical Engine prepares the database, to make sure
that the appropriate tables contain rows into which the Analytical Engine can write
results. To do so, the Analytical Engine calls the INSERT_UNITS procedure, which is
controlled by the RunInsertUnits parameter and can do several things, depending on
the value of that parameter:

• Makes sure the engine has rows to write into when generating the forecast. In
particular, for all non-dead combinations, this procedure does the following:

1. Checks to see if the database contains records for this combination for all dates
in the span of time from max_sales_date to max_sales_date + lead.

2. For any dates when the combination does not have records, this procedure

9-2 Oracle Demantra Analytical Engine Guide

inserts records with zero sales, into which the Analytical Engine can then write
the forecast.

3. Records with dates in the past are ignored.

• Runs the EXECUTE_PROFILES procedure, which executes the active rolling data
profiles.

Additional Details for PE Mode
For Promotion Effectiveness, if the DeleteIsSelfRows parameter is 1, the Analytical
Engine also performs a cleaning step. In this step, it removes unneeded rows from the
promotion_data, which otherwise can grow to an unreasonable size. (If this table
contained a row for every item, every location, every promotion, and every date,
performance would suffer.) Specifically, the Analytical Engine deletes rows that have
is_self is 0 and that have zero lift values (details below).

In some cases, users may enter override values, and the Analytical Engine should not
delete rows that contain those values. The DeleteIsSelfCondition parameter specifies
other fields in promotion_data that should be checked before this cleaning occurs. The
Analytical Engine deletes only the rows that have is_self is 0 and zero values for all of
the following fields: uplift, pre and post-effect, switching effects, and the field or fields
specified by DeleteIsSelfCondition.

Promotion Effectiveness Engine Phases
In PE mode, the Analytical Engine runs in multiple phases (the last of which actually
generates the forecast), and it caches data at critical points, for better performance. The
earlier phases map the promotion attributes internally into causal factors, so that they
can be used in the same way as the other causal factors.

This section describes these engine phases.

Global Preparations
This phase uses the following settings from the Promotional Causal Factor screen; see
"Configuring Promotional Causal Factors":

Column Name Expression An expression that retrieves and aggregates the promotion
attribute.

Engine Details 9-3

Filter An aggregating expression that returns the true or false value,
filtering the source data of this promotional causal factor. You
can use this expression to create multiple causal factors from a
single set of source data.

When the Analytical Engine runs, the first step is to perform the following global
preparations:

• Create the promotion_data_engine table, which is analogous to the
sales_data_engine used in demand planning.

• In memory, aggregate the promotion attribute data to the lowest promotional level,
as defined in the forecast tree. Here the Analytical Engine uses the Column Name
Expression option.

• Apply filters as defined by the Filter option.

Initial Phase
This phase uses the following settings from the Promotional Causal Factor screen; see
"Configuring Promotional Causal Factors":

Transpose by Column Optionally converts a qualitative promotion attribute into
multiple unrelated causal factors.

Merge Function Specifies how Demantra should internally merge promotions of
the same kind that apply to the same item, location, and time.

Aggregation Function Specifies how Demantra should internally aggregate the
promotional causal factor above the LPL.

After making global preparations, the Analytical Engine performs the first scan of the
forecast tree, as follows:

1. Read from the database and load the forecast tree into memory.

2. Calculate the absolute and relative addressing within each influence group, for
internal use. In this step, the Analytical Engine uses the COMPETITION_ITEM and
COMPETITION_LOCATION parameter settings.

3. Creating promotional causal factors at the LPL. In this step, the engine does the
following:

• Transpose the promotion attributes, according to the Transpose by Column

9-4 Oracle Demantra Analytical Engine Guide

option.

• Merge the attributes across promotions, according to the Merge Function
option.

• Cache the data for nodes of this level.

4. Creating promotional causal factors at the IGL. In this step, the engine does the
following:

• Aggregate the promotional causal factors within each IG, according to the
Aggregation Function field. (If a given promotional causal factor is represented
by shapes, those shapes are summed instead.)

• Cache the data for the IGs.

5. Cache the data for the IRs.

Learning Phase
After the first scan of the forecast tree, the Analytical Engine performs the learning
phase, which consists of the following steps:

1. Iterate through the forecast tree, starting at the minimum forecast level.

2. Create the following three historical promotional causal factors for each node in the
forecast tree:

self Influence on this node caused by promotions on this node

own Influence on this node caused by other nodes within the same IG

other Influence on this node caused by all IGs within the IR

3. Perform processing to clean up historical data, as specified by various parameters:

• CutTailZeros

• ShiftPromoCausals

• PromotionStartDate

4. Combine the promotional causal factors with the baseline causal factors.

5. Estimate the fit for baseline and promotion coefficients (self, own, and other). If

Engine Details 9-5

necessary, discard groups of causal factors for specific combinations.

6. Separately validate the fits for baseline and uplifts.

7. Perform the baseline forecast. This forecast represents the sales without any
promotions.

8. Validate the baseline forecast.

9. For any node where the promotion coefficients were validated, partition the uplifts
to the promotion attributes that caused them, taking into account the attribute
values.

10. Split the baseline and promotional uplifts to the LPL. For lifts, the splitting
mechanism does not use the proport mechanism; instead it considers the attribute
values, as appropriate. For baseline, proport is used as usual.

11. Decompose the promotional uplifts. In this step, the Analytical Engine associates
the uplifts with the specific promotions, rather than the attributes.

12. Compact the promotional uplifts for each combination (combining effects of
different promotions). The direct and cannibalization effects are treated separately.

13. For past data, split the fit uplifts to the lowest forecast level (using the normal
proport mechanism) and write them to the database.

14. For past data, split the baseline fit and forecast to the lowest forecast level and write
them to the database. This step also uses the normal proport mechanism.

15. Cache the forecast level node data.

16. Cache the IDs of relevant forecast nodes to the database.

Promotion Forecast Phase
After the learning phase, the Analytical Engine performs the promotion forecast phase,
which consists of the following steps:

1. Iterate the forecast tree, this time only on relevant nodes.

2. Load the forecast node data from the cache.

3. From the cached data, create the future promotional causal factors (self, own, and
other) for each node in the forecast tree.

4. Complete the coefficients for future promotional causal factors.

9-6 Oracle Demantra Analytical Engine Guide

5. Combine the promotional causal factors with the baseline causal factors.

6. Generate the promotional forecast. See "The Forecasting Process".

7. Validate the uplifts. (The baseline has already been validated.)

8. Partition the uplifts, as in the learning phase.

9. Split the baseline and promotional uplifts to the LPL, as in the learning phase.

10. Decompose the promotional uplifts.

11. Compact the promotional uplifts.

12. Split the forecast uplift series to the lowest forecast level and write them to the
database.

The Forecasting Process
This section describes the overall forecasting process.

Note: For PE mode, this section describes the process that is performed
within the final phase of the engine run; see "Promotion Forecast Phase"

The topics here are as follows:

• Summary of the Forecasting Process

• Preprocessing

• Estimation

• Fit and Residuals

• Validation of Fit

• Causal Factor Testing (Envelope function)

• Forecast

• Engine Split for Future Forecasting

• Validation of Forecast

• Bayesian Blending

• Adjustment

Engine Details 9-7

• Forecast Failure

• Intermittent Flow

Summary of the Forecasting Process
The preprocessing module performs the following functions:

1. Cutting leading zeros.

2. (PE mode only) Checking to see whether this node is a promotional node, that is, a
combination that has promotions.

3. Deciding whether the node should be treated by the intermittent flow module.

• (PE mode) First, the node is classified as either promotional or
non-promotional, based on whether it has any associated promotions. If the
node is promotional, no checking is done for intermittency. If the node is
non-promotional, the node is then checked for sparse data; if the node has
sparse data, it is flagged for use by the intermittent flow module.

Note: In later processing, promotional nodes are treated
differently from non-promotional nodes in two other ways:

• The ARIX and ARX models are never used on promotional
nodes.

• The HOLT model is used on promotional nodes only if no
other models can be used.

• (DP mode) If the node has sparse data, it is flagged for use by the intermittent
flow module.

4. Treating missing values.

5. Performing preliminary outlier and regime change detection.

6. Removing obvious (gross) outliers, if requested. (This feature is not recommended
for use with the engine in PE mode.)

7. Transforming data for use in specific models.

After preprocessing, if appropriate (see Step 3, above), the node is now treated by the
Intermittent flow module, which uses special model types; see "Intermittent Flow".

Otherwise, the Analytical Engine applies and tests models as follows:

9-8 Oracle Demantra Analytical Engine Guide

1. Checking that the number of data points exceeds the number of causal factors by at
least two. This is done to ensure that no overfitting will occur, and so that
coefficients for all causal factors can be determined.

The check is valid only for models IREGR, LOG, BWINT, and DMULT. If a model
fails this check, it is rejected and a message is written to the log.

2. Estimation. Statistical algorithms are implemented to data and their parameters are
calculated.

3. Fit and residuals calculation. The fit reflects the ability of the model to reproduce
the actual historical data. The residuals describe the deviation of the fit from the
actual data. The results are used later, in the Bayesian blending method.

Then residual outliers are removed, if this option is requested.

4. To check the ability of a model to mimic the actual series, a fit validation is
performed (if enabled by the EnableFitValidation parameter). In fit validation, the
residuals undergo multiple statistical tests.

5. Forecast performs identical calculation to Fit, only for the future period, lead.

6. For a given model, if the forecasting is occurring at the highest forecast level, the
Analytical Engine applies a more liberal treatment of models. During forecast
validation, models undergo three tests:

• A test for an unusual zigzag-type jump.

• A test for abnormal divergence of forecast relative to fit (this is done by
building a funnel-shaped envelope and ensuring that the forecast is confined
entirely within it).

• A statistical comparison of forecast and fit means.

Forecast validation is performed only it is enabled (via the
EnableForecastValidation parameter).

7. If at this stage there are no valid models, the time series will be treated by the
forecast_failure procedure, where either the control will be passed over to the shell
and data accumulated to the next level on the forecast tree, or, if we are already at
the top forecast level, the HOLT model will be attempted, if it has not been tried
previously as a regular model (and obviously failed). If it has, or if it fails this time,
the NAIVE model is fitted (if enabled by the NaiveEnable parameter).

8. On the other hand, if there are valid models, the Analytical Engine applies the
Bayesian blending method. This combines the results of all the models, taking two
factors into account:

• The variance of the residuals for each model

Engine Details 9-9

• The complexity of each model (models that use more causal factors can be
overfitted and thus should receive less weighting).

9. It may be necessary to adjust it to pick up the recent trend. The EnableAdjustment
parameter directs the flow to the adjustment processor, where trend adjustment is
performed, using a set of user-specified parameters.

Preprocessing
The preprocessing stage consists of the following steps:

1. Removing leading zeros. If a series begins with leading zeros, that part of data may
be omitted. This is controlled by the CutTailZeros parameter.

2. Intermittency detection and processing. Before checking a series for intermittency,
its trailing zeros are temporarily truncated.

• If there are not enough remaining non zero elements (as measured by the
TooFew parameter), the forecast failure module is activated.

• Otherwise, the IntermitCriterion parameter is checked. This parameter specifies
the minimum percentage of zero data points that a series must have to be
considered intermittent.

3. Missing values treatment. The Analytical Engine checks the parameter
FillParameter. Depending on this parameter null values are replaced by zeros or by
the method specified by the FillMethod parameter, which supports the following
choices

• Filling in values by linear interpolation of nearest neighbors.

• Omitting the values, at the same time adjusting the time scale of causal factors
and trends of the Holt procedure. This is useful if you do not want these values
not to be accounted for in the estimation procedures. Furthermore, this is the
only way to have exact zero "forecasts" in time points where it is known that no
demand is expected, like holidays and vacations. Be careful to mark these time
points by means of the UpTime parameter.

4. Preliminary outlier detection (if outlier detection is enabled, via the detect_outlier
parameter). Outliers are "unusual" data points, that may distort the result of the
forecasting process and lead to erroneous decisions. Detecting them is a nontrivial
problem. Often what seems to be an outlier turns out to be a result of expected
behavior. Even more frequent are cases in which seemingly sound data are in
reality outliers.

9-10 Oracle Demantra Analytical Engine Guide

Note: Outlier detection should be used cautiously with the engine
in PE mode. You should not use gross outlier detection at all in this
mode.

If outlier detection is overused, the engine discards promotions and
cannot learn from them. Future promotions will then have no lift.

• The MinLengthForDetect parameter specifies the minimum number of data
points needed to perform outlier detection (the default is a year's worth of
data).

• Demantra computes a range of "normal" values and counts the number of data
points that lie outside that range. If a relatively small number of data points lie
outside the range, they are considered outliers and are discarded. On the other
hand, if a relatively large number of data points lie outside the range, then
Demantra considers all of them to be real data points, and does not discard any
of them as outliers. The OutliersPercent parameter controls the threshold for
this test.

5. Preliminary outlier handling, of only obvious (gross) outliers. This step is
performed only if gross outlier handling is enabled via the GrossRemove parameter
. The OutlierStdError parameter controls the sensitivity of the gross outliers
detection. The smaller the value, the more aggressively the procedure will be detect
outliers.

Note: At this stage, only the gross outliers are removed. Other
outliers are retained, because they may later be attributed to
assignable causes, which will be revealed only at the model
building stage.

Gross outlier detection is not recommended for use with the engine
in PE mode.

6. Gross outliers are permanently filled by linear interpolation.

7. Preliminary regime change detection (if enabled by the detect_cp parameter). In the
preliminary stage, this procedure finds points of change in the level or trend. The
RegimeThreshold parameter controls the sensitivity of detection regime change.
The smaller the value, the more aggressively the procedure will detect regime
changes.

Note: There is no outlier or regime change detection for
intermittent data.

Engine Details 9-11

8. If TrendPreEstimation is yes (1), the Analytical Engine performs trend detection.

Note: If you have disabled negative regression (via
UseNonNegRegr), then it is difficult for the Analytical Engine to
detect downward trends. In such cases, you should enable trend
detection via TrendPreEstimation.

Trend detection works as follows. The history is divided into two segments: the
long segment, which is followed by the short segment. The short segment is
assumed to have a trend. Demantra automatically generates a new trend causal
factor for each segment (by fitting to the general shapes of those segments) and
passes those new causal factors to the engine, to replace the existing trend causals.

You can specify the following settings to control the specific behavior:

• First, the TrendPeriod parameter specifies the boundary between the long
segment and the short segment. This parameter specifies this boundary in terms
of latest, most recent time buckets.

• The TrendDampPeriod and TrendDampStep parameters specify how this trend
should be dampened (toward the future), which is useful particularly with an
upward trend (which, when extrapolated, would give unrealistic values). The
TrendDampPeriod parameter specifies a block of time (as a number of time
periods) over which the residual dampening is applied. Dampening is not
applied for the last historical block, and is applied in an exponential manner on
previous historical blocks. The size of the dampening depends on parameter
TrendDampStep. The TrendDampStep parameter specifies the dampening
factor, which is applied n times to the nth block of time. The result is
exponential dampening.

• The TrendModelForShort parameter specifies which engine model to use in
order to generate the trend causal factor in the short segment (either REGR or
HOLT).

• The TrendOutlierRatio and TrendShortRatio parameters specify how to treat
points found as outliers during trend pre-estimation. Each of these is a numeric
weight to apply to the outliers. The TrendOutlierRatio parameter controls the
weighting of outliers in the long segment, and the TrendShortRatio controls the
weighting of outliers in the short segment.

9. Data transformations for use in specific models.

Estimation
The Analytical Engine uses different estimation procedures for each engine model. See
"Theoretical Engine Models".

9-12 Oracle Demantra Analytical Engine Guide

If UseWeightedRegression is yes (1), then the Analytical Engine applies a weight to
each observation when fitting each model. The OBS_ERROR_STD field (in sales_data)
specifies the weights for each observation; the default value is 1.

Fit and Residuals
Fit and residual procedures are also model-specific. They calculate values fitted by the
model to historical data and evaluate the residuals. Non-positive fitted values are set to
zero (depending on the setting of the AllowNegative parameter).

For the logarithmic models (LOG and ELOG), the operation of antilog, to convert
results back to original metric, must consider the form of the expectation of a lognormal
variable. To use this corrected conversion, activate the LogCorrection parameter.

The Analytical Engine sorts the residuals by size and removes the largest residuals. The
parameter RemoveResidOutlier specifies how many residuals to remove, as a
percentage of the total number of residuals.

Note: When the engine runs, each analytical model attempts to
understand historical demand and then leverages that understanding
into generating a future forecast. As part of that analysis, the engine
generates "forecast" values that actually occur in the past; these values
are called "fit." They are not a direct indication of how accurate future
forecasts will be, but are generated to show how well the engine
"understands" history.

Validation of Fit
Although fit validation is model-specific, it is activated globally by the parameter
EnableFitValidation.

This procedure consists of the following steps:

1. Outliers. Check the influence of outliers on the residuals. The Quantile parameter
specifies a standard normal percentile for detecting outliers at a prescribed
significance level. If an outlier affects the residuals, no further validation is needed,
and we proceed to the problem correction stage. Otherwise, the Analytical Engine
tests the goodness of fit.

2. Valid_fit. Here a battery of four statistical tests are performed. Failure of one of
them leads to rejection of fit validity.

• Mean_check is a test for comparison of means of fitted and actual data. The
MeanRelativeDistance parameter is the maximum MAPE (Mean Absolute
Percentage Error) allowed in a model that is MeanValid.

• Std_check is a test for comparison of standard deviations of two parts of the

Engine Details 9-13

residuals. The division into parts (earlier and later) is controlled by the
TestPeriod parameter. The StdRatio parameter is the maximum allowed ratio of
the standard deviation of the later part to the standard deviation of the earlier
part.

• Bjtest is the Bera-Jarque test for normality of residuals. Normal distribution of
errors is a desired feature, assuring randomness, independency and lack of bias
in the errors, thus indicating that the model was successful in catching and
removing all systematic variability in data.

• Finally, residuals are checked for presence of large deviations, by comparing
them to a multiple of standard deviation, as specified by the DeviationFactor
parameter.

3. If fit validation fails, the following occurs:

1. Detect outliers.

2. Replace the outlying values by values calculated by linear interpolation.

3. Refit. Re-estimation of model parameters for the series corrected for outliers,
recalculation of fit and residuals, followed by revalidation.

Causal Factor Testing (Envelope Function)
For some of the engine models (CMREGR, ELOG, LOG, MRIDGE, and REGR),
Demantra can choose random sets of causal factors, which it then tests. Demantra can
then either use the set of causal factors that gives the best result or use a mix of causal
factors.

This operation is known as the envelope function, because it is performed as an envelope
around the main engine flow. This operation is controlled by the UseEnvelope
parameter, which can equal any of the following:

• 0 (Do not use the envelope function.

• 1 (Use the envelope function on five groups of causal factors: base plus direct and
the four switching groups).

• 2 (Use the envelope function on the causal factor groups defined in
Estimation_groups table).

• 3 (cycles individual influence groups in and out as part of causal factor envelope
analysis process).

Note: A value of '3' is only relevant if at least one active

9-14 Oracle Demantra Analytical Engine Guide

promotional causal factor is set to 'Has only indirect effects' or 'Has
both direct and indirect effects'. For more information, see
Influence Group Handling and Filtering.

Additional parameters further control the behavior for specific engine models:

• IGLIndirectLimit specifies the number of influence groups to use when generating
cannibalization and halo effects. The top influence groups are chosen based on
group volume.

Note: This parameter is only relevant if at least one active
promotional causal factor is set to 'Has only indirect effects' or 'Has
both direct and indirect effects'.

• ENVELOPE_RESET_SEED specifies whether to reset the randomization seed for the
envelope function, which evaluates different sets of causal factors for different
engine models.

• ENVELOPE_CHAIN_LENGTH specifies the number of variations of causal factors
to try, for each model.

• BestOrMix specifies whether to use the best set of causal factors (1) or to use a mix
of the causal factors (0). The default is 0.

Forecast
The forecast is calculated in almost the same way as the fit; see "Fit and Residuals". The
key difference is that the Analytical Engine does not analyze causal factors when
computing the forecast. Instead, the engine uses its learning, combined with the future
values of the causal factors. The lead parameter specifies the length of time (in the
future) for which the forecast is generated. If negative values are disallowed, the
Analytical Engine sets them to zero.

Validation of Forecast
At this point, the forecast is validated. The purpose of this validation is to avoid
abnormalities in the projected result of a model. The validation is identical for all
models, except HOLT, which does not use it. The EnableForecastValidation parameter
controls the applicability of forecast validation.

Forecast validation includes three tests:

1. Jump test. This test detects up-and-down or down-and-up zigzag-like jumps. The
magnitude of upward jumps is controlled by the Quantile parameter. The larger the
value of this parameter, the more liberal is the jump test.

Engine Details 9-15

2. Envelope test. This test spreads a funnel-like envelope over the forecast. The shape
of the envelope is a function of the behavior of the underlying time series. There is
no external control over the sensitivity of envelope test.

3. Mean test is a test on means of the forecast and the later part of the time series of
length given by the test_samp_len parameter.

The ForecastMeanRelativeDistance parameter controls the sensitivity of forecast
validation. The larger its value, the more liberal is the test.

Bayesian Blending
First, the Analytical Engine checks the setting of the DetectModelOutliers parameter,
which specifies whether to detect model outliers for each forecast node. A model outlier
is an engine model that does not give good enough results for that node. The
ModelValidationBound parameter controls the sensitivity of the test, which proceeds on
each node as follows:

1. For each model, a Demantra proprietary algorithm computes an index that
indicates the goodness of fit for that model at that node. Small values are
considered good.

2. The Analytical Engine sorts these indexes by value and computes the difference in
value between each successive pair of indexes.

3. If none of these differences are greater than the value of ModelValidationBound
(whose default is 0.2), the Analytical Engine considers all the models good enough
and does not look for outliers.

4. If any of the differences are greater than ModelValidationBound, then the
Analytical Engine fits a line through the indexes and uses it to determine which
models to discard. Any models with points that lie too far above the line are
discarded.

For each forecast node, the Analytical Engine discards any model outliers and then
combines the results for all models using the Bayesian blending method. This combines
the results of all the models, taking two factors into account:

• The variance of the residuals for each model.

• The complexity of each model (models that use more causal factors can be
overfitted and thus should receive less weighting).

It is often necessary to enhance models that perform better on most recent historical
data, as opposed to models that show close fit to the remote history. This is achieved by
assigning decaying weights to residuals, so that recent residuals have greater weights
than the remote ones. The DampStep parameter specifies the rate of weights decay, and
the DampPeriod parameter specifies the number of periods in which the residuals will

9-16 Oracle Demantra Analytical Engine Guide

receive the same weights. The dampening of weights is done between each successive
period, so that the result is exponential decay.

Adjustment
In the adjustment phase, the Analytical Engine performs a final tuning of the forecast,
enabling the user to adjust the forecast to the recent trend in the historical data. Not
recommended, unless it is known that a change in trend happened recently, which is
likely to be missed by the models. The following parameters are used for adjustment:

• EnableAdjustment enables the adjustment.

• TrendPeriod specifies the period for trend estimation; if zero then no adjustment
will be made.

• DownTrend (a value from 0 to 1, inclusive) specifies the degree of descending trend
adjustment.

• UpTrend (a value from 0 to 1, inclusive) specifies the degree of ascending trend
adjustment.

• PercentOfZeros specifies the maximum percent of zero values in the estimation part
to enable trend adjustment.

Forecast Failure
If all participating models fail one of the preceding validations, the control is transferred
to the engine shell in order to aggregate to the next level on the forecast tree.

If the model HOLT has not been previously applied at the last level and if there are
enough data points, then HOLT is attempted. (HOLT is usually configured for short
time series, less than one season). One can optimize its parameters by requesting
Optimally. The model follows the usual path of estimation, fit and residuals calculation,
fit validation, forecast calculation and forecast validation.

If HOLT fails, or if it has been used on this level before, or if there are very little data, an
attempt is made to obtain a last resort forecast. Here, the parameter NaiveEnable
controls the choice of how to proceed; this parameter has one of the following values:

• no (0): Do not enable either NAIVE or Moving Average models. Do not generate a
forecast.

• yes (1): Enable use of the NAIVE model.

• 2 or higher: Enable use of the Moving Average model. In this case, the setting of
NaiveEnable specifies the number of recent time buckets to use in calculating the
moving average.

If you are using the Analytical Engine in PE mode, note that the NAIVE and Moving

Engine Details 9-17

Average models do not generate any lift.

Intermittent Flow
First:

• For PE mode, if a given node has an associated promotion, no checking is done for
intermittent data. If it does not have a promotion and if it has as intermittent
(sparse) data, it is treated by the Intermittent flow module, which uses special
model types.

• For DP mode, if a node has intermittent (sparse) data, it is treated by the
Intermittent flow module, which uses special model types.

In the intermittent flow module, the Engine Administrator handles series that were
found to be intermittent at the preprocessing stage, according to the IntermitCriterion
parameter. Basically, it has many common features with the main flow.

In contrast to the case with non-intermittent models, if there are too many causal factors
in comparison with the length of time series, a warning message will be issued, but the
model will still be estimated.

The fit validation of intermittent models is simplified and brought down to a
comparison of means.

No real forecast validation is done for intermittent models.

If there is a decline in demand at the end of the historical period, then the engine will
update the fit after the last spike in history accordingly. To control the intensity of the
forecast, you use the IntUpdate parameter.

If the final result is asked for in the form of spikes (as specified by the need_spread
parameter), the unspread processor is activated.

The Analytical Engine can run with a minimal set of causal factors. There is no
prerequisite for causals in both global and local causal groups. If no global or local
causal factors are available, then the Constant global causal factor is used. If the
constant causal factor is set to 0, the model could fail with the following message:
"Constant should be chosen for both groups of causals. This is strongly
recommended for estimation results, unless sales should be zero for
particular time."

The Analytical Engine adheres to the following steps for each causal driven model:

1. Before launching the model, the Analytical Engine builds the matrix
ModelGroupCausal from local, global, and PE causal factors. The causal factors are
stored in the GroupCausal matrix, and the Analytical Engine picks up only those
rows that belong to given model.

2. If no causal factors are available, the model fails with the message "No Causals
Available".

9-18 Oracle Demantra Analytical Engine Guide

3. If the number of available causal factors is more than the number of data points for
the forecasted combination, the model fails with the message "Does not have a
usable number of observations (too few or too many)."

Influence Group Handling and Filtering
Several parameters control how the Analytical Engine handles influence groups during
the evaluation of cannibalization and halo effects. This helps reduce amount of noise
encountered by the engine in large influence ranges, and helps limit indirect effects to
substantial demand volumes. For example, you can limit the amount of cannibalization
generated from the top ten brands.

The IGLIndirectLimit parameter limits the number of influence groups used when
generating cannibalization and halo effects.

Note: The IGLIndirectLimit parameter is only relevant if at least one
active promotional causal factor is set to 'Has only indirect effects' or
'Has both direct and indirect effects'. UseEnvelope and
IGLIndirectLimit parameters will often be used together during a PTP
engine run when indirect effects are enabled.

To enable influence group handling:

1. From the Business Modeler, select the Parameters menu and then click System
Parameters.

2. Click the Engine tab.

3. On the General subtab, set the UseEnvelope parameter to 3.

4. Click the Save button.

To configure influence group filtering:

1. Depending on your implementation's base time unit, open the appropriate
InitParms XML file in a text editor.

• For daily time definitions, modify InitParams0Daily.xml.

• For weekly time definitions, modify InitParams0Weekly.xml.

• For monthly time definitions, modify InitParams0Monthly.xml.

2. Update the value of the IGLIndirectLimit parameter so that the Argument value is
the maximum number of indirect influence groups to be analyzed for each node.
The value can be '0' (zero) or any positive integer. A value of zero disables the filter.
A positive integer allows the highest volume influence groups to participate in halo

Engine Details 9-19

and cannibalization. Oracle recommends a value between 5 and 10.

3. Save the file.

Comparing Forecast Modes
For reference, this section compares how the Analytical Engine runs in batch mode, in
simulation mode, and in subset forecasting mode.

Batch Mode Characteristics
In a batch run, the Analytical Engine does the following:

1. Traverses a large forecast tree, described in a database. Each node in this tree
represents a time-based data series that is a subject to forecast.

2. Performs statistical model calculations on a large subset of the data series (tree
nodes). The order of the processing the nodes is important, and is derived from the
forecast tree, defined by a few business rules and performance limitations. The
forecast tree is traversed using a recursive tree scan.

3. Writes the processed data series to the forecast table in the database.

4. Runs a database procedure that scans and updates the forecast table.

Simulation Mode Characteristics
In a simulation run, the Analytical Engine performs 'what if' scenarios, in which some
of the forecast data is changed or different models are run to see how this influences the
final results. The four steps related to the batch engine run are also applied here, but on
a much smaller section of the forecast tree. The number of data series modeled is much
smaller compared to a batch engine run.

Subset Forecasting Mode Characteristics
Subset forecasting incorporates elements of both batch and simulation engines. As in
simulation engine, it will process a subset of total data, but as in batch, it will execute
without the context of a worksheet and can leverage distributed processing.

In subset mode, engine logs will specify engine is running using subset profile. Engine
will note what parent profile the subset profile is associated with as well as display any
filter applied to the run.

For example, instead of stating "Running in Batch mode", the log file will state "Running
in Subset mode based on Parent Profile XXXX" and "Filter YYYY is applied to engine
population."

9-20 Oracle Demantra Analytical Engine Guide

Important: It is strongly recommended the population which the engine
runs on will be filtered using PopulationExtraFilter. For more
information, refer to description in "Analytical Engine Parameters".

Important: When running engine in subset mode, it is strongly
recommended parameter RunInsertUnits be set as "run nothing", as this
should typically be executed during batch runs. If no full batch run is
planned, this parameter can be set to active (1 or 3).

Example:

• System has 100 active combinations

• Engine last executed in batch mode using batch engine profile.

• Batch profile has two forecast versions, Fore_4 column holds currently active
version and Fore_2 holds an older archive version of forecast.

• When engine is run again using the batch profile, the oldest available column will
be used to store newly generated forecast. Any other forecast column will serve as
an archive of newly generated forecast. The forecast will be written to Fore_2
column for all 100 combinations and Fore_4 column will be left alone. Fore_2 now
holds the active version and Fore_4 holds the older archive.

• A Subset engine profile is created with name NewProds and is associated with
parent profile batch.

• Profile NewProds is configured to execute on only 10 combinations.

• When engine is executed using NewProds profile, forecast will be regenerated for
the filtered 10 combinations and forecast will be rewritten to Fore_2 column.
Forecast for 90 combinations filtered out will not be modified.

Engine Components and High-Level Flow
At a higher level, it can be useful to understand how the Analytical Engine divides and
processes its work.

Engine Components
Internally, the Analytical Engine consists of one Engine Manager and multiple Engines.

Engine Details 9-21

The engine server scans a portion of the forecast tree, and sends the output to the
proport mechanism. The engine server masks the mdp_matrix table and processes only
the nodes that are in the part of the tree relevant to its task. The ID of the task is
received from the Engine Manager, which is responsible for dividing the forecast tree
into smaller sub trees (called tasks).

The Engine Manager is responsible for controlling the run as a whole. Communication
between the various engine modules is achieved by use of Oracle advanced queue
notifications.

Engine Components and Batch Run
The following steps describe the responsibilities of each component during a batch run
of the Analytical Engine.

1. The Engine Manager starts Engines via EngineStarter. The startup process includes
the following steps:

9-22 Oracle Demantra Analytical Engine Guide

• Engine Manager creates a notification listener. The Engines will use this
interface to make requests for new tasks to process, or to return status
completion information to the Engine Manager.

• The Engine Manager passes the database settings and all other settings to the
Engines.

• The Engines connect to the database and load parameters.

• The Engines initialize themselves using the xml schema files and request the
Engine Manager for tasks to process.

2. The Engine Manager checks if the run is a recovery run or a new run, and acts
accordingly. If it is a recovery run, the Engine Manager retrieves unfinished tasks. If
it is a new run, the Engine Manager resets the mdp_matrix table and allocates a
forecast column. The Engine Manager divides the forecast tree into smaller tasks by
updating one column in mdp_matrix that links each node with a task ID. The
number of the tasks that the Engine Manager attempts to create is the number of
Engines that were initialized successfully, multiplied by a configurable factor.

3. The Engine Manager executes all the Engines and waits for them to return a final
completion status.

4. When an engine server is executing, it uses the Engine Manager callback interface in
order to get task IDs to process (pull approach). The data flow between the Engine
Manager and the Engines is very low volume, containing only settings, task IDs and
statuses. The data that flows between the Engines and the database includes the
sales (input) and forecasted (output) data (very high volume), forecast tree
configuration information, database parameters, and certain other information.

5. The engine server uses the task ID to create a sales_data_engine table (or view) with
the records for that task and then scans the forecast tree, operating select and
update queries on the mdp_matrix table. During the processing of a task, an engine
server filters mdp_matrix according to the task ID and operates only the subtree
relating to that task. It uses two threads, one for scanning the tree and performing
calculations, and one for the proport mechanism.

6. When the engine server gets a null task ID from the Engine Manager, it knows that
no more task IDs are available, and it sends a completion notification to the Engine
Manager.

7. When the Engine Manager has received a completion status indicator from all the
Engines, it updates the run status, executes the post process procedure, and the
engine run is completed.

Engine Details 9-23

Details of the Distributed Engine
Your system may include the Distributed Engine, which is a mode in which the
Analytical Engine automatically distributes its work across multiple machines
simultaneously.

Note: For the Distributed Engine to work, the Analytical Engine must
be registered on multiple machines, all of which have database client
software in order to access the Demantra database.

The Distributed Engine drastically shortens the run time for a single batch engine run
by processing the engine tasks in parallel, on different machines, for improved engine
processing time. Also, multiple simulation requests can be handled simultaneously.

In a batch run, the Distributed Engine starts by reading a settings file that lists the
machines on the network where the Analytical Engine is installed. The Engine Manager
tries to instantiate an engine server on the machines in this list. Processing then
continues with Step 1.

Engine Parameters 10-1

10
Engine Parameters

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter describes the Analytical Engine parameters that you can see in Business
Modeler and lists their default values, if any.

This chapter covers the following topics:

• About Engine Parameters

• Analytical Engine Parameters

About Engine Parameters
For each parameter, this chapter indicates which engine variations that parameter can
be used with. This chapter also indicates which parameters can be used with nodal
tuning. Some of the Promotion Effectiveness (PE) parameters are useful only if your
system also includes Promotion Optimization.

Oracle provides two different modes for the Analytical Engine:

• In PE mode, the engine is suitable for use with Promotion Effectiveness.

• In DP mode, the engine is suitable for use in demand planning applications.

As indicated, most parameters are visible to all users; a few are visible only if you log in
as the owner of the component.

See also

"Theoretical Engine Models"

Analytical Engine Parameters

10-2 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

A

add_zero_co
mbos_to_md
p

Engine >
Data
Manipulatio
n

yes Both** Visible only to owner.
Specifies the Proport
mechanism handles
combinations whose historical
data consists of zeros. Use one
of the following values:

• yes: Add these
combinations to
mdp_matrix even if their
historical data consists of
zeros.

• no: Do not add these
combinations.

AllowableExc
eptions

Engine >
Validation

10 PE only Visible only to owner.
Specifies the permissible
amount of exceptional uplifts,
as a percentage of total
number of uplifts. The
LowerUpliftBound parameter
controls the threshold for
exceptional uplifts.

The engine discards a model
(for a given forecast node) in
either of two cases:

• If the model generates too
many exceptional uplifts
(as specified by the
LowerUpliftBound and
AllowableExceptions
parameters).

• If any uplift exceeds the
bound given by the
UpperUpliftBound
parameter.

Global
setting
only

Engine Parameters 10-3

Parameter Location Default Engine
Mode*

Details Tuning

AllowNegati
ve

Engine >
Adjustment

no Both This parameter is used by the
fit and residuals module of
the Analytical Engine. Use one
of the following values:

• yes: Negative values of fit
and forecast are allowed.

• no: Any non-positive
fitted and forecasted
values are set to zero.

Can be
tuned by
node

AnalyzeMdp Engine >
Shell

Full
analyz
e

Both Visible only to owner.
Specifies how to analyze the
mdp_matrix table after the
Engine Manager divides the
forecast tree into tasks. Use
one of the following values:

• 5 columns analyze:
Enable a partial analysis
using the five most
important fields:
prediction_status,
prop_changes, branch_id,
do_aggri, and do_fore.

• Full analyze: Enable a full
analysis.

• No analyze: Disable the
analysis.

Note: The branch_id field
is for internal use only.

Global
setting
only

10-4 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

AverageHori
zon

Engine >
Data
Manipulatio
n

12 for
monthl
y 52 for
weekly
7 for
daily

PE only Applies only to Promotion
Optimization; parameter is
visible only to owner.
Specifies the length of time to
be used in calculating the
average baseline forecast. This
window of time starts at the
date given by the
StartAverage parameter.

For information on
configuring Promotion
Optimization, see
"Configuring Promotion
Optimization for PTP" in the
Oracle Demantra
Implementation Guide.

Global
setting
only

B

BatchRunMo
de

Engine >
Shell

estimat
ion and
forecas
t run

PE only Specifies the kind of
forecasting to do:

• run the forecast against
only the learning (0;
estimation)

• run the promotion
forecast (1; recommended
setting)

• estimation and promotion
forecast run (2; fast
simulation), using
previously cached data. If
no cached data is found,
the Analytical Engine
gives a message and
calculates the needed
data.

This parameter applies to both
batch run and simulation run.

Global
setting
only

Engine Parameters 10-5

Parameter Location Default Engine
Mode*

Details Tuning

BottomCoeffi
cientLevel

Engine >
Data
Manipulatio
n

1 PE only Applies only to Promotion
Optimization; parameter is
visible only to owner.
Specifies the lowest forecast
tree level for which the
Analytical Engine will
calculate coefficients. Use any
forecast tree level between the
lowest promotional level and
the InfluenceRangeLevel,
inclusive.

For information on
configuring Promotion
Optimization, see
"Configuring Promotion
Optimization for PTP" in the
Oracle Demantra
Implementation Guide.

Global
setting
only

BulkLoaderBl
ockSize

Engine >
Shell

Both Oracle only; visible only to
owner. Specifies the minimum
amount of number of rows
that the Analytical Engine
loads at one time, when
writing to the database. The
larger this is, the more quickly
the data is loaded, but there is
greater risk if the database
connection is lost. Use a value
between 100 and 100,000.

Global
setting
only

BulkLoaderE
nableRecover
y

Engine >
Shell

Both Specifies whether Oracle Bulk
Loader should perform
recovery after a lost database
connection. Oracle Bulk
Loader is used by the
Analytical Engine.

Global
setting
only

C

10-6 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

CachePath Null Both Specifies the path to the
directory into which the
Analytical Engine should
write its caching files. This can
be any of the following:

• A relative path (relative
to
Demantra_root/Demand
Planner/Analytical
Engines/bin).

• An absolute path.

• Null. In this case, the
Analytical Engine creates
its caches in
Demantra_root/Demand
Planner/Analytical
Engines/bin/cache.

You should create the
directory manually if it does
not yet exist.

Global
setting
only

CalcOptimiza
tionInput

Engine >
Data
Manipulatio
n

no PE only Applies only to Promotion
Optimization; parameter is
visible only to owner.
Specifies whether the
Analytical Engine should
calculate inputs needed for
Promotion Optimization. Use
one of the following values:

• yes (1): See "Configuring
Promotion Optimization
for PTP" in the Oracle
Demantra Implementation
Guide.. Make sure to set
the IS_OPTIMIZATION
flag equal to 1 for at least
one of the linear engine
models.

• no (0)

Global
setting
only

Engine Parameters 10-7

Parameter Location Default Engine
Mode*

Details Tuning

cannibalism Engine >
Data
Manipulatio
n

Both** Specifies the default values for
aggri_98 and aggri_99, which
are combination-specific
fields.

If equal to 0 or 1, the defaults
for both fields are 1.

If equal to 2, the default for
aggri_98 is 1, and the default
for aggri_99 is 0.

Global
setting
only

Cannibalizati
onIgnore

Engine >
Data
Manipulatio
n

PE only Controls whether the
Analytical Engine will
calculate switching effects
(cannibalization). You can use
this parameter to easily switch
off that calculation when
needed, for example, when
running specific simulations.

Global
setting
only

Collinearity
MaxRatio

Engine>
Data
Manipulatio
n

5 Both Maximum ratio allowed
between base or lift elements
and total demand. Can be set
to any integer greater than
one.

Global
setting
only

CollinearityT
olerance

Engine>
Data
Manipulatio
n

1 Both Parameter controlling
sensitivity of collinearity
detection. Default value of 1
detects very strong cases
where large values such as
1000 would detect weaker
cases. Can be set between 1
and 100,000.

Global
setting
only

10-8 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

CollinearityU
seRidge

Engine>
Data
Manipulatio
n

1 Both This flag controls the use of
Ridge regression or QR/SVD
decomposition in cases of
collinearity. Possible values
are:

• 0 - Ridge Service is not used

• 1 - Use Ridge for cases of
collinearity.

• 2 - Use QR instead SVD for
cases of collinearity and
NonNegRegr.

Global
setting
only

COMPETITI
ON_ITEM

Engine >
Shell

PE only Visible only to owner.
Specifies the level (from the
group_tables table) that
defines the competitive item
(CI) groups. Each node of this
level represents a different
item group.

The CI should be consistent
with the item groups (I).
Specifically, two items within
a given item group must also
belong to the same
competitive item group. The
easiest way to follow this rule
is to set the CI equal to an
item level that is higher than I
and that is within the same
hierarchy. A similar rule
applies for the locations.

Note: You specify the item
groups indirectly when
you specify the IGL in the
forecast tree. see
"Configuring the Forecast
Tree".

Global
setting
only

Engine Parameters 10-9

Parameter Location Default Engine
Mode*

Details Tuning

COMPETITI
ON_LOCATI
ON

Engine >
Shell

PE only Visible only to owner.
Specifies the level (from the
group_tables table) that
defines the competitive
location (CL) groups.

See the notes for
COMPETITION_ITEM.

Global
setting
only

CutTailZeros Engine >
Data
Manipulatio
n

yes Both Visible only to owner.
Specifies how the
preprocessing module (of the
Analytical Engine) should
handle series that start with
zero values. Use one of the
following values:

• yes: Delete the leading
zeros.

• no: Retain them as actual
zero values.

Can be
tuned by
node

D

DampPeriod Engine >
General

0 Both This parameter is used by the
Bayesian blending module of
the Analytical Engine. It
specifies the length of periods
in which the residuals will
receive the same weights. The
dampening of weights is done
between each successive
period.

This parameter lets you put
greater weight on models that
perform better on most recent
historical data, as opposed to
models that show close fit to
the remote history.

Can be
tuned by
node

10-10 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

DampStep Engine >
General

0 Both This parameter is used by the
Bayesian blending module of
the Analytical Engine. It
specifies the rate of weights
decay. By setting this
parameter to 0 (or 1), you set
all weights to be equal to 1
(equal weights).

Can be
tuned by
node

def_delta Engine >
Proport

0.75 Both** Specifies the default value for
the delta field in the
mdp_matrix table. If delta
equals null for a given
combination, the system uses
the value of this parameter
instead.

All new combinations created
through data loading, member
management, and/or chaining
will have a null value in their
delta column, thus indicating
that they will also take the
default delta value from this
parameter.

In turn, the delta field is used
in the proport calculation as in
the following example:

P1 = glob_prop * delta +
(monthly demand) * (1 - delta)

Global
setting
only

Engine Parameters 10-11

Parameter Location Default Engine
Mode*

Details Tuning

DeleteIsSelfR
ows

PE only Specifies whether the
Analytical Engine deletes
unneeded promotion_data
records. Use one of the
following values:

• 0 means that the
Analytical Engine does
not delete records in
promotion_data.

• 1 means that the
Analytical Engine deletes
unneeded records.

A record is considered
unneeded if all the following
conditions are true:

It is flagged as is_self = 0

All lifts (uplift, pre and post
effect, and switching effects)
equal 0

The condition specified by
DeleteIsSelfCondition is true

Also see "Is_Self".

Global
setting
only

DeleteIsSelfC
ondition

PE only Specifies an additional
true/false condition that must
be met to delete unneeded
records in promotion_data.
Used only if DeleteIsSelfRows
is 1.

This parameter is used as an
SQL extra where clause. The
Analytical Engine uses it to
restrict the deletion.

Global
setting
only

10-12 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

detect_cp Engine >
Outlier and
Regchange

yes Both This parameter is used by the
preprocessing module of the
Analytical Engine. Use one of
the following values:

• yes: The engine should
attempt to detect a regime
change in the level or
trend. If it finds a change
point, it performs the
analysis on the leveled
out series. The threshold
for change points is
controlled by the
RegimeThreshold
parameter.

• no: The engine should not
attempt to detect change
points. The
RegimeThreshold
parameter is ignored.

Can be
tuned by
node

detect_outlier Engine >
Outlier and
Regchange

yes Both This parameter is used by the
preprocessing module of the
Analytical Engine. Use one of
the following values:

• yes: The engine should
attempt to detect outliers.
If it finds outliers, it
considers them in the
analysis.

• no: The engine should not
attempt to detect outliers.

Also see GrossRemove. To
disable all outlier detection,
both these parameters must be
switched off.

Can be
tuned by
node

Engine Parameters 10-13

Parameter Location Default Engine
Mode*

Details Tuning

DetectModel
Outliers

Both Visible only to owner.
Specifies whether to check for
outlier models for each
forecast node. Outlier models
are models that do not fit well
enough. The sensitivity of the
test is controlled by the
ModelValidationBound
parameter.

Global
setting
only

DeviationFac
tor

Engine >
Validation

5 Both Visible only to owner. This
parameter is used by the fit
validation module of the
Analytical Engine, and it
controls the sensitivity of one
of the fit validation tests. In
this test, residuals are checked
for presence of large
deviations, as specified by
DeviationFactor. This
parameter specifies the
maximum number of
standard deviations that the
residuals are allowed to
attain. A model is rejected if it
fails this test.

Can be
tuned by
node

10-14 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

DownTrend Engine >
Adjustment

0.2 Both This parameter is used by the
adjustment module of the
Analytical Engine, if that
module is enabled (via
EnableAdjustment). It controls
the forecast adjustment for
downward trend. Specifically,
it specifies the amount by
which the forecast is rotated to
align with recent trend in
data.

Use a value from 0 to 1,
inclusive.

Enabling adjustment is not
recommended, unless it is
known that a change in trend
happened recently, which is
likely to be missed by the
models.

Can be
tuned by
node

dying_time Engine >
Proport

0.5
season
(1
season
in
media)

Both** If no sales occurred during the
length of time specified by
this parameter, the
combination is marked as
dead. See prediction_status.
Global setting, but may also
be defined locally in a
worksheet.

Global
setting
only

E

Engine Parameters 10-15

Parameter Location Default Engine
Mode*

Details Tuning

EnableAdjust
ment

Engine >
Adjustment

no Both This parameter controls the
adjustment module of the
Analytical Engine. Use one of
the following values:

• yes: Enable the
adjustment module,
which performs a final
tuning of the forecast,
adjusting the forecast to
the recent trend in the
historical data.

• no: This is the
recommended setting,
unless you are sure that a
change in trend
happened recently, which
is likely to be missed by
the models.

Can be
tuned by
node

EnableFitVali
dation

Engine >
Validation

yes Both Visible only to owner. This
parameter controls the fit
validation module of the
Analytical Engine. Use one of
the following values:

• yes: Perform a normal
validation for the fit.

• no: Perform only a weak
validation.

Can be
tuned by
node

10-16 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

EnableForeca
stValidation

Engine >
Validation

yes Both Visible only to owner. This
parameter is used by the
forecast validation module of
the Analytical Engine. Use one
of the following values:

• yes: Perform a normal
validation for the
forecast.

• no: Perform only a weak
validation.

Can be
tuned by
node

EnableModifi
edVariance

Engine >
General

no Both Visible only to owner. This
parameter is used by the fit
validation module of the
Analytical Engine. Use one of
the following values:

• yes: Perform the modified
variance, which specifies
how the variance is
calculated in determining
weights for Bayesian
blending.

• no

Can be
tuned by
node

Engine Parameters 10-17

Parameter Location Default Engine
Mode*

Details Tuning

EnableSimGL
Filter

Engine >
General

yes PE only Visible only to owner.
Specifies whether simulation
should respect or ignore any
general-level filtering applied
to the worksheet. Use one of
the following values:

• yes: Respect the general
level filter and run the
simulation only on
combinations in the
worksheet and only on
the general level
members that is included
in the filter. This option
ignores, for example, any
other general level
members associated with
those combinations.

This setting should be
used for fast simulations
only. If used on
promotions or scenarios,
only the selected member
will receive a
regeneration of uplift. All
other members—even if
they would normally
interact with each other—
will be excluded. If
learning is run using this
setting, there is a very
good chance that engine
results will be wrong due
to inclusion of only a part
of history.

• no: Ignore the general
level filter and potentially
run the simulation on
combinations that are not
included in the
worksheet. This is the
previous behavior.

Global
setting
only

10-18 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

This parameter has no
effect if the worksheet is
not filtered by a general
level.

EngDimDef_I
temOrLoc

Engine >
Tables

none DM
only

Determines which forecast
tree dimension, item or
location displays additional
levels. The default is that no
additional levels are shown.

Global
Setting
only

EngineOutpu
tThreshold

Engine >
General

0 Both see Fine Tuning and Scaling
Demantra --
EngineOutputThreshold

Global
Setting
only

EngineScaleI
nput

Engine>Gen
eral

0 Both Activates engine scaling of
demand and causals as
necessary when viewing
weekly data by calendar
month. If set to No (0-default)
no scaling will be done. If set
to Yes (1) demand periods and
causals are scaled by the
forecast engine.

Global
Setting
Only

EngineScaleI
ntermInput Engine>Gen

eral

0 Both Controls whether to scale data
Intermittent nodes when
scaling data. This parameter
only applies when
EngineScaleInput set to Yes. If
set to No (0-default), no
scaling will be done. If set to
Yes (1), scaling will occur for
intermittent forecast nodes
and the Croston model is
disabled.

Engine Parameters 10-19

Parameter Location Default Engine
Mode*

Details Tuning

EngKeyDef_S
upersession

Engine >
Proport

item_id
,
locatio
n_id

DM
only

Key used to aggregate
members belonging to the
same supersession set. When
set to the same value as
EngKeyDefPK, the proport
calculates proportions for each
lowest-level member
processed by the engine
individually and no special
handling of supersessions is
done. If set above the level
defined by EngKeyDefPK,
then calculation of
proportions is done at this
aggregated level considered
the supersession and all
underlying combinations
receive the same proportional
values.

Global
Setting
only

EngKeyDefP
K

Engine >
Tables

item_id
,
locatio
n_id

DM
only

Defines the primary key of the
combination and data tables
selected for this Analytical
Engine profile.

Global
Setting
only

EngTabDef_
HistoryForec
ast

Engine >
Tables

SALES
_DAT
A

DM
only

Table that holds historical
demand and into which the
forecast to be written.

Global
Setting
only

EngTabDef_I
nputs

Engine >
Tables

INPUT
S

DM
only

Table that contains time
definitions for the chosen
engine profile. This parameter
should not be modified.

Global
Setting
only

EngTabDef_
Matrix

Engine >
Tables

MDP_
MATRI
X

DM
only

Table that holds the
combinations available for the
chosen engine profile.

Global
Setting
only

EngTabDef_P
arameters

Engine >
Tables

PARA
METE
RS

DM
only

Table that holds the analytical
model parameters for engine
profiles.

Global
Setting
only

F

10-20 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

FillMethod Engine >
Data
Manipulatio
n

linear
interpo
lation

Both This parameter is used by the
preprocessing module of the
Analytical Engine (if
FillParameter equals 1). The
FillMethod parameter
specifies how to fill any null
(missing) values. Use one of
the following values:

• linear interpolation: Fill
in values by linear
interpolation of nearest
neighbors.

• omitting missing values:
Omit the null values and
adjust the time scale of
causal factors and trends
of the Holt procedure;
also see the UpTime
parameter.

• This parameter is ignored
if FillParameter equals 0.

Can be
tuned by
node

FillParameter Engine >
Data
Manipulatio
n

0 Both This parameter is used by the
preprocessing module of the
Analytical Engine. It specifies
how to handle null (missing)
values. Use one of the
following values:

• yes:

• no:

• If equal to 0, null values
are replaced by zeros and
FillMethod is ignored.

• If equal to 1, null values
are filled as specified by
FillMethod.

Can be
tuned by
node

Engine Parameters 10-21

Parameter Location Default Engine
Mode*

Details Tuning

ForecastGene
rationHorizo
n

Engine >
Time

0 Both Specifies what historical fit
data the engine will write to
the database. If this parameter
is 0, the engine writes the
forecast only. If this parameter
is a positive integer N, the
engine writes the last N
historical fit values.

Global
setting
only

ForecastMea
nRelativeDist
ance

Engine >
Validation

3.5 Both Visible only to owner. This
parameter is used by the
forecast module of the
Analytical Engine. It specifies
the sensitivity of forecast
validation. The smaller the
value, the stricter the test.

Can be
tuned by
node

G

GLPropSuper
SessionMetho
d

Engine >
Proport

latest
revisio
n

DM
only

Defines the method general
level proportions use to
allocate proportions during
supersessions. When set to the
default for each period,
proportions are allocated
completely to the member
with the latest starting date. If
set to All Active Revisions for
each period, proportions are
allocated equally among all
active members.

Global
setting
only

10-22 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

GrossRemov
e

Engine >
Outlier and
Regchange

No Both This parameter is used by the
preprocessing module of the
Analytical Engine. Use one of
the following values:

• yes: The engine should
process gross outliers.
Enable this feature only if
there is a clear reason to
remove obviously
unreasonable values. The
threshold for gross
outliers is controlled by
the OutlierStdError
parameter.

• no

Can be
tuned by
node

H

HighestSquar
ing

Engine >
Validation

4 Both Visible only to owner. This
parameter is used by the fit
validation module of the
Analytical Engine. It specifies
the number of residual
standard deviations, beyond
which the residuals
participate in the sum of
squares calculation in their
absolute value, rather than
squared.

Can be
tuned by
node

hist_glob_pro
p

Engine >
Proport

1
season

Both** Maximum number of base
time buckets to use in
calculating glob_prop, the
running average demand for
any given item-location
combination. This parameter
is used by the proport
mechanism. Global setting,
but may also be defined
locally in a worksheet.

Global
setting
only

Engine Parameters 10-23

Parameter Location Default Engine
Mode*

Details Tuning

HistoryLengt
h

Engine >
Time

0 Both The number of base time
buckets to consider for fit
estimation and for the proport
mechanism. Must be a
non-negative integer. If equal
to 0, the length of the history
is set by the start_date
parameter instead.

Can be
tuned by
node

I

InfluenceGro
upLevel

Engine >
Shell

PE only Read-only. Specifies which
level (from the group_tables
table) is used as the influence
group level of the forecast
tree. To specify this
parameter, you use the
Forecast Tree Editor within
the Business Modeler.

Global
setting
only

InfluenceRan
geLevel

Engine >
Shell

PE only Read-only. Specifies which
level (from the group_tables
table) is used as the influence
range level of the forecast tree.
To specify this parameter, you
use the Forecast Tree Editor
within the Business Modeler.

Global
setting
only

10-24 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

IntermitCrite
rion

Engine >
General

99 Both This parameter is used by the
preprocessing and
intermittent flow modules of
the Analytical Engine. It
specifies the minimum
percentage of zero data points
that a series must have to be
considered intermittent.

In this test, leading zeros may
or may not be considered
(depending on the setting of
CutTailZeros). Trailing zeros
are ignored in either case.

In the extreme case where this
parameter equals 0, all series
are treated as intermittent.

Can be
tuned by
node

IntUpdate Engine >
Adjustment

0.5 Both This parameter is used by the
intermittent flow module of
the Analytical Engine. It
specifies the degree to which
the Analytical Engine will
update the fit after the last
spike in history, in the case
where there is decline in
demand at the end of
historical period.

Use a number between 0 and
1, inclusive.

The value 1 means that the
change in fit is to be carried
forward fully to the forecast.

On the other extreme, the
value 0 means that no change
is to be applied.

A value between 0 and 1 will
be used as a weight for
combining past and updated
behavior.

Can be
tuned by
node

L

Engine Parameters 10-25

Parameter Location Default Engine
Mode*

Details Tuning

last_date Engine >
Time

1/1/190
0

Both Last date of actual sales, to be
used by the Analytical Engine
and the proport mechanism.
No dates after this are used
towards the forecast or the
proport calculation. If this
parameter equals 1/1/1900, the
system instead uses
last_date_backup.

Global
setting
only

last_date_bac
kup

Engine >
Time

Both Specifies a backup value to
use for the last sales date, in
case last_date is 1/1/1900.

Sometimes, when you load
sales data, you need to change
this parameter so that you can
ignore a recent subset of
history.

The proport mechanism
makes sure that this
parameter is never later than
max_sales_date.

See "max_sales_date".

Global
setting
only

lead Engine >
Time

12 for
monthl
y data,
52 for
yearly,
30 for
daily

Both The number of base time
buckets to predict. The
Analytical Engine generates a
forecast for the base time
buckets in the span from
max_sales_date to
max_sales_date + lead.

See "max_sales_date".

Global
setting
only

10-26 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

LogCorrectio
n

Engine >
General

no Both This parameter is used by the
fit and forecast modules of the
Analytical Engine. The issue is
that logarithmic models use
log-transformed demand data,
which can give inaccurate
results if that transformed
data is near to 1 in value. In
such a case, you may want to
use this parameter to make an
internal adjustment. Use one
of the following values:

yes: Use correct form of the
expectation of a lognormal
variable.

no: Do not perform the log
correction.

Can be
tuned by
node

Engine Parameters 10-27

Parameter Location Default Engine
Mode*

Details Tuning

LogLevel Controls the amount of detail
that is written into the
Analytical Engine log. Use
one of the following values:

1. Critical

2. Error

3. Warning

4. Message

Note: This
corresponds to the
amount of detail that
the log has contained
in past releases.

5. Info

6. Detail

This setting applies to all log
groups chosen through the
Engine Administrator:

Global
setting
only

10-28 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

LowerUpliftB
ound

Engine >
Validation

3 PE only Visible only to owner.
Specifies the limit beyond
which an uplift value is
considered "exceptional." This
limit is specified as a
proportion of baseline. For
each model, the Analytical
Engine compares the absolute
value of the uplift, divided by
baseline, to this parameter.

The engine discards a model
(for a given forecast node) in
either of two cases:

• If the model generates too
many exceptional uplifts
(as specified by the
LowerUpliftBound and
AllowableExceptionspara
meters).

• If any uplift exceeds the
bound given by the
UpperUpliftBound
parameter.

Can be
tuned by
Node

M

mature_age Engine >
Data
Manipulatio
n

2 Both** Controls the mature_date of
each combination, which is
calculated backwards from
the current date using the
mature_age parameter.

A combination is young
(rather than active) if it does
not have any non-zero sales
data on or before the
mature_date.

See prediction_status.

This is a global setting, but
may also be defined locally in
a worksheet.

Global
setting
only

Engine Parameters 10-29

Parameter Location Default Engine
Mode*

Details Tuning

max_accept_
num

Maximum absolute value that
is permitted for the forecast
results. If the Analytical
Engine generates a result
larger than this in absolute
value, it substitutes this
maximum (or minimum, if
applicable).

Tip: Make sure the forecast
columns are large enough
to accommodate a number
of this size, and be sure to
account for a possible
negative sign. Errors occur
if the Analytical Engine
cannot write the forecast
because the database
columns are not large
enough.

Global
setting
only

max_fore_lev
el

Engine >
Shell

Level
just
below
the
highest
fictive
level

Both The maximum level on the
forecast tree at which a
forecast may be produced.
Upon failure at this level, the
NAIVE model will be used (if
NaiveEnable is yes).

In Promotion Effectiveness,
this must be at or below the
influence range level (IRL);
see InfluenceRangeLevel.

Global
setting
only

10-30 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

MaxEngMem
ory

Engine >
Proport

 100 Both Specifies the maximum
amount of system memory
usage (in megabytes) at the
end of a task, before an engine
is re-initiated.

Use this parameter to prevent
the Analytical Engine from
failing or generating errors
when processing large
amounts of data.

For machines that run
multiple engines, ensure that
each engine has access to the
amount of memory specified.

Global
setting
only

MeanRelative
Distance

Engine >
Validation

0.5 Both Visible only to owner. This
parameter is used by the fit
validation module of the
Analytical Engine, and it
controls the sensitivity of one
of the fit validation tests. A
model is rejected if its MAPE
(Mean Absolute Percentage
Value) is greater than this
threshold.

The smaller the value, the
stricter is the validation.

Can be
tuned by
node

MetricsPerio
ds

Engine >
Validation

26 Both Number of recent periods
used to calculate automated
engine accuracy metrics. If set
to 0 engine will not generate
metrics.

Tuned by
node

Engine Parameters 10-31

Parameter Location Default Engine
Mode*

Details Tuning

min_fore_lev
el

Engine >
Shell

1 Both Minimum forecast level that
the engine will forecast. From
that level down, the engine
will split the forecast using the
precalculated proportions in
the mdp_matrix table.

For PE, this must be at or
above the lowest promotional
level (LPL).

Can be
tuned by
node

MinLengthFo
rDetect

Engine >
Outlier and
Regchange

12 for
monthl
y data,
52 for
weekly
, 14 for
daily

Both This parameter is used by the
preprocessing module of the
Analytical Engine. It specifies
the minimum number of data
points needed in order for the
engine to try to detect outliers
and regime changes.

Can be
tuned by
node

ModelValidat
ionBound

0.2 Both Specifies the sensitivity of the
test used to detect "outlier"
models for a given node.
Outlier models are models
that do not fit well enough.
This parameter is used only if
model outlier detection is
enabled (via the
DetectModelOutliers
parameter.)

Global
setting
only

N

10-32 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

NaiveEnable Engine >
General

yes Both Specifies what to do at the
highest forecast level, upon
failure of all models. Use one
of the following values:

• no (0): Do not enable
either NAIVE or Moving
Average models. Do not
generate a forecast.

• yes (1): Enable use of the
NAIVE model.

• 2 or higher: Enable use of
the Moving Average
model. In this case, the
setting of NaiveEnable
specifies the number of
recent time buckets to use
in calculating the moving
average.

Can be
tuned by
node

need_spread Engine >
Adjustment

produc
e
continu
ous
forecas
t

Both This parameter is used by the
intermittent flow module of
the Analytical Engine, and it
controls whether the final
result should be given in the
form of spikes. Use one of the
following values:

produce forecast with spikes

produce continuous forecast

This applies only to
intermittent models.

Can be
tuned by
node

Engine Parameters 10-33

Parameter Location Default Engine
Mode*

Details Tuning

node_forecas
t_details

Engine >
Shell

forecas
t is
written
to
node_f
orecast
_q

Both Visible only to owner.
Specifies whether the
Analytical Engine should
write forecast data for each
node, before splitting to lower
levels. Use one of the
following values:

• forecast is written with
model details (1): The
Analytical Engine writes
intermediate forecast data
for each node, to the
NODE_FORECAST table.
The table includes
information on how each
model was used for that
node. The Analytical
Engine will run more
slowly because of the
additional work in
writing to this table.

• forecast is written to
node_forecast_q (0): The
Analytical Engine writes
the forecast as usual.

Global
setting
only

NonNegRegr
MaxTolMult

Specifies the maximal
multiplier to be used in order
to increase the tolerance value
in nonnegative regression.
When you disable negative
coefficients (via
UseNonNegRegr) and are
unable to acquire a solution, it
may be helpful to increase this
tolerance.

Recommended value range:
30 - 2000

Default value: 30

Global
setting
only

10-34 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

Normalizatio
nFactor

Engine >
Data
Manipulatio
n

0 PE only Parameter is visible only to
owner. Specifies the degree of
normalization to perform, if
NormalizeResults is yes. Use a
number from 0 to 1, inclusive.
The ends of this range have
the following meanings:

• 1 means preserve the
baseline fit. In this case,
all residuals are added to
the uplift.

• 0 means that both the
baseline and uplift are
modified according to the
normalization algorithm.
This is the recommended
setting.

This normalization is applied
only to historical data (where
the baseline is known).

Global
setting
only

Engine Parameters 10-35

Parameter Location Default Engine
Mode*

Details Tuning

NormalizeRe
sults

Engine >
Data
Manipulatio
n

no PE only Parameter is visible only to
owner. Specifies whether to
normalize the historical
engine results so that the
observed baseline values are
preserved. Use one of the
following values:

• yes (1): Normalize
historical engine results
so that the observed
baseline values are
preserved. In this case,
the Analytical Engine
writes these results into
the columns
fore_a_normal, etc. This
setting is recommended
for use when historical
analysis is of importance.
Will cause Base + Lift to
exactly match demand
(quantity_form). The
results are written in
different column from
base and lift to enable
ease of comparison. No
normalized results are
available for future dates,
because of the lack of
normalization number;
this potentially makes the
connection between
historical and future
forecast not smooth.

• no (0): Do not perform
normalization.

Global
setting
only

10-36 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

NumShapes Engine >
Validation

8 Both Parameter is visible only to
owner. Specifies the
maximum number of allowed
shape causal factors for the
engine to use for a given node
in the forecast tree. Use an
integer from 0 to 8, inclusive.
Applies to activity shape
modeling (rather than to
promotional shape modeling).

Global
setting
only

O

oracle_optimi
zation_mode

Engine >
Shell

cost Both Oracle only; visible only to
owner. Optimization mode of
the database.

Global
setting
only

OutliersPerce
nt

Engine >
Outlier and
Regchange

25 Both This parameter is used by the
preprocessing module of the
Analytical Engine. A set of
points, suspicious as outlying,
will be regarded as such only
if its size does not exceed this
given percentage of data.

Can be
tuned by
node

OutlierStdErr
or

Engine >
Outlier and
Regchange

2.5 Both This parameter is used by the
preprocessing module of the
Analytical Engine, if gross
outlier processing is enabled
(via the GrossRemove
parameter).

The OutlierStdError
parameter specifies the
sensitivity of gross outlier
detection. The greater this
value, the less sensitive (more
liberal) is detection of gross
outliers. The value 0 is not
allowed.

Can be
tuned by
Node

P

Engine Parameters 10-37

Parameter Location Default Engine
Mode*

Details Tuning

PartitionColu
mnItem

Both Specifies the name of the
column that partitions the
data by item. This column
must exist in sales_data,
mdp_matrix, and (for
Promotion Effectiveness)
promotion_data.

If this is null, data is not
partitioned by item.

See "Database Partitioning for
the Engine".

Global
setting
only

PartitionColu
mnLoc

Both Specifies the name of the
column that partitions the
data by location. This column
must exist in sales_data,
mdp_matrix, and (for
Promotion Effectiveness)
promotion_data.

If this is null, data is not
partitioned by location.

See "Database Partitioning for
the Engine".

Global
setting
only

PercentOfZer
os

Engine >
Adjustment

0.2 Both This parameter is used by the
adjustment module of the
Analytical Engine, if that
module is enabled (via the
EnableAdjustment
parameter). It specifies the
maximum fraction of zero
values in data beyond which
no forecast adjustment is
performed. Use 0.2 for 20
percent, for example.

Enabling adjustment is not
recommended, unless it is
known that a change in trend
happened recently, which is
likely to be missed by the
models.

Can be
tuned by
node

10-38 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

PopulationEx
traFilter

Engine>
Shell

Null Both This parameter can be used to
apply an extra filter on the
combination population
processed by the engine. This
can help support incremental
engine runs as well as ensure
only desired combinations are
forecasted.

The default setting is null,
applying no additional filter.
An expected filter is on the
MDP_MATRIX table with the
synonym M. This filter will
not require specifying the
table for this table, and should
only include the additional
WHERE clause used by the
filter.

Example: WHERE
PREDICTION_STATUS=1

Filters including other tables
must specify those other
tables and join then to
MDP_MATRIX. The syntax
for the additional tables must
begin with a comma, followed
by the table name. It is not
recommended that tables with
a time dimension be used,
including SALES_DATA. Care
should be taken when
defining columns for the filter,
as they may exist in multiple
tables, causing SQL errors. It
is strongly recommended that
any column referenced in the
filter be prefaced by the table
from which it is being
retrieved.

Example: … ITEMS I WHERE
I.ITEM_ID=M.ITEM_ID AND
I.ITEM_ID < 100

Global
Setting
Only

Engine Parameters 10-39

Parameter Location Default Engine
Mode*

Details Tuning

Example: …
T_EP_FRANCHISE T1,
T_EP_RETAILER T2 WHERE
T1.FRANCHISE_ID=M.FRAN
CHISE_ID AND
T2.RETAILER_ID=M.RETAIL
ER_ID AND
T1.FRANCHISE_CODE < 100
AND T2.RETAILER_CLASS >
5

PopulationFil
ter

Engine >
Shell

Null Both Applies a filter to the set of
item/location combinations
included in a batch profile.
The engine will completely
ignore combinations that do
not meet the filter criteria. The
default is no filter. This filter
supports columns on the
MDP_MATRIX table.
Example-
CONSUMPTION_DEMAND=
1. If the profile is on a General
Level then columns from the
General Level table can also
be referenced.

Global
setting
only

PROMO_AG
GR_LEVEL

Engine >
Shell

PE only Read-only. Specifies which
level is used as the lowest
promotional level of the
forecast tree. To specify this
parameter, you use the
Forecast Tree Editor within
the Business Modeler.

Global
setting
only

PromotionSta
rtDate

Engine >
Time

PE only Parameter is visible only to
owner. Earliest date for which
promotion data can be
considered reliable. The
Analytical Engine ignores any
promotion data before this
date. This parameter applies
only to combinations that
have promotions.

Global
setting
only

10-40 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

PromotionSer
ies

Engine >
Proport

null Globall
y
Defined

see chapter Configuring the
Analytical Engine, section
Split Forecast by Series

Global
Setting
only

proport_miss
ingm

Engine >
Proport

treated
as zero
observ
ations

Both** Specifies how missing dates
are treated. Use one of the
following values:

• treated as zero
observations: The missing
dates are set equal to
zero. That is, suppose that
you have three months
worth of data as follows:
30, null, 60. If
proport_missing equals 0,
the average of these three
months is calculated as 30
(or [30+0+60]/3)

• treated as missing: The
missing dates are
assumed to have average
values. Using the
previous example, if
proport_missing equals 1,
the average of these three
months is calculated as 45
(or [30+60]/2). This is
mathematically
equivalent to assuming
that the missing month
has average sales (45).

Global
setting
only

Engine Parameters 10-41

Parameter Location Default Engine
Mode*

Details Tuning

proport_spre
ad

Engine >
Proport

receive
0
propor
tions/gl
obal
propor
tions

Both** Specifies how months that are
missing from historical data
are filled. Use one of the
following values:

• receive zero proportions:
For each missing month,
set the proportions equal
to 0.

• receive global
proportions: For each
missing month, set the
proportions equal to
glob_prop. In this case,
Demantra checks the
value of the
proport_missing
parameter and then does
the following:

• If proport_missing
equals 0, then
missing months
receive
glob_prop*delta.

• If proport_missing
equals 1, then
missing months
receive the rolling
average (glob_prop).

• receive 0
proportions/global
proportions: For missing
months that would have
occurred after the first
sale for this combination,
assign 0 proportions. For
months that could not
occur in the range of first
sale- end of sales, use
glob_prop. In this case,
for months that could not

Global
setting
only

10-42 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

have been included,
Demantra checks the
value of the
proport_missing
parameter and then does
the following:

• If proport_missing
does not equal 1,
then missing months
receive the rolling
average (glob_prop).

• If proport_missing
equals 1, then
missing months
receive
glob_prop*delta.

Engine Parameters 10-43

Parameter Location Default Engine
Mode*

Details Tuning

proport_
threshold

Engine >
Proport

0 Both** Specifies how many different
months of the year must
include data in order for
Demantra to calculate
proportions for the individual
months (P1 - P12, PW1-PW6,
etc.). Use any integer from 0 to
12, 24, inclusive.

For each combination, the
number of unique observable
buckets is found (having 3
different observations of
January counts as only one
month).

If not enough months have
non-null values, Demantra
checks the value of the
proport_missing parameter
and then does the following:

If proport_missing equals 0,
then missing months receive
glob_prop*delta.

If proport_missing equals 1,
then missing months receive
the rolling average
(glob_prop).

Global
setting
only

ProportParall
elJobs

Engine >
Proport

1.00 Both** The number of parallel jobs
used when running Proport
calculations. This parameter's
value should not exceed the
number of CPUs on the
database server.

Global
setting
only

ProportRunsI
nCycle

Engine >
Proport

1.00 Both** The number of groups that the
Proport process is broken
down into.

Global
setting
only

10-44 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

ProportTable
Label

Engine >
Proport

Both** The name of the level by
which the process is broken
down. The total number of
members in this level is
divided into equally sized
groups, and one group is
processed each time Proport is
run.

Global
setting
only

Q

Quantile Engine >
Outlier and
Regchange

2.5 Both Visible only to owner. This
parameter is used by the
validations module of the
Analytical Engine, when
checking the influence of
outliers. It specifies a standard
normal percentile for
detecting outliers at a
prescribed significance level.

Can be
tuned by
Node

quantity_for
m

Engine >
Data
Manipulatio
n

See
details.

Both Visible only to owner.
Expression that the Analytical
Engine uses to compose the
historical demand from the
sales_data table; the result of
this expression is the data that
the engine receives as input.

This expression should return
0, null, or a numeric quantity
for any date. A date with 0 is
treated as if there were no
sales. A date with null is
treated as a missing date; in
this case, the system can
interpolate a value or just
ignore the date.

On Oracle, the default is as
follows:

nvl(pseudo_sale,actual_quanti
ty)*(1 + nvl(demand_fact,0)) +
nvl(demand_lift,0)

Global
setting
only

Engine Parameters 10-45

Parameter Location Default Engine
Mode*

Details Tuning

R

RegimeThres
hold

Engine >
Outlier and
Regchange

5 Both This parameter is used by the
preprocessing module of the
Analytical Engine. It specifies
the sensitivity of regime
change detection. The smaller
the value, the more
aggressively the engine will
detect regime changes.

This parameter is used only if
regime change is enabled (via
the detect_cp parameter).

Can be
tuned by
node

RemoveResid
Outlier

0 Both Specifies the percentage of
residuals (by number) to
remove before validating the
fit. The residuals are sorted by
size and the largest residuals
are removed.

Can be
tuned by
node

ResetForeVal
s

Engine >
Shell

yes Both Visible only to owner.
Specifies whether the engine
should clear out previous
forecast data before
generating the forecast. Use
one of the following values:

• yes: Demantra clears the
previous forecast for all
combinations with
prediction status equal to
99. (The other
combinations are left
alone, because the engine
will overwrite their
forecast anyway.)

• no: Demantra does not
clear out the previous
forecast. This is less ideal
but runs more quickly.

Global
setting
only

10-46 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

resetmat Engine >
Shell

yes Both Visible only to owner. Use
one of the following values:

• yes: Reset loc_node,
item_id, and location_id
in mdp_matrix.

• no: Do not reset these
fields.

Global
setting
only

RunInsertUni
ts

Both Specifies the behavior of the
INSERT_UNITS procedure,
which Demantra calls at the
start of an engine run. This
procedure makes sure the
engine has rows to write into
when generating the forecast.
This parameter also controls
whether Demantra runs the
active rolling data profiles
when it runs this procedure.
Use one of the following
values:

• 0 means that Demantra
does not insert rows and
does not execute the
rolling data profiles.

• 1 means that Demantra
insert rows and executes
the active data profiles
(by running the
EXECUTE_PROFILES
procedure).

• 2 means that Demantra
does not insert rows, but
does execute the active
data profiles.

Global
setting
only

Engine Parameters 10-47

Parameter Location Default Engine
Mode*

Details Tuning

RUNMODE Not
applica
ble

Read-only; parameter is
visible only to owner.
Specifies which version of the
Analytical Engine to use.

• Use 1 to specify the
Promotion Effectiveness
version.

• Use 0 to run the engine in
demand planning mode.
This mode will not
generate promotional lift.
If you use this setting
make sure that the LPL is
the same as the minimum
forecast level.

Global
setting
only

RunPartialDi
vider

Engine>
Shell

No -
Assign
new
Branch
to
every
combin
ation
partici
pating
in
forecas
t

Both This parameter is used to
control whether all
combinations are assigned a
branch at the beginning of a
new engine run. Setting of No
(default) will assign a branch
ID to all combinations taking
part in the engine run. Setting
of Yes will assign Branch ID
only to nodes that currently
do not have a branch ID. Note:
Setting value to No can
improve engine run
performance but may result in
unbalanced engine tasks over
time.

Global
Setting
Only

S

10-48 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

SdeAnalyzeS
witch

Engine >
General

yes Both Specifies how the Analytical
Engine should analyze the
sales_data_engine table. Use
one of the following values:

• yes: Use external logic to
analyze this table. See
"Reconfiguring the
sales_data_engine Table".

• no: Analyze the
sales_data_engine table
as usual.

Global
setting
only

SdeCreateJoi
n

Engine >
General

no Both Specifies whether the
Analytical Engine should join
sales_data_engine (or its
synonym) and mdp_matrix
during its run. Use one of the
following values:

• yes: Join
sales_data_engine and
mdp_matrix.

• no: Do not join these
tables.

See "Reconfiguring the
sales_data_engine Table".

Global
setting
only

Engine Parameters 10-49

Parameter Location Default Engine
Mode*

Details Tuning

SdeCreateSw
itch

Engine >
General

interna
l logic

Both Specifies whether to use
external logic to create the
sales_data_engine table. Use
one of the following values:

• use internal logic (0):
Create the
sales_data_engine table
using internal logic.

• use external logic (1): Use
external logic. If you use
this option, you must
rewrite the
create_process_temp_tabl
e, create_object, and
drop_object procedures.
See "Reconfiguring the
sales_data_engine Table".

• use external logic done by
engine (2). When
forecasting on general
levels (for example, for
service parts forecasting)l,
set to external logic
engine.

Global
setting
only

season Engine >
Time

season
length

Both Read-only. Season length (52
for weekly systems, 12 for
monthly, 7 for daily).

Can be
tuned by
node

set_rb Engine >
Shell

SET
transac
tion
use
rollbac
k
segmen
t RB1

Both** Oracle 8i only; visible only to
owner. Set Rollback Segment
command for the database.
This is database dependent.
See your database
documentation.

Global
setting
only

10-50 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

ShapeSign Engine >
Data
Manipulatio
n

Both Specifies the signs for the
shape causal factors when
using them in non-negative
regression. Use one of the
following values:

• 0 means that after the
preliminary estimation,
the signs are kept as is.

• 1 means that after the
preliminary estimation,
the shape casual factors
are made positive.

This parameter is ignored if
UseNonNegRegr is set to
prevent negative coefficients.

Can be
tuned by
node

ShiftBaseCau
sals

Engine >
Shell

0 PE only Parameter is visible only to
owner. Specifies the number
of base time buckets by which
the baseline causal factors
should be shifted; this applies
to the causal factors in the
causal_factors table. Specify
an integer (can be negative).
The default setting (0) is
recommended.

Can be
tuned by
node

Engine Parameters 10-51

Parameter Location Default Engine
Mode*

Details Tuning

ShiftDynPro
moDate

PE only SQL expression that returns
the number of days to add to
the sales date for any given
promotion; typically this is a
negative number. If the
resulting dates are already in
the Inputs table, the
Analytical Engine inserts
those dates into
promotion_data with is_self
equal to 0.

If this expression is null, then
the default promotion dates
are used.

• If the expression
aggregates multiple
rows from
promotion_data, then
be sure to use an
aggregate function
such as DISTINCT.

• Dates are compared to
the dates in the Inputs
table. If a newly
generated date does
not match a date in
that table, then the
date is deleted.

• You can apply filters
on the resulting dates,
via the Promotional
Causal Factor window
in the Business
Modeler.

Global
setting
only

10-52 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

ShiftPromoC
ausals

Engine >
Shell

0 PE only Parameter is visible only to
owner. This parameter is a
global setting that applies to
all promotions. You may want
to use ShiftDynPromoDate
instead, because that gives a
greater amount of control.

This parameter specifies the
number of base time buckets
by which the promotional
causal factors should be
shifted; this applies to the
causal factors in the
m3_causal_factors table.
Specify an integer that can be
negative. For example, to
make the promotional causal
factors active one week after
the promotions occur, specify
1 (in a weekly system).

Can be
tuned by
node

ShiftPromoM
axValue

PE only Specifies the number of
additional future time buckets
to bring into history, when
shifting promotions to the
dates given by
ShiftDynPromoDate.

By default, the Analytical
Engine considers only
historical promotions and
ignores any future
promotions. If you shift
promotion dates, that
typically means you need to
shift promotions that are
planned for the very near
future. This parameter
specifies how many time
buckets of the future the
Analytical Engine should
consider when it shifts the
promotion dates.

Global
setting
only

Engine Parameters 10-53

Parameter Location Default Engine
Mode*

Details Tuning

start_date Engine >
Time

1-1-199
5

Both First sales date, the start date
as it appears in the Inputs
table. Can be changed
according to the length of
history needed for fit
estimation and for the proport
mechanism. It is strongly
recommended this parameter
be reset to beginning actual
date where history begins. See
also the HistoryLength
parameter.

Global
setting
only

start_new_ru
n

Engine >
Shell

Yes Both Specifies whether to start a
new Analytical Engine run or
to perform an engine
recovery. Internally, the
engine records information to
indicate its current processing
stage. As a result, if the
previous engine run did not
complete, you can run
recovery, and the Analytical
Engine will continue from
where it was interrupted.

Use one of the following
values:

• yes: Always start a new
run, regardless of the
status of the last run.

• no: Detect whether the
previous run was
complete and perform a
recovery if the previous
run did not complete.

• prompt: Detect whether
the previous run was
complete and ask
whether to perform a
recovery run or a new
run.

Global
setting
only

10-54 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

StartAverage Engine >
Data
Manipulatio
n

-12 for
monthl
y -52
for
weekly
-7 for
daily

PE only Promotion Optimization
only; parameter is visible
only to owner. Controls the
starting date of the time span
used to calculating the
average baseline forecast. You
specify this date relative to
last_date.

The length of this span of time
is controlled by the
AverageHorizon parameter.

For information on
configuring Promotion
Optimization, see
"Configuring Promotion
Optimization for PTP" in the
Oracle Demantra
Implementation Guide.

Global
setting
only

StdRatio Engine >
Validation

3 Both This parameter is used by the
fit validation module of the
Analytical Engine, and it
controls the sensitivity of one
of the fit validation tests. In
this test, the residuals are split
into two parts (earlier and
later) controlled by
TestPeriod. The parameter
StdRatio is the maximum
allowed ratio of the standard
deviation of the later part to
the standard deviation of the
earlier part. A model is
rejected if it fails the test.

Can be
tuned by
node

T

Engine Parameters 10-55

Parameter Location Default Engine
Mode*

Details Tuning

TargetTaskSi
ze

Parameters >
System
Parameters >
Engine >
Proport

0 Both Specifies how many
MDP_MATRIX combinations
the Analytical Engine
attempts to assign to each
forecasting task. Allocation
will be affected by forecast
tree branch size. When this
parameter is set to 0 (the
default value), the system
automatically calculates a
value for 'TargetTaskSize'
depending on the number of
engines. Otherwise, the value
of 'TargetTaskSize' is used.
(Oracle does not recommend
changing the default value.)

The engine divider uses the
value of 'TargetTaskSize' as a
system-preferred branch size
to create branches that are
more equal in size which
improves engine performance.
The engine divider will try to
add as many tasks as possible
to an existing branch, up to
the limit of 'TargetTaskSize'
level 1 combinations, before
adding new branches.

Global
setting
only

test_samp_le
n

Engine >
Validation

6 for
monthl
y data,
26 for
weekly
7 for
daily

Both This parameter is used by the
fit validation module of the
Analytical Engine. It specifies
the length of data for forecast
validation.

Can be
tuned by
node

10-56 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

TestPeriod Engine >
Validation

6 for
monthl
y data,
26 for
weekly
7 for
daily

Both This parameter is used by the
fit validation module of the
Analytical Engine, and it
controls the sensitivity of one
of the fit validation tests. In
this test, the residuals are split
into two parts (earlier and
later) controlled by
TestPeriod. The parameter
StdRatio is the maximum
allowed ratio of the standard
deviation of the later part to
the standard deviation of the
earlier part. A model is
rejected if it fails the test.

Can be
tuned by
node

TooFew Engine >
General

2 Both This parameter is used by the
preprocessing module of the
Analytical Engine. It specifies
the minimum number of
non-zero data points that a
series must have in order for
the Analytical Engine to
consider it model-feasible. In
this test, leading zeros may or
may not be considered
(depending on the setting of
CutTailZeros). Trailing zeros
are ignored in either case.

Must be 1 or greater.

If the series has too few data
points, the forecast failure
module is run.

Can be
tuned by
node

top_level Engine >
Shell

Both Visible only to owner;
read-only. Indicates the
highest level of the forecast
tree (the highest fictive level,
HFL). This indicates the
number of levels that the
forecast tree contains.

Global
setting
only

Engine Parameters 10-57

Parameter Location Default Engine
Mode*

Details Tuning

TopCoefficie
ntLevel

Engine >
Data
Manipulatio
n

PE only Applies only to Promotion
Optimization; parameter is
visible only to owner.
Specifies the highest forecast
tree level for which the
Analytical Engine will
calculate coefficients. Use any
forecast tree level between
BottomCoefficientLevel and
the InfluenceRangeLevel,
inclusive.

For information on
configuring Promotion
Optimization, see
"Configuring Promotion
Optimization for PTP" in the
Oracle Demantra
Implementation Guide.

Global
setting
only

TrendDampP
eriod

New Used during trend detection,
this parameter specifies a
block of time (as a number of
buckets) over which the
dampening is applied. The
time that contains trend is
divided into blocks, as
specified by this parameter.
For the nth block, the
Analytical Engine applies a
dampening factor n times. The
result is exponential
dampening.

Can be
tuned by
Node

TrendDampS
tep

New Used during trend detection,
this parameter specifies the
dampening factor, which is
applied n times to the nth
block of time within the trend.
The result is exponential
dampening. Use a value
between 0 and 1, inclusive;
smaller values cause
dampening to happen more
quickly.

Can be
tuned by
Node

10-58 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

TrendModelF
orShort

New Used during trend detection,
this parameter specifies which
engine model to use in order
to generate the trend causal
factor.

• 1 means use the REGR
model.

• 2 means use the HOLT
model.

Can be
tuned by
Node

TrendOutlier
Ratio

New Used during trend detection,
this parameter specifies how
to treat outliers during model
fit. It specifies a numeric
weight to apply to the outliers
within the long segment.

Can be
tuned by
Node

Engine Parameters 10-59

Parameter Location Default Engine
Mode*

Details Tuning

TrendPeriod Engine >
Adjustment

Both This parameter is used in two
parts of the Analytical Engine.

The adjustment module uses
it as follows:

• If EnableAdjustment is
yes (1), then TrendPeriod
specifies how far back in
history the trend is
measured for adjustment.

• If zero, then no
adjustment is performed.
Enabling adjustment is
not recommended, unless
it is known that a change
in trend happened
recently, which is likely to
be missed by the models.

This parameter is also used by
trend detection as discussed in
"The Forecasting Process.,
page 9-6". If you have
disabled negative regression
(via UseNonNegRegr), then it
is difficult for the Analytical
Engine to detect downward
trends. In such cases, you
should enable trend detection.

Can be
tuned by
node

TrendPreEsti
mation

New Specifies whether to perform
trend detection as described in
"The Forecasting Process".

Can be
tuned by
Node

TrendShortR
atio

New Used during trend detection,
this parameter specifies how
to treat outliers during model
fit. It specifies a numeric
weight to apply to the outliers
within the short segment.

Can be
tuned by
Node

U

10-60 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

UpliftThresh
oldMethod

Engine >
Validation

1 PE only Specifies how to determine
the uplift threshold:

• 0 means use absolute
values

• 1 means use percent of
baseline

Global
setting
only

UpliftThresh
oldValue

Engine >
Validation

.5 PE only Uplift and cannibalization
values lower than this
threshold are automatically
set to null. This number must
be greater than 0.

Global
setting
only

UpperUpliftB
ound

Engine >
Validation

20 PE only Visible only to owner,
Specifies the upper allowed
limit for uplifts, as a
proportion of baseline. For
each forecasting model, the
Analytical Engine calculates
the lift for each node of the
forecast tree. For any given
node and model, if the
absolute value of the uplift is
greater than this limit, then
that model is not used for this
node.

The engine discards a model
(for a given forecast node) in
either of two cases:

• If any uplift exceeds the
bound given by the
UpperUpliftBound
parameter.

• If the model generates too
many exceptional uplifts
(as specified by the
LowerUpliftBound and
AllowableExceptionspara
meters).

Can be
tuned by
Node

Engine Parameters 10-61

Parameter Location Default Engine
Mode*

Details Tuning

UpTime Engine >
Data
Manipulatio
n

nvl(su
m(nvl(
UP_TI
ME,1)),
1)

Both This parameter is used by the
preprocessing module of the
Analytical Engine. It is used to
flag whether each date in
sales_data should be
considered a sales date or not.
Use an SQL expression that
returns one of the following
values:

• 0 (to indicate a no-sales
date)

• 1 (to indicate a date on
which sales could
theoretically happen)

Global
setting
only

UpTrend Engine >
Adjustment

0.2 Both This parameter is used by the
adjustment module of the
Analytical Engine, if that
module is enabled (via
EnableAdjustment). It controls
forecast adjustment for
upward trend. Specifically, it
represents the amount the
forecast is rotated to align
with recent trend in data.

Use a value from 0 to 1,
inclusive.

Enabling adjustment is not
recommended, unless it is
known that a change in trend
happened recently, which is
likely to be missed by the
models.

Can be
tuned by
node

10-62 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

UseBusinessF
ilter

Engine >
Data
Manipulatio
n

no Both Specifies whether the
Analytical Engine
distinguishes business and
non-business days. Use one of
the following values:

• yes: The Analytical
Engine uses only business
days (as indicated by
business_day_filter series
in the Inputs table).

• no: The Analytical Engine
uses all days.

Global
setting
only

UseEnvelope

Engine Parameters 10-63

Parameter Location Default Engine
Mode*

Details Tuning

UseExternalS
DUpdate

Engine >
Shell

no Both Visible only to owner.
Specifies how to update the
sales_data table with the
current forecast. Use one of
the following values:

yes: Use an external
procedure (
create_process_temp_table.

no: Use an internal dynamic
procedure.

The
create_process_temp_table
procedure is a template that
creates the dynamic stored
procedure that will be
executed by the engine for the
update. By default, this
procedure creates the same SP
that as the engine creates, but
this can be overridden. The
interface to this SP is as
follows:

• is_proc_name
(VARCHAR2) specifies
the name of the dynamic
SP that the engine will
execute.

• is_tmp_tbl (VARCHAR2)
specifies the temptable
name.

• is_fore_col (VARCHAR2)
specifies the column
name in sales_data that
will be updated with the
new forecast.

• is_last_date
(VARCHAR2) specifies a
date to update
mdp_matrix with.

Global
setting
only

10-64 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

usemodelspe
rnode

Engine >
Data
Manipulatio
n

Both Specifies whether you can
specify the forecasting models
to use for specific nodes in the
forecast tree, via the File >
Analytics menu option in
Promotion Effectiveness.

Global
setting
only

UseNonNeg
Regr

Engine >
Validation

yes Both Visible only to owner.
Specifies whether to use non
negative constraint estimation
for all regression-based engine
models. Use one of the
following values:

• yes: The coefficients are
prevented from being
negative.

• no

Can be
tuned by
node

UseParamsPe
rNode

Engine >
Data
Manipulatio
n

Both Specifies whether you can
specify the engine parameters
to use for specific nodes in the
forecast tree, via the File >
Analytics menu option in
Promotion Effectiveness.

Global
setting
only

UseWeighted
Regression

0 Both Specifies whether the
Analytical Engine applies a
weight to each observation
when fitting each model.

• If this parameter is set to
1 (yes), the
OBS_ERROR_STD field
(in sales_data) specifies
the weights for each
observation.

• If this parameter is 0 (no),
that field is ignored.

Can be
tuned by
Node

W

Engine Parameters 10-65

Parameter Location Default Engine
Mode*

Details Tuning

WriteInterme
diateResults

Engine >
Shell

no Both Applies only to the desktop
products; parameter is visible
only to owner. Specifies
whether to enable the
advanced analytics function,
which is available only on the
desktop. Use one of the
following values:

• yes: Retain intermediate
results (coefficients for
causal factors) to enable
advanced analytics. The
results are written to the
INTERM_RESULTS table.
This information includes
the coefficients for each
model, and the weight of
each model in the
forecast.

Warning: The
Analytical Engine will
run much more
slowly.

• no

Can be
tuned by
node

10-66 Oracle Demantra Analytical Engine Guide

Parameter Location Default Engine
Mode*

Details Tuning

WriteMissing
DatesUplift

Engine >
Shell

no PE only Parameter is visible only to
owner.Specifies whether to
write uplifts for dates that are
missing from sales_data. Use
one of the following values:

• yes: The Analytical
Engine writes uplifts for
any dates where it
calculates them, even if
no sales occurred.
However, the uplifts will
add up to the total uplift
calculated by the engine.

• no: The Analytical Engine
writes uplifts only for
dates that have sales. This
means that the uplifts will
not necessarily add up to
the total uplift.

Global
setting
only

* PE only means PE mode only; Both means both PE and DP modes. ** This parameter is not
used directly by the engine and thus is available for use with either engine mode.

Database Parameters for Tuning Engine Performance
The following parameters provide more advanced controls of how Demantra executes
specific engine processes and allow you to tune the engine based on your
implementation's unique characteristics. These parameters can be set in the
INIT_PARAMS_% tables.

Warning: Using these parameters to improve engine performance
depends almost entirely upon the expertise of the implementer. System
issues may result if they are not used correctly. Oracle does not
recommend using these parameters unless you have been trained and
have previous experience tuning the Analytical Engine

Parameter Details

Engine Parameters 10-67

DBHintBranchDivision This parameter applies hints to Engine DB
statements that divide MDP_MATRIX
combinations among forecast engine tasks.
When the hint references to table
MDP_MATRIX, use #DYNTABLE1# instead.
The engine will automatically replace with
MDP_MATRIX. For example, to run four
parallel processes when executing branch
division, set this parameter to +
parallel(#DYNTABLE1# 4).

DBHintInitialForeCleanup This parameter applies hints to the
EngineManager's cleanup process before the
actual run is started. For referring to the table,
use the dynamic table token #DYNTABLE1# .
For example, to run four parallel processes,
you would set this parameter to:
DBHintInitialForeCleanup = '+
parallel(#DYNTABLE1#,4)'

DBHintAggriSQL This parameter applies hints to Engine DB
statements that aggregate data from the
SALES_DATA table. When the hint references
to table SALES_DATA, use #DYNTABLE1#
instead. The engine will automatically replace
with SALES_DATA. For example, to run four
parallel processes when executing aggregation
statements, set this parameter to +
parallel(#DYNTABLE1# 4).

DBHintLoadActual This parameter applies hints to the Engine DB
statement that retrieves the lowest level
historical data during an Analytical Engine
run. When referencing a table use
#DYNTABLE1# or #DYNTABLE2# to
designate the table.

The Engine automatically replaces dynamic
strings with the relevant table name or alias.
#DYNTABLE1# references SALES_DATA and
#DYNTABLE2# references MDP_MATRIX.
For example, to run four parallel processes on
MDP_MATRIX and six parallel processes on
SALES_DATA when querying lowest level
information, set this parameter to +
parallel(#DYNTABLE1# 6)
parallel(#DYNTABLE2# 4).

10-68 Oracle Demantra Analytical Engine Guide

DBHintCreatePDE This parameter applies hints to the Engine DB
statements that create the temporary
promotion data engine tables during an
Analytical Engine run. When referencing a
table, use #DYNTABLE1#, #DYNTABLE2# or
#DYNTABLE3# to designate the table.

 The Engine automatically replaces dynamic
strings with the relevant table name or alias.
Use #DYNTABLE1# to reference
MDP_MATRIX, #DYNTABLE2# to reference
PROMOTION and #DYNTABLE3# to
reference PROMOTION_DATA. For example,
to run four parallel processes on
MDP_MATRIX and six parallel processes on
PROMOTION_DATA when creating the PDE
table, set this parameter to +
parallel(#DYNTABLE1# 4)
parallel(#DYNTABLE3# 6).

Theoretical Engine Models 11-1

11
Theoretical Engine Models

Important: The Demantra Local Application replaces Collaborator
Workbench. You may see both names in this text.

This chapter contains reference information for the theoretical models that the
Analytical Engine uses.

This chapter covers the following topics:

• Introduction

• Flags on Causal Factors

• ARIX

• ARLOGISTIC

• ARX

• BWINT

• CMREGR

• DMULT

• ELOG

• FCROST

• HOLT

• ICMREGR

• IREGR

• LOG

• LOGISTIC

• Moving Average

• MRIDGE

11-2 Oracle Demantra Analytical Engine Guide

• NAIVE

• REGR

Introduction
Note: Oracle provides two different modes for the Analytical Engine:

• In PE mode, the engine is suitable for use with Promotion
Effectiveness.

• In DP mode, the engine is suitable for use in demand planning
applications.

For each model, this chapter indicates which engine modes that model
can be used with.

Flags on Causal Factors
You use the Business Modeler to apply the following flags to the causal factors; see
"Configuring Global and Local Causal Factors" and "Configuring Promotional Causal
Factors":

Flag* Meaning

short For use by the short models (BWINT, IREGR, LOGREGR,
LOGISTIC, and REGR). These models use all causal factors that
they are given.

long For use by the long models (ARLOGISTIC, CMREGR, ELOG,
ICMREGR, and MRIDGE). These models examine all the causal
factors they are given, but choose the ones that give the best results.

non-seasonal For use by the non -seasonal models (ARIX and ARX). The only
causal factors that should be flagged as non-seasonal are ones that
are not a predictable function of time. For example, price varies
with time, but randomly, so price should be flagged as
non-seasonal.

multiplicative group 1 For use only by the DMULT model. If you are using this model,
each causal factor should use one of these flags.

See "DMULT".multiplicative group 2

Theoretical Engine Models 11-3

Flag* Meaning

*Name of flag as displayed in the Causal Factors screen or in the Promotional Causal Factors
screen.

Models not listed here use other mechanisms to choose their causal factors or do not use
causal factors at all.

ARIX
ARIX includes integrated auto-regression terms at lag 1 and an unknown seasonal lag k,
and linear causal factors.

The value of k is chosen from set of possible seasonal indexes to produce the best fit.
Causal factors include the constant and events (without seasonal causal factors and
without time).

Availability

ARIX can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes*

DP mode Yes

*The ARIX model is never used on promotional nodes. See "Summary of the Forecasting
Process".

Causal Factors Used by This Model

ARIX uses the non-seasonal causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

11-4 Oracle Demantra Analytical Engine Guide

Parameter Default Description

Possible Season* For daily data: 2, 3,
4, 5, 6, 7, 14, 30, 31,
90, 91, 92, 182, 365

For weekly data: 2,
4, 5, 13, 14, 26, 52

For monthly data:
3, 6, 12.

A vector of possible seasonal patterns of
the series.

The parameter is of type vector (other
parameters are defined as double in
PARAM_TYPE column), with an
increasing index (PARAM_INDEX) for
each new PARAM_VALUE.

UseNonNegRegr no Specifies whether to constrain the
regression coefficients to nonnegative
values, within the core least squares
estimation.

AllowNegative no Specifies whether negative values of fit and
forecast are allowed. If negative values are
not allowed, then any non-positive fitted
and forecasted values are set to zero.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

The ARIX parameters also apply to the ARX model.

ARLOGISTIC
ARLOGISTIC is an extension of the LOGISTIC model and includes auto-regression and
logistic regression terms.

Availability

ARLOGISTIC can be used with the following engine modes:

Engine Mode Supported?

PE mode No (disable model if using this mode)

DP mode Yes

Causal Factors Used by This Model

ARLOGISTIC uses the long causal factors; see "Flags on Causal Factors".

Theoretical Engine Models 11-5

Parameters Used by This Model

ARLOGISTIC uses the same parameters as LOGISTIC; see "Parameters Used by This
Model".

ARX
This model includes auto-regression terms at lag 1 and an unknown seasonal lag k, and
linear causal factors. The value of k is chosen from set of possible seasonal indexes to
produce the best fit. Causal factors include the constant and events (without seasonal
causal factors and without time).

Availability

ARX can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes*

DP mode Yes

*The ARX model is never used on promotional nodes. See "Summary of the Forecasting
Process".

Causal Factors Used by This Model

ARX uses the non-seasonal causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

ARX uses the same parameters as ARIX; see "ARIX".

BWINT
BWINT (the Multiplicative Regression-Winters model) runs multiplicative regression
on the causal factors, then exponentially smooths the resulting residuals in HOLT
manner and then runs multiple regression of the smoothed residuals. BWINT models
trend, seasonality and causality.

Availability

BWINT can be used with the following engine modes:

11-6 Oracle Demantra Analytical Engine Guide

Engine Mode Supported?

PE mode No (disable model if using this mode)

DP mode Yes

Causal Factors Used by This Model

BWINT uses the short causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Parameter Default Description

Alpha* 0.1 The manually set level renovation coefficient,
valid only when OptimizedBwint* = 0.

Gamma* 0.3 The manually set trend renovation coefficient,
valid only when OptimizedBwint* = 0.

OptimizedAlphaIter* 3 The number of values on the Alpha grid for
parameters optimization.

OptimizedBwint* 0 Specifies whether the parameter values (Alpha
& Gamma) of the Holt procedure used here are
to be optimized (1) or preset (0).

OptimizedGammaIter* 10 The number of values on the Gamma grid for
parameters optimization.

Phi* 0.9 The trend damping coefficient, always set
manually.

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the
core least squares estimation.

AllowNegative no Specifies whether negative values of fit and
forecast are allowed. If negative values are not
allowed, then any non-positive fitted and
forecasted values are set to zero.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

Theoretical Engine Models 11-7

CMREGR
CMREGR (the Markov Chain Monte-Carlo model) fits to data an assortment of linear
functions of the form: Series= Causals*Coeff + Resid.

Where:

• Causals are various subsets of causal factors, chosen by a random process from all
possible combinations of factors.

The first set of causal factors consists of a collection of factors along with the lagged
time series. Then, for a given length, a chain of that length is generated, and that path of
that Markov chain is traveled. The states of the chain are subsets of factors, the
transition probabilities for neighboring states are based on the ratio of BICs (Bayesian
Information Criteria) and are zero for non- neighboring states. Neighboring states are
states that differ only by one member. At each pass, a new factor is chosen randomly. If
the current model does not contain this factor, it joins, with the calculated transition
probability, the group to form the next model. Thus, the greater the improvement in the
model (as measured by BIC), the more probability has the model to be employed. If the
current model already contains this factor, then, with the calculated transition
probability, it leaves the group.

Also, a special causal factor Lag is used; this is merely the original series lagged back by
one time period. When the procedure finds this causal factor useful for modeling, the
meaning is that there is a significant autoregressive component in the data, which
indicates the presence of random trends. If the influence of Lag is dominant over other
factors, which is indicated by a large Lag coefficient, the fit will inhere the lagging effect
and when plotted on the same graph as the original series, will seem to "echo" previous
observations. This means that the model was unable to pick up any systematic behavior
in the series, and the best it can do is to highly correlate fitted values with lagged data.

Availability

CMREGR can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes

DP mode Yes

Causal Factors Used by This Model

CMREGR uses the long causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

11-8 Oracle Demantra Analytical Engine Guide

Parameter Default Description

Reset_Seed* 1 Specifies whether to reset the seed for random
numbers generation at each run or simulation. If the
seed is not reset, there will be different results for each
run; also the simulation results will differ from batch
results. 1= reset_seed; 0 = do not reset seed.

Theoretically the model assumes that the seed is not
reset.

ChainLength* 500 Number of models considered for averaging.

Need_Lag* Specifies whether to use the Lag as a causal factor. Lag
- the previous actual observation explains the next
one.

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core
least squares estimation.

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set to
zero.

UseEnvelope no Specifies whether Demantra will use the envelope
function described in "Causal Factor Testing
(Envelope Function)".

ENVELOPE_RESET_SE
ED*

0 Specifies whether to reset the randomization seed for
the envelope function, which evaluates different sets
of causal factors for different engine models.

ENVELOPE_CHAIN_L
ENGTH*

50 Specifies the number of variations of causal factors to
try, for each model.

BestOrMix* 0 Specifies whether to use the best set of causal factors
(1) or to use a mix of the causal factors (0). The default
is 0.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

Theoretical Engine Models 11-9

DMULT
DMULT, the Multiplicative Multi-Seasonal Regression model, divides causal factors
into two groups and combines them in a multiplicative linear function of the following
form:

(sum of values in causal factor group 1) * (sum of values in causal factor group 2)

This function can be used, for example, to combine daily and monthly seasonality.

Availability

DMULT can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes

DP mode Yes

Causal Factors Used by This Model

When you define causal factors and promotional causal factors, the Causal Factors
screen and the Promotional Causal Factors screen enable you to place each factor into
multiplicative group 1 or multiplicative group 2.

These options correspond to the DAILY_VAL (multiplicative group 1) and
MONTHLY_VAL (multiplicative group 2) columns in the causal_factors and the
promotional_causal_factors tables.

Typically, one group contains daily causal factors such as the days of the week
D1,D2,..,D7. The other group contains the remaining causal factors. Each group should
include at least one causal factor, and each causal factor should be in only one group.

Parameters Used by This Model

Parameter Default Description

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core least
squares estimation.

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set to
zero.

11-10 Oracle Demantra Analytical Engine Guide

Parameter Default Description

MAX_ITERATIONS* 3 Specifies the maximum number of iterations used by
this model. This parameter must be a whole number
greater than or equal to 3. If it less than 3, the
Analytical Engine uses the value 3.

SET2_COEFF_INI* 0 Specifies the initial values for the coefficients in
multiplicative group 2.

The default is 0, which means that the initial values for
these is zero, except for the coefficient for the constant
causal factor.

* This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

ELOG
ELOG (the Logarithmic CMREGR model) performs the CMREGR procedure on the
log-transformed time series.

As with the CMREGR model, this model uses a special causal factor (Lag); see
"CMREGR".

Availability

ELOG can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes

DP mode Yes

Causal Factors Used by This Model

ELOG uses the long causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Theoretical Engine Models 11-11

Parameter Default Description

ChainLength* 500 Length of the generated Markov Chain, that is
number of models considered for averaging.

need_lag* Specifies whether to use the Lag as a causal factor.
Lag - the previous actual observation explains the
next one.

reset_seed* 1 Specifies whether to reset the seed for random
numbers generation at each run or simulation. If
the seed is not reset, there will be different results
for each run; also the simulation results will differ
from batch results.

1= reset_seed; 0 = do not reset seed.

Theoretically the model assumes that the seed is
not reset.

LogCorrection 1 Specifies whether to use (1) or not (0) the correct
form of the expectation of a lognormal variable.

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core
least squares estimation.

AllowNegative no Specifies whether negative values of fit and
forecast are allowed. If negative values are not
allowed, then any non-positive fitted and
forecasted values are set to zero.

UseEnvelope no Specifies whether Demantra will use the envelope
function described in "Causal Factor Testing
(Envelope Function)".

ENVELOPE_RESET_SEED* 0 Specifies whether to reset the randomization seed
for the envelope function, which evaluates
different sets of causal factors for different engine
models.

ENVELOPE_CHAIN_LEN
GTH*

50 Specifies the number of variations of causal factors
to try, for each model.

BestOrMix* 0 Specifies whether to use the best set of causal
factors (0) or to use a mix of the causal factors (1).

11-12 Oracle Demantra Analytical Engine Guide

Parameter Default Description

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

FCROST
FCROST (the Croston Model for Intermittent Demand) is useful for intermittent
demand, which can be viewed as the demand by a distributor that supplies the product
to end customers. What is visible to the demand planner is the bulk demand by the
distributor, while the periodic demand of retailers is unknown. Thus, the quantities
most probably reflect replenishment orders, rather than demand. Visually the data
consists of peaks of random height with random intervals between the peaks.

This model is useful for data involving substantial number of zeros, and is particularly
relevant for forecasting demand of slow moving parts. The model utilizes the Holt
procedure for forecasting both quantities and inter-event times.

Availability

FCROST can be used with the following engine modes:

Engine Mode Supported?

PE mode No (disable model if using this mode)

DP mode Yes

Causal Factors Used by This Model

None.

Parameters Used by This Model

Parameter Default Description

AlphaQ* 0.1 Level innovation coefficient for quantities, manually
set.

AlphaT * 0.1 Level innovation coefficient for inter-event times,
always manually set.

Theoretical Engine Models 11-13

Parameter Default Description

GammaQ* 0.3 Trend innovation coefficient for quantities, manually
set.

GammaT* 0.3 Trend innovation coefficient for inter-event times,
always manually set.

OptimizedAlphaIter* 3 The number of values on the Alpha grid for
parameter optimization.

OptimizedFcrost* 0 For forecasting the inter-event times only. Parameter
specifies whether the parameter values (AlphaQ &
GammaQ) of the quantities-forecasting Holt
procedure used here are to be optimized (1) or
preset (0).

For forecasting the inter-event times only,

OptimizedGammaIter* 10 The number of values on the Gamma grid for
parameter optimization.

Phi* 0.9 Trend damping coefficient for inter-event times,
always manually set.

PhiQ* 0.9 Trend damping coefficient for quantities, always
manually set.

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set
to zero.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

HOLT
HOLT (the Double Exponential Smoothing model) provides realization for the Holt
damped two-parameter exponential smoothing algorithm. The forecast is a projection of
the current level estimate shifted by damped trend estimate. The level estimates are
computed recursively from data as weighted averages of the current series value and
the value of the previous one-step-ahead forecast. The trend (change of level) estimates
are computed as weighted averages of the currently predicted level change and

11-14 Oracle Demantra Analytical Engine Guide

damped previously predicted trend. The weights and the damping coefficient are either
user-supplied or can be optimized. If the optimization of parameters is chosen, they will
be set so that the MAPE (Mean Square Percentage Error) is minimized.

The HOLT model is suitable for modeling time series with a slowly changing linear
trend. It is usually used only to model short series (for example, 52 or fewer data points
for a weekly system).

Availability

HOLT can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes*

DP mode Yes

*The HOLT model is used on promotional nodes only if no other models can be used. See
"Summary of the Forecasting Process".

Causal Factors Used by This Model

None.

Parameters Used by This Model

Parameter Default Description

Alpha* 0.1 The manually set level renovation coefficient, valid
only when OptimizedHolt* = 0.

Gamma* 0.3 The manually set trend renovation coefficient,
valid only when OptimizedHolt* = 0.

OptimizedAlphaIter* 3 The number of values on the Alpha grid for
parameters optimization.

OptimizedGammaIter* 10 The number of values on the Gamma grid (default)
for parameters optimization.

OptimizedHolt* 0 Specifies whether the parameter values (Alpha &
Gamma) are to be optimized (1) or preset (0).

Phi* 0.9 The trend damping coefficient, always set
manually.

Theoretical Engine Models 11-15

Parameter Default Description

AllowNegative no Specifies whether negative values of fit and
forecast are allowed. If negative values are not
allowed, then any non-positive fitted and
forecasted values are set to zero.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

ICMREGR
ICMREGR (the Intermittent CMREGR model) is an extension of both CMREGR and
IREGR models.

Availability

ICMREGR can be used with the following engine modes:

Engine Mode Supported?

PE mode No (disable model if using this mode)

DP mode Yes

Causal Factors Used by This Model

ICMREGR uses the long causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Parameter Default Description

ChainLength* 500 Length of the generated Markov Chain, that is
the number of models considered for averaging.

need_lag* Specifies whether to use the Lag as a causal
factor. Lag - the previous actual observation
explains the next one.

11-16 Oracle Demantra Analytical Engine Guide

Parameter Default Description

reset_seed* 1 Specifies whether to reset the seed for random
numbers generation at each run or simulation. If
the seed is not reset,

there will be different results for each run; also
the simulation results will differ from batch
results. 1= reset_seed; 0 = do not reset seed.

Theoretically the model assumes that the seed is
not reset.

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the
core least squares estimation.

AllowNegative no Specifies whether negative values of fit and
forecast are allowed. If negative values are not
allowed, then any non-positive fitted and
forecasted values are set to zero.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

IREGR
IREGR (the Intermittent Regression model) is useful because the Croston model fails to
consider the obvious interdependency between quantities and times between
occurrences of demands in intermittent series. Moreover, due to the nature of the Holt
model used by Croston, causalities and seasonality are not modeled. IREGR spreads the
data into a continuous series and fits to it a regression model with unequal variances.
The resulting fit and forecast may be lumped back to form spikes, after being processed
by the Bayesian blending procedure.

Availability

IREGR can be used with the following engine modes:

Engine Mode Supported?

PE mode No (disable model if using this mode)

DP mode Yes

Theoretical Engine Models 11-17

Causal Factors Used by This Model

IREGR uses the short causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Parameter Default Description

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core
least squares estimation.

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set
to zero.

LOG
LOG (the Multiple Logarithmic Regression model) performs a logarithmic regression.
Using logarithms is often a good way to find linear relationships in non-linear data.

This model fits to data a linear function of the form:

ln(Series+ones*Shift) = Causals*Coeff + Resid

Where:

• Resid is the vector of residuals.

• ones is a column vector of ones.

• Shift is a calculated value to shift the series away from non-positive values, before
the logarithmic transformation.

Forecast values are obtained by back-transforming the projected regression, while
considering the theoretical form of the expectation of a log-normal random variable

Availability

LOG can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes

DP mode Yes

11-18 Oracle Demantra Analytical Engine Guide

Causal Factors Used by This Model

LOG uses the short causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Parameter Default Description

LogCorrection 1 Specifies whether to use (1) or not (0) the correct form
of the expectation of a lognormal variable.

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core least
squares estimation.

AllowNegative no Specifies whether negative values of fit and forecast are
allowed. If negative values are not allowed, then any
non-positive fitted and forecasted values are set to
zero.

UseEnvelope no Specifies whether Demantra will use the envelope
function described in "Causal Factor Testing (Envelope
Function)".

ENVELOPE_RESET_SE
ED*

0 Specifies whether to reset the randomization seed for
the envelope function, which evaluates different sets of
causal factors for different engine models.

ENVELOPE_CHAIN_L
ENGTH*

50 Specifies the number of variations of causal factors to
try, for each model.

BestOrMix* 0 Specifies whether to use the best set of causal factors (0)
or to use a mix of the causal factors (1).

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

LOGISTIC
LOGISTIC runs logistic regression on the causal factors.

Availability

LOGISTIC can be used with the following engine modes:

Theoretical Engine Models 11-19

Engine Mode Supported?

PE mode Yes

DP mode Yes

Causal Factors Used by This Model

LOGISTIC uses the short causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

The LOGISTIC parameters also apply to the ARLOGISTIC model.

Parameter Default Description

Potential* 1.5 Specifies the upper bound of market effort
effect, as a multiple of maximum historical
sales.

UseNonNegRegr no Specifies whether to constrain the
regression coefficients to nonnegative
values, within the core least squares
estimation.

AllowNegative no Specifies whether negative values of fit
and forecast are allowed. If negative values
are not allowed, then any non-positive
fitted and forecasted values are set to zero.

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

Moving Average
The Moving Average model considers the most recent time buckets, computes the
average, and uses that for the forecast, resulting in a flat line. This forecast is generally
suitable only in the near future.

This model is provided as a possible substitute for the NAIVE model, for use when all
other models have failed. It does not generally interact well with other models and so is
recommended only for use if no other forecast models have worked.

See "Forecast Failure", and also see "NAIVE".

11-20 Oracle Demantra Analytical Engine Guide

Availability

The Moving Average model can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes (no lift is generated, however)

DP mode Yes

Causal Factors Used by This Model

None.

Parameters Used by This Model

Parameter Default Description

NaiveEnable Specifies what to do at the highest forecast level, upon
failure of all models.

• no (0): Do not enable either NAIVE or Moving
Average models. Do not generate a forecast.

• yes (1): Enable use of the NAIVE model.

• 2 or higher: Enable use of the Moving Average
model. In this case, the setting of NaiveEnable
specifies the number of recent time buckets to use
in calculating the moving average.

MRIDGE
MRIDGE (the Modified Ridge Regression model) produces regression coefficients of
moderate magnitude, thus assuring that lifts associated with events are of moderate
size. This is equivalent to imposing a set of constraints on the coefficients in a spherical
region centered at zero. In the literature, this model is of the shrinkage family.

Availability

MRIDGE can be used with the following engine modes:

Theoretical Engine Models 11-21

Engine Mode Supported?

PE mode Yes

DP mode Yes

Causal Factors Used by This Model

MRIDGE uses the long causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Parameter Default Description

RIDGEK* 1 The larger the value of RIDGEK, the more
shrinkage occurs. When RIDGEK=0, the model is
equivalent to REGR.

METRIC NORM* 2 Chooses the norm for scaling the input causal
factors.

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core
least squares estimation.

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set
to zero.

UseEnvelope no Specifies whether Demantra will use the envelope
function described in "Causal Factor Testing
(Envelope Function)".

BestOrMix* 0 Specifies whether to use the best set of causal
factors (0) or to use a mix of the causal factors (1).

*This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

NAIVE
The NAIVE model is used only at the highest forecast level, and is used only if all other

11-22 Oracle Demantra Analytical Engine Guide

models (including HOLT) have failed. See "Forecast Failure", and also see "Moving
Average".

It uses a simple averaging procedure.

Availability

NAIVE can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes (no lift is generated, however)

DP mode Yes

Causal Factors Used by This Model

None.

Parameters Used by This Model

Parameter Default Description

NaiveEnable Specifies what to do at the highest forecast level,
upon failure of all models.

no (0): Do not enable either NAIVE or Moving
Average models. Do not generate a forecast.

yes (1): Enable use of the NAIVE model.

2 or higher: Enable use of the Moving Average
model. In this case, the setting of NaiveEnable
specifies the number of recent time buckets to use in
calculating the moving average.

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set
to zero.

Note: When generating naive forecast at the highest forecast level, one of two methods
are used. If Holt was not attempted for this node, a simplified version of the Holt model
will be used and the combination will be marked with the letter T. If Holt was
previously attempted a moving average based model is used instead and the node is
marked with N for Naive.

Theoretical Engine Models 11-23

REGR
REGR (the Multiple Regression model) fits to data a linear function of the form:

Series = Causals * Coeff + Resid

Where:

• Causals is a matrix with the independent variables (causal factors) as its columns.

• Coeff is a column vector of regression coefficient.

• Resid are the (additive) residuals (errors).

Using this additive model, we are assuming that a linear relationship exists. The
dependent variable is linearly related to each of the independent variables.

The regression parameters estimates are obtained by using the method of least square
error.

Regression coefficients that are not statistically significant are identified by special tests
and assigned the value 0.

Note: All regression-based models use REGR implicitly.

Availability

REGR can be used with the following engine modes:

Engine Mode Supported?

PE mode Yes

DP mode Yes

Causal Factors Used by This Model

REGR uses the short causal factors; see "Flags on Causal Factors".

Parameters Used by This Model

Parameter Default Description

UseNonNegRegr no Specifies whether to constrain the regression
coefficients to nonnegative values, within the core least
squares estimation.

11-24 Oracle Demantra Analytical Engine Guide

Parameter Default Description

AllowNegative no Specifies whether negative values of fit and forecast
are allowed. If negative values are not allowed, then
any non-positive fitted and forecasted values are set to
zero.

UseEnvelope no Specifies whether Demantra will use the envelope
function described in "Causal Factor Testing (Envelope
Function)".

ENVELOPE_RESET_SE
ED*

0 Specifies whether to reset the randomization seed for
the envelope function, which evaluates different sets of
causal factors for different engine models.

ENVELOPE_CHAIN_L
ENGTH*

50 Specifies the number of variations of causal factors to
try, for each model.

BestOrMix* 0 Specifies whether to use the best set of causal factors
(0) or to use a mix of the causal factors (1).

* This parameter is model-specific and is not displayed in the Business Modeler; see the
Parameters table.

Index-1

Index

A
active_forecasts_versions parameter, 2-21, 2-22
active combination, 2-19
Activity Browser

introduction, 2-6
activity shape modeling, 5-11
add_zero_combos_to_mdp parameter, 10-2
addressing within influence groups, 9-3
adjustment of forecast, 9-16
advanced analytics

enabling on desktop, 7-7
aggregation

across promotions, 2-11
during forecasting, 2-20, 3-3, 9-16

align_sales_data_levels_in_loading parameter, 7-
9, 7-12, 8-10
AllowableExceptions parameter, 7-5, 10-2
AllowNegative parameter, 9-12, 10-3
Alpha parameter, 11-6, 11-14
AlphaQ parameter, 11-12
AlphaT parameter, 11-12
ampersand, in Demantra Spectrum, 1-11
Analytical Engine

batch, simulation or subset forecasting
comparison, 9-19

components, 9-20
distributed mode

details, 9-23
distributed mode

introduction, 1-2
DP and PE modes, 1-2, 7-16, 10-1, 11-2

forecasting and coefficients, 2-1
forecasting models and engine flow, 2-8
forecast tree, 2-8
log options and other settings, 8-3
memory issues, 8-10
overview, 1-1
PE forecast mode, 7-9, 10-4
running

from DOS or workflow, 8-7
from Start menu, 8-6
general notes, 8-3
in recovery mode, 8-16

stopping, 8-16
troubleshooting, 8-9, 8-9
tuning, 7-6

Analytical Engine
batch or simulation, 1-3
components and processing flow, 9-21
registering, 8-2
server, 9-20
troubleshooting, 8-9

AnalyzeMdp parameter, 10-3
ARIX model, 11-3
ARLOGISTIC model, 11-4
ARX model, 11-5
attribute

promotional
and aggregation, 2-11
as a causal factor, 2-6
converting to causal factor, 6-4
retrieving for causal factor, 6-10

quantitative versus qualitative, 6-4
AverageHorizon parameter, 10-4

Index-2

B
batch run

and Distributed Engine, 9-23
and engine components, 9-21
and forecast versions, 2-22
and intermediate results, 8-15
compared to simulation run, 1-3
forecast mode comparison, 9-19
starting from DOS, 8-7
starting from Start menu, 8-6

BatchRunMode parameter, 7-9, 10-4
Bayesian blending, 9-15
Bayesian Model Manager, 7-15
Bera-Jarque test (Bjtest), 9-13
BestOrMix parameter, 9-14, 11-8, 11-11, 11-18, 11-
21, 11-24
Bjtest (Bera-Jarque test), 9-13
BottomCoefficientLevel parameter, 10-5
BulkLoaderBlockSize parameter, 7-7, 10-5
BulkLoaderEnableRecovery parameter, 7-7, 10-5
Business Logic Engine (BLE)

and Analytical Engine, 8-3
Business Modeler

choosing engine models, 7-14
configuring causal factors, 5-6
configuring forecast tree, 4-1
configuring parameters, 7-2
configuring promotional causal factors, 6-8
creating data for global causals, 5-3

BWINT model, 11-5

C
cache

engine
during initial scan, 9-4
during learning phase, 9-5

CachePath parameter, 10-6
CalcOptimizationInput parameter, 10-6
cannibalism parameter, 10-7
CannibalizationIgnore parameter, 7-5, 10-7
causal factors

and demand and forecast, 2-1
and Min Len field, 7-15
and promotion attributes, 6-4
and shape modeling, 5-11

base factors, 2-3
configuring, 5-6
creating data for global causals, 5-3
creating data for local causals, 5-5
data and configuration details, 2-4
data location, 5-1
data requirements, 3-1
deleting, 5-14
flags for engine models, 5-7, 11-2
for promotions, 6-9
guidelines, 3-6
influence of promotions on related products,
2-14
number of, 9-8
overview, 2-2
promotion attributes used as, 2-6
self, own, and other, 2-14
typical settings, 5-3

chaining
and delta_def, 10-10

ChainLength parameter, 11-8, 11-11, 11-15
characters to avoid, 1-11
CMREGR model, 11-7
coefficients

for shapes, 5-11, 6-15
introduction, 2-1
mathematical requirements for calculating, 3-6
preventing negative values, 7-4
writing to database, 10-65

combination
and delta, 10-10
delta field, 10-10

COMPETITION_ITEM parameter, 4-9, 9-3, 10-8
COMPETITION_LOCATION parameter, 4-9, 9-3,
10-9
create_object procedure, 7-14
create_process_temp_table procedure, 7-14, 10-63
, 10-63
Croston Model for Intermittent Demand, 11-12
CutTailZeros parameter, 9-4, 9-9, 10-9

D
DAILY model, 11-9
DampPeriod parameter, 10-9
DampStep parameter, 9-15, 10-10
database

Index-3

maintaining, 7-6
data transformations, 9-11
DBHintAggriSQL, 10-67
DBHintBranchDivision, 10-67
DBHintCreatePDE, 10-68
DBHintLoadActual, 10-67
dead combination, 2-19
debugging engine run, 8-14
def_delta parameter, 10-10
DeleteIsSelfCondition parameter, 9-2, 10-11
DeleteIsSelfRows parameter, 9-2, 10-11
delta value for item-location combination, 10-10
demand

and causal factors, 2-2
modeling as a shape, 2-4
profile, 2-4

deploying engine, 8-2
detect_cp parameter, 9-10, 10-12
detect_outlier parameter, 9-9, 10-12
DetectModelOutliers parameter, 9-15, 10-13
DeviationFactor parameter, 9-13, 10-13
Distributed Engine

and sales_data_engine, 3-5
details of behavior, 9-23

Distributed Engine
introduction, 1-2

DMULT model, 11-9
Double Exponential Smoothing Model, 11-13
DownTrend parameter, 9-16, 10-14
drop_object procedure, 7-14
dying_time parameter, 2-17, 10-14

E
ELOG model, 9-12, 11-10
EnableAdjustment parameter, 9-9, 9-16, 10-15
EnableFitValidation parameter, 9-8, 9-12, 10-15
EnableForecastValidation parameter, 9-8, 10-16
EnableModifiedVariance parameter, 10-16
EnableSimGLFilter parameter, 10-17
Engine Administrator, 8-2

configuring settings, 8-3
engine log

filtering, 8-5, 8-5
settings, 8-5
viewing, 8-14

Engine Manager

log settings, 8-5
overview, 9-20
role, 9-21

engine profile
creating or renaming, 7-3, 7-3
introduction, 1-4, 7-1
specifying in DOS, 8-7

ENVELOPE_CHAIN_LENGTH parameter, 9-14,
11-8, 11-11, 11-18, 11-24
ENVELOPE_RESET_SEED parameter, 9-14, 11-8,
11-11, 11-18, 11-24
envelope function, 9-13
envelope test, 9-15
error calculations

out of sample, 2-11
estimation, 9-8
event causal factor, 5-7
EXECUTE_PROFILES procedure, 9-2

F
FCROST model, 11-12
FillMethod parameter, 9-9, 10-20
FillParameter parameter, 9-9, 10-20
filter

business days versus non-business days, 10-62
for promotional causal factors

introduction, 6-5
specifying, 6-10
use during engine flow, 9-3

fit
and residuals, 9-12
calculation, 9-8
definition, 9-12
validation, 9-8, 9-17

forecast
calculation, 9-14
comparing modes, 9-19
failure procedure, 9-16
models, 11-2
non-unit maintenance plan (UMP) work
orders, 1-6
split forecast by series, 3-4
validation of, 9-14

ForecastGenerationHorizon parameter, 7-8, 10-21
ForecastMeanRelativeDistance parameter, 9-15,
10-21

Index-4

forecast models
ARIX, 11-3
ARLOGISTIC, 11-4
ARX, 11-5
BWINT, 11-5
CMREGR, 11-7
DMULT, 11-9
ELOG, 11-10
FCROST, 11-12
HOLT, 11-13
ICMREGR, 11-15
IREGR, 11-16
LOGISTIC, 11-18
LOGREGR, 11-17
MRIDGE, 11-20
NAIVE, 11-21
REGR, 11-23

forecasts
accuracy metrics, 2-9

forecast tree
and advanced analytics, 7-16
configuring, 4-1
example, 2-11
guidelines, 3-5
maximum forecast level, 4-10
minimum forecast level, 4-10
promotion levels, 4-4
splitting by Engine Manager, 9-20
structure, 3-2
tuning engine by node, 7-16
used by Analytical Engine, 2-8

forecast tree
maximum forecast level, 10-29

Forecast Tree Check, 7-16
forecast tree configuration

pooled time series, 4-5
forecast versions, 2-22

G
Gamma parameter, 11-6, 11-14
GammaQ parameter, 11-13
GammaT parameter, 11-13
global factor

and other causal factors, 2-3
creating, 5-3

GrossRemove parameter, 9-10, 10-22

group_tables table, 4-8

H
hierarchy

forecast, configuring, 4-1
HighestSquaring parameter, 10-22
hist_glob_prop parameter, 10-22
HistoryLength parameter, 10-23
HOLT model, 9-16, 11-13

I
ICMREGR model, 11-15
IGL, 2-14
IGLIndirectLimit parameter, 9-14
illegal characters, 1-11
index (seasonal), 11-3, 11-5
index (table)

where stored, 7-11
indexspace parameter, 7-11
Influence Group Handling and Filtering, 9-18
InfluenceGroupLevel parameter, 10-23
influence groups

absolute and relative addressing, 9-3
aggregating attributes within, 6-8
defining, 4-4
introduction, 2-14
level in forecast tree, 3-3
shape modeling for, 6-13

InfluenceRangeLevel parameter, 10-23
influence ranges

defining, 4-4
introduction, 2-13
level in forecast tree, 3-3

initial_param parameter, 7-11
Inputs table

adding data via the Business Modeler, 5-3
used for global causals, 2-4, 5-1

INSERT_UNITS procedure, 7-8
INTERM_RESULTS table, 8-15, 10-65
IntermitCriterion parameter, 9-9, 9-17, 10-24
intermittency detection and processing, 9-9
Intermittent CMREGR Model, 11-15
Intermittent flow

details, 9-17
introduction, 9-7

Intermittent Regression Model, 11-16

Index-5

IntUpdate parameter, 9-17, 10-24
IREGR model, 11-16
IRL, 2-13, 3-3
is_self data field, 9-2
item_node field, 8-15

J
Jump test, 9-14

K
KillEngine.bat, 8-16

L
Lag, 11-7
last_date_backup parameter, 10-25
last_date parameter, 10-25
leading zeros, 9-9
lead parameter, 9-8, 9-14, 10-25
level

table where stored, 4-8
level_id field, 8-14
level renovation coefficient, 11-6
live combination, 2-19
loc_node field, 8-15
local causal factor, 2-3
Logarithmic CMREGR model, 11-10
LogCorrection parameter, 9-12, 10-26, 11-11, 11-
18
LOGISTIC model, 11-18
LogLevel parameter, 10-27
LOG model, 9-12
LOGREGR model, 11-17
LowerUpliftBound parameter, 7-5, 10-28
lowest promotional level (LPL)

setting, 4-4
lowest promotion level (LPL), 3-3

M
MA model, 9-16, 11-19
Markov Chain Monte-Carlo model, 11-7
matrix series

created for causal factor, 5-10
mature_age parameter, 2-17, 10-28
max_accept_num parameter, 10-29
max_fore_level parameter, 4-10, 10-29

MAX_ITERATIONS parameter, 11-10
MaxEngMemory parameter, 10-30
Max Len field, 7-15
MDP_ADD procedure, 8-10
mdp_matrix table

and engine models, 7-16
key settings used by engine, 2-16

Mean_check parameter, 9-12
MeanRelativeDistance parameter, 9-12, 10-30
Mean test, 9-15
Member Management

and delta_def, 10-10
metrics

accuracy for forecasts, 2-9
min_fore_level parameter, 4-10, 10-31
min_fore_level parameter, 7-7
Min Len field, 7-15
MinLengthForDetect parameter, 9-10, 10-31
missing_values, 10-40
missing values, 9-9
models

and causal factors, 5-2
and engine flow, 2-8
enabling globally, 7-14
general introduction, 1-3
long, 5-2
non seasonal, 5-2
reference information, 11-2
seeing how used for nodes, 8-9
short, 5-2
specifying for specific combinations, 7-16

Moving Average model, 9-16, 11-19
MRIDGE model, 11-20
Multiple Logarithmic Regression Model, 11-17
Multiple Regression Model, 11-23
Multiplicative Multi-Seasonal Regression model,
11-9
Multiplicative Regression-Winters model, 11-5

N
NaiveEnable parameter, 9-8, 9-16, 10-32, 11-20,
11-22
NAIVE model, 9-16, 11-21

when used, 4-10, 10-29
need_lag parameter, 11-8, 11-11, 11-15
need_spread parameter, 9-17, 10-32

Index-6

negative coefficients, preventing, 7-4
next_param parameter, 7-11
nodal tuning, 7-16
node_forecast_details parameter, 7-7, 8-15, 10-33
NODE_FORECAST table, 8-15
NonNegRegrMaxTolMult parameter, 10-33
NormalizationFactor parameter, 10-34
NormalizeResults parameter, 7-6, 10-35
normalizing historical engine results, 7-6
NumShapes parameter, 5-14, 7-4, 10-36

O
OptimizedAlphaIter parameter, 11-6, 11-14
OptimizedBwint parameter, 11-6
OptimizedGammaIter parameter, 11-6, 11-14
OptimizedHolt parameter, 11-14
oracle_optimization_mode parameter, 10-36
other promotional causal factor, 9-4
outlier

detecting during engine preprocessing, 9-9
detecting during fit validation, 9-13
gross, 9-10
points needed to detect, 10-31

Outlier parameter, 9-12
OutliersPercent parameter, 9-10, 10-36
OutlierStdError parameter, 9-10, 10-36
out of sample

error calculations, 2-11
own promotional causal factor, 9-4

P
parameters, 10-xi

and engine profiles, 7-1
for engine, 7-1

PartitionColumnItem parameter, 7-10, 10-37
PartitionColumnLoc parameter, 7-10, 10-37
PercentOfZeros parameter, 9-16, 10-37
performance

tuning high-volume systems, 7-7
Phi parameter, 11-6, 11-13, 11-14
PhiQ parameter, 11-13
Possible_Season parameter, 11-4
Potential parameter, 11-19
prediction status

for fictive combinations, 2-19
for real combinations, 2-19

how used to clear old forecast data, 7-8
purpose, 2-18
setting indirectly with do_fore, 2-18

preprocessing, 9-9
price, 5-6
profile

for demand, 2-4
for engine parameters

creating or renaming, 7-3
introduction, 1-4
specifying when running engine, 8-7

PROMO_AGGR_LEVEL parameter, 7-16, 10-39
PromoStartDate parameter, 7-5, 9-4
promotion

specifying lowest level, 4-4
promotion_data_engine table, 9-3
promotional causal factors

adjusting promotion dates, 6-13
aggregating to the LPL, 6-5
aggregating within the IGL, 6-8
and engine flow, 9-2
and other causal factors, 2-3
configuring, 6-8
filtering, 6-5
key options, 6-4
merging, 6-7
self, own, and other, 9-4
transposing, 6-6

Promotions Effectiveness
setting lowest promotional level (LPL), 4-4

promotion shape modeling, 6-15, 6-15
PromotionStartDate parameter, 10-39
proport

below min_fore_level, 4-10, 10-31
used by engine, 2-8

proport_missing parameter, 10-40
proport_spread parameter, 10-41
proport_threshold parameter, 10-43
ProportParallelJobs parameter, 10-43
ProportRunsInCycle parameter, 10-43
ProportTableLabel parameter, 10-44

Q
QAD series, 5-12
Quantile parameter, 9-12, 9-14, 10-44
quantity_form parameter, 10-44

Index-7

quantity alignment duration series, 5-12
quote marks, in Demantra Spectrum, 1-11

R
recovering from engine failure, 8-16
refitting model, 9-13
regime change

detecting, 9-10
flags for detecting, 9-10
points needed to detect, 10-31
sensitivity of detection, 10-45, 10-45

RegimeThreshold parameter, 9-10, 10-45
REGR model, 11-23
RemoveResidOutlier parameter, 9-12
reset_seed parameter, 11-8, 11-11, 11-16
ResetForeVals parameter, 7-8, 10-45
resetmat parameter, 10-46
residuals calculation, 9-8
rolling data

and forecast versions, 2-22
executing profiles, 9-2
using to compare forecast versions, 2-22

RunInsertUnits parameter, 7-8, 9-1, 10-46
RUNMODE parameter, 10-47

and checking engine version, 7-16
and troubleshooting, 8-2

S
sales_data_engine_index_space parameter, 7-11
sales_data_engine_space parameter, 7-11
sales_data_engine table/view

and engine server, 9-22
reconfiguring for performance, 7-11
where created, 3-5

sales_data table
adjusting for direct use by engine, 7-9
and local causals, 2-4
and price causal factor, 2-3

SdeAnalyzeSwitch parameter, 7-13, 10-48
SdeCreateJoin parameter, 7-13, 10-48
SdeCreateSwitch parameter, 7-12, 10-49
season parameter, 10-49
self promotional causal factor, 9-4
set_rb parameter, 10-49
SET2_COEFF_INI parameter, 11-10
Settings.xml, 8-4

shape modeling
activity shape modeling

enabling, 5-13
introduction, 2-4
samples, 5-12
shape alignment, 5-11

comparison of engine variants, 2-6, 5-11
data requirements, 3-6
general introduction, 2-4, 5-11
impact on count of causal factors, 3-6
promotion shape modeling

enabling, 6-15
introduction, 2-8, 6-15

related parameters, 7-4
ShapeSign parameter, 7-4, 10-50
ShiftBaseCausals parameter, 10-50
ShiftDynPromoDate parameter, 6-14, 7-5, 10-51
ShiftPromoCausals parameter, 6-14, 7-5, 9-4, 10-
52
simulation

and Distributed Engine, 9-23
and promotion-level filtering, 10-17
compared to batch run, 1-3
fast simulation, 7-11
forecast mode comparison, 9-19
starting engine from DOS, 8-7
starting engine from Start menu, 8-6

Simulation Engine, 1-4
simulationindexspace parameter, 7-11
simulationspace parameter, 7-11
special characters (to avoid), 1-11
splitting

below min_fore_level, 4-10, 10-31
during forecasting, 2-8

start_date parameter, 10-53
start_new_run parameter, 7-7, 8-16, 10-53
StartAverage parameter, 10-54
starting

Analytical Engine, 8-6
Std_check parameter, 9-12
StdRatio parameter, 9-13, 10-54, 10-54, 10-56
subset forecasting

forecast mode comparison, 9-19
mode comparison , 1-3

T

Index-8

tablespace parameter, 7-11
tablespaces

checking storage, 7-10
used by Demantra Spectrum, 7-11

test_samp_len parameter, 9-15, 10-55
TestPeriod parameter, 9-13, 10-56
TestPeriod parameter, 10-54
TooFew parameter, 9-9, 10-56
top_level parameter, 10-56
TopCoefficientLevel parameter, 10-57
trend

adjustment, 9-9, 9-16, 10-15
alignment with, 10-14, 10-61
damping coefficient, 11-6, 11-14
damping coefficients, 11-13
innovation coefficients, 11-13
measuring for adjustment, 10-59
renovation coefficient, 11-6, 11-14

TrendDampPeriod parameter, 9-11
TrendDampStep parameter, 9-11
TrendModelForShort parameter, 9-11
TrendOutlierRatio parameter, 9-11
TrendPeriod parameter, 9-11, 9-16, 10-59
TrendPreEstimation parameter, 9-11
TrendShortRatio parameter, 9-11
troubleshooting

engine problems, 8-9
if engine does not run, 8-9
if engine does not run, 8-9

tuning (performance), 7-7

U
UPGRADE_TO_SHAPE_MODELLING
procedure, 5-12
UpliftThresholdMethod parameter, 7-6, 10-60
UpliftThresholdValue parameter, 7-6
UpperUpliftBound parameter, 7-5, 10-60
UpTime parameter, 10-61
UpTrend parameter, 9-16, 10-61
UseBusinessFilter parameter, 10-62
UseEnvelope parameter, 9-13, 10-62, 11-8, 11-11,
11-18, 11-21, 11-24
UseExternalSDUpdate parameter, 10-63
usemodelspernode parameter, 7-16, 10-64
UseNonNegRegr parameter, 7-4, 10-64
UseParamsPerNode parameter, 7-16, 10-64

UseWeightedRegression parameter, 9-12

V
Valid_fit parameter, 9-12

W
WriteIntermediateResults parameter, 7-7, 8-15,
10-65
WriteMissingDatesUplift parameter, 7-6, 10-66

Y
young combination, 2-19

Z
zeros, stripping from data, 10-9

	Oracle Demantra Analytical Engine Guide
	Preface
	Introduction to the Analytical Engine
	Overview
	Engine Modes: DP and PE
	What the Engine Does
	Forecast Modes
	Engine Profiles
	Specifying the Demand Stream in an Engine Profile
	Maintaining Engine Versions
	Illegal Characters in Demantra

	Basic Concepts
	Overview of Forecasting
	Causal Factors
	Promotions (PE Mode Only)
	Forecasting Models and the Engine Flow
	The Forecast Tree
	Influence and Switching Effects (PE Mode Only)
	Combination-Specific Settings
	The Forecast Data

	Configuring the Analytical Engine
	General Data Requirements
	Structure and Requirements of the Forecast Tree
	Split Forecast by Series
	Configuring SALES_DATA node-splitting
	Guidelines for the Forecast Tree
	Guidelines for Causal Factors

	Configuring the Forecast Tree
	Configuring the Forecast Tree
	Pooled Time Series
	Defining Influence and Competition (PE Mode Only)
	Defining the Forecast Tree for Service Parts Planning Supersessions
	Specifying Additional Parameters

	Configuring Causal€Factors
	Notes About Causal Factors
	Creating a Global Factor
	Creating a Local Causal Factor
	Configuring Global and Local Causal Factors
	About Activity Shape Modeling
	Enabling Activity Shape Modeling
	Deleting a Causal Factor

	Configuring Promotions and Promotional Causal Factors
	Base Behavior
	Customizing the Promotion Levels
	Loading Historical Promotions
	How the Analytical Engine Uses Promotions
	Configuring Promotional Causal Factors
	Adjusting the Promotion Dates
	About Promotion Shape Modeling
	Enabling Promotion Shape Modeling

	Tuning the Analytical Engine
	Editing Engine Parameters
	Creating or Renaming Engine Profiles
	Tuning Analytics
	Tuning Performance
	Reconfiguring the sales_data_engine Table
	Enabling Engine Models Globally
	Configuring the Engine Mode
	Advanced Analytics (Nodal Tuning)
	Forecast Tree Check

	Using the Engine Administrator and Running the Engine
	Before Running the Analytical Engine
	General Notes about Running the Analytical Engine
	Deploying the Analytical Engine
	Configuring Engine Settings
	Deploying Demantra CDP RAC Services
	Running the Analytical Engine from the Start Menu
	Running the Analytical Engine from the Command Line
	Running the Analytical Engine from a Workflow
	Stopping an Analytical Engine Run
	Running the Simulation Engine
	Running Engine Starter
	Troubleshooting
	Oracle Wallet Troubleshooting
	Viewing the Engine Log
	Examining Engine Results
	Running the Engine in Recovery Mode
	Stopping the Engine

	Engine Details
	Preparing the Database
	Promotion Effectiveness Engine Phases
	The Forecasting Process
	Comparing Forecast Modes
	Engine Components and High-Level Flow
	Details of the Distributed Engine

	Engine Parameters
	About Engine Parameters
	Analytical Engine Parameters

	Theoretical Engine€Models
	Introduction
	Flags on Causal Factors
	ARIX
	ARLOGISTIC
	ARX
	BWINT
	CMREGR
	DMULT
	ELOG
	FCROST
	HOLT
	ICMREGR
	IREGR
	LOG
	LOGISTIC
	Moving Average
	MRIDGE
	NAIVE
	REGR

	Index

