ORACLE

Oracle® Configurator

Fusion Configurator Engine Guide
Release 12.2
Part No. E48815-01

September 2013

Oracle Configurator Fusion Configurator Engine Guide, Release 12.2
Part No. E48815-01

Copyright © 1999, 2013, Oracle and/or its affiliates. All rights reserved.
Primary Author: Margot Murray

Contributing Author: Tom Myers

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Send Us Your Comments
Preface

1 Introduction to the Fusion Configurator Engine

INtroduction ... 1-1
Key Features of the Fusion Configurator Engine................c.ccooiiiiiiii 1-2
Rules and the Fusion Configurator Engine.............ccccoooiiiiiiiiiiiicec e 1-2
Managing Component Instances at Runtime...............cocooooiiiiiiiiii 1-3
Auto-Complete Configuration...........cocueiiiiiiiiiiiiici s 1-3
Additional Features of the Fusion Configurator Engine...............c.cccoooiii 1-5

2 Preparing to Use the Fusion Configurator Engine

Upgrading Oracle Configurator to use the Fusion Configurator Enginec........... 2-1
Configurator Preferences Page.................occooiiiiiiiiiiii e 21
Profile OPHOMS.cciiiiiiiii 2-1
Converting Existing Models to Use the Fusion Configurator Engine..................................... 2-7

3 Building a Configuration Model Using the Fusion Configurator Engine

1AV [0 X 1= T 0 Ul 5 SRR 3-1
General Area of the WOrkDench...........oooiiiiiiiiiiiec e 3-2
A (0 e 1) ST =) =) o e R 3-3
PrOPEIties.viiiiiii it 3-3
Domain Ordering Setting............ooouiiiiiiiii e 3-16
Require End-User Input Setting............cccooiiiiiiiiiiiiiiii e 3-19
TEXt FOALUIES. ... e aaaaaaaaaaees 3-19

Counted Option Features............cccooeiiiiiiiiiiiiiccc 3-20

Totals and RESOUICES.........c.cociiiiiiiiiii i 3-21
Initial Values........cooiiiiiiiici 3-21
BOM NOGES. ..ot s e s 3-22
BOM Model References...........cccuviuiiiiiiiiiiiiiicic s 3-23
(@003 a1 a (<ot 1o = SO PP 3-24
BEfOCHIVILY .. e e 3-26
Configuration Rules...............oocoiiii e 3-27
LOgiC STates......veiiiiiiii i 3-27
RULE CLASSES. ... ettt e et et e st e et e e s r e e sane e e ne e e s aneeeeanes 3-27
Compatibility Rules...........ccooiiiii 3-32
AccUMUIALOT RUIES.....ceiiiiiiiiii ettt 3-32
Configurator EXteNSIONS.ooiiuiiiiiiiic 3-34
Fusion Configurator Engine and the Constraint Definition Languagecccccoceveeneen. 3-37
Rule Import for Fusion Configurator Engine Modelsccccooiiiii, 3-45
Creating and Editing a User Interface...............cccocooviiiiiiiiiii 3-48
User Interface Master Templates............cccoooooiiiiiiiiiiii i 3-48
User Interface Content TEMPIAtescocuiiiieiiiiiiiiesie e 3-49
Control TEMPIAtes.cc.oiiueiiiii e e s 3-50

Utility Templates...........ccoiiiiiiiiiiii 3-52
Message TemMPIates.oooiiiiiiiiiii e 3-54

Button Bar Templates.............cocoiiiiiiii 3-56

Other TemMPIates.........coouiiiiiiii e e 3-59
Changes to Existing User Interface Content Templates.............ccccoooiiiiii 3-60

Layout REZIONS.ccuiiiiiiii it 3-61
User Interface EIements............ccoooiiiiiiiiiiii e 3-61
User Interface ACHONS.ccciiiiiiiiiiiiic s 3-62
Displaying a Processing Page at Runtime..............cccocoiiiiiiiiiiiiie e 3-64
Runtime Icons and IMages..........cccoiiiiiiiiiiiiii i 3-66
User Interface Definition..........ooicueiiiiiiiiiie i e 3-67
Unit Testing a Configuration Model Using the Model Debugger..............c..cccoooeciiiinnnnne, 3-67

4 Runtime Behavior of the Fusion Configurator Engine

Domain Display and Availabilityccooooiiiii 4-1
Logic State DISPLay..........ccooiiiiiiiiiii e 4-1
Runtime Configurator Flows and Behavior..................ccccoooiiiiiiiii e 4-2
Auto-Complete Configuration...........cccoiiiiiiiiiiiii s 4-2
Instance Management...........ccuiiiiiiiiiiiiiii e 4-4
Finish Configuration...........ccooiiiiiiiiiiiii e 4-9
Conflict Handling and Resolutioncccciiiiiiiiiiniiiiii i, 4-9

Restoring a Completed Configuration............cooooeeiiiiiiiiii i 4-11

5 Configuration Attributes for Fusion Configurator Engine Models

About Configuration Attributes................cccoooiiiiiiii 5-1
Tasks for Adding Configuration Attributes to an FCE Model................cccocciiiiiiiiiiinie. 5-5
Setting Up Descriptive Flexfields.............ccooiiiiiiiii e 5-6
Adding Attribute Features...............cccooiiiiiiiiiiiii 5-8
Associating Attribute Features to Flexfield Segments......................cooii 5-10
Associating BOM Nodes with Attribute Features...................ccccooiiiiin 5-10
Defining the Configurator Extension Rule.................c..ccoiii e, 5-12
Access to Configuration Attribute Data................cooooiiiiii 5-14
Special Considerations..............cccoiiiiiiiiiii e 5-17
Maintaining the Configuration Attributes Setup......................ooi, 5-19
Using Configuration Attributes in the Downstream Application...............cccoooeiciiiennnn. 5-19

6 CIlO Emulation for the FCE

About CIO Emulation for the FCE................coooiii e 6-1
Why CIO Emulation for the FCE Is Needed............cccocooiiiiiiiiii 6-1
Intended Audience for CIO Emulation for the FCE................ccoooiiii 6-2
Elements of CIO Emulation for the FCE............cccocoiiiiiiiiii e, 6-2
Differences Between FCE and CIO Emulation...........cccoccooiiiiiiiiiiii e 6-4
Candidate Implementations for ReWriting............cccoooooiiiiiiiiiiii 6-8
Limitations of CIO Emulation for the FCE............c.cccoiiiiiiiiii i, 6-9

Tasks for Implementing CIO Emulation for the FCE.......................ocoi, 6-10
Requirements for Implementing CIO Emulation...........ccocceeiiiiiiiiiininiiceeeceeeee, 6-10

Converting Source Files with Substitution........................ 6-11
What the Substitution Script Does...........ccviiiiiiriiiii 6-11
RUNNING the SCIIPL.....ooiiiiii e 6-15
Syntax and Parameters..............cooiiiiiiiiiiii 6-16
CUstom SUDSHEULON.ocoiiiiii e 6-18
Output of the Script.......cooiii 6-20
Errors from the SCript.......ccoooiiiiiiiiiiicc 6-22

Compiling and Archiving Converted Files....................cccocoiiiiii, 6-22

Converting Configurator Extension Rules...............ccccoooiiiiiiiii e, 6-23

Verifying Post-Conversion Behavior.................coccoooiiiiii e 6-26

Common Glossary for Oracle Configurator

Index

Send Us Your Comments

Oracle Configurator Fusion Configurator Engine Guide, Release 12.2
Part No. E48815-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

¢ Are the implementation steps correct and complete?

¢ Did you understand the context of the procedures?

¢ Did you find any errors in the information?

¢ Does the structure of the information help you with your tasks?

* Do you need different information or graphics? If so, where, and in what format?
* Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

vii

Preface

Intended Audience
Welcome to Release 12.2 of the Oracle Configurator Fusion Configurator Engine Guide.

Important: This document describes only the Fusion Configurator
Engine (FCE), which constitutes part of Oracle Configurator
functionality. It is essential to read this document in conjunction with
other documents in the Oracle Configurator documentation set, as
described in this section.

This guide is intended for those who are in the process of planning, designing, building,
or deploying configuration models using Oracle Configurator Developer, or have
already deployed configuration models in a runtime Oracle Configurator. This
document assumes you are experienced with both Oracle Configurator Developer and
Oracle Configurator, have attended Oracle Configurator training classes available
through Oracle University, and have read the Oracle Configurator Developer User’s Guide.

The Oracle Configurator Developer User's Guide contains essential information about
building and deploying configuration models using Oracle Configurator Developer.
Much of the content in that guide is relevant whether you are building a configuration
model for the Original Configurator Engine (OCE) or the Fusion Configurator Engine
(FCE). However, all procedures, settings, modeling techniques, runtime behavior, and
areas within the Configurator Developer user interface that are specific to the FCE are
currently available only in this guide. Therefore, Oracle recommends that you use this
guide as a supplement to the latest version of the Oracle Configurator Developer User’s
Guide.

See Related Information Sources on page x for more Oracle E-Business Suite product
information.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Structure

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1 Introduction to the Fusion Configurator Engine

This chapter describes at a high level the main features and benefits of the FCE. The
remainder of this document describes the various settings that enable you to build FCE
Models in Configurator Developer, how to convert existing Models to FCE Models, and
the general behavior of FCE Models in a runtime Oracle Configurator.

2 Preparing to Use the Fusion Configurator Engine

3 Building a Configuration Model Using the Fusion Configurator Engine

4 Runtime Behavior of the Fusion Configurator Engine

5 Configuration Attributes for Fusion Configurator Engine Models

This chapter describes how to set up configuration attributes for Models that use the
Fusion Configurator Engine.

6 CIO Emulation for the FCE
Common Glossary for Oracle Configurator

Related Information Sources

For a full list of documentation resources for Oracle Configurator, see the Oracle
Configurator Release Notes for this release.

For a full list of documentation resources for Oracle Applications, see Oracle
Applications Documentation on the Oracle Technology Network.

Additionally, be sure you are familiar with current release or patch information for
Oracle Configurator on the Oracle Support Web site.

Integration Repository

The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for

integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

You can navigate to the Oracle Integration Repository through Oracle E-Business Suite
Integrated SOA Gateway.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Xi

1

Introduction to the Fusion Configurator
Engine

This chapter describes at a high level the main features and benefits of the FCE. The
remainder of this document describes the various settings that enable you to build FCE
Models in Configurator Developer, how to convert existing Models to FCE Models, and
the general behavior of FCE Models in a runtime Oracle Configurator.

This chapter covers the following topics:
* Introduction

* Key Features of the Fusion Configurator Engine

Introduction

The Fusion Configurator Engine (FCE) is written in the Java programming language
and is based on Constraint Programming technology. In the constraint-based
programming paradigm, relations between variables can be stated by defining
constraints. Constraints specify the characteristics of a desirable solution to a
configuration problem, rather than a step or sequence of steps that must be executed to
create such a solution. After a user makes selections, the FCE automatically finds a
solution that includes the user's selections and satisfies all of the constraints.

Compared to Models that use the Original Configurator Engine (OCE), FCE Models
provide a greater degree of guidance in a runtime User Interface. This helps Oracle
Configurator end users make better, more educated choices, resulting in fewer errors
and allowing products to be configured more quickly.

FCE Models also enable end users to complete a configuration automatically using
preferences that you define in Oracle Configurator Developer. These preferences consist
of Defaults and Search Decisions, and are described in more detail in Rule Classes,
page 3-27.

The benefits of using the FCE and leveraging its constraint-based technology include

Introduction to the Fusion Configurator Engine 1-1

reduced time spent developing configuration models, the ability to lead end users to the
Modeler's preferred solution, and a product architecture that is easier to maintain.

Note: The Telecommunications Services Ordering (TSO) functionality is
not available in the current release of the Fusion Configurator Engine.
For information about TSO in previous releases, see the Oracle
Telecommunications Service Ordering Process Guide.

Important: Connectors are not supported in the current release of the
Fusion Configurator Engine. The information about Connectors
provided in this document is only for planning purposes. However,
Connectors continue to be supported for models using the Original
Configurator Engine.

Key Features of the Fusion Configurator Engine

Rules and the Fusion Configurator Engine

This section describes functionality related to configuration rules that is available only
when using the FCE.

When using the FCE, you can:

¢ (lassify configuration rules as Constraints, Defaults (also called soft constraints), or
Search Decisions.

For details, see Rule Classes, page 3-27.

® Specify the order in which Oracle Configurator evaluates rules that are defined as
Defaults or Search Decisions.
For details, see Specifying a Sequence for Defaults and Search Decisions, page 3-31.

e Control the relative and absolute quantity of a BOM Model node by defining
constraints in Configurator Developer.

® Define a rule that requires an end user to connect an optional Connector, or
prevents a Connector from being connected.

For details, see the examples using the System Property ConnectionCount under
Model Node System Properties, page 3-3 and Connectors and Configuration
Rules, page 3-26.

¢ Define rules that control how many instances of a component can be created at
runtime.

For details, see the examples using the System Property InstanceCount under

1-2 Oracle Configurator Fusion Configurator Engine Guide

Model Node System Properties, page 3-3 and Instance Management, page 4-4.

e Define Accumulator Rules, which add or subtract a value from a variable at
runtime, and which replace Numeric Rules.
For details, see Accumulator Rules, page 3-32.

¢ Define rules that specify default values for Numeric Features, Boolean Features,
Totals, and Resources.

See Initial Values, page 3-21.

Managing Component Instances at Runtime

Important: See Oracle Configurator Release Notes, Release 12.1.1 on the
Oracle Support Web site for background on important enhancements
and changes to runtime instance management.

This following are true at runtime in FCE Models that support instantiation:

¢ Instances can be created automatically to satisfy a constraint. This is called dynamic
instantiation.

For example, an instance may be created when no target instance exists for a
required Connector, or when the minimum instances setting on an Instance Set is
increased.

(In the OCE, instances can only be created by the end user or by a Configurator
Extension (CX).)

* Anend user can remove an instance from an Instance Set without deleting it from
the configuration.

* Anend user can add an existing instance to an Instance Set, rather than creating an
entirely new instance. See The Unassigned Instance Pool, page 4-7 for
background.

* Anend user can copy an instance in an Instance Set and later add it to a set of the
same type.

For details, and examples using the System Property InstanceCount, see Model Node
System Properties, page 3-3 and Instance Management, page 4-4.

Auto-Complete Configuration

An important feature of the Fusion Configurator Engine is the ability to complete a
configuration automatically. This process, which end users can invoke at runtime by
clicking the Finish button, is known as Auto-Complete. Auto-Complete is useful, for

Introduction to the Fusion Configurator Engine 1-3

Variables

example, when end users care only about a subset of all available items and want to
quickly create a valid and complete configuration. In this case, end users can manually
provide the inputs that they care about, supply any inputs that are explicitly required
by the Model definition, and then allow Auto-Complete to complete the configuration.
After examining the result of Auto-Complete, the end user can save and exit, or make
further changes before exiting. Details about how the process functions at runtime are
explained in Auto-Complete Configuration, page 4-2.

When an Oracle Configurator end user invokes Auto-Complete, the FCE searches for a
solution to the current configuration problem by providing inputs of the appropriate
type for all unbound variables in the configuration and applying requirements and
(optionally) preferences that you define for the Model in Configurator Developer.

® Requirements, which must be satisfied for a complete solution, are necessary for
Auto-Complete to bind the variables. You define requirements by defining rules
with an associated Rule Class, page 3-27 of Constraint.

e Preferences, which can be unsatisfied in a complete solution, are not necessary for
Auto-Complete to bind the variables, but enable you to shape the final solution in a
given direction. You define preferences by:

* Defining rules with an associated Rule Class, page 3-27 of Default or Search
Decision

® Specifying a Sequence for Defaults and Search Decisions, page 3-31

¢ Indicating how you want Auto-Complete to provide values for unbound
Numeric and Boolean Features (see Domain Ordering Setting, page 3-16)

® Specifying minimum and maximum values for all Model nodes (see Tip,
below).

Tip: For optimal performance of the Auto-Complete process, Oracle
strongly recommends narrowing the domains to be searched. To
narrow the search domains, set maximums as low as possible and
minimums as high as possible for the following node types: Numeric
Features, Totals, and Resources (set the values); instantiable
Components and Model References (set the number of instances);
Option Features (set the number of selections); BOM components (set
the quantities, in Oracle Bills of Material).

The term "variable" is used in this document to refer to any item that must be bound;
that is, that requires selection or a value at runtime. For example, a BOM Option Class
that requires at least one of its children to be selected, or a Numeric Feature that
requires a value. A variable is bound when it is selected or excluded (or a value is

1-4 Oracle Configurator Fusion Configurator Engine Guide

entered) by the end user, the propagation of a rule, or the Auto-Complete process. A
configuration is not complete until all variables are bound.

Note: Text Features are the only type of variable that Auto-Complete
cannot bind. For details, see Aspects of Auto-Complete Behavior, page
4-3.

Other examples of variables include:

Boolean Feature: This type of node is bound at runtime when its domain is reduced
to a single value (true or false).

Note: The term "domain" is explained in Domain Ordering Setting,
page 3-16.

Option Feature: This type of node is bound at runtime when its Selection Count is
reduced to a single value that is equal to the number of selected options.

For example, OF1 has a Minimum and Maximum Selections of 1 and 4, respectively.
At runtime, the valid input range (domain) for OF1 is 1 - 4. If the end user selects
two options, OF1 is not yet bound, but its input range changes to 2 - 4. If the end
user selects two more options, OF1 is bound because its Selection Count equals the
number of selected options.

See SelectedCount, page 3-5.

Instance Set: An Instance Set is bound at runtime when its Instance Count is
reduced to a single value that is equal to the number of instances in the set.

The InstanceCountSystem Property is described in the Oracle Configurator
Developer User’s Guide.

Connector: This type of node is bound at runtime when its number of connections is
reduced to a single value that is equal to its Connection Count.

See ConnectionCount, page 3-6.

Additional Features of the Fusion Configurator Engine

This section lists additional FCE functionality and describes several known limitations
of the Original Configurator Engine that do not exist in FCE Models.

You can require end-users to explicitly enter a value for a Numeric or Text Feature.
(The OCE allows you to require input, but only for Text Features.)

For details, see Require End-User Input Setting, page 3-19.

The range defined for a Resource in Configurator Developer is enforced at runtime.

Introduction to the Fusion Configurator Engine 1-5

In other words, an end user's actions cannot cause a Resource to become
"over-consumed."

For details, see Totals and Resources, page 3-21.

At runtime, Connectors can be bi-directional and may allow multiple connections.

For details, see Connectors, page 3-24.

Performance and Usability Enhancements

The FCE provides the following enhancements in the areas of performance and

usability:

Improved modeling techniques: The ability to specify a preferred order for
executing Search Decisions and Defaults makes it easier to design and build
configuration models that meet your needs.

See Specifying a Sequence for Defaults and Search Decisions, page 3-31.

Reduced Model maintenance: FCE Models provide more predictable behavior than
the Original Configurator Engine, making it easier to debug model design and
runtime issues.

Additionally, the FCE's ability to automatically create component instances,
complete a configuration, and perform complex defaulting greatly reduces the need
for Configurator Extensions.

Improved end-user experience: End users can see the valid input range for
Numeric inputs (which results in fewer contradictions) and can allow Oracle
Configurator to complete a configuration automatically. As a result, your end users
can create complete and valid configurations much more quickly, with fewer errors.

See Auto-Complete, page 1-3.

Original Configurator Engine: Known Issues and Limitations

This section lists known issues and limitations of Models that use the Original
Configurator Engine that do not exist in FCE Models.

NotTrue Logical Function: The use of the Not True operator in Models that use the
Original Configurator Engine imposes an order for rule propagation that causes
configuration models to be more difficult to design and use, and may result in a
"locked" state for the initial values of some items. In FCE Models, these problems do
not exist because items in the configuration can never be "Unknown" and all items
are bound eventually. In other words, rules that the FCE supports are never based
upon the condition that an argument within a rule is unknown. Thus, the NotTrue
operator is not necessary, and is therefore not available for use in FCE Models.

When you convert an existing Model to use the FCE, each occurrence of the

1-6 Oracle Configurator Fusion Configurator Engine Guide

NotTrue operator changes to NOT. To achieve behavior similar to the NotTrue
operator when creating rules in an FCE Model, use the NOT operator.

Numeric Rules: In Models that use the Original Configurator Engine, Numeric
Rules can "push” (propagate) only one way: from the Operand A side of the rule to
the Operand B side of the rule.

In an FCE Model, Numeric constraints propagate in both directions.

For example, a Model contains IntegerFeatureX, which has Minimum and
Maximum Values of 0 and 20, respectively. The Model also contains the following
rule:

(IntegerFeatureX > 10) REQUIRES BooleanFeatureY

In a Model that uses the Original Configurator Engine, selecting or deselecting
BooleanFeatureY does not cause IntegerFeatureX to have a value greater than 10;
in fact, the action has no effect on IntegerFeatureX at all.

In an FCE Model, selecting BooleanFeatureY changes the domain of
IntegerFeatureX to 11 to 20’ (this range is visible to the end user at runtime). If the
end user then deselects BooleanFeatureY, the domain of IntegerFeatureX changes to
'0to 10'.

Comparison Rules and Intermediate Values: When configuring a Model that uses
the Original Configurator Engine, it is possible for unexpected contradictions to
occur due to the use of intermediate values with Comparison Rules. This limitation
is described in detail in the Oracle Configurator Modeling Guide (part number
B13605-03). It is not possible for this scenario to occur in an FCE Model, since the
FCE and the Original Configurator Engine propagate rules very differently.

Repetitive Rule Patterns, Redundancy, and Circular Propagation (Numeric
Cycles): For details about each issue, see the Oracle Configurator Modeling Guide
(part number B13605-03).

Due to the manner in which rules propagate in the FCE, none of these problems can

occur in an FCE Model.

Optional Connectors: In Models that use the Original Configurator Engine,
optional Connectors cannot participate in Logic Rules. This is not the case in an FCE
Model.

See Model Node System Properties, page 3-3.

Modifying a Feature's Minimum and Maximum at Runtime: In a Model that uses
the Original Configurator Engine, you cannot create rules that dynamically change
a Feature's Minimum and Maximum number of selections. You can create this type

of rule in an FCE Model.

BOM Internal Quantity Computation and Visibility: In Models that use the

Introduction to the Fusion Configurator Engine 1-7

Original Configurator Engine, the parent node is not updated when a Numeric Rule
changes the child BOM node's internal quantity, and the end user is not informed of
the error.

In FCE Models, the quantity relationship between a parent BOM node and its
children is always maintained when the quantity of the parent or child is modified
at runtime (this is true whether the value is changed by the propagation of a rule or
by the end user).

1-8 Oracle Configurator Fusion Configurator Engine Guide

2

Preparing to Use the Fusion Configurator

Engine

This chapter covers the following topics:

Upgrading Oracle Configurator to use the Fusion Configurator Engine
Configurator Preferences Page
Profile Options

Converting Existing Models to Use the Fusion Configurator Engine

Upgrading Oracle Configurator to use the Fusion Configurator Engine

Read this chapter if you are currently using Oracle Configurator Release 12.0 or earlier
and are upgrading to release 12.1 and intend to use the FCE.

Configurator Preferences Page

For background information about this page and the various settings it contains, see
"Preferences” in the Oracle Configurator Developer User's Guide.

When the profile option CZ: Enable Configurator Engine, page 2-3 is set to Both, then
a section called Model Creation is added to the Configurator Preferences page, and this
section contains a setting called Configurator Engine for New Models. Use this setting
to specify a value for the profile option CZ: Configurator Engine for New Models, page
2-3, which controls which configurator engine is used when new models are
subsequently created.

Profile Options

After upgrading to a version of Oracle Configurator Developer that supports the FCE
(for example, R12.1), read the descriptions of the following profile options to
understand how they function and decide whether the default values are appropriate

Preparing to Use the Fusion Configurator Engine 2-1

for your installation. In summary:

* CZ:Enable Configurator Engine, page 2-3 enables the use of the Fusion
Configurator Engine and CZ: Configurator Engine for New Models, page 2-3
controls whether new models are associated with the FCE.

* (CZ: Use BOM Default Quantity as Domain, page 2-6 controls the whether the
Default Quantity of BOM Items is used to populate any undefined Minimum or
Maximum quantities during import. If the value of that profile option is not True,
then CZ: Default Max Quantity Integer, page 2-3 and CZ: Default Max Quantity
Decimal , page 2-3 provide the values for any undefined Maximum quantities,
and set the Minimum quantities (to 1 for integer items, and to 0.0 for decimal
items).

® CZ: Processing Page Delay, page 2-3 controls how soon an informational page is
displayed during long runtime operations.

Fusion Configurator Engine Profile Options

Profile Option User User Res Apps Site Required? Default Value
* p
CZ: Configurator X X X X Original

Engine for New
Models, page 2-
3

CZ: Default Max X X X X 1000.0
Quantity Decimal
, page 2-3

CZ: Default Max X X X X 1000
Quantity Integer,
page 2-3

CZ: Enable X Original
Configurator
Engine, page 2-3

CZ: Processing X X X X 4000
Page Delay, page (milliseconds)
2-3

2-2 Oracle Configurator Fusion Configurator Engine Guide

Profile Option User User Res Apps Site Required? Default Value

* p
CZ: Use BOM X X X X True
Default Quantity
as Domain, page
2-6

Following is a description of the symbols used in the previous table:
X: You can update the profile option at this level.
Null/no value: You cannot change the profile option value at this level.

The column marked User*, page 2-2 refers to the user-level setting made by the system
administrator, as distinct from the user-level setting made by users.

Profile Options

You must set a value for profile options followed by the word "required," no default is
supplied. Ordinary users can see profile options followed by the word "exposed," only
system administrators can see the rest. Further details follow the list, click an item to
find them.

CZ: Configurator Engine for New Models
CZ: Default Max Quantity Decimal

CZ: Default Max Quantity Integer

CZ: Enable Configurator Engine

CZ: Processing Page Delay

CZ: Use BOM Default Quantity as Domain

CZ: Configurator Engine for New Models

This profile option controls which configurator engine is used when new models are
created. New models are considered to be either non-BOM Models that you create or
BOM Models that you import into Configurator Developer for the first time. This
profile option does not affect the configurator engine used for BOM Models that have
already been imported; refreshing a BOM Model does not change the engine.

You set the value of this profile option in the Model Creation section of the
Configurator Preferences Page, page 2-1. In order to be able to set this profile option,
CZ: Enable Configurator Engine must be set to Both.

Valid values for this profile option are:

e Original, which causes new models to use the Original Configurator Engine

Preparing to Use the Fusion Configurator Engine 2-3

e Fusion, which causes new models to use the FCE

The default value is Original. The value of this profile option must be the same as CZ:
Enable Configurator Engine, unless CZ: Enable Configurator Engine is set to Both,
which allows you to choose either Original or Fusion.

After you create a new model, its Configurator Engine setting is displayed on the
General Area of the Workbench, page 3-2.

Once a Model is created, you cannot change its associated configurator engine by
changing this profile option. To change a model to use the FCE, you must use the
Model Conversion Utility. For details, see Converting Existing Models to Use the
Fusion Configurator Engine, page 2-7.

CZ: Default Max Quantity Decimal

This profile option performs the same function as CZ: Default Quantity Integer, page 2-
3, but it provides a maximum quantity for decimal BOM items. The default value is
1000.0.

Note: A decimal BOM item is an item that allows an Oracle
Configurator end user to enter a decimal value (such as 2.5) when
specifying a quantity at runtime.

All of the information about CZ: Default Quantity Integer also applies to CZ: Default
Max Quantity Decimal, including the levels at which it can be set, its interaction with
CZ: Use Default Quantity as Domain, and so on.

CZ: Default Max Quantity Integer

This profile option specifies the integer value to assign as the Maximum Quantity for
integer BOM items and Features whose Maximum Quantity is found to be blank (not
defined) when you refresh or import a BOM Model, or convert an existing Model (BOM
or non-BOM) to use the FCE. This profile option can be set at the User, Responsibility,
and Site level. The default value is 1000.

BOM items that do not have a Maximum Quantity inherit the value of this profile
option only if CZ: Use BOM Default Quantity as Domain, page 2-6 is False. If CZ:
Use BOM Default Quantity as Domain is True, then this profile option has no effect.

For more information, see CZ: Use BOM Default Quantity as Domain, page 2-6.

Tip: Oracle strongly recommends specifying values for both the
Minimum and Maximum Quantity for each BOM component in Oracle
Bills of Material. For optimal performance of the Auto-Complete
process, set the Maximum Quantity as low as possible and the
Minimum Quantity as high as possible.

2-4 Oracle Configurator Fusion Configurator Engine Guide

CZ: Enable Configurator Engine

This profile option controls whether the Fusion Configurator Engine is enabled for use
and whether Oracle Configurator Developer displays FCE-specific content in global
objects, which include UI Master Templates and UI Content Templates. This profile
option can be set only at the Site level.

Valid values for this option include Original, Fusion, and Both. The default value is
Original. You may want to set this option to Both if you need to maintain Models
that were created using the Original Configurator Engine but also want to be able to
create FCE Models.

Note: CZ: Enable Configurator Engine does not determine which
configurator engine a Model uses. After upgrading to Oracle
Configurator release 12.1, all existing Models continue to use the
Original Configurator Engine by default. For details about the profile
option that controls whether new Models use the FCE, see CZ:
Configurator Engine for New Models, page 2-3. All existing BOM and
non-BOM Models must be converted if you want them to use the FCE.
For details, see Converting Existing Models to Use the Fusion
Configurator Engine, page 2-7.

If this profile option is set to either Fusion or Both, then the FCE is available for use
and the following content is visible in Configurator Developer:

¢ Configurator Engine setting (appears in the Create Model page and the General
area of the Workbench when you open a Model for editing)

For details about this setting, see General Area of the Workbench, page 3-2.

¢ User Interface Content Templates that are available only with the Fusion
Configurator Engine

e FCE-specific System Properties (Model node and configuration session System
Properties) in Models and Content Templates

* FCE-specific settings in Ul Master Templates and the User Interface Definition page

When you set this profile option to Both, the Configurator Preferences page includes a
setting that enables you to specify a value for the profile option CZ: Configurator
Engine for New Models. For more information, see:

¢ Configurator Preferences Page, page 2-1

® (CZ: Configurator Engine for New Models, page 2-3

Preparing to Use the Fusion Configurator Engine 2-5

CZ: Processing Page Delay

Background: An Oracle Configurator Developer user can choose to display a processing
page for Ul actions that take a long time to complete. An example of a UI action that can
cause a processing page to be displayed is Auto-Complete Configuration. For details,
see Displaying a Processing Page at Runtime, page 3-64.

The profile option CZ: Processing Page Delay specifies how many seconds Oracle
Configurator waits after an end user performs an action before displaying a "processing
request” page. If the end user's request completes before the specified time expires,
Oracle Configurator does not display this page.

The default value of this profile option, specified in milliseconds, is 4000 (4 seconds),
and it can be set at the User, Responsibility, and Site level.

Important: Oracle strongly recommends that you specify a value of no
more than 8 (seconds) for this profile option. Additionally, be sure that
the value of this profile option is less than your Web server and
browser time out settings. If the Web server or browser time out setting
is less than the profile option, then the profile option will have no effect
at runtime.

CZ: Use BOM Default Quantity as Domain

In Oracle Bills of Material, a user must enter a Default Quantity when defining a BOM
item, but specifying a Minimum and Maximum Quantity is optional. When you import,
refresh, or convert a Model to use the FCE, any blank occurrences of those quantities are
automatically set to a value, either by this profile option or by CZ: Default Max
Quantity Integer, page 2-3 and CZ: Default Max Quantity Decimal, page 2-3.

This profile option allows you to apply a common interpretation of blank Minimum
and Maximum Quantities that limits a BOM item's domain and improves performance
of the Auto-Complete process at runtime.

Note: The term "domain" is defined in Domain Ordering Setting, page
3-16.

When this profile option is set to True, any undefined Minimum or Maximum
Quantities are set to the item's Default Quantity when you import, refresh, or convert a
Model to use the FCE. For example, an item's Minimum Quantity is 1, its Maximum
Quantity is blank, and its Default Quantity is 1. When you import, refresh or convert
the item's parent BOM Model to use the FCE, the item's Maximum Quantity is set to 1.

When this profile option is set to False and you import, refresh, or convert a BOM
Model to use the FCE:

® The profile options CZ: Default Max Quantity Integer, page 2-3 and CZ: Default

2-6 Oracle Configurator Fusion Configurator Engine Guide

Max Quantity Decimal, page 2-3 provide values for any BOM items that do not
have a Maximum Quantity (which profile option is used depends on whether the
BOM item accepts a decimal or integer quantity at runtime).

¢ Any Minimum Quantities that do not have a value are set to 1 (for integer items) or
0.0 (for decimal items).

This profile option can be set at the User, Responsibility, and Site level.

Tip: Oracle recommends that all BOM components have values
specified for the Minimum and Maximum Quantity settings.

Converting Existing Models to Use the Fusion Configurator Engine

Introduction

This section contains the following topics:

¢ Introduction, page 2-7
¢ Model Conversion Utility Output, page 2-7
* Model Conversion Utility Report, page 2-12

* Running the Model Conversion Utility, page 2-14

If you are upgrading to Release 12.1 or later from a previous version of Oracle
Configurator, you must run the Model Conversion Utility to convert any existing
Models that you want to use the Fusion Configurator Engine. This utility is an Oracle
Applications concurrent program that is available when you log in to Oracle
Applications using either the Oracle Configurator Developer or Oracle Configurator
Administrator responsibility.

The Model Conversion Utility creates a copy of a Model that was created using the
Original Configurator Engine (the source Model) and then modifies the copied Model's
structure, rules, and related Ul objects so they are compatible with the FCE. The utility
does not make any changes to the source Model.

If you are installing Oracle Configurator for the first time and you want to use the FCE
and create FCE Models by default, you need only verify that the profile options CZ:
Enable Configurator Engine and CZ: Configurator Engine for New Models have the
appropriate values. For details, see Profile Options, page 2-1.

Model Conversion Utility Output

The Model Conversion Utility generates a report that describes in detail how each

Preparing to Use the Fusion Configurator Engine 2-7

Model Structure

Model node, rule, and related UI object changed during the conversion process. Some
messages prompt you to review specific areas of the Model or make changes to ensure
the converted Model performs as expected at runtime. For details, see Model
Conversion Utility Report, page 2-12. The sections below describe at a high level how
the Model Conversion Utility converts a Model's Structure, page 2-8, Rules, page 2-10
, and associated User Interface objects, page 2-12.

After the Model Conversion Utility completes successfully, you can access the
converted Model in the same Folder as the source Model. A converted Model has the
same name as the source Model, but the name is appended with "-[FCE]." For example,
"Custom Sentinel Desktop - [FCE]." If a Model with the same name already exists (for
example, if a Model is converted more than once), then an ordinal number is appended
to the name. For example, "Custom Sentinel Desktop - [FCE][2]."

Following is a summary of how each type of Model node changes when you convert a
Model to use the FCE. Details about each change are provided in the Model Conversion
Utility Report, page 2-12.

e Boolean Features:

e Initial Values are converted to Requires Logic Rules (Rule Class is set to
Default)

e Totals and Resources:
e Converted to Decimal Totals and Decimal Resources

For optimal performance of the Auto-Complete process, consider re-creating all
converted Totals and Resources as Integer Totals and Integer Resources. For
details, see Totals and Resources, page 3-21.

¢ Effectivity settings are removed (this includes date ranges, Effectivity Sets, and
Usages)

e Initial Values are expressed as constant terms in new Accumulator Rules.

Note: When you generate Model logic, this term is rolled into
the sum constraint that accumulates all other rules that
contribute to or consume from the node. Additionally, if the
Total or Resource is in a Model that is referenced by another
Model, and the node participates in any rules that belong to the
referencing Model, the utility creates an additional
Accumulator Rule containing the Initial Value in each ancestor
Model.

2-8 Oracle Configurator Fusion Configurator Engine Guide

Numeric Features:
e Default values are provided if Minimum or Maximum is null.

The Model Conversion Report prompts you to review the new values.

¢ Initial Values are expressed as constant terms in new Accumulator Rules

Note: The "Additional Information” paragraph above (in the
section describing Totals and Resources) also applies to
Numeric Features.

¢ Effectivity settings are removed (this includes date ranges, Effectivity Sets, and
Usages)

Counted Option Features: Maximum Quantity per Option setting (with default
value) is added

BOM Items: Default values are provided if Minimum or Maximum Quantity is
blank

The utility provides a value of 1 for the Minimum Quantity (0.0 for decimal BOM
items) and a large number for the Maximum Quantity. For more information, see
BOM Nodes, page 3-22.

Model References: For Multi-Instantiable BOM Model References, the settings for
Initial Minimum and Maximum Instances are removed. The BOM Maximum
Quantity setting now defines the total Quantity allowed across all Instances.

Components: Effectivity settings are removed for required, single-instance (1/1)
Components (this includes date ranges, Effectivity Sets, and Usages).

Optional single-instance Components and Components that allow multiple
instances are not modified during the conversion.

Connectors:

Important: Connectors are not supported in the current release of
the Fusion Configurator Engine. The information about Connectors
provided in this document is only for planning purposes. However,
Connectors continue to be supported for models using the Original
Configurator Engine.

* Minimum Target Instances and Maximum Target Instances settings are added
(default values are 0/1)

Preparing to Use the Fusion Configurator Engine 2-9

e Connection Required setting is removed

For additional information about the changes and terms used above, refer to the
following sections:

¢ Initial Values, page 3-21
o Effectivity, page 3-26

¢ Connectors, page 3-24

Rules
By default, all rules created by the Model Conversion Utility appear in the Rules area of
the Workbench in a Folder called "Rules Generated by Model Conversion." This Folder
appears as a child of the root Rules Folder. You can leave the rules in this Folder, or
move them to a different location.

The Model Conversion Ultility creates new rules to replace rules and settings that do not
map directly to the FCE. For example, the utility creates Accumulator Rules to replace
Numeric Rules and Initial Value settings. See Initial Values, page 3-21.

Following is a summary of the types of rules that the FCE does not support, and how
some rules and Model node settings change during the conversion process:

* The FCE does not support Numeric Rules in the same way as the Original
Configurator Engine. Therefore, all Numeric Rules (and Statement Rules that use
either the ' CONTRIBUTE' or 'CONSUMES' operators) are converted to
Accumulator Rules, page 3-32.

In Statement Rules, the CONTRIBUTE...TO operator changes to ADD...TO during
the conversion process, and CONSUMES...FROM changes to SUBTRACT...FROM.
The resulting rule syntax is:

ADD OptionA TO OptionB

SUBTRACT OptionX FROM OptionY

In both cases, the utility removes the rule's violation message. Configurator
Developer displays a standard, predefined message when the Accumulator Rule is
violated at runtime.

e All Logic Rules that use the Defaults operator (Defaults Logic Rules) are converted
to Statement Rules that use the IMPLIES operator, and these rules are assigned a
Rule Class of "Default'.

For example, before converting a Model, a Defaults Logic Rule has the following
definition:

OptionA DEFAULTS AnyTrue (OptionB, Option C)

2-10 Oracle Configurator Fusion Configurator Engine Guide

After the conversion, the Model contains the following "Default” rule:

AnyTrue ('OptionA') IMPLIES AnyTrue ('OptionB', 'OptionC'")

All expressions in Logic Rules in which Count Features participate are converted so
that the Count Features become greater-than-0 (zero) expressions. For example, the
source Model has the following rule:

CountFeatureX IMPLIES BooleanFeatureY

After the conversion, the Model contains the following rule:

(CountFeatureX > 0) IMPLIES BooleanFeatureY

When converting Compatibility Rules (Explicit Compatibility Rules, Property-based
Compeatibility Rules, and Design Charts), a Failure message appears in the Model
Conversion Report if more than one participant in the rule has a maximum number
of selections greater than 1.

The rule conversion fails. The Failure message suggests modifying the rule.

When converting Compatibility Rules, a Failure message is generated if a BOM
Model is a participant in the rule.

The FCE does not support the ATAN2 operator. During the conversion, each
occurrence of this operator changes to ATAN.

The FCE does not support the NOTTRUE operator. During the conversion, each
occurrence of this operator changes to NOT.

For each Configurator Extension that is bound to the
onValidateEligibleTarget event, the utility removes the event binding and
generates a Warning message in the Model Conversion Report.

For any Configurator Extension that is bound to an event that could be triggered
during Auto-Complete, the utility generates an Advisory message stating that the
event will not be triggered, and the CX will not execute during Auto-Complete.
These events are:

® postValueChange

® postInstanceAdd

® postInstanceDelete
® postConnect

® postDisconnect

Preparing to Use the Fusion Configurator Engine 2-11

e For any Configurator Extension that is bound to an event that could be triggered
after Auto-Complete, the utility generates an Advisory message stating that the CX
may fail if it attempts to modify a completed configuration (if not in Adjust Mode).

® The FCE does not support Functional Companions. The utility generates a Warning.

User Interface Objects

After the Model Conversion Utility completes successfully, the UI Definition for each of
the converted Model's Uls refer to FCE-specific icons, Message Templates and Utility
Templates. All custom and predefined UI Master Templates also refer to these icons and
templates, and they contain additional settings for displaying BOM and non-BOM
content.

For more information about these changes, see:

¢ User Interface Definition, page 3-67
¢ User Interface Master Templates, page 3-48

The Model Conversion Utility does not modify any other Ul objects, but it does review
all pages, elements and custom UI Content Templates for potential incompatibilities
with the FCE. For example, the utility changes the Unsatisfied System Property to
InputRequired. As a result, any runtime conditions in which InputRequiredis
used may appear or behave differently after conversion. All other incompatibilities are
described in detail in the Model Conversion Utility Report, page 2-12.

Model Conversion Utility Report

The Model Conversion Utility generates this report each time you convert one or more
Models to use the Fusion Configurator Engine. The report is in XML format and Oracle
provides an XML Publisher template for formatting the output. You can optionally

define additional XML Publisher templates if you want to customize the report format.

To learn how to run the Model Conversion Utility and view the Model Conversion
Report, see Running the Model Conversion Utility, page 2-14.

For each Model that was converted, the report summarizes the conversion process by
listing:

e The names of the source and converted Model(s)
® The path to the location of both the source and the converted Model(s)
¢ How many messages of each type were generated during the conversion process

There are four types of messages that may appear in the Model Conversion Utility
report. Following is a description of each type:

® 1-Failure: The specified object could not be converted. To resolve this type of error,
you must either modify or delete the object in Configurator Developer.

2-12 Oracle Configurator Fusion Configurator Engine Guide

For example, when you convert a Model that has an invalid rule, the report contains
a Failure message similar to the following:

Rule contains invalid syntax; not converted. Please review and
correct, or delete.

2 - Warning: Converting the specified object may have introduced unexpected or
undesirable behavior in the Model. Reviewing the object in Configurator Developer
is strongly recommended.

For example, after converting a Defaults Logic Rule, the report contains a Warning
message similar to the following:

DEFAULTS operator not supported; Rule has been converted to a
Default Rule using Implies operator.

3 - Advisory: The object converted successfully, but you may be able to improve
performance by making additional changes in Configurator Developer. Reviewing
the object is recommended.

For example, after converting a Numeric Feature, the report contains an Advisory
message similar to the following:

Maximum Value set to 1000. Consider specifying a lower bound if
possible.

In this example, the value is the default provided by the profile option CZ: Default
Max Quantity Integer, page 2-3.

4 - Information: The object converted successfully with no issues, and reviewing
the object in Configurator Developer is optional.

For example, after converting a Boolean Feature that has an Initial Value, the report
contains an Information message similar to the following:

Initial Value removed; replaced by Default Rule RuleName If value
is not required prior to completion of the configuration, consider
changing Rule to a Search Decision for better performance.

Preparing to Use the Fusion Configurator Engine 2-13

Model Conversion Report: Example

Summary

Models Converted

Source Model Cornverted Model
11 M1-[FCE]
2 Mz-[FE]
K] M3-[FE]

UI Templates Scanned
Template Name

Custorn Chieckbox Templats
Custorm Cropdown Template

Model Conversion Messages

Folder Path
Falder 3 /Foider v

Folder

Messages

Failure Warning Advisory Information
il] 7 e

Folder ¥fFoider vFoldsr 2 1 5 29 112
Folder X fFoder viFaldar £ 1] o 41 o4
¥arning Messages
LIl Templates“ortant Termplates/Cusom Templatoas 2
LI Templates/Cortent Termplates/Cusiom Templatas 1

M1-{FCE] in Folder X/ Foldar ¥

Structhure
Message Type Node Name
I-&cvisary Murneric Feature 1
A-Ahisory Murmeric Feature 1
Rules
Message Type Rule Mame
Z-arming Staement Rl 22
24aming Logic Rule 7

User Interface
Message Type Hement Mame
2aaming Tmage ¥

Running the Model Conversion Utility

Procedure

Path
Rioot, ‘Tompanent 1 Hurrenc Featurns 1

Root, Tornponent 1, Murmenc Feature 1

Folder
Folder 2f5tatenent fule 22

Falder 1/Folder 2/Logic Rule 7

Path
11 1fPages/Page 1/Row Lavout 2/Tmage

To convert Models to use the FCE:

Message

Mirirmum value settod, Consder specifying a higher
bound If possiole,

Rayimum Walue set to 65525, Consider sheritving 2
lowear bound if possibla.,

Message

ATAMZ Dperator not suppor e, converted 1 ATAN,
Fiease review and ensure that division by zem cannot
oo,

CEFALLTS operator not suoported; Rule has been
Converted to a Default Rule ushng Implies operaior,

Message
Syshern Propecty 'Ursatisfied in Display Conditicn

Lconverted to UstlnoutRequred', | Runtime apbesrans

andyfor benavior may be affiected

1. Log into Configurator Developer using either the Oracle Configurator Developer or
Oracle Configurator Administrator responsibility.

2. Inthe Main area of the Repository, select the Model(s) that you want to convert.

Ensure that none of the selected Models is locked. See Locking Considerations, page

2-15

3. From the Actions list, select Convert Model(s) to use FCE, and then click Go.

4, Review the list of selected and related Models, and then click either Convert All or

Convert Selected.

Important: If any related Models are locked, Oracle recommends
canceling the conversion and then resubmitting it later (when all
related Models are unlocked) to preserve any shared Model

references.

2-14 Oracle Configurator Fusion Configurator Engine Guide

5. Configurator Developer displays a message similar to the following:

Created Conversion Set with ID RequestID. Please review the output
of the Model Conversion concurrent process for important messages
about the conversion.

Make note of the Request ID (it is required in a subsequent step), and then click OK.
6. Exit Configurator Developer and return to the E-Business Suite Home page.

7. Select Concurrent Programs > Schedule, and then enter either "Process a Single
Model Conversion" or "Process Pending Model Conversions" in the Program Name
field.

Tip: Click the list of values icon to search for the program name.

8. If you entered "Process a Single Model Conversion" in the previous step, enter the
Model Conversion Set ID.

9. Click Next and then enter any optional request parameters. For example, enter
Scheduling, Layout, Notifications, and Printing options.

After submitting the request, the Requests page appears. When the Model Conversion
concurrent program has completed successfully, click the icon in the Output column to
review the Model Conversion Report. Review this report carefully, as it describes in
detail how the Model and its rules changed during the conversion and may prompt you
to make additional changes in Configurator Developer. For details, see Model
Conversion Report, page 2-12.

Locking Considerations

When submitting a job to the Model Conversion Utility, none of the Models that you
select for conversion can be locked by another user. If one or more of the selected
Models are locked, Configurator Developer displays a message similar to the following;:

Some of the Models selected for conversion are locked by another user.
Conversion cannot be completed.

In this case the only option is to cancel the conversion, but you can resubmit the process
later when the Models are unlocked.

The Model Conversion Utility also checks whether the following Models are locked:

e Models that the selected Model(s) reference. (These are also shown as selected
models, since they are implicitly selected.)

* Models that reference the selected Model(s). (Also included are models that they
reference, models that reference them, and so on.)

If none of the related Models are locked by another user, Oracle recommends that you

Preparing to Use the Fusion Configurator Engine 2-15

click Convert All to convert the source Models and all related Models at the same time.
This ensures all shared Model references are preserved during the conversion.

If any of the related Models are locked, then Configurator Developer lists them and
displays a message similar to the following;:

Some of the Related Models are locked by another user. Conversion of the
Selected Models is possible with loss of some shared references.

In this case, you can either cancel the operation or convert only the Models that you
selected for conversion. If you choose to convert only the selected Models, the related
Models are not converted.

2-16 Oracle Configurator Fusion Configurator Engine Guide

3

Building a Configuration Model Using the
Fusion Configurator Engine

This chapter covers the following topics:
* Model Structure

e Configuration Rules

* Creating and Editing a User Interface

® Unit Testing a Configuration Model Using the Model Debugger

Model Structure

This section describes Model structure settings and characteristics that are available
only when using the FCE. It includes the following sections:

* General Area of the Workbench, page 3-2
* Model References, page 3-3

* Properties, page 3-3

¢ Domain Ordering Setting, page 3-16

® Require End-User Input Setting, page 3-19
¢ Text Features, page 3-19

¢ Totals and Resources, page 3-21

e Initial Values, page 3-21

¢ BOM Nodes, page 3-22

Building a Configuration Model Using the Fusion Configurator Engine 3-1

¢ Connectors, page 3-24

e Effectivity, page 3-26

General Area of the Workbench

For background information about the General area of the Workbench, see the Oracle
Configurator Developer User’s Guide.

Model Details: Configurator Engine

When the profile option CZ: Enable Configurator Engine is set to either Fusion or
Both, the General area of the Workbench includes the Configurator Engine setting. This
setting is specific to the Model you are viewing or editing, is read-only, and it can have
a value of either Original or Fusion.

If the value of this setting is Fusion, then all FCE-related content and functionality is
available when:

* Viewing or editing the Model's structure, rules, and User Interface(s) in
Configurator Developer

¢ Configuring the Model in a runtime UI, or the Model Debugger

A value is determined for this setting when you create a Model (either manually in
Configurator Developer, or by importing a BOM Model), or convert an existing Model
to use the FCE by running the Model Conversion Ultility.

The value of this setting is Original if the Model was created or imported:

* In a version of Configurator Developer that does not support the FCE
e When the FCE was not enabled, or

¢ When the profile option CZ: Configurator Engine for New Models was set to
Original (see CZ: Configurator Engine for New Models, page 2-3).
The value of this setting is Fusion if the Model was:

* Created or imported when the profile option CZ: Configurator Engine for New
Models was set to Fusion

or

e Converted to use the FCE

In this case, the Configurator Engine setting is Original in the source model and
Fusion in the converted model.

For more information, see Converting Existing Models to Use the Fusion
Configurator Engine, page 2-7.

3-2 Oracle Configurator Fusion Configurator Engine Guide

Model Report

Note: Once it is determined that a Model uses the FCE, changing the
value of CZ: Configurator Engine for New Models or CZ: Enable
Configurator Engine does not affect the Model's runtime behavior, or
the availability of FCE-specific content when editing the Model in
Configurator Developer.

In the Main area of the Repository, you can create a personalized view that includes the
column Configurator Engine Type. This column displays the engine type associated
with each Model: Original or Fusion.

The Model Report includes features that are particular to the FCE. For background
information about the Model Report, see the Oracle Configurator Developer User’s Guide.

Model References

Properties

When working in an FCE Model, you cannot create a Model Reference to a Model that
does not use the FCE. (The reverse is also true.) For this reason, Models that do not use
the same configurator engine as the Model you are editing are not available for
selection.

Tip: For optimal performance of the Auto-Complete process, Oracle
strongly recommends setting the Maximum Instances as low as
possible and the Minimum Instances as high as possible for all BOM
and non-BOM Model Reference nodes.

For more information about BOM Model References, see BOM Nodes, page 3-22.

This section describes properties that are available only when building a configuration
model that uses the FCE in Configurator Developer, and when configuring such a
model at runtime. It includes the following sections:

* Model Node System Properties, page 3-3

¢ Configuration Session Properties, page 3-11

Model Node System Properties

This section describes the System Properties that are available only to FCE Models and
indicates the type of node(s) with which each Property is associated.

Building a Configuration Model Using the Fusion Configurator Engine 3-3

Almost all System Properties can be used when defining text expressions and runtime
conditions for Ul elements. Exceptions include System Properties that return objects or
collections, such as Children and SummaryChildren. For details about these System
Properties, or general information about text expressions and runtime conditions, see
the Oracle Configurator Developer User’s Guide.

Some System Properties are also mutable, which means that the Property's value can be
directly set by the propagation of a rule or by the end user at runtime. Examples of
nodes that are mutable include InstanceCount, ConnectionCount,
RelativeQuantity, and SelectedCount. In the System Properties, page 3-5 table,
the Description column indicates whether or not each Property is mutable.

Where a set of System Properties defines a Minimum and Maximum value, count, or
quantity (for example, MinimumSelected and MaximumSelected), only the node's
current value is mutable. In these cases, the minimum and maximum values keep track
of the node's current domain at runtime, not its current value.

Example
For example, if you want to be sure the value of Feature X does not fall below 5 at
runtime, define a rule like this:

FeatureX.Value () >= 5

Example
Because the MinValue System Property is not mutable, you cannot use it to constrain a
node's minimum value. Therefore, the following rule is invalid:

FeatureX.MinValue () = 5
You can define rules in which optional Connectors participate by using the
ConnectionCount System Property.

Example
For example, to prevent an optional Connector from being connected at runtime, define
a rule like this:

NOT (OF1) REQUIRES (ConnectorA.ConnectionCount = 0)

In this example, an end user cannot connect Connector A when OF1 is deselected or
excluded.

To require an end user to connect an optional Connector at runtime, define a rule like
this:

OF1 REQUIRES (ConnectorA.ConnectionCount > 0)

In this example, Oracle Configurator requires Connector A to be connected when OF1 is
selected.

Example

To dynamically modify how many instances of a component can be created at runtime,
use the InstanceCount System Property.

For example:

OF1 IMPLIES ComponentX.InstanceCount() > 2

OF1 IMPLIES ComponentX.InstanceCount () < 10

3-4 Oracle Configurator Fusion Configurator Engine Guide

The first rule specifies that more than 2 instances of ComponentX will be created when
OFT1 is selected. In this case, the rule modifies the minimum number of instances
specified in Configurator Developer.

The second rule specifies that no more than 9 instances of ComponentX will be created

when OF1 is selected. In this case, the rule modifies the maximum number of instances
specified in Configurator Developer. Note that ComponentX must have at least 2
instances to satisfy the constraints defined in this example.

You can also control the relative or absolute quantity of a BOM node using Constraints.

Example
For example:

OF1 IMPLIES BOMOptionClassX.Quantity () < 7

OF2 IMPLIES BOMOptionClassY.RelativeQuantity() > 10

System Properties

System Property Description Node Type(s) Returns

MinRelQuantity The node's minimum BOM nodes Integer or
relative quantity. Decimal
Not mutable.

MaxRelQuantity The node's maximum BOM nodes Integer or
relative quantity. Decimal
Not mutable.

RelativeQuantity Quantity of a BOM All BOM Integer or
node relative to the nodes Decimal
quantity of its parent.

Mutable.

SelectedCount The number of unique ~ Option Integer
selected children for an Feature
Option Feature.

Mutable.
MinConnections Minimum number of Connectors Integer

target instances the

Connector should have.

Not mutable.

Building a Configuration Model Using the Fusion Configurator Engine

System Property Description Node Type(s) Returns
MaxConnections Maximum number of Connectors Integer
target instances the
Connector may have.
Not mutable.
ConnectionCount Number of target Connectors Integer
instances assigned to a
Connector.
Mutable.
DefinitionMinValue The node's minimum All nodes that Integer or
value as defined inthe have a Decimal
Model. Minimum and
Maximum
Not mutable. value.
DefinitionMaxValue The node's maximum Allnodes that Integer or
value as defined in the have a Decimal
Model. Minimum and
Maximum
Not mutable. value.
DefinitionMinQuantity The node's minimum All nodes that Integer or
quantity as definedin ~ havea Decimal
the Model. Minimum and
Maximum
Not mutable. Quantity (for
example, all
BOM nodes).
DefinitionMaxQuantity The node's maximum All nodes that Integer or
quantity as definedin ~ havea Decimal
the Model. Minimum and
Maximum
Not mutable. Quantity (for
example, all
BOM nodes).
DefinitionMinRelQuantity The node's minimum All BOM Integer or
relative quantity, as nodes Decimal

defined in the Model.

Not mutable.

3-6 Oracle Configurator Fusion Configurator Engine Guide

System Property Description Node Type(s) Returns
DefinitionMaxRelQuantity The node's maximum All BOM Integer or
relative quantity, as nodes Decimal
defined in the Model.
Not mutable.
DefinitionMinSelected Minimum number of All nodes that Integer
selections as defined in have a
the Model. Minimum and
Maximum
Not mutable. Selections (for
example,
BOM Models,
BOM Option
Classes, and
Option
Features)
DefinitionMaxSelected Maximum number of All nodes that Integer
selections as defined in have a
the Model. Minimum and
Maximum
Not mutable. Selections (for
example,
BOM Models,
BOM Option
Classes, and
Option
Features)
DefinitionMinInstances Minimum number of All nodes that Integer
instances as defined in have a
the Model. Minimum and
Maximum
Not mutable. Instances (for
example,
Components
and Model
References)

Building a Configuration Model Using the Fusion Configurator Engine

System Property Description Node Type(s) Returns
DefinitionMaxInstances Maximum number of All nodes that Integer
instances as defined in have a
the Model. Minimum and
Maximum
Not mutable. Instances (for
example,
Components
and Model
References)
DefinitionMinConnections Minimum number of Connectors Integer
target instances for a
Connector, as defined
in the Model.
Not mutable.
DefinitionMaxConnections Maximum number of Connectors Integer
target instances for a
Connector, as defined
in the Model.
Not mutable.
Proposed Returns True if the All nodes that Boolean
current state or value of support state,
the node is the result of value, or
a Default or Search quantity.

Decision.

Not mutable.

3-8 Oracle Configurator Fusion Configurator Engine Guide

System Property

Description

Node Type(s) Returns

IsBound

IsBoundSelectionState

IsBoundQuantity

Returns True if the
node is completely
bound. This means
both domain and
cardinality, if
applicable.

Note: For nodes with
both state and quantity,
both must be bound.
For BOM nodes, both
absolute and relative
quantity must be
bound.

Not mutable.
Returns True if the

state of the node is
bound.

Not mutable.

Returns True if the
(absolute) quantity of
the node is bound.

Not mutable.

All variables: Boolean
Numeric
Features;
Option
Features;
Boolean
Features;
BOM Models
and Option
Classes; Totals
and
Resources;
instance sets;
Connectors

All state Boolean
variables,
which include,
Option
Features,
Options,
Boolean
Features,
BOM Models,
BOM Option
Classes, and
BOM
Standard
Items

All variables Boolean
with
(absolute)
Quantity,
which
includes,
BOM Models,
BOM Option
Classes, and
BOM
Standard
Items

Building a Configuration Model Using the Fusion Configurator Engine 3-9

System Property Description Node Type(s) Returns
IsBoundRelQuantity Returns True if the All variables ~ Boolean
relative quantity of the with relative
node is bound. Quantity,
which include
Not mutable. BOM Models,
BOM Option
Classes, and
BOM
Standard
Items.
InputRequiredFlag Returns True if anode All nodes, Boolean
is marked 'User Input although
Required' in some cannot
Configurator be set to True.
Developer (or by other
means such as a
Configurator
Extension), regardless
of whether or not it is
bound. (Related to
display of Input
Required indicator.)
Not mutable.
See Require End User
Input Setting, page 3-
19.
InputRequired Returns True if anode All nodes, Boolean
is marked 'User Input although

Required' in
Configurator
Developer (or by other
means such as a
Configurator
Extension) and is not
bound. (Related to
display of Input
Required indicator.)

Not mutable.

See Require End User
Input Setting, page 3-
19.

some cannot
be set to True.

3-10 Oracle Configurator Fusion Configurator Engine Guide

System Property Description Node Type(s) Returns

InputRequiredInSubtree Returns True if All nodes. Boolean
InputRequired is
True on this node or a
descendant.

Not mutable.

InputRequiredError Returns True when All nodes. Boolean
node.InputRequire

dis True and
Session.InErrorMo

de () is True.

Not mutable.

ChangedByAC Returns True if the All nodes Boolean
selection state or
quantity of the node
was changed as a result
of the most recent
Auto-Complete.

Not mutable.

ValidationErrorText Returns text set by a All nodes String
Configurator Extension
in the event of a
validation error on the
node.

Not mutable.

Configuration Session Properties

This section lists properties that refer to the state of a runtime configuration session and
are not associated with Model nodes. There are two categories of configuration session
properties that are available with the FCE:

* Configuration Status
e Conlflict Processing

Refer to the tables below for details.

Building a Configuration Model Using the Fusion Configurator Engine 3-11

Configuration Session Properties: Configuration Status

Name Description Data Type Context
ConfigComplete Returns True if the Boolean Global
configuration is
complete:

[) . .
No items exist

with
InputRequired
=True

Configuration is
valid

Configuration is
bound

HasltemsToAddress = Returns True if any of Boolean Global
the following
conditions exist:

® Session. Input

Requiredis
True

Session.Valid
is False

InputRequired Returns True if the Boolean Global
configuration
contains any items
with
InputRequired=
True.

InErrorMode Initially False; Boolean Global
updated on each
request for Finish or
Auto-Complete. Set

to True if
Session.InputReq

uired () is True. Set

to False if
Session.InputReqg

uired() is False.

3-12 Oracle Configurator Fusion Configurator Engine Guide

Name Description Data Type Context

AutoCompleteSuccess Returns False before ~ Boolean Global
ful first Auto-Complete

in a session; returns

True when

Auto-Complete
succeeds in binding
the configuration and
False when it fails.
Reverts to False on
Undo Auto-Complete
or Adjust
Configuration. The
state persists until the
next Auto-Complete.

Note: Unbound
Text Features that
are User Input
Required are
ignored in
computing this
property. This
means it is
possible for
AutoCompleteSuc
cessful to be True
but
ConfigComplete to
be False.

Building a Configuration Model Using the Fusion Configurator Engine 3-13

Name Description Data Type Context

ConfigurationChange Returns True if Boolean Global

dByAC Auto-Complete
resulted in changes to
the orderable items in
the configuration (or
their attributes)
and/or the addition of
an unbound User
Input Required Text
Feature and/or the
configuration is
invalidated by a
post-Auto-Complete
Configurator
Extension. (Note:
Changes in numeric
attribute values from
unbound to zero are
ignored.) Reverts to
False on Undo
Auto-Complete. The
state persists until the
next Auto-Complete.

InAdjustMode Returns True if the Boolean Global
configuration is in
Adjust Mode (has
Auto-Complete
decisions in the
request queue).
Reverts to False on
Undo Auto-Complete

action.
ListPriceChangedByA Returns True if Boolean Global
C TotallListPrice

was changed as a
result of the most
recent
Auto-Complete.

3-14 Oracle Configurator Fusion Configurator Engine Guide

Name Description Data Type Context
SellingPriceChangedB Returns True if Boolean Global
yAC TotalSellingPric

e was changed as a

result of the most

recent

Auto-Complete.
ATPChangedByAC Returns True if Boolean Global

ATPRollup was

changed as a result of

the most recent

Auto-Complete.
Configuration Session Properties: Conflict Processing
Name Description Data Type Context
AutoOverrideEnable Returns True if Boolean Global
d Auto-Override is

enabled, False if it is
disabled. The value is
derived from the
Auto-Complete for
Conflicts setting in
the UI Definition.

For more information,
see Auto-Override,
page 4-10

Building a Configuration Model Using the Fusion Configurator Engine 3-15

Selection State

Name Description Data Type Context

ConflictOverridable ~ Indicates whether the Boolean Only required during
current conflict is conflict processing;
overridable. Returns False at other times.

True when processing
a primary conflict
that was triggered by
a User Request, or
when an empty
explanations list is
returned for a
secondary conflict
where the primary
conflict has a User

Request.

OverrideSuccessful Returns True in a Boolean Global, but generally
Conflict flow if only used in
Override was templates related to
attempted and it Conflict processing.

succeeded. State
persists until next
Conflict occurs.

For details about how Oracle Configurator uses System Properties such as
SelectionState to display the selection state of options at runtime, see the Oracle
Configurator Developer User’s Guide. This section lists System Property values that
indicate an option's selection state that are available only in FCE Models.

At runtime, the value of the SelectionState and DetailedSelectionState
System Properties is Selectable for options that are neither selected nor excluded
from a configuration.

In FCE Models, the values of the DetailedSelectionState System Property also
include Recommended (Proposed Selected) and Not Recommended (Proposed
Excluded). These values refer to options that were added to or excluded from the
configuration by Auto-Complete.

For more information, see Logic State Display, page 4-1.

Domain Ordering Setting

In Oracle Configurator, the term "domain" refers to the range of possible values that
either the end user or the Auto-Complete process can provide for an option at runtime.

3-16 Oracle Configurator Fusion Configurator Engine Guide

For example, you specify a domain for Numeric Features in Configurator Developer by
specifying Minimum and Maximum values. For example, the domain for an Integer
Feature could be "1 - 100," which means a value of 1 through 100, inclusive.

Note: At runtime, a variable's domain may be dynamically reduced by
the propagation of constraints. This is explained in Domain Display
and Availability, page 4-1.)

Use the Domain Ordering setting to control how Auto-Complete determines a value for
Numeric Features that do not yet have a value, and Boolean Features that are still
Unbound. (An Unbound Boolean Feature is one that is neither True nor False by
default, and there has been no decision made about it yet during the configuration
session.)

Auto-Complete refers to the Domain Ordering setting, as well as other constraints and
preferences that you have defined in the Model, to reduce an option's domain and
determine the value (or selection state) that you want it to have in a completed
configuration.

Important: For optimal performance of the Auto-Complete process, set
all domain ranges to be as narrow as possible. In other words, set
minimum values as high as possible and maximum values as low as
possible.

The available Domain Ordering settings vary by node type.
Integer Features:

e System Default: This is the default setting for Integer, Decimal, and Boolean
Features. Accept this setting if you want Auto-Complete to use its own default
method for determining a value. This method provides optimal runtime
performance and is recommend if you do not have a preference for the node's value
or selection state at runtime.

* Linear Search, Min to Max: Select this setting if you want Auto-Complete to apply
values within the specified domain in increasing order, beginning with the node's
Minimum value.

* Linear Search, Max to Min: Select this setting if you want Auto-Complete to apply
values within the specified domain in decreasing order, beginning with the node's
Maximum value.

* Binary Search, Decreasing Max: Select this setting if you want Auto-Complete to
successively split the domain in a binary search until either a single value is bound,
or no solution is found. When you select this setting, Auto-Complete checks the
lower half of the domain first.

Building a Configuration Model Using the Fusion Configurator Engine 3-17

* Binary Search, Increasing Min: This setting is similar to "Binary Search, Decreasing
Max", except that when you select this setting, Auto-Complete checks the upper
half of the domain first.

Decimal Features:
* System Default: See "System Default" for Integer Features, above.

¢ Binary Search, Decreasing Max: See "Binary Search, Decreasing Max" for Integer
Features, above.

* Binary Search, Increasing Min: See "Binary Search, Increasing Min" for Integer
Features, above.

Ul Templates for Numeric Feature Domain Display:

By default, the following UI Content Templates display a Numeric Feature's domain at
runtime:

¢ Decimal Input with Range Display, page 3-50
* Integer Input with Range Display, page 3-50

Boolean Features:

* System Default: See "System Default" for Integer Features, above.

* Prefer False: Select this setting if you want Auto-Complete to set the Boolean
Feature to False (deselected) first and then, if it cannot be set to False, set it to True
(select it).

e Prefer True: Select this setting if you want Auto-Complete to set the Boolean
Feature to True (selected) first, and then, if it cannot be set to True, set it to False
(deselect it).

Domain Ordering and Other Node Types

The domain for Model References and Connectors is the set of existing or possible
instances of the referenced or target Model, along with the minimum and maximum
instances.

The Domain Ordering setting is not available for Option Features and BOM Option
Classes. The Auto-Complete process selects options from these nodes based on the
order in which they appear in the Model structure. For example, Auto-Complete selects
the first Option that appears below its parent Option Feature in the Model structure.

The domain for Option Features and BOM Option Classes is the set of child nodes,
along with the minimum and maximum number of selections specified for the parent
nodes in Configurator Developer.

3-18 Oracle Configurator Fusion Configurator Engine Guide

Require End-User Input Setting

Use the Require End-User Input setting to indicate that a Feature, Connector, or BOM
Option Class must be bound by the end user, rather than by Auto-Complete, at
runtime. Select this setting only if it is important for the end-user to explicitly enter a
value, create a connection, or make a selection at runtime.

Note: Auto-Complete cannot run until the end user binds all variables
that require end-user input.

The Require End-User Input setting is available for the following node types:

® Numeric Features

e Text Features

e Option Features

e Connectors

¢ BOM Option Classes

For BOM Option Classes and Option Features, the setting to require end-user input is
"Require End-User Option Selection when Selection is Mandatory." For Connectors, the
setting is "Require End-User Connection when Connection is Mandatory."

You can also require a variable to be bound by the end-user by creating a Configurator
Extension that sets the variable's InputRequiredFlag System Property to True at
runtime. For details about creating Configurator Extensions, see the Oracle Configurator
Developer User’s Guide and the Oracle Configurator Extensions and Interface Object
Developer’s Guide.

Note: If the end user invokes either the Finish or Auto-Complete action
and there are one or more items that require end-user input,
Auto-Complete does not run. In this case, a message displays all
options that require end-user input before running Auto-Complete.
Each option appears as a link that the end user can use navigate to the
page on which the option appears.

For more information, see:

e Input Required Message Box, page 3-54

¢ Input Required Dialog Page, page 3-54

Building a Configuration Model Using the Fusion Configurator Engine 3-19

Text Features

At runtime, only the end user can enter a value for a Text Feature. Therefore,
Auto-Complete cannot complete a configuration if it contains a required Text Feature. A
required Text Feature can be part of a completed configuration only if the end user has
bound it by entering some text.

Note: Several types of nodes allow you to control whether they must be
bound by the end-user at runtime. For details, see Require End-User
Input Setting, page 3-19.

If your Model contains required Text Features and you use custom UI Content
Templates, be sure to test the runtime Oracle Configurator thoroughly to be sure it
performs as expected when one or more required Text Features is blank. (You can use
the session-level System Property InputRequired to detect this case. For details, see
the table System Properties, page 3-5.)

It is possible for a new instance of a component that contains a required Text Feature to
be created when running Auto-Complete. When this happens, the status page that
appears after Auto-Complete has finished contains a link that the end user can use to
navigate to the page containing the Text Feature. For more information about the
Auto-Complete process, see Auto-Complete Configuration, page 4-2.

At runtime, if an end user (or a Configurator Extension) attempts to set a value of a Text
Feature that exceeds its defined Maximum Length, the resulting conflict cannot be
overridden.

Counted Option Features

For an overview of Counted Option Features, see the Oracle Configurator Developer
User’s Guide.

In FCE Models, Counted Option Features include a setting that enables you to specify
the maximum quantity an end user can enter for each option at runtime. This setting is
called Maximum Quantity per Option. (The minimum quantity per option is implicitly
set to 0 (zero), and you cannot change this value.)

Each Option within a Counted Option Feature has the following System Properties:

® DefinitionMinQuantity
e DefinitionMaxQuantity
e MinQuantity
® MaxQuantity

® Quantity

3-20 Oracle Configurator Fusion Configurator Engine Guide

You can use the Quantity System Property when defining rules.

Totals and Resources

Initial Values

In an FCE Model, you can create Totals and Resources of type Decimal or Integer.
Integer Totals and Resources display only integers value at runtime, while Decimal
Totals and Resources display either integer or decimal values. After creating a Total or
Resource, you cannot change its type.

If you know that rules in your Model will be adding or subtracting only integer
quantities to a Total or Resource, then use Integer Totals and Integer Resources. The
integer type is preferable because Auto-Complete processes integer domains more
efficiently at runtime.

Note: When you convert a Model to use the FCE, all existing Totals and
Resources are converted to Decimal Totals and Decimal Resources. See
Converting Existing Models to use the Fusion Configurator Engine,
page 2-7.

When you create a Total or Resource, you must specify a Minimum and Maximum
Value. By default, the predefined UI Content Templates that display Totals and
Resources display their Minimum and Maximum Values at runtime (their domain). For
example, a Decimal Total with a Minimum of 5.2. and a Maximum of 9.9 appears as
follows when a configuration session begins:

Range: 5.2 to 9.9

Oracle Configurator dynamically updates the domain range as values are added and
subtracted during a configuration session.

The range defined in Configurator Developer for both Integer and Decimal Resources is
strictly enforced at runtime. For example, a Resource has Minimum and Maximum
values of 1 and 10, respectively. At runtime, Oracle Configurator displays a conflict
message if the end user's input or selection would cause the Resource to fall below 1 or
exceed 10.

The FCE does not support the concept of initial values for Numeric Features, Totals,

Resources, or Boolean Features in the same way as the Original Configurator Engine.
Therefore, when you are editing an FCE Model, Oracle Configurator Developer does
not provide a setting that enables you to specify an initial value for these node types.

If you want a Numeric Feature, Total, or Resource to have a specified value when a
configuration session begins, then you must define a Rule that sets that value. You can
define an Accumulator Rule to set the value, or an equivalent Statement Rule (using the
AddsTo or SubtractsFrom operators). For example, to set the value of an Decimal
Feature named DecimalFeatureX to 13.5 define a Statement Rule similar to the
following:

Building a Configuration Model Using the Fusion Configurator Engine 3-21

Example

ADD 13.5 TO 'DecimalFeatureX'

Note that you can also set the value of a Numeric Feature from the value of some other
Numeric Feature, as shown by the following:

Example

ADD 'DecimalFeatureY' TO 'DecimalFeatureX'

If you want a Boolean Feature to have a specified value when a configuration session
begins, define a Statement Rule similar to the following and specify a Rule Class of
'Default":

Example
'BooleanFeatureY' = True

In FCE Models, it may be more accurate to think of an initial value as a base value, since
the value you specify in Configurator Developer is not necessarily the value the node
will have when the configuration begins. This is because it is possible for the node to
participate in other rules which, when they propagate at runtime, modify the value that
you specified for the node in your rules.

For example, you define a rule that sets DecimalFeatureX to 13.5 (as shown above), but
an Option OptionA is selected by default and it participates in a rule that causes 10 to
be added to DecimalFeatureX. In this case, the input range of DecimalFeatureX appears
as shown below when the configuration session begins:

Range: 13.5 to 23.5

Note: When you convert a Model to use the FCE, all Initial Value
settings for Numeric Features, Totals, and Resources are converted to
Accumulator Rules. For example, if the Initial Value for
IntegerFeatureX is 5, then after the conversion the FCE Model contains
the following rule (shown here in Statement Rule format):

ADD 5 TO 'IntegerFeatureX'

Initial values on Boolean Features act as defaults. Therefore, they are
converted to Implies Logic Rules.

BOM Nodes

This section describes some unique characteristics and runtime behaviors of BOM
nodes in an FCE Model.

e In FCE Models, the System Property RelativeQuantity is available on all BOM
nodes and can be used, for example, when defining rules or runtime UI conditions.
At runtime, the value of this System Property is the current quantity of the node
relative to its parent's quantity. For example, if a quantity of 4 is required for the
child node when the parent node's quantity is 1, then the child's Relative Quantity
is 16 when the parent's quantity is 4.

3-22 Oracle Configurator Fusion Configurator Engine Guide

When you import or refresh a BOM Model, or convert a Model to use the FCE, a
default value is provided for any BOM nodes that have a blank (null) Minimum or
Maximum Quantity. For details, see:

® (CZ: Default Max Quantity Integer, page 2-3

® (CZ: Default Max Quantity Decimal, page 2-3

Tip: For optimal performance of the Auto-Complete process, Oracle
strongly recommends setting the Maximum Quantity as low as
possible and the Minimum Quantity as high as possible when
creating a BOM in Oracle Bills of Material. Oracle also recommends
setting the Maximum Instances as low as possible and the
Minimum Instances as high as possible for all BOM Model
References in Configurator Developer.

BOM Model References
The following points are specific to BOM Model References.

When configuring an FCE Model, Oracle Configurator automatically adds each
instance of a BOM Model to the configuration as soon as the end user creates it.
(When configuring a Model that uses the Original Configurator Engine, a newly
created instance of a BOM Model is not added to the configuration until the end
user selects it.)

The maximum quantity allowed at runtime for an instance of a BOM Model is the
Maximum Quantity defined for that item in Oracle Bills of Material. If you modify
the Instances setting for a BOM Model Reference in Configurator Developer by
selecting 'Multiple or Variable Instances', then the BOM Model's Maximum
Quantity becomes the maximum quantity allowed for all instances of that item at
runtime.

When viewing a BOM Model Reference's details page in Configurator Developer,
the Initial Minimum Instances and Initial Maximum Instances settings are not
displayed if the node can have multiple instances at runtime (that is, when
'Multiple or Variable Instances' is selected). In this case, Configurator Developer
displays text similar to the following in the node's details page:

Note: The Maximum Quantity defines the total Quantity allowed across
all instances of this component.

You can specify whether a BOM Model Reference that is a child of a BOM Option
Class is required or optional at runtime. In other words, you can select either
'Required Single Instance' or 'Optional Single Instance' in the node's details page in
Configurator Developer. Because a BOM Model Reference that is a child of a BOM
Option Class cannot be instantiable multiple times, the 'Multiple or Variable

Building a Configuration Model Using the Fusion Configurator Engine 3-23

Connectors

Instances' setting is disabled for such nodes in Configurator Developer.

Important: Connectors are not supported in the current release of the
Fusion Configurator Engine. The information about Connectors
provided in this document is only for planning purposes. However,
Connectors continue to be supported for models using the Original
Configurator Engine.

In an FCE Model, you can define single-instance Connectors, and also Connectors with
Multiple-Instance and and Reverse relationships. This section describes
Multiple-Instance and Reverse Connectors. For details about single-instance
Connectors, and general information about Connectors, see the Oracle Configurator
Developer User’s Guide.

Important: To create any type of Connector, both the source and the
target Model must use the FCE. Therefore, when editing an FCE Model,
only FCE Models are displayed when selecting the Connector's target
Model.

Multiple-Instance Connectors

A Multiple-Instance Connector is a Connector that can have multiple targets at runtime,
and therefore may be connected multiple times within a configuration. For example, to
configure a local area network (LAN), an end user must be able to connect multiple
devices - such as printers and workstation - to a single server hub.

You define a Multiple-Instance Connector in Configurator Developer by specifying
values for the Minimum and Maximum Connections settings. These settings appear in a
Connector's details page, and the default values are 0 and 1, respectively.

Note: When you convert a Model to use the FCE, the default Minimum
and Maximum Connections for all required Connectors is 1/1. (A
required Connector is one whose Connection Required setting is
selected in the source Model.) Additionally, the Connection Required
setting (Connector details page) is not available in FCE Models. For an
example of how you can make a connection required at runtime in an
FCE Model, see Connectors and Configuration Rules, page 3-26.

Oracle Configurator Developer uses the Multiple-Instance Connector Control Ul
Content Template to display Multiple-Instance Connectors at runtime. For details, see
Multiple-Instance Connector Control, page 3-62.

3-24 Oracle Configurator Fusion Configurator Engine Guide

Reverse Connectors

A Reverse Connector defines a reverse relationship with a Connector in the Connector's
target Model. When this relationship exists, creating a connection at runtime creates a
bi-directional connection between the Connector and its target Model. In other words,
when the end user creates a connection or disconnects an existing connection, the other
Connector in the reverse relationship is connected or disconnected automatically.

Reverse Connectors are useful when, for example, you need to define rules that are
based on a connection occurring at runtime, regardless of whether the connection is
made in the source or the target Model. When a Model contains a Reverse Connector,
any rules that you define in the target Model can include nodes from the Connector's
parent Model as participants (the reverse is also true). If a Reverse Connector also
allows multiple connections, it is not necessary to duplicate the same rule for every
possible connection source.

You can modify the Reverse Connector setting in either the source or target Model in
Configurator Developer, as long as the other Model is not locked by another user. When
you remove or modify a reverse connector relationship in one Model, Oracle
configurator makes the corresponding change in the other Model.

When you perform any of the following actions on a Reverse Connector, Configurator
Developer prompts you to confirm the action and then (if you choose to proceed) clears
the reverse relationship:

® Delete the Connector
* Move the Connector so it is no longer a child of the root Model
e Change the Connector's target (that is, select a different Model)

¢ Copy the Connector: In this case, Configurator Developer clears the reverse
relationship in the new (copied) Connector, but the relationship in the source
Connector does not change.

At runtime, an end user can connect or disconnect either participant in a reverse
relationship. When this happens, the other participating component also connects or
disconnects automatically.

Modifying or removing a reverse connection relationship does not affect any existing
rules in which the Connectors participate.

Procedure
To create a Reverse or Multiple-Instance Connector:
1. Open a Model for editing, and then create a Connector.

See the Oracle Configurator Developer User’s Guide for details.

2. In the Connector's details page, specify values for Minimum Connections and

Building a Configuration Model Using the Fusion Configurator Engine 3-25

Maximum Connections. The default values are 0/1. Accept these values if you do
not want to allow multiple connections at runtime.

3. If you want the Connector to participate in a reverse relationship, select a Connector
from the Reverse Connector list.

Note: If the Connector you are viewing is not a child of the root
Model, the Reverse Connector setting is disabled.

This list displays all Connectors in the target Model that:

* Do not already participate in a reverse relationship with another Connector

e Are children of the root Model

In other words, Connectors that are children of a Model Reference or a
Component do not appear in the list.

4. Specify Effectivity settings, and then click Apply.

Important: To create any type of Connector, both the source and the
target Model must use the FCE. When selecting a Connector from the
Reverse Connector list, Configurator Developer displays only
Connectors that exist within FCE Models.

Connectors and Configuration Rules

To make a connection required at runtime, define a Statement Rule that uses the
Connector and itsConnectionCount System Property. For example:

FeatureA IMPLIES ConnectorA.ConnectionCount () >= 1

To prevent a connection from being made at runtime, define a Statement Rule similar to
the following;:

FeatureA IMPLIES ConnectorA.ConnectionCount () = 0

For additional examples of rules involving the ConnectionCount System Property,
see Model Node System Properties, page 3-3.

Effectivity
In an FCE Model, Effectivity settings are available for the following node types:

¢ BOM nodes (all types)
* Option Features

* Options

3-26 Oracle Configurator Fusion Configurator Engine Guide

e Boolean Features

e Optional and instantiable Components

Note: After converting an existing Model to use the FCE, Effectivity
settings are not available for Integer and Decimal Features, Totals,
Resources, and mandatory Components (that is, Components with a
Min/Max of 1/1). To work around this change, use Display Conditions
to control the display of these nodes at runtime.

Additionally, you can specify Effectivity for any type of rule in an FCE Model
(including Accumulator Rules).

Configuration Rules

Logic States

Rule Classes

This section describes unique characteristics of configuration rules in FCE Models. For
general information about configuration rules, see the Oracle Configurator Developer
User’s Guide.

In an FCE Model, a variable that has neither been selected nor excluded from a
configuration at runtime has a logic state of Unbound. (In Models that use the Original
Configurator Engine, options meeting this criteria have a logic state of Unknown.) A
variable is unbound when its domain is open, which means that either a value has not
been assigned or the set of its members has not been finalized. Variables may be
unbound because the end user has not yet made a selection, entered a value, or run
Auto-Complete.

At runtime, the value of the SelectionState and DetailedSelectionState
System Properties is Selectable for options that are neither selected nor excluded
from a configuration. For information about how logic state determines an option's
appearance at runtime, see Logic State Display, page 4-1.

Note: When you convert a Model to the FCE, the Unknown logic state
becomes Unbound, Not Selected becomes Selectable, and Unsatisfied
becomes Input Required.

Refer to the Oracle Configurator Developer User’s Guide for details about other logic states.

When defining a rule in Configurator Developer, you must assign the rule to a Rule
Class. Oracle Configurator refers to a rule's Rule Class when an end user is manually
configuring a product and when the Auto-Complete process is running.

Building a Configuration Model Using the Fusion Configurator Engine 3-27

A rule's Rule Class determines the following at runtime:

e The rule's general behavior
¢ Whether the rule is mandatory (that is, it must always be True in the configuration)

¢ At what point in the configuration session the rule is applied (Defaults and Search
Decisions only)

The three Rule Classes are:

¢ Constraint, page 3-29
® Default, page 3-30
¢ Search Decision, page 3-31

Which Rule Class you can specify depends on the rule's type. Configurator Extensions
and Rule Sequences cannot have a Rule Class. All other types of rules must have a Rule
Class, but not all Rule Classes are valid for each type of rule. For details, see the table
Rule Types and Rule Classes, page 3-29. If multiple Rule Classes are available for a
rule, you can change its Rule Class at any time.

Caution: New Defaults and Search Decisions appear at the end of their
respective sequence, and changing an existing rule's Rule Class from
Default or Search Decision to Constraint may adversely affect a
well-defined sequence. Therefore, be sure to review and unit test the
sequence of Defaults and Search Decisions after modifying a rule's Rule
Class. See Specifying a Sequence for Defaults and Search Decisions,
page 3-31.

Rule Sequences can contain any rule, regardless of the rule's class. However, to reduce
future maintenance when upgrading to a future version of Oracle Configurator, Oracle
strongly recommends that all rules in each Rule Sequences have the same Rule Class.
For example, define a Rule Sequence that consists of only Constraints. For details about
Rule Sequences, see the Oracle Configurator Developer User’s Guide.

Certain Constraint Definition Language (CDL) operators are not available for use in
Statement Rules, depending on a rule's Rule Class. For example, a Statement Rule using
an Accumulator operator (AddsTo or SubtractsFrom) can only have a Rule Class of
Constraint. For details, see Fusion Configurator Engine and the Constraint Definition
Language, page 3-37.

3-28 Oracle Configurator Fusion Configurator Engine Guide

Rule Types and Rule Classes

Rule Type Constraint Default Search Decision
Logic Rule X X X
Comparison Rule X X X
Accumulator Rule X

Property-based X

Compatibility

Explicit X

Compatibility

Design Chart X

Statement Rule X X X

Constraints

Constraints are applied at runtime while an end user manually selects options and
enters values during a configuration session.

Rules that are classified as Constraints are applied at runtime while an end user
manually selects options and enters values during a configuration session. Constraints
must always be true in the context of a configuration. For example, when the end user
makes a selection that violates a Constraint at runtime, Oracle Configurator displays a
contradiction message informing the user that the previous action cannot be applied.

A Constraint may be expressed as a logical expression, a numeric comparison, a
compatibility table (or Design Chart), or a property-based compatibility expression.

Unlike Defaults and Search Decisions, you cannot specify the order in which you want
Oracle Configurator to consider Constraints at runtime.

For a list of which Rule Classes are valid for each type of rule, see the table Rule Types
and Rule Classes, page 3-29.

In an FCE Model, relational operators can be the primary operator within a Constraint.
Consider the following examples that use the equals (=) and greater-than (>)
relational operators:

x =y + (g*z)

a>»b

Building a Configuration Model Using the Fusion Configurator Engine 3-29

Defaults

In these simplified expressions of rules, the left-hand side of the expression can
propagate (or "push") numeric information to the right-hand side. In the FCE, the
right-hand side of the expression can also propagate ("push back") to the left-hand side.
The ability to define such Constraints allows rules in FCE Models to be bidirectional;
that is, they can propagate in both directions.

Like Constraints, Defaults are also applied at runtime while an end user manually
selects options and enters values during a configuration session. However, unlike
Constraints, Defaults are:

* Flexible, and they do not lead to a contradiction at runtime when, for example, the
end user deselects an option that was selected by the rule.

* Applied at runtime in the order specified in Configurator Developer, after each of
the end user's inputs are applied and propagated.

A Default can fail due to a conflict with one of the end user's inputs or the propagation
of a Constraint. (You can specify the order in which Defaults propagate; see Specifying
a Sequence for Defaults and Search Decisions, page 3-31.)

You can use Defaults to guide end users towards a preferred solution by defining
several contradictory rules that will be processed in the order you specify at runtime.

For example, a manufacturer of laptop computers prefers that their customers purchase
the lightweight version of a laptop instead of the heavier model, and the Deluxe
carrying case rather than the Basic version. To guide buyers towards purchasing the
lightweight laptop with the Deluxe case, without preventing them from selecting
alternative options, the manufacturer defines the following rules and sequence:

1. Laptop 900 Implies 900-LTW

2. Laptop 900 Implies Deluxe Case
3. Laptop 900-HVW Implies Deluxe Case

With these rules in place, the lightweight version of the laptop (900-LTW) and the
Deluxe Case will be selected by default when the end user selects the Laptop 900 model.

If the end user then selects the heavier model (the 900-HVW), the Deluxe Case will still
be selected.

Many constraints can be defined as a Default. For example, your Model contains a
Numeric Feature called Weight which has a range (domain) of 1000 - 5000. You prefer a
solution in which the value of this item is less than or equal to 3000, so you defined the
following Statement Rule and assign a Rule Class of Default:

Weight <= 3000

When this rule propagates at runtime, the range for the Weight item is reduced and
appears as follows in the runtime UI:

Range: 1000 to 3000

For a list of which types of rules can be classified as Defaults, see Rule Types and Rule
Classes, page 3-29.

3-30 Oracle Configurator Fusion Configurator Engine Guide

Note: After converting an existing Model to use the FCE, the Defaults
operator does not appear in the Logic Rule or Comparison Rule details

pages.

Search Decisions

Rules that you classify as Search Decisions are applied:

* During the Auto-Complete process

e After all User Decisions and Defaults have been applied and propagated
* Before the application of the FCE's inherent Search Decisions

® In the order that you specify in Configurator Developer

Rules classified as Search Decisions may be expressed as a logical expression or a
numeric comparison.

For more information, see Specifying a Sequence for Defaults and Search Decisions,
page 3-31.

For a list of which Rule Classes are valid for each type of rule, see Rule Types and Rule

Classes, page 3-29.

Specifying a Sequence for Defaults and Search Decisions
At runtime, Auto-Complete applies rules classified as Defaults and Search Decisions

according to the sequence that you specify in Configurator Developer. When you define

a rule and classify it as either a Default or Search Decision, Configurator Developer

assigns a default sequence number which places the rule at the end of its respective list.

For example, you have five existing rules with the "Defaults”" Rule Class. When you

create a new rule and specify a Rule Class of Defaults, the new rule appears at the end

of the list of Defaults rules, and its sequence number is 6.

If you want a rule to appear earlier in its respective sequence, click either Reorder
Defaults or Reorder Search Decisions in the Rules area of the Workbench.

Note: At runtime, any rules that have cross-model or cross-instance
participants will not necessarily be applied in their specified sequence
relative to the other rules defined in the Model. The order of a set of
such rules that apply to the same scope (combination of Models or
instances) will remain as defined relative to one another, but as a group
they will be applied after instantiation of the scope (all the rule's
participants) and application of all the rules of that class defined within
the various instances of the scope.

Procedure

Building a Configuration Model Using the Fusion Configurator Engine

3-31

To modify the order in which Defaults or Search Decisions are applied at runtime:
1. From the Rules area of the Workbench, click Reorder Defaults or Reorder Search
Decisions.

2. Specify a new sequence number for one or more rules, and then click Update.

3. Review the updated sequence. The Changed column indicates which rules you
updated.
4. If you are satisfied with the changes, click Apply.

To cancel your changes and return to the Rules area of the Workbench, click Cancel.

Compatibility Rules

This section describes characteristics of Compatibility Rules that apply only in FCE
Models.

When defining any type of Compatibility Rule (Explicit, Property-based, or Design
Chart), Configurator Developer does not allow more than one of the rule's participants
to have a Maximum Selections value that is greater than 1. If you violate this restriction
when creating or editing a Compatibility Rule, Configurator Developer displays a
warning when you save or validate the rule. If the Maximum Selections value of one of
the rule participant's changes after the rule is created, Configurator Developer displays
an error when you generate logic.

Enforcing this restriction in Configurator Developer ensures that Compatibility Rules
perform as expected at runtime.

Accumulator Rules

Accumulator Rules allow you to add or subtract a value from a variable at runtime. For
example, when the end user selects the 512 MB RAM option you want to add 512 to a
Total called "Total RAM Selected.”

Procedure
You can create an Accumulator Rule by either of these methods:
¢ Graphically:

1. Create a Rule of type Accumulator Rule.
2. Specify which Model nodes are participants (operands) in the rule.

3. Select either the AddsTo or SubtractsFrom operator.

* Programmatically:

3-32 Oracle Configurator Fusion Configurator Engine Guide

1. Create a Rule of type Statement Rule.

2. Enter the text of the Statement Rule, using the AddsTo or SubtractsFrom
operator according to the following syntax:

ADD n TO x

or

SUBTRACT n FROM x

Where n is a number and x is a node, such as a Total, a Resource, or a Numeric
Feature.

Accumulator Rules can only have a Rule Class of Constraint; they cannot be classified
as Defaults or Search Decisions. If you create a Statement Rule with a Rule Class of
either Defaults or Search Decision, and the rule's text defines an Accumulator rule (that
is, it uses either the "AddsTo" or "SubtractsFrom" operators), then Configurator
Developer forces the Rule Class setting to Constraints, and displays a message similar
to the following when you validate the rule:

Rule Class changed to 'Constraint'.

If you later change the text of the Statement Rule such that it no longer defines an
Accumulator Rule, then Configurator Developer re-enables the Rule Class setting. For
more information about Rule Classes, see Rule Classes, page 3-27.

Note: When you convert an existing Model to use the FCE, all
Contributes and Consumes Rules are converted into Accumulator
Rules, and "Numeric Rule" is no longer an option when creating new
rules in the converted Model. Additionally, any Initial Value that is
defined for a Numeric Feature, Total, or Resource is removed and
converted into an Accumulator Rule. For more information, see
Converting Existing Models to Use the Fusion Configurator Engine,
page 2-7.

It also is important to understand that Accumulator Rules do not simply add or subtract
a quantity from a variable. All rules of this type defined against the same target node
can be considered terms in a constraint against that node. This is because all AddsTo
and SubtractsFrom expressions in a Model become a single constraint on the target
node. In other words, the target node equals the sum of all AddsTo expressions defined
against it in the Model minus the sum of the SubtractFrom expressions.

Additionally, if the target node is involved in any other constraints, the equality
constraint generated by its AddsTo and SubtractsFrom expressions must be satisfied
along with all the others. As with all other constraints, the equality constraint is
bidirectional, so it can "push back" on the values of the participants on the
left-hand-side of the rule.

Keep the following in mind when using Accumulator Rules:

Building a Configuration Model Using the Fusion Configurator Engine 3-33

If the Model contains multiple Accumulator Rules that add to or subtract from the
same target node, and that node exists in a referenced Model, generating logic creates
a single constraint that equates the target to a sum of all the terms expressed in the
individual rules in that model.

If AddsTo or SubtractsFrom rules are defined against a given target within multiple
parent models in a reference model hierarchy, each of the generated equality
constraints must be satisfied individually. In other words, the AddsTo and
SubtractsFrom terms are not accumulated across multiple referencing models.

¢ Since the FCE merges all of a Model's Accumulator Rules into a single Constraint, it
is not possible to support individual rule violation messages for Accumulator
Rules. Consequently, Configurator Developer provides no Rule Violation section in
an Accumulator Rule's details page. Similarly, the Rule Violation section is disabled
for Statement Rules when their text defines an Accumulator Rule (that is, uses the
AddsTo or SubtractsFrom operator). If a Statement Rule's text changes such that it
no longer defines an Accumulator Rule, then Configurator Developer re-enables the
Rule Violation section.

* When you generate Model logic, Configurator Developer displays a warning
message for any nodes that are the target of Accumulator Rules from multiple
Models. The message warns that multiple (and possibly contradictory) rules were
generated for the target node, and that these rules may produce undesirable results
at runtime.In this case, it may be necessary to modify the constraints defined in the
Model containing the target node.

Note: When you convert an existing Model to use the FCE and one
or more Numeric Rules meet the criteria described in the preceding
paragraph, similar warnings appear in the Model Conversion
Report. For more information, see Converting Existing Models to
Use the Fusion Configurator Engine, page 2-7.

Configurator Extensions

This section describes information about Configurator Extensions (CX) that you should
consider when using the FCE.

In a Model that uses the FCE, the Configurator Extension event postValueChange can
be triggered only when the variable (option) to which it is associated is bound at
runtime. (For example, a Numeric Feature is bound when it has a value.) This event
cannot be triggered if the variable's domain changes, but the variable itself remains
unbound.

Configurator Extension events cannot be triggered during the Auto-Complete process.
If a CXis used to modify any part of a completed configuration that was created by
Auto-Complete (including states, values, instance containments, and so on), then Oracle

3-34 Oracle Configurator Fusion Configurator Engine Guide

Configurator displays an error. There is one exception: a CX can be used to modify a
configuration that was created by Auto-Complete after the end user returns to the
configuration to make changes. To determine whether a configuration was created by
Auto-Complete, write your CX such that it queries the session property
ConfigComplete () . To determine whether the end user is making changes to a
configuration that was created by Auto-Complete, write your CX such that it queries
the session property InAdjustMode ().

The table Predefined Events for Binding, page 3-35 describes the CX events that are
available only in an FCE Model. The table also lists the event-specific parameters that
you use as arguments when binding the method parameters of a Java class in a
Configurator Extension Rule.

Predefined Events for Binding

Event Name Related To Description Event Event Binding
Parameter Scope
Type
preAutoComplete Configurator Event None Global Only
Extension dispatched just
before the
Auto-Complete
process is

initiated, either
on request or
implicitly in a
Finish flow.

Building a Configuration Model Using the Fusion Configurator Engine 3-35

Event Name Related To Description Event Event Binding
Parameter Scope
Type
postAutoComplete Configurator Event None Global Only
Extension dispatched just

after
Auto-Complete
terminates,
whether it

succeeds or not.

The status of
the operation
and the state of
the
configuration
can be tested
using session
properties such
as
AutoComplet
eSuccessful

and
ConfigCompl

ete.

The following CX events are not supported in FCE Models:

® postInstanceEditable

® postInstanceNonEditable
® onInstanceLoad

® postInstanceload

e onValidateEligibleTarget
¢ postConnect

®* postDisconnect

* onConfiglLineType

e onConfigValidate

For a complete list of events that are available in Models that use either the original
configuration or the FCE, see the Oracle Configurator Developer User’s Guide.

3-36 Oracle Configurator Fusion Configurator Engine Guide

Configurator Extensions and Converted Models

If you are converting existing Models to FCE Models, it is important to note that the
FCE provides functionality that eliminates the need for some types of Configurator
Extensions.

Additionally, any CXs that were created for a Model that used the Original
Configurator Engine must be modified if you want to use them after converting the
Model to use the FCE.

Fusion Configurator Engine and the Constraint Definition Language

For general information about the Constraint Definition Language (CDL), refer to the
Constraint Definition Language Guide.

This section lists CDL functions and operators that are available only in FCE Models, as
well as some obsolete functions and operators.

The following functions are not available in FCE Models:

* NOTTRUE function
* ATAN2 operator

The table Operators Listed by Type, page 3-38 describes operators and functions that
are available only in FCE Models.

Building a Configuration Model Using the Fusion Configurator Engine 3-37

Operators Listed by Type

Operator Type Operator Description

Arithmetic function AggregateSum (function) Can be used in a Constraint,
Default, or Search Decision,
but only as a sub-expression.

Syntax:

AGGREGATESUM ([NodeRef
| NodePropRef])

where Noderef isa
path-based reference to a
node within each member
instance of InstanceSet,
and NodePropRef is a
NodeRef with a numeric or
logic property specified.

The return value of the
function is the sum of the
values of NodeRef or
NodePropRef for all the
instances implied in the path.

Other Assign Used only in Defaults and
Search Decisions to force a
node to be bound at a
particular point in the
specified sequence.

If the Domain Ordering
setting is specified in the
node's details page, binding
occurs according to this
setting. Otherwise, the FCE's
implicit binding method for
this operator type is used.

Syntax:
ASSIGN (node)

3-38 Oracle Configurator Fusion Configurator Engine Guide

Operator Type Operator Description

Other IncMin Used only in Defaults and
Search Decisions.

Similar to ASSIGN, but this
operator overrides any
explicit or implicit domain
ordering method for binding
the node and attempts a
binding using a binary search
with increasing minimum.

This operator is valid for
integers and decimals,
including BOM items and
Options with quantity.
Applies to the node's default
System Property when a
System Property is not
explicitly referenced (for
example, State, Quantity, or
Value).

When used with BOM items,
you can specify the
RelativeQuantity
property as an alternative.

Syntax:

INCMIN ([node |
node.Quantity () |
numericnode.Value () |
bomnode.RelativeQuanti

ty()1)

Building a Configuration Model Using the Fusion Configurator Engine 3-39

Operator Type Operator

Description

Other DecMax

Used only in Defaults and
Search Decisions.

Similar to ASSIGN, but this
operator overrides any
explicit or implicit domain
ordering method for binding
the node and attempts a
binding using a binary search
with decreasing maximum.

This operator is valid for
integers and decimals
including BOM items and
Options with quantity.
Applies to the node's default
System Property when a
System Property is not
explicitly referenced (for
example, State, Quantity, or
Value).

When used with BOM items,
you can specify the
RelativeQuantity
property as an alternative.

Syntax:

DECMAX ([node |
node.Quantity () |
numericnode.Value () |
bomnode.RelativeQuanti

ty()1)

3-40 Oracle Configurator Fusion Configurator Engine Guide

Operator Type Operator Description

Other MinFirst Similar to ASSIGN, but this
operator temporarily
overrides any explicit or
implicit domain ordering
method for the node and
attempts a binding using a
linear search beginning with
the node's specified minimum
value.

Used only in Defaults and
Search Decisions.

Valid for integers only.

Syntax:
e MINFIRST (node)

Other MaxFirst Similar to ASSIGN, but this
operator temporarily
overrides any explicit or
implicit domain ordering
method for the node and
attempts a binding using a
linear search beginning with
the node's specified
maximum value.

Used only in Defaults and
Search Decisions.

Valid for integers only.

Syntax:
e MAXFIRST (node)

Building a Configuration Model Using the Fusion Configurator Engine 3-41

Operator Type Operator

Description

Arithmetic Add ... To

Arithmetic Subtract ... From

Specifies addition of a
numeric value to a Total,
Resource, Numeric Feature,
Option quantity, ...

or the minimum or maximum
number of component
instances that are allowed at
runtime.

Calculation of the numeric
value can involve Constants,
Boolean values, Numeric
Features, Option quantities,
mutable System Properties,
Totals, ...

the minimum and maximum
number of instances, and the
instance count.

Syntax:
ADD n TO x

Specifies subtraction from a
numeric value to a Total,
Resource, Numeric Feature,
Option quantity, ...

or the minimum or maximum
number of component
instances that are allowed at
runtime.

Calculation of the numeric
value can involve the same
nodes and objects listed in
"Add ... To", above.

Equivalent to '"ADD —(n) TO x'

Syntax:
SUBTRACT x FROM y

3-42 Oracle Configurator Fusion Configurator Engine Guide

Operator Type Operator Description

Logical SubSetOf Can be used in a Constraint,
Default Decision, or Search
Decision as a conditional
expression or a top-level
constraint.

Returns Boolean True or
False. In the FCE, this
operator is only supported
between two ports
(Connectors, InstanceSets, or
computed ports).

Syntax:
portl SUBSETOF port2

For more information,
seeSubSetOf and Union
Operators, page 3-44.

Other? Logical? Union Can be used in a Constraint,
Default Decision, or Search
Decision, but only as a
sub-expression.

Returns the union of the
members of all specified
ports. The return value can be
used as an argument of type
port in an enclosing
expression.

Syntax:

UNION (portl, port2
., portn)

For more information,
seeSubSetOf and Union
Operators, page 3-44.

SubSetOf and Union Operators
SubSetOf Operator

For an overview of the SubSetOf operator, see the table Operators Listed by Type, page
3-38.

Building a Configuration Model Using the Fusion Configurator Engine 3-43

Consider an expression of the form:

portl SUBSETOF port2

When such an expression using the SubSetOf operator returns True, the expression
constrains the members of port1 to be a subset of the members of port2. (An identical set
also qualifies). If the port is an InstanceSet, the members are the contained Component
Instances or Model Instances. If the port is a Connector, the members are the connected
Model Instances.

For example, when the following expression is True, it states that the target of
Connector-1 must be one of the instances belonging to InstanceSet-1:

'Connector-1 SUBSETOF InstanceSet-1'

Membership in an InstanceSet is exclusive, therefore the following expression will
prevent any instances contained in InstanceSet-2 from occurring in
InstanceSet-1:

'InstanceSet-1 SUBSETOF InstanceSet-2'

However, the following expression will succeed if all the target instances of
Connector-1 are also assigned to Connector-2:

'Connector-1 SUBSETOF Connector-2"'

Note: A port is a variable whose domain is a set of Models that is
contained by or associated with the Model where the port is declared.
The FCE supports two types of port variables, which can connect to
existing Model instances or generate new ones as needed. One type is
an InstanceSet variable, which represents a composition relationship to
sub-components. The other type is a ConnectorSet variable, which
represents an association relationship to peer Model instances.
Therefore, members of InstanceSets are mutually exclusive, while
ConnectorSets do not have such restriction. In other words, an instance
can be a member of multiple ConnectorSets, but it can be a member of
only one InstanceSet.

UNION Operator

For an overview of the Union operator, see the table Operators Listed by Type, page 3-
38.

When using this operator, the port operands can be InstanceSets, Connectors, or a
combination of the two, as long as they both have the same target type — that is, the
target model of a Connector or of an instantiable Model Reference, or the Component
identity of an instantiable Component.

An Instance Set representing an instantiable Component (as opposed to a Model
Reference) can only participate in a UNION when all of the other operands are the same
instantiable Component in a different instance of the parent Model.

For example, your Model has the following structure:

3-44 Oracle Configurator Fusion Configurator Engine Guide

M1
[--C1 (0,n)
[->M2 (0, n)

[--C2 (0,n)
[->M3 (1, 1)

[--C3 (0,n)
[->M3' (1, 1)

[--C3 (0, n)

Note: Models M2, M3, and M3' are referenced by Model M1.

In this example, the UNION operation is valid on M3.C3 and M3'.C3, since they have
the same Component identity in two different (fixed) instances of M3. The UNION
operation would also be valid on M2(m).C2 and M2(n).C2, if it were possible to refer to
specific instances of M2 when defining the Model's structure in Configurator
Developer, but this is not the case. Therefore, no other Component in Model M1 is a
valid participant in a UNION.

Comparison Operators

In a Model that uses the Original Configurator Engine, comparison operators such as
equals, not equals, greater than, less than, and so on can be used only in conditional
sub-expressions. For example:

IF (x < y) THEN ...

In an FCE Model, you can also use comparison operators as "top-level" constraints.
which means they do not have to be used in a sub-expression. For example, the
following expression can constitute an entire rule definition, constraining x to be less
than y:

Example
x <y

Rule Import for Fusion Configurator Engine Models

Rule import, which is the ability to import configuration rules in CDL format into the
CZ schema, applies to FCE Models as well as to Original Configurator Engine (OCE)
Models.

The general procedure for rule import is the same for FCE Models as for OCE Models.
The procedure for OCE Models is described in the section on Rule Import in the Oracle
Configurator Implementation Guide. The only difference for FCE Models is that you must
populate several columns in the table CZ_IMP_RULES in addition to the columns listed
in the Implementation Guide. The additional columns required for FCE rule import are
as follows:

e CLASS_SEQ (nullable, type NUMBER): The sequence number for the rule within its
current Rule Class. Values for this number should not have any decimal part. For
background, see Specifying a Sequence for Defaults and Search Decisions, page 3-31

Building a Configuration Model Using the Fusion Configurator Engine 3-45

Within each Rule Class (RULE_CLASS) for the specified Model
(DEVL_PROJECT_ID), each rule must have a unique class sequence number
(CLASS_SEQ).

A value should be provided only for FCE Models. A value is mandatory if
CONFIG_ENGINE_TYPE is 'F' and RULE_CLASS is either 1 or 2. The value should
be null if RULE_CLASS is 0 or null.

e CONFIG_ENGINE_TYPE (nullable, type VARCHAR?2(1)): The Configurator Engine
Type of the Model into which you are importing rules.
The valid values are:
F - Fusion (FCE)
L - Original (OCE/LCE)
The value must be 'F' for FCE Models.
e RULE_CLASS (nullable, type NUMBER): The numeric identifier of the Rule Class of
the rule. For background, see Rule Classes, page 3-27].
The valid values are:
0 - Constraint
1 - Default
2 - Search Decision

A value should be provided only for FCE Models. A value is mandatory if
CONFIG_ENGINE_TYPE is 'F'. The value should be null if
CONFIG_ENGINE_TYPE is 'L

For details on CZ_IMP_RULES and other Oracle Configurator tables, see the Oracle
Integration Repository.

Note: The CZ schema for this release also includes two nullable
columns that are not used for rule import: ACCUMULATOR_FLAG
and TOP_LEVEL_CONSTRAINT_FLAG. Do not populate these
columns, and ignore any values that might appear in them after the
rule import process.

Validation Messages for FCE Rule Import

The messages related to rule import for the FCE are described in the table Validation
Messages for FCE Rule Import, page 3-47, along with the error or warning conditions
that can trigger the messages. Some messages can be triggered by more than one
condition. These messages appear after the import in CZ_IMP_RULES.MESSAGE.

3-46 Oracle Configurator Fusion Configurator Engine Guide

Validation Messages for FCE Rule Import

Message Error or Warning Conditions
Invalid Class Sequence ® CLASS_SEQis provided when RULE_CLASS is 0
(Constraint).

® CLASS_SEQis not provided when RULE_CLASS is 1
(Default) or 2 (Search Decision).

® (CLASS_SEQis not unique for the specified Model
and RULE_CLASS.

Invalid Configurator Engine Type ® CONFIG_ENGINE_TYPE is not 'F' or 'L".

Combination of Configurator ® CLASS_SEQ or RULE_CLASS are provided when
engine type, Rule Class and Class CONFIG_ENGINE_TYPE is 'L".
Sequence is invalid

Invalid Rule Class ® RULE_CLASS is not provided when
CONFIG_ENGINE_TYPE is 'F'".

® RULE_CLASSisnot0, 1, or 2.

Custom Rule Violation Messages ~ ®* CONFIG_ENGINE_TYPE is 'F'
are not supported for

Accumulator Rules and

the rule is an Accumulator Rule
and

RULE_CLASS is not 0

and

CZ_IMP_RULES. REASON_TYPE is not 0 (rule
name).

Note: Custom Rule Violation Messages are stored in
CZ_LOCALIZED_TEXTS.LOCALIZED_STR.

For background on why Accumulator Rules do not
support rule violation messages, see Accumulator
Rules, page 3-32.

Building a Configuration Model Using the Fusion Configurator Engine 3-47

Message

Error or Warning Conditions

Rule Class for Accumulator and
Compatibility statements should
be Constraint

Operator &OP requires Rule Class
of either Default or Search
Decision.

The statement rule definition in RULE_TEXT
indicates that the imported rule is an Accumulator or
Compatibility rule, and RULE_CLASS is not 0
(Constraint).

RULE_CLASS is 0 (Constraint) and the statement rule
definition in RULE_TEXT includes one of the
operators ASSIGN, INCMIN, DECMAX, MINFIRST,
or MAXFIRST.

Note: The message token &OP is replaced by the
operator detected in the import record.

Creating and Editing a User Interface

This section describes the UI Content Templates that are available only when editing an
FCE Model, and additional content that is available in various UI templates when the
FCE is enabled. For more information about creating and editing User Interfaces, see the
Oracle Configurator Developer User’s Guide.

User Interface Master Templates

When the FCE is enabled, by itself or in addition to the OCE, UI Master Templates
include settings and content that is specific to the FCE. For details about enabling the
FCE, see CZ: Enable Configurator Engine, page 2-3.

Following is a complete list of settings and content that appears in a Ul Master
Template when the FCE is enabled:

e Pagination and Layout: This section contains the Enable Auto-Override for
Conlflicts setting, and this setting is selected by default.

For more information, see Auto-Override, page 4-10.

¢ Non-BOM Content Custom Settings: This page contains separate settings for
specifying which templates to use when displaying the following content at

runtime:

¢ Integer Features (default is Integer Input with Range Display)

® Decimal Features (default is Decimal Input with Range Display)

3-48 Oracle Configurator Fusion Configurator Engine Guide

* Single-Instance Connectors (default is Connection Control)

e Multiple-Instance Connectors (default is Connection Management Table)

e Utility Templates: This section contains the following settings:

* Instance Chooser (default is Instance Chooser Page)

* Auto-Complete Status (default is Auto-Complete Status Dialog)

* Required Messages: This section contains settings for specifying which UI Content
templates to use when displaying required messages at runtime. Separate sections
are provided for Models that use the Original Configurator Engine and Models that
use the Fusion Configurator Engine.

¢ Optional Messages: This section contains settings for specifying which UI Content
templates to use when displaying optional messages at runtime. The Undo Status
setting is relevant only for FCE Models.

¢ Images: Following is a summary of how this section changes when the FCE is
enabled (except where indicated):

e The Not Selected setting changes to Selectable (this is true whether or not the
FCE is enabled).

* You can specify which images are used to display Enhanced Check Boxes and
Enhanced Radio Buttons with a status of Recommended (Proposed Selected)
and Not Recommended (Proposed Excluded).

¢ In the Status Indicator Images region, you can specify which images are used
to indicate options with a status of Recommended or Not Recommended.

¢ In the Status Indicator Images region, you can specify which images are used
to indicate options with a status of Proposed, Changed, Input Required, and
Input Error.

For more information about the images that are used by default, see Runtime Icons and
Images, page 3-66.

For details about the UI Content Templates that are used by default, see User Interface
Content Templates, page 3-49.

User Interface Content Templates

When the FCE is enabled, by itself or in addition to the OCE, additional UI Content
Templates are available for use. For details about enabling the FCE, see CZ: Enable
Configurator Engine, page 2-3.

Building a Configuration Model Using the Fusion Configurator Engine 3-49

This section includes the following sections:

¢ Control Templates, page 3-50

¢ Utility Templates, page 3-52

* Message Templates, page 3-54

* Button Bar Templates, page 3-56
e Other Templates, page 3-59

* Changes to Existing User Interface Content Templates, page 3-60

Control Templates

The UI Content Templates in this section are located in the Control Templates folder in
the Main area of the Repository. They are also available when you are working in a
custom UI Master Template and are selecting templates in either the BOM Content
Custom Settings page or the Non-BOM Content Custom Settings page.

Integer Input with Range Display

This template displays an input field for an Integer Feature at runtime, with text
indicating the range of values that the field will accept. For example, if an Integer
Feature's Minimum is set to 1 and its Maximum is set to 9 in Configurator Developer,
then the text below the input field appears as follows:

Range: 1 to 9

When the Feature is bound (by Auto-Complete, for example), the text no longer
appears.

The predefined Integer Input with Range Display template is located in the Value
Display & Input subfolder in the Control Templates folder in the Main Area of the
Repository. In a custom Ul Master Template, you can select this template when defining
custom settings for displaying non-BOM content, and it is the default for the Integer
Features setting.

Decimal Input with Range Display

This template displays an input field for a Decimal Feature at runtime, with text
indicating the range of values that the field will accept (the Feature's domain). For
example, if a Decimal Feature's Minimum is set to 1.5 and its Maximum is set to 4.9 in
Configurator Developer, then the text below the Feature's input field appears as
follows:

Range: 1.5 to 4.9

When the Feature is bound (by Auto-Complete, for example), the text no longer
appears.

3-50 Oracle Configurator Fusion Configurator Engine Guide

The predefined Decimal Input with Range Display template is located in the Value
Display & Input subfolder in the Control Templates folder in the Main Area of the
Repository. In a custom Ul Master Template, you can select this template when defining
custom settings for displaying non-BOM content, and it is the default for the Decimal
Features setting.

Item Selection Tables with Quantity and Range Display
When the FCE is enabled, the following Item Selection Table templates are available:

¢ Single Select BOM Item Table with Quantity and Range Display

¢ Single Select BOM Item Table with Header, Quantity and Range Display
¢ Multi-Select BOM Item Table with Quantity and Range Display

* Multi-Select BOM Item Table with Header, Quantity and Range Display
e Single Select Counted Options Table with Quantity and Range Display

* Multi-Select Counted Options Table with Quantity and Range Display

The content and appearance of these templates is very similar. Each template consists of
a table with columns labeled Select, Quantity, Item, and Description, and each option's
valid input range (domain) is displayed in the Quantity column (for example, "Range: 0
to 10").

The single-select templates contain a radio button in the Select column, while the
multi-select templates provide a check box.

Which template is used by default depends on whether the Model node allows only one
or multiple of its child options to be selected, and whether the node is a or a BOM item
(for example, a BOM Option Class).

The Content Templates listed above for single and multi-select Counted Options are not
used by default in any UI Master Templates. The default templates do not include the
item's valid input range at runtime, so if you want to display the input range for
Counted Options, create a custom UI Master Template and specify one of the templates
listed above for the Single Select with Option Quantity or Multi-Select with Option
Quantity setting.

Displaying BOM Relative Quantity at Runtime

For a definition of the term "relative quantity", see BOM Nodes, page 3-22.

Procedure

The BOM Item Selection Table templates listed in this section display each BOM item's
absolute Quantity, Minimum Quantity, and Maximum Quantity. If you want to display
a BOM item's relative quantities at runtime:

1. Copy one of the predefined BOM Item Selection Table templates listed above, and
then open it for editing.

Building a Configuration Model Using the Fusion Configurator Engine 3-51

2. Open the 'Quantity’ Text Input element for editing, and then bind it to
AssociatedModelNode.RelativeQuantity/().

3. Set the Text Expression for the range display hint to "Range: &MinRelQuantity to
&MaxRelQuantity".

4. Click Display Condition, and then select Associated Model Node as the Object,
and select IsBoundRelQuantity from the Property list.
5. In the Condition section, select Is and set Value to False.

The full definition of the display condition is:

AssociatedModelNode.IsBoundRelQuantity () Is False

6. Save the changes.

BOM Item Status Region with Quantity and Range Display

This template displays a BOM item's current status and valid input range (domain). For
example:

Status: Selectable Quantity (Range: 0 to 10)

Utility Templates

The UI Content Templates in this section are available when you are working in a
custom UI Master Template and are selecting templates in the Utility Templates section.

Auto-Complete Status Dialog

For an overview of Auto-Complete, see Auto-Complete, page 1-3.

The Auto-Complete Status Dialog appears at runtime after Auto-Complete has finished
processing. This page appears when Auto-Complete is invoked:

* By explicit end-user action, such as by clicking the Auto-Complete button

¢ By implicit end-user action, such as by clicking the Finish action, when the
configuration does not contain any items that require end-user input.
In this case, the Auto-Complete Status Dialog appears only when Auto-Complete:

* TFails
¢ Results in changes to the orderable configuration

® Results in the addition of new Text Features that require end-user input
(because such Features cannot be resolved by Auto-Complete)

or

3-52 Oracle Configurator Fusion Configurator Engine Guide

® Results in new validation failures (such as from a post-Auto-Complete
Configurator Extension)

If Auto-Complete is successful, then the Auto-Complete Status Dialog provides a
summary of the configuration and indicates any changes that were made (an icon
appears next to each changed item in the Configuration Summary table).

If Auto-Complete succeeds but the process created one or more required Text Features
or invalid items, then the page lists all items that require end-user input or have
validation failures. Each incomplete or invalid item appears as a link that the end user
can use to navigate to the page containing the item.

If Auto-Complete fails, then this page displays a message similar to the following;:

Error

The configuration could not be completed. A solution could not be found
that is compatible with all of your selections. Please make some changes
and try again.

To learn which options are available to the end user in each scenario, see
Auto-Complete Status Button Bar, page 3-57.

The Auto-Complete Status Dialog template is located in the Utility Templates folder in
the Main Area of the Repository. This template is the default for the Auto-Complete
Status setting in a predefined UI Master Template. In a custom UI Master Template, you
can select this template for use in the Utility Templates section.

Instance Chooser Page

This template allows the end user to select an existing, unassigned instance to add to an
Instance Set. The Instance Chooser Page is displayed when the user invokes the Add
Instance or Add and Go to Instance action and there are unassigned, configured, or
connected instances of the same type in the instance pool (see The Unassigned Instance
Pool, page 4-7). In this case, the end user selects an instance from the list, and Oracle
Configurator adds it to the Instance Set.

If there are no instances of the same type in the instance pool when an end user invokes
either Add Instance or Add and Go to Instance, then Oracle Configurator does not
display the Instance Chooser Page. In this case, Oracle Configurator simply creates an
entirely new instance (and navigates to the new instance, when Add and Go to Instance
is invoked).

The predefined Instance Chooser Page template is located in the Utility Templates
folder in the Main Area of the Repository. In a custom UI Master Template, you can
select this template for use in the Utility Templates section, and it is the default for the
Instance Chooser setting.

For more information, see Instance Management, page 4-4.
Connection Management Table

This template displays a list of existing connections for a Multiple-Instance Connector
(see Connectors, page 3-24). It includes controls that enable the end user to add new

Building a Configuration Model Using the Fusion Configurator Engine 3-53

connections and remove (disconnect) existing connections.

This template is the default for the Multiple-Instance Connectors setting in a Ul Master
Template.

Message Templates

The UI Content Templates in this section are located in the Message Templates folder in
the Main area of the Repository. They are also available when you are working in a
custom UI Master Template and are selecting templates in the Message Templates
section.

Input Required Message Box

This template appears when an end user clicks Finish at runtime and at least one item
requires end-user input. It displays following message at the top of a containing one or
more required, invalid, or unbound options:

Input Required
Please complete all required inputs before finishing the configuration.

An icon also appears next to each item that requires end-user input.

This template is the default for the Input Required on Finish setting, which is available
in all UI Master Templates and in the UI Definition.

For more information, see:

® Require End-User Input Setting, page 3-19
e Finish Configuration, page 4-9

The predefined Input Required template is located in the Message Templates folder in
the Main Area of the Repository. In a custom UI Master Template, you can select this
template for use in the Message Templates section, and it is the default for the Input
Required on Finish setting.

Input Required Dialog Page
This template is the default for the Input Required on Auto-Complete setting in the Ul
Master Template and in the UI Definition.

This template displays a page containing links to each option that requires input before
the end user can invoke the Auto-Complete process. The end user can navigate to each
option that requires input using links provided, click a button to return to the
configuration, or save the configuration for later.

The text that appears on this page by default is similar to the following:

The configuration cannot be completed at this time. The following items
require your input:

Basic Options : How much memory do you require?Basic Options : Do you
want to be able to copy DVDs?Basic Options : Do you want a flat screen
monitor?

3-54 Oracle Configurator Fusion Configurator Engine Guide

For more information, see Require End-User Input Setting, page 3-19

The predefined Input Required Dialog Page template is located in the Message
Templates folder in the Main Area of the Repository. In a custom UI Master Template,
you can select this template for use in the Message Templates section, and it is the
default for the Input Required on Auto-Complete setting.

This template references the Input Required Dialog Button Bar, page 3-56.

User Request Conflict Dialog Page
This message is displayed when a conflict at runtime is the direct result of an end user's
action, such as selecting an option or entering a value. (The term conflict is defined in
Conflict Handling and Resolution, page 4-9.) The Auto-Override for Conflicts setting
in the UI Definition controls whether this message includes the consequences of an
override. For example:
Confirming this action will undo the following:

* Select RAM 1GB
* Set 'Will you use this computer for home use?' to 'No'

When Auto-Override is enabled, clicking the OK button (Override action) returns the
end user to the configuration page where the conflict occurred. When Auto-Override is
disabled, the message contains a Continue button instead of an OK button, and clicking
Continue displays the Confirm Override Dialog Page, page 3-55.

For more information about which buttons may be displayed at runtime when a User
Request Conflict occurs, see Basic Conflict Button Bar, page 3-58.

The predefined User Request Conflict Dialog Page template is located in the Message
Templates folder in the Main Area of the Repository. In a custom UI Master Template,
you can select this template for use in the Message Templates section, and it is the
default for the User Request Conflict setting.

For more information about Auto-Override, see Auto-Override, page 4-10

Fundamental Conflict Message
For background information, see Fundamental Conflict, page 4-11.
This message appears when launching a configuration when the root of the
configuration model is overconstrained. Fundamental Conflicts should be discovered
during unit testing and resolved before a configuration model is deployed in a
production environment.
The text of the Fundamental Conflict Message is similar to the following:

Error in Configuration Model
The model is overconstrained. It is not possible to continue.

The Fundamental Conflict Message template cannot be viewed or modified in Oracle
Configurator Developer.

Confirm Override Dialog Page

This message contains information about how to resolve a conflict that was caused by

Building a Configuration Model Using the Fusion Configurator Engine 3-55

the end user's action (for example, selecting an option or entering a value). This
message is displayed at runtime when Auto-Override is disabled and the end user
clicks Continue in the User Request Conflict Dialog Page, page 3-55.

If the override succeeds, the Confirm Override message displays a list of the prior
requests that were removed, and allows the user to confirm or cancel the request that
caused the conflict. If the override fails, this message notifies the user that overriding
the conflict is not possible. In this case, the end user has no choice but to cancel the
override and then return to the configuration.

The predefined Confirm Override Dialog Page template is located in the Message
Templates folder in the Main Area of the Repository. In a custom UI Master Template,
you can select this template for use in the Message Templates section, and it is the
default for the Confirm Override setting.

For more information, see Auto-Override, page 4-10.

This template references the Confirm Override Button Bar, page 3-58.

Undo Status Message Box
This message appears at runtime when an end user clicks Undo after Auto-Complete
has finished processing. The Undo Auto-Complete action rolls back all changes to the
configuration that were made by Auto-Complete and returns the end user to the page
from which Auto-Complete was invoked (either by clicking Finish or Auto-Complete).
The default text of this message is similar to the following;:

Information:
Undo was successful.

The Undo button appears in the Auto-Complete Status Dialog, page 3-52. See the
description of that template for more information.

The predefined Undo Status Message Box template is located in the Message Templates
folder in the Main Area of the Repository. In a custom UI Master Template, you can
select this template for use in the Message Templates section, and it is the default for the
Undo Status setting.

Button Bar Templates

The UI Content Templates in this section are located in the Button Bar Templates folder
in the Main area of the Repository. They are also available when you are working in a
custom UI Master Template and are selecting templates in the Utility Templates section.

Input Required Dialog Button Bar

This template is used by the Input Required Dialog Page, page 3-54. This template
consists of the following buttons:

¢ Return to Configuration: Returns the end user to the configuration session.

* Save for Later: Saves the incomplete configuration and ends the configuration

3-56 Oracle Configurator Fusion Configurator Engine Guide

session.

The predefined Input Required Dialog Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository. This template is not available for
use in a Ul Master Template.

Auto-Complete Status Button Bar

This template is used by the Auto-Complete Status Dialog, page 3-52. It consists of
buttons that appear after Auto-Complete has finished processing. The buttons that this
template displays varies based on the result of the Auto-Complete process.

For example:

e If Auto-Complete succeeds and the configuration is complete, then the following
buttons are displayed: Undo Auto-Complete; Return to Configuration; Finish.

Clicking Undo returns the configuration to the state it was in before running
Auto-Complete. Clicking Return to Configuration enables the end user to modify
the completed configuration. Clicking Finish saves the configuration and returns
the end user to the host application.

e If Auto-Complete succeeds but the configuration is not complete, then the following
buttons are displayed: Undo; Return to Configuration; Save for Later.

e If Auto-Complete fails, then the following buttons are displayed: Return to
Configuration; Save for Later.

The predefined Auto-Complete Status Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository. This template is not available for
use in a UI Master Template.

Tip: By default, the Auto-Complete Status Button Bar - and by
extension the Undo Auto-Complete button - appears only in the
Auto-Complete Status Dialog. If you want to add an Undo
Auto-Complete button to a custom Ul template, define a display or
enabled condition for the button that uses the System Property
InAdjustMode. For example, if you define the following display
condition, then the button is displayed only when
ConfigurationSession.InAdjustMode is True:

Object: Session Data

Property: InAdjustMode

Comparison: Is
Value: True

Processing Page Button Bar

This template is used only by the Generic Processing Page with Stop Button template,
page 3-60. It consists of a Stop button that the end user can use to cancel a long-running

Building a Configuration Model Using the Fusion Configurator Engine 3-57

process. For details, see Generic Processing Page with Stop Button, page 3-60.

The predefined Cancel Processing Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository. Since the processing page
templates cannot be customized, you cannot use this button bar in your own custom
User Interfaces.

Basic Conflict Button Bar

This template is used by the User Request Conflict Dialog Page template, page 3-55. The
buttons that are displayed at runtime may change depending on whether
Auto-Override is enabled and, if it is, whether the override was successful.

For example:

e If Auto-Override is enabled and the override succeeds, then the following buttons
are displayed: OK; Cancel.

Clicking OK overrides the conflict, while clicking Cancel cancels the request.

e If Auto-Override is enabled and the override fails or the conflict could not be
overridden, then only a Cancel button is displayed.

e If Auto-Override is disabled, then the following buttons are displayed: Continue;
Cancel.

Clicking Continue overrides the conflict, while clicking Cancel cancels the request.

The predefined Basic Conflict Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository.

Confirm Override Button Bar

This template is used by the Confirm Override Dialog Page, page 3-55. If the override
was successful, an OK and a Cancel button are displayed. The end user can either click
OK to confirm the message, or Cancel to cancel the override request.

If the override failed, only a Cancel button is displayed, and the end user's only option
is to cancel the request.

The predefined Confirm Override Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository.

Instance Chooser Button Bar

This template is used by the Instance Chooser Page, page 3-53. It consists of Cancel and
Apply buttons that enable the end user to either cancel or confirm the action of adding
an instance to an Instance Set.

The predefined Instance Chooser Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository.

3-58 Oracle Configurator Fusion Configurator Engine Guide

Preview Page Button Bar
This template displays the buttons that appear in the Configuration Summary page, and
it is used by the Configuration Summary templates. The buttons that are displayed at
runtime depend on the status of the configuration.

For example:

e If the configuration is complete, then the following buttons are displayed: Return to
Configuration; Finish.

For details about the Finish button and related configuration flow, see Finish
Configuration, page 4-9.

¢ If the configuration is incomplete, but there are no invalid items or items that
require input, then the following buttons are displayed: Return to Configuration;
Finish; Save for Later.

Clicking the Save for Later button saves the incomplete configuration and ends the
configuration session.

¢ If the configuration is incomplete, but there are invalid items or items that require
input, then the following buttons are displayed: Return to Configuration; Save for
Later.

The predefined Preview Page Button Bar template is located in the Button Bar
Templates folder in the Main Area of the Repository. In a custom UI Master Template,
you can select this template for use in the Utility Templates section, and it is the default
for the Preview Page Button Bar setting.

Other Templates

The UI Content Templates in this section are available when you are working in a
custom UI Master Template and are selecting templates in the Other Templates section.

Generic Processing Page

For background on the use of processing pages, see Displaying a Processing Page at
Runtime, page 3-64.

This is the default template for the Ul actions that support processing pages. Those Ul
actions are listed in Displaying a Processing Page at Runtime, page 3-64.

The page template includes a default "busy" icon and the following text elements, in
which you enter text that gives the end user information about the long-running action:

e Page Title: This text appears in the title bar of the window displaying the processing
page, and in the page heading.

* Main Message: This text appears above the busy icon. The text is rendered in
boldface.

Building a Configuration Model Using the Fusion Configurator Engine 3-59

® Processing Caption: This text appears below the busy icon.

There is no default text for these text elements. You must provide text, or the text
elements will be empty at runtime.

Apart from the custom text described here, you cannot customize the appearance of the
processing page.

The predefined Generic Processing Page template is located in the Other Templates
folder in the Main Area of the Repository.

Generic Processing Page with Stop Button

For background on the use of processing pages, see Displaying a Processing Page at
Runtime, page 3-64.

This template is the same as the Generic Processing Page, page 3-59, but it includes a
Stop button that enables the end user to interrupt the Auto-Complete Configuration
action and return to the runtime UI from which it was invoked, without changing the
configuration. The Stop button undoes all of the selections made by the current
Auto-Complete action.

This template can be specified by selecting it as the Processing Page Template for one of
the Ul actions that support processing pages. Those Ul actions are listed in Displaying a
Processing Page at Runtime, page 3-64. (The default template for such Ul actions is the
Generic Processing Page.)

This template is intended for use with larger or more complex FCE Models that might
require longer processing.

The predefined Generic Processing Page with Stop Button template is located in the
Other Templates folder in the Main Area of the Repository.

Changes to Existing User Interface Content Templates

This section describes how existing UI Content Templates change after converting a
Model to use the FCE.

Configuration Summary Templates
When you convert a Model to use the FCE, the Combination Status region in all
Summary Page Ul Content Templates is replaced by a Messages region. This region
appears at the top of the page and it contains textual information regarding the status of
the configuration. For example, "No required or invalid items," "The configuration is not
complete,” or "The following items require your input before finishing the
configuration." In the latter example, each item appears as a link that the end user can
click to go directly to the page containing that item.

The lower portion of the Summary Page displays BOM-related nodes selected during
the session. Any item that is in the Configuration Summary which is selected but has an
unbound Quantity displays the range of the Quantity instead of a value.

3-60 Oracle Configurator Fusion Configurator Engine Guide

When a Model uses the FCE, any selected options that represent non-BOM nodes do not
appear in the Configuration Summary page. This is true whether or not the Orderable
setting is selected in a node's details page in Configurator Developer. For details about
this setting, refer to the section on orderable items in the Oracle Configurator Developer
User’s Guide.

Layout Regions

Instance List Layout Regions for OCE Models are described in the Oracle Configurator
Developer User’s Guide. An Instance List Layout Region displays content from optional

or instantiable component instances on a Page that is the parent of those instances.
There are some differences in the way that you use an Instance List Layout Region with
FCE Models.

At runtime, an Instance List for an FCE Model can include placeholders, which also
occur in Instance Management Tables for FCE Models. (For information on
placeholders, see UI Actions in Instance Management Tables, page 4-5.) Since
placeholders usually represent generic instances (which do not have any children),
there are no child node details available to display on the parent page of the
Instance List. Trying to show the child node details for a placeholder instance in an
Instance List region can result in unexpected behavior at runtime. Consequently,
you should define, within your Instance List region, a Switcher Region that contains
two Case Regions, each based on a Switcher condition using the Associated Model
Node's property IsPlaceholder. Then define these Case Regions to display an
appropriate set of UI elements depending on whether or not the instance is a
placeholder. If IsPlaceholder is true, that Case Region should only include the
appropriate controls for a generic instance, such as Configure and Delete. If
IsPlaceholder is false, then that Case Region can include other details for the
instance.

The Configure (Drilldown to SubComponent) action behaves differently for a
placeholder instance under an Instance List Layout Region. When the user chooses
Configure, it activates the placeholder. If there are instances available in the
instance pool, then the Instance Chooser page is presented. When an instance is
chosen from the Instance Chooser, the user returns to the Instance List on the parent
page, rather than to the page for the instance itself (as happens in an Instance
Management Table). If there are no available instances, then the placeholder is
replaced with a new identifiable instance, and remains in the Instance List on the
parent page.

User Interface Elements

This section describes Ul elements that are available only when using the FCE.

Instance Chooser Table

This element displays all instances (configured or connected) that can be added to an

Building a Configuration Model Using the Fusion Configurator Engine 3-61

Instance Set. You can create this element in a UI Page, an Instance Management
Template, and a Generic Template. This table is also included by reference in the
Instance Chooser Page, page 3-53.

This element's Associated Model Node must be an instance set.

Multiple-Instance Connector Control

This element represents a Multiple-Instance Connector at runtime (for details, see

Connectors, page 3-24).

You can create this element in a Ul Page, a Connector Control Template, or a Generic
Template. This element's Associated Model Node must be a Connector.

User Interface Actions

The table below describes the Ul actions that are available when using the FCE.

User Interface Actions
Action Description
Add Instance See UI Actions in Instance Management Tables, page 4-5 for a

Auto-Complete
Configuration

Cancel Processing

description of this action.

Invokes Auto-Complete (the FCE search procedure) to bind all variables
in the configuration and present a solution to the end user.

This action is valid only when the end user is not in a nested transaction
or a pending mode (for example, conflict processing).

For details, see Auto-Complete Configuration, page 4-2.

Cancels a long-running process (for example, Auto-Complete
Configuration).

Cancels a long-running process (for example, Auto-Complete
Configuration). This action is valid only in a predefined template that
supports the processing page (for example, the Generic Processing Page
Template). You cannot use this action in your own custom User
Interfaces.

For more information, see Auto-Complete Configuration, page 4-2.

3-62 Oracle Configurator Fusion Configurator Engine Guide

Action Description

Cancel Request Rolls back any conflict override, cancels the current/original user request,
and returns to the configuration.

This action is valid while processing a conflict.
For more information, see Conflict Handling and Resolution, page 4-9.

Copy Instance See UI Actions in Instance Management Tables, page 4-5 for a
description of this action.

Configure Instance ~ See UI Actions in Instance Management Tables, page 4-5 for a
description of this action.

Create Instance Creates a new instance and adds it to the current instance set, as defined
by the Associated Model Node of the UI element assigned to the action.
After invoking this action, Oracle Configurator does not present the end
user with the option to add an existing instance from the instance pool.

For details, see Create Instance UI Action, page 4-8.
Create and Go to Creates a new instance and adds it to the current instance set, then
Instance navigates to the UI page that represents that instance.

After invoking this action, Oracle Configurator does not present the end
user with the option to add an existing instance from the instance pool.

For details, see Create and Go to Instance UI Action, page 4-8.

Delete Instance See UI Actions in Instance Management Tables, page 4-5 for a
description of this action.

Override Conflict If Auto-Override is enabled and override was successful, this action
commits the override and returns the end user to the configuration. If
Auto-Override is disabled, it invokes the override and displays an
override status message.

For more information, see Auto-Override, page 4-10.

Remove Instance See UI Actions in Instance Management Tables, page 4-5 for a
description of this action.

Building a Configuration Model Using the Fusion Configurator Engine 3-63

Action Description

Save and Exit Saves and exits the configuration without invoking the Auto-Complete
process. This action can be used whether or not the configuration is
complete.

This action is valid only when the end user is not in a nested transaction
and the configuration is not a "pending" mode (for example, processing a

conflict).
Undo Rolls back all changes made to the configuration as a result of running
Auto-Complete Auto-Complete, and returns the end user to the page from which

Auto-Complete was invoked.

In order to perform the Undo Auto-Complete action, the configuration
session must return True for one of the system properties
AutoCompleteSuccessful or InAdjustMode.

For details, see Auto-Complete Configuration, page 4-2.

Displaying a Processing Page at Runtime

Some Ul actions take longer than others to complete at runtime. For example, the
Auto-Complete Configuration action may take several seconds or more before
returning control to the end user. When such longer-running actions are invoked, you
may want to display a "processing” page to inform your end users that a process is
running in the background, and that they will be able to proceed when it is complete.

In Configurator Developer, you can choose which processing page to display at runtime
when you assign certain Ul actions to a UI element. The UI action must support the use
of a processing page. The Ul actions that support processing pages are the following;:

¢ Auto-Complete Configuration

This action is only available for FCE Models.

e ¢ Apply/Finish/Confirm
The Finish action supports processing pages.
Note: The processing page is only available for FCE Models. No

processing pages are supported for Original Configurator Engine
(OCE) Models.

The processing page is displayed at runtime when the following are true:

* The end user invokes a supporting Ul action in which the Display Processing Page

3-64 Oracle Configurator Fusion Configurator Engine Guide

setting is enabled

¢ The amount of processing time for the action exceeds the limit previously specified
by the profile option CZ: Processing Page Delay, page 2-3.

There is no default processing page for the Auto-Complete Configuration action. A
default processing page (with no Main Message) is displayed for a long-running Finish
action when you click an uncustomized Finish button.

If the processing for an action does not run long enough to invoke the processing page,
then the page ordinarily displayed for the action appears. The Auto-Complete
Configuration action ordinarily produces the Auto-Complete summary page, which
allows the end user to undo the Auto-Completion, or to Return To Configuration in
Adjust Mode. The Finish action ordinarily produces a configuration Confirmation page.
However, Finish can invoke Auto-Complete on an incomplete configuration that does
not contain any items that are invalid or require end-user input; in that case Finish
displays the Auto-Complete summary page.

Procedure

To specify a processing page for a UI action:

1. Edit the details page for a Ul element (such as a Custom Button).

2. For the element's Action, click Define.

3. Inthe Ul action's Choose Action (or Define Action) page, under Session Control,
choose one of the actions that supports the processing page. The supporting actions

are listed elsewhere in this section.

4. Expand the Processing Page section.

The Processing Page section only appears when you select actions that support the
processing page.

5. Select Display Processing Page, to enable the use of the Processing Page.

6. Optionally, for Processing Page Template, click Choose to select a different
template.

* You can accept the default template, which is the Generic Processing Page, page
3-59.

® You can select the predefined Generic Processing Page with Stop Button, page
3-60 template.

* You can select any customized versions of those Processing Page templates that
you have created.

7. Optionally, enter custom text for Page Title, Main Message, or Processing Caption.

Building a Configuration Model Using the Fusion Configurator Engine 3-65

See Generic Processing Page, page 3-59 for an explanation of these text elements on
the template page.

Tip: The Main Message and Processing Caption are Formatted Text elements, so
you can use simple HTML markup to format the text. See the Oracle Configurator
Developer User’s Guide for a list of HTML tags supported in Formatted Text
elements.

8. Click Apply.

Your settings related to the processing page are retained when you copy or move a Ul
element

Runtime Icons and Images

The table below lists the icons and images that are used to indicate an option's selection
state and specific UI actions at runtime.

For details about how to change the default images that indicate selection state at
runtime, see User Interface Master Templates, page 3-48.

Icons and Images Used at Runtime

Name Description Icon
Recommended Check Box An enhanced Check Box |7<}
(recommended_checkbox.gif) image for the Proposed

Selected' state.
Recommended Radio Button ~ An enhanced Radio Button F(}
(recommended_radio_button. image for the 'Proposed
gif) Selected' state.
Recommended Status A status icon for the """’Q
(recommended_status.gif) 'Proposed Selected' state.
Not Recommended Check An enhanced Check Box &.(}
Box image for the 'Proposed
(not_recommended_checkbox Excluded' state.
.gif)
Not Recommended Radio An enhanced Radio Button &.(}

Button
(not_recommended_radiobutt
on.gif)

image for the 'Proposed
Excluded’ state.

3-66 Oracle Configurator Fusion Configurator Engine Guide

Name Description Icon

Not Recommended Status A status icon for the ><o
(not_recommended_status.gif 'Proposed Excluded' state.

)

Proposed Status A status icon that indicates P
(proposed_status.gif) the associated item's state or

value is the result of either a

Default or Search Decision.

User Interface Definition

A User Interface's UI Definition contains information and settings that are specific to the
FCE when the Model-level Configurator Engine setting is set to Fusion (in other
words, when the Ul belongs to an FCE Model).

In this case, the Ul Definition also contains the Enable Auto-Override for Conflicts
setting. The default value of this setting is determined by the Master Template that was
used to generate the Ul, but you can change it in the UI Definition. For more
information, see Auto-Override, page 4-10.

Note: Auto-Override is always enabled in Models that use the Original
Configurator Engine.

The Auto-Override for Conflicts setting also determines the value of the session
property AutoOverrideEnabled at runtime. For details about this property, see
Configuration Session Properties: Conflict Processing, page 3-15.

When the Ul a belongs to an FCE Model, its UI Definition also contains settings that
control which Button Bar, Utility Page, and Message Ul Content Templates the UI uses
at runtime. All templates and images that are used by default are determined by the Ul
Master Template that was used to generate the Ul You can select different templates
and specify different images that are used to indicate options that have changed or still
require end-user input.

Unit Testing a Configuration Model Using the Model Debugger

For background about unit testing and the Model Debugger, see the Oracle Configurator
Developer User’s Guide.

Most of the information in the Oracle Configurator Developer User’s Guide also applies
when testing an FCE Model, but there are some exceptions. This section describes
additional functionality and features of the Model Debugger that are available only
when testing an FCE Model.

Building a Configuration Model Using the Fusion Configurator Engine 3-67

The Edit Totals and Resources setting is disabled when you launch the Model Debugger
to unit test an FCE Model.

Tip: Open an FCE Model for editing and then test the Model using the
Model Debugger while reading this section. Then, navigate to each area
of the Model Debugger and note the icons, Ul labels, and functionality
described in the following sections.

Configuration Tab

When testing an FCE Model, the Model Debugger displays unique icons that indicate
logic states that are available only in the FCE and other icons that identify whether an
option was selected as a result of a Search Decision or by a Default.

Columns

The Configuration tab may contain the following additional or enhanced columns for
FCE Models:

* Logic State: This existing column displays new icons which indicate logic states
that are available only in the FCE, and other new icons that identify whether an
option was selected as a result of a Search Decision or by a Default. See Runtime
Icons and Images, page 3-66

* Input Required: This column replaces the Unsatisfied column used for Original
Configurator Engine Models. The presence of an icon in this column indicates
whether a node requires a value. See Require End-User Input Setting, page 3-19.

* Range: When the associated node is unbound, this new column displays the node's
minimum and maximum:

e Value, for Numeric Features, Totals, and Resources

* Quantity, for Feature Options and BOM nodes (all types)
e Instances, for Components

e Connections, for Connectors

® Selections, for Option Features

e Selections, for Boolean Features (False.. True)

When the associated node is bound, the Range column is blank.

To display this column in the Configuration tab, create a View and add it to the
'Columns Displayed' list.

This column appears in the Watch List by default.

3-68 Oracle Configurator Fusion Configurator Engine Guide

* Changed by Auto-Complete: An icon appears in this new column if
Auto-Complete modified the item's value or selection state.

Controls
The Configuration tab includes the following UI controls for FCE Models:

¢ Auto-Complete: This button invokes Auto-Complete, page 4-2. After
Auto-Complete finishes processing, all Model interaction UI controls are read-only.
To modify the configuration, click Adjust Configuration. To return the
configuration to its previous state, click Undo Auto-Complete.

If any items in the configuration require end-user input, the Model Debugger
displays a message and lists the invalid or required items. After addressing all
invalid or required options in the configuration, you can invoke Auto-Complete
again.

The Auto-Complete Configuration button appears in the Configuration tab by
default.

* Adjust Configuration: After running Auto-Complete, the configuration is in
read-only mode and you must click this button to make any changes to the
configuration.

You can also click Undo Auto-Complete while modifying a completed
configuration, or click Auto-Complete Configuration again after making changes.

e Undo Auto-Complete: This button is available after you click Auto-Complete
Configuration, and it enables you to return the configuration to the state it was in
before running Auto-Complete.

If a Connector allows multiple connections, the Value column in the Configuration tab
contains the message "See Node Details." Click the Connector's name to view its details
page and all of the connected target instances. For more information see Model Node
Details Pages, page 3-69.

If any instances of the same type exist in the instance pool, clicking the icon in the Add
Instance column in the same row as an instantiable component displays the Instance
Chooser Page. In this case, you can either create a new instance or select one from the
list unassigned instances. If no instances of the same type exist in the instance pool,
clicking the icon in the Add Instance column creates a new instance of the component.

If the configuration is incomplete and does not contain any items that are invalid or
require end-user input, clicking the Finish button invokes Auto-Complete. For more
information, see Finish Configuration, page 4-9.

Model Node Details Page

To display a Model node's details page, click the node's name in the Configuration tab.

The details page for each node includes information about the node's domain, such as

Building a Configuration Model Using the Fusion Configurator Engine 3-69

the minimum and maximum value, quantity, selections, instances, and so on. Any
Configurator Extension command events that are associated with the node also appear
on a node's details page.

A Connector node's details page lists all component instances that are currently
connected and all target instances that are available for connection.

A Connector node's details page also indicates:

e Whether the Connector is a Reverse Connector
¢ How many connections currently exist

* The Minimum and Maximum Connections specified for the Connector in
Configurator Developer (for Multiple-Instance Connectors)

The details page of any component that is the target of a Connector lists all currently
connected components (in the 'Connections to this Instance' table).

Summary Tab

In the Summary tab, an icon appears in the Status column to indicate how each node
was added to the configuration. Unique icons indicate whether each item was added by
the end user or by the propagation of a constraint, or if the item is a proposed selection
(that is, it was added by either a Search Decision or a Default). To view the description
of each icon, click Show Legend.

The Summary tab shows only items within the configuration that are orderable (that is,
included on a sales order); therefore, any non-BOM items are not included.

If Auto-Complete was invoked during the unit testing session, then the Summary tab
includes the Adjust Configuration and Undo Auto-Complete buttons. Click Adjust
Configuration to modify the completed configuration. For more information about
Undo Auto-Complete, see Undo Auto-Complete, page 3-64.

Status Tab

In addition to the sub-tabs described in the Oracle Configurator Developer User’s Guide,
the Status tab contains the following sub-tabs: Input Required, Proposed Items, and
User Requests.

The Input Required sub-tab displays all Features, Connectors, BOM Option Classes, and
Text Features in the configuration that require end-user input. This column also appears
in the Watch List table by default.

The Proposed Items sub-tab displays all items that Auto-Complete added to the
configuration and items whose values were provided by Auto-Complete.

The User Requests sub-tab lists each item that you added to the configuration; items
added to the configuration by Auto-Complete do not appear. This area also describes
the action that occurred to add the item to the configuration. For example:

3-70 Oracle Configurator Fusion Configurator Engine Guide

Name Request

Integer Feature X Set "Integer Feature X' to '27'

BF1 Select 'BF1'

Note: If you upgraded from a previous release of Oracle Configurator,
you may notice that the Status tab no longer contains an Unsatisfied
Rules tab. This is because rules cannot be unsatisfied in an FCE Model.

Building a Configuration Model Using the Fusion Configurator Engine 3-71

4

Runtime Behavior of the Fusion
Configurator Engine

This chapter covers the following topics:
* Domain Display and Availability
* Logic State Display

* Runtime Configurator Flows and Behavior

Domain Display and Availability
For background information, see Domain Ordering Setting, page 3-16.

As an Oracle Configurator end user makes selections that affect a node's specified
domain, Oracle Configurator dynamically updates the domain range that is displayed
in the UL For example, if an Integer Feature's domain is set at 1-10 in Configurator
Developer, then its range appears as 1-10 at runtime. If the end user or the propagation
of a constraint makes a selection that cause the values 6-10 to be invalid, then the
Feature's range changes to "1-5".

When a variable (node) is bound at runtime, its range no longer appears. This is true
regardless of whether it was bound by the end user or by the propagation of a
constraint.

Logic State Display

At runtime, distinctive icons appear in the Status column of the Configuration
Summary page to identify end user selections, system selections (options selected by
rule propagation), and Proposed selections (options selected either by a Default or by
Search Decisions, or by Auto-Complete). Proposed selections have a logic state of
Recommended (Proposed Selected).

Options may also be excluded from a configuration by Defaults or Search Decisions, or

Runtime Behavior of the Fusion Configurator Engine 4-1

by Auto-Complete. These options have a logic state of Not Recommended (Proposed
Excluded), and are also indicated by a distinctive icon during a runtime configuration
session. For details, see Runtime Icons and Images, page 3-66.

See also Logic States, page 3-27 and Selection State, page 3-16.

Runtime Configurator Flows and Behavior

This section describes end user actions and runtime behavior that is specific to FCE
Models. It includes the following sections:

¢ Auto-Complete Configuration, page 4-2

¢ Instance Management, page 4-4

¢ Finish Configuration, page 4-9

¢ Conflict Handling and Resolution, page 4-9

¢ Restoring a Completed Configuration, page 4-11

Auto-Complete Configuration

By default, Uls that you generate in Configurator Developer provide a button labeled
Finish. Clicking this button in an FCE Model invokes Auto-Complete when the
configuration:

* Isincomplete
* Does not contain any items that are invalid or require end-user input

When none of the options in the configuration require end-user input and the end user
invokes Auto-Complete, the process applies all search decisions that you have defined
in Configurator Developer, binds all variables in the configuration (except Text
Features), and presents a completed configuration to the end user. For details about the
page that appears when Auto-Complete finishes processing, see Auto-Complete Status
Dialog, page 3-52.

After reviewing a configuration that was created by Auto-Complete, an end user can do
one of the following:

* Save the configuration and return to the host application (by clicking Finish)

¢ Undo the results and continue making selections manually (by clicking Undo
Auto-Complete)

See the Undo Auto-Complete action in User Interface Actions, page 3-62.

* Modify the completed configuration (by clicking Return to Configuration, which

4-2 Oracle Configurator Fusion Configurator Engine Guide

places the user into Adjust Mode)

In order to perform the Undo Auto-Complete action, the configuration session must
return True for one of the system properties AutoCompleteSuccessful or InAdjustMode.

It is also possible that Auto-Complete will be unable to find a solution. For details, see
Aspects of Auto-Complete Behavior, page 4-3.

If an end user clicks Finish when one or more options in the configuration require
end-user input, then Auto-Complete does not run. This can occur, for example, when
the configuration contains a required Text Feature, which can only be bound by the end
user. In this case, Oracle Configurator displays a message at the top of a page that
contains at least one invalid or required option. After addressing all invalid or required
options in the configuration, the end user can invoke Auto-Complete again, by clicking
Finish.

When a configuration contains options that require end-user input, Oracle Configurator
displays the Input Required Message Box, page 3-54 by default. You can display
different content by specifying a different UI Content Template for the Input Required
on Finish setting in your UI Master Template (before creating the UI), or in the Ul
Definition (after creating the UI).

Important: To invoke Auto-Complete from a custom Ul page, you must
add a control that invokes the Auto-Complete Ul action. For example,
create a Custom Button and specify Auto-Complete Configuration as
its associated Ul action.

Aspects of Auto-Complete Behavior

There are aspects of the runtime behavior of Auto-Complete that may appear to be
limitations to its ability to complete a configuration.

* There may be some options in your Model that you have specified must be bound
by the end user (see Require End-User Input Setting, page 3-19). If the end user
clicks Finish (or invokes Auto-Complete using a custom Ul control) when one or
more options require end-user input but cannot be bound by Auto-Complete,
Oracle Configurator displays a message listing those option(s). This behavior is by
design, and is intrinsic to the capabilities of the FCE.

* A blank Text Feature may exist in a completed configuration only when it does not
require a value. Consider this behavior carefully if you use custom Ul templates,
and test the Ul thoroughly to ensure that end users can manually create a complete
configuration by entering values for all required blank Text Features. For more
information, see Text Features, page 3-19.

e [Itis possible that Auto-Complete will be unable to find a solution to the
configuration problem. This can occur, for example, when a combination of Model

Runtime Behavior of the Fusion Configurator Engine 4-3

Constraints and end-user selections prevents Auto-Complete from binding one or
more variables. In this situation, Oracle Configurator displays a message suggesting
that the end user modify some previous selections and then re-invoke
Auto-Complete. The scenarios in which Auto-Complete may be unable to create a
complete and valid configuration are described in Conflict Handling and
Resolution, page 4-9.

e For important information about Configurator Extensions and Auto-Complete, see
Configurator Extensions, page 3-34.

Instance Management

Important: See Oracle Configurator Release Notes, Release 12.1.1 on the
Oracle Support Web site for background on important enhancements
and changes to runtime instance management for the FCE.

This section describes actions and behavior related to managing component instances at
runtime.

When an end user is configuring an FCE Model, Oracle Configurator automatically may
create one or more instances if additional instances are required to satisfy a constraint.
For example, your company sells network servers and equipment racks that hold up to
5 servers. To ensure that enough instances of the Rack component exist in the
configuration, you define the following Statement Rule:

rack.instanceCount () = ceiling(server.instanceCount() / 5)

At runtime, when the end user specifies 2 Servers, Oracle Configurator creates 1
instance of the Rack component. If the end user specifies 7 servers, then Oracle
Configurator creates 2 Racks, and so on.

Other examples of when an instance may be created automatically include:

* The minimum number of instances required is greater than the number of instances
that currently exist in an Instance Set.

* The Model contains a required Connector, but no potential target instance for that
Connector exists in the configuration. (This is projected functionality.)

For more information, see Add Instance UI Action, page 4-8.

Terminology for Instance Management

The following terminology is related to instance management.

® generic instance: A generic instance has no characteristics that identify it as being
different from other instances of the same component. An instance that is added by
Oracle Configurator and not yet configured or renamed is considered generic. The

4-4 Oracle Configurator Fusion Configurator Engine Guide

FCE's dynamic instantiation capability can generate generic instances in response to
constraints that require their creation. Constraints can also prevent the user from
deleting such required generic instances.

* identifiable instance: An identifiable instance has an identity produced by some
explicit end user action. An instance that is added, configured, or renamed by a
user is considered to have an identity distinct from that of any other instances of the
same component.

® placeholder: A placeholder is a Ul element indicating that an instance is required in
that location, but that no identifiable instance has been specified for it. A
placeholder usually represents a generic instance. (Under some circumstances, a
placeholder represents no instance at all, but this distinction is not communicated to
the end user.)

Ul Actions in Instance Management Tables

For working with FCE Models, the UI templates named Instance Management Table
and BOM Instance Management Table provide the actions described in the following
table.

Ul Actions in Instance Management Tables

Action Description

Placeholder rows Placeholder rows represent required instances in the table. When a

constraint increases (or decreases) the minimum number of instances
Note: This

functionality is not a Ul

action, but is an

essential complement

to Ul actions. Generic instances added to the Instance Management Table for a
component are represented by placeholder rows, which are visually
distinguished by the automatically generated label "[To be
Configured]".

of a component required in an instance set (its minimum cardinality),
any additional instances that must be created to meet that minimum
are represented by placeholder rows.

When the user selects a placeholder and chooses the Configure
action, the placeholder is replaced by an identifiable instance. Note:
The Auto-Complete action changes placeholders into identifiable
instances.

Runtime Behavior of the Fusion Configurator Engine 4-5

Action

Description

Add Instance

Copy Instance

Configure Instance

Delete Instance

Remove Instance

Adds an instance. The Add Instance action always results in an
increase to the minimum cardinality, and does not replace any
existing placeholder rows.

If there are any existing candidate instances in the instance pool, the
Instance Chooser is presented, allowing the user to select one of them
to use, rather than creating a new instance. The Instance Chooser also
provides a row labeled "[New Instance]"; selecting this row creates a
new identifiable instance. If there are no candidates, then a new
identifiable instance is created. If adding an instance causes a
non-overridable conflict, then no instance is added, either generic or

identifiable.

Creates a copy of the selected instance and places it in the instance
pool (thus making it available to the Instance Chooser). The instance
copied into the instance pool is given a name of the form "Copy of
component_name". If additional copies are made of the original
instance, they are named with the form "Copy n of component_name",
with incrementing values of 7, to show the chronological order of the
copies. The Copy Instance action is provided by an icon in the Copy
column in the Instance Management Table UI templates that support
Copy And Remove. The Copy icon is never displayed in placeholder
rows, since no identifiable instance is there to be copied.

Configures an instance. When this action is selected on a placeholder
row, the placeholder is replaced with a new identifiable instance.
This action maintains the cardinality of the instance set, by increasing
the number of identifiable instances and equally decreasing the
number of placeholders.

Deletes an instance permanently, and also always reduces the
cardinality of the set, leaving one or more fewer rows in the table,
depending on the circumstances. Deleting a placeholder row only
reduces the cardinality of the set, since there is no identifiable
instance to delete.

Removes an identifiable instance and replaces it with a placeholder
row, but does not reduce the cardinality of the set. The removed
instance is placed into the instance pool (thus making it available to
the Instance Chooser). The Remove Instance action is provided by an
icon in the Remove column in the Instance Management Table UI
templates that support Copy And Remove. The Remove icon is never
displayed in placeholder rows, since no identifiable instance is there
to be removed.

4-6 Oracle Configurator Fusion Configurator Engine Guide

The Unassigned Instance Pool

At runtime, it is possible for instances to be removed from an Instance Set and
automatically put into a collection of unassigned instances. (In this context,
"unassigned" means the instance does not belong to an Instance Set and it is not
attached to a Connector.) This collection of unassigned instances is not visible to the end
user and is known as the "instance pool."

An example of how an instance can become unassigned is when one configuration rule
causes an instance to be created (or "contained") in an Instance Set, and the resolution of
a conflict with another configuration rule overrides the containment, thus putting the
instance into the instance pool, unassigned to any Instance Set.

Each instance in the instance pool can be added to another Instance Set later in the
configuration session. An instance cannot be reassigned to the Instance Set from which
it was removed (except in very rare circumstances). See Instance Chooser Page, page 3-
53.

Unassigned instances may be also created in a Connector and then later added to an
Instance Set. Additionally, only configured instances are displayed, which means
instances that contain user inputs (including non-defaulted instance names), or
instances that are connected to a component within the configuration. (Configured
instances are also called identifiable instances.)

Default Instance Names

When configuring a Model that uses the Original Configurator Engine (Release 12.0 and
earlier), a newly created instance is given an instance number based on its order of
creation in a particular Instance Set. A default instance name is generated from this
number along with the Display Name of the Component or Model Reference that
represents the containing Instance Set. An instance cannot move from one Instance Set
to another when using the Original Configurator Engine; therefore the default instance
name and number are always similar to the containing Instance Set. However, this is
not necessarily true when using the FCE.

When using the FCE, the name of all referenced Model instances defaults to the Display
Name of the root node of the parent Model, appended with a 1-based ordinal number.
For example, Hub Model-1, Hub Model-2, and so on. The name of each instance is
unique throughout the configuration, rather than within the specific container, and it
does not change as the instance's status changes within the configuration (for example,
when it is assigned to another Instance Set or is attached to a Connector).

Oracle Configurator uses a similar convention when naming Component instances, but
in this case the default name of each instance is derived from the Component name (this
is the same behavior as the Original Configurator Engine). Similar to referenced Model
instances, the ordinal number assigned to each instance is unique among all instances of
the Component in the configuration.

Runtime Behavior of the Fusion Configurator Engine 4-7

Add Instance Ul Action

This action enables the end user to add an instance of a component to an Instance Set.
An end user can create a new instance only if the number of instances in the
configuration has not yet reached the Maximum Instances specified in Oracle
Configurator Developer, or the propagation of a rule has increased the Maximum
Instance value specified in Configurator Developer.

If any unassigned instances of the same type exist in the instance pool when the end
user invokes this action, Oracle Configurator displays the Instance Chooser Page, page
3-53. The end user can then select an existing instance from a list and add it to the
Instance Set. (The term "instance pool" is defined in The Unassigned Instance Pool, page
4-7.)

If no instances of the same type exist in the instance pool when an end user invokes the
Add Instance action, then the Instance Chooser Page does not appear and Oracle
Configurator creates an entirely new instance.

By default, the Add Instance Ul action is assigned to a button that appears in the
Instance Management Table UI Content Template.

Add and Go To Instance Ul Action
This action is similar to the Add Instance Ul action, but Oracle Configurator navigates

to the new instance immediately after the end user adds it to the Instance Set.

For more information, see Add Instance UI Action, page 4-8.

Create Instance Ul Action

If the maximum number of instances allowed in the configuration has not been reached,
then invoking this action creates a new instance of the specified component.

This action does not allow the end user to select an existing instance of the same type
from the instance pool and add it to an Instance Set. See Add Instance Ul Action, page
4-8.

Create and Go to Instance Ul Action

This action is similar to the Create Instance Ul action, but Oracle Configurator navigates
to the new instance immediately after the end user creates it. See Create Instance Ul
Action, page 4-8.

BOM Instantiation and Selection
When an end user is configuring an FCE Model and creates an instance of a BOM
Model, the new instance is selected (added to the configuration) automatically. In
Models that use the Original Configurator Engine, the end user must manually select a
newly created BOM Model instance to add it to the configuration.

4-8 Oracle Configurator Fusion Configurator Engine Guide

Finish Configuration

If the configuration is incomplete and does not contain any items that are invalid or
require end-user input, clicking the Finish button invokes Auto-Complete. If
Auto-Complete finishes successfully, and the process does not change any of the
orderable items, does create any new instances containing required Text Features, and
causes no new validation failures to occur, then the completed configuration is
displayed in the Configuration Summary page.

At this point, the end user can click:

* Undo: Rolls back the changes made by Auto-Complete, returns the end user to the
configuration

® Return to Configuration: Keeps the changes made by Auto-Complete and returns
the configuration session to edit mode so the end user can make changes

e Finish: Saves and returns configuration data to the host application

Note: If the order has not yet been booked in the host application,
then it is still possible for an end user to modify a configuration
that was created by Auto-Complete. See Restoring a Completed
Configuration, page 4-11.

If the configuration is incomplete but there are one or more items that are invalid or
require end-user input, then by default Oracle Configurator displays the Input
Required Message Box, page 3-54 when the end user clicks the Finish button. This
message lists one or more items that are invalid or require end-user input, and is
displayed at the top of the first page in the Ul (based on the Ul's navigation sequence).

Tip: You can display a different message or UI Content Template in this
situation by specifying a different UI Content Template for the Input
Required on Finish setting. This setting is available in:

e All UI Master Templates
e The Ul Definition
For example, you may want to display the Input Required Dialog Page,

page 3-54 or a custom message instead of the Input Required Message
Box.

Conflict Handling and Resolution

In FCE Models, several types of conflicts can occur at runtime. The following sections

Runtime Behavior of the Fusion Configurator Engine 4-9

describe each type:

e User Request Conflict, page 4-10
¢ Hidden Conflict, page 4-11

¢ Fundamental Conflict, page 4-11

User Request Conflict

A User Request Conflict occurs when an end user's action conflicts with the constraints
defined in the Model. By default, the consequences of overriding this type of conflict
appear in the User Request Conflict Dialog Page, page 3-55.

When a User Request Conflict occurs, the end user can do one of the following:

¢ Opverride: When possible, this action applies the end user's request and removes all
conflicting requests. Some requests are not overridable.

For details, see Auto-Override, page 4-10.

e Cancel: This action withdraws the request that caused the conflict, and returns the
end user to the configuration.

Note: A User Request Conflict is similar to an overridable
contradiction, which is a type of conflict that can occur when using the
Original Configurator Engine. For details, see the Oracle Configurator
Developer User’s Guide.

Auto-Override

When a User Request Conflict occurs at runtime, Oracle Configurator displays the User
Request Conflict Dialog Page, page 3-55. If Auto-Override is enabled, then this message
displays the consequences of overriding the conflict. In this case, the end user can either
override the conflict by clicking OK and return to the page where the conflict occurred,
or click Cancel to undo the action that caused the conflict.

If Auto-Override is disabled, the end user must either click Continue to view additional
information about how to resolve the conflict, or click Cancel to undo the action that
caused the conflict. If the end user clicks Continue, Oracle Configurator displays the
Confirm Override Dialog Page, page 3-55.

The Enable Auto-Override for Conflicts setting is available in all Ul Master Templates,
and it is enabled by default.

Note: This setting is available only if the profile option CZ: Enable
Configurator Engine is set to either Both or Fusion.

4-10 Oracle Configurator Fusion Configurator Engine Guide

Hidden Conflict

A Hidden Conflict occurs when Oracle Configurator is processing an end user's request,
but the conflict is not caused by the request itself. This type of conflict is caused by an
internal mechanism of the FCE that controls the assignment of instances to an Instance
Set or to a Connector, and it is triggered when an end user's request is removed. For
example, when the user clears a numeric value, deselects a prior selection, or modifies a
numeric value or selection (which causes the old value or selection to be removed as an
interim step).

Because the difference between a Hidden Conflict and a User Request Conflict is not
obvious to the end user, and since the options for resolving each type of conflict are the
same, Oracle Configurator displays the User Request Conflict Dialog Page, page 3-55
when a Hidden Conflict occurs.

Fundamental Conflict

A Fundamental Conflict results when the root Model, one of its child Models, or a
Component, is overconstrained. This means that no valid solution can be found using
the constraints as they are currently defined in the Model. To resolve a Fundamental
Conflict, you must modify the constraints for the component that caused the conflict in
Configurator Developer, and then retest the Model.

Good model development practice requires that a Fundamental Conflict should be
detected during system testing, and resolved before deployment of your application.
This type of conflict, if it occurs at runtime, requires an end user to either exit the
configuration, or continue without including the component that caused the conflict.

If the conflict exists in the root model or one of its required child Models, the
Fundamental Conflict message appears when you attempt to unit test a configuration
model from Configurator Developer. See Fundamental Conflict Message, page 3-55. In
this case, Oracle Configurator does not initialize the unit testing session and you return
to Configurator Developer.

If the problem exists in an optional component, it is possible launch a unit testing
session successfully, but the User Request Conflict Dialog Page appears when the
conflict occurs (for example, when you select or choose to configure the optional
component). In this case, the end user will be able to continue, but the component that
caused the conflict will not be included in the configuration. See User Request Conflict
Dialog Page, page 3-55.

Fundamental Conflicts are easily detected when unit testing a Model from Configurator
Developer. Therefore, it is unlikely that an overconstrained Model would ever be
deployed in a production environment.

Restoring a Completed Configuration

When an end user restores a completed configuration, all of the selections and values
from the original session are retained and the end user can navigate the configuration,

Runtime Behavior of the Fusion Configurator Engine 4-11

select or deselect options, and change values. This is true regardless of whether
Auto-Complete was invoked during the configuration session. An end user can also
restore configurations that were created before a Model was converted to an FCE
Model.

In a restored configuration, any instances that existed in the instance pool from the
original configuration session are no longer available. This is because Oracle
Configurator purges all instances in the pool when the end user saves the original
configuration. For more information about the instance pool, see The Unassigned
Instance Pool, page 4-7.

A restored configuration opens in a default state that is the equivalent of Adjust Mode,
so it does not include an Undo Auto-Complete button. This button appears by default
only in the Auto-Complete Status Dialog, which is displayed after Auto-Complete
completes successfully.

Procedure

If you want end users to be able to return a configuration to the state it was in before
running Auto-Complete, then perform the following before publishing the Model:

1. Open the UI for editing in Configurator Developer.
2. Create a Ul control, such as a button, on the Ul's first page. (Which page appears
first at runtime depends on the Ul's primary navigation style.)

3. In the UI control's details page:

® Assign the Undo Auto-Complete Ul action.

* Define a display condition that uses the InAdjustMode System Property.

For example:

Object: Session Data
Property: InAdjustMode
Comparison: Is Condition: True

4. Click Apply.

The UI control created in this example appears only when an end user is modifying a
restored configuration.

4-12 Oracle Configurator Fusion Configurator Engine Guide

5

Configuration Attributes for Fusion
Configurator Engine Models

This chapter describes how to set up configuration attributes for Models that use the
Fusion Configurator Engine.

This chapter covers the following topics:

* About Configuration Attributes

¢ Tasks for Adding Configuration Attributes to an FCE Model
® Setting Up Descriptive Flexfields

* Adding Attribute Features

e Associating Attribute Features to Flexfield Segments
* Associating BOM Nodes with Attribute Features

¢ Defining the Configurator Extension Rule

® Access to Configuration Attribute Data

® Special Considerations

¢ Maintaining the Configuration Attributes Setup

¢ Using Configuration Attributes in the Downstream Application

About Configuration Attributes

The term configuration attributes means attributes of a configuration produced by the
runtime Oracle Configurator. Attributes are predefined data items that record qualities
of something. Configuration attributes record data generated during a particular
configuration session for qualities that are not defined in the configuration model.

The use of configuration attributes is a methodology for using certain existing features
of Oracle Configurator and host applications to capture and exchange data that is not
standard inventory information. This kind of data can be especially valuable for

Configuration Attributes for Fusion Configurator Engine Models 5-1

processing by other applications.

The configuration attributes methodology was introduced in a previous release of
Oracle Configurator. For more details, examples, and important background on the
previous implementation, see Oracle Configurator Methodologies.

Important: This chapter only describes adding configuration attributes
to an FCE Model that does not already use them. If you are already
using configuration attributes with a model that uses the Original
Configurator Engine, and you have converted that Model to use the
FCE, and you want to use configuration attributes with the new FCE
Model, then you will have to change your setup for the FCE Model to
accord with the setup described here. See the Oracle Configurator Release
Notes, Release 12.1.1 on the Oracle Support Web site for background on
these differences. Your configuration attributes setup on your original
Model will continue to operate without change.

The setup for configuration attributes consists of the elements described in the table
Elements of the Configuration Attributes Setup, page 5-2.

Elements of the Configuration Attributes Setup

Element Purpose

A configuration model that

includes:

- Imported BOM Model nodes Configuration attributes describe attributes of these
nodes that are not defined in the inventory item.

- Feature nodes At runtime, values for the configuration attributes are
stored in certain specified Features.
Features used for this purpose are called attribute Features.

- Properties Certain specially-named Properties associate BOM Nodes

with their corresponding attribute Features. Other
specially-named Properties associate the attribute
Features with descriptive flexfield segments for a given
context.

Properties used for this purpose are called attribute
Properties.

5-2 Oracle Configurator Fusion Configurator Engine Guide

Element Purpose

Descriptive flexfield definitions Flexfield segments connect attribute Features with
columns in CZ_CONFIG_ATTRIBUTES, for a given set of
flexfield contexts

CZ_CONFIG_ATTRIBUTES This table stores the values for the configuration
attributes so that they can be read for further processing
by downstream applications.

This table is called the attribute flexfield table.
Configurator Extension Turns on runtime attribute processing, which gathers the

runtime values from the attribute Features of the Model
and writes them to the attribute flexfield table.

An example of how a configuration attribute is set up, and how it is used at runtime, is
provided in the figure Overview of Configuration Attributes, page 5-4. The flow of

the example is explained in the table Configuration Attributes Flow, page 5-4. The
details of this setup are explained in following sections, which refer to the elements in
this example.

Configuration Attributes for Fusion Configurator Engine Models 5-3

Overview of Configuration Attributes

Configuration Attributes: Overview Runbme Ul ____ .
I I
| Frame Size [18 I
@ !\ rame siZe 1
e e A
Configurator Extension
Model Structure Model Properties Flexfield Definitions
BIKE_ORDER
| BIKE FRAME @ Contexts
| |_FRAME_TYPE . ATTR_1_PATH = Frame 5ize Name
[| |_LMOUNTAIN Tnternal
| | |_ROAD Custom
| |_Color [Standard o —o0o
| | |_Red
| | | Blue @ Segments for Context: “Standard”
| | |_Green ®
| |_Frame_Size* ... ATTR_CONTEXT = Standaxd Name Column | @lL
|_Customer ATTR_NAME = Size c——=—-———hgge ATTRIBUTE]L =)
|_Service Plan Weight | ATTRIBUTE2
) - Color ATTRIBUTES
CZ_CONFIG_ATTRIBUTES Table
CONFIG CONFIG CONEFIG ATTRIBUTE
_HDR_ID _REV WBR _ITEM ID PS_WODE_WAME _CATEGORY ATTRIEUTEL ATTRIBUTEZ ATTRIBUTE3
4175022 2 1923330 BIKE SHOP Internal
4175022 2 1823330 BIKE SHOP Custom 50.0 TRUE
4175022 2 1923330 BIKE SHOP Standard 25 Alloy
4175022 2 1923331 BIFE_FRAME Standard Red
4175022 2 1923332 FRAME TYFE Standard i8 <: i 7
Configuration Attributes Flow
Step Process Example

At runtime, when a configuration is
initialized (created or restored), the
postConfigInit () method of
CZAttributeCX is triggered by a
Configurator Extension Rule. This method
turns on attribute processing, which
collects attribute information on the nodes
in the configuration model by searching
for specially-named attribute Properties.

FRAME_TYPE is the BOM node that is set
up for configuration attributes.

5-4 Oracle Configurator Fusion Configurator Engine Guide

Step Process

Example

Attribute processing searches BOM nodes
for attribute Properties with names of the
form ATTR_n_PATH.

Attribute processing searches for the node
named by ATTR_n_PATH, under the
BOM Model node closest to the node

On the specified attribute Feature,
attribute processing obtains the values of
the attribute Properties ATTR_NAME and
ATTR_CONTEXT.

An end user enters a value for an attribute
Feature.

When the configuration is saved, the
descriptive flexfield tables are queried
using the values of ATTR_NAME and
ATTR_CONTEXT.

The values for descriptive flexfield
segment and context are used to
determine which ATTRIBUTE#n column in
CZ_CONFIG_ATTRIBUTES is associated
with the segment and context.

The value of the attribute Feature is
written to the desired column in
CZ_CONFIG_ATTRIBUTES.

The attribute Property ATTR_1_PATH is
found on the BOM node FRAME_TYPE.

The value of ATTR_1_PATH is
Frame_Size, which indicates that there is
an attribute Feature named Frame_Size

FRAME_TYPE is a BOM Option Class.
The closest BOM Model node is
BIKE_FRAME.

The node named Frame_Size is found
under BIKE_FRAME.

The value of ATTR_NAME is Size. The
value of ATTR_ CONTEXT is Standard.

The user enters the value 18 for
Frame_Size.

The value of ATTR_NAME is Size. The
value of ATTR_ CONTEXT is Standard.

These values indicate that the attribute
Feature is associated with a descriptive
flexfield segment named Size, and a
flexfield context of Standard.

The flexfield setup indicates that the
segment Size, for the context Standard, is
associated with column ATTRIBUTEL.

The value 18, for the attribute Feature
Frame_Size, is written to ATTRIBUTE1.

Tasks for Adding Configuration Attributes to an FCE Model

To set up configuration attributes for an FCE Model, perform the tasks listed in the table

Configuration Attributes for Fusion Configurator Engine Models 5-5

Summary of Setup Tasks for Configuration Attributes, page 5-6. For more information
about the tasks, refer to the sections cited in the Details column.

Summary of Setup Tasks for Configuration Attributes

Ste Task Details
p
1 Set up descriptive flex field Setting Up Descriptive Flexfields, page 5-6

contexts and segments.

2 Add attribute Features to a BOM Adding Attribute Features, page 5-8

Model.

3 Associate the attribute Features to Associating Attribute Features to Flexfield
flexfield segments. Segments, page 5-10

4 Associate BOM nodes to attribute Associating BOM Nodes with Attribute Features,
Features. page 5-10

5 Define the Configurator Extension Defining the Configurator Extension Rule, page 5-
Rule. 12

Important: This chapter only describes adding configuration attributes
to an FCE Model. If you are already using configuration attributes with
a model that uses the Original Configurator Engine, and you have
converted that Model to use the FCE, and you want to use
configuration attributes with the new FCE Model, then you will have to
change your setup for the FCE Model to accord with the setup
described here. See the Oracle Configurator Release Notes, Release 12.1.1
on the Oracle Support Web site for background on these differences.
Your configuration attributes setup on your original Model will
continue to operate without change.

Setting Up Descriptive Flexfields

The configuration attributes methodology uses the existing Oracle Applications feature
of descriptive flexfields to connect the set of attributes on a configuration model with a
database table that stores the values of those attributes.

¢ To define the contexts and segments for the flexfields, log into Oracle Applications
with the Oracle Application Developer responsibility.

For conceptual background on descriptive flexfields and contexts, and details on

5-6 Oracle Configurator Fusion Configurator Engine Guide

defining them, see the Oracle E-Business Suite Flexfields Guide.

e When you define the contexts for the flexfields, you must create whatever contexts
are required by the host application. For all the contexts that you define, use the
settings shown in the table Flexfield Settings for All Configuration Attributes
Contexts, page 5-7.

Flexfield Settings for All Configuration Attributes Contexts

Setting Value

Application Oracle Configurator

Table Application Oracle Configurator

Table Name CZ_CONFIG_ATTRIBUTES

* When you define the segments for each context, you must specify the ATTRIBUTE#n
column in CZ_CONFIG_ATTRIBUTES in which that segment's data will be written.
By using different contexts you can use the same column to store attribute data for
different attribute Features.

The figure Flexfield Contexts and Segments, page 5-8 shows the relationship of
flexfield contexts and their segments to the Properties of an attribute Feature. Compare
this figure to the figure Association of Attribute Features to Flexfields, page 5-10.

Configuration Attributes for Fusion Configurator Engine Models 5-7

Flexfield Contexts and Segments

Flexfields: Association with Contexts and Segments

Contexts (in Model, value of AttribufeFeatureName ATTR_CONTEXT)

MName
Intermal
Custom
Standard

Mame Column MName Column Mame Caolumn

Size ATTRIBUTEL Duration ATTRIBUTE1 Customer ATTRIBUTE1
Weight ATTRIBUTEZ ServicePlan | ATTRIBUTE2

Color ATTRIBUTES

Segments (in Model, value of AftributeFeatureName ATTR_NAME)

Adding Attribute Features

The structure of a BOM Model does not have a location for storing configuration
attributes data. To create such locations, you must add structure to imported BOM
Models, in Oracle Configurator Developer. In the configuration attributes methodology,
the added structure takes the form of attribute Features. Attribute Features are not a new
type of Feature. The term attribute Feature simply means a Feature that is used to
contain the data for a configuration attribute.

The figure Imported BOM Model, page 5-8 shows the structure of the imported BOM
Model for this example, before addition of attribute features.

Imported BOM Model

Model Structure: Imported BOM Model

BIKE_ORDER BOM Model
|_BIKE_FRAME............. BOM Mode/
|_FRAME_TYPE......... BOM Option Class Existing BOM structure
|_MOUNTAIN........... BOM Standard ftem
|LROAD........cooie BOM Standard Item

This imported BOM structure does not have locations for storing certain pieces of data
that you might want to capture during a configuration session for ordering a bicycle,
such as:

e the color of the BIKE_FRAME being ordered

5-8 Oracle Configurator Fusion Configurator Engine Guide

® the frame size of the BIKE_FRAME being ordered
e the name of the customer placing the BIKE_ORDER
¢ whether that customer elected a service plan for the BIKE_ORDER

To provide locations for entering runtime values for configuration attributes for this
Model, create the following Feature nodes:

¢ Color: to capture the color of the BIKE_FRAME being ordered
¢ Frame_Size: to capture the frame size of the BIKE_FRAME being ordered
¢ Customer: to capture the name of the customer placing the BIKE_ORDER

¢ Service_Plan: to capture whether that customer elected a service plan for the
BIKE_ORDER

The figure Model with Attribute Features, page 5-9 shows the structure of the
modified Model for this example, after the addition of the attribute Features listed in
this section. Compare this figure to the figure Imported BOM Model, page 5-8, and to
step 5 in the table Configuration Attributes Flow, page 5-4.

Model with Attribute Features

Model Structure: Added Attribute Structure
BIKE_ORDERc....... BOM Model)
|_BIKE_FRAME.. .. BOM Model
| |_FRAME T‘r’PE BOM Option Class > Existing BOM structure
| | _MOUNTAIN.. .. BOM Standard Item
| | |LROAD............c.c... BOM Standard Item _
| |_Color ..o Attribute Feature (Option) ™
| | |LRed.................. Attribute value
| | |LBlue........ccooee. Attribute value
|| LGreen.....ccccevevene.. Attribute value > Added attribute structure
| |_Frame_Size.............. Attribute Feature (Infeger)
|_Customer................... Attribute Feature (Text)
| Sewnce Plan.............. Attribute Feature (Boolean))

Attribute Features work in conjunction with descriptive flexfield segments (which are
described in Setting Up Descriptive Flexfields, page 5-6). The value provided at runtime
for an attribute Feature is stored, when the configuration is saved, in the attribute
flexfield table CZ_CONFIG_ATTRIBUTES in the column specified by the associated
flexfield segment's definitition.

For more information about defining Features, see the Oracle Configurator Developer

Configuration Attributes for Fusion Configurator Engine Models 5-9

User’s Guide.

Associating Attribute Features to Flexfield Segments

To create associations between attribute Features and their corresponding descriptive
flexfield contexts and segments, you must add attribute Properties to the Features, in
Oracle Configurator Developer.

e To associate an attribute Feature to the corresponding descriptive flexfield segment,
define a Property of type Text, named ATTR_NAME. The value of the Property
must be the name of the corresponding segment.

* To associate an attribute Feature to the corresponding descriptive flexfield context,
define a Property of type Text, named ATTR_CONTEXT. The value of the Property
must be the name of the corresponding context.

The figure Association of Attribute Features to Flexfields, page 5-10 shows how the
attribute Properties ATTR_CONTEXT and ATTR_NAME define associations between
attribute Features and their corresponding descriptive flexfield contexts and segments.
Compare this figure to the figure Flexfield Contexts and Segments, page 5-8, and to
steps 4 and 6 in the table Configuration Attributes Flow, page 5-4.

Association of Attribute Features to Flexfields

Model Structure: Association with Flexfield Segments

BIKE_ORDER
|_BIKE_FRAME

|_FRAME_TYPE

|_MOUNTAIN

Color...c.coovveiin ATTR_CONTEXT = standard, ATTR_MAME = Colar

_Frame_Size.............. ATTR_CONTEXT = Standard, ATTR_NAME = Size
Customer...................ATTR_CONTEXT = Internal, ATTR_MAME = Customer
Service Plan..............ATTR_CONTEXT = Cuztom, ATTR_NAME = serviceFlan

For more information about defining Properties, see the Oracle Configurator Developer
User’s Guide.

Associating BOM Nodes with Attribute Features

To create associations between BOM nodes and the attribute Features that store their

5-10 Oracle Configurator Fusion Configurator Engine Guide

configuration attribute values, you must add attribute Properties to the BOM nodes, in
Oracle Configurator Developer.

The Property must be named ATTR_n_PATH, where n is an integer that makes the
name unique within the scope of the current node.

The value of the Property must be the node path to the attribute Feature, starting
from the BOM Model node that is nearest to the node with the ATTR_n_PATH
Property.

If the node with the path property is a BOM Model, then that nearest BOM Model
node is itself. If not, then the nearest BOM Model node is found by recursively
looking upward in the Model tree until the nearest BOM Model node is found.

The nodes in the node path are delimited by a dot (.").

You can create multiple ATTR_n_PATH Properties for the same node, with
different values of 7, to assign multiple attribute Features to the node. This means
that you can assign multiple configuration attributes to the same inventory Item.

You can use the same ATTR_n_PATH name in different nodes without conflict. (In
ordinary practice, you would probably start by using ATTR_1_PATH each time you
created a Property on a different node.)

See steps 2 and 3 in the table Configuration Attributes Flow, page 5-4 for an
example of an ATTR_n_PATH Property and how it is used by attribute processing.

The figure Association of BOM Nodes to Attribute Features, page 5-12 shows how the
attribute Property ATTR_n_PATH is defined to associate BOM nodes with attribute
Features. Compare this figure to steps 2 and 3 in the table Configuration Attributes
Flow, page 5-4.

Configuration Attributes for Fusion Configurator Engine Models 5-11

Association of BOM Nodes to Attribute Features

Model Structure: Association with Attribute Features

BlKE_DRDER ATTR_1_PATH = Customer, ATTR_2 PATH = service Plan
BlKE FRAME............. ATTR_1_PATH =cCalar
FRAME TYPE.. . ATTR_1_PATH = Frame Size
| MOUNTAIN
|_ ROAD
olor
|_Red
|_Blue
|_Green
Frame_Size
ustomer
ervice_Plan

L
|-
|
||
| 1=
|
|
||
| I
|.C
|s

For more information about defining Properties, see the Oracle Configurator Developer
User’s Guide.

Defining the Configurator Extension Rule

To provide attribute processing, you must define a Configurator Extension Rule as
described in this section.

To ensure that attribute processing is turned on for the entire configuration session, and
that processing is performed on all nodes, the event binding for the Rule must specify
the Event as postConfigInit, which is the first event raised in a session.

The Java class required for this rule, CZAttributeCy, is already installed in the class
path used by the runtime Oracle Configurator. Consequently, you do not have to
perform many of the steps ordinarily required for providing a Java class for a
Configurator Extension (compiling Java source code, placing compiled classes in a Java
class archive file, creating a Configurator Extension Archive, and adding it to the
Model's archive path). Instead, you can just enter its fully-qualified class name in the
Rule definition.

Procedure

1. In Oracle Configurator Developer, create a Configurator Extension Rule.

2. Choose the options listed in the following table:

5-12 Oracle Configurator Fusion Configurator Engine Guide

Option Choice
Model Node The root node of the Model.

(In the example shown here, the root node is BIKE_ORDER.)
Java Class oracle.apps.cz.cx.CZAttributeCX

Java Class Instantiation

(Enter this fully-qualified class name directly as shown. Do not
select Choose Class.)

With Model Node Instance

3. Create an event binding for the Configurator Extension Rule, choosing the options
listed in the following table:

Option

Choice

Event

Event Scope

Method

postConfigInit

Global (This scope is the only choice for this event.)

postConfigInit (oracle.apps.cz.core.IRuntimeNod
e)

4. Create an argument binding for the event binding, choosing the options listed in the

following table:
Option Choice
Argument Type oracle.apps.cz.core.IRuntimeNode

Argument Specification

Binding

System Parameter

<BaseNodeOfRule>

5. Generate logic for your Model, to reflect the addition of the Configurator Extension

Rule.

For more information about defining Configurator Extension Rules, see the Oracle
Configurator Developer User’s Guide.

Configuration Attributes for Fusion Configurator Engine Models 5-13

Access to Configuration Attribute Data

The goal of the configuration attributes methodology is to place attribute data in a
database table where it can be used by downstream applications. See the following
sections for details:

* About the CZ_CONFIG_ATTRIBUTES Table, page 5-14
* Writing Data to the CZ_CONFIG_ATTRIBUTES Table, page 5-15

* Reading Data from the CZ_CONFIG_ATTRIBUTES Table, page 5-15

About the CZ_CONFIG_ATTRIBUTES Table

The attribute flexfield table, CZ_CONFIG_ATTRIBUTES, is used as the intermediate
store of configuration attribute data between Oracle Configurator and a host
application.

The CZ_CONFIG_ATTRIBUTES Table

Column Name Null? PK? Type Comments

CONFIG_HDR I N Y NUMBER(9) Configuration header ID

D

CONFIG_REV_N N Y NUMBER(9) Configuration revision number

BR

CONFIG_ITEM_I N Y NUMBER(9) Configuration item ID

D

ATTRIBUTE_CA N Y VARCHAR2(30) Name of flexfield context

TEGORY

ATTRIBUTE1 N N VARCHAR2(400 Flexfield segment value for the
0) specified context

ATTRIBUTE2 N N VARCHAR2(400 Flexfield segment value for the
0) specified context

5-14 Oracle Configurator Fusion Configurator Engine Guide

Column Name Null? PK? Type Comments

ATTRIBUTE30 N N VARCHAR2(400 Flexfield segment value for the
0) specified context

The columns CONFIG_HDR_ID, CONFIG_REV_NBR, CONFIG_ITEM_ID and
ATTRIBUTE_CATEGORY constitute the primary key for CZ_CONFIG_ ATTRIBUTES.

All of the columns ATTRIBUTEL1 through ATTRIBUTE30 are defined identically, and
the columns between ATTRIBUTE2 and ATTRIBUTE30 have been omitted from the
table The CZ_CONFIG_ATTRIBUTES Table, page 5-14 for brevity. The standard
columns such as LAST_UPDATE_DATE have also been omitted for brevity.

For information about the Oracle Configurator schema, see the Oracle Configurator
Implementation Guide. For technical details about CZ_CONFIG_ATTRIBUTES, CZ_
CONFIG_EXT_ATTRIBUTES, and other tables, see the Oracle Integration Repository.

Writing Data to the CZ_CONFIG_ATTRIBUTES Table

When attribute processing is in effect, and a runtime configuration is saved, then the
Core Java API for Oracle Configurator (oracle.apps.cz.core) writes the
accumulated attribute data to the attribute flexfield table CZ_CONFIG_ATTRIBUTES,
using the flexfield associations for guidance on which columns to write into.

When a runtime configuration is saved, the API method that is invoked takes a list of
BOM nodes that have associated configuration attributes. For each BOM node in the
list, the attributes are sorted by flexfield context, which corresponds to the
ATTRIBUTE_CATEGORY column of the table. Then for each attribute category for that
BOM node, a row is written to the table. The row contains all the attribute values for
that node and context. The flex field tables (FND_DESCR_FLEX_COLUMN_USAGES,
FND_DESCRIPTIVE_FLEXS and FND_APPLICATION) are queried to determine the
mapping between attribute-context and flex field column.

Reading Data from the CZ_CONFIG_ATTRIBUTES Table

When you need to obtain configuration attribute data from the
CZ_CONFIG_ATTRIBUTES table, you can use a SQL query like the one shown in the
example Query for Attribute Data, page 5-16. The results of this query are shown in the
figure Configuration Attribute Data, page 5-17.

You must write any custom procedures required to provide configuration attribute data
to downstream applications.

To run the query shown here, replace the values for a.CONFIG_HDR ID and
a.CONFIG REV NBR with the Configuration Header ID and Configuration Revision
values returned when a configuration session ends and the configuration has been
saved. When you use the Test Model function of Oracle Configurator Developer, these

Configuration Attributes for Fusion Configurator Engine Models 5-15

values are displayed on the Confirmation page. When you save a configuration by other
means (for instance, from a host application), then the Configuration Header ID and
Configuration Revision values are written to the config header idand

config rev nbr elements of the XML termination message. See the Oracle
Configurator Implementation Guide for information about the termination message.

Query for Attribute Data
SELECT
a.CONFIG HDR ID,
.CONFIG REV NBR,
.CONFIG ITEM 1D,
.PS_NODE_NAME,
.ATTRIBUTE CATEGORY,
.ATTRIBUTE]L,
.ATTRIBUTEZ2,
.ATTRIBUTE3,
a.ATTRIBUTELO
FROM
CZ CONFIG ATTRIBUTES a, CZ CONFIG ITEMS i
WHERE
a.CONFIG HDR ID = 4175522 -- from saved configuration
AND
a.CONFIG REV NBR
AND
a.CONFIG ITEM ID = i.CONFIG_ITEM ID
AND
a.CONFIG HDR ID = i.CONFIG HDR ID
AND
a.CONFIG REV NBR = 1.CONFIG REV NBR
ORDER BY
a.CONFIG ITEM ID

JOU A R T

Il
[N

-- from saved configuration

set linesize 400

set headsep on

column CONFIG HDR ID heading 'CONFIG| HDR ID'

column CONFIG REV_NBR heading 'CONFIG| REV_NBR'

column CONFIG ITEM ID heading 'CONFIG| ITEM ID'

column ATTRIBUTE CATEGORY heading 'ATTRIBUTE| CATEGORY'

column PS NODE NAME format alé6
column ATTRIBUTE CATEGORY format a24
column ATTRIBUTEl format al2

column ATTRIBUTE2 format al2

column ATTRIBUTE3 format al2

/

The output in the figure Configuration Attribute Data, page 5-17 shows the result of
running the query in the example Query for Attribute Data, page 5-16.

5-16 Oracle Configurator Fusion Configurator Engine Guide

Configuration Attribute Data

Reading Data from the CZ_CONFIG_ATTRIBUTES Table

CZ_CONFIG_ATTRIEUTES Table

CONFIG CORFIG CONFIG ATTRIBUTE

_HDR ID _REV NBR _ITEM ID PS_NODE_NAME _CATEGORY ATTRIBUTE] ATTRIBUTEZ ATTRIBUTE3
4175522 1 1923850 BIKE_SHOP Internal

4175522 1 1923850 BIKE SHOP Custom 0.0 FALSE

4178522 1 1923850 BIKE SHOP standard 20 Alloy
4175522 1 1923851 BIKE FREME Standard Red
4175522 1 1923852 FRAME_TYPE Standard 18

A
Runtime value for:
Attribute Feature; Frame_Size
Where:

Flexfield Context: Standard
Flexfield Segment: Size

Special Considerations

This section covers some important considerations that may affect your implementation

of the configuration attributes methodology.

Referenced Models

If your Model includes child Models that are connected through References (as is
the case with most imported BOM Models), then attribute processing traverses the
entire structure of the Model, collecting configuration attribute data from any
attribute Properties whose names conform to the conventions described in this
chapter.

Location of Attribute Features

You must give careful thought to where you create attribute Features. An attribute
Feature can be located anywhere in a Model, provided that the location is a node
path that can be specified by the Property ATTR_n_PATH. Consequently, the node
path to an attribute Feature must be specified as relative to the Model that contains
the Item.

Attribute processing first finds the node that is the root of the entire configuration
model, and then searches from there for Properties whose names conform to the
conventions described in this chapter.

Because attribute processing can find Features in child Models that are connected
through References, it is possible to assign a configuration attribute value to an Item
in a parent Model by pointing (with the Property ATTR_n_PATH) to an attribute
Feature in a referenced child Model. Such a node path must include the names of
any child Models between the Model that contains the Item and the attribute
Feature. However, a node path that you can express as a Text Property value can

Configuration Attributes for Fusion Configurator Engine Models 5-17

only point down the tree of Models, not upwards. Consequently, it is not possible
to point to an attribute Feature in a parent Model, and therefore you cannot assign a
configuration attribute value from a parent Model to an Item in a child Model.

Here is an illustration, using the example Model cited elsewhere in this chapter and
shown in the figure Association of BOM Nodes to Attribute Features, page 5-12.
When the configuration attribute is an attribute (Size) of a BOM Option Class
(FRAME_TYPE), then the attribute Feature (Frame_Size) must be a child of that
BOM Option Class's parent model (BIKE_FRAME), which is the nearest BOM
Model node. The path from that BOM Model (from BIKE_FRAME to Frame_Size)
cannot be up, only down (as it is). The node path generally cannot traverse child
references, unless the reference is a required single instance.

To summarize: parent Models can use attribute Features defined in referenced child
Models; child Models cannot use attribute Features defined in parent Models.

It follows from the preceding facts that if you intend to use a referenced child
Model without the parent Model, then you must ensure that it contains all the
attribute Features that are employed as the configuration attributes on the Items in
that Model.

* Multiple Component Instances in the Node Path

The node path to an attribute Feature, which is specified by the Property ATTR_n
_PATH, cannot include any Components that can be instantiated multiple times.
(Such a Component is one that has its Instances set to a Maximum greater than 1, so
that more than one runtime instance of the Component can be created and
configured.) The existence of multiple instances of a Component in a node path
makes the path ambiguous. Consequently, you cannot place any attribute Features
inside such a Component, because attribute processing cannot resolve the correct
path to that attribute Feature. This restriction also applies to Components whose
instantiability is Optional Single Instance.

* Reusing an Attribute Value for Multiple Items

It may be required that more than one Item needs the same configuration attribute
value. You can accomplish this by making the Items point to the same instance of
the attribute Feature that contains that value. You do this by setting the same value
for the attribute Property ATTR_n_PATH in each Item.

* Required Items

Configuration attributes cannot be defined for required Standard Items in a BOM
Model, because such Items are not configurable, and consequently are not imported
when you import the BOM Model into Oracle Configurator Developer to define a
configuration model. (See the Oracle Configurator Implementation Guide for details
about importing.)

e Effects of Auto-Complete and Adjust Mode

5-18 Oracle Configurator Fusion Configurator Engine Guide

After a successful Auto-Complete operation, any values for attribute Features that
were bound by the results of Auto-Complete are converted to Auto-Complete
Decisions (ACDs). (ACDs keep track of the selections made by Auto-Complete
itself. ACDs are retained during Adjust Mode, and are re-applied when the user
subsequently chooses Finish or Auto-Complete.) This functionality enables
configuration attributes to capture values for all attribute Features that you consider
to be output of the configuration, not only those explicitly selected by the end user.

Maintaining the Configuration Attributes Setup

You must manually update your Model in Oracle Configurator Developer if the
following are changed:

The flexfield definitions in Oracle Applications. Changes to the flexfield definitions
might include changes to context or attribute column assignments.

The BOM (in Oracle Bills of Materials) that is the basis for your imported Model.
Changes to the Bill of Material might include the addition of an Item that should
have configuration attributes.

If the BOM changes, you can reflect the changes by refreshing your Model. See the
Oracle Configurator Implementation Guide for details on refreshing Models. If you refresh
your Model, you may need to make changes in your attribute Features and Properties.

Using Configuration Attributes in the Downstream Application

For suggestions about using configuration attributes in a downstream application, see
the following sections in Oracle Configurator Methodologies:

"Using Configuration Attributes in the Downstream Application”
"Using Output Data in Downstream Applications”
"Linking Configuration Attributes to Flexfields"

"Downstream User Interfaces"

Configuration Attributes for Fusion Configurator Engine Models 5-19

6

CIO Emulation for the FCE

This chapter covers the following topics:

e About CIO Emulation for the FCE

e Tasks for Implementing CIO Emulation for the FCE
* Converting Source Files with Substitution

¢ Compiling and Archiving Converted Files

¢ Converting Configurator Extension Rules

¢ Verifying Post-Conversion Behavior

About CIO Emulation for the FCE

CIO Emulation for the FCE is a facility that assists you in modifying existing
Configurator Extensions that were written for the Original Configurator Engine (OCE)
so that they might be able to operate with the Fusion Configurator Engine (FCE).

Why CIO Emulation for the FCE Is Needed

When you convert a Model to use the FCE, as described in Converting Existing Models
to Use the Fusion Configurator Engine, page 2-7, the Model Conversion Utility does not
convert the Configurator Extensions associated with that Model so that they also use
the FCE.

Configurator Extensions that are associated with OCE Models interact with the Model
through the Java API called the Configuration Interface Object (CIO),
oracle.apps.cz.cio. The CIO is tailored specifically to the OCE. The FCE is entirely
different in architecture from the OCE, and a different API is provided for interacting
with FCE Models. This new API for the FCE is the Core API, oracle.apps.cz.core,
which is documented by the Oracle Configurator API Reference, available through My
Oracle Support.

The CIO API cannot access FCE Models. Therefore, CIO-based Configurator Extensions

ClO Emulation for the FCE 6-1

associated with an OCE Model will not work when the Model is converted to an FCE
Model. Consequently, you must consider what to do with your Configurator
Extensions. The options are described in the table Options for CIO-Based Configurator

Extensions, page 6-2.

Options for ClIO-Based Configurator Extensions

Option

Advantages

Disadvantages

Rewrite CX to use the Core
API.

Use CIO Emulation for the
FCE .

Discontinue use of CX.

Takes advantage of FCE
capabilities, and provides
optimal functionality.

Requires potentially small
amount of work, since
conversion is mostly
automated.

Potentially requires less Java
expertise.

If CX functionality is
duplicated by FCE, no loss by
discontinuing CX.

Significant development
effort.

Requires Java expertise.

Not necessary, if CX
functionality is duplicated by
FCE.

Functionality of CX after
conversion must be verified.
Differences in behavior may
require new programming.

May require some Java work
to resolve compilation errors
and other incompatibilities.

If CX functionality is not
duplicated by FCE, effect of
CXis lost.

Intended Audience for CIO Emulation for the FCE

CIO Emulation for the FCE was designed primarily to provide a relatively
straightforward migration path to the FCE for developers who have written

Configurator Extensions that perform relatively straightforward tasks. If you have used
the CIO to build a large-scale custom application, then the CIO Emulation for the FCE is
not likely to help you migrate to the FCE, and you should consider rewriting your code

using the Core APIL

Elements of CIO Emulation for the FCE

The following elements constitute the CIO Emulation for the FCE facility:
e CIO Emulation API (oracle.apps.cz.cioemu)

This API provides classes and methods that emulate the syntax of the CIO, while

6-2 Oracle Configurator Fusion Configurator Engine Guide

indirectly accessing the Core API. The API is documented by the Oracle
Configurator API Reference, available through My Oracle Support. The relationship
of this API to the CIO and Core APIs is shown in the figure APIs Related to CIO
Emulation, page 6-4.

e Substitution Script

This script modifies the source code of your Configurator Extensions, changing
certain identifiers to refer to the CIO Emulation API rather than to the CIO API. For
details, see Converting Source Files with Substitution, page 6-11.

¢ Configurator Extension Status

This modification to Oracle Configurator Developer enables you to convert existing
Configurator Extension Rules so that they refer to the CIO Emulation API rather
than to the CIO API. For details, see Converting Configurator Extension Rules, page
6-23.

For an overview of the process that these elements support, see Tasks for Implementing
CIO Emulation for the FCE, page 6-10.

ClO Emulation for the FCE 6-3

APIs Related to CIO Emulation

Accessible to CX code

l Accessible only to Configurator

Before conversion After conversion

ClO Emulation for FCE: Conversion ‘

Configurator Extension
(MyCXClass. java)

I

CIO API

(oracle.apps.cz.cio)

Configurator Extension
(MyCXClass. java)

4

CIO Emulation API

(oracle.apps.cz.cioemu)

4

Core API

(oracle.apps.cz.core)

4

Fusion Configurator
Engine (FCE)

Original Configurator
Engine (OCE)

Differences Between FCE and CIO Emulation

This section describes features how differences in behavior between the Fusion
Configurator Engine and the Original Configurator Engine are handled in the CIO
Emulation API, where possible.

6-4 Oracle Configurator Fusion Configurator Engine Guide

Behavior Differences Between FCE and CIO Emulation

CIO (or FCE) Feature

FCE Behavior

CIO Emulation Behavior

Configuration transactions (
ConfigTransaction)

StatusInfo

RestoreValidationFailu
re

TSO (MACD)

No true equivalent for
configuration transactions.
The FCE has the concept of
SavePoints.

No equivalent concept in the
Core APL

The Core API has different
handling of failed inputs
when restoring a
configuration, generating
informational messages

instead of validation failures.

The Telecommunications
Services Ordering (TSO)
functionality is not available
for the Fusion Configurator
Engine.

This feature is not supported

A warning is provided by the
substitution script.

The Configuration object
provides "no-operation”
methods that allow
compilation but produce no
results.

There is no support for
transaction levels.

This feature is not supported.

Any use of StatusInfo will
not compile.

This feature is not supported.

A warning is provided by the
substitution script.

An emulation object is
provided for compilation, but
the Core API will not create
objects, and CX code using
this class will never be
executed.

This feature is not supported.

Since TSO functionality is not
available for the FCE, there is
no need for CIO Emulation
support for TSO.

Attempts to compile
converted CX code using TSO
features will raise compiler
errors.

ClO Emulation for the FCE 6-5

CIO (or FCE) Feature

FCE Behavior

CIlO Emulation Behavior

Configuration attributes
(TSO-based)

Total and Resource objects

Unbound Values

Logical exceptions

CIO Exceptions (such as
InsufficientCountExcep

tion)

A new implementation of
configuration attributes for
the FCE is provided, and
described elsewhere in this
document.

These OCE objects are
converted to DecimalValue.
During upgrade, domain
definitions will be set as
needed.

If a value is requested before
being bound, Core API
throws exception.

The FCE supports Logical
Exceptions, as the CIO does,
but the implementation is
different.

The Core API (for the FCE)
does not throw all the same
exceptions as the CIO API (for
the OCE). CIO exceptions not
needed by the Core API are
not supported.

TSO-based configuration
attributes are not supported.

Attempts to compile CX code
using TSO-based attribute
features will raise compiler
errors

Replaced by cioemu.Total
and cioemu.Resource
objects.

All Emulation getter methods
will catch
NodeUnboundException
and provide a value
consistent with the CIO
behavior. Value is Unknown
for state nodes and 0 for
numeric nodes.

Supported with emulation
Logical Exceptions, which
provide equivalent behavior.

Emulation versions of these
types of exceptions are
provided. Any converted CX
code using these exceptions
will compile but the code will
never be executed since the
Core API does not throw
these types of exceptions.

6-6 Oracle Configurator Fusion Configurator Engine Guide

CIO (or FCE) Feature

FCE Behavior

CIlO Emulation Behavior

Connectors

Note: Connectors are not yet
supported for the FCE. This
information is provided for
planning.

Editable Totals and Resource

FCE Proposed True and
Proposed False states

(Recommended (Proposed
Selected) and Not
Recommended (Proposed
Excluded).

InformationalMessage

ValidationFailure

CustomValidationFailur
e

A ConnectorPort can have
multiple connections.

Not supported.

These are new values
returned from calls with
getState (). Customer code
not using existing static CIO
helper methods (such as
isTrue (int state))may
not behave as expected.

There is no equivalent object
in the Core APL
Informational messages are
now text-based.

The Core API never creates
ValidationFailure
objects as the CIO does. The
Core API only supports
custom validation failures
created by user-written CXs.

There is no equivalent object
in the Core APL

Supported. But if cardinality
of connections is greater than
1, then throws an exception
when trying to create the
emulation object, since OCE
models can only have 1 target
per connection. If there is
more than 1, then either the
conversion has an issue or the
model has been changed.

Not supported.

Any calls in code to set the
value of a Total or Resource
will not compile.

Since OCE doesn't have the
concept of PTRUE the
emulation layer will return
PTRUE as LTRUE and
PFALSE as LFALSE.

The CIO Emulation API
provides an equivalent object
for
InformationalMessage.

The CIO Emulation API
provides an equivalent object
for validationFailure.

The CIO Emulation API
provides an equivalent object

for
CustomValidationFailur

e, extending
cioemu.ValidationFailu

re.

ClO Emulation for the FCE 6-7

CIO (or FCE) Feature

FCE Behavior

CIlO Emulation Behavior

Intermediate Values

Problematic intermediate
values do not arise with the
FCE, so this concept is not
supported in the Core APL In
the Core API, methods
representing the value of a
numeric feature return zero
until the value is bound.

Problematic intermediate
values can arise in the OCE,
so in the CIO methods
representing the value of a
numeric feature may return
intermediate values. Because
of the fundamental difference
between OCE and FCE
handling of intermediate
values, no emulation support
can be provided to bridge the
gap between them.

Candidate Implementations for Rewriting

This section suggests some Configurator Extension implementations that may be better

served by rewriting the CXs than by converting them to use CIO Emulation for the FCE,
since emulation does not completely provide the desired functionality.

Most of these CX implementations were intended to remedy shortcomings in the
Original Configurator Engine that are described in Original Configurator Engine:

Known Issues and Limitations, page 1-6. The Oracle Configurator Modeling Guide

provides more detail on several of the issues related to the Original Configurator

Engine.

It may be better to rewrite the following types of Configurator Extensions:

¢ (Xs that implement non-trivial configuration transactions.

The FCE does not use configuration transactions. Emulation provides
"no-operation" transaction methods that allow the emulated CX code to compile
and execute, but produce no results.

¢ (Xs that work around limitations in using the NotTrue logical operator or logical

function.

These limitations do not occur with the FCE, because items in the configuration can

never be in an "Unknown" state.

¢ (Xs that work around Numeric Rules being unidirectional.

In an FCE Model, Numeric constraints propagate in both directions.

® (CXs that work around intermediate numeric values in Comparison Rules.

This limitation does not occur with the FCE, due to the way in which it propagates

6-8 Oracle Configurator Fusion Configurator Engine Guide

rules.

CXs that work around Default limitations.

These limitations do not occur with the FCE, because the FCE implements Defaults
in a significantly different way than the OCE.

CXs that implement auto-instantiation.

These actions are unnecessary with the FCE, because the FCE is able to dynamically
instantiate components to satisfy constraints.

CXs that implement a Search.

This implementation is unnecessary with the FCE, because the Auto-Complete
process of the FCE searches for a solution to a configuration.

Limitations of CIO Emulation for the FCE

Keep in mind the following limitations:

Emulation cannot fulfill every application of the CIO API for Configurator
Extensions, since the CIO Emulation API cannot completely emulate all CIO
behavior in the FCE. The FCE has capabilities that surpass the CIO, including some
that overcome limitations of the CIO. In such cases, you should consider rewriting
your Configurator Extensions and redesigning your configuration model to take
advantage of the FCE. Keep in mind that the FCE makes many uses of Configurator
Extensions unnecessary. See Candidate Implementations for Rewriting, page 6-8 for
suggestions.

You should evaluate the expected lifetime of the Configurator Extensions created
by converting them to use CIO Emulation for the FCE, because methods in the CIO
Emulation API cannot directly access the Core API. Therefore, you cannot add Core
API methods into Configurator Extensions created by the conversion process. This
means that you cannot combine OCE functionality and FCE functionality together
in a single Configurator Extension. You can, however create new CXs that use only
the CIO Emulation APL or new CXs that use only the Core APL

Caution: The use of objects from oracle.apps.cz.cioemu and
oracle.apps.cz.core in the same method is explicitly
unsupported. Such methods may compile, but will fail at runtime.

Before deploying Configurator Extensions using CIO Emulation for the FCE, it is
essential to verify their behavior against your expectations, since there may be
differences related to the basic differences between the Original Configurator
Engine and the Fusion Configurator Engine.

ClO Emulation for the FCE 6-9

* Due to the limitations described in this chapter, it may not be possible to
successfully convert all of your Configurator Extensions.

Tasks for Implementing CIO Emulation for the FCE

To implement CIO Emulation for the FCE, perform the tasks listed in Table Summary of
Tasks for Using CIO Emulation for the FCE, page 6-10. For information about the tasks,
refer to the sections cited in the Details column.

Summary of Tasks for Using CIO Emulation for the FCE

Task Description For Details
1 Run the substitution script on the source Converting Source Files with
files for your package. Substitution, page 6-11
2 Compile the converted source files, Compiling and Archiving Converted

resolve compilation errors, then create a Files, page 6-22
Java archive file for the converted

classes.
3 Create a Configurator Extension Archive Converting Configurator Extension
for the Java archive, then use Oracle Rules, page 6-23

Configurator Developer to convert
existing Configurator Extension Rules
that use the converted classes.

4 Verify the behavior of your Model when Verifying Post-Conversion Behavior,
using the converted classes. page 6-26

Requirements for Implementing CIO Emulation

The following are required to perform the procedures described in this chapter:

¢ Linux operating system, or other OS with support for the Perl scripting language
® DPerl scripting language, as normally provided in Oracle installations

e [tis assumed that your source file directory structure mirrors the structure of your
Java packages.

6-10 Oracle Configurator Fusion Configurator Engine Guide

Converting Source Files with Substitution

Before you can use CIO Emulation for the FCE in your Configurator Extensions, you
must modify your Java classes to refer to the CIO Emulation API. To assist you in doing
this, Oracle provides a substitution script that performs certain modifications on your
Java source files.

Note: Note: As described elsewhere in this section, the script is named
ciocxemu.pl, and it is installed by default, in
$SAPPL_TOP/cz/12.0.0/bin.

What the Substitution Script Does

The substitution script performs a set of simple text substitutions on all the Java source
files in your current working directory. Subdirectories are never processed.

Important: If you have multiple packages that reference classes in each
other, then you should use custom substitution. See Custom
Substitution, page 6-18 for details.

The substitution script performs the text substitutions described in the
tableSubstitutions Performed by the Script, page 6-11.

Substitutions Performed by the Script

Location in Code Substitution Performed by the Script

import declarations Changes all references to

oracle.apps.cz.cioto
oracle.apps.cz.cioemu

package declarations Changes the package name of the class
defined in the file, adding the suffix . emu. For

example, my . pkg. cx is changed to
my.pkg.cx.emu

variable declarations, parameter declarations, = Changes fully qualified class, interface, and

and type casts exception names as shown in the table
Substitutions Performed on the Supported Set
of CIO Objects, page 6-12

ClO Emulation for the FCE 6-11

Location in Code Substitution Performed by the Script

code comments Substitutions are applied in comment text. The
conversion does not distinguish comments
from code.

Substitutions Performed on the Supported Set of CIO Objects

CIO Object Name Substituted Object Name

oracle.apps.cz.cio.AtpUnavail oracle.apps.cz.ciocemu.AtpUnavailableExc
ableException eption

oracle.apps.cz.clo.BomExplosi oracle.apps.cz.cioemu.BomExplosionExcep
onException tion

oracle.apps.cz.cio.BomInstanc oracle.apps.cz.cioemu.BomInstance

e
oracle.apps.cz.cio.BomModel oracle.apps.cz.cioemu.BomModel
oracle.apps.cz.cio.BomNode oracle.apps.cz.cioemu.BomNode

oracle.apps.cz.cio.BomOptionC oracle.apps.cz.cioemu.BomOptionClass
lass

oracle.apps.cz.clo.BomStdItem oracle.apps.cz.ciocemu.BomStdItem

oracle.apps.cz.cio.BooleanFea oracle.apps.cz.cioemu.BooleanFeature
ture

oracle.apps.cz.cio.Component oracle.apps.cz.cioemu.Component

oracle.apps.cz.cilo.ComponentN oracle.apps.cz.cioemu.ComponentNode
ode

oracle.apps.cz.cio.ConfigPara oracle.apps.cz.ciocemu.IConfigParameters
meters

oracle.apps.cz.cio.Connector oracle.apps.cz.cioemu.Connector

oracle.apps.cz.cio.ConnectorI oracle.apps.cz.ciocemu.ConnectorInfo
nfo

6-12 Oracle Configurator Fusion Configurator Engine Guide

CIO Object Name

Substituted Object Name

oracle.apps.cz.cio

ionMessage

oracle.apps.cz.
re

oracle.apps.cz.
dationFailure

oracle.apps.cz.
ture

oracle.
e

apps.cz.

oracle.apps.cz.

oracle. cio

e

apps.cz.

oracle. cz.

apps.

oracle.apps.cz.

oracle.apps.cz.

oracle. cio

nMax

apps.cz.

oracle. cz.

apps.

oracle.
nMax

apps.cz.

oracle.apps.cz.

nalMessage

oracle.apps.cz.cio.

ntCountException

oracle.apps.cz.cio.

ture

oracle.apps.cz.cio.

e

cio.

cio.

cio.

cio.

cio.

cio.

cio.

cio.

cio.

cio.

cio.

.Configurat

CountFeatu

CustomVali

DecimalFea

DecimalNod

IAtp

.IBasicPric

IBomItem

ICount

IDecimal

.IDecimalMi

IInteger

IIntegerMi

Informatio

Insufficie

IntegerFea

IntegerNod

oracle.apps.

age

oracle.

oracle.
ailure

oracle.

oracle.

oracle.

oracle.

oracle.

oracle.

oracle.

oracle.

oracle.

oracle.

oracle
age

oracle.apps.

Exception

oracle.apps.

oracle.apps.

apps.

apps.

apps.

apps.

apps.

apps.

apps.

apps.

apps.

apps.

apps.

apps.

.apps.

cz

cz.

cz.

cz.

cz.

cz

cz

cz.

CzZ.

cz.

cz

CzZ.

cz.

cz.

cz.

CzZ.

cz

.cioemnu.

.cioemu.

.cioemu.

.cioemu.

.cioemu.

cioemu.

ciocemu.

cioemu.

cioemu.

cioemu.

ciocemu.

ciocemu.

cioemu.

ciocemu.

cioemu.

ciocemu.

cioemu.

ConfigurationMess

CountFeature

CustomValidationF

DecimalFeature

DecimalNode

IAtp

IBasicPrice

IBomItem

ICount

IDecimal

IDecimalMinMax

IInteger

IIntegerMinMax

InformationalMess

InsufficientCount

IntegerFeature

IntegerNode

ClO Emulation for the FCE 6-13

CIO Object Name

Substituted Object Name

oracle.apps.cz.cio.IOption

oracle.apps.cz.cio.IOptionFea
ture

oracle.apps.cz.cio.IPrice

oracle.apps.cz.cio.IReadOnlyD
ecimal

oracle.apps.cz.cio.IRuntimeNo
de

oracle.apps.cz.cio.IState

oracle.apps.cz.cio.IText

oracle.apps.cz.cio.ModelLooku
pException

oracle.apps.cz.cio.ModifiedCo
nfigOverwriteException

oracle.apps.cz.cio.Neighborho
odBoundaryException

oracle.apps.cz.cio.NoAtpCalcu
latedException

oracle.apps.cz.cio.NoConfigHe
aderException

oracle.apps.cz.cio.Option

oracle.apps.cz.cio.OptionFeat
ure

oracle.apps.cz.cio.OptionFeat
ureNode

oracle.apps.cz.cio.OptionNode

oracle.apps.cz.cio.PricedNode

oracle.apps.cz.cioemu.

oracle.apps.cz.ciocemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu
ion

oracle.apps.cz.cioemu
rwriteException

oracle.apps.cz.cioemu
aryException

oracle.apps.cz.ciocemu
ception

oracle.apps.cz.cioemu
eption

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.cioemu.

oracle.apps.cz.ciocemu.

IOption

IOptionFeature

IPrice

IReadOnlyDecimal

IRuntimeNode

IState

IText

.ModelLookupExcept

.ModifiedConfigOve

.NeighborhoodBound

.NoAtpCalculatedEx

.NoConfigHeaderExc

Option

OptionFeature

OptionFeatureNode

OptionNode

PricedNode

6-14 Oracle Configurator Fusion Configurator Engine Guide

CIO Object Name Substituted Object Name

oracle.apps.cz.cio.PricingUna oracle.apps.cz.cioemu.PricingUnavailabl
vailableException eException

oracle.apps.cz.clo.Property oracle.apps.cz.cioemu.IProperty

oracle.apps.cz.cio.PropertyNo oracle.apps.cz.cioemu.PropertyNotAvaila

tAvailableException bleException
oracle.apps.cz.cio.Reason oracle.apps.cz.cioemu.Reason
oracle.apps.cz.cio.Request oracle.apps.cz.cloemu.Request
oracle.apps.cz.cio.Resource oracle.apps.cz.cioemu.Resource

oracle.apps.cz.cio.RuntimeNod oracle.apps.cz.cioemu.RuntimeNode
e

oracle.apps.cz.cio.StateCount oracle.apps.cz.cioemu.StateCountNode
Node

oracle.apps.cz.cio.StateNode oracle.apps.cz.cioemu.StateNode

oracle.apps.cz.cio.TargetInfo oracle.apps.cz.ciocemu.TargetInfo

oracle.apps.cz.cio.TextFeatur oracle.apps.cz.ciloemu.TextFeature

e
oracle.apps.cz.cio.TextNode oracle.apps.cz.cioemu.TextNode
oracle.apps.cz.cio.Total oracle.apps.cz.cioemu.Total

oracle.apps.cz.cio.Validation oracle.apps.cz.ciocemu.ValidationFailure
Failure

The substitution script only changes class and package names. It does not attempt to
reimplement your CIO-based code in terms of the API for the FCE. See Differences
Between FCE and CIO Emulation, page 6-4.

Running the Script

Procedure
To run the substitution script:

1. Identify the Java source files for the package that you want to convert to use the

ClO Emulation for the FCE 6-15

CIO Emulation APL. It is assumed that your source file directory structure mirrors
the structure of your Java packages.

For example, the source files for a package named my . pkg. cx would be located in
a directory named /mydev/pkg/cx.

You can only process a single package at a time. You cannot run the script
recursively over subdirectories.

2. Change to the directory containing the files that you want to convert.

cd /mydev/pkg/cx

3. Enter the command to run the substitution script. See Syntax and Parameters, page
6-16 for information on the syntax of the command and its parameters.

perl yourpath/ciocxemu.pl parameters

Example command for the package mentioned in step 1 (my . pkg.cx):

perl S$SAPPL TOP/cz/12.0.0/bin/ciocxemu.pl my.pkg.cx

By default, the script is installed in $APPL_TOP/cz/12.0.0/bin.

4. The script processes all the Java source files in the current working directory (but
not in any subdirectories), performing substitutions on each line of each file where a
substitution is needed. See What the Substitution Script Does, page 6-11.

5. The script writes a series of informational messages to the console. For details on
these messages, see Output of the Script, page 6-20.

6. The script creates a new subdirectory of the current working directory, named emu.
This directory contains the modified Java files produced by the script, and a log file
that contains the informational messages that were written to the console by the
script. The code in the Java files has been modified as described in What the
Substitution Script Does, page 6-11. Your original Java files in the current working
directory are left unchanged.

7. Proceed to the next step under Tasks for Implementing CIO Emulation for the FCE,
page 6-10.

Syntax and Parameters
The syntax for running the substitution script is:

[perl] [yourpath]ciocxemu.pl [-nologfile] [-noscreen]
original package [custom targetcustom replacement]

[perl] [yourpath]ciocxemu.pl [-help | -manual]

The parameters and command-line options for the substitution script are described in
the table Options and Parameters for the Substitution Script, page 6-17.

6-16 Oracle Configurator Fusion Configurator Engine Guide

Options and Parameters for the Substitution Script

Option or Parameter

Description

perl

yourpath

-nologfile

—noscreen

original package

custom_ target

custom replacement

-help

-manual

If necessary, invocation of the perl processor. Details are
dependent on site and operating system.

If necessary, your path to the substitution script ciocxemu.pl.
By default, the script is installed in
SAPPL TOP/cz/12.0.0/bin.

Suppresses generation of the log file.

Suppresses display of conversion messages to the console.

(Mandatory.) The package named in the package declaration in
the Java source files being processed.

When using custom substitution, the string in the original files
to be replaced by custom replacement in the modified Java
files produced by the script. See Custom Substitution, page 6-18

When using custom substitution, the string to replace
custom replacement. See Custom Substitution, page 6-18.

Displays basic command information about the script, in plain
text format.

Displays basic command information about the script, in man
page format.

The common form of the command for running the script is shown in the example
Simple Substitution Syntax, page 6-17. The example command shown in the example
Simple Substitution Example, page 6-17 makes the changes shown in the table File
Modifications Performed by Simple Substitution, page 6-18.

Simple Substitution Syntax

ciocxemu.pl original package

Simple Substitution Example

ciocxemu.pl my.pkg.cx

ClO Emulation for the FCE 6-17

File Modifications Performed by Simple Substitution

Original File Modified File
package my.pkg.cx; package my.pkg.cx.emu;
import oracle.apps.cz.cio import oracle.apps.cz.cioemu
. IRuntimeNode; . IRuntimeNode;
postCXInit (java.lang.String, postCXInit (java.lang.String,
oracle.apps.cz.cio.IRuntimeNode) oracle.apps.cz.cioemu

. IRuntimeNode)

Custom Substitution

Custom substitution allows you to make arbitrary substitutions on the package being
processed. It replaces a specified string in your original Java source files with a specified
replacement string that will appear in your modified files.

Custom Substitution Syntax
ciocxemu.pl original packagecustom targetcustom replacement

Custom Substitution Example

ciocxemu.pl my.pkg.cx my.pkg.util my.pkg.util.emu

Custom substitution is especially useful for the common situation in which a package
references classes in another package. Consider an example in which one of your classes
(my.pkg.cx.MyCXClass) calls a method (formatDate ()) in another package (
my.pkg.util.Toolkit). The table Cross-Package References with Simple
Substitution, page 6-18 shows how simple substitution can result in references that
point to the incorrect package and class. The table Cross-Package References with
Custom Substitution, page 6-19 shows how custom substitution helps to modify the
referencing package to correct many of the references.

Cross-Package References with Simple Substitution

Stage Class in Referenced Class in Referencing
Package Package
my.pkg.util.Toolkit my.pkg.cx.MyCXClass

6-18 Oracle Configurator Fusion Configurator Engine Guide

Stage

Class in Referenced
Package

Class in Referencing

Package

Before simple substitution

Simple substitution on
referenced package

Simple substitution on
referencing package

After basic substitution, the
packages are changed, but not
the references between them

At runtime, the class
reference is incorrect

package my.pkg.util;

import
oracle.apps.cz.cio.IRu
ntimeNode;

public class Toolkit {
void formatDate () }

ciocxemu.pl
my.pkg.util

package my.pkg.util
.emu;

import oracle.apps.cz.
cioemu.IRuntimeNode;

public class Toolkit {
void formatDate() }

The new class is in a new
package that uses the CIO
Emulation API:

my.pkg.util.emu
.Toolkit

package my.pkg.cx;

import

oracle.apps.

ntimeNode;

import

ny.pkg.util.

d =

my.pkg.util.

rmatDate () ;

ciocxemu.pl

cz.cio.IRu

Toolkit;

Toolkit.fo

my.pkg.cx

package my.pkg.cx.emu;

import

oracle.apps.cz.

cioemu.IRuntimeNode;

import

my.pkg.util.

d =

my.pkg.util.

rmatDate () ;

Toolkit;

Toolkit.fo

The method call in the new
class references the original
package, which does not use
the CIO Emulation APIL:

my.pkg.util.

Toolkit

Cross-Package References with Custom Substitution

Stage

Class in Referenced
Package

Class in Referencing

Package

my.pkg.util.Toolkit

my.pkg.cx.MyCXClass

ClO Emulation for the FCE 6-19

Stage

Class in Referenced
Package

Class in Referencing
Package

Before simple substitution

Simple substitution on
referenced package

Custom substitution on
referencing package

After custom substitution, the
packages are changed, and
also the references between
them

At runtime, the class
reference is correct

package my.pkg.util;

import
oracle.apps.cz.cio.IRu
ntimeNode;

public class Toolkit {
void formatDate () }

ciocxemu.pl
my.pkg.util

package my.pkg.util
.emu;

import oracle.apps.cz.
cioemu.IRuntimeNode;

public class Toolkit {
void formatDate () }

The new class is in a new
package that uses the CIO
Emulation API:

my.pkg.util.emu
.Toolkit

package my.pkg.cx;

import
oracle.apps.
ntimeNode;

cz.cio.IRu

import

my.pkg.util.Toolkit;

d =
my.pkg.util.
rmatDate () ;

Toolkit.fo

my.pkg.cx
my.pkg.

ciocxemu.pl
my.pkg.util
util.emu

package my.pkg.cx.emu;

import oracle.apps.cz.
cioemu.IRuntimeNode;

import my.pkg.util.emu
.Toolkit;

d = my.pkg.util.emu
.Toolkit.formatDate () ;

The method call in the new
class references the new
package, which uses the CIO
Emulation API:

my.pkg.util.emu
.Toolkit

Important: Custom substitution does not perform all the modifications
required to make your files ready for CIO Emulation for the FCE. It is
possible that your packages will compile successfully but still contain

incorrect references.

Output of the Script

When the substitution script runs, it creates the following output:

6-20 Oracle Configurator Fusion Configurator Engine Guide

A new subdirectory of the current working directory, named emu.

In the emu subdirectory, the new Java files produced by the script, which have been
modified as described in What the Substitution Script Does, page 6-11.

* Your original Java files in the current working directory are left unchanged.

e Files in the emu subdirectory are not overwritten. This behavior allows you to
run the script multiple times over the same working directory without
reconverting files that have already been converted. This avoids extra
processing if you add files to the working directory after the initial run. It also
preserves changes that you may have made to the emu files if you inadvertently
run the script again on the working directory. See Errors from the Script, page
6-22 for more information.

In the emu subdirectory, a log file that contains the informational messages that
were written to the console by the script. The name of the log file is
CxEmuConversionyyyymndd.log, where yyyymmdd is the year, month, and date
when the script was run.

The header of the log file is shown in the example Conversion Log File: Header,
page 6-21. It shows the original package parameter that you specified. It also
shows your custom target and custom replacement parameters, if any, or
NOT PROVIDED otherwise.

Example 5. Conversion Log File: Header

Conversion to Cio Cx Emulation: Started at 2009/03/06 10:46:23

Input Directory: /my/pkg/cx/
Output Directory: /my/pkg/cx/emu/

Input Package : my.pkg.cx
Output Package : my.pkg.cx.emu
Input Custom : my.pkg.util
Output Custom : my.pkg.util.emu

A typical log file entry for a file being converted is shown in the example
Conversion Log File: File Entry, page 6-21. The warning message indicates that the
original file contained a CIO class that is not fully supported in emulation. See
Errors from the Script, page 6-22 for more information.

Example 6. Conversion Log File: File Entry

Convert: /my/pkg/cx/AddClonedInstances.java to
/my/pkg/cx/emu/AddClonedInstances. java

WARNING: At line: 13. oracle.apps.cz.ciocemu.TransactionException.
Not supported but provided for CX compilation. Review usage and
behavior.

Completed: /my/pkg/cx/AddClonedInstances.java

The concluding block in the log file is shown in the example Conversion Log File:
Tail, page 6-22. The Pre Directory Java File Count is the number of Java
source files in the current working directory when you start the substitution script.

ClO Emulation for the FCE 6-21

All of those files are considered for processing when the script runs. The
Converted CX File Count is the number of files actually created by the script
in the emu subdirectory. If Converted CX File Count is smaller than Pre
Directory Java File Count, it should indicate that some files already have
converted versions in the emu subdirectory, and thus were not overwritten.
Example 7. Conversion Log File: Tail

Pre Directory Java File Count: 28

Converted CX File Count : 28
Conversion to Cio Cx Emulation: Completed at 2009/03/06 10:46:44

Errors from the Script

When the substitution runs, it may generate some of the messages described in the table
Substitution Script Error Messages, page 6-22.

Substitution Script Error Messages

Message Explanation

Custom substitution: New text is required If you provided more than one parameter, the
script assumes that you are using custom
substitution, which requires three arguments.
See Custom Substitution, page 6-18.

WARNING: path/emu/FileName . java already A file with the same name as one being
exists. File not converted converted already exists in the emu
subdirectory. Such files are not overwritten.

The import was converted. References to If your converted code refers to classes that do

unsupported classes will not compile. not have equivalents in the CIO Emulation
AP], it will not compile. See Differences
Between FCE and CIO Emulation, page 6-4.

WARNING At line: n. oracle.apps.cz.cioemu. Your original file refers to a CIO class that is
ClassName. Not supported but provided for not fully supported in emulation.
CX compilation. Review usage and behavior

The above table omits self-explanatory error messages such as "Incorrect number of
arguments".

Compiling and Archiving Converted Files

After you run the substitution script to modify your Java class source files, compile
them and archive them so that the classes can be used by Configurator Extension Rules
in your configuration model.

6-22 Oracle Configurator Fusion Configurator Engine Guide

Procedure

To compile and archive your converted files:

1.

Compile the converted Java source files created by the substitution script in the emu
subdirectory.

It is likely that some of your class references could not be resolved by the
substitution script. See About CIO Emulation for the FCE, page 6-1 for an
understanding of what the CIO Emulation API can provide.

Resolve any compilation errors.

Create a Java archive file for the compiled classes, in the usual way.
See the Oracle Configurator Extensions and Interface Object Developer’s Guide for

information on developing Java classes and archives.

Proceed to the next step under Tasks for Implementing CIO Emulation for the FCE,
page 6-10.

Converting Configurator Extension Rules

After the substitution script has modified your Java class source files to refer to the CIO
Emulation AP], it is still necessary to modify the bindings in all of the Configurator
Extension (CX) Rules that used your original classes, so that they, too, refer to the CIO
Emulation API. This conversion of Rules is performed in Oracle Configurator
Developer, as described in this section.

Assumptions

This task assumes the following:

You have converted your Models to use the FCE, using the Model Conversion
Utility.

You have run the substitution script on your Java source files for your Configurator
Extensions, and have compiled and archived your resulting Java class files (which
now refer to the CIO Emulation API).

Your converted Models contain CX Rules (which at this point still refer to the CIO
API rather than the CIO Emulation API or Core API).

Limitations

Take note of the following limitations of the Rule conversion operation:

You can only convert the CX Rules for one Model at a time, and this Model must
already have been converted to use the FCE.

All of the CX Rules in your Model are processed for conversion. You cannot include

ClO Emulation for the FCE 6-23

or exclude specified CX Rules from conversion, since CIO-based CX Rules that are
not converted cannot operate with your converted FCE Model and are thus no
longer useful.

e (CX Rules marked as Disabled are converted, and remain Disabled after conversion.
Disabling a CX Rule does not exclude it from conversion.

e CXRules are converted without creating backup copies in your converted FCE
Model. The original CX Rules remain in your original unconverted Model, but are
not retained in your converted FCE Model.

Procedure

To convert your CX Rules:

1. Log in to Oracle Configurator Developer.

2. Create a Configurator Extension (CX) Archive, using the Java class archive that you
created for your modified source files.

See the Oracle Configurator Developer User’s Guide for information on creating CX
Archives.

Tip: As you proceed with converting your CX Rules, you can use
this new CX Archive for all the Models whose CX Rules referenced
your original classes.

3. Edit a Model that contains CX Rules that may need to be converted, and go to the
General area of the Workbench.

If a Model has CX Rules that need conversion, then the General area of the
Workbench includes a new section named Configurator Extensions Status. The
section displays a message stating that the Configurator Extension Rules in the
model were created with bindings whose arguments refer to Original Configurator
Engine classes (that is, to the CIO API). Such Rules need to be converted to use the
CIO Emulation API that are referenced in the new CX Archive.

4. If the Configurator Extensions Status section indicates a need for conversion, click
Convert.

You need to add your new Emulation-based CX Archive to the Archive Path for
your Model. The Edit Archive Path page appears, listing all CX Archives in the
Main area of the Repository, subject to the current focus level and folder expansion.

5. Locate your new Emulation-based CX Archive and select it.

Click the check box in the Select column to select an Archive.

6. Click Add to Selected List.

6-24 Oracle Configurator Fusion Configurator Engine Guide

The selected Archive appears at the end of the Selected List, meaning that it has
been placed at the end of the Archive Path. See the section of the Oracle Configurator
Developer User’s Guide about archive path precedence for important information
about the Archive Path.

When you are satisfied with the order of Archives in the Selected List, click Apply.
This step triggers the actual conversion of the Rules.

When the conversion operation finishes, you return to the General area of the
Workbench.

If the Rule conversion was not successful, then the Configurator Extensions Status
section still appears, and an error message appears in the information area.

If the Rule conversion was successful, then the Configurator Extensions Status
section no longer appears, and a message in the information area tells you that the
Configurator Extension bindings in this model were successfully converted to use
the classes for the Fusion Configurator Engine.

Important: The CX Rule conversion operation ensures that your
Rules are modified to use the appropriate classes and interfaces
from the CIO Emulation package. However, you must review your
converted rules to verify their expected behavior.

If you examine the definitions of your CX Rules, you will find that they have been
modified in accordance with the changes shown in the table Substitutions
Performed by the Script, page 6-11.

® The package name for the Java Class has been changed to refer to the package
created by the substitution script. For example, my.pkg.cx.MyCXClass is
changed to my .pkg.cx.emu.MyCXClass.

¢ In the event bindings, any references to CIO API objects have been changed to
refer to CIO Emulation API objects. For example,
oracle.apps.cz.cio.IRuntimeNode is changed to oracle.apps.cz.
cioemu. IRuntimeNode.

Repeat steps 3 through 7 for your other converted FCE Models.

Tip: If the set of classes in your new Emulation-based CX Archive
corresponds to the set of classes in your old CIO-based CX Archive,
then you can more easily determine which Models used the CIO
classes (and thus need to have their CX Rules converted to use the
CIO Emulation API classes referenced in the new Archive) by
examining the list of Models Referencing This Archive in the old
Archive.

ClO Emulation for the FCE 6-25

10. Proceed to the next step under Tasks for Implementing CIO Emulation for the FCE,
page 6-10.

Verifying Post-Conversion Behavior

To ensure the success of your conversion to CIO Emulation for the FCE, you must
verify that your Configurator Extensions behave as expected after you have converted
their code to use the emulation classes. Some suggestions for performing this
verification are:

* Use logging in your Configurator Extension code, as described in the Oracle
Configurator Extensions and Interface Object Developer's Guide. Logging output
can help verify that a block of code was executed as expected. Your converted code
should be using the method
oracle.apps.cz.ciocemu.Configuration.writeCXLogEntry ().

* Ensure that all of the uses of Configurator Extensions in your application's UI are
exercised.

® Review your converted Configurator Extension Rules in Oracle Configurator
Developer.

* Review Differences Between FCE and CIO Emulation, page 6-4.

6-26 Oracle Configurator Fusion Configurator Engine Guide

Glossary

This glossary contains definitions relevant to working with Oracle Configurator.

A
Archive Path
The ordered sequence of Configurator Extension Archives for a Model that determines
which Java classes are loaded for Configurator Extensions and in what order.

B

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

batch validation

A background process for validating selections in a configuration.

binding
Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM Standard
Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO (Assemble To Order)
rules, and other data are also imported into Configurator Developer. In Configurator
Developer, you can extend the structure of the BOM Model, but you cannot modify the
BOM Model itself or any of its attributes.

Glossary-1

Glossary-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM Model
created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

CDL (Constraint Definition Language)

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

CIO (Oracle Configuration Interface Object)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

command event

An event that is defined by a character string and detected by a command listener.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to determine
the selection state of a logical Item (Option, Boolean Feature, or List-of-Options Feature)
based on a comparison of two numeric values (numeric Features, Totals, Resources,
Option counts, or numeric constants). The numeric values being compared can be
computed or they can be discrete intervals in a continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,

Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility relationship
where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime Oracle
Configurator window. See also model.

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which end
users make selections to configure an orderable product. A configuration session is

Glossary-3

Glossary-4

limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Developer
See OCD.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so that
the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node's parent to a referenced Model.

Constraint Definition Language
See CDL

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models that support connectivity and
contain trackable components. Configurations created from Container Models can be
tracked and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total value.
See also Total.

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

cz

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well as
specific tables used during the construction of the configurator.

default

In a configuration, the automatic selection of an option based on the preselection rules
or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state of
Features or Options in a default relation to other Features and Options. For example, if
A Defaults B, and you select A, B becomes Logic True (selected) if it is available (not
Logic False).

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compeatibilities interactively in a table view.

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly

Glossary-5

Glossary-6

accessing the application via a Web browser or kiosk. Compare user.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure inside
which a listener listens for an event is called the event binding scope. The part of model
structure that is the source of an event is called the event execution scope. See also
command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User False),
there is no effect on B, meaning it could be User or Logic True, User or Logic False, or
Unknown. See Negates relation.

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime Ul to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided selling
questions trigger configuration rules that automatically select some product options
and exclude others based on the end user's responses.

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

implementer

The person who uses Oracle Configurator Developer to build the model structure, rules,
and Ul customizations that make up a runtime Oracle Configurator. Commonly also
responsible for enabling the integration of Oracle Configurator in a host application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For example,
if A Implies B, and you select A, B becomes Logic True. If you deselect A (set to User
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Requires relation.

import server

A database instance that serves as a source of data for Oracle Configurator's Populate,
Refresh, Migrate, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

initialization message

The XML (Extensible Markup Language) message sent from a host application to the
Oracle Configurator Servlet, containing data needed to initialize the runtime Oracle
Configurator. See also termination message.

instance

A runtime occurrence of a component in a configuration that is determined by the
component node's Instance attribute specifying a minimum and maximum value. See
also instantiate. Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component in
the runtime user interface of a configuration model.

item

A product or part of a product that is in inventory and can be delivered to customers.

Glossary-7

Glossary-8

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications or a
legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the logical
state (User or Logic True, User or Logic False, or Unknown) of Features and Options in
the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

Model

The entire hierarchical "tree" view of all the data required for configurations, including
model structure, variables such as Resources and Totals, and elements in support of
intermediary rules. Includes both imported BOM Models and Models created in
Configurator Developer. May consist of BOM Option Classes and BOM Standard Items.

model structure

Hierarchical "tree" view of data composed of elements (Models, Components, Features,
Options, BOM Models, BOM Option Class nodes, BOM Standard Item nodes,
Resources, and Totals). May include reusable components (References).

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic state
of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). Compare Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents a
Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes from.

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.

oCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the

Glossary-9

Glossary-10

runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator Developer

The tool in the Oracle Configurator product used for constructing and maintaining
configuration models.

Oracle Configurator engine

The part of the Oracle Configurator product that uses configuration rules to validate
runtime selections. Compare generated logic. See also generated logic.

Oracle Configurator schema
See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by end
users to make the selections of a configuration.

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model, Oracle
Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same configuration

model, but each publication corresponds to only one Model and User Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and running
an Oracle Applications concurrent process to copy data to a specific database.

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected). Similarly,
if you deselect A, B is set to Logic False (deselected). See Implies relation.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can have
an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

rules

Also called business rules or configuration rules. In the context of Oracle Configurator
and CDL, a rule is not a business rule. Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and Numeric
Rule.

Glossary-11

runtime

The environment in which an implementer (tester), end user, or customer configures a
product whose model was developed in Oracle Configurator Developer. See also
configuration session.

S
Statement Rule
An Oracle Configurator Developer rule type defined by using the Oracle Configurator
Constraint Definition Language (text) rather than interactively assembling the rule's
elements.

T
termination message
The XML (Extensible Markup Language) message sent from the Oracle Configurator
Servlet to a host application after a configuration session, containing configuration
outputs. See also initialization message.
Total
A variable in the Model used to accumulate a numeric total, such as total price or total
weight.
Also a specific node type in Oracle Configurator Developer. See also node.

U

Ul

See User Interface.

Ul Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

Glossary-12

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and Ul Templates.

Glossary-13

A

Accumulator Rules

definition, 3-32
actions

Auto-Complete Configuration, 3-62

Cancel Processing, 3-62

Cancel Request, 3-63

Configure Instance, 3-63

Copy Instance, 3-63

Create and Go to Instance, 3-63

Create Instance, 3-63

Delete Instance, 3-63

Override Conflict, 3-63

processing page, 3-64

Remove Instance, 3-63

Save and Exit, 3-64

Undo Auto-Complete, 3-64
ATPChangedByAC System Property

,3-15
Auto-Complete Configuration

action, 3-62

definition, 1-3

runtime behavior, 4-2
AutoCompleteSuccessful System Property, 3-13
AutoOverrideEnabled System Property, 3-15

B

bidirectional (rule)
definition, 3-30
binding
variable, 1-4

Index

BOM Nodes
relative quantity, 3-22
unique characteristics in FCE Models, 3-22

Cc

Cancel Processing
action, 3-62
Cancel Request
action, 3-63
cardinality
instances, 4-5
ChangedByAC System Property, 3-11
CLASS_SEQ, 3-45
Compatibility Rules, 3-32
CONFIG_ENGINE_TYPE, 3-46
ConfigComplete System Property, 3-12
ConfigurationChangedByAC System Property, 3-
14
Configurator Engine setting
description, 3-2
Configurator Extensions, 3-34

Configure Instance

action, 3-63
ConflictOverridable System Property, 3-16
ConnectionCount

System Property, 3-6
Connectors

availability, 1-2, 2-9, 3-24

description, 3-24

reverse connectors, 3-24
constraints

definition, 1-1

Index-1

soft constraints, 1-2
Copy Instance
action, 3-63
Create and Go to Instance
action, 3-63
Create Instance
action, 3-63

D

Defaults

Rule Class, 3-30
DefinitionMaxConnections

System Property, 3-8
DefinitionMaxInstances System Property, 3-8
DefinitionMaxQuantity System Property, 3-6
DefinitionMaxRelQuantity System Property, 3-7
DefinitionMaxSelected System Property, 3-7
DefinitionMaxValue System Property, 3-6
DefinitionMinConnections

System Property, 3-8
DefinitionMinInstances System Property, 3-7
DefinitionMinQuantity System Property, 3-6
DefinitionMinRelQuantity System Property, 3-6
DefinitionMinSelected System Property, 3-7
DefinitionMinValue System Property, 3-6
Delete Instance

action, 3-63
documentation

related documents, x
domain

definition, 3-16
Domain Ordering

setting, 3-16

E

Effectivity
description, 3-26
events
description
postAutoComplete, 3-36
preAutoComplete, 3-35

F

Finish
runtime UI flow, 4-9

Index-2

Fundamental Conflict Message
description, 3-55

Fusion Configurator Engine
features, 1-5

G

General area of the Workbench, 3-2
generic instance, 4-5

H

HasltemsToAddress System Property, 3-12

identifiable instances, 4-5
images and icons

list and descriptions, 3-66
importing

legacy rules, 3-45

statement rules , 3-45
InAdjustMode System Property, 3-14
InErrorMode System Property, 3-12
Initial Values

description, 3-21
InputRequired

System Property, 3-10
InputRequiredError System Property, 3-11
InputRequiredFlag

System Property, 3-10
InputRequiredInSubtree System Property, 3-11
InputRequired System Property, 3-12
InstanceCount System Property, 1-5
instance management, 1-3, 4-4

cardinality, 4-5

enhancements, 1-3, 4-4

generic instance, 4-5

identifiable instance, 4-5

placeholders, 4-5
instance pool

definition, 4-7
instances, 1-3, 4-4
IsBound

System Property, 3-9
IsBoundQuantity

System Property, 3-9
IsBoundRelQuantity

System Property, 3-10
IsBoundSelectionState

System Property, 3-9
IsPlaceholder System Property, 3-61

L

ListPriceChangedBy AC System Property
,3-14
Logic States, 3-27

MaxConnections

System Property, 3-6
MaxRelQuantity System Property, 3-5
MinConnections

System Property, 3-5
MinRelQuantity System Property, 3-5
Model Node System Properties

use in FCE Models, 3-3
Models

References, 3-3
Model Structure

settings and attributes, 3-1

(0]

overconstrained

Fundamental Conflict Message, 3-55
Override Conflict

action, 3-63
OverrideSuccessful System Property, 3-16

P

placeholder, 4-5
postAutoComplete (event), 3-36
preAutoComplete (event), 3-35
processing page, 3-64
Profile Options

list, definitions, and default values, 2-1
Properties

introduction, 3-3
Proposed

System Property, 3-8

R

References, 3-3

relative quantity
definition, 3-22

displaying BOM relative quantities at runtime,

3-51
RelativeQuantity System Property, 3-5
Remove Instance
action, 3-63
Require End-User Input
setting definition, 3-19
Resources
description, 3-21
restore
restoring a configuration, 4-11
RULE_CLASS, 3-46
Rule Classes
Defaults, 3-30
definition, 3-27
rule import, 3-45
rules
Accumulator Rules, 3-32
overview, 3-27
Runtime
Auto-Complete Configuration, 4-2
flows and behavior, 4-2

S

Save and Exit
action, 3-64

SelectedCount System Property, 3-5

SellingPriceChangedByAC System Property
,3-15

soft constraints, 1-2

statement rules
importing, 3-45

System Properties
ATPChangedByAC, 3-15
AutoCompleteSuccessful, 3-13
AutoOverrideEnabled, 3-15
ChangedByAC, 3-11
ConfigComplete, 3-12
ConfigurationChangedByAC, 3-14
ConflictOverridable, 3-16
ConnectionCount, 3-6
DefinitionMaxConnections, 3-8
DefinitionMaxInstances, 3-8
DefinitionMaxQuantity, 3-6

Index-3

DefinitionMaxRelQuantity, 3-7 Undo Status Message Box

DefinitionMaxSelected, 3-7 UI Content Template, 3-56
DefinitionMaxValue, 3-6 User Decision
DefinitionMinConnections, 3-8 definition, 3-30
DefinitionMinInstances, 3-7 user input required
DefinitionMinQuantity, 3-6 Require End-User Input setting, 3-19
DefinitionMinRelQuantity, 3-6 User Interface actions
DefinitionMinSelected, 3-7 list and definitions, 3-62
DefinitionMinValue, 3-6 User Interface Content templates
HasltemsToAddress, 3-12 Connection Management Table, 3-53
InAdjustMode, 3-14 User Interface Content Templates, 3-49
InErrorMode, 3-12 Auto-Complete Status Button Bar, 3-57
InputRequired, 3-10, 3-12 Auto-Complete Status Dialog, 3-52
InputRequiredError, 3-11 Basic Conflict Button Bar, 3-58
InputRequiredFlag, 3-10 BOM Item Status Region with Range Display,
InputRequiredInSubtree, 3-11 3-52
InstanceCount, 1-5 Button Bar Templates, 3-56
IsBound, 3-9 Confirm Override Button Bar, 3-58
IsBoundQuantity, 3-9 Confirm Override Dialog Page, 3-55
IsBoundRelQuantity, 3-10 Decimal Input with Range Display, 3-50
IsBoundSelectionState, 3-9 Fundamental Conflict Message, 3-55
IsPlaceholder, 3-61 Generic Processing Page, 3-59
ListPriceChangedByAC, 3-14 Generic Processing Page with Stop Button, 3-
MaxConnections, 3-6 60
MaxRelQuantity, 3-5 Input Required Button Bar, 3-56
MinConnections, 3-5 Input Required Dialog Page, 3-54
MinRelQuantity, 3-5 Input Required Message Box, 3-54
mutable, 3-3 Instance Chooser Button Bar, 3-58
OverrideSuccessful, 3-16 Instance Chooser Page, 3-53
Proposed, 3-8 Integer Input with Range Display, 3-50
RelativeQuantity, 3-5 Item Selection Tables with Quantity and
SelectedCount, 3-5 Range Display, 3-51
SellingPriceChangedByAC, 3-15 Processing Page Button Bar, 3-57
ValidationErrorText, 3-11 Undo Status Message Box, 3-56

User Request Conflict Dialog Page, 3-55

T User Interface Definition

description, 3-67
User Interface elements
Instance Chooser Table, 3-61

Text Features
definition, 3-20

Totals ¢
description, 3-21 User Interface Master Templates, 3-48
] \'J
unbound (variable), 1-4 Val.ldatlonErrorText System Property, 3-11
variable

logic states, 3-27
Undo Auto-Complete
action, 3-64

definition, 1-4

Index-4

	Oracle Configurator Fusion Configurator Engine Guide
	Preface
	Introduction to the Fusion Configurator Engine
	Introduction
	Key Features of the Fusion Configurator Engine
	Rules and the Fusion Configurator Engine
	Managing Component Instances at Runtime
	Auto-Complete Configuration
	Additional Features of the Fusion Configurator Engine

	Preparing to Use the Fusion Configurator Engine
	Upgrading Oracle Configurator to use the Fusion Configurator Engine
	Configurator Preferences Page
	Profile Options
	Converting Existing Models to Use the Fusion Configurator Engine

	Building a Configuration Model Using the Fusion Configurator Engine
	Model Structure
	General Area of the Workbench
	Model References
	Properties
	Domain Ordering Setting
	Require End-User Input Setting
	Text Features
	Counted Option Features
	Totals and Resources
	Initial Values
	BOM Nodes
	BOM Model References

	Connectors
	Effectivity

	Configuration Rules
	Logic States
	Rule Classes
	Compatibility Rules
	Accumulator Rules
	Configurator Extensions
	Fusion Configurator Engine and the Constraint Definition Language
	Rule Import for Fusion Configurator Engine Models

	Creating and Editing a User Interface
	User Interface Master Templates
	User Interface Content Templates
	Control Templates
	Utility Templates
	Message Templates
	Button Bar Templates
	Other Templates
	Changes to Existing User Interface Content Templates

	Layout Regions
	User Interface Elements
	User Interface Actions
	Displaying a Processing Page at Runtime
	Runtime Icons and Images
	User Interface Definition

	Unit Testing a Configuration Model Using the Model Debugger

	Runtime Behavior of the Fusion Configurator Engine
	Domain Display and Availability
	Logic State Display
	Runtime Configurator Flows and Behavior
	Auto-Complete Configuration
	Instance Management
	Finish Configuration
	Conflict Handling and Resolution
	Restoring a Completed Configuration

	Configuration Attributes for Fusion Configurator Engine Models
	About Configuration Attributes
	Tasks for Adding Configuration Attributes to an FCE Model
	Setting Up Descriptive Flexfields
	Adding Attribute Features
	Associating Attribute Features to Flexfield Segments
	Associating BOM Nodes with Attribute Features
	Defining the Configurator Extension Rule
	Access to Configuration Attribute Data
	Special Considerations
	Maintaining the Configuration Attributes Setup
	Using Configuration Attributes in the Downstream Application

	CIO Emulation for the FCE
	About CIO Emulation for the FCE
	Why CIO Emulation for the FCE Is Needed
	Intended Audience for CIO Emulation for the FCE
	Elements of CIO Emulation for the FCE
	Differences Between FCE and CIO Emulation
	Candidate Implementations for Rewriting
	Limitations of CIO Emulation for the FCE

	Tasks for Implementing CIO Emulation for the FCE
	Requirements for Implementing CIO Emulation

	Converting Source Files with Substitution
	What the Substitution Script Does
	Running the Script
	Syntax and Parameters
	Custom Substitution
	Output of the Script
	Errors from the Script

	Compiling and Archiving Converted Files
	Converting Configurator Extension Rules
	Verifying Post-Conversion Behavior

	Common Glossary for Oracle Configurator
	Index

