
Oracle® Configurator
Implementation Guide
Release 12.2
Part No. E48816-01

September 2013

Oracle Configurator Implementation Guide , Release 12.2

Part No. E48816-01

Copyright © 1999, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Margot Murray

Contributing Author: Tom Myers

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

 iii

Contents

Send Us Your Comments

Preface

Part 1 Introduction

1 Implementation Tasks
Overview... 1-1
General Implementation Tasks.. 1-2
Database Tasks.. 1-2

Required Database Tasks... 1-2
Optional Database Tasks..1-4

Integration Tasks... 1-4
Required Tasks for All Integrations... 1-4
Optional Integration Tasks.. 1-5
Tasks for Custom Integration...1-5

Model Development Tasks... 1-6
Required Tasks for Model Development... 1-6
Optional Tasks for Model Development.. 1-7

Deployment Tasks...1-7
Required Tasks for All Deployments... 1-7
Optional Tasks for Deployment... 1-8
Tasks for Custom Deployments... 1-9

Conventions .. 1-9
Product Support...1-11

Troubleshooting... 1-11

iv

2 Configurator Architecture
Overview... 2-1
Introduction... 2-1
Runtime Oracle Configurator... 2-3

Access.. 2-3
Type of Host Application.. 2-4
Login to Host Application... 2-4
Invocation of Oracle Configurator by Host Application... 2-4
Incorporation of Oracle Configurator in the Host Application's UI.............................. 2-5

Oracle Configurator Security on Publicly Accessible Web Servers......................................2-5
Runtime UI Types.. 2-6
Oracle Configurator Servlet .. 2-6

UI Server..2-7
Configuration Interface Object (CIO).. 2-7
Oracle Configurator Engine.. 2-7

Oracle CZ Schema... 2-7
Oracle Configurator Developer ..2-8

Access.. 2-8
Types of Configuration Models... 2-8
Unit Testing... 2-9

Multi-Tier Architecture... 2-9
Runtime Oracle Configurator.. 2-10
Oracle Configurator Developer Three Tiers...2-11

3 Database Instances
Overview... 3-1
Database Uses.. 3-2
Multiple Database Instances... 3-3

Model Availability on Multiple Database Instances.. 3-4
Import Source and Target.. 3-5
Publication Source and Target...3-5
Decommissioning a Database Instance..3-6
Migration Source and Target... 3-6
BOM Synchronization Source and Target... 3-6

Linking Multiple Database Instances... 3-6
Instance and Host System Names.. 3-7

Model Development..3-7
Maintenance.. 3-8
Production... 3-8

 v

System Testing... 3-9
Deploying a Model.. 3-9
Converting a Publication Target Instance to a Development Instance.................................3-9

Part 2 Data

4 The CZ Schema
Overview... 4-1
Characteristics of the Oracle CZ Schema.. 4-1

Online Tables and Integration Tables.. 4-1
CZ Subschemas.. 4-2
Public Synonyms... 4-3
Schema Customization.. 4-3

Import Tables.. 4-3
Import Control Fields.. 4-4
Online Data Fields... 4-7
Surrogate Key Fields.. 4-7
Dependencies Among Import Tables...4-7

Control Tables... 4-9
CZ_DB_SETTINGS Table...4-10

Accessing the CZ_DB_SETTINGS Table.. 4-11
Organization of the CZ_DB_SETTINGS Table...4-11
CZ_DB_SETTINGS Parameters... 4-11

AltBatchValidateURL.. 4-15
BadItemPropertyValue.. 4-16
BatchSize... 4-16
BOM_REVISION... 4-17
CommitSize... 4-17
DISPLAY_INSTANCE_NAME... 4-17
FREEZE_REVISION.. 4-18
GenerateGatedCombo... 4-18
GenerateUpdatedOnly.. 4-18
GenStatisticsBOM.. 4-18
GenStatisticsCZ... 4-18
MAJOR_VERSION.. 4-18
MaximumErrors.. 4-18
MemoryBulkSize... 4-19
MINOR_VERSION.. 4-19
MULTISESSION.. 4-19
OracleSequenceIncr... 4-19

vi

PsNodeName.. 4-20
PublicationLocalBOMSynch.. 4-20
PublicationLogging... 4-20
PublishingCopyRules.. 4-20
PurgeDeleteConfigBatchsize... 4-21
RefPartNbr.. 4-21
ResolvePropertyDataType...4-22
RestoredConfigDefaultModelLookupDate... 4-23
Revision Date and User... 4-23
RUN_BILL_EXPLODER.. 4-23
SuppressSuccessMessage.. 4-24
TimeImport ...4-24
UI_NODE_NAME_CONCAT_CHARS...4-24
UseLocalTableInExtractionViews..4-25
UtlHttpTransferTimeout... 4-25

5 Populating the CZ Schema
Overview... 5-1
Introduction... 5-2

Types of Data Stored in the CZ Schema During Development and Runtime...................... 5-2
Means of Populating the CZ Schema... 5-3
CZ_IMP Tables.. 5-4

Standard Import.. 5-4
Inventory and BOM Data That Can Be Imported.. 5-6
Overall Standard Import Procedure.. 5-6
Determining the Import Data Source Instance and the Target Instance.............................. 5-7
Preparing the Data for Import... 5-7

Defining Inventory Items for Configuration... 5-8
Creating BOM Models for Configuration.. 5-9

Defining and Enabling a Server for Import..5-10
Exploding BOM Models in Oracle Applications.. 5-10

Exploding a BOM Model in Release 12... 5-10
Exploding a BOM Model in Release 10.7 or 11.0... 5-11

Controlling the Data for Import... 5-11
Importing Data Into Specific Tables.. 5-12
Importing Data from Specific Fields..5-12
Populating Import Tables.. 5-12
Modifying EXPLOSION_TYPE... 5-13
Identifying a BOM Model for Import.. 5-13
Importing Decimal or Integer Quantities.. 5-13

 vii

Importing Minimum and Maximum Instances... 5-15
Importing the Data...5-15
Verifying the Data Import..5-16
Refreshing Imported Data..5-16

Refreshing Imported Data Recommendations ..5-16
Refreshing Procedures .. 5-17

Importing a BOM Model that Contains Other BOM Models... 5-17
Refreshing a BOM Model that Contains Other BOM Models.. 5-18

BOM Model References Have Changed.. 5-19
BOM Models Referenced by Previously Imported BOM Model Have Changed.........5-19

BOM Model with a Common Bill.. 5-21
Rule Import..5-21

Populating CZ_IMP_RULES.. 5-22
Populating CZ_IMP_LOCALIZED_TEXTS ...5-24
Rule Import Tables...5-26
Stages of Rule Import .. 5-28
Rule Validation.. 5-29

Rule Import Procedure.. 5-29
Custom Import...5-30

Overview of Custom Data Import... 5-30
Identifying Data for a Custom Data Import .. 5-31
Required ASCII File Format for Custom Import..5-32
Loading Property Values by Type... 5-33

Custom Import Procedure... 5-34

6 Migrating Data
Introduction... 6-1
Migrating Data from a CZ Schema... 6-2
Migrating Models.. 6-3

Migrating Referenced Models.. 6-5
Restoring Saved Configurations of Migrated Models.. 6-7
Synchronizing Migrated Model Data...6-8

Synchronization Criteria During Model Migration... 6-9

7 Synchronizing Data
Overview... 7-1
Introduction... 7-1
Synchronizing BOM Model Data... 7-2

The BOM Model Synchronization Process... 7-2
Checking BOM and Model Similarity.. 7-3

viii

Criteria for BOM Model Similarity.. 7-3
Result of Synchronizing BOM Models... 7-6

Synchronizing Publication Data... 7-6
Synchronizing Publication Data after a Database Instance is Cloned.................................. 7-7
Example of Synchronizing Publication Data..7-8

CZ_SERVERS Table... 7-8
CZ_MODEL_PUBLICATIONS Table.. 7-8
Example Publication Data Before Cloning.. 7-8
Example of Synchronizing Publication Data on a Cloned Target..................................7-9
Example of Synchronizing Publication Data on a Cloned Source 7-12

8 CZ Schema Maintenance
Overview... 8-1
Introduction... 8-1
Refreshing or Updating the Production CZ Schema.. 8-2
Purging Configurator Tables.. 8-2

Purge Configurator Tables... 8-2
Purge Configurator Import Tables... 8-3
Purge To Date Configurator Import Tables... 8-3
Purge To Run ID Configurator Import Tables... 8-3

Redoing Sequences... 8-4

Part 3 Integration

9 Session Initialization
Overview... 9-1
Introduction... 9-2

Definition of Session Initialization... 9-2
Responsibilities of the Host Application.. 9-3

Setting Parameters... 9-4
Parameter Syntax... 9-4

Omitting Parameters or Values... 9-5
Typical Parameter Values.. 9-6
Minimal Test of Initialization... 9-7
Parameter Validation... 9-8
Logging of Parameter Use..9-8

Initialization Parameter Types..9-9
Login Parameters... 9-9
Model Identification Parameters.. 9-10

 ix

Identifying the User Interface Definition...9-11
Identifying the Configuration..9-11
Identifying the Model.. 9-12

Model Publication Identification Parameters...9-13
Support of Multiple Instantiation.. 9-14
Return URL Parameter...9-14
Pricing Parameters... 9-15
ATP Parameters... 9-15
Arbitrary Parameters... 9-16
Parameter Compatibility..9-16

Initialization Parameter Descriptions...9-17

10 Session Termination
Introduction... 10-1
Overview... 10-2

Relationship to Initialization Message... 10-2
Definition of Session Termination..10-2

XML Message Structure.. 10-3
Submission.. 10-4

Configuration Status.. 10-5
Subelements for Configuration Status... 10-6

Configuration Outputs...10-8
Subelements for Configuration Outputs... 10-9

Configuration Messages.. 10-11
Subelements for Configuration Messages... 10-11

Cancellation... 10-12
Error... 10-12
The Return URL...10-13

Specifying the Return URL.. 10-13
Implementing the Return URL.. 10-14

11 Batch Validation
Overview... 11-1
Introduction... 11-2
Passing the Batch Validation Message... 11-2
Calling the CZ_CF_API.VALIDATE Procedure... 11-4
Batch Validation Failure... 11-9
Skipping Batch Validation.. 11-9

PL/SQL Callback.. 11-10
PL/SQL Callback and Models that use Configurator Extensions..................................... 11-11

x

12 Custom Integration
Overview... 12-1
General Directory Structure.. 12-2
Files for the Servlet Directory... 12-2
Files for the HTML Directory... 12-3
Files for the Media Directory.. 12-3

13 Pricing and ATP in Oracle Configurator
Overview... 13-1
Introduction... 13-2
Runtime Oracle Configurator Pricing Architecture... 13-2

Pricing Callback Interface Package ... 13-2
Pricing Callback Interface ... 13-4

Use of the Database in the Price Multiple Items Procedures....................................... 13-5
Examples of the Pricing Callback Interface... 13-7

ATP Callback Interface.. 13-8
Use of the Database with the ATP Callback Interface... 13-9
Examples of the ATP Callback Interface..13-9

Runtime Pricing Behavior... 13-9
Integration of Pricing and ATP with Oracle Configurator.. 13-10

Database Compatibility... 13-11
Initialization Parameters.. 13-11

Controlling Pricing and ATP in a Runtime Oracle Configurator.. 13-12
Displaying Prices and ATP Information.. 13-13
Updating Prices... 13-13
Examples of Controlling Pricing.. 13-13

Example: List Prices Only.. 13-13
Example: Selling Prices Only... 13-14

14 Multiple Language Support
Overview... 14-1
Introduction... 14-2
Data Import..14-2

New Models... 14-3
Existing Models... 14-3

Installed Languages in Multiple Server Environments... 14-3
Deploying a User Interface that Supports MLS... 14-3
Translating Data in CZ_LOCALIZED_TEXTS... 14-4
Translating XML Documents.. 14-5

 xi

Part 4 Configuration Model

15 Controlling the Development Environment
Overview... 15-1
Setting up Oracle Configurator Developer.. 15-1
Setting up Access to Configurator Developer.. 15-2
Oracle Configurator Developer.. 15-3

Model Development.. 15-3
Runtime Testing... 15-4

16 Publishing Configuration Models
Overview... 16-1
Planning Publications... 16-1

Designing A Project... 16-2
Preventing Publication Access Errors.. 16-3

How Host Applications Select a Published Model.. 16-3
Example: How a Usage Affects Model Structure, Rules, and Model Publications at Runtime
... 16-4

Defining a Publication.. 16-5
Source and Remote Publications.. 16-5
Tables Used in Publishing..16-6
Publication Details... 16-6

Model ... 16-7
Product ID... 16-7
User Interface.. 16-8
Target Database Instance... 16-8
Mode... 16-8

Publication Applicability Parameters.. 16-8
Applications.. 16-9
Languages... 16-9
Usages... 16-9
Date Range.. 16-10

Publishing a Configuration Model... 16-10
Publication Profile Options.. 16-12
Publishing and Model References..16-12
Copying User Interface Data..16-12
Copying Model Rules.. 16-13
Checking BOM Model and Configuration Model Similarity .. 16-13

Maintaining Publications..16-14

xii

Publication Status.. 16-14
Editing Publications... 16-16
Disabling, Deleting, and Re-enabling Publications.. 16-16
Republishing ... 16-17
Determining Publishing Information...16-17
Retrieving Orders from Previously Published Models.. 16-18
Synchronizing Publication Data...16-18
Example of Maintaining Publications ... 16-19

17 Programmatic Tools for Development
Overview... 17-2
Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages................................... 17-3

Purpose of the Packages...17-3
Overview of Procedures and Functions... 17-3
Installation of the Packages.. 17-5
References for Working with PL/SQL Procedures and Functions......................................17-6

Choosing the Right Tool for the Job... 17-7
Establishing Session Identity... 17-7
Setting Configuration Dates... 17-7
Validating Configurations... 17-7
Verifying Configurations... 17-7
Copying and Deleting Configurations... 17-7
Working with Common Bills... 17-8
Identifying Publications... 17-8

Functions for Identifying Publications.. 17-8
Applicability Parameters... 17-9
List Parameters.. 17-10

Routing Models to Specified JVMs.. 17-11
Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages..........................17-11

Custom Data Types..17-11
Procedures and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB Packages.... 17-12

COMMON_BILL_FOR_ITEM.. 17-14
Syntax and Parameters...17-14

CONFIG_MODEL_FOR_ITEM.. 17-15
Considerations Before Running... 17-15

Timing... 17-15
Dependencies.. 17-15
Warnings... 17-15

Syntax and Parameters...17-16
Considerations After Running... 17-17

 xiii

Results... 17-17
CONFIG_MODELS_FOR_ITEMS.. 17-17

Considerations Before Running... 17-17
Timing... 17-17
Dependencies.. 17-17
Warnings... 17-17

Syntax and Parameters...17-18
Considerations After Running... 17-19

Results... 17-19
CONFIG_MODEL_FOR_PRODUCT... 17-19

Considerations Before Running... 17-19
Timing... 17-19
Dependencies.. 17-20
Warnings... 17-20

Syntax and Parameters...17-20
Considerations After Running... 17-21

Results... 17-21
CONFIG_MODELS_FOR_PRODUCTS... 17-21

Considerations Before Running... 17-21
Timing... 17-21
Dependencies.. 17-22
Warnings... 17-22

Syntax and Parameters...17-22
Considerations After Running... 17-23

Results... 17-23
CONFIG_UI_FOR_ITEM.. 17-23

Considerations Before Running... 17-23
Timing... 17-23
Dependencies.. 17-24
Warnings... 17-24

Syntax and Parameters...17-24
Considerations After Running... 17-25

Results... 17-26
CONFIG_UI_FOR_ITEM_LF.. 17-26

Considerations Before Running... 17-26
Timing... 17-26
Dependencies.. 17-26
Warnings... 17-26

Syntax and Parameters...17-26
Considerations After Running... 17-28

Results... 17-29

xiv

CONFIG_UI_FOR_PRODUCT... 17-29
Considerations Before Running... 17-29

Timing... 17-29
Dependencies.. 17-29
Warnings... 17-29

Syntax and Parameters...17-29
Considerations After Running... 17-31

Results... 17-31
CONFIG_UIS_FOR_ITEMS... 17-31

Considerations Before Running... 17-32
Timing... 17-32
Dependencies.. 17-32
Warnings... 17-32

Syntax and Parameters...17-32
Considerations After Running... 17-34

Results... 17-34
CONFIG_UIS_FOR_PRODUCTS...17-34

Considerations Before Running... 17-34
Timing... 17-34
Dependencies.. 17-34
Warnings... 17-35

Syntax and Parameters...17-35
Considerations After Running... 17-36

Results... 17-36
COPY_CONFIGURATION... 17-37

Considerations Before Running... 17-37
Prerequisites.. 17-37
Timing... 17-37
Warnings... 17-37

Syntax and Parameters...17-38
Considerations After Running... 17-39

Results... 17-39
Troubleshooting.. 17-39

CZ_CONFIG_API_PUB.COPY_CONFIGURATION...17-39
Considerations Before Running... 17-40

Prerequisites.. 17-40
Timing... 17-40
Warnings... 17-40

Syntax and Parameters...17-40
COPY_CONFIGURATION_AUTO.. 17-42

Considerations Before Running... 17-42

 xv

Prerequisites.. 17-42
Timing... 17-42
Warnings... 17-43

Syntax and Parameters...17-43
Considerations After Running... 17-44

Results... 17-44
Troubleshooting.. 17-45

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO..17-45
Considerations Before Running... 17-45

Prerequisites.. 17-45
Timing... 17-45
Warnings... 17-45

Syntax and Parameters...17-45
Considerations After Running... 17-47

Results... 17-47
Troubleshooting.. 17-47

DEFAULT_NEW_CFG_DATES.. 17-48
Considerations Before Running... 17-48

Prerequisites.. 17-48
Timing... 17-48
Dependencies.. 17-48
Restrictions and Limitations.. 17-48

Syntax and Parameters...17-48
Considerations After Running... 17-49

Results... 17-49
DEFAULT_RESTORED_CFG_DATES...17-49

Considerations Before Running... 17-49
Prerequisites.. 17-49
Timing... 17-49
Dependencies.. 17-50
Restrictions and Limitations.. 17-50

Syntax and Parameters...17-50
Considerations After Running... 17-51

Results... 17-51
DELETE_CONFIGURATION... 17-51

Considerations Before Running... 17-51
Prerequisites.. 17-51
Timing... 17-52
Warnings... 17-52

Syntax and Parameters...17-52
Considerations After Running... 17-53

xvi

Troubleshooting.. 17-53
ICX_SESSION_TICKET.. 17-53

Considerations Before Running... 17-53
Prerequisites.. 17-53
Timing... 17-53

Syntax and Parameters...17-53
Considerations After Running... 17-54

Results... 17-54
Troubleshooting.. 17-54

MODEL_FOR_ITEM... 17-54
Considerations Before Running... 17-54

Timing... 17-54
Dependencies.. 17-54
Warnings... 17-54

Syntax and Parameters...17-55
Considerations After Running... 17-56

Results... 17-56
MODEL_FOR_PUBLICATION_ID.. 17-56

Considerations Before Running... 17-56
Timing... 17-56
Dependencies.. 17-56

Syntax and Parameters...17-56
POOL_TOKEN_FOR_PRODUCT_KEY... 17-57

Considerations Before Running... 17-57
Timing... 17-57
Dependencies.. 17-57

Syntax and Parameters...17-57
PUBLICATION_FOR_ITEM... 17-58

Considerations Before Running... 17-58
Timing... 17-58
Dependencies.. 17-58
Warnings... 17-58

Syntax and Parameters...17-58
PUBLICATION_FOR_PRODUCT.. 17-59

Considerations Before Running... 17-60
Timing... 17-60
Dependencies.. 17-60
Warnings... 17-60

Syntax and Parameters...17-60
PUBLICATION_FOR_SAVED_CONFIG...17-61

Considerations Before Running... 17-61

 xvii

Timing... 17-61
Dependencies.. 17-62
Warnings... 17-62

Syntax and Parameters...17-62
REGISTER_MODEL_TO_POOL.. 17-63

Considerations Before Running... 17-63
Timing... 17-63
Dependencies.. 17-63

Syntax and Parameters...17-64
UNREGISTER_MODEL_FROM_POOL.. 17-64

Considerations Before Running... 17-64
Timing... 17-64
Dependencies.. 17-64

Syntax and Parameters...17-65
UNREGISTER_POOL .. 17-65

Considerations Before Running... 17-65
Timing... 17-65
Dependencies.. 17-65

Syntax and Parameters...17-66
UI_FOR_ITEM... 17-66

Considerations Before Running... 17-66
Timing... 17-66
Dependencies.. 17-66

Syntax and Parameters...17-66
Considerations After Running... 17-68

Results... 17-68
UI_FOR_PUBLICATION_ID.. 17-68

Considerations Before Running... 17-68
Timing... 17-68
Dependencies.. 17-68

Syntax and Parameters...17-69
Example... 17-69

VALIDATE.. 17-69
Considerations Before Running... 17-70
Syntax and Parameters...17-70
Example... 17-71
Considerations After Running... 17-71

Results... 17-71
CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION... 17-72

Considerations Before Running... 17-72
Timing... 17-72

xviii

Dependencies.. 17-73
Syntax and Parameters...17-73

18 Programmatic Tools for Maintenance
Overview... 18-2
Overview of the CZ_modelOperations_pub Package.. 18-2

Purpose of the Package.. 18-2
Installation of the Package... 18-3
References for Working with PL/SQL Procedures and Functions......................................18-3

Choosing the Right Tool for the Job... 18-3
Queries to Support the CZ_modelOperations_pub Package... 18-5

Querying for Model and Folder IDs.. 18-5
Querying for User Interface IDs... 18-6
Querying for Referenced User Interface IDs.. 18-7
Querying for Populators.. 18-7
Querying for Error and Warning Information... 18-8

Reference for the CZ_modelOperations_pub Package.. 18-9
Custom Data Types..18-9
API Version Numbers.. 18-9

Format of API Version Numbers... 18-10
Current API Version Number for This Package.. 18-10
Checking for Incompatible API Calls.. 18-10

Procedures and Functions in the CZ_modelOperations_pub Package............................ 18-11
CREATE_RP_FOLDER..18-12

Considerations Before Running... 18-12
Alternatives... 18-13

Syntax and Parameters...18-13
CREATE_UI... 18-14

Considerations Before Running... 18-14
Alternatives... 18-15

Syntax and Parameters...18-15
CREATE_JRAD_UI... 18-17

Considerations Before Running... 18-17
Alternatives... 18-17

Syntax and Parameters...18-17
DEEP_MODEL_COPY.. 18-19

Considerations Before Running... 18-19
Alternatives... 18-19

Syntax and Parameters...18-19
EXECUTE_POPULATOR.. 18-20

 xix

Considerations Before Running... 18-20
Alternatives... 18-21

Syntax and Parameters...18-21
FORCE_UNLOCK_MODEL... 18-21

Considerations Before Running... 18-22
Alternatives... 18-22

Syntax and Parameters...18-22
FORCE_UNLOCK_TEMPLATE... 18-23

Considerations Before Running... 18-23
Alternatives... 18-24

Syntax and Parameters...18-24
GENERATE_LOGIC... 18-25

Considerations Before Running... 18-25
Alternatives... 18-25

Syntax and Parameters...18-25
Example... 18-26

IMPORT_SINGLE_BILL... 18-26
Considerations Before Running... 18-26

Alternatives... 18-26
Syntax and Parameters...18-27

IMPORT_GENERIC.. 18-27
Considerations Before Running... 18-28

Alternatives... 18-28
Syntax and Parameters...18-28

PUBLISH_MODEL.. 18-29
Considerations Before Running... 18-29

Restrictions and Limitations.. 18-29
Alternatives... 18-29

Syntax and Parameters...18-30
MIGRATE_MODELS.. 18-30

Considerations Before Running... 18-30
Restrictions and Limitations.. 18-30
Alternatives... 18-31

Syntax and Parameters...18-31
REFRESH_SINGLE_MODEL... 18-32

Considerations Before Running... 18-32
Syntax and Parameters...18-32

REFRESH_UI... 18-33
Considerations Before Running... 18-33

Restrictions and Limitations.. 18-33
Alternatives... 18-33

xx

Syntax and Parameters...18-34
REFRESH_JRAD_UI... 18-34

Considerations Before Running... 18-35
Alternatives... 18-35

Syntax and Parameters...18-35
REPOPULATE... 18-35

Considerations Before Running... 18-36
Alternatives... 18-36

Syntax and Parameters...18-36
REPUBLISH_MODEL... 18-37

Considerations Before Running... 18-37
Alternatives... 18-37

Syntax and Parameters...18-38
RP_FOLDER_EXISTS..18-38

Considerations Before Running... 18-39
Alternatives... 18-39

Syntax and Parameters...18-39

Part 5 Runtime Configurator

19 User Interface Deployment
Overview... 19-1
Calling an Embedded Oracle Configurator ... 19-2

Generic Configurator User Interfaces.. 19-2
Criteria for Launching a Generic Configurator User Interface.................................... 19-3
Generic Configurator UI Types... 19-3
Setting Up a Generic Configurator User Interface... 19-4
Generic Configurator User Interfaces: Additional Features and Limitations.............. 19-4

Keyboard Access in the Runtime Configurator... 19-5

20 Deployment Considerations
Overview... 20-1
Deployment Strategies.. 20-2
Architectural Considerations.. 20-2
Server Considerations... 20-3

Connection Pooling.. 20-4
Establishing End User Access... 20-5
Determining the Runtime User Interface... 20-5
Load Balancing and Secure Sockets Layer..20-6

 xxi

Network Considerations... 20-6
Firewalls and Timeouts.. 20-6
Router Timeouts.. 20-7
Miscellaneous Issues.. 20-7

Security Considerations.. 20-7
Internet User Access ..20-8
Additional Security Precautions.. 20-9

Multiple Language Support Considerations.. 20-9
Performance Considerations... 20-10
Routing Models to Specified JVMs.. 20-10

21 Managing Configurations
Overview... 21-1
About Configurations... 21-2

Saving a Configuration.. 21-2
Restoring Saved Configurations.. 21-3

Configuration Identity.. 21-4
Host Applications and Oracle Configurator...21-5
Batch Validation of a Configured Item...21-5
Reconfiguring a Configured Item... 21-6
Copying a Host Application's Entity.. 21-7
Passing a Saved Configuration to Another Host Application... 21-8
Deleting a Host Application Entity.. 21-8

A Terminology
Overview... A-1

B Common Tasks
Overview... B-1
Running Configurator Concurrent Programs.. B-2
Connecting to a Database Instance...B-2
Verifying CZ Schema Version.. B-3
Server Administration.. B-3
Viewing the Status of Configurator Concurrent Requests.. B-4
Viewing Log Files... B-4
Managing Oracle Configurator Caching.. B-4
Checking BOM Model and Configuration Model Similarity... B-4

xxii

C Concurrent Programs
Overview... C-1
Configurator Administration Concurrent Programs... C-2

View Configurator Parameters ... C-2
Modify Configurator Parameters.. C-3
Purge Configurator Tables.. C-4
Purge Configurator Import Tables.. C-5
Purge To Date Configurator Import Tables...C-6
Purge To Run ID Configurator Import Tables...C-7

Convert Publication Target Instance to Development Instance..C-8
Server Administration Concurrent Programs.. C-9

Add Application to Publication Applicability List.. C-9
Define Remote Server.. C-10
Enable Remote Server..C-12
View Servers..C-13
Modify Server Definition...C-14

Configuration Model Publication Concurrent Programs.. C-15
Process Pending Publications.. C-16
Process a Single Publication.. C-17

Populate and Refresh Configuration Models Concurrent Programs.................................... C-18
Populate Configuration Models.. C-19

Populate Configuration Models Concurrent Program Error Messages...................... C-20
Refresh a Single Configuration Model.. C-21
Refresh All Imported Configuration Models...C-22
Disable/Enable Refresh of a Configuration Model.. C-23
Import Configuration Rules.. C-23

Model Synchronization Concurrent Programs.. C-25
Check Model/Bill Similarity.. C-25
Check All Models/Bills Similarity... C-27
Synchronize All Models.. C-27
Model/Bill Similarity Check Report...C-28

Execute Populators in Model ... C-29
Migration Concurrent Programs.. C-30

Setup Configurator Data Migration.. C-30
Migrate Configurator Data.. C-32

Migrate Functional Companions..C-32
Migrate All Functional Companions... C-33
Migrate Functional Companions for a Single Model...C-34

Model Management.. C-35

 xxiii

Add Model Node Names to Configurations by Model Items... C-35
Add Model Node Names to Configurations by Model Product Key................................ C-37
Migrate Models... C-38

Publication Synchronization Concurrent Programs.. C-40
Synchronize Cloned Target Data...C-40
Synchronize Cloned Source Data.. C-41
Select Tables to be Imported..C-42
Show Tables to be Imported.. C-44

D CZ Subschemas
Oracle Configurator Subschemas...D-1

ADMN Administrative Tables.. D-1
CNFG Configuration Tables..D-1
ITEM Item-Master Tables.. D-2
LCE Logic for Configuration Tables.. D-2
PB Publication Tables.. D-3
PRC Pricing Tables.. D-3
PROJ Project Structure Tables... D-4
RP Repository Tables...D-5
RULE Rule Tables..D-10
TXT - Text Tables...D-11
TYP - Data Typing... D-12
UI User Interface Tables.. D-12
XFR Transfer Specifications and Control Tables... D-13

E Code Examples
Overview... E-1
Pricing and ATP Callback Procedures... E-2
Implementing a Return URL Servlet..E-3

Common Glossary for Oracle Configurator

Index

 xxv

Send Us Your Comments

Oracle Configurator Implementation Guide , Release 12.2
Part No. E48816-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 xxvii

Preface

Intended Audience
Welcome to Release 12.2 of the Oracle Configurator Implementation Guide .

This guide presents tasks and information useful in implementing Oracle Configurator.

See the Oracle Configurator Installation Guide for installation information, the Oracle
Configurator Developer User's Guide for information about developing configuration
models in Oracle Configurator Developer, the Oracle Configurator Modeling Guide for
information about designing configuration models that are best suited to Oracle
Configurator, Oracle Configurator Methodologies for information and tasks useful in
implementing Oracle Configurator, the Oracle Configurator Extensions and Interface Object
Developer's Guide for information about writing Configurator Extensions, the Oracle
Configurator Constraint Definition Language Guide for information about writing
Statement Rules, and the Oracle Configurator Performance Guide for information needed
for optimizing runtime performance of Oracle Configurator.

This guide is intended for anyone responsible for supporting the use of Oracle
Configurator. This includes supporting the development environment (Oracle
Configurator Developer) as well as the runtime environment that is created for
deployment.

Ordinarily, the tasks presented in this book are performed by a Database Administrator
(DBA) or an Oracle Configurator implementer with DBA experience.

See Related Information Sources on page xxx for more Oracle E-Business Suite product
information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xxviii

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Structure
1 Implementation Tasks
This chapter presents an overview of all known tasks in an Oracle Configurator
implementation, including custom tasks.

2 Configurator Architecture
This chapter describes the elements of the Oracle Configurator product and how they fit
together.

3 Database Instances
This chapter describes the uses to which databases are put when implementing Oracle
Configurator, and specifics about using multiple database instances.

4 The CZ Schema
This chapter describes the basic characteristics of the CZ schema, the schema settings
and how they are used, and provides some schema maintenance tips.

5 Populating the CZ Schema
This chapter provides an overview of why and how to import data from Oracle
Applications and non-Oracle Applications databases. It describes the import processes,
the import tables used during data import, how to import data into the CZ schema, data
import verification, the process for refreshing or updating imported data, and
customizing data import.

6 Migrating Data
This chapter describes how to migrate a CZ Release 12 instance into an empty CZ
instance, and how to migrate Model data from one instance to another development
instance.

7 Synchronizing Data
This chapter describes when and how data is synchronized. This includes
synchronizing BOM data after the import server has changed and synchronizing
publication data after a database has been cloned.

8 CZ Schema Maintenance
This chapter explains how to maintain data when it exists in more than one place and is
potentially unsynchronized.

9 Session Initialization
This chapter describes the format and parameters of the initialization message for the
runtime Oracle Configurator.

10 Session Termination

 xxix

This chapter describes the format and parameters of the termination message for the
runtime Oracle Configurator Servlet.

11 Batch Validation
This chapter describes using Oracle Configurator in a programmatic mode.

12 Custom Integration
This chapter explains how to modify certain Oracle Configurator files as well as the
purpose of the files and where they can be found.

13 Pricing and ATP in Oracle Configurator
This chapter provides an overview of how pricing works in a runtime Oracle
Configurator.

14 Multiple Language Support
This chapter explains how Item descriptions are entered in Oracle Applications and can
be displayed in multiple languages when deploying an Oracle Configurator User
Interface.

15 Controlling the Development Environment
16 Publishing Configuration Models
This chapter explains the database processes for publishing configuration models to
make them available to host applications.

17 Programmatic Tools for Development
This chapter describes a set of programmatic tools (PL/SQL procedures and functions)
that may be useful in developing a configuration model and deploying a runtime
Oracle Configurator.

18 Programmatic Tools for Maintenance
This chapter describes a set of programmatic tools (PL/SQL procedures) that you can
use primarily to maintain a deployed runtime Oracle Configurator.

19 User Interface Deployment
This chapter describes the activities required to complete the User Interface deployment
of a runtime Oracle Configurator embedded in a host Oracle Application such as Order
Management or iStore.

20 Deployment Considerations
This chapter describes the strategies you should consider when you are ready to
complete the deployment of a runtime Oracle Configurator.

21 Managing Configurations
This chapter describes the data structures produced by Oracle Configurator during a
configuration session, and how to manage the life cycle of a configuration.

A Terminology
This appendix defines the terms that are found in the Oracle Configurator Implementation
Guide that are not defined in the Glossary.

B Common Tasks
This appendix describes certain tasks that may be required while implementing an
Oracle Configurator.

C Concurrent Programs

xxx

This appendix describes the concurrent programs available to either the Oracle
Configurator Administrator or Oracle Configurator Developer responsibility.

D CZ Subschemas
This appendix lists the CZ tables that make up each of the subschemas in the CZ
schema. For table details, see the Oracle Integration Repository.

E Code Examples
Common Glossary for Oracle Configurator

Related Information Sources
Important: There is new functionality available for the Runtime Oracle
Configurator when using the Fusion Configurator Engine (FCE). The
FCE is an alternative to the configuration engine described in this
document. For all information about the FCE, see the Oracle
Configurator Fusion Configurator Engine Guide.

For more information, see the following resources:

• Be sure you are familiar with the latest release or patch information for Oracle
Configurator see the Oracle Support Web site.

• For a full list of documentation resources for Oracle Configurator, see the Oracle
Configurator Release Notes for this release.

• For a full list of documentation for Oracle Applications, see Oracle Applications
Documentation, on the Oracle Technology Network.

• For detailed reference information about the tables in the CZ schema, see the Oracle
Integration Repository.

• For useful background in implementing applications, consult the Oracle database
documentation resources for the current guidelines on performance methods.

Integration Repository
The Oracle Integration Repository is a compilation of information about the service
endpoints exposed by the Oracle E-Business Suite of applications. It provides a
complete catalog of Oracle E-Business Suite's business service interfaces. The tool lets
users easily discover and deploy the appropriate business service interface for
integration with any system, application, or business partner.

The Oracle Integration Repository is shipped as part of the E-Business Suite. As your
instance is patched, the repository is automatically updated with content appropriate
for the precise revisions of interfaces in your environment.

You can navigate to the Oracle Integration Repository through Oracle E-Business Suite

 xxxi

Integrated SOA Gateway.

Do Not Use Database Tools to Modify Oracle E-Business Suite Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Part 1
Introduction

Part 1 consists of chapters that present a baseline for understanding Oracle
Configurator.

Implementation Tasks 1-1

1
Implementation Tasks

This chapter presents an overview of all known tasks in an Oracle Configurator
implementation, including custom tasks.

This chapter covers the following topics:

• Overview

• General Implementation Tasks

• Database Tasks

• Integration Tasks

• Model Development Tasks

• Deployment Tasks

• Conventions

• Product Support

Overview
This chapter provides an overview of tasks performed prior to implementing Oracle
Configurator. The list of tasks is organized into the following categories:

• General Implementation Tasks, page 1-2

• Database Tasks, page 1-2

• Integration Tasks, page 1-4

• Model Development Tasks, page 1-6

• Deployment Tasks, page 1-7

1-2 Oracle Configurator Implementation Guide

General Implementation Tasks
General implementation tasks are the initial tasks that set up an environment and
enable the implementer to begin working with Oracle Configurator Developer.

• Verify Oracle Rapid Install of Oracle Configurator, Oracle Configurator Developer
and the CZ schema. See the Oracle Configurator Installation Guide for additional
information.

• Configure Oracle Configurator Developer, JInitiator, and your browser to display
appropriate fonts for Multiple Language Support (MLS). See the Oracle Configurator
Installation Guide for details.

• See the current release or patch information for Oracle Configurator on Oracle
Support Web site, for any effects an Oracle Configurator upgrade may have on your
development and test environments; new functionality in Configurator Developer
may depend on other applications.

• Upgrade Oracle Configurator Developer to the latest release or patch level. For
more information, see the current release or patch information for Oracle
Configurator on Oracle Support Web site.

• Assign users an Oracle Configurator responsibility to use Oracle Configurator
Developer. For more information about assigning responsibilities, see Setting up
Access to Configurator Developer, page 15-2 and the Oracle E-Business Suite
System Administrator's Guide.

• Assign users either the Oracle Configurator Administrator or Oracle Configurator
Developer responsibility to run the Oracle Applications concurrent programs. For
more information about assigning responsibilities, see the Oracle E-Business Suite
System Administrator's Guide. For more information on which concurrent program
can be run by the Oracle Configurator Administrator or Oracle Configurator
Developer responsibilities, see Concurrent Programs, page C-1.

Database Tasks
Database tasks are the tasks that set up and support the development and deployment
of the CZ schema.

Required Database Tasks
These tasks must be performed to set up and support development and deployment of
a runtime Oracle Configurator.

• Decide whether to use a single database instance for both development and

Implementation Tasks 1-3

production, or a separate instance for development and an instance for production.
For information see Database Instances, page 3-1 .

• Verify that Inventory and BOM Model data in Oracle Applications are correctly
defined. See Standard Import., page 5-4

• Populate the CZ schema with production BOM and Inventory data for use in
defining configuration models. This is also referred to as data import in Oracle
Configurator documentation. For information, see Standard Import., page 5-4

• Control the scope of the data import by modifying values in the integration tables
(CZ_XFR_) provided for that purpose. For information, see Control Tables., page 4-
9

• Define and enable servers, as needed for data import, synchronization, and
publication. For information, see Server Administration, page B-3 concurrent
program.

• Modify Configurator Parameters. The Oracle Configurator Administrator runs this
concurrent program to set installation-wide customizable settings (
CZ_DB_SETTINGS) that describe the structure and content of the CZ schema, and
define application functions. For information, see Modify Configurator Parameters,
page C-3 concurrent program.

• Explode the BOM Model data if the data on which you plan to base your
configuration model is in a different database instance from the one in which you
are developing the configuration model. For information, see Exploding BOM
Models in Oracle Applications., page 5-10

• Refresh data in the CZ schema as production BOM and Inventory data changes. For
information, see Refreshing Imported Data., page 5-16

• Run the concurrent programs to migrate Item and Model structure data from one
schema into the CZ schema. For more information, Migrating Data., page 6-1

• Verify that after populating or refreshing the CZ schema the BOM Model data is
correct by viewing the Item Master area of the Repository in Oracle Configurator
Developer. For information, see the Oracle Configurator Developer User's Guide.

• Synchronize BOM Model data in the CZ schema with production Inventory and
BOM data if the import server or publication target have changed by running
concurrent programs for that purpose. For information, see Synchronizing BOM
Model Data., page 7-2

• If you plan to base your configuration model on legacy data, prepare that data and
custom extraction and load programs so the data can be transferred to the CZ
schema. For information, see Custom Import., page 5-30

1-4 Oracle Configurator Implementation Guide

• Migrate Functional Companions that were developed prior to 11i10 to Configurator
Extensions. For more information see Migrate Functional Companions., page C-32

• Purge tables in the CZ schema if your database gets too large and fails to perform
adequately. It is recommended that you purge tables on a regular basis. The Purge
Configurator Tables concurrent program deletes those records that are marked for
deletion. The Purge Configurator Import Tables, Purge To Date Configurator
Import Tables, and Purge To Run ID Configurator Import Tables concurrent
programs delete data in the CZ_IMP tables, and the corresponding data in the
CZ_XFR_RUN_INFOS, and CZ_XFR_RUN_RESULTS control tables. For more
information see Purging Configurator Tables., page 8-2

• Delete old configuration data by running the DELETE_CONFIGURATIONS API.
For more information, see DELETE_CONFIGURATION, page 17-51.

Optional Database Tasks
Optional tasks for providing additional flexibility in your Oracle Configurator
implementation include:

• Use PL/SQL to modify nodes created in Configurator Developer and BOM Model
Item descriptions to use Multiple Language Support (MLS). For more information
see Multiple Language Support., page 14-1

• Write Configurator Extensions designed to populate CZ table fields with
configuration data that cannot be directly inserted using runtime Oracle
Configurator. For more information, see the Oracle Configurator Extensions and
Interface Object Developer's Guide, and Migrate Functional Companions, page C-32.

• Design custom configuration attributes and attach them to certain nodes of
configuration models. For more information, see the Oracle Configurator
Methodologies documentation.

• Write legacy rules in Constraint Definition Language (CDL) format and import the
rules into the CZ schema. For CDL information, see the Oracle Configurator
Constraint Definition Language Guide. See Rule Import, page 5-21 for rule import
information.

Integration Tasks
Integration tasks enable Oracle Configurator to work with a particular host application.

Required Tasks for All Integrations
These tasks must be performed for all integrations of Oracle Configurator with a host
application.

Implementation Tasks 1-5

• Set profile options to integrate and set behavior of Oracle Configurator within
Oracle Applications. For a listing of profile options that affect Oracle Configurator,
see the Oracle Configurator Installation Guide.

• Verify and set the Apache and JServ properties for your host application that affect
the runtime Oracle Configurator. See the Oracle Configurator Installation Guide for
more information.

• Verify and set properties of the Oracle Configurator Servlet for your host
application. See the Oracle Configurator Installation Guidefor more information.

• Test the integration of Oracle Configurator in the host application running in a Web
browser.

Optional Integration Tasks
These tasks provide additional aspects of integration between Oracle Configurator and
a host application, and apply to both custom and predefined integrations.

• Provide pricing and ATP support for the runtime Oracle Configurator by setting
switches in the file cz_init.txt. See Pricing and ATP in Oracle Configurator.,
page 13-1

• Enable Multiple Language Support (MLS). For details see Multiple Language
Support., page 14-1

• Set up the Model structure and Configurator Extensions for configuration
attributes. See the Oracle Configurator Methodologies documentation.

Tasks for Custom Integration
These tasks (in addition to the required tasks listed in Required Tasks for All
Integrations, page 1-4) must be performed if you are integrating Oracle Configurator
with a custom host application. A custom host application is one that does not provide
any predefined integration with Oracle Configurator.

• Manually install servlet, media, and HTML files and verify that these files are in the
correct location. See the Oracle Configurator Installation Guide for more information.

• Tailor the initialization message that invokes the runtime Oracle Configurator. For
details, see Session Initialization., page 9-1

• Create and install a servlet that handles the runtime Oracle Configurator's XML
termination message, which contains configuration output data. For details, see
Session Termination., page 10-1

• Set up a return URL for the servlet that handles the termination message, and add it

1-6 Oracle Configurator Implementation Guide

to the initialization message. For details, see Session Initialization., page 9-1

Model Development Tasks
Model development tasks enable you to extend a BOM Model by adding additional
structure, rules, UIs, and publishing your configuration model to a host application.

Required Tasks for Model Development
These tasks must be performed so that you can create Models or add additional
structure, rules, and UIs to BOM Models.

• Design configuration models with performance in mind. See the Oracle Configurator
Performance Guide for guidelines.

• Verify the imported data in Configurator Developer if you are developing a
configuration model based on existing data in Oracle Applications Bills of Material
and Inventory. See Database Tasks, page 1-2 for additional tasks needed to populate
the CZ schema.

• Define the structure, rules, and user interface in the Model's Workbench. See the
Oracle Configurator Developer User's Guide for more information.

• Generate logic to create the structure and rules of the configuration model.
Generating logic is also used to help debug some issues. Rerun this procedure after
you have completed the following activities:

• Changed rule definitions

• Changed the Model structure

• Select the Refresh option on the UI Workbench page or the UI Refresh Status on the
General Workbench page to update a User Interface with the latest modifications to
the User Interface definitions and customizations. Rerun this procedure after you
have completed the following activities:

• Changed the Model structure

• Refreshed your BOM-based model

• Unit test your configuration model before publishing it. See the Oracle Configurator
Developer User's Guide.

• Create a publication for the configuration model to appropriate host applications.
See the Oracle Configurator Developer User's Guide.

Implementation Tasks 1-7

• Define the configuration model's applicability parameters in preparation for
publishing the configuration model so that it can be accessed by a host application.
See the Oracle Configurator Developer User's Guide.

• Assign each publication to one Model and the appropriate usages to control when
and if the usages are invoked by the host applications. See the Oracle Configurator
Developer User's Guide for additional information.

• Publish configuration models for availability to host applications. For information,
see Publishing Configuration Models, page 16-1 and the Oracle Configurator
Developer User's Guide.

• Republish the configuration model if the Model's structure, rules, or UI change. For
more information, see the Oracle Configurator Developer User's Guide.

Optional Tasks for Model Development
The following tasks can be performed to provide additional Model functionality.

• Write Configurator Extensions to extend the functional capabilities of your
configuration model beyond what is implemented in Oracle Configurator
Developer. For information on writing Configurator Extensions see the Oracle
Configurator Extensions and Interface Object Developer's Guide , Oracle Configurator
Developer User's Guide and the Oracle Configurator Methodologies documentation.

• Change the default behavior of locking Models or UI Content Templates. For more
information, see the Oracle Configurator Developer User's Guide.

• Set the Effectivity Date Filter if you want to filter ineffective Model structure nodes
and rules when working in Configurator Developer . For more information about
the Effectivity Date Filter, see the Oracle Configurator Developer User's Guide.

• Run the Add Model Names to Configurations by Model Items, page C-35 or Add
Model Names to Configurations by Model Product Key, page C-37 concurrent
program in order to restore configurations, made prior to your upgrade, against
updated migrated Models.

Deployment Tasks
Deployment involves making a runtime Oracle Configurator available to end users. The
following tasks complete the deployment of a runtime Oracle Configurator either
embedded in a host Oracle Application or in a custom host application.

Required Tasks for All Deployments
The following tasks are required for the runtime Oracle Configurator to use the

1-8 Oracle Configurator Implementation Guide

currently supported user interfaces. (As of this release, DHTML UIs are no longer
supported.)

• Turn off pop-up blockers.

• Recommended screen resolution is 800 X 600 or greater. This depends on how you
have generated the Components Tree user interface in Oracle Configurator
Developer. See the Oracle Configurator Developer User's Guide for details.

• System test the configuration model by accessing it from the host application.

• Optimize the performance of the production environment by:

• Adjusting system size or setting up the database and application tiers on
multiple server computers.

• Tuning components of the Oracle Configurator architecture on the client
system, such as browser settings, swap space, and memory

• Adjusting Web server configuration settings

• Determining whether you should load balance the Apache Web listener

• Determining whether you should load balance across CPUs on a multi-CPU
machine

For details see the Oracle Configurator Performance Guide.

• Run LoadRunner to determine response time, CPU utilization, number of
transactions per hour, throughput and hits per second. See the Oracle Configurator
Performance Guide for load testing.

Optional Tasks for Deployment
These tasks can be performed to maximize performance, usability, and functionality
when your configuration model is deployed to end users.

• Consider preloading a configuration model for improved performance. For details
see the Oracle Configurator Performance Guide.

• Load balance the Apache Web listener (HTTP). For details see the Oracle
Configurator Performance Guide.

• Set up Secured Sockets Layer (SSL) if you want to create a secure connection
between a client and server system. For details see Load Balancing and Secure
Sockets Layer., page 20-6 For additional SSL information, seel the Oracle Support
Web site

Implementation Tasks 1-9

• Set up a dedicated Jserv for running Oracle Configurator, if you want to take
advantage of Oracle Applications Java Caching Framework (OAJCF). For more
information about Oracle Applications Java Caching Framework, see the Oracle
Configurator Performance Guide.

• Adjust the ApJServVMTimeout setting that affects the amount of time to wait for
the JVM to start up and respond. See the Oracle Configurator Installation Guide for
details.

• Pricing behavior must be set for Item price display type and price data update
method. For more information, see Controlling Pricing and ATP in a Runtime
Oracle Configurator., page 13-12

• Consider setting up firewalls, using routers, and separate computers to protect
unauthorized access to your servers. For more information, see Deployment
Considerations., page 20-1

Tasks for Custom Deployments
If you are implementing a custom deployment, then consider the following:

• Create a UI that adheres to the Oracle guidelines. See Oracle Configurator Developer
User's Guide for User Interface information.

• Create online Help for the runtime Oracle Configurator. See Oracle Configurator
Developer User's Guide for generic runtime information.

Conventions
In examples, an implied carriage return occurs at the end of each line, unless otherwise
noted. You must press the Return key at the end of a line of input.

The table below lists other conventions that are also used in this guide.

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean
that information not directly related to the
example has been omitted.

1-10 Oracle Configurator Implementation Guide

Convention Meaning

. . . Horizontal ellipsis points in statements or
commands mean that parts of the statement or
command not directly related to the example
have been omitted

boldface text Boldface type in text indicates a new term, a
term defined in the glossary, specific keys,
and labels of user interface objects. Boldface
type also indicates a menu, command, or
option, especially within procedures

italics Italic type in text, tables, or code examples
indicates user-supplied text. Replace these
placeholders with a specific value or string.

[] Brackets enclose optional clauses from which
you can choose one or none.

> The left bracket alone represents the MS DOS
prompt.

$ The dollar sign represents the DIGITAL
Command Language prompt in Windows and
the Bourne shell prompt in Digital UNIX.

% The per cent sign alone represents the UNIX
prompt.

name() In text other than code examples, the names of
programming language methods and
functions are shown with trailing parentheses.
The parentheses are always shown as empty.
For the actual argument or parameter list, see
the reference documentation. This convention
is not used in code examples.

& Indicates a character string (identifier) that can
display text dynamically in Configurator
Developer or a runtime Oracle Configurator.
For example, "&PROPERTY" can be used to
dynamically construct and display a Property
of a Model structure node.

Implementation Tasks 1-11

Product Support
The mission of the Oracle Support Services organization is to help you resolve any
issues or questions that you have regarding Oracle Configurator Developer and Oracle
Configurator. Navigate to the Knowledge area of My Oracle Support Browse to the
Knowledge subtab> Oracle E-Business Suite > Order Management> Configurator > All
of Configurator.

You can also find product-specific documentation and other useful information using
Oracle Applications Documentation, on the Oracle Technology Network.

For a complete listing of available Oracle Support Services and phone numbers, see the
Oracle Support Web site.

Troubleshooting
Oracle Configurator Developer and Oracle Configurator use the standard Oracle
Applications methods of logging to analyze and debug both development and runtime
issues. These methods include setting various profile options and Java system
properties to enable logging and specify the desired level of detail you want to record.

For more information about logging, see:

• The Oracle E-Business Suite System Administrator's Guide for descriptions of the
Oracle Applications Manager UI screens that allow System Administrators to set up
logging profiles, review Java system properties, search for log messages, and so on.

• The Oracle E-Business Suite Developer's Guide, which includes logging guidelines for
both System Administrators and developers, and related topics.

• The Oracle Application Framework Developer's Guide, which describes the logging
options that are available via the Diagnostics global link. This document is available
in the Applications Documentation, on the Oracle Technology Network.

Configurator Architecture 2-1

2
Configurator Architecture

This chapter describes the elements of the Oracle Configurator product and how they fit
together.

This chapter covers the following topics:

• Overview

• Introduction

• Runtime Oracle Configurator

• Oracle CZ Schema

• Oracle Configurator Developer

• Multi-Tier Architecture

Overview
This chapter presents the elements of the Oracle Configurator product and how they fit
together, including information about:

• Runtime Oracle Configurator, page 2-3

• Oracle CZ Schema, page 2-7

• Oracle Configurator Developer, page 2-8

• Multi-Tier Architecture, page 2-9

Introduction
Oracle Configurator Developer is both a development and maintenance environment
used to create, modify, and unit test configuration models and custom Oracle runtime
configurator pages. The runtime Oracle Configurator, Oracle Configurator Developer,
and CZ schema run as part of the Oracle Applications eBusiness Suite in a multi-tier

2-2 Oracle Configurator Implementation Guide

architecture.

Oracle Configurator Developer is a thin client development environment that connects
directly to the CZ schema.

Both the runtime Oracle Configurator and Oracle Configurator Developer run in a
browser. The Oracle Configurator (the application itself) runs on the application server
machine with the internet application server brokering the processes and http
connection.

The runtime Oracle Configurator and Oracle Configurator Developer:

• Are HTML based

• Operate within the Oracle Applications (OA) Framework

• Are Self Service Web applications

Oracle Configurator consists of the following elements:

• Oracle Configurator Developer

• CZ schema within the Oracle Applications database

• Runtime Oracle Configurator

Oracle Configurator Developer includes the following OA Framework features:

• Based on J2EE standards

• Facilitates access by the disabled community

• Multiple Language Support (MLS)

• Multi-currency support

• Reusable UI components

Additionally, Oracle Configurator Developer leverages the latest Oracle Application
Server technology, such as:

• Caching

• Event Handling

• Security

• State Management

• XML Based Declarative UIs

Configurator Architecture 2-3

• Optimized HTML UI rendering

• Presentation is separate from business logic

• Business Components for Java (BC4J)

• Business logic encapsulation

• Optimized DB interaction

• Scalability and performance

• Message-service EJB Architecture

• Full support for transactions, fail-over and multi-tier deployment

• Minimizes inter-tier traffic

The runtime Oracle Configurator, Configurator Developer, and the CZ schema are
installed with Oracle Applications Release 12 by running Oracle Rapid Install.

Runtime Oracle Configurator
The runtime Oracle Configurator enables end users to select options interactively in a
Web browser.

It is also possible to run Oracle Configurator as a programmatic background process,
such as when an end user changes the quantity of a configured item. The background
process validates the configuration without requiring further end-user interaction.

Access
End users access the runtime Oracle Configurator by logging into an application that
hosts Oracle Configurator. When the user requests that the host application configure
something, the host application invokes Oracle Configurator, which then becomes the
foreground application during a configuration session. At the end of a configuration
session, the Oracle Application dialog page is displayed before the host application
returns to the foreground.

There are several factors that affect the way that you can enable users to access the
runtime Oracle Configurator:

• Type of Host Application, page 2-4

• Login to Host Application, page 2-4

• Invocation of Oracle Configurator by Host Application, page 2-4

2-4 Oracle Configurator Implementation Guide

• Incorporation of Oracle Configurator in the Host Application's UI, page 2-5

These factors are described in the following sections.

Type of Host Application
The host application for the runtime Oracle Configurator can be one of the following:

• An application that is part of Oracle Applications, which you reach through the
E-Business Suite home page. Examples are: Oracle Order Management, iStore, and
Oracle Contracts. Oracle Configurator Developer is also a host application. .

• A custom application that provides its own user interface, and at runtime
communicates with the Oracle Configurator engine through the Configuration
Interface Object (CIO).

Login to Host Application
End users of the host application can log in by one of the following methods:

• If the host application is part of Oracle Applications, then users log in to the
E-Business Suite home page with a user ID and password that are authenticated by
Oracle Applications. This process generates an ICX session ticket, which contains
the session authentication information that is used by the runtime Oracle
Configurator.

• If the host application is not part of Oracle Applications, then after a user logs in to
the host application, that application must specify user ID, password, and database
identification when it invokes the runtime Oracle Configurator.

Invocation of Oracle Configurator by Host Application
All host applications send an initialization message to start the runtime Oracle
Configurator, and specify parameters of the message to control the initial state of the
runtime Oracle Configurator. Oracle Configurator processes the initialization message
in the following way:

1. The host application sends the initialization message, which is in XML, to the URL
of the Oracle Configurator Servlet. The host application obtains this URL from the
profile option BOM: Configurator URL of UI Manager. See the Oracle Configurator
Installation Guide for details about setting profile options. The Oracle Configurator
Servlet is described in Oracle Configurator Servlet , page 2-6.

Oracle Configurator can be invoked programmatically by the host application,
without user interaction. This is called batch validation, which is described in Batch
Validation, page 11-1.

1. If the initialization message is wrapped in the <batch_validate> element,

Configurator Architecture 2-5

then the Oracle Configurator Servlet runs Oracle Configurator in a batch
validation session.

2. If the initialization message is not intended for batch validation, then Oracle
Configurator determines which type of user interface to render, based on the
value of the initialization parameter ui_type, page 9-36.

The user interface for the runtime Oracle Configurator can use one of the styles
described in Runtime UI Types, page 2-6. It can also use a completely custom
UI, if the host application provides its own user interface, and its own code to
communicate with the Oracle Configurator engine directly, through the Oracle
Configuration Interface Object (CIO).

2. Oracle Configurator processes the parameters in the initialization message, and
begins a configuration session, rendering the specified runtime Oracle
Configurator. The parameters determine the initial state of the configuration
session, specifying which model to configure and a variety of other configuration
data. The particular selection of parameters and values depends on the
requirements of the host application. See Session Initialization, page 9-1 for
details.

Incorporation of Oracle Configurator in the Host Application's UI
Invocation results in the host application incorporating the user interface for the
runtime Oracle Configurator into its own user interface in one of the following ways:

• Standalone page: Oracle Configurator occupies all of a standalone page, in a page
separate from that used by the host application. Examples: Oracle Order
Management and Oracle Configurator Developer.

• Frame: Oracle Configurator occupies a frame that is embedded in the page used by
the host application. Example: Oracle iStore.

• Region: Oracle Configurator occupies a region that is embedded in a page used by
the host application. Only possible if the host application is a member of Oracle
Applications that is constructed with the Oracle Applications Framework. For more
information about the Oracle Applications Framework, see the Oracle Application
Framework Documentation Resources, Release 12, available in the Oracle
Applications Documentation, on the Oracle Technology Network.

• Custom container: Oracle Configurator occupies a JavaServer Page that you specify
when you publish your Model.

Oracle Configurator Security on Publicly Accessible Web Servers
For information and recommendations on preparing the deployment of Oracle
Configurator on publicly accessible Web servers, see Deployment Considerations, page

2-6 Oracle Configurator Implementation Guide

20-1.

Runtime UI Types
Depending on your runtime UI requirements, you can deploy the following types of
runtime Oracle Configurators:

• User Interfaces that are based on the OA Framework, deployed as part of the
E-Business Suite, and launched from other Oracle Applications. For a list of Oracle
Applications that integrate with Oracle Configurator, contact your Oracle
representative'. For details about creating generated UIs, see the Oracle Configurator
Developer User's Guide.

• Legacy Configurator User Interfaces (Java applet) from previous releases of Oracle
Configurator. These legacy UIs cannot be edited using the HTML-based Oracle
Configurator Developer. For details, see the Oracle Configurator documentation
from previous releases and the Oracle Configurator Installation Guide.

• The Generic Configurator User Interface.

Oracle Configurator Servlet
The Oracle Configurator Servlet contains the machinery used to support:

• Batch validation

• Legacy Configurator user interfaces

Note: The inclusion of the Oracle Configurator Servlet in this release
provides compatibility for host applications that were already
integrated with Oracle Configurator before the adoption of the Oracle
Applications Framework. See Invocation of Oracle Configurator by
Host Application, page 2-4 for an example of this integration. All other
areas of Oracle Configurator provide integration through the Oracle
Applications Framework, as described elsewhere in this chapter. For
more information on the Oracle Applications Framework, see the
Oracle Application Framework Documentation Resources, Release 12,
in the Oracle Applications Documentation, on the Technology
Network.

The Oracle Configurator Servlet is responsible for rendering legacy Configurator user
interfaces and brokering communication between the configuration model, the
database, and the client browser.

The OC Servlet consists of the following elements:

• UI Server, page 2-7

Configurator Architecture 2-7

• Configuration Interface Object (CIO), page 2-7

• Oracle Configurator Engine, page 2-7

The OC Servlet runs on Oracle Application Server, which includes the Apache Web
Server. The behavior of the OC Servlet can be customized by setting servlet properties.
The properties of the OC Servlet are described in the Oracle Configurator Installation
Guide. Information about setting servlet properties is presented in the Oracle
Configurator Performance Guide.

UI Server
The UI Server is an element of the OC Servlet that is not used by Oracle Configurator
when it renders a user interface in the Oracle Applications Framework.

The UI Server that processes user input from a client user interface and renders back the
UI for display to the end user based on information received from the Oracle
Configurator engine. The UI Server provides a common level of support for user
interfaces (Java applet) that are not created by the HTML-based Oracle Configurator
Developer.

Configuration Interface Object (CIO)
The CIO is an API layer that handles communication between the Oracle Configurator
engine and the UI. The API methods of the CIO can be used to access the configuration
model and Oracle Configurator behaviors. Configurator Extensions and custom UIs
communicate with the Oracle Configurator engine through the CIO.

For more information see the Oracle Configurator Extensions and Interface Object
Developer's Guide.

Oracle Configurator Engine
The Oracle Configurator engine validates user selections and provides results based on
the compiled structure and rules of a configuration model.

The Oracle Configurator engine has no public API and cannot be modified.

Oracle CZ Schema
The CZ schema consists of Configurator (CZ) tables in the Oracle Applications Release
12 database that are accessed by both the runtime Oracle Configurator and Oracle
Configurator Developer.

The CZ schema is organized into subschemas that store:

• Imported data from other Oracle Applications database tables

• Settings that control the behavior of Configurator processes

2-8 Oracle Configurator Implementation Guide

• Data that defines the Model structure, rules, and UI of configuration models

• Saved configurations

Oracle Configurator Developer stores the complete definition of the User Interface in
the CZ schema, where it is available to both Oracle Configurator Developer and a
runtime Oracle Configurator.

See CZ Subschemas, page D-1 for a listing of the tables that are in each of the
subschemas. For more information about the CZ schema data model, see the Oracle
Integration Repository.

Oracle Configurator Developer
Oracle Configurator Developer:

• Allows creating, organizing, managing, and publishing Models

• Includes tools for generating runtime Configurator User Interfaces

• Allows users to define configuration rules

Access
Users access Configurator Developer by logging into Oracle Applications and selecting
the appropriate responsibility. The following responsibilities are predefined and
available with initial installation:

• Oracle Configurator Developer

• Oracle Configurator Administrator

• Oracle Configurator Viewer

For more information on accessing Configurator Developer, see Controlling the
Development Environment, page 15-1.

Types of Configuration Models
Users of Configurator Developer can create a configuration model using only the
structural elements (Model, Components, Features, Options) available in Configurator
Developer. This is called a Developer Model and might be used to create a standalone
or prototype configuration.

If the configuration model is based on an imported ATO or PTOBOM Model, then
users of Configurator Developer can extend the imported Model with Configurator
Developer structure to create guided buying or selling questions, and additional
internal structure to support rule definition.

Configurator Architecture 2-9

Users of Configurator Developer can also extend the behavior of configuration models
beyond what can be implemented in Oracle Configurator Developer by creating
Configurator Extensions. Configurator Extensions are built with custom or provided
Java code that uses the fully supported, fully documented Java API methods of the CIO.
Implementers create Configurator Extensions and then connect them to configuration
models in Configurator Developer.

Unit Testing
To unit test a configuration model, you can access the runtime Configurator UI as a test
environment directly from Configurator Developer to create configurations. You can
also use the Model Debugger in Configurator Developer to unit test new configurations
or restore saved configurations. Testing uses the same application architecture as a
deployed runtime Configurator.

When unit testing, you can:

• Specify testing session parameters, such as Effectivity dates and a Usage

• Save and restore configurations

• Run Configurator Extensions

• Display pricing and ATP information

Testing from Configurator Developer through Oracle Applications does not involve
running the host application where your configuration models are deployed, such as
Order Management. For more testing information, see the Oracle Configurator Developer
User's Guide.

Multi-Tier Architecture
Oracle Applications architecture is a framework for multitiered, distributed computing.
Oracle Application Framework fits into a three-tier architecture. The three tiers are:

• Application

• Client

• Database

Oracle Application Framework also fits into a four-tier architecture.

The four tiers are:

• Application

• Client

2-10 Oracle Configurator Implementation Guide

• Database

• Web

For more information about the Oracle Application Architecture, see the Oracle
E-Business Suite Concepts documentation and the Oracle Application Framework
Documentation Resources, Release 12, in Oracle Applications Documentation, on the
Oracle Technology Network.

Runtime Oracle Configurator
The elements of a runtime Oracle Configurator that span the four tiers are shown in
Four tier Architectural Overview of a Runtime Oracle Configurator, page 2-10.

The following table shows the two way communication between the Client tier and the
Web tier. The Web tier contains custom Java Server Pages and the OA Framework that
contains the Generated Configurator UIs. The Web tier sends requests to the
Application tier that consists of the Configurator Message Service, the CIO, and the
Engine. The Application tier then sends responses back to the Web tier. There is two
way communication between the Application tier and the Data tier. The Data tier is the
Oracle Database.

Four tier Architectural Overview of a Runtime Oracle Configurator

During an interactive runtime session, the Web tier contains the displayed UI. The
Configurator Messaging service in the Applications tier uses Enterprise Java Beans to
handle requests from the displayed page on the Web tier.

The elements of a runtime Oracle Configurator that span the three tiers are shown in
Three tier Architectural Overview of a Runtime Oracle Configurator, page 2-11.

Three tier Architectural Overview of a Runtime Oracle Configurator , page 2-11
illustrates the two way communication between the Client tier and the Java Middle tier.
The Java Middle tier is made up of the UI Server, the Generated Configurator UIs, the
DIO, the CIO and the Engine. It also illustrates the two way communication between

Configurator Architecture 2-11

the Java Middle tier and the Data tier via JDBC. The Data tier is the Oracle database

Three tier Architectural Overview of a Runtime Oracle Configurator

Oracle Configurator Developer Three Tiers
During development, Configurator Developer runs on a three-tier architecture, with the
thick web tier accessing the database as shown in Three tier Architectural Overview of
Oracle Configurator Developer, page 2-12.

Three tier Architectural Overview of Oracle Configurator Developer, page 2-12
illustrates the two way communication between the Client tier and the Middle tier. The
Client tier is the Web browser. The Middle tier consists of the OA Framework, and the
Configurator Developer UI. There is two way communication between the Middle tier
and the Data tier via JDBC. The Data tier is the Oracle database.

2-12 Oracle Configurator Implementation Guide

Three tier Architectural Overview of Oracle Configurator Developer

Configurator Developer is a thin-client development environment that connects directly
to the CZ schema. Configurator Developer is built on the Oracle Applications
Framework and leverages the latest Oracle Application Server technology that allows
for XML Based Declarative UIs, Business Components for Java (BC4J), and
Message-Service EJB architecture.

Database Instances 3-1

3
Database Instances

This chapter describes the uses to which databases are put when implementing Oracle
Configurator, and specifics about using multiple database instances.

This chapter covers the following topics:

• Overview

• Database Uses

• Multiple Database Instances

• Model Development

• Maintenance

• Production

Overview
Whether your implementation project uses a single or two separate Oracle Applications
database instances, the database serves multiple purposes during an Oracle
Configurator implementation. The topics in this chapter include:

• Database Uses, page 3-2

• Multiple Database Instances, page 3-3

• Model Development, page 3-7

• Maintenance, page 3-8

• Production, page 3-8

For details about the CZ schema within an Oracle Applications database instance, see
Configurator Architecture, page 2-1 and The CZ Schema, page 4-1.

3-2 Oracle Configurator Implementation Guide

Database Uses
During an Oracle Configurator implementation, the Oracle Applications database is
used for:

• Migrating or importing data into the CZ schema

• Running Oracle Configurator Developer to create configuration models

• Unit and system testing configuration models

• Publishing configuration models

• Running a production Oracle Configurator

• Storing Items, BOM Models, and saved configurations

During an Oracle Configurator implementation and deployment, Oracle supports using
either a single database instance for all operations, or multiple development instances
and one production instance.

• Development, page 3-7 instances can serve as:

• Import target

• Publication source and target

• CZ schema migration source and target

• Model migration source and target

• BOM Model synchronization source or target

• Production, page 3-8 instances can serve as:

• Import source

• Publication target

• Migration source

• BOM Model synchronization source

The Single Database Environment, page 3-3 illustration shows that a single database
environment can be used to import Oracle Application data into the CZ schema , as
well as publish and synchronize data.

Database Instances 3-3

Single Database Environment

A publication's details and applicability parameters determine a configuration model's
unique deployment. For more information on deploying a configuration model, see
Publishing Configuration Models, page 16-1.

To support Oracle Configurator implementations on separate development and
production database instances, Oracle provides the means for moving and
synchronizing data across the instances. For more information about moving data, see
Populating the CZ Schema, page 5-1 and Migrating Data, page 6-1. For more
information about synchronizing data, see Synchronizing Data, page 7-1.

For more information about implementing Oracle Configurator in two separate
database instances, see Multiple Database Instances, page 3-3.

Multiple Database Instances
Once a configuration model is deployed, separate database instances can ensure that
maintenance or instabilities in the operations of the development database instance do
not interfere with end-user access or ongoing maintenance of the application that is in
production use.

Note: Publishing Models from more than one development instance to
the same production instance can cause unresolvable problems with
data synchronization.

Although the following operations can be accomplished on a single database instance,
they commonly involve separate development and production database instances:

• Importing or migrating data from a production database instance into the
development CZ schema

• Publishing configuration models from a development instance to a production CZ
schema

3-4 Oracle Configurator Implementation Guide

• System testing configuration models in a production database instance

When working with multiple database instances, the instances in which the user runs
Oracle Configurator Developer to create and develop models, are the local or source
database instances. The database instance to which Models are published and used in
production is the remote or target database instance.

Model Availability on Multiple Database Instances
Although it is possible to implement and deploy Oracle Configurator using only one
database instance, many projects use multiple database instances to distinguish
between Model development and production use. Models can be copied into multiple
development instances. Copying Models from any instance to a development instance
is known as migrating Models. Models are published to a production instance, but
should not be migrated to a production instance.

Once a Model is migrated, its structure, rules and User Interfaces can be uniquely
expanded in each development instance. A single Model from a designated instance is
then published to the production environment. See Migrating Models, page 6-3 for
more information.

The illustrationTwo Database Environments, page 3-4 shows that a production
database is used to import Oracle Application data into a development database. After
creating rules, UIs, and extending the Model structure, the Model is published to the
production database. Synchronization is done from the development database with the
production database.

Two Database Environments

The Multiple Database Instances illustration shows Oracle Application data can be
imported from a production database to development databases. It also shows that
Models can be migrated from one development database to another. After creating
rules, UIs, and extending the Model structure, the Model is published to the production
database. Synchronization is done from the development database with the production
database.

Database Instances 3-5

Multiple Database Instances

See Synchronizing Migrated Model Data, page 6-8 for information on synchronizing a
migrated Model's data.

See Migrating Models, page 6-3 for scenarios using separate development and
production database instances.

Import Source and Target
To develop a BOM-based configuration model, BOM Model data must be imported into
the CZ schema. The imported data used to develop a runtime Oracle Configurator
should be production data. The production database serves as the import source. The
development instance serves as the import target. For information about data import,
see Populating the CZ Schema, page 5-1.

Publication Source and Target
Configuration models must be published from the development database instance to be
available for system testing or production use in the same or a different database. You
can delete publications on the target instance from Oracle Configurator Developer. See
the Oracle Configurator Developer User's Guide for additional publishing information. For
information about publishing, see Publishing a Configuration Model, page 16-10.

Oracle strongly recommends that all source and target instances which participate in
publishing be located on the same local area network. When publishing over a wide

3-6 Oracle Configurator Implementation Guide

area network, performance can be degraded by network factors.

If you change the publication source or target (by running the Modify Server Definition,
page C-14 concurrent program) or use a cloned source or target, then you must
synchronize the publication data. See Synchronizing Data, page 7-1. If the BOM
Model data changes in Oracle Bills of Material, or you modify the Model structure or UI
in Configurator Developer, then you must republish the Model.

A previously defined remote publishing target instance can be converted to a
development instance. See Converting a Remote Target to a Development Instance.,
page 3-9 For information about what happens to existing publications when a remote
target is converted to a development instance, see Source and Remote Publications.,
page 16-5

Decommissioning a Database Instance
Decommissioning a production database instance (target) causes synchronization
problems. For more information on synchronization, see Synchronizing Data, page 7-1
.

Migration Source and Target
When you need to move your Configurator implementation or deployment from one
database instance to another, you may need to migrate configuration model data. The
instance where the Model is migrated from is referred to as the source instance. The
instance where the Model is migrated to is referred to as the target instance. For more
information about migration, see Migrating Data, page 6-1.

Note: The installed languages must be the same on both the source and
target instances.

For migration source and target patch level information, see the current release or
patch information for Oracle Configurator in Oracle Applications Documentation, on
the Oracle Technology Network.

BOM Synchronization Source and Target
In cases where the import source or publication target change, it may be necessary to
synchronize the BOM-based configuration model with the corresponding production
BOM. For more information about BOM synchronization, see Synchronizing Data, page
7-1.

Linking Multiple Database Instances
When creating an empty database or repurposing an existing one to serve as a source or
target of data operations across two database instances, the databases must be linked.
Defining and enabling the remote server sets up the necessary database links between
the source and target databases.

Database Instances 3-7

See Server Administration, page B-3 for general information on setting up database
links. For details on running the concurrent programs, see Define Remote Server, page
C-10, and Enable Remote Server, page C-12.

Instance and Host System Names
Multiple database instances can exist on a single or separate host systems. Both the
database instance and the host system have a name. The name of the database instance
and host system are relevant in all the uses listed in Reasons for Multiple Database
Instances, page 3-4.

In this book, the database instance you are connected to or logged into is the local or
current database instance, and the local system is the local host. Other instances,
whether on the local host system or a different remote system, are remote instances in
relation to the local instance.

The local database instances can serve as:

• Target database for data migration

• Target database for data import

• Source database for publishing configuration models

• Original database for creating a clone

Remote database instances can serve as:

• Source database for data migration

• Source database for data import

• Target database for publishing configuration models

The SID is used to identify the database instance that Oracle Configurator Developer
uses. The database instance name is also known as the local name. The database
instance and host names are required in various places for the correct operation of
Oracle Configurator Developer, the CZ schema, and Configurator concurrent programs.
The SID is specified during Rapid Install. For more information, see the Oracle
E-Business Suite Installation Guide: Using Rapid Install guide.

Model Development
A development database instance is one in which you create your configuration model
using Configurator Developer.

Note: There may be multiple development database instances.
Configuration models that are available to end users should only be

3-8 Oracle Configurator Implementation Guide

published from a single development environment. Publishing Models
from multiple development instances to a single test or production
instance could result in:

• Publications with overlapping applicability parameters

• Multiple development environments leading to confusing
publication history. Publication history is maintained on the
development environment.

• Overwriting a configuration model's snapshot of its Item Master.
When a configuration model is published, the publication has a
snapshot of the development environment's Item Master. If a
configuration model is published from a different development
environment, then the snapshot of its Item Master overwrites the
original Item Master.

Unit testing is initiated from Configurator Developer by launching either the Model
Debugger or a generated User Interface. Unit testing enables the implementer to test
configuration rules and UI functionality in the development database instance. Unit
testing ensures that rules and UI modifications work as desired. For additional
information, see the Oracle Configurator Developer User's Guide.

When you upgrade the release version of Oracle Configurator that your runtime Oracle
Configurator runs against, you start by upgrading the CZ schema. For information
about updating your CZ schema, see the Oracle Configurator Installation Guide.

Maintenance
Oracle Configurator data is maintained in the maintenance environment. A
maintenance environment is similar to a development environment because it requires
many of the same operations such as upgrading the CZ schema, refreshing
configuration data, fixing and improving configuration models, and periodically
republishing the models. It is important to synchronize any changes in the maintenance
database instance with the development database instance for the next release of your
runtime Oracle Configurator. For more information on synchronization, see
Synchronizing Data, page 7-1.

Production
A production environment is one in which runtime Oracle Configurator end users use
the software in a production mode. The production environment is also used for system
testing.

Database Instances 3-9

System Testing
The system testing environment is generally the production environment and used to
verify that data transfers and modifications in a deployed scenario work as desired. For
example, changes to the Model structure in Oracle Configurator Developer should
propagate to the host application such as Order Management.

System testing includes publishing the configuration model and UI, accessing it using at
least one host application, and specifying various effective dates. System testing tests:

• Performance of the configuration model

• End-user access

• Security

• Integration customizations

Deploying a Model
To prepare for deploying the configuration model to your production environment, you
must consider integration with other applications, perform unit testing, and system
testing. For additional information see the Oracle Configurator Developer User's Guide.

If the development database and the production database are not on the same machine,
then the production database server must be defined and enabled. For more
information on defining a remote server, see Define Remote Server, page C-10.

Before you publish the configuration model, purging records flagged for deletion
results in a more efficient use of computer resources. For more information about
purging records, see Purging Configurator Tables, page 8-2.

For information about publishing a configuration model to a production CZ schema,
see Publishing Configuration Models, page 16-1.

Converting a Publication Target Instance to a Development Instance
A publication target instance can be converted to a development instance. Once a
remote target instance is converted to a development instance, it can no longer be
specified as a remote instance for publishing. The converted instance can be used to
publish locally. For more information, see the Convert Publication Target Instance to
Development Instance, page C-8 concurrent program.

Note: Converting a publication instance to a development instance does
not change any existing published data.

Part 2
Data

Part 2 presents information about working with the CZ schema as described in
Database Tasks, page 1-2.

The CZ Schema 4-1

4
The CZ Schema

This chapter describes the basic characteristics of the CZ schema, the schema settings
and how they are used, and provides some schema maintenance tips.

This chapter covers the following topics:

• Overview

• Characteristics of the Oracle CZ Schema

• Import Tables

• Control Tables

• CZ_DB_SETTINGS Table

Overview
This chapter describes the basic characteristics of the CZ schema, the schema settings
and how they are used, and provides some schema maintenance tips:

• Characteristics of the Oracle CZ Schema, page 4-1

• Import Tables, page 4-3

• Control Tables, page 4-9

• CZ_DB_SETTINGS Table, page 4-10

Characteristics of the Oracle CZ Schema
For a description of the CZ schema, see Oracle CZ Schema, page 2-7.

Online Tables and Integration Tables
The CZ schema contains online and integration tables. The online and integration tables

4-2 Oracle Configurator Implementation Guide

are organized into subschemas for storing the data of configuration models and saved
configurations.

The online tables contain the data that is used by Oracle Configurator Developer and
the runtime Oracle Configurator. Every online table that receives imported data has a
corresponding import table. For example, CZ_ITEM_TYPES is populated with data
from the CZ_IMP_ITEM_TYPE table during the import process. See CZ Subschemas,
page 4-2 for more information about the CZ subschemas.

The integration tables consist of import and control tables. See Import Tables, page 4-3
for information about the import tables and Control Tables, page 4-9 for information
about control tables. See Populating the CZ Schema, page 5-1 for information about
using the integration tables.

CZ Subschemas
Both the online and integration tables of the CZ schema are organized into subschemas:

• ADMN - Administrative

• CNFG - Saved Configurations

• ITEM - Item Master

• LCE - Logic for Configuration (Generate Logic)

• PB - Publication

• PROJ - Project Structure

• RP - Repository

• RULE - Rule

• TXT - Text

• TYP - Data Typing

• UI - User Interface

• XFR - Transfer specifications and control

Additionally, there are some key table views:

• CZ_CONFIG_DETAILS_V stores selected BOM Model node records.

• CZ_CONFIG_ITEMS_V stores all selected node records for both BOM Models and
Oracle Developer Models

See CZ Subschemas, page D-1 for a listing of tables in each subschema. For table

The CZ Schema 4-3

details, see the Oracle Integration Repository.

Public Synonyms
The CZ schema does not use public synonyms.

Schema Customization
Customizing the data model of the CZ schema is not recommended, because such
customizations may not be preserved during an upgrade or migration.

Various user expansion fields in the CZ schema, such as USERNUMn and USERSTRn in
the CZ_PS_NODES table, are available for custom use. The data in the user expansion
fields is preserved during a schema upgrade or migration. For more information, see
the Oracle Integration Repository.

Import Tables
Every import table corresponds to an online table both structurally and relationally.
Each import table contains the same fields as the corresponding online table, as well as
additional fields to manage the import and correlate the data with the existing data in
the online table.

Import tables consist of:

• Import Control Fields, page 4-4

• Online Data Fields, page 4-7

• Surrogate Key Fields, page 4-7

Because import tables are meant to capture as much data as possible, all fields are
nullable and there are no integrity constraints such as primary-key definitions, unique
indexes, or foreign-key references. The import tables allow batch population of the CZ
schema's online tables.

Each import table's name is similar to its online counterpart. Import tables have
CZ_IMP prefix instead of just CZ_. For example, the imported data in
CZ_IMP_PROPERTY populates CZ_PROPERTIES, and CZ_IMP_ITEM_TYPE
populates CZ_ITEM_TYPES.

The import tables temporarily store extracted or legacy data that concurrent programs
access when creating, updating, or deleting records in the CZ schema. The CZ_IMP
tables are populated by running the Populate or Refresh Configuration Models
concurrent programs. For more information see Populate and Refresh Configuration
Models Concurrent Programs, page C-18.

For more information about:

4-4 Oracle Configurator Implementation Guide

• How data moves from sources outside the CZ schema through the import tables to
the online tables, see Populating the CZ Schema, page 5-1

• Dependencies among import tables and import table codes, see Dependencies
Among Import Tables, page 4-7.

Import Control Fields
Import control fields contain data that is used to manage the import process for each
record. Import control data is not transferred to the online tables and is not used to
resolve key values or anything else. Import Control Fields, page 4-4 describes the
import control fields.

The following table shows the Import Control Fields including field name, data type,
and description.

Import Control Fields

Field Name Type Description

RUN_ID INTEGER Input field that associates a record with an import
run.

REC_NBR INTEGER Input field that is a one-up sequence number
uniquely identifying each record within a RUN_ID.

The CZ Schema 4-5

Field Name Type Description

DISPOSITION CHAR(1) Output field that indicates whether the record was
inserted, modified, unchanged, or rejected after an
import:

I = Insert

M = Modify

N = No change

R = Rejected

Null indicates that the record's disposition has not
been determined.

Importing rule data sets DISPOSITION in
CZ_IMP_RULES and
CZ_IMP_LOCALIZED_TEXTS. The success or
failure of rule processing stages sets the
DISPOSITION field accordingly:

P = Passed

R = Rejected

During the key resolution stage of rule import
(REC_STATUS=KRS), DISPOSITION can be:

I = Rule is new in the database instance.

M = Rule has previously been imported.

For additional rule import information, see Rule
Import, page 5-21.

4-6 Oracle Configurator Implementation Guide

Field Name Type Description

REC_STATUS VARCHAR(4) Output field that indicates the record's validation
status:

DUPL indicates the record is a duplicate.

ERR indicates the record has not been modified or
inserted into the target database table because of an
error in the transfer stage.

Fnnn indicates the nnn field is an invalid foreign-key
reference.

Nnnn indicates the required nnn field has null data.

NULL indicates the record status is open. Once this
status is set, further processing of the record is
suppressed.

OK indicates the data in the record now exists in the
online database table.

PASS indicates the record is marked for either
modification or insertion after the key resolution
stage.

Importing rule data sets REC_STATUS in
CZ_IMP_RULES and
CZ_IMP_LOCALIZED_TEXTS. The rule processing
stage is tracked in REC_STATUS. The following are
the stages of processing rule data:

CND indicates the first stage of processing rule data.
This stage verifies that all required columns are
populated and assigns default values for other
columns. See Rule Validation, page 5-29 for a list of
the required columns.

KRS indicates the second stage of processing rule
data if the data passes the CND stage (
DISPOSITION=P). The KRS (key resolution) stage
verifies and resolves all foreign key relationships
among tables that are involved in the import.

XFR indicates the third stage of processing rule data.
This stage transfers the rule data to the CZ online
tables.

OK indicates that the rule has been successfully
imported. This is the final reporting stage.

ERR indicates that the rule failed parsing. This is the

The CZ Schema 4-7

Field Name Type Description

final reporting stage.

For additional rule import information, see Rule
Import, page 5-21.

Online Data Fields
The import tables' data fields exactly match the fields in the corresponding online table
and are used to hold the data to be put into the online table.

Surrogate Key Fields
Surrogate key fields in the import tables hold the customer-provided extrinsic
identifications for data to be imported. These include both foreign surrogate keys and
surrogate primary keys.

Foreign Surrogate Key – A foreign surrogate key is a reference to a different table made
through that table's surrogate primary key rather than through the online table's integer
key value. A foreign surrogate key consists of one or more fields that resolve references
from one import table to another. These keys are named FSK_table_refno_fldnum, where
table is the name of the referenced table, refno is the number of the table-to-table
reference, and fldnum is the position of the referenced surrogate-key field in the
referenced import table. Note that refno is required to keep unique names for tables with
multiple references to the same table, and generally, the fldnum is 1.

Surrogate Primary Key – As a rule, imported tables contain a single field named
ORIG_SYS_REF, which is used to hold the external value that uniquely identifies each
record. In some cases, however, the online CZ table has a primary key consisting
entirely of references to other tables. In this case, the surrogate primary key actually
consists of the foreign surrogate keys that correspond to the native foreign keys in the
online table.

Dependencies Among Import Tables
Dependencies among import tables must be heeded especially when custom importing
single tables. Dependencies Among CZ Schema Import Tables, page 4-8, "Foreign
Surrogate Key" lists the column in the import table whose value is dependent on the
table listed in "Depends on". For example, the FSK_ITEMTYPE_1_1 column in
CZ_IMP_ITEM_MASTER gets its value from CZ_IMP_ITEM_TYPE.NAME and helps in
key resolution. FSK_ITEMTYPE_1_1 (default) is populated depending on the
PK_USEEXPANSION indicator (0, 1, or 2) in CZ_XFR_TABLES. See Populating Import
Tables, page 5-12 for the order in which the CZ_IMP tables are populated.

4-8 Oracle Configurator Implementation Guide

Note: Oracle recommends that limited usage of FSK_***_EXT columns
as these columns will eventually be desupported.

A strong dependency means a value is required to successfully import that record. If
Default is YES, then there is a default value in that column and import succeeds even if
the dependency is strong and no value is imported. The following Dependencies
Among CZ Schema Import Tables, page 4-8 lists the dependencies.

The following table shows the dependencies between the import tables.

Dependencies Among CZ Schema Import Tables

Import Table Name Depends on Foreign Surrogate
Key

Type of
dependenc
y

Default

CZ_IMP_DEVL_PROJE
CT

CZ_IMP_INTL_TE
XT.TEXT_STR

FSK_INTLTEXT_1_1 STRONG NO

CZ_IMP_LOCALIZED_
TEXTS

CZ_IMP_DEVL_PR
OJECT.ORIG_SYS_
REF

FSK_DEVLPROJECT
_1_1

STRONG N/A

CZ_IMP_ITEM_MAST
ER

CZ_IMP_ITEM_TY
PE.NAME

FSK_ITEMTYPE_1_1 STRONG YES

CZ_IMP_ITEM_PROPE
RTY_VALUE

CZ_IMP_PROPERT
Y.NAME

FSK_PROPERTY_1_1 STRONG NO

CZ_IMP_ITEM_PROPE
RTY_VALUE

CZ_IMP_ITEM_M
ASTER.REF_PART_
NBR

FSK_ITEMMASTER_
2_1

STRONG NO

CZ_IMP_ITEM_TYPE NO NO NO NO

CZ_IMP_ITEM_TYPE_
PROPERTY

CZ_IMP_ITEM_TY
PE.NAME

FSK_ITEMTYPE_1_1 STRONG NO

CZ_IMP_ITEM_TYPE_
PROPERTY

CZ_IMP_PROPERT
Y.NAME

FSK_PROPERTY_2_1 STRONG NO

CZ_IMP_PROPERTY NO NO NO NO

The CZ Schema 4-9

Import Table Name Depends on Foreign Surrogate
Key

Type of
dependenc
y

Default

CZ_IMP_PS_NODES CZ_IMP_INTL_TE
XT.TEXT_STR

FSK_INTLTEXT_1_1 STRONG NO

CZ_IMP_PS_NODES CZ_IMP_ITEM_M
ASTER.ORIG_SYS_
REF

FSK_ITEMMASTER_
2_1

STRONG NO

CZ_IMP_PS_NODES CZ_IMP_PS_NODE
S.ORIG_SYS_REF

FSK_PSNODE_3_1 STRONG N/A

CZ_IMP_PS_NODES CZ_PS_NODES.PA
RENT_ID

FSK_PSNODE_4_1 STRONG N/A

CZ_IMP_PS_NODES CZ_IMP_DEVL_PR
OJECT.ORIG_SYS_
REF

FSK_DEVLPROJECT
_5_1

STRONG NO

CZ_IMP_PS_NODES CZ_MODEL_REF_
EXPLS

FSK_EXPLNODE_1_
1

STRONG N/A

CZ_IMP_PS_NODES CZ_PS_NODES.RE
FERENCE_ID

FSK_PSNODE_6_1 STRONG NA/

CZ_IMP_PS_NODES CZ_EFFECTIVITY_
SETS.EFFECTIVITY
_SET_ID

FSK_EFFSET_7_1 STRONG N/A

CZ_IMP_PS_NODES SRC_APPLICATIO
N_ID

FSK_ITEMMASTER_
2_2

STRONG N/A

CZ_IMP_PS_NODES CZ_IMP_DEVL_PR
OJECT.ORIG_SYS_
REF

FSK_DEVLPROJECT
_5_1

STRONG N/A

Control Tables
The control tables provide the mechanism for controlling what data is imported or
refreshed when populating the CZ schema import tables with data from outside
sources. The control table names are prefixed with CZ_XFR.

When running Oracle Configurator Populate and Refresh Configuration Models

4-10 Oracle Configurator Implementation Guide

Concurrent Programs, page C-18, records in the CZ_XFR tables determine which
import tables are enabled for import, what data is imported, and how the data is
imported.

The following tables control the import process at the table and field level:

• CZ_XFR_FIELDS

• CZ_XFR_PROJECT_BILLS

• CZ_XFR_TABLES

The following tables contain import information:

• CZ_XFR_RUN_INFOS

• CZ_XFR_RUN_RESULTS

• CZ_XFR_STATUS_CODES

CZ_XFR_TABLES identifies the mapping of the import table to the online table, as well
as the rules for importing data into the CZ schema.

CZ_XFR_FIELDS identifies the transfer rules for the fields that are transferred during
the Populate or Refresh Configuration Models concurrent programs. Every field is
updated during import or refresh, but the update can be retracted by using the
NOUPDATE flag in the CZ_XFR_FIELDS table. If a field that is transferred does not
have an entry in the CZ_XFR_FIELDS table, then that field is updated.

For example, setting the NOUPDATE flag to 1 in the CZ_XFR_FIELDS table for
CZ_ITEM_MASTERS.DESC_TEXT, inhibits the updating of the Item Master description
in CZ_ITEM_MASTERS.DESC_TEXT when a Model is refreshed. Setting a value in the
CZ_XFR_FIELDS Table, page 4-10 shows how to set the field in the CZ_XFR_FIELDS
table so that changes made to the BOM Model's Item description do not appear in
Oracle Configurator Developer.

Setting a value in the CZ_XFR_FIELDS Table
SQL> UPDATE CZ_XFR_FIELDS
 SET NOUPDATE = '1'
 WHERE order_seq = 4
 AND dst_field IN ('DESC_TEXT', 'REF_PART_NBR');

SQL> COMMIT

CZ_DB_SETTINGS Table
The CZ_DB_SETTINGS table provides parameters that affect certain applications and
CZ schema processes.

Only one CZ_DB_SETTINGS table exists in a CZ schema.

The CZ Schema 4-11

Accessing the CZ_DB_SETTINGS Table
A user's responsibility determines whether they can view or edit the CZ_DB_SETTINGS
table. A user must have the Oracle Configurator Administrator responsibility to edit the
CZ_DB_SETTINGS table through concurrent programs. For more information, see View
Configurator Parameters , page C-2 and Modify Configurator Parameters, page C-3.

Organization of the CZ_DB_SETTINGS Table
The parameters in the CZ_DB_SETTINGS table are mapped to a particular section of
the CZ schema. The particular section is identified in the SECTION_NAME field and
contains relevant database parameters. The sections are:

• IMPORT - Controls how BOM Model data is imported into the CZ schema

• LogicGen - Governs how the Model's logic is generated

• ORAAPPS_INTEGRATE - Controls how Oracle Configurator integrates with other
Oracle Applications

• SCHEMA - Sets general parameters that control the CZ schema

• UISERVER - Governs the behavior of the runtime Oracle Configurator user
interface

Each parameter contains the following fields:

• DATA_TYPE specifies the parameter's datatype. All CZ_DB_SETTINGS values are
stored as VARCHAR2(255) in the VALUE field. If the DATA_TYPE is an integer,
then the Configurator converts the data in the VALUE field to an integer before
using it. For example, the Batchsize default value is stored as string 10000, but
Configurator interprets string 10000 as integer 10000.

• SETTING_ID identifies the parameter.

• VALUE is the parameter's data. This value may be set during an installation or
upgrade of the database instance. The Oracle Configurator Administrator can
modify a value by running the Modify Configurator Parameters, page C-3
concurrent program.

CZ_DB_SETTINGS Parameters
Some of the CZ_DB_SETTINGS parameter values are predefined during an installation
or upgrade of Oracle Configurator. The Oracle Configurator Administrator can modify
the values of these parameters by running the Modify Configurator Parameters, page C-
3 concurrent program. For information on running concurrent programs, see Running
Configurator Concurrent Programs, page B-2. For specific information on modifying

4-12 Oracle Configurator Implementation Guide

the parameters in the CZ_DB_SETTINGS table, see Settings in CZ_DB_SETTINGS
Table, page 4-12 that lists the parameters in the CZ_DB_SETTINGS table that can be
modified.

Settings in CZ_DB_SETTINGS Table

SETTING_ID SECTION_N
AME

DATA_T
YPE

Default VALUE More
information
in...

AltBatchValidateURL ORAAPPS_I
NTEGRATE

string n/a AltBatchVali
dateURL,
page 4-15

BadItemPropertyValue IMPORT T/F F BadItemPro
pertyValue,
page 4-16

BatchSize SCHEMA string 10000 BatchSize,
page 4-16

BOM_REVISION ORAAPPS_I
NTEGRATE

string n/a BOM_REVIS
ION, page 4-
17

CommitSize IMPORT integer 500 CommitSize,
page 4-17

DISPLAY_INSTANCE_NAME UISERVER string n/a DISPLAY_I
NSTANCE_
NAME,
page 4-17

FREEZE_REVISION SCHEMA string System setting FREEZE_RE
VISION,
page 4-18

GenerateGatedCombo LogicGen YES/NO YES GenerateGat
edCombo,
page 4-18

GenerateUpdatedOnly LogicGen YES/NO YES GenerateUp
datedOnly,
page 4-18

The CZ Schema 4-13

SETTING_ID SECTION_N
AME

DATA_T
YPE

Default VALUE More
information
in...

GenStatisticsBOM IMPORT YES/NO NO GenStatistics
BOM, page
4-18

GenStatisticsCZ IMPORT YES/NO NO GenStatistics
CZ, page 4-
18

MAJOR_VERSION SCHEMA integer System setting MAJOR_VE
RSION,
page 4-18

MaximumErrors IMPORT integer 10000 MaximumEr
rors, page 4-
18

MemoryBulkSize IMPORT integer 50000 MemoryBul
kSize, page
4-19

MINOR_VERSION SCHEMA string System setting MINOR_VE
RSION,
page 4-19

MULTISESSION IMPORT integer 0 MULTISESS
ION, page 4-
19

OracleSequenceIncr SCHEMA integer 20 OracleSeque
nceIncr,
page 4-19

PsNodeName ORAAPPS_I
NTEGRATE

string RefPartNbr PsNodeNam
e, page 4-20

PublicationLogging ORAAPPS_I
NTEGRATE

YES/NO NO PublicationL
ogging, page
4-20

4-14 Oracle Configurator Implementation Guide

SETTING_ID SECTION_N
AME

DATA_T
YPE

Default VALUE More
information
in...

PublishingCopyRules ORAAPPS_I
NTEGRATE

YES/NO YES PublishingC
opyRules,
page 4-20

PublicationLocalBOMSynch PUBLICATI
ON

YES/NO NO PublicationL
ocalBOMSy
nch, page 4-
20

PurgeDeleteConfigBatchsize SCHEMA integer 100 PurgeDelete
ConfigBatch
size, page 4-
21

RefPartNbr ORAAPPS_I
NTEGRATE

string CONCATENA
TED_SEGMEN
TS

RefPartNbr,
page 4-21

ResolvePropertyDataType ORAAPPS_I
NTEGRATE

YES/NO 1-integer,
2-decimal,
3-boolean,
4-text

ResolveProp
ertyDataTyp
e, page 4-22

RestoredConfigDefaultModelLoo
kupDate

ORAAPPS_I
NTEGRATE

string config_creation
_date

RestoredCo
nfigDefault
ModelLooku
pDate, page
4-23

Revision Date/User SCHEMA any
string

- Revision
Date and
User, page
4-23

RUN_BILL_EXPLODER ORAAPPS_I
NTEGRATE

YES/NO YES RUN_BILL_
EXPLODER,
page 4-23

SuppressSuccessMessage UISERVER YES/NO NO SuppressSuc
cessMessage
, page 4-24

The CZ Schema 4-15

SETTING_ID SECTION_N
AME

DATA_T
YPE

Default VALUE More
information
in...

TimeImport IMPORT string TimeImport
, page 4-24

UI_NODE_NAME_CONCAT_CH
ARS

ORAAPPS_I
NTEGRATE

string n/a UI_NODE_
NAME_CO
NCAT_CH
ARS, page 4-
24

UseLocalTableInExtractionViews IMPORT YES/NO NO UseLocalTab
leInExtractio
nViews,
page 4-25

UtlHttpTransferTimeout SCHEMA integer n/a UtlHttpTran
sferTimeout,
page 4-25

AltBatchValidateURL
AltBatchValidateURL allows the batch validation process to bypass the URL that is
normally used for batch validation. This might be necessary if your database cannot
communicate with your Web server.

If Oracle Configurator uses Secure Sockets Layer (SSL), then you can enable batch
validation by creating an additional non-SSL-enabled (HTTP) servlet port and
specifying its URL as the value of AltBatchValidateURL. For additional SSL
information, see the Oracle Support Web site.

If your configurator servlet is set up to use HTTPS, then you can set
AltBatchValidateURL to be a servlet using HTTP, and avoid some SSL encryption and
handshaking overhead. Since the communication is between the Application database
and the Application middle tier, communication does not cross the internet and thus
HTTPS may not be necessary. This configuration does require extra setup and is not
required.

You can also enable batch validation by using your existing SSL-enabled port for Oracle
Configurator and setting up the Oracle Wallet for use by Oracle Configurator as
described on the Oracle Support Web site. In this case, you do not set any value for
AltBatchValidateURL.

If you use a firewall, have your database setup in a DMZ, or have some other network
configuration where the database cannot communicate with the web server, then you

4-16 Oracle Configurator Implementation Guide

should set up an internal web server. After setting up an internal web server, you must
then set the AltBatchValidateURL setting in the CZ_DB_SETTINGS table to be the URL
for the configurator servlet on your internal web server.

For more information regarding DMZ setup, see the Oracle Support Network site.

To insert the AltBatchValidateURL into the CZ_DB_SETTINGS table, use the SQL
INSERT statement shown in Adding AltBatchValidateURL to CZ_DB_SETTINGS, page
4-16.

Adding AltBatchValidateURL to CZ_DB_SETTINGS
INSERT INTO cz_db_settings (setting_id, section_name, data_type, value,
desc_text) VALUES
('AltBatchValidateURL','ORAAPPS_INTEGRATE',4,'http://servername.com:8808
/OA_HTML/UiServlet','Non-secure URL')

BadItemPropertyValue
BadItemPropertyValue indicates the action that is taken when an Item's PROPERTY
_VALUE in the CZ_IMP_ITEM_PROPERTY_VALUES table does not match the
DATA_TYPE in the CZ_PROPERTIES online table. The default value (F) forces the
record to be updated to include the PROPERTY_VALUE so that it is imported into the
CZ_ITEM_PROPERTY_VALUES online table. Valid Values for the
BadItemPropertyValue Setting, page 4-16 lists the valid values for
BadItemPropertyValue setting and the disposition:

The following table lists the valid values for the BadItemProperty value setting, along
with a description of the value.

Valid Values for the BadItemPropertyValue Setting

Value Disposition

R Reject the record in the import table and use the old PROPERTY_VALUE

F Force the record to be updated to include the PROPERTY_VALUE from the
import table

K Update all information in the record except the Item PROPERTY_VALUE

X Reject the record and logically delete any matching Item property value
record in the CZ_ITEM_PROPERTY_VALUES table. The Item property value
defaults to the property default value in the CZ_ITEM_PROPERTY_VALUES
table.

BatchSize
BatchSize indicates the number of records that are modified before committing a

The CZ Schema 4-17

transaction in batch operations. The BatchSize setting is also used during a purge
operation.

Ordinarily a database stored procedure runs as a single transaction that is considered
pending until the calling operation commits the transaction. The pending changes are
lined up in a rollback segment. If the calling operation is cancelled, then the transaction
is rolled back. If the calling operation encounters an error, then the pending changes in
the rollback segment are discarded. However, some batch operations, such as import,
can involve many more records than the database can handle as a single transaction. If
the transaction is too big, then the database fails an operation with a rollback-segment
error. To avoid a rollback_segment error, import and other batch-like operations count
up the modified records in the database and when the count matches the BatchSize
value, the operation commits the transaction and resets the counter. Every record is not
committed individually because it is considerably more economical to commit many
updates at once.

BOM_REVISION
BOM_REVISION indicates the BOM revision in the Oracle Applications database from
which data is being imported into the CZ schema. This setting is checked to ensure that
the correct date format is used in the call to the BOM Model explosion procedure.

The value of BOM_REVISION is the Oracle Applications revision number used to
determine which explosion date format to use. . Valid values are 5.0.628 for Release
10.7, 11.0.28 for Release 11.0, and 11.5.0 for both Release 11i and Release 12. If the
value is null (default), then 11.5.0 is used. The call to the BOM Model explosion
procedure checks up to the second decimal point of this value.

If the value is 11.5.n or Release 12, then the date format YYYY-MM-DD is used.
Otherwise, DD/MON/RR is used for Release 10.7 or 11.0.

CommitSize
CommitSize indicates the number of import records in each database transaction
between commits. CommitSize has the same purpose as BatchSize. for more
information, see BatchSize, page 4-16. CommitSize is used during import.

DISPLAY_INSTANCE_NAME
DISPLAY_INSTANCE_NAME determines whether an Instance Name column appears
in the Oracle Configurator Summary page. Oracle Configurator checks this setting only
if multiple instances of one or more components exist in the configuration.

If DISPLAY_INSTANCE_NAME is set to TRUEand at least one component in the
configuration has multiple instances, then the Instance Name column appears and
displays the name of each instance.

If DISPLAY_INSTANCE_NAME is set to FALSE or there are no components with
multiple instances in the configuration, then the Instance Name column does not
appear. If set to False but there are multiple instances in the configuration, then

4-18 Oracle Configurator Implementation Guide

instance names appear in the Description column (instead of each Item's description).

FREEZE_REVISION
FREEZE_REVISION indicates the revision number at the freeze stage. This parameter is
used to capture the revision levels for the implementation of database package bodies
and views. For example, if a table is tuned to improve performance, but the fields and
the data returned are the same, then there is no need to change the MAJOR_VERSION
or MINOR_VERSION but the FREEZE_REVISION value reflects the reworked view.
This setting is read-only and populated when applying a patch.

GenerateGatedCombo
GenerateGatedCombo determines how a FALSE logic state is propagated in Explicit
Compatibility, Property-based Compatibility and Design Chart Rules. See the Oracle
Configurator Developer User's Guide for additional information about Gated
Combinations.

GenerateUpdatedOnly
GenerateUpdatedOnly set to YES, causes logic generation to skip all referenced Models
whose logic is up-to-date. GenerateUpdatedOnly set to NO causes the logic of all
referenced Models to be generated even if their logic is up-to-date.

GenStatisticsBOM
GenStatisticsBOM set to YES forces the optimizer to update the internal statistics on the
BOM_EXPLOSIONS table before running queries in the CZ schema. Generating
statistics allows the optimizer to choose a better execution plan based on the current
data structure in a table.

GenStatisticsCZ
GenStatisticsCZ set to YES forces the optimizer to update the internal statistics on the
entire CZ schema before running queries in the CZ schema. Generating statistics allows
the optimizer to choose a better execution plan based on the current data structure in a
table.

MAJOR_VERSION
MAJOR_VERSION indicates the major version label for the CZ schema. This setting is
read-only and is populated when upgrading the schema.

MaximumErrors
MaximumErrors indicates the limit of errors allowed before an import run is
terminated. If you have a large amount of data to import, or you are not concerned with
the process stopping once a certain number of errors is reached, then set this parameter

The CZ Schema 4-19

to an extremely large number.

MemoryBulkSize
MemoryBulkSize regulates the memory usage of import. The smaller the setting, the
less memory is required for import. This number is used during import for the
cz_ps_nodes extraction procedure for specifying the number of records that are
processed in the same pass. If the value entered is less than the total number of records
to be imported, then the specified number of records is loaded and processed, and then
the next group of records is loaded and processed. If there is no value entered, then the
MemoryBulkSize is set to 10000000.

MINOR_VERSION
MINOR_VERSION indicates the minor version label for the CZ schema. This value is
read-only and is populated when applying a patch. The MINOR_VERSION does not
change during a particular family pack release.

MULTISESSION
MULTISESSION indicates the way in which a new import session interacts with other
import sessions.

• A positive value indicates the number of seconds to wait while another import
session is running. The current state is checked every second. After the number of
seconds has elapsed, control goes to the waiting import session if no other session is
active, or an exception is raised if another import session is still running.

• A value of 0 means do not wait if another import session is running, and
immediately raise an exception if a session is already running.

• A negative value means ignore other import sessions and run this import session
immediately without raising an exception. Setting this parameter to a negative
number is equivalent to disabling it. If a session is currently running and a new
import session begins, then the first session is not aborted and there is the risk of
data corruption.

When MULTISESSION is missing from the CZ_DB_SETTINGS table, it is equivalent to
the default 0.

If an import session is terminated, then the CZ_XFR_RUN_INFOS table may end up in
an inconsistent state with the value of COMPLETED something other than 1.

OracleSequenceIncr
OracleSequenceIncr indicates the number of primary-key values allocated by each use
of a sequence. The default setting means that keys are assigned in increments of 20.
Both runtime Oracle Configurator and Configurator Developer ask for a sequence value
once, and then manage the sequence value minus 1 in memory. When the block is used

4-20 Oracle Configurator Implementation Guide

up, runtime Oracle Configurator and Configurator Developer again call for a sequence
value. Keeping the default value at 20 saves round trips to the database.

Warning: Changing the default OracleSequenceIncr setting of 20 is
likely to have adverse effects. The value of OracleSequenceIncr should
not be modified.

PsNodeName
PsNodeName indicates the source field to be loaded into the NAME field in the
CZ_PS_NODES table. The source field is either the RefPartNbr or the DESCRIPTION
field in the MTL_SYSTEM_ITEMS table. RefPartNbr is the default so that the name
loaded into the Model structure in Oracle Configurator Developer matches the name in
CZ_ITEM_MASTERS.

PublicationLocalBOMSynch
PublicationLocalBOMSynch controls whether the BOM Synchronization process runs
automatically when a publication is created for a Model that was imported from a
remote server, on the same instance in which Configurator Developer is running. If
BOM Synchronization does not run in this scenario, it is possible for the publication
lookup process to fail if the host application is also running on the local instance that
launched Oracle Configurator.

To automatically run BOM Synchronization in the scenario described above, set the
CZ_DB_SETTINGS parameter PublicationLocalBOMSynch to YES by running the
Modify Configurator Parameters concurrent program. Enter the following parameters
when submitting this program:

• Section Name: Publication

• Setting ID: PublicationLocalBOMSynch

• Value: YES

• Type: 4

PublicationLogging
PublicationLogging indicates whether a trace of the publication process is logged in the
CZ_DB_LOGS table. The trace is helpful for debugging purposes and can be viewed in
the log file. For more information about viewing log files, see Viewing Log Files, page
B-4.

PublishingCopyRules
PublishingCopyRules indicates whether or not configuration rules are copied during
publishing. If PublishingCopyRules is set to NO, then only Configurator Extension rules

The CZ Schema 4-21

are copied during publishing. The publishing process is faster when
PublishingCopyRules is set to NO.

If the PublishingCopyRules is set to YES, then all rules are copied and both the source
and published Models have the same rules.

Note: Setting 'PublishingCopyRules' to 'NO' only affects you if changes
are made to logic generation that are incompatible with previous
versions of Oracle Configurator. If the rules for a published Model are
not copied, then you cannot generate logic for the published Models.
Using the NO setting requires republishing all published Models.

PurgeDeleteConfigBatchsize
When you run the concurrent program Purge Configurator Tables, page C-4, you can
control its commit behavior by setting this parameter, which specifies how often the
purge program issues a commit, in terms of a number of configurations. For example, a
value of 200 specifies a commit after deleting a batch of 200 configurations.

RefPartNbr
RefPartNbr identifies the source fields that are loaded from the MTL_SYSTEM_ITEMS
table into CZ_ITEM_MASTERS.REF_PART_NBR. This is a segment from the System
Item key flexfield definition.

RefPartNbr determines what name is displayed for each imported Model structure
node. The default value 'CONCATENATED_SEGMENTS' enables the BOM Model
import process to construct BOM Model node names using multi-segment part
numbers.

When RefPartNbr is set to 'SEGMENT1', only MTL_SYSTEM_ITEMS.SEGMENT1 is the
source of the node names in the imported Model structure. If you want to use only the
first segment of a part number as the node name, the Oracle Configurator
Administrator must manually set RefPartNbr to 'SEGMENT1' by running the Modify
Configurator Parameters concurrent program.

Any value for RefPartNbr other than 'CONCATENATED_SEGMENTS' or 'SEGMENT1'
causes the import process to retrieve the value of the DESCRIPTION column from
MTL_SYSTEM_ITEMS and displays the Item description as the node name in
Configurator Developer.

Warning: Examine MTL_SYSTEM_ITEMS_VL.
CONCATENATED_SEGMENTS to verify that the field is correctly
populated. If the field is incorrectly populated, then the entry in Oracle
Inventory may be wrong. If the entry is correct, check
CZ_IMP_ITEM_MASTER.REF_PART_NBR to see that the value is the
same as that in MTL_SYSTEM_ITEMS_VL.

4-22 Oracle Configurator Implementation Guide

CONCATENATED_SEGMENTS.

Concatenated segments, including separators, must not exceed 1000 characters, which is
the limit of the CZ_PS_NODES.NAME field. Any description longer than 1000
characters is truncated. The default separator is a dot (.). Other valid separators are │, -,
or a custom value. See the Oracle Inventory User's Guide for more information about
setting up part numbers.

You can enter multi-segment Items in the From Item and To Item input fields when you
run either the Populate or Refresh Configuration Models concurrent program. You
must include any separators that exist in the Item's part number when you enter
multi-segment Item names.

Warning: When updating an existing Model in Configurator Developer
to use multi- segment part numbers, you must either reimport or
refresh the BOM Model. Confirm that the BOM Model is getting
re-exploded during import. The
CZ_DB_SETTINGS.RUN_BILL_EXPLODER should be Yes.

ResolvePropertyDataType
ResolvePropertyDataType controls whether Item Catalog Descriptive Elements are
imported into Configurator Developer as Item Properties with a data type of Text or
Decimal Number. If the value for this setting is NO, all imported Item Properties have a
data type of Text in Configurator Developer.

If the value of this setting is YES, then all Descriptive Elements whose value is a number
are imported as Item Properties and have a data type of Decimal Number. All
Descriptive Elements whose value is text (for example, Weight) have a data type of
Text.

If ResolvePropertyDataType is null, then all Descriptive Elements are imported into
Configurator Developer as Item Properties with a data type of Text.

ResolvePropertyDataType Setting , page 4-22 table illustrates how
ResolvePropertyDataType affects how Descriptive Elements values are imported into
Oracle Configurator Developer.

ResolvePropertyDataType Setting

ResolvePropertyDataType
Setting

Item Catalog Descriptive
Element Value

Data Type in Oracle
Configurator Developer

YES 15 Decimal Number

The CZ Schema 4-23

ResolvePropertyDataType
Setting

Item Catalog Descriptive
Element Value

Data Type in Oracle
Configurator Developer

YES Length Text

NO 15 Text

YES Length Text

null 'Length' or '15' Text

Item Property is a protected field in the CZ schema (the NOUPDATE flag is set during
import). Once you import a BOM Model, you cannot change an Item Property's data
type simply by modifying the ResolvePropertyDataType setting and then refreshing the
BOM Model.

RestoredConfigDefaultModelLookupDate
RestoredConfigDefaultModelLookupDate setting controls which publication Oracle
Configurator uses on an order when called from Order Management. If this setting is
config_creation_date, then Oracle Configurator uses the order line creation date. If this
setting is null, then Oracle Configurator uses sysdate.

For more information, see DEFAULT_RESTORED_CFG_DATES, page 17-49.

Revision Date and User
Revision Date and User is read-only and documents the date and time at which the CZ
schema was last upgraded, and the username of the user who performed the task.

RUN_BILL_EXPLODER
RUN_BILL_EXPLODER is a YES/NO flag (default=YES) that indicates whether the
Oracle Applications Bills of Material exploder should be run on each bill that is
marked for import in the CZ_XFR_PROJECT_BILLS table in the CZ schema at the time
of import. See Populating the CZ Schema, page 5-1 for more information on exploding
a BOM Model.

The Oracle Configurator Populate or Refresh Configuration Models concurrent
programs load bills and Items based on top bills listed in the CZ_XFR_PROJECT_BILLS
table in the CZ schema. Before extracting, if the RUN_BILL_EXPLODER setting is set to
YES, then the procedure calls the BOM Model exploder to refresh data in
BOM_EXPLOSIONS for each record in the CZ_XFR_PROJECT_BILLS table. If
RUN_BILL_EXPLODER is set to NO, then the concurrent program transfers the BOM
Models that are flagged for import in the CZ_XFR_PROJECT_BILLS table without
running the BOM Model exploder first.

4-24 Oracle Configurator Implementation Guide

Note: The Populate or Refresh Configuration Models concurrent
programs do not explode BOM Models when importing from a remote
server. See Exploding BOM Models in Oracle Applications, page 5-10
for details.

CZ_INTL_TEXTS contains the text string from the DESCRIPTION field in the
BOM_EXPLOSIONS table for each imported BOM Model structure node.

The Oracle Configurator SQL*Plus scripts and concurrent programs target all or a
subset of BOM Models exploded in the BOM_EXPLOSIONS table in the Oracle
Applications database. Selected BOM Model Items come from the
BOM_BILL_OF_MATERIAL and the BOM_INVENTORY_COMPONENTS tables.

Note: Importing a BOM Model from a remote instance may fail if
RUN_BILL_EXPLODER is set to YES in the local instance. (In this case,
an error message similar to the following appears: "ORA-03113:
end-of-file on communication channel.") If this occurs, set
RUN_BILL_EXPLODER flag to No and then re-submit the import
concurrent program. The new setting should enable the process to
complete successfully.

SuppressSuccessMessage
The SuppressSuccessMessage setting affects runtime Oracle Configurator behavior by
suppressing messages that would normally be shown. The setting determines whether a
message is displayed after fixing a validation error.

If SuppressSuccessMessage is set to NO, then after fixing a validation error a runtime
success message is displayed. If SuppressSuccessMessage is set to YES, then after fixing
a validation error a runtime success message is not displayed.

To insert SuppressSucessMessage into CZ_DB_SETTINGS, use the SQL*Plus INSERT
statement shown in Adding SuppressSuccessMessage to CZ_DB_SETTINGS, page 4-24
.

Adding SuppressSuccessMessage to CZ_DB_SETTINGS
INSERT INTO cz_db_settings (setting_id, section_name, data_type, value,
desc_text) VALUES ('SuppressSuccessMessage','UISERVER',4,'No','Runtime
display of success messageS')

TimeImport
TimeImport enables the collection of timing information during import.

UI_NODE_NAME_CONCAT_CHARS
UI_NODE_NAME_CONCAT_CHARS sets the concatenation character that is used
when generating UI captions using both the node name and description. The default

The CZ Schema 4-25

concatenation character separating each text string is a comma surrounded by two
spaces. (For example: "AT62431 , Sentinal Custom Laptop"). The Oracle Configurator
Administrator can change the concatenation character that separates each string by
running the Modify Configurator Parameters concurrent program.

UseLocalTableInExtractionViews
UseLocalTableInExtractionViews is a YES/NO flag. If UseLocalTableInExtractionViews
is set to YES, then definitions of some import extraction views include the DUAL table
in the join. The UseLocalTableInExtractionViews setting is ignored if the import source
server is local.

Note: If you are importing or refreshing from a remote database
instance and the database instance is version 8i, then
UseLocalTableInExtractionViews must be set to YES. This is because of
an RDBMS bug. If this setting is not YES, then the following error
appears in the cz_db_logs table after running the Populate and Refresh
Configuration Models Concurrent Programs, page C-18 :
"ORA-01025: UPI parameter out of range"

UtlHttpTransferTimeout
UtlHttpTransferTimeout allows modification of the timeout length that is used inside
the call to the UTL_HTTP.REQUEST procedure during batch validation. The value is
the number of seconds. Once the call completes, the timeout is set back to its original
value.

To insert UtlHttpTransferTimeout into the CZ_DB_SETTINGS, use the SQL*Plus
INSERT statement shown in Adding UtlHttpTransferTimeout to CZ_DB_SETTINGS,
page 4-25.

Adding UtlHttpTransferTimeout to CZ_DB_SETTINGS
INSERT INTO cz_db_settings (section_name, setting_id, data_type, value,
desc_text)
SELECT 'SCHEMA', 'UtlHttpTransferTimeout', 1, '60', 'HTTP timeout for
batch validation'
FROM DUAL WHERE NOT EXISTS
(SELECT NULL FROM cz_db_settings
WHERE section_name='SCHEMA'
AND upper(setting_id)='UTLHTTPTRANSFERTIMEOUT');

Note: This functionality is available only in Oracle 9i and later.

Populating the CZ Schema 5-1

5
Populating the CZ Schema

This chapter provides an overview of why and how to import data from Oracle
Applications and non-Oracle Applications databases. It describes the import processes,
the import tables used during data import, how to import data into the CZ schema, data
import verification, the process for refreshing or updating imported data, and
customizing data import.

This chapter covers the following topics:

• Overview

• Introduction

• Standard Import

• Rule Import

• Rule Import Procedure

• Custom Import

• Custom Import Procedure

Overview
This chapter provides an overview of why and how to import data from Oracle
Applications and non-Oracle Applications databases. It describes the import processes,
the import tables used during data import, how to import data into the CZ schema, data
import verification, the process for refreshing or updating imported data, and
customizing data import. The import processes discussed are:

• Standard Import, page 5-4

• Rule Import, page 5-21

• Custom Import, page 5-30

For information about the CZ schema, see the CZ Schema, page 4-1 chapter.

5-2 Oracle Configurator Implementation Guide

Introduction
Populating the CZ schema usually begins by importing data. There are three types of
data import:

• Standard import of Oracle Applications BOM Models and Inventory data into the
CZ schema. For more information, see Standard Import, page 5-4.

• Rule import of legacy rules written in Constraint Definition Language (CDL) format
into the CZ schema. For more information, see Rule Import, page 5-21.

• Custom import of data that is not handled by a standard import. For more
information, see Custom Import, page 5-30.

Once the CZ schema is populated with imported data, that data is then available in
Oracle Configurator Developer and the runtime Oracle Configurator.

This section lists:

• Types of Data Stored in the CZ Schema During Development and Runtime, page 5-
2

• Means of Populating the CZ Schema, page 5-3

• CZ_IMP Tables, page 5-4

Types of Data Stored in the CZ Schema During Development and Runtime
The data stored in the CZ schema includes:

• Configuration models:

• Item and Model structure data

• Configuration rules

• Customized User Interface (UI) Templates

• UI definitions

• Publication records

• Configurations

• Configurator Extension Archives

• Oracle Configurator system settings

Populating the CZ Schema 5-3

• Oracle Configurator transfer information

See Means of Populating the CZ Schema, page 5-3 for information on how this data is
inserted. See Standard Import, page 5-4 for more details about the specific kinds of
Inventory and BOM Model data stored in the CZ schema.

Means of Populating the CZ Schema
The CZ schema is populated with data by the following means:

• Concurrent programs in Oracle Applications import Item and Model structure data
from outside sources into the CZ schema. For more information on preparing data
for import, see Preparing the Data for Import, page 5-7. For more information, see
Populate and Refresh Configuration Models Concurrent Programs, page C-18.

Note: When you submit an Oracle Applications concurrent request
to populate and refresh Models, the Model, any referenced Models,
and any referenced UI Content Templates must either be unlocked
or locked by you. For more information on locking, see the Oracle
Configurator Developer User's Guide.

• A concurrent program in Oracle Applications imports rules written in CDL format
into the CZ Schema. These rules may be legacy rules that are rewritten in CDL. For
more information on preparing rules for import, see Rule Import Procedure, page 5-
29. For more information about the concurrent program, see Import Configuration
Rules, page C-23.

• Custom programs load data transfer files into the CZ schema. For more information
see Identifying Data for a Custom Data Import. , page 5-31

• Concurrent programs migrate Item and Model structure data from one CZ schema
into another CZ schema. For more information, see Migrating Data, page 6-1 and
Migration Concurrent Programs, page C-30.

• Configurator Extensions populate CZ table fields with configuration data that
cannot be directly inserted using the runtime Oracle Configurator. For more
information, see the Oracle Configurator Extensions and Interface Object Developer's
Guide, and Migrate Functional Companions, page C-32.

• End users select certain nodes of configuration models that pass configuration
attributes to the CZ schema. For more information, see the Oracle Configurator
Methodologies documentation.

• Oracle Configurator Developer populates the CZ schema with configuration model
data, including rule, publishing, and UI definitions. For more information on the
information in the CZ schema, see the Oracle Integration Repository.

5-4 Oracle Configurator Implementation Guide

• Programmatic tools used to develop and maintain configuration models, and
deploy a runtime Oracle Configurator populate the CZ schema. For more
information, see Programmatic Tools for Development, page 17-1 and
Programmatic Tools for Maintenance, page 18-1.

CZ_IMP Tables
The CZ_IMP tables store imported data and keep track of the success or failure when
importing data into the CZ schema. The CZ_IMP tables correspond to the equivalent
CZ online tables. The imported data becomes available to Configurator Developer when
the Populate and Refresh Configuration Models Concurrent Programs, page C-18 or
Execute Populators in Model Concurrent Program, page C-29, or a custom import
moves the data from the import tables into the corresponding online tables.
Configurator Developer and the runtime Oracle Configurator read the imported data
from the CZ online tables.

For example, when an Item in the CZ_ITEM_MASTERS table is imported into the CZ
schema, the Item data also appears in the CZ_IMP_ITEM_MASTER table. For a list of
tables that store imported data, see ITEM Item-Master Tables, page D-2. For more
information about where various kinds of data are stored in the Oracle Integration
Repository.

Standard Import
A standard import consists of transferring data from Oracle Applications Bills of
Material (Releases 10.7, 11.0, 11i, or Release 12) to Oracle Configurator Release 12. Data
Flow in the Import Process, page 5-5 shows the data flow when importing a BOM
Model.

Data Flow in the Import Process, page 5-5 shows the flow of data during import. The
data is extracted from the BOM tables such as BOM_EXPLOSIONS into the CZ Interface
tables such as CZ_IMP_PS_NODES and then transferred to the CZ Online tables such as
CZ_PS_NODES.

Populating the CZ Schema 5-5

Data Flow in the Import Process

When developing a configuration model, Oracle Configurator Developer accesses the
CZ schema, not the Oracle Applications Inventory and Bills of Material schemas.
However, when ordering Items that have been configured based on a configuration
model, the runtime Oracle Configurator accesses the CZ schema.

The CZ schema must contain an exact replication of the BOM Model's structure, rules
and Item data. This exact replication is necessary to create configurations of BOM
Models that participate in downstream processes such as ordering.

This standard import section describes:

• Inventory and BOM Data That Can Be Imported, page 5-6

• Overall Standard Import Procedure, page 5-6

• Determining the Import Data Source Instance and the Target Instance, page 5-7

• Preparing the Data for Import, page 5-7

• Defining and Enabling a Server for Import, page 5-10

• Exploding BOM Models in Oracle Applications, page 5-10

• Controlling the Data for Import, page 5-11

• Importing the Data, page 5-15

• Verifying the Data Import, page 5-16

• Refreshing Imported Data, page 5-16

5-6 Oracle Configurator Implementation Guide

Inventory and BOM Data That Can Be Imported
A standard import involves importing Oracle Applications Inventory and BOM Model
data into the CZ schema. Specifically, the imported data is:

• Bills of Material structure (ATO and PTO BOM Models)

• Inventory data

• ATO or PTO BOM Model rules:

• Optional or required

• Minimum and maximum quantity

• Mutually exclusive

• Quantity cascade

• Attributes in Oracle Inventory such as Item Catalog Group, Catalog Descriptive
Elements and values

Overall Standard Import Procedure
The overall procedure for a standard import is:

1. Determine the import source and target (see Database Instances, page 3-1)

2. Prepare the data (see Preparing the Data for Import, page 5-7).

3. If the import source is a remote database:

1. The Configurator Administrator must define and enable the source server for
import (see Defining and Enabling a Server for Import, page 5-10).

2. Explode the BOM Models that you want to import (see Exploding BOM Models
in Oracle Applications, page 5-10).

4. Optionally identify specific data to be ignored during the import (see Controlling
the Data for Import, page 5-11).

5. Run the Populate and Refresh Configuration Models Concurrent Programs, page C-
18 in Oracle Applications to import the BOM Model's data into the CZ Schema.

6. Verify that the data import succeeded (see Verifying the Data Import, page 5-16).

7. If you re-import the same BOM Model from a different source, you must first

Populating the CZ Schema 5-7

synchronize your BOM-based configuration models with the new source (see
Synchronizing Data, page 7-1).

8. Because repeated data imports can result in large amounts of logically-deleted
Items in the CZ schema, run the Purge Configurator Tables, page C-4 concurrent
programs to improve database performance. For more information, see Purging
Configurator Tables, page 8-2.

Determining the Import Data Source Instance and the Target Instance
The source of imported data is also called the import source or remote server. The
import source should be a production database. Oracle Configurator supports
importing BOM Model data from only one Oracle Applications database. This is
because the information used to refresh imported Oracle Applications BOM Models can
overlap among multiple Applications databases. See Defining and Enabling a Server for
Import, page 5-10 for information about changing the import source.

You cannot test a published BOM on a local server if the BOM is defined remotely.
When you publish a Model, synchronization takes place. If a Model is published locally
but the source BOM is defined remotely, then synchronization does not occur.

The target of the imported data is the database instance you have designated for
developing your BOM-based configuration model. You run the Populate and Refresh
Configuration Models Concurrent Programs, page C-18 in Oracle Applications in the
target database instance.

For more information about selecting or changing which database instance should serve
as import source and which should be the target, see Database Instances, page 3-1.

Preparing the Data for Import
For purposes of consistency with other processes in your business, use production data.
Preparing the data for standard import involves creating a BOM Model using Oracle
Inventory Items. Only Oracle Inventory Items that are associated with a BOM Model in
Oracle Bills of Material can be imported into the CZ schema. If you are importing other
data or data from non-Oracle Applications databases, see Custom Import, page 5-30. If
you are importing rule data from non-Oracle Applications databases or standalone
rules, see Rule Import, page 5-21.

Determine which version of Oracle Applications is the import source. You can import
BOM Models only from Release 10.7, 11.0 and 11i to Release 12. Standard import
requires that BOM Models be complete and identified at the top level. Identifying the
BOM Model at the top level insures that all child BOM Models are imported. If a BOM
Model is not complete, then a warning message is displayed. For information on
importing BOM Models with child BOM Models, and BOM Models with a Common
Bill, see BOM Model with a Common Bill, page 5-21.

5-8 Oracle Configurator Implementation Guide

Note: Items for standard import must be defined in Oracle Applications
Inventory and then specified for inclusion in a BOM Model in Oracle
Bills of Materials.

To create a BOM Model in Oracle Applications, you must first define the Items (see
Defining Inventory Items for Configuration, page 5-8) and then their hierarchical
relationship in a BOM Model (see Creating BOM Models for Configuration, page 5-9).

Defining Inventory Items for Configuration
Begin data preparation by defining Inventory Items that can be used to build a BOM
Model and provide the Item data needed for implementing a configuration model.

If you are using Multiple Language Support (MLS), you should enter translated
descriptions of BOM Model Items before importing data to the CZ schema. See Multiple
Language Support, page 14-1.

In Oracle Applications Inventory:

• Define the Items of your BOM Model and specify a BOM Item Type of Standard,
Option Class, or Model for each Item.

• Select the Inventory Item check box to make each Item both configurable and
orderable.

• Select the BOM Allowed check box if the Item can be assigned as a component on a
BOM Model or can be used to create a BOM Model.

• Assign Item Catalog Groups and Descriptive Elements to Items for which you
want imported Properties in Configurator Developer.

• Indicate whether the Items that you want to be a BOM Model are a Pick To Order
(PTO) or Assemble To Order (ATO).

• Select the OM Indivisible check box if Item quantities should be treated as integers
(see Importing Decimal or Integer Quantities, page 5-13).

BOM Item Type determines whether an Item can be a component in a bill of materials,
may contain child components, or can also be a BOM Model. A BOM Option Class
typically contains one or more Standard Items. See Importing Decimal or Integer
Quantities, page 5-13 for details about importing Standard Item quantities as integers
or decimals. For more information on Standard Items, see the Oracle Bills of Material
User's Guide.

Any Item that is defined as a Model in Oracle Inventory and exists as a component in
another BOM Model (for example, a PTO BOM Model that contains an ATO BOM
Model), must also be defined as a BOM Model in Oracle Bills of Material to be imported
into the CZ schema.

Populating the CZ Schema 5-9

When an Item is a component of a PTO or ATO BOM Model and at the same time is the
parent of other component Items, the BOM Allowed check box must be selected for
that Item. When a Standard Item is defined this way, it can be a "kit" containing other
Standard Items. Standard Items included in a kit are always required (mandatory); they
are never optional. The BOM Allowed check box must be selected for all of the
component Items within the kit.

Item Catalog Descriptive Element values do not have a data type in Oracle Inventory.
When you import BOM Model data into the CZ schema, Descriptive Elements become
Item Properties. These Item Properties have a data type of Text, or Decimal Number.

By default, the Descriptive Element's value is imported as a decimal number if the value
is a number; otherwise, the value is imported as text. However, you can modify how
these values are imported using the ResolvePropertyDataType setting in the
CZ_DB_SETTINGS table. For details, see ResolvePropertyDataType, page 4-22.

For more information about imported BOM Models and Properties, see the Oracle
Configurator Developer User's Guide.

For more information about defining Items, see the Oracle Inventory User's Guide.

Creating BOM Models for Configuration
After defining Inventory Items, you must continue in Bills of Material to create the
BOM Model.

• Select an Inventory Item that has a BOM Item Type of Model, and add other BOM
Models, Option Class Items, and Standard Items as components within the BOM
Model.

• In a multiple organization supply chain implementation, set the Item attributes
Check ATP and ATP Components to control the extent of the search made by
Global Order Promising for available-to-promise inventory.

For more information about the Check ATP and ATP Components settings, see the
Oracle Advanced Supply Chain Planning and Oracle Global ATP Server User's Guide.

• Specify attributes for each component in the bill, such as whether a BOM Model or
BOM Option Class contains Mutually Exclusive Items and whether the component
is required.

When the Mutually Exclusive option is selected, the optional child components of that
Option Class mutually exclude one another based on the minimum and maximum
number of components allowed in a valid configuration.

Required Items do not participate in the configuration process and therefore are not
imported into the CZ schema. (An exception is when a required component contains
optional components; in this case, it is imported into the CZ schema). Required Items
are added automatically to the configured work order by the AutoCreate Configuration
Items concurrent program.

5-10 Oracle Configurator Implementation Guide

For more information about creating a BOM Models, see the Oracle Bills of Material
User's Guide.

Defining and Enabling a Server for Import
The local database instance is the default import server, meaning if you do not
specifically enable a server for import, the database instance in which you run the
import is used as the source.

If you are transferring data to the CZ schema from a Bills of Material schema in a
different database instance, you must define that import source as a remote server. See
Server Administration, page B-3 for information about defining and enabling a
remote server. Several servers can be defined and enabled, but only one server is Import
Enabled.

If you need to define and enable a remote server for import, you must first submit a
Modify Server Definition, page C-14 concurrent request to disable the local server for
import, and then define and enable the remote server where the import source data is
stored.

Oracle requires that you define only one server for import. If an import server is
changed after BOM Models have been imported, then the configuration models must be
synchronized to the BOM Models on the new import server. For details on
synchronizing the configuration models with the BOM Models on the newly defined
remote server, see BOM Model Synchronization Process, page 7-2.

Exploding BOM Models in Oracle Applications
Prior to importing or refreshing a BOM Model into the CZ schema from Bills of Material
(Releases 10.7, 11.0, 11i, or 12) in another instance (remote server), you must explode the
BOM Model.

The following sections explain how to explode a BOM Model in different releases of
Oracle Applications.

Exploding a BOM Model in Release 12
To explode a BOM Model in Oracle Applications, Release 12:

1. Log in to Oracle Applications using the appropriate username and password.

2. Select the Order Management responsibility.

3. Select Orders, Returns > Sales Orders.

4. Enter all required data in the Main tabbed region.

5. Click the Line Items tabbed region.

Populating the CZ Schema 5-11

6. On the Order Line, select the root Model that you want to import into Oracle
Configurator from the Item list of values. This is the same Model that you select
when creating a new object in Oracle Configurator Developer or running the
Populate Configuration Models, page C-19 concurrent program in Oracle
Applications.

The BOM Model explosion process is called recursively for as many levels as
necessary in the root Model.

7. Enter 1 in the Qty field, then click Configurator.

8. After all the BOM Model's components are displayed, click Cancel to close the
Configurator page.

Exploding a BOM Model in Release 10.7 or 11.0
To explode a BOM Model in Oracle Applications, Release 10.7 or 11.0:

1. Log in to Oracle Applications using the appropriate username and password.

2. Select the Order Entry responsibility.

3. Navigate to the Sales Orders page, enter all required fields.

4. On the Order Line, select the Model that you want to import into Oracle
Configurator from the Item list of values. This is the same Model that you select
when creating a new object in Oracle Configurator Developer or running the
Populate Configuration Models, page C-19 concurrent program in Oracle
Applications.

5. Enter 1 in the Qty field, then click Configurator.

6. After all the BOM Model's components are displayed, select Cancel to close the
Configurator page.

7. Repeat steps 1 through 6 for each BOM Model that you want to import into the CZ
schema.

Controlling the Data for Import
Controlling data import involves identifying or customizing what data gets imported.

To do this you run concurrent programs to set the values in the CZ_XFR_ control tables
in the CZ schema that control import. See Control Tables, page 4-9 for more information
about the control tables. See Importing the Data, page 5-15 for information about
identifying what data gets imported.

5-12 Oracle Configurator Implementation Guide

Importing Data Into Specific Tables
When you import data, you must be aware of the dependencies between the import
tables. For more information, see Dependencies Among CZ Schema Import Tables, page
4-8.

You may want to specify only a group of tables from which extracted data is loaded
into the import tables. The CZ_XFR_TABLES.DISABLED field determines whether a
specific table is enabled or disabled for import.

For general information on running concurrent programs, see Running Configurator
Concurrent Programs, page B-2. For details on importing data into specific tables, see
Select Tables to be Imported, page C-42.

In Oracle Applications, you can also display the current tables to be imported by
selecting the concurrent program, Show Tables to be Imported, page C-44. For more
information, see Show Tables to be Imported, page C-44.

Importing Data from Specific Fields
You can customize which fields in the tables listed in CZ_XFR_TABLES are extracted
and imported. See the Oracle Integration Repository for more information about
CZ_XFR_TABLES and other control tables.

There is no concurrent program to complete this customization. Modification of specific
fields can only be accomplished by using SQL.

Populating Import Tables
The import tables below are listed in the order in which the concurrent programs and
SQL*Plus import procedures populate them. This order must not be modified.

• CZ_IMP_ITEM_TYPE

• CZ_IMP_PROPERTY

• CZ_IMP_ITEM_TYPE_PROPERTY

• CZ_IMP_ITEM_MASTER

• CZ_IMP_ITEM_PROPERTY_VALUE

• CZ_IMP_DEVL_PROJECT

• CZ_IMP_LOCALIZED_TEXTS

• CZ_IMP_PS_NODES

Populating the CZ Schema 5-13

Modifying EXPLOSION_TYPE
You can modify the CZ_XFR_PROJECT_BILLS.EXPLOSION_TYPE field for previously
imported bills to indicate how the BOM Model exploder should handle standard Items.
The possible values for this field are OPTIONAL (default), ALL, or INCLUDED. The
EXPLOSION_TYPE refers to whether the component is mandatory (ALL or
INCLUDED) or optional (OPTIONAL). See the Oracle Integration Repository for more
information about CZ_XFR_PROJECT_BILLS and other control tables.

Identifying a BOM Model for Import
CZ_XFR_PROJECT_BILLS.TOP_ITEM_ID is the Oracle Inventory identifier of the BOM
Model imported into the CZ schema. Every imported BOM Model must be represented
in CZ_XFR_PROJECT_BILLS.

The TOP_ITEM_ID and ORGANIZATION_ID for each imported BOM Model are read
from the CZ_XFR_PROJECT_BILLS table. The PS_NODE import updates the
CZ_XFR_PROJECT_BILLS table with the timestamp, ID, and description of the most
recent import.

The ORGANIZATION_ID also identifies which BOM Models are imported. Oracle
Configurator uses the ORGANIZATION_ID when adding a configured line Item in
Order Management. An order line is only valid if it contains the ORGANIZATION_ID
that corresponds to the ORGANIZATION_ID on BOM Model Items in Oracle
Applications.

For detailed information about the control tables, see the Oracle Integration Repository.

Importing Decimal or Integer Quantities
During import, CZ_PS_NODES.DECIMAL_QTY_FLAG is set to 1 if all of the following
conditions are true:

• The BOM Model component is a Standard Item
(CZ_IMP_PS_NODES.BOM_ITEM_TYPE=4 or
CZ_PS_NODES.PS_NODE_TYPE=438)

• The corresponding Oracle Inventory Item has
MTL_SYSTEM_ITEMS.INDIVISIBLE_FLAG='N' or 'NULL'

• The Model containing the Standard Item is an ATO Model (that is,
CZ_DEVL_PROJECTS.MODEL_TYPE='A')

• The profile option CZ: Populate Decimal Quantity Flags is set to 1 (Yes)

CZ_PS_NODES. DECIMAL_QTY_FLAG is set to false if the imported Model Item is an
Option Class, the Standard Item's parent is not an ATO Model, or the CZ: Populate
Decimal Quantity Flags is set to No. Only Standard Items within ATO BOM Models
support decimal quantities. Models, Option Classes and Standard Items within PTO

5-14 Oracle Configurator Implementation Guide

BOM Models do not support decimal quantities.

You can specify whether Items are imported as integers or decimals using the profile
option CZ: Populate Decimal Quantity Flags. The CZ: Populate Decimal Quantity Flags
profile option specifies whether and how the
MTL_SYSTEM_ITEMS.INDIVISIBLE_FLAG for an Item should determine the value of
the DECIMAL_QTY_FLAG column in both CZ_ITEM_MASTERS and CZ_PS_NODES.

• If the profile option is set to No, then import populates the DECIMAL_QTY_FLAG
column in both CZ_ITEM_MASTERS and CZ_PS_NODES with a value of 0.

• If the profile option is set to Yes, then the value of
MTL_SYSTEM_ITEMS.INDIVISIBLE_FLAG for an Item determines the value of the
DECIMAL_QTY_FLAG column in both CZ_ITEM_MASTERS and CZ_PS_NODES.

• If INDIVISIBLE_FLAG is 0 or NULL, then DECIMAL_QTY_FLAG in both
tables is set to 1, which means that decimal quantities are allowed.

• If INDIVISIBLE_FLAG is 1, then DECIMAL_QTY_FLAG in both tables is set to
0, which means that decimal quantities are not allowed. The minimum,
maximum, and quantity are rounded during import. If the result of the
rounding causes the minimum to be greater than the default or the maximum,
then an error is returned.

• If INDIVISIBLE_FLAG is 0 and a node cannot support decimal quantities based
on the new restrictions, then any decimal values that occur in a BOM Model are
rounded. This includes child Models and Option Classes within PTO Models.

If you change the profile option from No to Yes, then you must refresh all existing
Models so they reflect the decimal quantity setting for each Oracle Inventory Item. You
must also republish any existing publications.

For general information about using CZ: Populate Decimal Quantity Flags, see the
Oracle Configurator Installation Guide.

Warning: Not all Oracle Applications that are integrated with Oracle
Configurator support decimal quantities for BOM Model Standard
Items. Additionally, Oracle Configurator offers limited support for
using decimal quantities. See specific product documentation in
Applications Documentation, on the Oracle Technology Network to
find out whether an application supports decimal quantities.

See the Oracle Configurator Developer User's Guide for additional information on the
impact of decimal quantities on configuration models and rules. For information about
how decimal quantities affect the CIO, see the Oracle Configurator Extensions and Interface
Object Developer's Guide.

Populating the CZ Schema 5-15

Importing Minimum and Maximum Instances
The first time a BOM Model is imported, the minimum and maximum Instance setting
is 1. Subsequently, the BOM Model's minimum and maximum Instance may be changed
in Oracle Configurator Developer, but refreshing the BOM Model does not override the
minimum and maximum Instance values. The minimum and maximum Instance
settings can only be set on a referenced BOM Model, never on the root Model.
Refreshing the BOM Model does update the Quantity. See Refreshing Imported Data,
page 5-16 for more information on refreshing Model data.

Importing the Data
Data can be imported into the CZ schema by:

• Running the Populate and Refresh Configuration Models Concurrent Programs,
page C-18 in Oracle Applications. These concurrent programs import BOM Model
structure (ATO, PTO Models, structure and rules) and require that the BOM Models
be complete and identified at the specified root. For more information, see Populate
and Refresh Configuration Models Concurrent Programs, page C-18.

• Running the Import Configuration Rules, page C-23 concurrent program in Oracle
Applications. This concurrent program imports rules written in CDL format into
the CZ schema. For more information about rule import, see Rule Import, page 5-
21.

• Customizing your data import to run or suppress the transfer of some data. For
more information, see Controlling the Data for Import, page 5-11.

• Running the PL/SQL IMPORT_SINGLE_BILL, page 18-26 procedure. For more
information, see in Procedures and Functions in the CZ_modelOperations_pub
Package, page 18-11.

• Running the PL/SQL REFRESH_SINGLE_MODEL, page 18-32 procedure. For
more information, see Procedures and Functions in the CZ_modelOperations_pub
Package., page 18-11

If you are not importing from the same remote (import) server from which you
originally imported the BOM Models, then you must synchronize your BOM-based
configuration models with the BOM Models on the new import server. For more
information, see Synchronizing Data, page 7-1.

Imported BOM Models are read-only in Oracle Configurator Developer, although you
can add Properties, create additional Model structure, and define rules when defining
your BOM-based configuration model.

See Importing a BOM Model That Contains Other BOM Models, page 5-17 and the
Oracle Configurator Developer User's Guide for the specific results in Oracle Configurator
Developer when importing BOM Models.

5-16 Oracle Configurator Implementation Guide

Verifying the Data Import
After you import data into the CZ schema, view the Item Master and updated Model(s)
in Oracle Configurator Developer. All Items imported into the CZ schema are displayed
in the Oracle Configurator Developer Item Master. All imported CDL rules are
displayed in either the Model's Configuration Rules folder or the folder that you specify
in CZ_IMP_RULES.FOLDER_ID. All imported rules appear as Statement Rules.
Imported BOM rules as mentioned in Inventory and BOM Data That Can Be Imported,
page 5-6 do not appear in the Model's Configuration Rules folder. For more information
on importing rules, see Rule Import, page 5-21.

The status of the import can be determined by examining the DISPOSITION field in the
CZ_IMP tables. For more information about the DISPOSITION field see Import Control
Fields, page 4-4.

Refreshing Imported Data
When changes are made in a production instance, it is necessary that the Models in the
development instance be refreshed so that they reflect the changes. Refreshing
configuration models only refreshes the data on the development CZ schema (target
database instance).

Oracle Configurator's Refresh All Imported Configuration Models, page C-22
concurrent program updates all configuration models in the development CZ schema
with changes that have been made in the production CZ schema. When you refresh
BOM Models that have submodels, all changes that were made in the BOM Model and
its submodels are reflected in Oracle Configurator Developer.

The refresh concurrent programs ensure that existing production data, such as saved
configuration data, is preserved. The procedures that perform the refresh prevent
customer-specific groups of fields in the CZ schema from being altered or nulled out
even when other fields in the row are replaced during a refresh request. After the
Refresh All Imported Configuration Models, page C-22 or Refresh a Single
Configuration Model, page C-21 concurrent program is run, the Models must be
republished to the production CZ schema. See Publishing Configuration Models, page
16-1 and the Oracle Configurator Developer User's Guide for additional publishing
information.

Warning: If you are using a separate development database, then you
must never Generate Logic, Refresh or Create a User Interface, or run
any schema maintenance scripts against a production database. Never
use Oracle Configurator Developer for any development work on a
production database.

Refreshing Imported Data Recommendations
Oracle recommends that you limit changes to the source data during construction of a

Populating the CZ Schema 5-17

configuration model to avoid potential problems introduced by interim data imports
and updates. Oracle suggests that unit testing be completed before you import changes
from Oracle Applications or legacy data, so that the test cases are up-to-date with the
application that has been constructed. Your Model's full system testing should include
importing changed data and upgrading Oracle Configurator to match current
enterprise or legacy data before deploying the runtime Oracle Configurator. Test cases
may have to be updated to match the changes.

Although randomly updating imported data in the CZ schema during a development
phase is not recommended, Oracle recognizes that project managers may need to
synchronize with Oracle Applications data frequently. Refreshes and updates require
careful control of what data gets imported. Likewise, corrections to the definitions of
the configuration model in the runtime Oracle Configurator should be carefully
controlled. A refresh may cause deletion of previously imported data. For example, if
components are deleted from a BOM Model, they are also deleted from the
configuration model during the next refresh. If components are added to the BOM
Model, they are added to the configuration model during the next refresh. Oracle
Configurator's Disable/Enable Refresh of a Configuration Model, page C-23 concurrent
program can be used to reduce the number of Models affected by a refresh by disabling
or enabling specific configuration models. Oracle Configurator's Refresh a Single
Configuration Model, page C-21 concurrent program, updates the single imported
BOM Model data in the CZ schema with changes that may have been made in the BOM
Model.

Refreshing Procedures
If you are refreshing configuration models based on BOM Models that were previously
imported from Oracle Bills of Material, you must:

1. Ensure that the refresh of the configuration model is enabled (see Disable/Enable
Refresh of a Configuration Model, page C-23)

2. Explode the BOM Models you want to import if you are not importing from the
local server (see Exploding BOM Models in Oracle Applications, page 5-10)

3. Run the appropriate refresh concurrent program (see Refresh a Single
Configuration Model, page C-21 or Refresh All Imported Configuration Models,
page C-22)

After you refresh a BOM Model, all changes that were made in Oracle Bills of Material
are reflected in Oracle Configurator Developer. For more information see the Oracle
Configurator Developer User's Guide.

Importing a BOM Model that Contains Other BOM Models
This section describes what exists in the CZ schema and is visible in Configurator
Developer when you first import a BOM Model that contains other BOM Models from
Oracle Bills of Material.

5-18 Oracle Configurator Implementation Guide

Example: Importing a BOM Model that Contains Other BOM Models
A BOM Model (B1) contains two child BOM Models (B2 and B3). Importing B1 results
in three corresponding Models (M1, M2, and M3) in the CZ schema. All of these Models
are visible in the Main area of the Configurator Developer Repository. Because B2 and
B3 have child components in Oracle Bills of Material, M2 and M3 have corresponding
children in Configurator Developer. See Initial Import of BOM Model with Submodels,
page 5-18.

The Initial Import of BOM Model with Submodels, page 5-18diagram shows BOM
Model B1 with children BOM Models B2 and B3. BOM Model B2 has children C1 and
C2. BOM Model B3 has child C3. In Oracle Configurator Developer, Model M1 has
References to Model M2 and Model M3. In Configurator Developer, Model M2 has two
children, named C1 and C2. Model M3 has one child named C3.

Initial Import of BOM Model with Submodels

Refreshing a BOM Model that Contains Other BOM Models
This section explains what happens in Configurator Developer when you refresh a
BOM Model in which the following changes have been made in Oracle Bills of Material:

• BOM Model References Have Changed, page 5-19

• BOM Models Referenced by Previously Imported BOM Model Have Changed, page
5-19

Populating the CZ Schema 5-19

BOM Model References Have Changed
Replacing one child BOM Model for another in a BOM Model causes the root Model to
be refreshed as expected. However, the child Model that was previously referenced is
no longer referenced, but remains in the Configurator Developer Repository.

BOM Model B1 no longer references BOM Model B3, but now references BOM Model
B2 and a new BOM Model B4. B2 has been modified to contain C1 and C10 and no
longer contains C2. The new BOM Model B4 contains C5 and C6. When you populate or
refresh BOM Model B1 by running either the Populate Configuration Models, page C-
19 or Refresh a Single Configuration Model, page C-21 concurrent program, the
corresponding Models M1 and M2 are refreshed in Oracle Configurator Developer.
Model M4 is created to correspond to BOM Model B4 and Model M3 remains
unchanged. Populate and Refresh Modified BOM Model , page 5-19 illustrates this
result in Oracle Configurator Developer.

The Populate and Refresh Modified BOM Model , page 5-19 diagram shows BOM
Model B1 with children BOM Models B2 and B4. BOM Model B2 has child nodes C1
and C10. BOM Model B4 has child nodes C5 and C6. A refresh of the BOM Model B1 is
reflected in Oracle Configurator Developer with Model M1 referencing Models M2 and
M4. Model M2 is refreshed with child nodes C1 and C10. Model M3 is unchanged with
child node C3. Model M4 is created with child nodes C5 and C6.

Populate and Refresh Modified BOM Model

BOM Models Referenced by Previously Imported BOM Model Have Changed
Modifying and refreshing a child BOM Model that is referenced by numerous parent
Models in Oracle Configurator Developer may cause the logic and UI of those parent
Models to become invalid.

5-20 Oracle Configurator Implementation Guide

Using the example presented in Import a New BOM Model with References to Existing
BOM Models, page 5-20, you create BOM Model B6 in Oracle Bills of Material. BOM
Model B6 references BOM Models B2 and B3. When you import BOM Model B6 by
running the Populate Configuration Models, page C-19 concurrent program, a new
corresponding Model M6 appears in Oracle Configurator Developer as well as updated
versions of Models M2 and M3. Model M1 now references the updated Model M2.

The Import a New BOM Model with References to Existing BOM Models, page 5-20
diagram shows BOM Model B6 with two child BOM Models B2 and B3. BOM Model B2
now has 3 child nodes C1, C10, and C12. BOM Model B3 has one child node C3. In
Oracle Configurator Developer, Model M6 has references to Models M2 and M3. Oracle
Configurator Developer has Model M2 refreshed with child nodes C1, C10, and C12.
Model M3 is refreshed with child node C3. Model M1 is unchanged with references to
the new refreshed Model M2 and Model M4 is unchanged in Oracle Configurator
Developer.

Import a New BOM Model with References to Existing BOM Models

Models M1 and M6 both reference Model M2. When BOM Model B6 is imported into
the CZ Schema, Model M2 is refreshed with a new child node C12. Model M1 is not
refreshed. Importing Model M6 might create problems for Model M1 because the logic
and UI may no longer be valid with the changes and updates. In this case, you must
regenerate both the logic and the UI for Model M1.

If Model M1 was published before Model M2 was refreshed, then the runtime Oracle
Configurator end user can still use Model M1 that references the original Model M2, as
well as the publication of Model M6 that references the refreshed Model M2. This
scenario is possible because the publishing process creates a copy of the configuration
model at the time of publication.

For more information on publishing, see Publishing Configuration Models, page 16-1
and the Oracle Configurator Developer User's Guide.

Populating the CZ Schema 5-21

BOM Model with a Common Bill
When a BOM Model that references a common bill is imported into the CZ schema, the
imported BOM Model is available in the Main area of the Repository, but the common
bill is not. When the imported BOM Model is opened in Configurator Developer, the
components of the common bill appear as if the BOM was created with those
components. The common bill is only available to the organization that imported the
BOM Model. But when a common bill is imported directly (not as a reference), then the
common bill is available to all organizations.

When you open the imported BOM Model for editing in the Structure area of the
Workbench, the common bill's components are visible and available, but there are no
visual clues indicating that the components are from a common bill.

When a BOM Model with references to BOMs is imported, the import procedure warns
that a referenced BOM is being imported. When a BOM Model with references to a
common bill is imported, there is no warning that the referenced bill is a common bill.
For general information about common bills, see the Oracle Bills of Material User's Guide.

Rule Import
Configuration rules from legacy applications can be imported into the CZ schema.
Before these rules can be imported into the CZ schema, they must be written in
Constraint Definition Language (CDL) format. For information about writing rules in
CDL format, see the Oracle Configurator Constraint Definition Language Guide. Rule
Import Procedure, page 5-29 identifies the necessary tasks for importing these rules.

All rules imported in CDL format appear as Statement Rules in Oracle Configurator
Developer. For more information about Statement Rules, see the Oracle Configurator
Developer User's Guide.

Most types of rules can be written in CDL and imported into the CZ schema as
Statement Rules:

• Logic rules

• Numeric contribution and consumption rules

• Comparison rules

• Property-based Compatibility rules

You cannot write the following types of rules in CDL, and consequently you cannot
import them into the CZ schema as Statement Rules:

• Explicit Compatibility rules

• Design Charts

5-22 Oracle Configurator Implementation Guide

Note: Rules cannot be imported from a remote database. The source and
target tables must be in the same database instance.

Related Topics
Rule Import Procedure, page 5-29

Populating CZ_IMP_RULES
The following fields must be populated in the CZ_IMP_RULES table before you can run
the Import Configuration Rules, page C-23 concurrent program.

• ORIG_SYS_REF: A user-defined character string that identifies the rule as an
imported rule.

• NAME: The name of the rule with a maximum of 255 characters

• RULE_FOLDER_ID: A number that identifies where the rule information is stored
in CZ_RULE_FOLDERS. If this field is null, then the rule is stored in the Model's
Configuration Rules folder.

Once a rule is imported into the Model's Configuration Rules folder, you can move
the rule to another rule folder associated with the Model.

Note: If you move a rule to another rule folder, then you must
specify the RULE_FOLDER_ID when you refresh the rule. If you
do not specify the RULE_FOLDER_ID, then the refreshed rule will
be moved into the Model's Configuration Rules root folder.

• DEVL_PROJECT_ID: The numeric identifier of the Model that is associated with the
rule. This is a foreign key into CZ_DEVL_PROJECTS. DEVL_PROJECT_ID and
must be the same number as CZ_IMP_LOCALIZED_TEXTS.MODEL_ID.

• RULE_TEXT: The actual CDL rule text

• RULE_TYPE: The numeric identifier of the type of rule. The imported rule is a
Statement Rule and the RULE_TYPE is 200.

You should not populate the following fields in the CZ_IMP_RULES table:

• AMOUNT_ID

• ANTECEDENT_ID

• CHECKOUT_USER

Populating the CZ Schema 5-23

• CLASS_NAME

• COMPONENT_ID

• CONSEQUENT_ID

• CREATED_BY

• CREATION_DATE

• DISPOSITION - See Import Configuration Rules, page C-23 for additional
information

• EFF_FROM

• EFF_MASK

• EFF_TO

• EXPR_RULE_TYPE

• FSK_COMPONENT_ID

• FSK_DEVL_PROJECT

• FSK_LOCALIZED_TEXT_2

• FSK_MODEL_REF_EXPL_ID

• GRID_ID

• IMPORT_PROG_VERSION

• INSTANTIATION_SCOPE

• INVALID_FLAG

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

• MESSAGE

• MODEL_REF_EXPL_ID

• MUTABLE_FLAG

5-24 Oracle Configurator Implementation Guide

• PERSISTENT_RULE_ID

• PRESENTATION_FLAG

• REASON_ID

• REC_STATUS - See Import Configuration Rules, page C-23 for additional
information.

• RULE_FOLDER_TYPE

• RULE_ID

• SEEDED_FLAG

• SEQ_NBR

• SIGNATURE_ID

• SUB_CONS_ID

• TEMPLATE_PRIMATIVE_FLAG

• TEMPLATE_TOKEN

• UI_DEF_ID

• UI_PAGE_ID

• UI_PAGE_ELEMENT_ID

• UNSATISFIED_MSG_ID

For more information about the CZ_IMP_RULES table, see the Oracle Integration
Repository.

Related Topics
Rule Import Procedure, page 5-29

Populating CZ_IMP_LOCALIZED_TEXTS
Multiple Language Support data for rule violations and unsatisfied messages are stored
in the CZ_IMP_LOCALIZED_TEXTS table. A single rule may have several records in
the CZ_IMP_LOCALIZED_TEXTS table. If a rule has multiple translations, then there
must be a record in CZ_IMP_LOCALIZED_TEXTS for each translation. All translation
records for a single rule must have the same ORIG_SYS_REF.

For information on Multiple Language Support, see Multiple Language Support, page

Populating the CZ Schema 5-25

14-1, the Oracle Configurator Installation Guide, Oracle E-Business Suite Installation Guide:
Using Rapid Install, and Oracle E-Business Suite Concepts.

After you have created your CDL rule, you must populate the following fields in
CZ_IMP_LOCALIZED_TEXTS table before running the Import Configuration Rules,
page C-23 concurrent program.

• ORIG_SYS_REF: A user-defined character string that identifies the rule as an
imported rule.

• LANGUAGE: The language code that is associated with the rule.

• SOURCE_LANG: The language code of the LOCALIZED_STR field.

• MODEL_ID: The DEVL_PROJECT_ID of the Model associated with the rule. The
MODEl_ID must be the same number as CZ_IMP_RULES.DEVL_PROJECT_ID.

• LOCALIZED_STR: The rule's translated text.

You should not populate the following fields in the CZ_IMP_LOCALIZED_TEXTS
table:

• CHECKOUT_USER

• CREATED_BY

• CREATION_DATE

• DISPOSITION - See Import Configuration Rules, page C-23 for additional
information.

• EFF_FROM

• EFF_MASK

• EFF_TO

• INTL_TEXT_ID

• LAST_UPDATED_BY

• LAST_UPDATE_DATE

• LAST_UPDATE_LOGIN

• LOCALE_ID

• MESSAGE

5-26 Oracle Configurator Implementation Guide

• SEEDED_FLAG

• REC_STATUS - See Import Configuration Rules, page C-23 for additional
information.

• FSK_DEVL_PROJECT_1_1

• IMPORT_PROG_VERSION

For more information about the CZ_IMP_LOCALIZED_TEXTS and CZ_INTL_TEXTS
tables, see the Oracle Integration Repository.

Related Topics
Rule Import Procedure, page 5-29

Rule Import Tables
Every imported rule in CZ_IMP_RULES has a corresponding record in the
CZ_RULE_FOLDER. The imported rule is linked to the specified Model's
(DEVL_PROJECT_ID) Configuration Rules folder.

Tables for Importing Rules, page 5-27 describes the CZ tables that are used when
importing rules.

Populating the CZ Schema 5-27

Tables for Importing Rules

Table Name Description

CZ_IMP_RULES The source rule's data that is imported into the CZ_RULES in the
CZ schema. The following columns are used when importing
rules do not appear in the CZ schema:

• MESSAGE - Is the error message if a rule is rejected during
import. The rejection of a rule does not terminate the rule
import request. A rejected rule is imported into the CZ
schema.

• RUN_ID - Is theParameter for the Import Configuration
Rules Concurrent Program, page C-24. It is a generated
number when the RUN_ID is not specified.

• DISPOSITION - Is the result of processing the rule in the
stage specified in REC_STATUS. For more information, see
Stages of Rule Import , page 5-28.

• REC_STATUS - Is the stage that the rule has been processed.
For more information, see Stages of Rule Import , page 5-28
.

• IMPORT_PROG_VERSION - Is the version of the import
program that is used for importing data. The default value
is 1.0.

5-28 Oracle Configurator Implementation Guide

Table Name Description

CZ_IMP_LOCALIZED_TEX
TS

The rule's translation data that is imported into the CZ schema.
The following columns are used when importing rules and do
not appear in the CZ schema:

• MESSAGE - Is the error message if a rule is rejected during
import. The rejection of a rule does not terminate the rule
import request. A rejected rule is imported into the CZ
schema.

• RUN_ID - Is theParameter for the Import Configuration
Rules Concurrent Program, page C-24. It is a generated
number when the RUN_ID is not specified.

• DISPOSITION - Is the result of processing the rule in the
stage specified in REC_STATUS. For more information, see
Stages of Rule Import , page 5-28.

• REC_STATUS - Is the stage that the rule has been processed.
For more information, see Stages of Rule Import , page 5-28
.

• IMPORT_PROG_VERSION - Is the version of the import
program that is used for importing data. The default value
is 1.0.

Stages of Rule Import
Each rule goes through three processing stages before it is imported into the CZ
schema. The rule's processing stage is tracked in CZ_IMP_RULES.REC_STATUS and
CZ_IMP_LOCALIZED_TEXTS.REC_STATUS. The result of each processing stage is
tracked in CZ_IMP_RULES.DISPOSITION and
CZ_IMP_LOCALIZED_TEXTS.DISPOSITION. For more information about
REC_STATUS and DISPOSITION during rule import, see Import Control Fields, page
4-4.

After all rules have been processed, the rules that have REC_STATUS=XFR and
DISPOSITION = I or M are parsed.

Related Topics
Rule Import Procedure, page 5-29

Populating the CZ Schema 5-29

Rule Validation
During rule import, the following fields are checked. If the field meets the criteria stated
below, then an error message is stored in CZ_IMP_LOCALIZED_TEXTS.MESSAGE.

• CZ_IMP_LOCALIZED_TEXTS.ORIG_SYS_REF is null or belongs to a different
Model

• CZ_IMP_LOCALIZED_TEXTS.LANGUAGE is null

• CZ_IMP_LOCALIZED_TEXTS.MODEL_ID - is null or refers to an invalid Model.

• CZ_IMP_LOCALIZED_TEXTS.SOURCE_LANG is null

• CZ_IMP_RULES.ORIG_SYS_REF is null

• CZ_IMP_RULES.NAME is null

• CZ_IMP_RULES.MODEL_ID is null or refers to an invalid Model

Rule Import Procedure
Importing rules into the CZ schema consists of the following steps:

1. Write the rule in CDL format.

2. Verify that the Model associated with the rule exists in the CZ schema. Note the
Model's DEVL_PROJECT_ID. The DEVL_PROJECT_ID is used when you populate
the CZ_IMP_LOCALIZED_TEXTS and CZ_IMP_RULES tables.

3. Populate the CZ_IMP_RULES table. See Populating CZ_IMP_RULES, page 5-22 for
a list of fields that must be populated for each rule.

4. Populate the CZ_IMP_LOCALIZED_TEXTS table. See Populating
CZ_IMP_LOCALIZED_TEXTS , page 5-24 for a list of fields that must be populated
for each rule.

5. Run the Import Configuration Rules, page C-23 concurrent program.

The Import Configuration Rules, page C-23 concurrent program validates the rules
and stores the CDL format in the Rules subschema. Rule Validation, page 5-29 lists
the fields that are examined when validating a rule during rule import.

For more information about the concurrent program, see Import Configuration
Rules, page C-23.

6. Edit the rules that had parsing errors as reported in the concurrent program log file.

5-30 Oracle Configurator Implementation Guide

All rules processed by the Import Configuration Rules, page C-23 concurrent
program are imported into the CZ schema regardless of whether they have parsing
errors. Once the rules are in the CZ schema, they can be edited in Configurator
Developer or in the legacy environment and then refreshed.

Warning: If a rule is edited in both the legacy environment and the
Configurator Developer environment and you refresh the rule, then
the refreshed rule overwrites any changes that may have been
made to the rule in the Developer environment.

Custom Import
A custom import is required for importing data not handled by a standard import,
including legacy data from non-Oracle Applications databases. See Standard Import,
page 5-4 to determine whether your data requires a custom data import. This section
describes:

• Overview of Custom Data Import, page 5-30

• Identifying Data for a Custom Data Import , page 5-31

• Custom Import Procedure, page 5-34

• Required ASCII File Format for Custom Import, page 5-32

• Loading Property Values by Type, page 5-33

Overview of Custom Data Import
Both the standard and custom data import processes use the import tables in the CZ
schema to populate the online tables. However, while data extraction for a standard
import is handled by the Populate and Refresh Configuration Models Concurrent
Programs, page C-18, a custom import requires custom extraction, transfer, and load
into the import tables. Comparison of Custom and Standard Data Import, page 5-31
shows where in the process the two kinds of data import are different.

The Comparison of Custom and Standard Data Import, page 5-31 shows that when
doing a custom import, custom load programs load the data into the CZ schema import
tables and then the data is imported into the CZ schema online tables. Importing from
Oracle Applications the data from Inventory and BOM schemas is copied to the CZ
import and online schemas.

This figure also shows the comparison of the custom import processes and the
processes when importing a BOM Model from the Oracle Applications.

Populating the CZ Schema 5-31

Comparison of Custom and Standard Data Import

When importing data not handled by a standard import, especially non-Oracle legacy
data, the data must be custom loaded into the import tables. Custom programs then
populate the online tables with the extracted data. The data that is imported depends on
the settings in the control tables (CZ_XFR_ tables in the CZ schema) and the custom
load program, if applicable. See Custom Import Procedure, page 5-34 for information
about performing a custom import.

After successfully importing any legacy data needed for modeling new configurations,
Oracle recommends that you unit test your configuration model before transferring
new or updated model data. Unit testing configuration models is performed in the
Oracle Configurator Developer. See the Oracle Configurator Developer User's Guide for
more information.

Identifying Data for a Custom Data Import
The following tables can be populated through a custom import:

• CZ_DEVL_PROJECTS

• CZ_INTL_TEXTS

• CZ_ITEM_MASTERS

5-32 Oracle Configurator Implementation Guide

• CZ_ITEM_PROPERTY_VALUES

• CZ_ITEM_TYPES

• CZ_ITEM_TYPE_PROPERTIES

• CZ_LOCALIZED_TEXTS

• CZ_PROPERTIES

• CZ_PS_NODES

Minimally, the following tables are used for custom import and should be selected
when you run the Select Tables To Be Imported concurrent program:

• CZ_ITEM_MASTERS

• CZ_ITEM_TYPES

• CZ_ITEM_TYPE_PROPERTIES

• CZ_ITEM_PROPERTY_VALUES

• CZ_PROPERTIES

To know what data to extract for populating the import tables, you need to know what
fields are available in the import tables for data population. See the Oracle Integration
Repository, for detailed information about all import table fields. See also Dependencies
Among CZ Schema Import Tables, page 4-8, for information about the dependencies
among the import tables.

As with a standard data import, you can further control the data populating the online
tables by using the control tables (CZ_XFR_). See Controlling the Data for Import, page
5-11 for details.

Custom import programs should consider the setting of QUOTEABLE_FLAG in the
CZ_PS_NODES table. This flag determines whether or not the OC Servlet's UI Server
displays a particular Item in the Configuration Summary page. For more information
about the Summary page see the Oracle Configurator Developer User's Guide.

Required ASCII File Format for Custom Import
The format of the data transfer files must exactly match the target import tables, field
for field. The data transfer files include all data in text (ASCII) format, with fields
separated by delimiters such as a vertical bar (│).

Data Transfer File Format, page 5-33 shows a data transfer file that imports Item types.

Populating the CZ Schema 5-33

Data Transfer File Format
││Memory Board│││││││││││││││││││
││Dual CPU│││││││││││││││││││
││Country│││││││││││││││││││
││System Console│││││││││││││││││││
││Server Console│││││││││││││││││││
││Disk Drive│││││││││││││││││││
││Storage Media│││││││││││││││││││
││Server Size│││││││││││││││││││
││Power Supply│││││││││││││││││││
││Matrix Printer│││││││││││││││││││
││SCSI Disk Drive│││││││││││││││││││
││Cache Memory│││││││││││││││││││
││Disk Array Model│││││││││││││││││││
││SCSI Type│││││││││││││││││││
││SCSI Cable│││││││││││││││││││
││SCSI Chaining│││││││││││││││││││
││SCSI Cabling Configuration│││││││││││││││││││
││Server Type│││││││││││││││││││
││System Size│││││││││││││││││││

Loading Property Values by Type
When preparing source data for custom import, your custom load programs should
place Property data values into the import tables according to their data type. The
CZ_IMP tables provide separate columns for numeric and non-numeric Property
values, and for default values.

The table Columns for Imported Property Values, page 5-33 shows which column to
load Property values into, depending on the data type of the value.

Columns for Imported Property Values

Data Type If
CZ_IMP_PRO
PERTY.DATA
_TYPE is...

Load default Property
value into
CZ_IMP_PROPERTY
column ...

Load value on the Item
into
CZ_IMP_ITEM_PROPERTY
_VALUE column ...

integer 1 DEF_NUM_VALUE PROPERTY_NUM_VALUE

decimal 2 DEF_NUM_VALUE PROPERTY_NUM_VALUE

Boolean
(values are 0
or 1)

3 DEF_NUM_VALUE PROPERTY_NUM_VALUE

text 4 DEF_VALUE PROPERTY_VALUE

5-34 Oracle Configurator Implementation Guide

Custom Import Procedure
To import data that is not handled by a standard import:

1. Identify and cleanse data for import.

2. Create and run custom extraction programs for the data you want to import.

Creating a custom extraction program
1. Write queries to extract the data into the required data transfer file format

required by the import tables.

2. Optionally create an ASCII file in that data transfer (DAT) format (see Required
ASCII File Format for Custom Import, page 5-32).

3. Write a load program that loads the data transfer file into the import tables, or
loads the queried data directly into the import tables in the format required.

3. Optionally set up the CZ control tables to customize the transfer of data (see
Controlling the Data for Import, page 5-11).

4. Run the cz_modeloperations_pub.import_generic PL/SQL procedure. For more
information see IMPORT_GENERIC, page 18-27.

5. Verify your import as described in Verifying the Data Import, page 5-16.

Migrating Data 6-1

6
Migrating Data

This chapter describes how to migrate a CZ Release 12 instance into an empty CZ
instance, and how to migrate Model data from one instance to another development
instance.

This chapter covers the following topics:

• Introduction

• Migrating Data from a CZ Schema

• Migrating Models

Introduction
Migrating data is the process of copying data from one database instance to another
database instance. You can migrate data from a CZ schema to another, empty CZ
schema, or migrate Models from one development instance to another. The latter
process is explained in Migrating Models, page 6-3.

The process of migrating data from a CZ schema should only be run against a target
database containing a new installation of Oracle Applications, and both the source
target and database instances must have the same schema version.

Migrating data from a CZ schema does not:

• Transfer data from the CZ_IMP_ tables

• Transfer data from custom tables that are not in the CZ schema

• Transfer saved configurations

Migrating saved configurations is not recommended because it typically involves a
very large amount of data.

Warning: Data migration is a one-time process. Once migration is

6-2 Oracle Configurator Implementation Guide

complete, do not repeat the process or use the migration concurrent
programs to refresh data in the Oracle Applications database.

Migrating Data from a CZ Schema
To migrate an Oracle Configurator Release 12 schema:

1. Check the versions of the Oracle Configurator Release 12 source and target database
schemas.

Both the source and the target must be at the same minor version. If there is a
difference between the two database schema versions, then migration cannot
continue. You must take appropriate steps, such as upgrading, to bring either the
source database instance or the target database instance to the desired version.

See Verifying CZ Schema Version, page B-3 for details.

2. Verify that there are no implementors logged in to Configurator Developer that is
connected to the either the migration source or target database instances.

3. Verify that there are no end users connected to either the migration source or target
database instances, including production deployments or a test runtime Oracle
Configurator.

4. Delete Models from the Oracle Configurator Developer Repository that do not need
to be migrated into the target database schema.

5. Run the Purge Configurator Tables, page C-4 concurrent programs to clean up the
source schema prior to migrating the data. For more information see Purge
Configurator Tables, page C-4.

6. Verify that the target CZ schema is empty before you run the Setup Configurator
Data Migration, page C-30 concurrent program on the target database instance.

Note: An "empty" schema means a new Oracle Applications
installation that contains no data. If you must remove data from an
existing instance and use it as a target of data migration, then
contact Oracle Support Services for assistance.

7. Run the Migrate Configurator Data, page C-32 concurrent program from the target
database instance. For more information, including possible issues recorded in the
log file, see Migrate Configurator Data, page C-32.

8. Resolve all issues or errors that are reported in the log file.

Migrating Data 6-3

9. Verify that the Import Enabled flag on the source database instance is enabled. For
more information, see Enable Remote Server, page C-12.

10. If you will be importing BOM Model data to the target instance from a different
server from which you migrated the data, then run the Synchronize All Models,
page C-27 concurrent program on the target instance.

For example, your import source is DB-X and you import BOM Model data from
DB-X to DB-1. You then migrate data from DB-1 to DB-2. If you will be importing
data to DB-2 from any database other than DB-X, then you must run the
Synchronize All Models program on DB-2.

For more information on BOM Model synchronization, see The BOM Model
Synchronization Process, page 7-2.

Migrating Models
Migrating models is the process of copying configuration model data from one instance
(the source) into another development instance (the target). Imported BOM Models and
Models created in Configurator Developer can be migrated, and you can migrate one or
multiple Models at the same time. After the migration process completes successfully,
you can view and modify the migrated Models in Oracle Configurator Developer on the
target instance.

Note: Do not confuse Model migration with data migration. Data
migration refers to migrating the entire CZ schema into an empty
database instance, whereas Model migration refers to migrating specific
Models and their structure, rules, and UIs to another database instance.

When you migrate a Model for the first time, it creates a Model with the same name on
the target instance. If you migrate the same Model again, a new copy is created on the
target, and its default name is "Model Name (Migrated from source DB name: Repository
Folder path." Any subsequent migration of the Model creates Models called "Model Name
(Migrated from source DB name: Repository Folder path copy x)." Migrating a Model
creates a copy of that Model on the target instance, regardless of whether the Model has
changed on the source instance. For details about how the migration process handles
referenced Models, see Migrating Referenced Models, page 6-5.

To migrate a Model, the target database instance must be a development instance (it
cannot be a publication target), and both the source and target instances must have the
same schema version.

The following objects that are part of or are associated with the selected Model are
copied to the target instance:

• Model structure

6-4 Oracle Configurator Implementation Guide

• Rules

• User Interfaces

• Referenced and connected Models

• UI Templates

• Usages

• Effectivity Sets

• Configurator Extension Archives

• Populators and Item Master data

• Properties

For details about data synchronization criteria and a list of what is not copied during
migration, see Synchronizing Migrated Model Data, page 6-8.

Migrating Models is a two step process:

1. In Configurator Developer, specify which Models you want to migrate.

For details, see the Oracle Configurator Developer User's Guide.

2. Run the Migrate Models concurrent program.

See Migrate Models, page C-38.

These steps can be performed only by the Oracle Configurator Administrator.

Note: A Model's compiled logic is not migrated to the target instance.
After migrating a Model, you must open the Model for editing in
Configurator Developer on the target instance and generate logic.
Additionally, you may need to update saved configurations of the
migrated Model so they can be restored successfully. For details, see
Restoring Saved Configurations of Migrated Models, page 6-7.

Model Migration Examples
The following examples show possible scenarios in which it may be useful or necessary
to migrate Models. It should be noted however that these examples are not intended to
show best practices or a recommended way of building and maintaining configuration
models.

The illustration Migrating Models Serially, page 6-5 shows the migration of a Model
across several development instances before being migrated to the production instance.
In this scenario, each development instance is used to develop a specific area of the
Model, such as Model structure in Instance 1, rules in Instance 2, and UIs in Instance 3.

Migrating Data 6-5

After unit and system testing is complete, the final version of the Model (A2) in Instance
3 is published to the Production instance.

Migrating Models Serially

The illustration Migrating Models from Multiple Development Instances, page 6-5
shows the migration of a Model from several development instances to a single test
instance, before publishing to a production instance. In this scenario, several different
areas of a Model are developed in isolation in separate development instances and then
the Models are migrated and synchronized in the test instance before being published
to the production instance.

Migrating Models from Multiple Development Instances

A configuration model that has been published can be migrated into another
development instance for additional modification without affecting the published
Model.

Migrating Referenced Models
The Migrate Models concurrent program detects whether the root Model (parent) or
one of its referenced (child) Models has been previously migrated to the target instance,
and whether the child Model has changed on either the source or target since the last
migration.

If you migrate a Model that references a previously migrated Model, and the child
Model has not changed on the source instance, then the migrated parent refers to the
existing child on the target instance. If the child Model has changed on either the source
or the target instance since the last migration, then a new copy of that Model is created
on the target instance. If the child Model does not yet exist on the target, then it is

6-6 Oracle Configurator Implementation Guide

migrated (for example, a new reference was created in the parent Model on the source
instance).

The illustration Migration of Referenced Models, page 6-7 shows examples of Models
with referenced Models that are migrated to another instance. When Model A is
migrated, copies of both Model A and its child Model B are created on the target
instance. You then migrate Model C, which also references Model B. Model B has not
changed since the last migration, so the copy of Model C references the existing copy of
Model B on the target.

Model B is then modified on the source instance (for example, new Model structure is
added), so when you remigrate Model A, a new copy of both Model A and its child
Model B are created. Model B is modified again on the source, so when you remigrate
Model C, new copies of both Model C and its child Model B are created on the target.

The migration process does not create a new copy of a referenced Model if only the
Model's name has changed.

Migrating Data 6-7

Migration of Referenced Models

Restoring Saved Configurations of Migrated Models
It is possible for the process of migrating Models to create a situation in which the
persistent node identifier (persistent_node_id) that Oracle Configurator uses internally
to identify configuration nodes are not able to uniquely identify Model nodes when
restoring a saved configuration. This can occur when, for example, a pre-Release 12
instance that contains saved configurations is upgraded to Release 12 or later. In Release

6-8 Oracle Configurator Implementation Guide

12 and later, saved configurations store both node names and a persistent node ID.

The following concurrent programs add Model node names to saved configurations
and enable Oracle Configurator restore them successfully:

• Add Model Node Names to Configurations by Model Items, page C-35

• Add Model Node Names to Configurations by Product Key, page C-37

You must run one of these concurrent programs on a migration target instance if all of
the following are true:

• The instance was upgraded to Release 12 (or later) from a prior release

• You intend to publish Models from the instance

• You want to be able to restore configurations of published migrated Models on the
instance

Synchronizing Migrated Model Data
When synchronizing Model data, the Migrate Models concurrent program matches the
source configuration model's internal keys that refer to BOM and Inventory data with
comparable data on the target instance. The data are comparable when the Item and
Inventory Organization names of the data being migrated match data of the same type
on the target instance. All of the migrated BOM Model's referenced Models are also
synchronized with comparable BOM Models on the target instance. For more
information, see Migrating Referenced Models, page 6-5.

After the synchronization completes successfully, the Item IDs for the migrated BOM
Model reflect the IDs on the target instance. If the name or structure of the BOM Items
on the source and target instances is different, then the migration fails. For more
information, see Result of Synchronizing BOM Models, page 7-6.

During Model migration, the following occurs:

• Populators that reference Item Master data such as Item IDs, Property IDs, and/or
Item-Type IDs, are changed to reference the migrated data. However, Populators
that match Item Master data by name are not changed during migration.

• Item Master data that exists in the source but not in the target is migrated. This
includes missing items, values, and assignments. Existing Item data on the target
instance is not changed. The migration process never overwrites or modifies any
existing data on the target instance.

• Repository objects such as Usages, Properties, and Effectivity Sets that exist in the
source but not in the target are migrated.

Because multiple Models may refer to the same Repository object, creating multiple
copies of that object on the target instance is both unnecessary and undesirable.

Migrating Data 6-9

Therefore, synchronization that occurs during Model migration redirects any
references to Repository objects on the source instance to equivalent Repository
objects on the target instance.

The log file that is created when you run the Migrate Models concurrent program
describes the results of the migration. An example of this file is shown below.

Example of a Log File Generated by the Migrate Models Concurrent Program
Item 'SMX_1 Model' already exists on the migration target instance. All
migration objects in the migration target instance that reference 'SMX_1
Model', will be changed to use the Item.
.
.
.
The Effectivity Set for rule 'LR-O11 R O21' already exists in the
migration target instance. Rule 'LR-O11 R O21' is part of the Rule
Sequence 'RS'. All rules in Rule Sequence 'RS' will be changed to 'Never
Effective'.
.
.
.
Effectivity Set 'Eff - Delete 1' already exists on the migration target
instance. All migration objects in the migration target instance that
reference 'Eff - Delete 1', will be changed to use the Effectivity Set.

To view this log file, click View Log from the Requests page after the Migrate Models
concurrent program completes successfully.

For more information, see Synchronization Criteria During Model Migration, page 6-9
.

Synchronization Criteria During Model Migration
The following table provides the synchronization criteria for the different types of
Configurator data that is not Model-specific. The columns include Object Type,
Matching Criteria, Synchronization Condition, and Result.

Object Type is the data that is migrated and used to match the comparable Model's
object. Matching Criteria is the specified Object type's data that is used for matching.
Synchronization Condition is the condition that must exist for the object to pass
synchronization. The Result column indicates the end result of the migration based on
the synchronization condition.

Object Type Matching Criteria Synchronization
Condition

Result

Property Property Name,
src_application_id

Data Type and default
value are the same

Migrated Model is
changed to reflect
existing data on
the target instance

6-10 Oracle Configurator Implementation Guide

Object Type Matching Criteria Synchronization
Condition

Result

Data Type is the same,
Property default value is
different

Default Property
value on the
migrated Model
will be different
than on the source
Model

Data Type is different Migration fails

Item Type Item Type Name,
src_application_id

Item Type Name and
Properties are the same

Migrated Model is
changed to reflect
existing Item Type
on the target
instance

Additional Properties
exist on the Item Type in
the target instance

Migrated Model
acquires any
additional
Properties on
nodes that are
associated with
that Item Type

 Source Item Type has
additional properties

Migration fails

Item Item name (ref_part_nbr),
src_application_id

Item Type Name and
Item Property values are
the same

Migrated Model is
changed to refer to
existing Item on
the target instance

Item Type is the same,
but Item Property values
are different

Migrated Model is
changed to refer to
existing Item Type
on the target
instance, property
values remain
unchanged on
target

Item Type does not match Migration fails

Migrating Data 6-11

Object Type Matching Criteria Synchronization
Condition

Result

UI Content
Template

UI_DEF_ID = 0,
TEMPLATE USAGE = '0',
Template Name

TEMPLATE TYPE,
MESSAGE_TYPE,
ROOT_ELEMENT_TYPE,
MAIN_MESSAGE_ ID,
PARENT CONTAINER
TYPE, ROOT ELEMENT
SIGNATURE ID, and
ROOT_REGION_TYPE
are the same

Migrated Model is
changed to refer to
existing UI
Content Template
on the target
instance

TEMPLATE TYPE,
MESSAGE_TYPE are the
same, but
ROOT_ELEMENT_TYPE,
MAIN_ MESSAGE_ ID,
PARENT CONTAINER
TYPE, ROOT ELEMENT
SIGNATURE ID, or
ROOT_REGION_ TYPE
are different

Migration fails

Mismatch on TEMPLATE
TYPE or
MESSAGE_TYPE

The template is
migrated to the
target instance, it
is renamed (if a
Template with the
same name exists
on the target),
Template
references are
changed to reflect
the change, and a
warning message
is displayed.

UI Master
Template

Name, UI_DEF_ID = 0 (no conditions) Migrated Model
UIs always acquire
the target's Master
Template's
characteristics

6-12 Oracle Configurator Implementation Guide

Object Type Matching Criteria Synchronization
Condition

Result

Effectivity Set Name (no conditions) The Migrated
Model acquires the
settings of the
matching
Effectivity Set on
the target (see
Migrating
Effectivity Sets
Used in Rule
Sequences, page 6-
13))

Usage Name Usage Name is the same Update to indicate
the ID of the Usage
on the target

Name does not match
and there are less than 64
active Usages on the
target

Usage is migrated

Name does not match
and there are 64 active
Usages on the target

Migration fails

Archive (for
Configurator
Extensions)

Archive_name (no conditions) Migrated Model
uses the target's
existing Archive

Populator Item ID, Property ID,
Item Type ID

(no conditions) If the Populator
references Item
Master data by ID
(Item ID, Property
ID, or Item Type
ID) then it is
changed to
reference the data
on the target. If the
Populators match
Item Master data
by name, then the
Populator is not
changed.

Migrating Data 6-13

Object Type Matching Criteria Synchronization
Condition

Result

BOM Import
Source

Import server on source
and target instances

The source BOM Model's
import source does not
match the target BOM
Model's import source

The BOM Model's
import source is
changed to reflect
the import source
for the target

Migrating Effectivity Sets Used in Rule Sequences
When you migrate a Model, all of the Model's Rule Sequences are also migrated to the
target instance. If any of the rules in a Rule Sequence refer to an Effectivity Set that
exists on the target instance, all of the rules in the Rule Sequence will be set to 'Never
Effective' after the migration is complete. (This change will be listed in the Migrate
Models concurrent program log file. For details, see Synchronizing Migrated Model
Data, page 6-8). You may want to modify the Rule Sequence on the target instance and
specify new effectivity dates for each rule in the set.

If a rule refers to an Effectivity Set that exists on the target, and the rule is not part of a
Rule Sequence, then the rule refers to the Effectivity Set on the target after the model is
migrated.

Synchronizing Data 7-1

7
Synchronizing Data

This chapter describes when and how data is synchronized. This includes
synchronizing BOM data after the import server has changed and synchronizing
publication data after a database has been cloned.

This chapter covers the following topics:

• Overview

• Introduction

• Synchronizing BOM Model Data

• Synchronizing Publication Data

Overview
This chapter describes when and how data is synchronized. This includes
synchronizing BOM data after the import server has changed and synchronizing
publication data after a database has been cloned. This chapter explains how to restore
the identity and linkage of mismatched data by:

• Synchronizing BOM Model Data, page 7-2

• Synchronizing Publication Data, page 7-6

Introduction
The kinds of data and circumstances requiring synchronization are:

• BOM Models

• The import server has changed to a different database instance (for example,
you previously imported BOM data from instance A, but you now import BOM
data from instance B)

7-2 Oracle Configurator Implementation Guide

• The production database instance is not the import server

• The import source or import target data has been migrated to another database
instance

• Configuration model publication records

• The Publication source or target database instance has been cloned

• Publication data has been migrated to another database instance

Publication synchronization must be run after BOM Model synchronization only when
data is migrated from one database instance to another. In all other scenarios, the two
kinds of synchronization are independent from one another. For more information on
migration, see Migrating Data, page 6-1.

For information about synchronizing BOM Model data, see Synchronizing BOM Model
Data, page 7-2.

For information about synchronizing publication records on cloned database instances,
see Synchronizing Publication Data after a Database Instance is Cloned, page 7-7.

Synchronizing BOM Model Data
The configuration model in the CZ schema is an extension of the source BOM Model
that participates in Oracle Applications processes such as ordering. For a BOM Model to
be orderable, the BOM Model in the CZ schema must match certain criteria with the
BOM Model in Oracle Bills of Material. Synchronization causes the BOM-based
configuration model in the CZ schema to be modified to match the production BOM
Model.

Data synchronization is not the same as data refresh (see Refreshing Imported Data,
page 5-16).

The concurrent programs for synchronizing BOM Model data are described in Model
Synchronization Concurrent Programs, page C-25.

The BOM Model Synchronization Process
The process for synchronizing BOM Model data is as follows:

1. Check the similarity between the production BOM Model you wish to use as the
new import source or publication target, and the BOM Model represented in your
configuration model.

For more information, see Checking BOM and Model Similarity, page 7-3.

2. Synchronize the BOM Model in the configuration model with the source BOM
Model by running the Synchronize All Models concurrent program. For more

Synchronizing Data 7-3

information, see Result of Synchronizing BOM Models, page 7-6.

3. After synchronizing the BOM-based configuration model with the source BOM
Model, you can proceed with any of the following:

• Reimport or refresh the BOM Model in the CZ schema (see Populating the CZ
Schema, page 5-1)

• Publish the configuration model (see Publishing Configuration Models, page
16-1)

Running the publication concurrent programs includes BOM Model
synchronization. For details, see Publishing a Configuration Model, page 16-10.

Checking BOM and Model Similarity
The two concurrent programs available for checking if the BOM Model in the CZ
schema sufficiently matches the source BOM Model are:

• Check Model/Bill Similarity

• Check All Models/Bills Similarity

For details about these concurrent programs, see Check Model/Bill Similarity, page C-
25 and Check All Models/Bills Similarity, page C-27.

Running the Check Model/Bill Similarity and Check All Models/Bills Similarity
concurrent programs creates a Check Model/Bill Similarity report, which describes the
fields that do not match and must be corrected before synchronization can occur. For
more information, see Criteria for BOM Model Similarity, page 7-3. For more
information about the report, see Model/Bill Similarity Check Report, page C-28.

Criteria for BOM Model Similarity
The Check Model/Bill Similarity, page C-25 and Check All Models/Bills Similarity,
page C-27 concurrent programs use validation criteria to determine if a BOM-based
configuration model is similar enough to be synchronized with the source BOM Model:

• Both structures use the same Inventory Items. For example: The bill's Item identity
is identified by the concatenated values of segments 1 through 20 in
MTL_SYSTEM_ITEMS of the corresponding Item. CZ_PS_NODES are identified by
the corresponding value of CZ_ITEM_MASTERS.REF_PART_NBR.

• Parent-child relationships are the same in the source and target BOM Models. For
example, each imported parent node has the same imported children Items as in the
BOM Model structure. The order of the children may be different.

• Certain Item characteristics are the same. For example, the value of minimum or

7-4 Oracle Configurator Implementation Guide

maximum default quantities, or the 'Required when parent is selected' Property are
the same.

• A child's effectivity range does not fall outside the effectivity range of its parent.

• If there is only one child node with the given identity
(CONCATENATED_SEGMENTS), then its disable date (effective to date)
should be the same as the parent node and the effective dates (effective from
date) should either be before SYSDATE or be the same for the child node and
the parent.

• If there is more than one child node with the given identity
(CONCATENATED_SEGMENTS), then the previous scenario is only valid for
the child node that has the earliest effective date. For the other child nodes the
ranges should be exactly the same.

• When creating a BOM Model through an interface, records may not be recognized
by Oracle Configurator during the synchronization process if the
BOM_INVENTORY_COMPONENTS.IMPLEMENTATION_DATE field is null. If
this field is null, then it is automatically populated with either the
EFFECTIVITY_DATE or the SYSDATE.

Fields That Must Be Synchronized , page 7-4 lists the configuration model's data fields
that must be synchronized with the import source BOM Model or publication target.

The following table lists the appropriate table for synchronization and the fields that are
synchronized for import.

Fields That Must Be Synchronized

Table Field Import Publication

CZ_DEVL_PROJECTS ORIG_SYS_REF includes back
pointers to
EXPLOSION_TYPE:ORGANIZA
TION_ID:TOP_ITEM_ID

Yes Yes

CZ_ITEM_MASTERS ORIG_SYS_REF includes back
pointers to
INVENTORY_ITEM_ID:ORGA
NIZATION_ID

Yes Yes

CZ_ITEM_TYPES ORIG_SYS_REF includes back
pointers to
ITEM_CATALOG_GROUP_ID

Yes Yes

Synchronizing Data 7-5

Table Field Import Publication

CZ_LOCALIZED_TEXTS ORIG_SYS_REF includes back
pointers to
COMPONENT_ITEM_ID:EXPL
OSION_TYPE:ORGANIZATIO
N_ID

Yes No

CZ_MODEL_PUBLICATIO
NS

PRODUCT_KEY includes back
pointers to
ORGANIZATION_ID:TOP_ITE
M_ID

Yes Yes

ORGANIZATION_ID Yes Yes

TOP_ITEM_ID Yes Yes

CZ_PS_NODES ORIG_SYS_REF includes back
pointers to
COMPONENT_CODE:EXPLOSI
ON_TYPE:ORGANIZATION_I
D:TOP_ITEM_ID

Yes Yes

COMPONENT_SEQUENCE_PA
TH

Yes Yes

 COMPONENT_SEQUENCE_ID Yes Yes

CZ_XFR_PROJECT_BILLS ORGANIZATION_ID Yes No

TOP_ITEM_ID Yes No

COMPONENT_ITEM_ID Yes No

SOURCE_SERVER Yes No

Organization information is mapped by matching
ORG_ORGANIZATION_DEFINITIONS.ORGANIZATION_CODE. If the matching
Organization is not found, then an error occurs.

Note: It is important that the Item flexfield structure and the
concatenation characters for the Item flexfield be the same on all
database instances and not updated.

7-6 Oracle Configurator Implementation Guide

BOM Model synchronization checks the Models that are candidates for synchronization
but results in an error if a Model does not have an EXPLOSION_TYPE of OPTIONAL.
See Modifying EXPLOSION_TYPE, page 5-13 for more information about the
EXPLOSION_TYPE setting. BOM Model synchronization does not check the mandatory
fields.

Result of Synchronizing BOM Models
After determining that the source BOM Model and the BOM-based configuration model
are sufficiently similar, based on the report generated by the Check Model/Bill
Similarity, page C-25 and Check All Models/Bills Similarity, page C-27 concurrent
programs, the BOM Models can be synchronized either by running the Synchronize All
Models, page C-27 or the publication concurrent programs.

Attempting to synchronize mismatched BOM Models results in errors.

BOM synchronization causes the Item identification in the BOM-based configuration
model to be matched with the import source or publication target BOM Model. During
data import, the CZ schema is populated with the source BOM Model's ORIG_SYS_REF
identification. However, the same BOM Model in Bills of Material of two different
database instances may have different ORIG_SYS_REF identification.

If the database instance from which the BOM Model was imported into the CZ schema
is replaced with a new instance containing the same BOM Model, it is likely that the
ORIG_SYS_REF identification longer will no longer match the original source BOM
Model. Likewise, if the configuration model is being published to an instance that did
not serve as the import server, the ORIG_SYS_REF identification may not match the
source BOM Model.

Because CZ_ITEM_TYPE_PROPERTIES and CZ_ITEM_PROPERTY_VALUES do not
have the ORIG_SYS_REF field, there is no way for the Check Model/Bill Similarity, page
C-25 and Check All Models/Bills Similarity, page C-27 concurrent programs to verify
that the imported Properties and Property values correspond to the Descriptive
Elements and their values on the target instance. Runtime Models use the imported
Property values. You must manually verify that the Descriptive Elements and their
values are the same on both the source and target of the BOM Model synchronization.

Synchronizing Publication Data
Publication data can become inconsistent when you

• Clone a publication source or target database instance

• Migrate data from one database instance to another

• Decommission the production or target database instance

After changing databases in these ways, you must synchronize the publication data so
that inconsistencies are corrected. Examples of data inconsistencies are:

Synchronizing Data 7-7

• Missing publications

• Incorrect publications

• Overlapping publications

• Missing or incorrect entries in the CZ_SERVERS table

The concurrent programs for synchronizing publication data are described in
Publication Synchronization Concurrent Programs, page C-40.

See Publishing Configuration Models, page 16-1 for details about creating
publications, and about the relationship between the publication data on the source and
target database instances.

Synchronizing Publication Data after a Database Instance is Cloned
Cloning can be done into a new empty database instance or into one that already
contains work product data. In either case, the cloned database contains a copy of the
original data, but publication data becomes inconsistent in the following ways.

• References between the source and target publications can become lost or incorrect

• Applicability parameters of publication records on the source and target can
overlap

Publication data inconsistencies need to be resolved by updating data on both the
cloned and the publication source or on the target that was not cloned. The following
publication synchronization concurrent programs are available after cloning either a
target or source database instance:

• Synchronize Cloned Target Data, page C-40 synchronizes the publication data in
the new cloned target database with the publication data on the source database.

• Synchronize Cloned Source Data, page C-41 synchronizes the publication data in
the new cloned source database with the publication data on the target database.

See Example of Synchronizing Publication Data on a Cloned Target, page 7-9 for
details about the circumstances and results of synchronizing a cloned publication target.
See Example of Synchronizing Publication Data on a Cloned Source , page 7-12for
details about the circumstances and results of synchronizing a cloned publication
source.

Warning: After cloning a publication source, do not clone the target
until you have first synchronized publications on that cloned source, or
vice versa.

7-8 Oracle Configurator Implementation Guide

Example of Synchronizing Publication Data
The example illustrating publication synchronization uses CZ_SERVERS and
CZ_MODEL_PUBLICATIONS data to illustrate where inconsistencies occur between a
publication source and target after cloning or restoring a source or target database
instance from backup.

CZ_SERVERS Table
Publication synchronization updates the CZ_SERVERS table to ensure that the local and
remote servers are listed correctly to associate the cloned publication source or target
with the appropriate publication records on the unchanged target or source,
respectively.

CZ_MODEL_PUBLICATIONS Table
The following columns in the CZ_MODEL_PUBLICATIONS table help identify target
publications relative to their source so they can be republished:

• PUBLICATION_ID, page 7-8

• REMOTE_PUBLICATION_ID, page 7-8

• SERVER_ID, page 7-8

PUBLICATION_ID
PUBLICATION_ID is the publication's generated identifier in the database instance
containing the configuration model. This identifier is generated when a publication
record is created in the Create Publication page.

REMOTE_PUBLICATION_ID
REMOTE_PUBLICATION_ID on the source database instance points to the
PUBLICATION_ID on the target database instance. The REMOTE_PUBLICATION_ID
on the target database instance points to the PUBLICATION_ID on the source database
instance. See Original Publication, page 7-9.

SERVER_ID
SERVER_ID associates the publication record with a database instance in the
CZ_SERVERS table.

Example Publication Data Before Cloning
The following examples of publication data presume a publication source database, A,
with PUBLICATION_ID 1000 and a publication target database, B, with
PUBLICATION_ID 2000. Original Publication, page 7-9 shows the original
publication records on Source A and Target B.

Synchronizing Data 7-9

In the publication record on Source A:

• REMOTE_PUBLICATION_ID is 2000 because it points to the PUBLICATION_ID on
the publication target

• SERVER_ID of the publication record is B because it points to the LOCAL
SERVER_ID on the publication target

In the publication record on Target B:

• REMOTE_PUBLICATION_ID is 1000 because it points back to the
PUBLICATION_ID on the publication source

• SERVER_ID of the target publication record is B, because it identifies itself as the
LOCAL entry in the CZ_SERVERS table

Original Publication, page 7-9 illustrates a publication record on the source and target
databases. Source A's REMOTE_PUBLICATION_ID 2000 references Target B's
PUBLICATION_ID 2000, and Target B's REMOTE_PUBLICATION 1000 references the
Source A's PUBLICATION_ID 1000. Source A's server ID points to the Target B's server.
Target B's server ID points to itself, not to Source A's server.

Original Publication

Publication records on the target assume only one publication source and do not
identify the source publication record by the SERVER_ID of the source.

Example of Synchronizing Publication Data on a Cloned Target
Synchronizing publication data on a cloned target resolves the following issues caused
by cloning the publication target:

• The CZ_SERVERS table on the source does not include a listing for the cloned
target.

• A database link must be established between the publication source and the cloned
target.

7-10 Oracle Configurator Implementation Guide

• References to the publication record on the source database instance are lost,
wrong, or have overlapping applicability parameters.

Original Publication, page 7-9 shows the original publication records on Source A and
Target B.

Target B is then cloned to create Target C. Publication After Cloning, page 7-10
illustrates the resulting cloned Target C copy. The publication record on Source A does
not point to the cloned publication record on cloned Target C. Source A still references
Target B as the target server for the publication record (SERVER_ID:B).

Publication After Cloning, page 7-10 illustrates a publication record after Target B is
cloned to Target C. Target C's publication record has the same values as the original
target publication record. The original Target B's REMOTE_PUBLICATION_ID 1000
refers to Source A's PUBLICATION_ID 1000. The cloned Target C's
REMOTE_PUBLICATION_ID 1000 does not have any indication that this is referencing
a record on Source A.

Publication After Cloning

Source A is then synchronized with Target C. Publication After Synchronization, page
7-11 illustrates the resulting publication information after synchronization. A new
publication record is created on Source A referencing the record on cloned Target C.
The publication record on cloned Target C is also updated so that it references the new
publication record on Source A as well as correcting the SERVER_ID that associates the
publication record with a LOCAL database instance.

Publication After Synchronization, page 7-11 illustrates a publication record after
synchronizing Source A and Target Target C. Cloned Target C's publication record is
updated with a new REMOTE_PUBLICATION_ID that now references a new
publication record created on Source A. The new publication record's
REMOTE_PUBLICATION_ID on Source A references the updated publication record

Synchronizing Data 7-11

on the cloned Target.

Publication After Synchronization

Example of Missing Source Publication, page 7-11 summarizes the publication
information from the original publication to the cloning, to the synchronization.

The following table is a summary of what happens after cloning and then
synchronizing a publication.

Example of Missing Source Publication

Source A Target B Target C (cloned from
B)

Original publication:

PUBLICATION_ID 1000 2000

REMOTE_PUBLICATION
_ID

2000 1000

SERVER_ID B B

After Cloning Target B to
Target C:

PUBLICATION_ID 1000 2000 2000

7-12 Oracle Configurator Implementation Guide

Source A Target B Target C (cloned from
B)

REMOTE_PUBLICATION
_ID

2000 1000 1000

SERVER_ID B B B

After Synchronizing
Source A and Target C:

PUBLICATION_ID 1000 2000 2000

REMOTE_PUBLÌCATION
_ID

2000 1000 updated

SERVER_ID B B updated

PUBLICATION_ID 1001 2000

REMOTE_PUBLICATION
_ID

2000 1001

SERVER_ID C C

For information on running the Synchronize Cloned Target Data, page C-40 concurrent
program, see .

Example of Synchronizing Publication Data on a Cloned Source
Synchronizing publication data on a cloned source resolves the following issues caused
by cloning the publication source:

• The CZ_SERVERS table on the cloned source contains incorrect information in the
LOCAL server entry of the clone.

• The SOURCE_SERVER_FLAG on the publications target identifies the original
source, not the cloned source as the publication source server.

• A database link must be established between the publication target and the cloned
source.

• Target publication records require only one corresponding publication source.

Synchronizing Data 7-13

Note: Oracle does not support publishing from multiple source
database instances to a single target database instance. Oracle
recommends decommissioning original source when synchronizing the
cloned source.

Publication Before Cloning the Source Database, page 7-13 illustrates a Model that is
originally published from Source A to Target C.

Publication Before Cloning the Source Database, page 7-13 illustrates a publication
record before Source A is cloned. Source A's REMOTE_PUBLICATION_ID 2000
references Target C's PUBLICATION_ID 2000, and Target C's
REMOTE_PUBLICATION_ID 1000 references Source A's PUBLICATION_ID 1000.

Publication Before Cloning the Source Database

CZ_SERVERS Entries on Source A Before Cloning, page 7-13 illustrates some of the
entries for database instances A and C in the CZ_SERVERS table of Source A before
cloning.

The following table illustrates database instance entries on two servers prior to cloning
the source server.

CZ_SERVERS Entries on Source A Before Cloning

Server LOCAL_N
AME

SERVER_L
OCAL_ID

HOSTNAME DB_LISTENER
_PORT

INSTANCE_N
AME

A LOCAL 0 my_serv 1521 A

C SALES 1 my_serv 1521 C

CZ_SERVERS Entries on Target C Before Cloning, page 7-14 illustrates some of the
entries for database instances A and C in the CZ_SERVERS table of Target C before

7-14 Oracle Configurator Implementation Guide

cloning.

The following table illustrates database entries on two servers before cloning the target
server.

CZ_SERVERS Entries on Target C Before Cloning

Server LOCAL_N
AME

SERVER_L
OCAL_ID

HOSTNAME DB_LISTENER
_PORT

INSTANCE_N
AME

A source 1 my_serv 1521 A

C LOCAL 0 my_serv 1521 C

The SOURCE_SERVER_FLAG on Target C is set to 1, meaning Target C recognizes
Source A as its publication source.

If configuration models are published from Source A to Target C, and then Source A is
cloned to create Source B, the following inconsistencies occur:

• The LOCAL entry in the CZ_SERVERS table of Source B must be updated by
removing the entry for Source A and completing the identification for Source B.

• The publication record on Source A and its clone on Source B both point to Target C
which is incorrect.

• Publication records on Target C continue to identify Source A as the publication
source server.

Source Server B is Cloned from Source Server A, page 7-15 illustrates Source B as a
clone of Source A.

Source Server B is Cloned from Source Server A, page 7-15 illustrates a publication
record after Source A is cloned to Source B. Source B's publication record has the same
values as the original source publication record. Both the cloned and the original Source
A's REMOTE_PUBLICATION_ID 2000 refers to Target C's PUBLICATION_ID 2000.
There is no way for the publication on Target C to know that its source is now Source B.

Synchronizing Data 7-15

Source Server B is Cloned from Source Server A

After cloning, the clone's CZ_SERVERS table is an exact copy of the original Source A
(see CZ_SERVERS Entries on Source A Before Cloning, page 7-13). Source B must be
synchronized because its CZ_SERVERS table does not have a LOCAL entry for Source
B.

To synchronize existing publications records on Source B with Target C, and publish
new Models from B to C, you must first run the Synchronize Cloned Source Data, page
C-41 concurrent program on Source B.

Running the Synchronize Cloned Source Data, page C-41 concurrent program updates
the LOCAL entry in the CZ_SERVERS table on Source B with correct information.
CZ_SERVERS Entries on Server B After Synchronization, page 7-15 shows the entries
on the two servers in the CZ_SERVERS table on B after running the synchronization
concurrent program.

CZ_SERVERS Entries on Server B After Synchronization

Server LOCAL_N
AME

SERVER_L
OCAL_ID

HOSTNAME DB_LISTENER
_PORT

INSTANCE_N
AME

B LOCAL 0 my_serv 1521 B

C SALES 1 my_serv 1521 C

Synchronizing Source B has no effect on Target C. By publishing or republishing a
Model from Source B to Target C, the CZ_SERVERS table on Target C is updated.
CZ_SERVERS Entries on Target C After Publishing a Model from Source B, page 7-16
shows Source B listed as the publication source in the CZ_SERVERS table on Target C,
with the SOURCE_SERVER_FLAG enabled (set to 1). Both Source A and Source B can
serve as publication source.

7-16 Oracle Configurator Implementation Guide

The following table illustrates the target server settings after publishing a Model from
the source server.

CZ_SERVERS Entries on Target C After Publishing a Model from Source B

Server LOCAL_
NAME

SERVER_
LOCAL_I
D

HOSTNAME DB_LISTEN
ER_PORT

INSTANCE_
NAME

SOURCE_S
ERVER_FLA
G

A source 1 my_serv 1521 A 1

B source 2 my_serv 1521 B 1

C LOCAL 0 my_serv 1521 C 0

If a decision is made to not decommission Source A, and there are configuration models
that were published from A to C, then running the Synchronize Cloned Source Data,
page C-41 concurrent program on Source B removes any cloned publications to
prevent conflict between the two publications sources and allows Source A to continue
as the source for those publications.

Note: Republish and New Copy in the Model Publications page are
disabled for a disabled publication record. Oracle Configurator
Developer users can delete the disabled publication record or edit the
publication's applicability parameters to re-enable the publication in
Production or Test mode.

CZ Schema Maintenance 8-1

8
CZ Schema Maintenance

This chapter explains how to maintain data when it exists in more than one place and is
potentially unsynchronized.

This chapter covers the following topics:

• Overview

• Introduction

• Refreshing or Updating the Production CZ Schema

• Purging Configurator Tables

• Redoing Sequences

Overview
Data that is maintained in more than one place is subject to becoming out of synch. This
chapter presents the following processes to help you keep multiple data sources
synchronized:

• Refreshing or Updating the Production CZ Schema, page 8-2

• Purging Configurator Tables, page 8-2

• Redoing Sequences, page 8-4

Introduction
Inventory and Bills of Material data must be maintained in the production instance. You
can maintain the CZ schema with the data in the production instance by:

• Refreshing or Updating the Production CZ Schema, page 8-2

• Eliminating any unused data by Purging Configurator Tables, page 8-2

8-2 Oracle Configurator Implementation Guide

• Redoing Sequences, page 8-4 resets the sequences after the CZ schema has been
restored from a dump file

• Synchronizing BOM Model Data, page 7-2

Refreshing or Updating the Production CZ Schema
When a runtime Oracle Configurator is deployed, the data is stored in the CZ schema
directly through networked use. During deployment, further imports are performed to
refresh the CZ schema as Oracle Applications or legacy data changes. The procedures
that perform the import prevent customer-specific groups of fields in the CZ schema
from being altered or nulled out even when other fields in the row are replaced during
an import session.

For additional information about refreshing data in your CZ schema, see Refreshing
Imported Data, page 5-16.

Purging Configurator Tables
Large databases affect performance. For example, large amounts of data in the import
tables may cause data import to fail. The following concurrent programs delete
unnecessary data:

• Purge Configurator Tables, page 8-2

• Purge Configurator Import Tables, page 8-3

• Purge To Date Configurator Import Tables, page 8-3

• Purge To Run ID Configurator Import Tables, page 8-3

Note: A data import session must not be running when there is a purge
concurrent program request. Similarly, a purge session must not be
running when there is a data import concurrent program request.

Purge Configurator Tables
The Purge Configurator Tables, page C-4 concurrent program physically deletes all
logically-deleted records in the tables and subschemas of the CZ schema.

Each CZ schema table has delete-propagation rules that affect the results of running the
Purge Configurator Tables concurrent program.

The Purge Configurator Tables concurrent program:

• Propagates deletions to additional records not marked as deleted, such as

CZ Schema Maintenance 8-3

physically deleting children of a logically-deleted PS_NODE record.

• Physically deletes all EXPRESSION_NODE records attached to a deleted rule.

• Does not physically delete a record that is logically-deleted if there is a non-deleted
reference to that record, such as preserving a deleted PS_NODE that is used in a
non-deleted rule.

See Purge Configurator Tables, page C-4 for details on running this concurrent
program.

Purge Configurator Import Tables
Import performance can be improved if you purge the import tables in your database
instance. The Purge Configurator Import Tables, page C-5 concurrent program deletes
data in all CZ_IMP tables. The concurrent program also deletes the corresponding data
in the CZ_XFR_RUN_INFOS and CZ_XFR_RUN_RESULTS control tables.

See Purge Configurator Import Tables, page C-5 for running this concurrent program.

Purge To Date Configurator Import Tables
If you want to improve import performance but also retain recent import information,
then the Oracle Configurator Administrator should run the Purge To Date Configurator
Import Tables, page C-6 concurrent program. Unlike the Purge Configurator Import
Tables, page C-5 concurrent program that deletes all data in the CZ_IMP tables, the
concurrent program only deletes the oldest data in the CZ_IMP tables. The data for the
specified past number of days is retained. The concurrent program also deletes the
corresponding data in CZ_XFR_RUN_INFOS, and CZ_XFR_RUN_RESULTS control
tables.

See Purge To Date Configurator Import Tables, page C-6 for details on running this
concurrent program.

Purge To Run ID Configurator Import Tables
If you want to improve import performance but also retain recent import run
information, then the Oracle Configurator Administrator should run the Purge To Run
ID Configurator Import Tables, page C-7 concurrent program. Purge To Run ID
Configurator Import Tables, page C-7 only deletes data in the CZ_IMP tables up to
the specified input Run ID. The concurrent program also deletes the corresponding data
in the CZ_XFR_RUN_INFOS, and CZ_XFR_RUN_RESULTS control tables

See Purge To Run ID Configurator Import Tables, page C-7 for details on running this
concurrent program.

8-4 Oracle Configurator Implementation Guide

Redoing Sequences
After restoring a schema from a backup file, you should refresh the database sequences.
The REDO_SEQUENCES procedure is invoked by the packages CZ_MANAGER.sql
and CZ_subschema_MGR.sql (for example, CZ_PS_MGR.sql).

Depending on the parameters that you enter, the REDO_SEQUENCES procedure either
alters or recreates the sequence objects in the database that are used to allocate primary
keys for tables in the CZ schema. The procedure checks the current high primary key
value in the database and sets a new start value that is greater than the current high
value. The procedure uses the default incremental value specified by
OracleSequenceIncr setting in the CZ_DB_SETTINGS table unless you specify a new
increment. See OracleSequenceIncr, page 4-19 for more information.

Part 3
Integration

Part 3 presents integration information for setting up Oracle Configurator with other
Oracle Applications or a custom application as described in Integration Tasks, page 1-4.

Session Initialization 9-1

9
Session Initialization

This chapter describes the format and parameters of the initialization message for the
runtime Oracle Configurator.

This chapter covers the following topics:

• Overview

• Introduction

• Setting Parameters

• Initialization Parameter Types

• Initialization Parameter Descriptions

Overview
This chapter describes the format, parameters, and use of the initialization message for
the runtime Oracle Configurator, including information about:

• Definition of Session Initialization, page 9-2

• Responsibilities of the Host Application, page 9-3

• Setting Parameters, page 9-4

• Parameter Syntax, page 9-4

• Typical Parameter Values, page 9-6

• Minimal Test of Initialization, page 9-7

• Parameter Validation, page 9-8

• Logging of Parameter Use, page 9-8

9-2 Oracle Configurator Implementation Guide

• Initialization Parameter Types, page 9-9

• Login Parameters, page 9-9

• Model Identification Parameters, page 9-10

• Model Publication Identification Parameters, page 9-13

• Support of Multiple Instantiation, page 9-14

• Return URL Parameter, page 9-14

• Pricing Parameters, page 9-15

• ATP Parameters, page 9-15

• Arbitrary Parameters, page 9-16

• Parameter Compatibility, page 9-16

• Initialization Parameter Descriptions, page 9-17

Note: If your host application is part of Oracle Applications, then the
initialization message is already defined, and you do not need to define
it yourself. However, this chapter may be of great value to you in
understanding how that initialization message calls the runtime Oracle
Configurator.

If your host application is a custom application, then you must define
your own initialization message, as described in this chapter.

Introduction
See Configurator Architecture, page 2-1 for an explanation of the interaction between
the elements discussed in this chapter.

In a typical host application (such as a web store), a button, tab, or similar control is
coded so that it launches the runtime Oracle Configurator, allowing the end user to
configure a model of a product or service. For the purposes of this explanation, think of
this control as "the Configure button". This chapter describes how to make the
Configure button select the wanted configuration model and user interface in the
runtime Oracle Configurator.

Definition of Session Initialization
Session initialization takes place when your host application calls the runtime Oracle

Session Initialization 9-3

Configurator and renders your configuration model in the user interface you have
specified. The initialization message allows a host application to start a configuration
session with specified characteristics.

When you set the parameters of the initialization message in your host application, your
parameters handle the types of responsibilities listed in Initialization Parameter Types,
page 9-9.

When your host application calls the runtime Oracle Configurator, the initialization
message is sent to the Oracle Configurator Servlet, using the HTTP POST method.
(POST is used in preference to GET to accommodate the length of the message).

See Invocation of Oracle Configurator by Host Application, page 2-4 for a description of
how the initialization message is routed, depending on the requirements of the host
application, and the type of user interface.

The initialization message is written in XML, and has <initialize> as its document
element. You must specify the parameters for <initialize> to determine the state in
which the runtime Oracle Configurator opens. See Setting Parameters, page 9-4 for
details.

Responsibilities of the Host Application
The responsibilities of the host application for initializing and integrating the runtime
Oracle Configurator are:

• Providing end users with a means (such as a Configure button) of posting the
initialization message to the Oracle Configurator Servlet. See Setting Parameters,
page 9-4 for details.

• Handling initialization of the runtime Oracle Configurator, to prepare it for your
user's configuration session. See Invocation of Oracle Configurator by Host
Application, page 2-4 for background.

• Disabling visible functions in the surrounding host application that would confuse
the user while interacting with the runtime Oracle Configurator.

• Handling the output from the return URL (as described in Return URL Parameter,
page 9-14), and closing the configurator window by resetting its frame's location
property.

• Handling termination of the runtime Oracle Configurator, to return control and
results to the host application when your user closes the window. See Definition of
Session Termination, page 10-2 for background.

You may be able to provide your host application with improved performance by
preloading the Oracle Configurator Servlet, which involves providing an initialization
message in a text file. The name of the text file is specified with the OC Servlet property
cz.uiservlet.pre_load_filename, as described in the Oracle Configurator

9-4 Oracle Configurator Implementation Guide

Installation Guide. For details on preloading with an initialization message, see the Oracle
Configurator Performance Guide.

Setting Parameters
You specify <initialize> and its parameters as the value of an XML message that is
passed to the Oracle Applications Framework, as described in Invocation of Oracle
Configurator by Host Application, page 2-4. The Oracle Applications Framework is
called through the URL specified in the profile option BOM: Configurator URL of UI
Manager. See the Oracle Configurator Installation Guide for details about setting profile
options. For more information on the Oracle Applications Framework, see the Oracle
Application Framework Documentation Resources, Release 12, in Oracle Applications
Documentation, on the Oracle Technology Network.

Parameter Syntax
All parameters to the XML initialization message are specified as name-value pairs,
using attributes of the <param> document element, in the form:

Example
<param name="parameter_name">parameter_value</param>

Syntax of initialization message in HTML context, page 9-4 shows the basic syntax for
specifying the Oracle Configurator Servlet's URL and the initialization message as you
would typically use them in your host application. The parts that you need to modify
are typographically emphasized.

Syntax of initialization message in HTML context
Example
...
<script language="javascript" >
function init() {document.test1.submit();}
</script>
<body onload="init();">
<form
action="URL_of_OC_Servlet"
method="post" id="test1" name="test1">
<input type="hidden" name="XMLmsg" value=
'<initialize>
<param name="parameter_1_name">parameter_1_value</param>
<param name="parameter_n_name">parameter_n_value</param>
</initialize>'>
</form>
</body>
...

When a Web page containing the kind of HTML coding shown in Syntax of
initialization message in HTML context, page 9-4 is rendered in a browser, the
initialization message is posted to the URL of the Oracle Configurator Servlet, as
described in Invocation of Oracle Configurator by Host Application, page 2-4.

See Basic XML initialization parameters, page 9-6 for some typical values for the
parameters, and Minimal HTML for invoking the Runtime Oracle Configurator, page 9-

Session Initialization 9-5

for a test page that puts the values in context.

• Be aware that XML permits you to use either single or double quotation marks
around the value of an element's attribute, so you might also write:

Example
"<initialize>
 <param name='parameter_name'>parameter_value</param>
</initialize>"

• XML messages are, by default, case-sensitive. The names of initialization
parameters (shown as parameter_name in the syntax examples in this chapter)
are also case-sensitive. If you pass a custom initialization parameter named
MyParam, but your code tests for a parameter named myparam, then your test will
fail.

• You can only insert a given parameter once in the initialization message. If you
insert the same parameter more than once, the last occurrence of the parameter is
processed, and any preceding occurrences are ignored. This is important to
remember when you specify Custom Initialization Parameters in the Configurator
Preferences page in Oracle Configurator Developer, as described in the Oracle
Configurator Developer User's Guide. These custom initialization parameters are
prepended to the parameters provided by Configurator Developer itself during a
test session. Custom parameters that duplicate Configurator Developer parameters
are thus ignored.

• If you need to include non-ASCII characters in your initialization parameters, then
specify the required character set as the value of the charset parameter in the
meta element of your HTML page. Several examples follow:

Example
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=EUC-JP">

Omitting Parameters or Values
If you omit a parameter entirely from the initialization message, then the parameter is
ignored by the runtime Oracle Configurator.

However, if a parameter has a default value, then you must either accept the effect of
the default, or override the default with a specified value. The default values for the
parameters are provided in Initialization Parameter Descriptions, page 9-17.

Note: If you include a parameter in the initialization message, do not
leave its value empty. Doing so causes an error when the initialization
message is processed. If you omit the value of a parameter, then the
runtime Oracle Configurator generates an error message indicating
which parameter is missing a value. The message appears in the

9-6 Oracle Configurator Implementation Guide

browser window, and in the servlet's session log.

Typical Parameter Values
The example Basic XML initialization parameters, page 9-6 shows an example of a
basic set of initialization parameters, illustrating the types of responsibility shown in
Types of Initialization Parameters, page 9-9.

See Syntax of initialization message in HTML context, page 9-4 for the syntax of the
initialization message, and Minimal HTML for invoking the Runtime Oracle
Configurator, page 9-8 for a test page that puts the values in context.

For the complete list of valid initialization message parameters, see Initialization
Parameter Descriptions, page 9-17.

Basic XML Initialization Parameters
Example
<initialize>
 <param name="database_id">serv02_sid01</param>
 <param name="user">operations</param>
 <param name="pwd">welcome</param>
 <param name="calling_application_id">708</param>
 <param name="responsibility_id">22713</param>
 <param name="ui_def_id">9740</param>
 <param name="ui_type">JRAD</param>
 <param name="return_url
">http://www.mysite.com:8802/OA_HTML/myorg/myservlets/Checkout</param>
</initialize>

The Explanation of initialization parameters , page 9-6 table explains the parameters
used in the example Basic XML initialization parameters, page 9-6.

The following table explains the basic initialization parameters.

Explanation of initialization parameters in Basic XML Initialization Parameters, page 9-6

Parameter type Name Description

Login database_id, page 9-
25

The DBC file that identifies the login database.

Login user, page 9-37 The user ID of the login user.

Login pwd, page 9-32 The password of the login user.

Login calling_application_i
d, page 9-20

The ID of the host application.

Session Initialization 9-7

Parameter type Name Description

Login responsibility_id,
page 9-32

The responsibility of the login user.

Configuration ui_def_id, page 9-36 The ID of the UI of the model to be configured.

Configuration ui_type, page 9-36 The type of the UI identified by ui_def_id, page 9-
36.

Return return_url, page 9-33 The URL of the return URL servlet.

Minimal Test of Initialization
Minimal HTML for invoking the Runtime Oracle Configurator, page 9-8 shows the
HTML for a minimal web page that calls the runtime Oracle Configurator. combines the
invocation of the runtime Oracle Configurator shown in Syntax of initialization
message in HTML context, page 9-4 with the initialization message parameters shown
in Basic XML initialization parameters, page 9-6. (For simplicity, omits the
return_url parameter, which is shown in HTML for Invoking the Runtime Oracle
Configurator with Return URL, page 9-14.)

You can use this test page as a stand-in for your host application, by opening it in a
browser. You must substitute your own site-specific values for the parameters
database_id and ui_def_id. You must also provide a site-specific host name and
port for the action attribute of the form element in Minimal HTML for invoking the
Runtime Oracle Configurator, page 9-8.

9-8 Oracle Configurator Implementation Guide

Minimal HTML for invoking the Runtime Oracle Configurator
<html>
<head>
<title>Minimal Configurator Test</title>
</head>
<script language="javascript" >function init()
{document.test1.submit();}</script>
<body onload="init();">
<form
action="http://www.mysite.com:8802/OA_HTML/configurator/UiServlet"
method="post" id="test1" name="test1">
<input type="hidden" name="XMLmsg" value=
'<initialize>
 <param name="database_id">serv02_sid01</param>
 <param name="user">operations</param>
 <param name="pwd">welcome</param>
 <param name="calling_application_id">708</param>
 <param name="responsibility_id">22713</param>
 <param name="ui_def_id">9740</param>
 <param name="ui_type">JRAD</param>
</initialize>'>
</form>
<pre>Loading... </pre></body>
</html>

Parameter Validation
When your host application calls the runtime Oracle Configurator, the Oracle
Configurator Servlet validates the parameters of the initialization message.

• There must be a way of connecting to the database, such as the parameter
database_id, page 9-25.

• There must be a way to choose a Model to be configured, so the initialization
message must include one of the combinations described in Model Identification
Parameters, page 9-10.

• If there is an error processing the initialization message, the results are posted to the
URL specified in the return_url parameter.

Initialization parameters are accessible to Configurator Extensions and custom
applications that use the Configuration Interface Object (CIO), by calling the method
Configuration.getUserParameters(), which is described in the Oracle
Configurator Extensions and Interface Object Developer's Guide.

Logging of Parameter Use
To determine exactly which values of the initialization parameters were used in a
configuration session, you can examine the configuration session log files for the Oracle
Configurator Servlet. For more information on logging, see Troubleshooting, page 1-11.

Session Initialization 9-9

Initialization Parameter Types
This section describes the use of the types of initialization parameters listed in the Types
of Initialization Parameters, page 9-9 table. All of the initialization parameters are
described alphabetically in Initialization Parameter Descriptions, page 9-17.

Types of Initialization Parameters

Type Required
?

Description See

Login Yes Information required for access to the
proper data, such as database, user,
and password.

Login Parameters, page
9-9

Configuration Yes Identification of the Model to be
configured, or of the existing
configuration to be modified.

Model Identification
Parameters, page 9-10

Publication Yes, for
published
models

Information required to select the
correct Model publication.

Model Publication
Identification
Parameters, page 9-13

Return No, but
recommen
ded

Identification of the return URL that
handles the results from the runtime
Oracle Configurator, such as
configuration outputs.

Return URL Parameter,
page 9-14

Pricing and
ATP

No Identification of the procedures and
interfaces to be used for obtaining
prices and ATP dates.

Pricing Parameters,
page 9-15

ATP Parameters, page
9-15

Other No Miscellaneous information. Arbitrary Parameters,
page 9-16

Login Parameters
To connect the runtime Oracle Configurator to the database, your initialization message
must specify one of the combinations of parameters listed in Initialization Parameters
Required for Login, page 9-10.

For descriptions of the individual parameters, see Initialization Parameter Descriptions,
page 9-17.

9-10 Oracle Configurator Implementation Guide

Initialization Parameters Required for Login

Parameter Combination Used to Launch Oracle Configurator From ...

database_id, icx_session_ticket,
and responsibility_id

• A host application, using Oracle Applications login
authentication

• Oracle Configurator Developer, by using the Test
Model button

database_id,
calling_application_id,
responsibility_id, user, and pwd

• A stand-alone test page (such as that shown in
Minimal HTML for invoking the Runtime Oracle
Configurator, page 9-8)

• A custom Web application that does not use Oracle
Applications login authentication. (In this case,
Oracle Configurator constructs an ICX session ticket
from the values provided for user, page 9-37, pwd,
page 9-32, calling_application_id, page 9-20, and
responsibility_id, page 9-32.)

You can use the same set of login parameters for both legacy and generated
(HTML-based) UIs. If you do, use the ui_type, page 9-36 parameter to distinguish
between the UI types.

Model Identification Parameters
There are several different ways in which you can identify the Model to be configured,
or the existing configuration to be modified. In your initialization message, you must
use one of the parameters or a combination of the parameters listed in Model
Identification Parameters, page 9-10:

Model Identification Parameters

Method for Configuration
Identification

Initialization Parameters Described in ...

User Interface ui_def_id, page 9-36 Identifying the User Interface
Definition, page 9-11

Configuration config_header_id, page 9-24

config_rev_nbr, page 9-25

Identifying the Configuration,
page 9-11

Session Initialization 9-11

Method for Configuration
Identification

Initialization Parameters Described in ...

Model For Imported BOM Models:

• operating_unit_org_id,
page 9-29 or
organization_id, page 9-
29

• inventory_item_id, page
9-26

For Models created in
Configurator Developer:

• product_id, page 9-31

Identifying the Model, page 9-
12

For detailed descriptions of the individual parameters, see Initialization Parameter
Descriptions, page 9-17.

Identifying the User Interface Definition
Parameter to specify:

• ui_def_id, page 9-36

Using this parameter creates a new configuration. It is most useful for identifying a
Model created entirely in Oracle Configurator Developer. It is also useful for specifying
a particular UI out of several that may be available for a Model, whether or not the
Model was created entirely in Configurator Developer.

This ID identifies a User Interface created in Configurator Developer. The User Interface
includes identification of the Model to be configured (which is associated with
configuration rules).

Identifying the Configuration
Parameters to specify:

• config_header_id, page 9-24

• config_rev_nbr, page 9-25

Using this combination of parameters restores an existing saved configuration, and thus
also the model used to create the configuration.

The Configuration Header ID is the main identifier of an existing configuration record
previously created and saved by your host application or another application that

9-12 Oracle Configurator Implementation Guide

knows how to save configurations to the CZ schema, such as the runtime Oracle
Configurator. The Configuration Revision Number distinguishes among particular
saved configurations sharing the same header information.

Identifying the Model
The parameters you should use to identify the configuration model depend on whether
the model is an imported BOM Model or a Model created in Configurator Developer.

Imported BOM Models
Parameters to specify:

• operating_unit_org_id, page 9-29 or organization_id, page 9-29

• inventory_item_id, page 9-26

Using this combination of parameters creates a new configuration. It is only useful for
identifying a Model that was originally created in another application (such as Oracle
Applications Bills of Materials) and then imported into Oracle Configurator Developer.

Your host application must determine which Model to configure and be able to identify
it by Inventory Item ID and Organization ID. See the individual descriptions of these
parameters for more detail.

For backward compatibility only, you may need to specify these parameters:

• context_org_id, page 9-25 instead of organization_id, page 9-29

• model_id, page 9-27 instead of inventory_item_id, page 9-26

Models Created in Configurator Developer
Parameters to specify:

• product_id, page 9-31

• config_effective_usage_id, page 9-23 (for custom applications only)

• publication_mode, page 9-32 (for custom applications only)

If the root of your configuration model is a Model that you created in Oracle
Configurator Developer, and you entered a Product ID when you published the Model,
then you should specify only the product_id, page 9-31 in your initialization message
to identify the Model to configure. See the Oracle Configurator Developer User's Guide for
details about publishing Models.

The use of the Product ID to identify the Model requires the additional specification of
the Usage and Mode for publication, according to the following conditions:

• If the host application is a custom application (that is, not part of Oracle
Applications), then you must also pass publication_mode, page 9-32 and

Session Initialization 9-13

config_effective_usage_id, page 9-23 in the initialization message.

• If you do not pass config_effective_usage_id, page 9-23, then Oracle
Configurator uses the default value of this parameter, which is Any Usage.

• If you do not pass publication_mode, page 9-32, then Oracle Configurator uses
the default value of this parameter, which is P (Production mode).

• If the host application is part of Oracle Applications (such as Order Management),
then Oracle Configurator automatically obtains the Usage and Mode from the
profile options CZ: Publication Usage and CZ: Publication Lookup Mode and
applies the values to the configuration session. Consequently, you do not have to
specify the parameters yourself.

Model Publication Identification Parameters
If your Model has been published, then you need to identify the specific Model
publication that you want to configure. This requires that you specify publishing
applicability parameters in your initialization message, in addition to those that identify
the Model (which are described in Model Identification Parameters, page 9-10).

To determine the Model publication to display, you must specify in your initialization
message one or more of the applicability parameters listed in Initialization Parameters
for Publishing Applicability, page 9-13. These initialization parameters correspond to
the applicability parameters that you specify when creating the publication in the
Publications area of the Repository in Oracle Configurator Developer. See Publishing
Configuration Models, page 16-1 and the Oracle Configurator Developer User's Guide for
more information about publishing.

The following table lists the publishing initialization parameters as they appear in the
initialization message and in Configurator Developer.

Initialization Parameters for Publishing Applicability

Initialization Parameter OCD Publishing Parameter

calling_application_id, page 9-20 Applications

config_effective_usage_id, page 9-23 Usages

config_model_lookup_date, page 9-24 Valid From/Valid To

publication_mode, page 9-32 Mode

9-14 Oracle Configurator Implementation Guide

Support of Multiple Instantiation
This following parameter indicates whether a host application supports multiple
instantiation:

• sbm_flag, page 9-34

At runtime, Oracle Configurator checks this flag to see if the host application supports
multiple instantiation. If this parameter is present in the initialization message, the
model is launched regardless of its type. If the parameter is not present, users are
prevented from working with the PTO model and its references to the BOM models
under the root model. A message is returned informing the end user that the host
application does not support multiple instantiation.

Return URL Parameter
The return URL is the fully qualified URL of a Java servlet installed on your Web server
that implements the behavior that you want to invoke after the user has ended a
configuration session. The return URL for a configuration session is specified by the
following initialization parameter:

• return_url, page 9-33

The example Initialization Messagefor Invoking Oracle Configurator with Return URL,
page 9-14 shows the use of this parameter in an initialization message, to specify an
example servlet class myorg.myservlets.Checkout. That example class is described
in Implementing a Return URL Servlet, page E-3

Initialization Message for Invoking Oracle Configurator with Return URL
<initialize>
 <param name="database_id">serv02_sid01</param>
 <param name="user">operations</param>
 <param name="pwd">welcome</param>
 <param name="calling_application_id">708</param>
 <param name="responsibility_id">22713</param>
 <param name="ui_def_id">9740</param>
 <param name="ui_type">JRAD</param>
<param
name="return_url">http://www.mysite.com:8802/OA_HTML/myorg/myservlets/Ch
eckout</param>
</initialize>

The URL specification in the return_url parameter must stop at the name of the
servlet class. You cannot pass parameters to the class in this URL (for example, with the
classname?parameter=value syntax). The return URL servlet should only get data
from the termination message, which is passed to it as the value of the XMLmsg
argument.

The termination message is sent to the return URL when a configuration session is
terminated. This occurs in the event of normal termination, cancellation by the end user,
or exceptions.

Session Initialization 9-15

See The Return URL, page 10-13 for details on the implementation of the return servlet.

Pricing Parameters
These parameters are used when the runtime Oracle Configurator calls existing APIs to
get pricing data for configured items.

Because these parameters are designed to be used with an interface using callback
procedures, they are also referred to as callback pricing parameters.

This guide assumes that you are using Oracle Applications Release 12 and Oracle
Advanced Pricing (QP), or your own callback pricing procedures that call Oracle
Advanced Pricing.

To use callback pricing, provide the following set of parameters in your initialization
message:

• pricing_package_name, page 9-31

• configurator_session_key, page 9-25

• operating_unit_org_id, page 9-29

• either price_mult_items_proc, page 9-30, price_mult_items_mls_proc, page 9-30,
or price_single_item_proc, page 9-30

For descriptions of the individual parameters, see Initialization Parameter Descriptions,
page 9-17.

See Pricing and ATP in Oracle Configurator, page 13-1 for details on the use of these
parameters. See Pricing and ATP Callback Procedures, page E-2 for examples of
procedures that might be specified by these parameters.

ATP Parameters
These parameters are used when the runtime Oracle Configurator calls existing APIs to
get ATP (Available To Promise) data for configured items.

Because these parameters are designed to be used with an interface using callback
procedures, they are also referred to as callback ATP parameters.

This guide assumes that you are using Oracle Applications Release 12.

To use callback ATP, provide these parameters:

• atp_package_name, page 9-20

• configurator_session_key, page 9-25

• get_atp_dates_proc, page 9-26

9-16 Oracle Configurator Implementation Guide

• operating_unit_org_id, page 9-29

• requested_date, page 9-32 (optional, defaults to SYSDATE)

• warehouse_id, page 9-37

• and one of the following:

• customer_id, page 9-25 and customer_site_id, page 9-25

• ship_to_org_id, page 9-35

For descriptions of the individual parameters, see Initialization Parameter Descriptions,
page 9-17.

See Pricing and ATP in Oracle Configurator , page 13-1for details on the use of these
parameters. See Pricing and ATP Callback Procedures, page E-2 for examples of
procedures that might be specified by these parameters.

Arbitrary Parameters
You can use the <param> document element to send arbitrary parameters that are not
already provided, or that may be required for particular applications. You specify the
arbitrary parameter as a name-value pair, using the syntax described in Parameter
Syntax, page 9-4:

Example
<param name="parameter_name">parameter_value</param>

For example:

Example
<param name="org_home_page">http://www.oracle.com</param>

Such arbitrary parameters are not processed by the UI Server, but are passed to the
Oracle Configuration Interface Object (CIO), thus making them available to
Configurator Extensions. See the Oracle Configurator Extensions and Interface Object
Developer's Guide for information about obtaining a list of the initialization parameters
passed.

While the architecture of Oracle Configurator allows for the possibility of validating
XML parameters against a DTD, this is not currently enforced.

Parameter Compatibility
Initialization parameters are backwardly compatible. A host application can continue to
use the initialization message parameters provided for a previous release with the same
results, unless a parameter has been replaced or withdrawn, thus making it obsolete.

Obsolete parameters in the initialization message are ignored by Oracle Configurator.
Your host application does not need to remove these parameters from the initialization

Session Initialization 9-17

message, but they have no effect on the initialization of Oracle Configurator.

Initialization Parameter Descriptions
This section lists alphabetically all the parameters of the initialization message. The use
of parameters in the initialization message is described in Setting Parameters, page 9-4.
The parameters are summarized in Initialization Parameters for Oracle Configurator,
page 9-17.

Initialization Parameters for Oracle Configurator

Name

alt_database_name, page 9-19

application_id, page 9-20

apps_connection_info, page 9-20

atp_package_name, page 9-20

calling_application_id, page 9-20

client_header, page 9-21

client_line, page 9-22

client_line_detail, page 9-22

config_creation_date, page 9-22

config_effective_date, page 9-23

config_effective_usage, page 9-23

config_effective_usage_id, page 9-23

config_header_id, page 9-24

config_model_lookup_date, page 9-24

config_rev_nbr, page 9-25

9-18 Oracle Configurator Implementation Guide

Name

configurator_session_key, page 9-25

context_org_id, page 9-25

customer_id, page 9-25

customer_site_id, page 9-25

database_id, page 9-25

get_atp_dates_proc, page 9-26

icx_session_ticket, page 9-26

inventory_item_id, page 9-26

jrad_standalone, page 9-26

model_id, page 9-27

model_quantity, page 9-27

operating_unit_org_id, page 9-29

organization_id, page 9-29

price_mult_items_mls_proc, page 9-30

price_mult_items_proc, page 9-30

price_single_item_proc, page 9-30

pricing_package_name, page 9-31

product_id, page 9-31

publication_mode, page 9-32

pwd, page 9-32

Session Initialization 9-19

Name

read_only, page 9-32

requested_date, page 9-32

return_url, page 9-33

save_config_behavior, page 9-33

share_dio, page 9-34

sbm_flag, page 9-34

ship_to_org_id, page 9-35

template_url, page 9-35

terminate_id, page 9-35

terminate_msg_behavior, page 9-35

ui_def_id, page 9-36

ui_type, page 9-36

user, page 9-37

user_id, page 9-37

warehouse_id, page 9-37

alt_database_name
A fully specified JDBC connect string or URL, specifying the JDBC driver and the
database alias of the database to connect to.

This parameter is recommended for use during development of your application, as an
alternative to connecting as an Oracle Applications user. It is not recommended for
production deployment. To provide security in a production deployment, you can
disable this parameter by setting the OC Servlet property
cz.uiserver.allow_alt_database_login to false. This setting prevents a login
that uses this parameter. For details on setting this property, see the current release or

9-20 Oracle Configurator Implementation Guide

patch information for Oracle Configurator on the Oracle Support Web site.

This login parameter is retained for backward compatibility. It is only valid for legacy
Oracle Configurator User Interfaces, not for generated User Interfaces (HTML-based). It
must be accompanied by user, page 9-37 and pwd, page 9-32.

You must specify thin drivers in the connect string, as shown in the following example.

Example for alt_database_name
jdbc:oracle:thin:@server01:1521:vis11

application_id
The ID from FND_APPLICATION.APPLICATION_ID that is the ID of the host
application.

apps_connection_info
If Oracle Configurator is running in one database (for example, Release 12), and
connecting to another database to perform pricing, this parameter describes how to
connect to the other database. The apps_connection_info element can contain one
of the following parameters or sets of parameters:

• database_id, page 9-25

• database_id, page 9-25 and icx_session_ticket, page 9-26

• user, page 9-37, pwd, page 9-32

• alt_database_name, page 9-19, user, page 9-37, and pwd, page 9-32

atp_package_name
The name of the PL/SQL interface package that the runtime Oracle Configurator calls to
get ATP information. This parameter is required if the ATP callback interface is to be
used. The particular procedure in the package to be used for calculating ATP dates is
specified by get_atp_dates_proc, page 9-26.

calling_application_id
The ID obtained from FND_APPLICATION.APPLICATION_ID that identifies the host
application. The predefined APPLICATION_ID for Oracle Configurator is 708.

When publishing Models from Oracle Configurator Developer, you must select at least
one application from the list of all registered applications. Applications that are not part
of Oracle Applications must be registered in Oracle Applications before they can use
this parameter. For more information about registering applications, see the Oracle
E-Business Suite System Administrator's Guide.

Session Initialization 9-21

If the host application is part of Oracle Applications (for example, Order Management, i
Store, or TeleSales), it is important to note that the host application displays the
publication only if:

• The publication's Application applicability parameter includes the short name of
the application (for example, ONT is the short name for Oracle Order Management)

• The application is assigned to the end user's Responsibility, which is defined in
Oracle Applications

An Oracle Applications user can often choose one of many Responsibilities, but
each Responsibility is assigned to only one application.

You specify applicability parameters when defining a publication in Configurator
Developer. For more information, see the Oracle Configurator Developer User's Guide.

When the publication is created, a value for FND_APPLICATION.APPLICATION_ID is
saved in the database. It is very important to ensure that if the development and
production publications are on separate servers, then the custom application must be
registered on both servers; it is your responsibility to verify that the custom
application's ID is the same on both servers.

See also responsibility_id, page 9-32.

This is a required parameter.

Note: Oracle Order Management (OM) launches Oracle Configurator
using a calling application ID in the initialization message that is based
on the Responsibility selected by the OM user. When a user accesses the
Sales Order form using the "Order Management Super User"
responsibility, all configuration models that were published with the
"ONT" Publication applicability parameter can be configured using
Oracle Configurator. However, when accessing the Sales Order form
using the Manufacturing and Distribution Manager responsibility,
these same published models are not available, even though the host
application is the same (OM). To make the same models available to the
Manufacturing and Distribution Manager responsibility, republish
your models such that they are also available to Oracle Manufacturing
(appears as "Manufacturing" in Configurator Developer).

client_header
A string or number identifying the unit of work for the host application (for example,
an order or quote). Used in conjunction with the methodology for input configuration
attributes, which is described in the Oracle Configurator Methodologies documentation.
See also client_line, page 9-22 and client_line_detail, page 9-22.

9-22 Oracle Configurator Implementation Guide

client_line
A string or number identifying the particular part of the order or quote that the
configuration is initiated against. Used in conjunction with the methodology for input
configuration attributes, which is described in the Oracle Configurator Methodologies
documentation. See also client_header, page 9-21 and client_line_detail, page 9-22.

client_line_detail
A string or number used to provide additional information if client_line, page 9-22 does
not provide enough. Used in conjunction with the methodology for input configuration
attributes, which is described in the Oracle Configurator Methodologies documentation.
See also client_header, page 9-21 and client_line, page 9-22.

config_creation_date
The host application's notion of when the configuration is created.

The value for the config_creation_date parameter must be determined by your
host application. It is the host application's notion of when the configuration was
created.

See also: config_effective_date, page 9-23 and config_model_lookup_date, page 9-24.

Oracle Order Management specifies a value for this parameter when invoking Oracle
Configurator, using by default the value of Model Line Creation Date. The values of
config_effective_date, page 9-23 and config_model_lookup_date, page 9-24 are
defaulted.

The value of this parameter must be in the format MM-DD-YYYY-HH-MM-SS. The values
for the tokens in this format are shown in Date and Time Format for Parameter, page 9-
22:

The following table lists the date and time formats used for the config_creation_date
parameter.

Date and Time Format for config_creation_date, page 9-22 Parameter

Token Meaning

MM The number of the month

DD The number of the day of the month

YYYY The year

Session Initialization 9-23

Token Meaning

HH The 24-hour representation of the hour

MM The number of minutes

SS The number of seconds

Default for config_creation_date
For a new configuration: the value of SYSDATE. For a restored configuration: the saved
value of config_creation_date, page 9-22. If the parameter value does not include the
HH-MM-SS portion, then the default time is assumed to be midnight (00-00-00).

Example for config_creation_date
<param name="config_creation_date">03-25-2001-19-30-02</param>

config_effective_date
The date used to filter effective nodes and rules.

This parameter has the same structure as config_creation_date, page 9-22.

See also config_creation_date, page 9-22 and config_model_lookup_date, page 9-24.

This parameter is not required.

Default for config_effective_date
For a new configuration: the value of config_creation_date, page 9-22. For a restored
configuration: the saved value of config_effective_date, page 9-23.

config_effective_usage
This parameter is now deprecated. If you are implementing Multiple Language
Support (MLS), you should instead use config_effective_usage_id, page 9-23. You
cannot use both parameters together.

The name of a Usage created in Oracle Configurator Developer. Usage names are used
to identify publications, and to set the Usage on a runtime configuration session. See the
Oracle Configurator Developer User's Guide for details.

The value is not case-sensitive.

Default for config_effective_usage
The default value of this parameter is Any Usage.

config_effective_usage_id
The numeric ID associated with a Usage created in Oracle Configurator Developer,
where you specify a Name and Description for the Usage. Usage IDs are used to

9-24 Oracle Configurator Implementation Guide

identify publications, and to set the Usage on a runtime configuration session. See the
Oracle Configurator Developer User's Guide for details.

The Usage ID is stored in the database column MODEL_USAGE_ID in the table
CZ_MODEL_USAGES. For more information, see Usages, page 16-9.

To obtain the ID value for this parameter, run the following query, then choose the
MODEL_USAGE_ID value that corresponds to the NAME or DESCRIPTION of the
desired Usage.

Query for Usage IDs
SELECT
 cz_model_usages.MODEL_USAGE_ID,
 cz_model_usages.NAME,
 cz_model_usages_tl.DESCRIPTION,
 cz_model_usages_tl.LANGUAGE,
 cz_model_usages_tl.SOURCE_LANG
FROM
 cz_model_usages,
 cz_model_usages_tl
WHERE
 cz_model_usages_tl.LANGUAGE = USERENV ('LANG')
AND
 cz_model_usages.MODEL_USAGE_ID=cz_model_usages_tl.MODEL_USAGE_ID
AND
 cz_model_usages.in_use = '1';

This parameter determines the publishing Usage name for the configuration model. See
Models Created in Configurator Developer, page 9-12 for more information about using
this parameter.

This parameter replaces config_effective_usage, page 9-23. You cannot use both
parameters together.

This parameter is not required.

Default for config_effective_usage_id
The default value of this parameter is Any Usage, whose MODEL_USAGE_ID is
normally -1.

config_header_id
The identifier for an existing configuration. Only used for retrieving a configuration
previously saved by the runtime Oracle Configurator. Not present if the configuration
was not saved.

The value for the config_header_id parameter is obtained from
CZ_CONFIG_HDRS.CONFIG_HDR_ID in the CZ schema.

config_model_lookup_date
Date to look up the publication for the configuration Model. This parameter has the
same structure as config_creation_date, page 9-22.

See also: config_effective_date, page 9-23 and config_model_lookup_date, page 9-24.

Session Initialization 9-25

This parameter is not required.

Default for config_model_lookup_date
For a new configuration: the value of config_creation_date, page 9-22. For a restored
configuration: the saved value of config_effective_date, page 9-23, or SYSDATE, as
determined by RestoredConfigDefaultModelLookupDate in CZ_DB_SETTINGS; see
RestoredConfigDefaultModelLookupDate, page 4-23 for details.

config_rev_nbr
The configuration revision number. Only used for retrieving a configuration previously
saved by the runtime Oracle Configurator. Not present if the configuration was not
saved.

The value for the config_rev_nbr parameter is obtained from CZ_CONFIG_HDRS.
CONFIG_REV_NBR in the CZ schema.

configurator_session_key
An application-dependent string that identifies a configuration session, and allows
linking a pricing or ATP request from the runtime Oracle Configurator to the host
application entity that started the configuration session. Examples for creating this key
might be: order header ID with order line ID, or quote ID with quote revision number.

context_org_id
This parameter is for backward compatibility only. Instead of this parameter you
should use its synonym, organization_id, page 9-29.

This parameter is the organization identifier for the BOM exploder. The value for the
context_org_id parameter must be determined by your host application. It is
ultimately derived from MTL_SYSTEM_ITEMS.ORGANIZATION_ID.

customer_id
When getting ATP dates, the ID of the customer to which the configured product is to
be shipped. Must be used with customer_site_id, page 9-25.

customer_site_id
When getting ATP dates, the ID of the customer site to which the configured product is
to be shipped. Must be used with customer_id, page 9-25.

database_id
The name of the DBC file that contains database connectivity information, without its
filename extension of .dbc. This file can be found in a standard Oracle Applications
installation by calling the PL/SQL function fnd_web_config.database_id. This

9-26 Oracle Configurator Implementation Guide

parameter must be used with certain other parameters, as described in Login
Parameters, page 9-9.

Example for database_id
myhost01_mysid05

get_atp_dates_proc
The name of the "get ATP dates" procedure to be called from the package specified by
atp_package_name, page 9-20. This parameter is conditionally required; it must be
provided if the ATP callback interface is to be used.

icx_session_ticket
An ICX session ticket encodes an Oracle Applications session.

This is the recommended way for Oracle Applications to call the runtime Oracle
Configurator.

You can use the PL/SQL function cz_cf_api.icx_session_ticket to obtain a
value for this parameter. (See the description of ICX_SESSION_TICKET, page 17-53 for
details about the function cz_cf_api.icx_session_ticket.)

When passing an icx_session_ticket, the host application must also pass a
database_id, page 9-25.

inventory_item_id
This parameter is a synonym that replaces model_id, page 9-27.

This parameter is the imported Inventory Item ID for the top-level imported BOM
Model. It is used together with organization_id, page 9-29 to identify the configuration
model. The value for this parameter must be determined by your host application. It is
ultimately derived from MTL_SYSTEM_ITEMS.INVENTORY_ITEM_ID.

This parameter is conditionally required. There is no default value.

jrad_standalone
Controls whether the user interface for the runtime Oracle Configurator is designed to
stand alone in its own window, or to be part of its host application's window. The
standalone design includes the page header and global buttons provided by the Oracle
Applications Framework. For more information about the Oracle Applications
Framework, see the Oracle Application Framework Documentation Resources, Release
12, on Oracle Applications Documentation, on the Oracle Technology Network.

The values allowed for this parameter are shown in the following table:

Session Initialization 9-27

Value Meaning

true The UI for the runtime Oracle Configurator is
rendered with a header and global buttons.

false The UI for the runtime Oracle Configurator is
rendered without a header or global buttons.

Default for jrad_standalone
The default value of this parameter is false.

model_id
This parameter is for backward compatibility only. Instead of this parameter you
should use its synonym, inventory_item_id, page 9-26.

This parameter is the inventory item identifier for the top-level Model.

The value for the model_id parameter must be determined by your host application. It
is ultimately derived from MTL_SYSTEM_ITEMS.INVENTORY_ITEM_ID.

Conditionally required. No default.

model_quantity
Only BOM Models can be configured with this parameter. The value of this parameter
is a number that indicates how many identical copies of the Model are being
configured. The model quantity may change during a configuration session, so the final
quantity should be read from the associated output item in the termination message.

Default for model_quantity
For a new configuration, the default is 1. The host application may set a different
number.

Notes
Be aware of the effect of passing various values for this parameter when:

• The model is a BOM Model. (Only BOM Models can be configured with the
model_quantity, page 9-27 parameter.)

• There exist configuration rules that contribute some quantity to the numeric value
of the model root (that is, the rules specify that a certain quantity of the model
should be in the configuration).

Background: Only rules defined on non-BOM nodes can make such contributions.
Otherwise, Quantity Cascade calculations result in a numeric cycle.

9-28 Oracle Configurator Implementation Guide

• These rules are triggered when the configuration is created, rather than as the result
of user selections.

Background: A rule is triggered when the conditions defined for it are satisfied.

Examples:

• A BOM Model is modified by adding a Feature with one Option and a Min/Max of
(1,1). A Numeric Rule is defined on that Feature which contributes a value to the
quantity of the root BOM Model. When a configuration is created, the condition for
the rule is satisfied (because a Min/Max of (1,1) results in a mandatory selection of
the Option), and the quantity specified by the Numeric Rule is contributed.

• A BOM Model is modified by adding an Integer Feature with an initial value. A
Numeric Rule is defined on that Feature, which contributes the value of the Feature
to the quantity of the root BOM Model. When a configuration is created, the
condition for the rule is satisfied, and the quantity specified by the Numeric Rule is
contributed.

The effects of combining contributions to the model's quantity with passing a value for
the initialization parameter model_quantity when creating or restoring a
configuration is illustrated in Effects of Contributions to Model Quantity, page 9-28.
Not all of the possible scenarios are illustrated.

In Effects of Contributions to Model Quantity, page 9-28, the following symbols are
used:

• C represents a contribution from a configuration rule to the root BOM model that
exists at the creation of the configuration.

• NM represents a value for the model_quantity parameter that is passed in while
creating a new configuration.

• RM represents a value for the model_quantity parameter that is passed in while
restoring a saved configuration.

The following table lists the effects of contributions to Model Quantity by different
values of the model_quantity parameter.

Effects of Contributions to Model Quantity

Contribution Model Quantity Final Quantity

New Configuration:

Case 1 C NM>=C NM

Session Initialization 9-29

Contribution Model Quantity Final Quantity

Case 2 C NM<C C, with Validation
FailureThese Validation
Failure messages are deleted
once their text is viewed.

Case 3 None or 1 None 1

Case 4 C>1 None C

Restored Configuration:

Saved In Case 1 C RM>=C RM

Saved In Case 1 C RM<C C, with Validation Failure

Saved In Case 1 None RM RM

Saved In Case 1 C None NM

operating_unit_org_id
The Organization ID for the Oracle Applications Operating Unit Organization.

This parameter supports the use of Multiple Organization Access Control (MOAC),
which requires the Operating Unit to be provided for a configuration session.

Oracle Applications that call Advanced Pricing or ATP pass this parameter when
invoking the Runtime Oracle Configurator. You must provide this parameter in a
customized initialization message, or in the Custom Initialization Parameters field in
Oracle Configurator Developer, if you use Advanced Pricing or ATP, or use
MOAC-enabled code in a Configurator Extension.

When this parameter is provided, Oracle Configurator establishes the provided
Operating Unit Organization for the configuration session. If the parameter is not
provided, the default Operating Unit Organization is established. If there is no default,
then no Operating Unit Organization is established.

organization_id
The Organization ID for the Oracle Applications Item Validation Organization.

This parameter is a synonym that replaces context_org_id, page 9-25.

9-30 Oracle Configurator Implementation Guide

This parameter is the imported Organization ID for the top-level imported BOM Model.
It is used together with inventory_item_id, page 9-26 to identify the configuration
model. The value for this parameter must be determined by your host application. It is
ultimately derived from MTL_SYSTEM_ITEMS.ORGANIZATION_ID.

If you are using Oracle Order Management, this is the organization identifier for the
BOM exploder. See the documentation for Order Management for information on
setting the Item Validation organization.

price_mult_items_mls_proc
This is the name of the "price multiple items" procedure to be called in an MLS
environment. This parameter should be used by a host application that supports
multiple currencies, not just USD (US dollars).

When using pricing callbacks, you must include a parameter that specifies a pricing
procedure, such as price_mult_items_mls_proc. However, this parameter is mandatory
in an MLS environment. See Pricing Parameters, page 9-15 for background information
about parameters that are required for pricing callbacks.

Use this parameter instead of price_mult_items_proc, page 9-30, because the procedure
called through this parameter displays prices in the correct currency and format.

price_mult_items_proc
The name of the "price multiple items" procedure to be called from the package
specified by pricing_package_name, page 9-31.

This parameter is conditionally required; either this parameter, price_single_item_proc,
page 9-30 or price_mult_items_mls_proc, page 9-30 must be provided if pricing
callbacks are used.

Use price_mult_items_mls_proc, page 9-30 instead of this parameter, because the
procedure called through this parameter displays prices only in USD (US dollars).

This parameter takes precedence over price_single_item_proc, page 9-30.

price_single_item_proc
This parameter is now deprecated. Use price_mult_items_proc, page 9-30 if possible.

The name of the "price single item" procedure to be called from the package specified
by pricing_package_name, page 9-31.

This parameter is conditionally required; one of this parameter, price_mult_items_proc,
page 9-30, or price_mult_items_mls_proc, page 9-30 must be provided if pricing
callbacks are to be used.

This procedure is not called if price_mult_items_proc, page 9-30 is provided.

Session Initialization 9-31

pricing_package_name
The name of the PL/SQL interface package that the runtime Oracle Configurator calls to
get pricing information. This parameter is required if the pricing callback interface is to
be used. The particular procedure in the package to be used for performing pricing is
specified by either price_mult_items_proc, page 9-30 or price_single_item_proc, page 9-
30.

product_id
For a Model created in Configurator Developer, the value for this parameter is the
string you enter for Product ID when you create the publication record for the Model.

For an imported BOM Model, the value for this parameter is automatically generated
when you create the publication record for the BOM Model (by concatenating the
imported Organization ID with the imported Inventory Item ID) and cannot be
modified. If you are configuring a BOM Model, you should probably use the
combination of organization_id, page 9-29 and inventory_item_id, page 9-26 instead of
this parameter.

If this parameter is included in the initialization message, Oracle Configurator uses the
function CZ_CF_API.CONFIG_MODEL_FOR_PRODUCT, page 17-19 to determine
which Model and User Interface should be used.

The value for this parameter is obtained from CZ_MODEL_PUBLICATIONS.
PRODUCT_KEY in the CZ schema.

The use of the Product ID to identify the model requires the additional specification of
the Usage and Mode for publication. If the host application is a custom application (that
is, not part of Oracle Applications), then you must also pass publication_mode, page 9-
32 and config_effective_usage_id, page 9-23. If the host application is part of Oracle
Applications (such as Order Management), then the Usage and Mode are obtained
directly from the profile options CZ: Publication Usage and CZ: Publication Lookup
Mode.

See Models Created in Configurator Developer, page 9-12 for more information about
using this parameter.

Default for product_id
This parameter is conditionally required. There is no default value.

Examples for product_id
To make your application use a Configurator Developer Model with the Product ID of
ABC1234, insert the following parameter in your initialization message:
<param name="product_id">ABC1234</param>

To make your application use an imported BOM Model with the organization_id, page
9-29 204 and the inventory_item_id, page 9-26 137, insert the following parameter in
your initialization message:
<param name="product_id">204:137</param>

9-32 Oracle Configurator Implementation Guide

publication_mode
Determines the publication mode for the configuration model. See Models Created in
Configurator Developer, page 9-12 for more information about using this parameter.

The values allowed for this parameter are shown in the following table:

Value Meaning

P Production

T Test

This parameter is not required.

Default for publication_mode
The default value of this parameter is P.

pwd
The password to use when logging in to the Oracle Applications database. Use the
Oracle Applications password if you identified the database with the database_id, page
9-25 parameter. Use the database password if you identified the database with the
alt_database_name, page 9-19 parameter. Used in conjunction with user, page 9-37.

read_only
If the value is true, the UI Server provides a read-only UI for viewing configurations.
The end user can examine options, but cannot select any. The Finish button is disabled.
The UI Server displays a message at the beginning of the configuration session,
indicating that the session is read-only. If the value is false, the UI Server provides the
normal UI for configuring a model.

Default for read_only
The default value of this parameter is false.

requested_date
When getting ATP dates, the requested date entered on the order line. The format of the
date must be MM-dd-yyyy. The default value of SYSDATE is used if you do not specify
a different date.

responsibility_id
When logging in to Oracle Applications, the responsibility determines the functions
available to the login user. The value to use for this ID is obtained from

Session Initialization 9-33

FND_RESPONSIBILITY_VL.RESPONSIBILITY_ID.

The predefined RESPONSIBILITY_ID for the Oracle Configurator Developer
responsibility is 22713. The responsibilities related to Oracle Configurator are described
in The Predefined Configurator Developer Responsibilities, page 15-2.

See also calling_application_id, page 9-20.

return_url
The fully qualified URL of a Java servlet installed on your Web server that implements
the necessary behavior after a configuration session is terminated. See Return URL
Parameter, page 9-14 for details, and Implementing a Return URL Servlet, page E-3
for a code example.

The example below shows the use of this parameter to specify a servlet class
myorg.myservlets.Checkout, which is the example described in Implementing a
Return URL Servlet, page E-3

Example for return_url
<param
name="return_url">http://www.mysite.com:8802/OA_HTML/myorg/myservlets/Ch
eckout</param>

Note: It is necessary to register an alias for the return URL servlet. For
details, see the Oracle Configurator Installation Guide.

save_config_behavior
The values allowed for this parameter are shown in the following table:

Value Meaning

never A new configuration is not saved.

new_config A new configuration is saved.

new_revision A new revision of the configuration is saved.
(If no existing revision is found, a new
configuration is saved.)

overwrite The existing configuration header and
revision is used.

Default for save_config_behavior
The default value of this parameter is new_revision.

9-34 Oracle Configurator Implementation Guide

If the value is overwrite, an error is signalled.

sbm_flag
This parameter indicates whether the host application supports multiple instantiation.
To support multiple instantiation the host application must have the appropriate patch
applied. The following table describes the valid values for the sbm_flag parameter.

Value Meaning

True The host application has installed the
appropriate software patch that supports
multiple instantiation.

False The software patch supporting multiple
instantiation has not been installed, and
multiple instantiation is not supported by the
host application.

A message is returned when an end user attempts to instantiate a component at
runtime, and the host application does not support instantiation. If the sbm_flag is not
passed at all, host application support of multiple instantiation is considered False.

share_dio
See the description of the related servlet property cz.uiservlet.dio_share in the
Oracle Configurator Installation Guide. This initialization parameter overrides that servlet
property, if both are present.

The values allowed for this parameter are shown in the following table.

Value Meaning

false Disables sharing the cached version of the
Model. This provides slower loading of the
Model, but reflects the latest changes to the
Model.

true Enables sharing the cached version of the
Model. This provides faster loading after the
initial loading of the Model, but does not
reflect the latest changes to the Model.

Session Initialization 9-35

ship_to_org_id
When getting ATP dates, the ID of the organization to which the configured product is
to be shipped. This value is obtained from SHIP_TO_ORG_ID in the
OE_ORDER_LINES_ALL table.

template_url
Used only with DHTML legacy user interfaces, which are no longer supported..

terminate_id
Important: As of this release, DHTML UIs are no longer supported.

Identification number used to support guided selling in Oracle Order Management. An
Applet session running in the UI Server generates a termination ID (which is a
sequence number) and inserts it into the initialization message for the DHTML session
(also running in the UI Server), as the value of this initialization parameter. When the
DHTML session terminates, it stores its XML termination message in the database,
identified by this termination ID. The Applet session then uses the termination ID to
fetch the XML termination message from the database and return it to the host
application (Order Management). For a related subject, see the discussion of the
heartbeat mechanism and guided selling in the Oracle Configurator Installation Guide.

terminate_msg_behavior
The values allowed for this parameter are shown in the following table:

Value Meaning

full The entire termination message is passed back
to the host application. This includes prices, if
you have used a pricing interface package (see
Pricing and ATP in Oracle Configurator , page
13-1).

brief No output or messages are passed to the
caller.

It is recommended that host applications using the CZ_CONFIG_DETAILS_V view to
read configuration outputs use brief when the configuration is saved. If the
configuration is not saved, then the outputs and messages are not readable from the

9-36 Oracle Configurator Implementation Guide

database. If Oracle Configurator receives a connection error or other error, the error
messages that it receives are passed back as messages even if the
terminate_msg_behavior is brief.

ui_def_id
The identifier for a particular User Interface created in Configurator Developer. The
value for the ui_def_id parameter is obtained by:

• Examining the UI ID column in the User Interface area of the Workbench in Oracle
Configurator Developer

• Querying CZ_UI_DEFS.UI_DEF_ID in the CZ schema

• Calling the PL/SQL function cz_cf_api.ui_for_item (see UI_FOR_ITEM, page
17-66)

ui_type
Indicates the type of user interface being specified for the model being configured. The
type determines the agent that renders the UI in the runtime Oracle Configurator. See
Runtime UI Types, page 2-6 for background on the UI types provided by Oracle
Configurator.

The values allowed for this parameter are shown in the following table:

Value Meaning

Applet The UI is a legacy Applet UI.

Custom The UI is a custom JSP UI.

DHTML The UI is a legacy DHTML UI.

Important: As of this release, DHTML UIs
are no longer supported.

JRAD The UI is a generated HTML UI.

The initialization message for all UI types is posted to the Oracle Configurator Servlet.
For the JRAD type, the UI is rendered by the Oracle Applications Framework. For the
Applet type, the UI is rendered by the Oracle Configurator Servlet.

You cannot change the actual type of a UI by changing the value of this parameter.

Session Initialization 9-37

user
The username to use when logging in. Use the Oracle Applications username if you
identified the database with the database_id, page 9-25 parameter. Use the database
username if you identified the database with the alt_database_name, page 9-19
parameter. Used in conjunction with pwd, page 9-32.

user_id
The ID from FND_USER.USER_ID.

warehouse_id
When getting ATP dates, the ID of the organization that is going to ship the configured
product to the customer. This value is obtained from SHIP_FROM_ORG_ID in the
OE_ORDER_LINES_ALL table.

Session Termination 10-1

10
Session Termination

This chapter describes the format and parameters of the termination message for the
runtime Oracle Configurator Servlet.

This chapter covers the following topics:

• Introduction

• Overview

• XML Message Structure

• Submission

• Cancellation

• Error

• The Return URL

Introduction
This chapter describes the format and parameters of the termination message for the
runtime Oracle Configurator, including information on:

• Overview, page 10-2

• XML Message Structure, page 10-3

• Submission, page 10-4

• Cancellation, page 10-12

• Error, page 10-12

• The Return URL, page 10-13

10-2 Oracle Configurator Implementation Guide

Note: If your host application is part of Oracle Applications, then the
termination message is already defined. You only need to implement a
termination message for custom host applications.

Overview
This section provides an overview of the termination message.

Relationship to Initialization Message
This document describes the role of the termination message primarily in relation to the
initialization message, in Session Initialization, page 9-1. See the following sections for
details:

• Return URL Parameter, page 9-14

• Responsibilities of the Host Application, page 9-3

• return_url, page 9-33

• terminate_id, page 9-35

• terminate_msg_behavior, page 9-35

• model_quantity, page 9-27

Definition of Session Termination
Sessiontermination takes place when the Oracle Configurator window is closed by one
of the conditions listed in Termination conditions, page 10-2 table.

Termination conditions

Condition Example Explanation

Submission Your user clicks the Finish button. See Submission, page 10-4

Cancellatio
n

Your user clicks the Cancel button. See Cancellation, page 10-12

Error A connection cannot be made to the
database.

See Error, page 10-12

Session Termination 10-3

When the Oracle Configurator window is closed, terminating your user's configuration
session, the OC Servlet returns the results to your host application in the form of a
termination message, written in XML. You need to understand the structure of the
termination message to be able to extract the necessary data from it in your return URL
servlet. The structure of this message is described in XML Message Structure, page 10-
3.

XML Message Structure
All outputs in the XML termination message are written as XML elements and
subelements of the <terminate> document element, in the general form:

Example
<terminate>
 <element_name>element_value</element_name>
 <element_name>
 <subelement_name>subelement_value</subelement_name>
 </element_name>
</terminate>

The top-level structure of the <terminate> element is illustrated by these excerpts
from its DTD:

Example
...
<!ELEMENT terminate (config_header_id?, config_rev_nbr?,
valid_configuration?, complete_configuration?, exit, config_outputs?,
config_messages?)>
...
<!ELEMENT config_outputs (output_option*)>
...
<!ELEMENT config_messages (message*)>
...

Structure of Termination Message, page 10-4 shows the basic structure of a sample
XML termination message. Typographical emphasis and comments have been added to
point out the structure; such comments do not appear in actual termination messages.

10-4 Oracle Configurator Implementation Guide

Structure of Termination Message
<terminate>
 <!-- configuration status elements -->
 <config_header_id>1780</config_header_id>
 <config_rev_nbr>2</config_rev_nbr>
 <valid_configuration>true</valid_configuration>
 <complete_configuration>true</complete_configuration>
 <exit>save</exit>
 <config_outputs>
 <option>
 <component_code>143-1490</component_code>
 <quantity>1</quantity>
 <list_price>0.00</list_price>
 <!-- more elements go here -->
 </option>
 <!-- more options go here -->
 </config_outputs>
 <config_messages>
 <message>
 <message_type>error</message_type>
 <message_text>Config header does not exist in
database.</message_text>
 </message>
 <!-- more messages go here -->
 </config_messages>
</terminate>

Submission
Submission occurs after your user closes the Oracle Configurator window by clicking
the Finish button.

The meaning of the Finish button is defined by the context of your host application. For
instance, in a web store, it might mean adding the configured product to your user's "
shopping cart", or submitting the configured order to your order entry system.

When the Finish button is clicked, the OC Servlet determines whether a return URL has
been specified. If so, the servlet identified by that URL is called, and the results it
generates are passed to your host application for further processing. This is the most
important job of the return URL servlet; it captures the configuration selections of your
user so that your host application can make use of them. For more details, see The
Return URL., page 10-13

After the Oracle Configurator window is closed, your host application must repaint the
frame used by the Oracle Configurator window.

After submission, the termination message provides the host application with data
describing:

• Configuration Status, page 10-5

• Configuration Outputs, page 10-8

• Configuration Messages, page 10-11

Session Termination 10-5

Note: If you are providing guided selling in Oracle Applications
Order Management, then your host application should obtain the
termination message by using the initialization parameter
terminate_id, page 9-35. See the description of that parameter for
details.

If a custom host application wraps the runtime Oracle Configurator in its own
JavaServer Page (as described in Incorporation of Oracle Configurator in the Host
Application's UI, page 2-5), then Oracle Configurator posts the termination message to
it by HTTP connections, using the return URL (see The Return URL, page 10-13). An
example of such a host application is Oracle iStore (IBE).

If an Oracle Applications Framework host application incorporates the runtime Oracle
Configurator in a region of its own OA Framework page (as described in Incorporation
of Oracle Configurator in the Host Application's UI, page 2-5), then Oracle Configurator
leaves the termination message in the OAPageContext, identified by the transient
session key czTerminateMessage, then redirects to the same page. An example of
such a host application is Oracle Contracts Core (OKC). Note that the termination
message may contain error information (see Error, page 10-12) as well as normal
termination output.

The host application can retrieve the termination message from the OAPageContext,
using the following method, where pageContext is an instance of
oracle.apps.fnd.framework.webui.OAPageContext:

Example
(String) pageContext.getTransientSessionValue("czTerminateMessage");

Configuration Status
The current configuration status is described by the subelements of <terminate>
listed in this section. These subelements are:

• config_header_id, page 10-6

• config_rev_nbr, page 10-6

• complete_configuration, page 10-6

• exit, page 10-6

• prices_calculated_flag, page 10-6

• standard_validation, page 10-7

• valid_configuration, page 10-8

10-6 Oracle Configurator Implementation Guide

Subelements for Configuration Status
This section describes the configuration status subelements of the <terminate>
element.

config_header_id
The main identifier of an existing configuration. See the description for
config_header_id, page 9-24. This value is displayed in the Oracle Configurator window
with the default label "Configuration Header ID".

config_rev_nbr
The revision number of an existing configuration. See the description for
config_rev_nbr, page 9-25. This value is displayed in the Oracle Configurator window
with the default label "Configuration Revision".

complete_configuration
The value is true if all mandatory option classes (required features) are satisfied. This
value is displayed in the Oracle Configurator window with the default label
"Configuration Complete".

exit
The possible values written for the exit termination element are shown in the following
table:

Value Meaning

save If the configuration was saved.

cancel If the configuration was cancelled.

error If an error was detected while executing in the
UI Server.

processed If a batch validation message was processed
but not saved.

This value is displayed in the Oracle Configurator window with the default label "Exit
Status".

prices_calculated_flag
Prices are calculated when the user clicks the Summary button. This element tells the
host application whether this calculation has happened in synchronization with the
configuration. The possible values written for the prices_calculated_flag termination

Session Termination 10-7

element and their meanings are shown in the following table:

Value Meaning

true The configuration has not been changed since
the end user clicked the Summary button.
That is, the calculated prices are still in
synchronization with the configuration.

false Prices were not calculated after the
configuration had been changed.

This could happen if the end user had never
clicked the Summary button before clicking
Finish, or if the user changed the
configuration and did not click the Summary
button before clicking Finish.

In this case, the host application should
reprice each configuration line, to ensure that
the proper prices are applied to the
configuration.

standard_validation
This element is added to the termination message only if:

• The configuration session was for batch validation

• The validation phase of batch validation was skipped

See Skipping Batch Validation, page 11-9 for background.

The following table lists the values allowed for the standard_validation element.

Value Meaning

true The standard validation phase of batch
validation was executed.

false The standard validation phase of batch
validation was skipped.

total_price
Contains the total discounted selling price for all the selected items in the configuration.
The selling price and discounts are determined by the callback pricing procedure that

10-8 Oracle Configurator Implementation Guide

you have specified for the configuration session. See Pricing and ATP in Oracle
Configurator , page 13-1 for details.

valid_configuration
The value is true if no error messages are reported for the configuration. This value is
displayed in the Oracle Configurator window with the default label "Configuration
Valid".

Configuration Outputs
The list of options selected by your user during the configuration session is contained in
the <config_outputs> subelement of <terminate>. Each option is enclosed in
<option> tags and contains the elements described in this section. These subelements
are:

• atp_date, page 10-9

• atp-rollup-date, page 10-9

• bom_item_type, page 10-9

• bom-quantity, page 10-10

• component_code, page 10-10

• discounted_price, page 10-10

• inventory_item_id, page 10-10

• list_price, page 10-10

• organization_id, page 10-10

• parent_line_id, page 10-10

• quantity, page 10-10

• selection_line_id , page 10-10

• uom, page 10-11

Configuration Outputs in the Termination Message, page 10-9 shows an example of
configuration outputs in the termination message, with comments added.

Session Termination 10-9

Configuration Outputs in the Termination Message
<terminate>
 <!-- configuration status goes here -->
 <config_outputs>
 <option>
 <selection_line_id>1846</selection_line_id>
 <parent_line_id>1847</parent_line_id>
 <component_code>143-1490</component_code>
 <quantity>1</quantity>
 <list_price>0.00</list_price>
 <inventory_item_id>1490</inventory_item_id>
 <organization_id>204</organization_id>
 <uom>Ea</uom>
 <discounted_price>0.00</discounted_price>
 <atp_date></atp_date>
 </option>
 <!-- more options go here -->
 </config_outputs>
 <!-- configuration messages go here -->
</terminate>

Subelements for Configuration Outputs
This section describes the subelements for the <config_outputs> subelement of the
<terminate> element.

atp_date
Contains the ATP date. This is calculated by using the ATP procedure specified in the
initialization message. See ATP Parameters, page 9-15, and Pricing and ATP in Oracle
Configurator , page 13-1.

atp-rollup-date
Provided if ATP is enabled. Contains the ATP date for the entire model.

bom_item_type
Indicates the type of the configured BOM node, using the values shown in Values for
the Termination Message Element <bom_item_type>, page 10-9.

The following table lists the values for the termination message element
<bom_item_type>.

Values for the Termination Message Element <bom_item_type>

Value Name Meaning

1 BOM_MODEL BOM Model

2 BOM_OPTION_CLASS BOM Option Class

10-10 Oracle Configurator Implementation Guide

Value Name Meaning

4 BOM_STD_ITEM BOM Standard Item

bom-quantity
Contains the quantity of the BOM Model being configured, as of the time that the
configuration is saved.

component_code
Contains a value extracted from BOM_EXPLOSIONS.COMPONENT_CODE.

discounted_price
Contains the discounted price for the selected option. This is calculated by using the
pricing procedure specified in the initialization message. See Pricing Parameters, page
9-15, and Pricing and ATP in Oracle Configurator , page 13-1.

inventory_item_id
Contains the ID for the item, extracted from MTL_SYSTEM_ITEMS.
INVENTORY_ITEM_ID.

list_price
Contains the list price for the selected option. This is calculated by using the pricing
procedure specified in the initialization message. See Pricing Parameters, page 9-15, and
Pricing and ATP in Oracle Configurator, page 13-1.

organization_id
Contains the organization ID for the item, extracted from MTL_SYSTEM_ITEMS.
ORGANIZATION_ID.

parent_line_id
Contains the value from CZ_CONFIG_ITEMS.CONFIG_ITEM_ID for the parent node
of the configured node. If the parent is the root node, then the value is 0 (zero).

quantity
Contains the selected quantity for the option.

selection_line_id
Contains the ID of the configuration line. It is the same as CZ_CONFIG_ITEMS.
CONFIG_ITEM_ID in the CZ schema.

Session Termination 10-11

uom
Contains the unit of measure.

Configuration Messages
The messages generated by the OC Servlet in response to selections made by your user
during the configuration session are contained in the <config_messages>
subelement of <terminate>. Each message is enclosed in <message> tags and
contains the elements described in this section. These subelements are:

• component_code, ps_node_id, page 10-11

• item_name, page 10-11

• message_text, page 10-12

• message_type, page 10-12

See Error, page 10-12 for details on how to handle validation failures.

Configuration Messages in the Termination Message, page 10-11 shows an example of
a configuration message in the termination message, with typographical emphasis and
comments added.

Configuration Messages in the Termination Message
Example
<terminate>
 <!-- configuration status goes here -->
 <!-- configuration outputs go here -->

 <config_messages> <message> <message_type>error</message_type>
<message_text>Config header does not exist in database.</message_text>
</message>
 <!-- more messages go here -->
 </config_messages>
</terminate>

Subelements for Configuration Messages
This section describes the subelements for the <config_messages> subelement of the
<terminate> element.

component_code, ps_node_id
If present, one of these elements contains the identifier of the option to which this
message is related. May be absent, if the message was not generated by a node.

item_name
Contains the name of the option to which this message is related.

10-12 Oracle Configurator Implementation Guide

message_text
Contains the text of the message.

message_type
Contains the severity level of the message. Possible values include the following:

• suggestion

• warning

• overridable error

• error

• autoselection

• autoexclusion

• not satisfied

Cancellation
Cancellation occurs after your user closes the Oracle Configurator window by clicking
the Cancel button. Control is returned to the host application, and no configuration
information is returned. Validation failure information is not returned in the
termination message for a cancellation. The termination message contains only the
<exit> subelement, with a value of cancel:

Cancellation in the Termination Message
<terminate>
 <exit>cancel</exit>
</terminate>

Error
Error occurs after some condition prevents initialization of the Oracle Configurator
window, or submission of the user's selections. Such conditions might include:

• Incorrect database connection or user login parameters (see Login Parameters, page
9-9)

• Lack of any configuration parameters (see Model Identification Parameters, page 9-
10)

• Incorrect type for a parameter

• A fatal exception in the Configurator Messaging service

Session Termination 10-13

If there were validation failures during your user's configuration session, each failure
on the list of the validation failure objects is returned as a <message> element
describing the failure. Information about the failure is returned to the OC Servlet as an
object of type oracle.apps.cz.cio.ValidationFailure, which you can access
through the Oracle Configuration Interface Object (CIO).See the Oracle Configurator
Extensions and Interface Object Developer's Guide for details.

Control is returned to the host application, and no configuration information is
returned. As shown in Error Information in the Termination Message, page 10-13, any
validation failures are returned as messages in the <config_messages> element and
the termination message contains the <exit> subelement, with a value of error.

Error Information in the Termination Message
<terminate>
 <valid_configuration>false</valid_configuration>
 <complete_configuration>false</complete_configuration>
 <exit>error</exit>
 <config_messages>
 <message>
 <message_type>error</message_type>
 <message_text>Problem processing normal request: Could not post
XML message to result URL:Connection refused</message_text>
 </message>
 </config_messages>
</terminate>

The Return URL
The program specified by the return_url initialization parameter determines how
your host application uses the configuration information produced by your user's
selections in the Oracle Configurator window. For demonstration purposes, the return
URL program shown in this document is a Java servlet, but you can use another type of
program that performs the same role.

If you have specified the return URL using a parameter in your initialization message
for the Oracle Configurator window, then the return URL servlet is called upon
termination of a configuration session. For details about this parameter, see Return URL
Parameter, page 9-14.

The termination message is passed to the return URL as the value of the XMLmsg
argument. The initialization message that was passed to the configurator is also passed
to the return URL, as the value of the INITmsg parameter.

The return URL must perform all middle-tier and database processing of the
configuration and then return HTML that closes the Oracle Configurator window and
continues with the program flow for the host application.

Specifying the Return URL
You specify the location of your return URL servlet in the XML initialization message,
as the value of the parameter return_url. For an example, see HTML for Invoking the

10-14 Oracle Configurator Implementation Guide

Runtime Oracle Configurator with Return URL, page 9-14.

See also:

• The Return URL , page 10-13

• return_url, page 9-33

• Parameter Syntax, page 9-4

Implementing the Return URL
The first step in implementing a return URL is to register an alias name for the return
URL servlet. For details, see the Oracle Configurator Installation Guide.

An example of a return URL servlet is shown in Example Return URL Servlet
(Checkout.java), page E-5. You can modify this servlet code for your host application's
requirements.

To use some of the configuration information returned in the termination message (for
example, the outputs described in Configuration Outputs, page 10-8), you can write a
Java method that obtains the value of an element in the termination message by using
the getTagValue() method defined in the Checkout servlet.

The following code fragment obtains the value of the <valid_configuration>
output:

Obtaining Values from Termination Message
String getValidConfig(XMLDocument doc) {
 // get element from termination msg
 return getTagValue(doc, "valid_configuration", null);
 }

For example, the following value of the <valid_configuration> output is
provided by the following termination message:

Example
<valid_configuration>true</valid_configuration>

When the Checkout servlet is called after submission, it replaces the Oracle
Configurator window with an HTML page, like this:

HTML Output Produced from Termination Message
<html>
<head><title>Checked Out with Valid Configuration</title></head>
<body>
Configuration Valid?: true
</body>
</html>

Batch Validation 11-1

11
Batch Validation

This chapter describes using Oracle Configurator in a programmatic mode.

This chapter covers the following topics:

• Overview

• Introduction

• Passing the Batch Validation Message

• Calling the CZ_CF_API.VALIDATE Procedure

• Batch Validation Failure

• Skipping Batch Validation

Overview
This chapter describes using the runtime Oracle Configurator in programmatic mode,
without direct end user interaction, which is called batch validation. This chapter
includes information about:

• Introduction, page 11-2

• Passing the Batch Validation Message, page 11-2

• Calling the CZ_CF_API.VALIDATE Procedure, page 11-4

• Batch Validation Failure, page 11-9

• Skipping Batch Validation, page 11-9

Note: Batch validation operates only on options that are BOM Model
Items in Oracle Applications. Your host application must be part of
Oracle Applications to implement batch validation.

11-2 Oracle Configurator Implementation Guide

Introduction
Batch validation allows a host application to perform tasks such as:

• Validating a BOM-based configuration in the background

• Determining a configuration quantity

• Deleting lines from a configured order while keeping the configuration valid

• Re-validating a previously booked order, if the configuration rules have changed in
the meantime

• Using a custom user interface

A host application calls batch validation through the CZ_CF_API.VALIDATE PL/SQL
procedure (see Calling the CZ_CF_API.VALIDATE Procedure, page 11-4). This
procedure passes the batch validation message to the URL of the OC Servlet (see
Passing the Batch Validation Message, page 11-2).

Passing the Batch Validation Message
A batch validation message consists of information defining the configuration context
(such as an identifier for the configured model) and a list of configured options. The
message can be used to revalidate a previously saved configuration.

The elements of the batch validation message are described in Elements of the Batch
Validation Message, page 11-2.

An example of the batch validation message is provided in Example of Batch Validation
Message, page 11-4.

The following table describes the elements of the batch validation message.

Elements of the Batch Validation Message

Element Description

<batch_validate> Composed of an <initialize> subelement, which initializes
the configuration session, and a <config_inputs> subelement,
which provides the inputs to the configuration (replacing the
inputs provided by an interactive user).

The <batch_validate> element can include the parameter
validation_type, which indicates the type of validation to be
performed.

Batch Validation 11-3

Element Description

validation_type Optional parameter to the <batch_validate> element. Values
are:

• validate_order

This value should be passed when validating orders, such as
is done by Oracle Order Management. This is the default
value.

• validate_fulfillment

This value should be passed when validating fulfillment
status, such as is done by Oracle Install Base.Batch validation
is never skipped when validation_type is
validate_fulfillment.

This value should not be passed if you want to skip batch
validation. For more information see Skipping Batch
Validation, page 11-9.

• interactive

This value should be passed if you need to conduct a batch
validation session that behaves like an interactive end user
configuration session.

Example:

<batch_validate
validation_type="validate_order">

<initialize> Described in Session Initialization, page 9-1.

The parameters of the initialization message are described in
Initialization Parameter Descriptions, page 9-17. See the
description of the database_id, page 9-25 parameter for
connectivity information.

<config_inputs> Composed of a list of <option> elements.

<option> Described in Session Termination, page 10-1. When an
<option> element is used in a <config_inputs> element,
only the <component_code> and <quantity> elements of the
<option> are used.

11-4 Oracle Configurator Implementation Guide

Example of Batch Validation Message
<batch_validate validation_type="validate_order">
 <initialize>
 <param name="context_org_id">204</param>
 <param name="config_creation_date">03-25-2001-19-30-02</param>
 <param name="calling_application_id">300</param>
 <param name="responsibility_id">20559</param>
 <param name="config_header_id">21361</param>
 <param name="config_rev_nbr">1</param>
 <param name="read_only">FALSE</param>
 <param name="save_config_behavior">new_revision</param>
 <param name="database_id">ap115sun_dev115</param>
 </initialize>
 <config_inputs>
 <option>
 <component_code>143-1490-1494</component_code>
 <quantity>1</quantity>
 </option>
 <option>
 <component_code>143-297</component_code>
 <quantity>1</quantity>
 </option>
 </config_inputs>
</batch_validate>

Calling the CZ_CF_API.VALIDATE Procedure
If the host application is written in PL/SQL, it should call the VALIDATE procedure.
CZ_CF_API.VALIDATE is the PL/SQL interface to batch validation. The VALIDATE
procedure packages the inputs into a batch_validate init message and sends it to the
configurator servlet. There are restrictions in the way that PL/SQL can request data
from a URL that requires PL/SQL programs to use the CZ_CF_API.VALIDATE
procedure, instead of passing the XML batch validation message.

For details on the parameters for CZ_CF_API.VALIDATE, see VALIDATE, page 17-69
in Programmatic Tools for Development, page 17-1.

Calling the CZ_CF_API.VALIDATE Procedure in a Program, page 11-4 shows
fragments from a PL/SQL program that calls CZ_CF_API.VALIDATE.

Calling the CZ_CF_API.VALIDATE Procedure in a Script, page 11-6 shows a PL/SQL
script that calls CZ_CF_API.VALIDATE.

Calling the CZ_CF_API.VALIDATE Procedure in a Program
...

Batch Validation 11-5

/*--

Procedure Name : Send_input_XML
Description : sends the xml batch validation message to hostapp that
has
 options that are newly inserted/updated/deleted
 from the model.
--
--*/
PROCEDURE Send_input_XML
 (p_model_line_id IN NUMBER ,
 p_org_id IN NUMBER ,
 p_model_id IN NUMBER ,
 p_config_header_id IN NUMBER , 2003/10/20
 p_config_rev_nbr IN NUMBER ,
 p_model_qty IN NUMBER ,
 p_creation_date IN DATE ,
 p_deleted_options_tbl IN OE_Order_PUB.request_tbl_type
:= OE_Order_Pub.G_MISS_REQUEST_TBL,
 p_updated_options_tbl IN OE_Order_PUB.request_tbl_type
:= OE_Order_Pub.G_MISS_REQUEST_TBL
 x_out_XML_msg OUT NOCOPY LONG ,
 x_return_F OUT NOCOPY VARCHAR2)
...
 l_XML_hdr VARCHAR2(2000)
 l_html_pieces CZ_CF_API.CFG_OUTPUT_PIECES;
 l_option CZ_CF_API.INPUT_SELECTION;
 l_batch_val_tbl CZ_CF_API.CFG_INPUT_LIST;
 l_url VARCHAR2(500):=
FND_PROFILE.Value('CZ_UIMGR_URL');
 l_validation_type CZ_API_PUB.VALIDATE_ORDER;
...
 Create_hdr_XML
 (p_model_line_id => p_model_line_id ,
 p_org_id => p_org_id ,
 p_model_id => p_model_id ,
 p_config_header_id => p_config_header_id ,
 p_config_rev_nbr => p_config_rev_nbr ,
 p_model_qty => p_model_qty ,
 p_creation_date => p_creation_date ,
 x_XML_hdr => l_XML_hdr);
...
CZ_CF_API.Validate(config_input_list => l_batch_val_tbl ,
 init_message => l_XML_hdr ,
 config_messages => l_html_pieces ,
 validation_status => l_validation_status ,
 URL => l_url
 p_validation_type => l_validation_type);

11-6 Oracle Configurator Implementation Guide

Calling the CZ_CF_API.VALIDATE Procedure in a Script
set serveroutput on
set verify off
-- Run this query in SQL*Plus, providing input of model id
-- This query is like what the host application might send.
-- The output might go back to some other servlet.
BEGIN
declare
 config_input_list CZ_CF_API.CFG_INPUT_LIST;
 ---- OC Servlet URL needs to be entered here....
 l_url varchar2(100):=
'http://www.mysite.com:10130/OA_HTML/configurator/UiServlet';
 init_message varchar2(4000):='<initialize>';
 config_messages CZ_CF_API.CFG_OUTPUT_PIECES;
 validation_status NUMBER;
 list_indx number := 1 ;
 l_validation_type CZ_API_PUB.VALIDATE_ORDER;
 begtime varchar2(30) := null ;
 endtime varchar2(30) := null ;
--- Build the initialization message.
 TYPE param_name_type IS TABLE OF VARCHAR2(25)
 INDEX BY BINARY_INTEGER;
 TYPE param_value_type IS TABLE OF VARCHAR2(40)
 INDEX BY BINARY_INTEGER;
 param_name param_name_type;
 param_value param_value_type;
 l_rec_index BINARY_INTEGER;
 l_context_org_id VARCHAR2(30);
 l_config_creation_date VARCHAR2(30);
 l_two_task VARCHAR2(30);
 l_user VARCHAR2(30);
 l_pwd VARCHAR2(30);
 l_fndnam VARCHAR2(30);
 l_calling_application_id VARCHAR2(30);
 l_responsibility_id VARCHAR2(30);
 l_model_id VARCHAR2(30);
 l_config_header_id VARCHAR2(30);
 l_config_rev_nbr VARCHAR2(30);
 l_gwyuid VARCHAR2(30);
 l_read_only VARCHAR2(30);
 l_save_config_behavior VARCHAR2(30);
 l_save_usage_behavior VARCHAR2(30);
 l_ui_type VARCHAR2(30);
 l_so_line_id VARCHAR2(30);
 l_validation_org_id VARCHAR2(30);
 l_dbc VARCHAR2(30);
 l_model_quantity VARCHAR2(30);
 l_termination VARCHAR2(30);
 l_alt_database_name VARCHAR2(40);
--Options
 l_component_code VARCHAR2(2000);
 l_option_quantity VARCHAR2(30);
 l_test_param VARCHAR2(20);
BEGIN
 param_name(1) := 'context_org_id';
 param_name(2) := 'config_creation_date';
 param_name(3) := 'two_task';
 param_name(4) := 'user';
 param_name(5) := 'pwd';
 param_name(6) := 'fndnam';
 param_name(7) := 'calling_application_id';

Batch Validation 11-7

param_name(8) := 'responsibility_id';
 param_name(9) := 'model_id';
 param_name(10) := 'config_header_id';
 param_name(11) := 'config_rev_nbr';
 param_name(12) := 'gwyuid';
 param_name(13) := 'read_only';
 param_name(14) := 'save_config_behavior';
 param_name(15) := 'save_usage_behavior';
 param_name(16) := 'model_quantity';
 param_name(17) := 'database_id';
 param_name(18) := 'terminate_msg_behavior';
 param_name(19) := 'alt_database_name';
 SELECT
 '204', -- corrected value
 '10-16-2000-09-41-12',
 null,
 null,
 null,
 null,
 '660',
 '50171',
 '143', --this is the usual value for &modelId
 null,
 null,
 null,
 null,
 'new_revision',
 null,
 '45',
 'ap123dbs_dom123',
 'brief',
 'jdbc:oracle:thin:@serv01:1521:sid02'
 INTO
 l_context_org_id,
 l_config_creation_date,
 l_two_task,
 l_user,
 l_pwd,
 l_fndnam,
 l_calling_application_id,
 l_responsibility_id,
 l_model_id,
 l_config_header_id,
 l_config_rev_nbr,
 l_gwyuid,
 l_read_only,
 l_save_config_behavior,
 l_save_usage_behavior,
 l_model_quantity,
 l_dbc,
 l_termination,
 l_alt_database_name
 FROM dual ;
 param_value(1) := l_context_org_id;
 param_value(2) := l_config_creation_date;
 param_value(3) := l_two_task;
 param_value(4) := l_user;
 param_value(5) := l_pwd;
 param_value(6) := l_fndnam;
 param_value(7) := l_calling_application_id;
 param_value(8) := l_responsibility_id;

11-8 Oracle Configurator Implementation Guide

param_value(9) := l_model_id;
 param_value(10) := l_config_header_id;
 param_value(11) := l_config_rev_nbr;
 param_value(12) := l_gwyuid;
 param_value(13) := l_read_only;
 param_value(14) := l_save_config_behavior;
 param_value(15) := l_save_usage_behavior;
 param_value(16) := l_model_quantity;
 param_value(17) := l_dbc;
 param_value(18) := l_termination;
 param_value(19) := l_alt_database_name;
 l_rec_index := 1;
 LOOP
 IF (param_value(l_rec_index) IS NOT NULL) THEN
 init_message := init_message ││ '<param name=' ││
'"' ││ param_name(l_rec_index) ││ '"' ││'>'││
 param_value(l_rec_index)││'</param>';
 END IF;
 EXIT WHEN l_rec_index > 18; -- adjust for number of
parameters
 l_rec_index := l_rec_index + 1;
 END LOOP;
 init_message := init_message ││ '</initialize>';
 init_message := REPLACE(init_message,' ','+');
 dbms_output.enable(buffer_size => 200000);
 dbms_output.put_line(substr(init_message,1,255));
 dbms_output.put_line(substr(init_message,256,255));
 dbms_output.put_line(substr(init_message,512,255));
 dbms_output.put_line(substr(init_message,768,255));
 dbms_output.put_line(substr(init_message,1024,255));
 dbms_output.put_line(substr(init_message,1280,255));

CZ_CF_API.VALIDATE(config_input_list,init_message,config_messages,valida
tion_status,l_url,l_validation_type);
 IF(validation_status=CZ_CF_API.CONFIG_PROCESSED)THEN
 dbms_output.put_line('Config processed successfully');
 ELSIF(validation_status=CZ_CF_API.CONFIG_PROCESSED_NO_TERMINATE)THEN
 dbms_output.put_line('Config processed successfully, no termination
message');
 ELSIF(validation_status=CZ_CF_API.INIT_TOO_LONG)THEN
 dbms_output.put_line('Init message too long');
 ELSIF(validation_status=CZ_CF_API.INVALID_OPTION_REQUEST)THEN
 dbms_output.put_line('Invalid option request');
 ELSIF(validation_status=CZ_CF_API.CONFIG_EXCEPTION)THEN
 dbms_output.put_line('General config exception');
 ELSIF(validation_status=CZ_CF_API.DATABASE_ERROR)THEN
 dbms_output.put_line('Database error');
 ELSIF(validation_status=CZ_CF_API.UTL_HTTP_INIT_FAILED)THEN
 dbms_output.put_line('UTL_HTTP: initialization failed');
 ELSIF(validation_status=CZ_CF_API.UTL_HTTP_REQUEST_FAILED)THEN
 dbms_output.put_line('UTL_HTTP: request failed');
 ELSE
 dbms_output.put_line('Unknown error');
 END IF;
 l_rec_index := config_messages.FIRST;
 dbms_output.put_line ('Recieved Response from the server
follows');
 LOOP
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),1,255))));
 dbms_output.put_line(

Batch Validation 11-9

ltrim(rtrim(substr(config_messages(l_rec_index),256,255))));
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),512,255))));
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),768,255))));
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),1024,255))));
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),1280,255))));
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),1536,255))));
 dbms_output.put_line(
ltrim(rtrim(substr(config_messages(l_rec_index),1792))));
 EXIT WHEN l_rec_index = config_messages.LAST;
 l_rec_index := config_messages.NEXT(l_rec_index);
 END LOOP;
 dbms_output.put_line ('Servlet URL used follows');
 dbms_output.put_line(ltrim(rtrim(l_url)));
END;
END;
/

Batch Validation Failure
An end user can determine whether an order fails during batch validation if the
imported order's quantities are not the same as the quantities in the original order, or if
the quantities changed during an order cycle because the configuration model's rules
have changed. For example, batch validation is run at booking time. If the published
Model has changed from the initial order creation to booking time, then batch
validation may result in different quantities causing the order to fail.

By setting the profile option CZ: Fail BV if Input Quantities Not Maintained, the end
user can determine whether an order fails. This profile option is used in conjunction
with the parameter in the Calling the CZ_CF_API.VALIDATE Procedure, page 11-4.

Batch Validation fails if the ordered configured BOM Items (input_list) do not match
the batch validation BOM Items (from a previously processed configuration) and the
profile optionCZ: Fail BV if Configuration Changed is set to Yes. If there is a difference
between the ordered configured BOM Items and the batch validation BOM Items, then
the differences are logged to CZ_CONFIG_MESSAGES.

For more information about the profile options, see the Oracle Configurator Installation
Guide.

Skipping Batch Validation
A significant amount of batch validation processing time can be avoided when the CZ:
Skip Validation Procedure profile option is set. If the profile option is set, then batch
validate calls a customer created PL/SQL callback procedure. This callback procedure
then makes the final decision based on the implementation requirements. For more
information on the CZ: Skip Validation Procedure, see the Oracle Configurator
Installation Guide.

11-10 Oracle Configurator Implementation Guide

The decision to skip batch validation is done on the batch server for each batch
validation request. To skip parts of the batch validation process, the following criteria
must be met:

• There are no input arguments.

• The skip profile option, CZ: Skip Validation Procedure is set to the name of the
PL/SQL callback function. For more information see the Oracle Configurator
Installation Guide.

• Effectivity date of the current configuration session is different from the effectivity
date of the restored configuration and:

• All nodes in the configuration model do not have effective start or end dates
that are in the interval between the old and new effective dates.

• All rules in the configuration model do not have effective start or end dates that
are in the interval between the old and new effective dates.

• The publication record of the configuration that is being validated is the same as
that of the saved configuration.

• The BOM Model quantity has not changed or is not provided in the initialization
string

• The custom created PL/SQL callback function returns true

When this function returns a value of true, the Batch Validation process does not
perform all of its typical tasks, such as restoring the configuration and validating
any inputs. A new configuration is saved when requested.

• The validation type is not validate_fullfillment. See Elements of the Batch
Validation Message, page 11-2 for details.

PL/SQL Callback
A custom coded PL/SQL callback makes the final decision whether batch validation is
skipped or not. A custom coded PL/SQL callback is needed because Configurator
Extensions can change the configuration model. If there are no Configurator Extensions
and you want to skip batch validation, then you must have a custom coded PL/SQL
callback and enable the CZ: Skip Validation Procedure profile option. For more
information on the CZ: Skip Validation Procedure, see the Oracle Configurator
Installation Guide. Batch validation on its own cannot determine what a Configurator
Extension does.

Specification of the PL/SQL Callback Function, page 11-11 shows the function's coding
details:

Batch Validation 11-11

Specification of the PL/SQL Callback Function
PROCEDURE my_skip_val_proc(
 p_root_inv_item_id IN NUMBER
 p_organization_id IN NUMBER
 p_config_creation_date IN DATE
 x_skip_validation OUT NOCOPY VARCHAR2
 x_return_status OUT NOCOPY VARCHAR2
 x_msg_data OUT NOCOPY VARCHAR2)

The PL/SQL callback arguments are described in the tablePL/SQL Callback Arguments,
page 11-11:

PL/SQL Callback Arguments

Parameter Data Type Mode Description

p_root_inv_item_id number in Root BOM Model Inventory Item ID

p_organization_id number in Root BOM Model Organization ID

p_config_creation_date date in Configuration creation date

x_skip_validation varchar2 out Must return FND_API.G_TRUE if
validation can be skipped; otherwise,
return FND_API.G_FALSE

x_return_status varchar2 out Must return
FND_API.G_RET_STS_SUCCESS if
procedure completed successfully;
otherwise return
FND_API.G_RET_STS_ERROR or
FND_API.G_RET_STS_UNEXP_ERROR if
an error occurs within the procedure

x_msg_data varchar2 out Contains an error message if the procedure
is returning an x_return_status value
of FND_API.G_RET_STS_ERROR or
FND_API.G_RET_STS_UNEXP_ERROR

PL/SQL Callback and Models that use Configurator Extensions
If you wish to skip batch validation and you have Models that use Configurator
Extensions, then you must consider what the Configurator Extensions do when you
write the callback function. If the Configurator Extension depends on the following,
then the callback function should return a value of false and force validation to occur:

• Data held in custom tables that changes from time to time

11-12 Oracle Configurator Implementation Guide

• Data in Oracle Applications tables, other than the configuration model's definitions,
that change from time to time. For example, MTL_SYSTEM_ITEMS flexfields.

• Data that is obtained by queries based on the
CALLING_APPLICATION_HEADER_ID or CALLING_APPLICATION_LINE_ID
that is provided in the Configurator initialization message. For example,
SO_ORDER_HEADERS flexfield.

These dependencies could cause a Configurator Extension to make changes to the
configuration and cause a validation failure.

Custom Integration 12-1

12
Custom Integration

This chapter explains how to modify certain Oracle Configurator files as well as the
purpose of the files and where they can be found.

This chapter covers the following topics:

• Overview

• General Directory Structure

• Files for the Servlet Directory

• Files for the HTML Directory

• Files for the Media Directory

Overview
To customize Oracle Configurator in your host application, you may need to modify
certain Oracle Configurator files. This chapter describes:

• General Directory Structure, page 12-2

• Files for the Servlet Directory, page 12-2

• Files for the HTML Directory, page 12-3

• Files for the Media Directory, page 12-3

As a prerequisite, you must have installed Oracle Configurator. See the Oracle
Configurator Installation Guide for details.

You may wish to move certain files to other locations, to suit your site or host
application requirements. This section describes constraints and guidelines on their
location.

12-2 Oracle Configurator Implementation Guide

General Directory Structure
The table General Structure of Directories for Oracle Configurator, page 12-2 shows
the directories required for the runtime Oracle Configurator, and their relationship.
This general structure applies to all platforms, though the details may vary by platform.
In some cases, the same physical directory may fill more than one role.

General Structure of Directories for Oracle Configurator

Directory Role Description

OC Installation The directory in which you install OC, based on your choice of installation
directory in the Oracle Configurator setup program.

Servlet Contains the Java class or archive files that implement the OC Servlet.
Configurator Extensions and Return URL Servlets can be installed here. See
the Oracle Configurator Installation Guide for more information.

Media Contains the image files used by the runtime Oracle Configurator of your
host application.

Log Contains log files written by the runtime Oracle Configurator. See the
Oracle Configurator Installation Guide for more information about logging.

Note that it is not necessary for the Servlet directory to have a separate physical
location, because the files it contains are referenced by environment variables that you
set while installing the runtime Oracle Configurator servlet.

Files for the Servlet Directory
The Servlet directory contains files that must be referenced in the PATH and
CLASSPATH environment variables.

The table Files for the Servlet Directory, page 12-3 shows the files that should be
installed in the Servlet directory.

Custom Integration 12-3

Files for the Servlet Directory

File For Platform Comment

libczlce.so Unix Must be in the LD_LIBRARY_PATH environment
variable parameter for your servlet.

czlce.dll Windows NT Must be in the PATH system environment variable on
the host computer on which the servlet is installed. This
should be set by the OC installation program.

Files for the HTML Directory
By default, the HTML directory is the directory pointed to by the Oracle Applications
alias OA_HTML.

Files for the Media Directory
By default, the Media directory is the directory pointed to by the Oracle Applications
alias OA_MEDIA.

The image files in the Media directory are used by the runtime Oracle Configurator to
decorate your customized user interfaces, and also to represent application logic state in
DHTML legacy user interfaces.

Important: As of this release, DHTML UIs are no longer supported.

These files must be compatible with web browser technology. You cannot use BMP
(Windows bitmap) files in your user interface for the Oracle Configurator window,
because this file format is not compatible with Web browsers. The runtime Oracle
Configurator window can use GIF, JPG, and other formats compatible with Web
browsers.

Pricing and ATP in Oracle Configurator 13-1

13
Pricing and ATP in Oracle Configurator

This chapter provides an overview of how pricing works in a runtime Oracle
Configurator.

This chapter covers the following topics:

• Overview

• Introduction

• Runtime Oracle Configurator Pricing Architecture

• Runtime Pricing Behavior

• Integration of Pricing and ATP with Oracle Configurator

• Controlling Pricing and ATP in a Runtime Oracle Configurator

Overview
This chapter describes the integration of pricing and ATP with Oracle Configurator. It
includes:

• Runtime Oracle Configurator Pricing Architecture, page 13-2

• Runtime Pricing Behavior, page 13-9

• Integration of Pricing and ATP with Oracle Configurator, page 13-10

• Controlling Pricing and ATP in a Runtime Oracle Configurator, page 13-12

Note: If your host application is part of Oracle Applications, then the
integration with pricing and ATP is already defined. You only need to
implement pricing and ATP for custom host applications. The
CZ_PRICING_STRUCTURES and CZ_ATP_REQUESTS tables must be
populated for custom host applications to integrate with pricing and

13-2 Oracle Configurator Implementation Guide

ATP.

Introduction
How Oracle Configurator handles pricing and ATP (Available To Promise) data
depends on the type of runtime Oracle Configurator you choose to use. A runtime
Oracle Configurator can be called from a variety of different applications and requires
an interface between the runtime Oracle Configurator and the host application's pricing
mechanism. For more information on advanced pricing, see Oracle Advanced Pricing
User's Guide.

Runtime Oracle Configurator Pricing Architecture
When the host application is part of Oracle Applications, such as Order Management,
pricing data comes from Oracle Advanced Pricing (QP). The QP interface is highly
configurable. Depending on how it is configured, it may be necessary that appropriate
data records are defined in the host application to determine pricing parameters. The
host application must implement the Oracle Configurator pricing interface package, as
described in Pricing Callback Interface, page 13-4. Likewise, when the host
application is not an Oracle Applications product, it must implement the Oracle
Configurator pricing interface package, so that the runtime Oracle Configurator knows
how to determine prices.

Therefore, the host application must provide an interface PL/SQL package that interacts
whenever pricing is requested between the runtime Oracle Configurator and the host
application's pricing engine. The runtime Oracle Configurator is displayed when the
user clicks the Configure button in the host application. The runtime Oracle
Configurator calls the pricing interface package to get:

• List prices for all selectable options in the configuration

• Selling prices for all selectable options in the configuration

• Total price for the entire configuration

The browser presents either list prices for all selectable options, or selling prices for all
selected options, and enables you to add a total price.

For more information about the Pricing Callback Interface, see Pricing Callback
Interface , page 13-4.

Pricing Callback Interface Package
The host application sends an initialization message to the runtime Oracle Configurator
with the interface package and procedure name. The runtime Oracle Configurator calls

Pricing and ATP in Oracle Configurator 13-3

this interface package to get current pricing information for a single item or a list of
items.

The interface package determines the full context in which to call the target pricing
engine. The interface package then calls the pricing engine and captures all of the
results, storing these results in tables (or some other Oracle session-insensitive place) for
future reference when the runtime Oracle Configurator session exits. The runtime
Oracle Configurator does not reference the contents of these tables.

The interface package temporarily writes the list and/or selling prices for the
configuration components in the temporary CZ_PRICING_STRUCTURES table so that
they can be presented to the end user.

The CZ_PRICING_STRUCTURES table does not support pricing rules based on the fact
that items belong to the same instance. Pricing is done per component instance.

The runtime Oracle Configurator saves the configuration information in the appropriate
CZ tables. The runtime Oracle Configurator does not save list or selling prices. It is up to
the host application to save configuration data, list prices, and selling prices in its own
tables. For example, Order Management stores the configuration in
OE_ORDER_LINES_ALL, and stores the pricing data in OE_PRICE_ADJUSTMENTS.
The host application decides whether it is necessary to recalculate prices depending on
the value of the prices_calculated_flag in the runtime Oracle Configurator
termination message.

When the host application calls the runtime Oracle Configurator to edit an existing
configuration, the runtime Oracle Configurator asks the interface package for the
current list and selling prices of the currently selected components.

Runtime Oracle Configurator Pricing Architecture, page 13-4, illustrates this
architecture. Illustrated steps 2 through 5 can be repeated many times. Note that in
Runtime Oracle Configurator Pricing Architecture, page 13-4, all of the database
symbols refer to the same instance of the CZ schema.

13-4 Oracle Configurator Implementation Guide

Runtime Oracle Configurator Pricing Architecture

See the Pricing Callback Interface, page 13-4 for details about the pricing interface
package, and see Session Initialization, page 9-1 and Session Termination, page 10-1 for
details about the initialization and termination messages for a runtime Oracle
Configurator session.

Pricing Callback Interface
The pricing callback interface package provides interfaces for these distinct procedures:

• Price Multiple Items

• Price Multiple Items for MLS

The Price Multiple Items procedure returns price information for a group of items. The
Price Multiple Items Procedure Parameters, page 13-4 table describes the parameters
for this procedure.

Price Multiple Items Procedure Parameters

Parameter In/Out Type Required Note

configurator_ses
sion_key

In Varchar2 Required Limit of 50 characters

Pricing and ATP in Oracle Configurator 13-5

Parameter In/Out Type Required Note

price_type In Varchar2 Required Values are: LIST, SELLING,
or BOTH

config_total_pri
ce

Out Number
nocopy

n/a

The Price Multiple Items MLS procedure returns price information for a group of items.
The Price Multiple Items MLS Procedure Parameters, page 13-5 table describes the
parameters for this procedure.

Price Multiple Items MLS Procedure Parameters

Parameter In/Out Type Required Note

configurator_session_
key

In Varchar2(
50)

Required Limit of 50 characters

price_type In Varchar2 Required Values are: LIST,
SELLING or BOTH

config_total_price Out Number
nocopy

n/a

currency_code Out Varchar2
nocopy

n/a

The parameters of the interface are passed by positional notation, so you can name the
parameters as wanted, as long as you retain the positionality specified in Price Multiple
Items Procedure Parameters, page 13-4 and Price Multiple Items MLS Procedure
Parameters, page 13-5.

Use of the Database in the Price Multiple Items Procedures
When you specify the Price Multiple Items procedures, Oracle Configurator stores the
list of items to be priced in the database table CZ_PRICING_STRUCTURES. This
columns in this table are described in CZ_PRICING_STRUCTURES Interface Table,
page 13-6.

13-6 Oracle Configurator Implementation Guide

CZ_PRICING_STRUCTURES Interface Table

Column Name Data
Type

Null? Description

CONFIGURATOR
_SESSION_KEY

Varchar2 Not
Null

Limit of 50 characters.

Primary key. Identifies a configurator session.
Only one configuration can be handled in the
session.

SEQ_NBR Number Not
Null

Primary key. Sequence number of the item in the
list of items.

PS_NODE_ID Number Limit of 9 digits.

PS_NODE_ID is a foreign key reference into the
CZ_PS_NODES table, which defines the
"configuration" identity of the object.

ITEM_KEY Varchar2 Not
Null

Limit of 2000 characters.

ORIG_SYS_REF for imported items or
PS_NODE_ID for non-imported items.

ITEM_KEY_TYPE Number Not
Null

Limit of 9 digits.

Set to 1Value of
CZ_PRC_CALLBACK_UTIL.G_ITEM_KEY_BOM
_NODE. if ITEM_KEY is ORIG_SYS_REF.

Set to 2Value of
CZ_PRC_CALLBACK_UTIL.G_ITEM_KEY_PS_N
ODE. if ITEM_KEY is PS_NODE_ID.

QUANTITY Number Limit of 9 digits.

Item quantity

UOM_CODE Varchar2 Limit of 3 characters.

UOM code

LIST_PRICE Number List price

SELLING_PRICE Number Selling price

Pricing and ATP in Oracle Configurator 13-7

Column Name Data
Type

Null? Description

MSG_DATA Varchar2 Limit of 2000 characters.

Message text filled in by your host application.

CONFIG_ITEM_ID Number Not
Null

This corresponds to the
CZ_CONFIG_ITEMS.CONFIG_ITEM_ID.

Note: CZ_PRICING_STRUCTURES.ITEM_KEY is
unable to establish the full hierarchy of a
configuration when there are multiple
instantiations.

PARENT_CONFIG
_ITEM_ID

Number Together with CONFIG_ITEM_ID, this establishes
the full hierarchy of the configuration when there
are multiple instantiations.

Your pricing package must retrieve the items from this table and call the pricing engine,
then capture all of the results and update the CZ_PRICING_STRUCTURES table with
list and/or selling prices, and any message text. Oracle Configurator retrieves the prices
from the CZ_PRICING_STRUCTURES table during the configuration session, so that
they can be presented in the Oracle Configurator window. When the Oracle
Configurator window exits, Oracle Configurator deletes the pricing records from the
CZ_PRICING_STRUCTURES table.

If your host application must retain the prices for use after the end of the current
configuration session, then your pricing package must store the results in
application-specific tables (or some other location that is insensitive to the Oracle
session). Oracle Configurator does not reference the contents of these
application-specific tables.

Examples of the Pricing Callback Interface
Pricing Callback Interfaces must populate the CZ_PRICING_STRUCTURES table.

Pricing Callback Interface, page 13-7 shows a possible implementation of the callback
interface for multiple-item pricing procedures.

Initialization Message Using Release 12Pricing and ATP Parameters, page 13-12 shows
how to specify pricing parameters in your initialization message.

Pricing Callback Interface
PACKAGE CZ_PRICE_TEST AUTHID CURRENT_USER AS
PROCEDURE price_multiple_items (p_configurator_session_key IN VARCHAR2,
 p_price_type IN VARCHAR2,
 p_total_price OUT NUMBER);
END;

13-8 Oracle Configurator Implementation Guide

ATP Callback Interface
The "Get ATP Dates" procedure returns availability dates for all PTO Models but only
returns the date for the ATO top level Model. The table ATP Procedure Parameters,
page 13-8 describes the parameters for the Get ATP Dates procedure.

ATP Procedure Parameters

Parameter In/Out Type Required Note

configurator_session_ke
y

In Varchar2 Required Limit of 50 characters

warehouse_id In Number Required

ship_to_org_id In Number Conditionally
Required

You must provide either
ship_to_org_id (by
itself), or both
customer_id and
customer_site_id.

customer_id In Number Conditionally
Required

You must provide either
ship_to_org_id (by
itself), or both
customer_id and
customer_site_id.

customer_site_id In Number Conditionally
Required

You must provide either
ship_to_org_id (by
itself), or both
customer_id and
customer_site_id.

requested_date In Date n/a If a date is not provided,
then the date defaults to the
SYSDATE.

ship_to_group_date Out Date
nocopy

n/a

The parameters of the interface are passed by positional notation, so you can name the
parameters whatever you want, as long as you retain the positionality specified in ATP
Procedure Parameters, page 13-8.

Pricing and ATP in Oracle Configurator 13-9

Use of the Database with the ATP Callback Interface
When you specify the Get ATP Dates procedure, Oracle Configurator stores the list of
items to obtain ATP dates for in the database table CZ_ATP_REQUESTS. For details on
Oracle Configurator tables, see the Oracle Integration Repository.

If you are using the Oracle ATP pricing mechanism, then your ATP package must
retrieve the items from the table and call the call_atp() procedure defined in your
ATP package, then capture all of the results and update the CZ_ATP_REQUESTS table
with ATP dates.

Oracle Configurator retrieves the ATP dates from the CZ_ATP_REQUESTS table during
the configuration session, so that they can be presented in the Oracle Configurator
window. When the Oracle Configurator window exits, OC deletes the ATP dates from
the CZ_ATP_REQUESTS table.

If your host application must retain the ATP dates for use after the end of the current
configuration session, then your ATP package must store the results in
application-specific tables (or some other location that is insensitive to the Oracle
session). Oracle Configurator does not reference the contents of these
application-specific tables.

Examples of the ATP Callback Interface
ATP Callback Interface, page 13-9 shows an implementation of the callback interface
for ATP procedures.

Initialization Message Using Release 12Pricing and ATP Parameters, page 13-12 shows
how you would specify ATP parameters in your initialization message.

Example of Callback ATP Procedure, page E-3 provides an example in context.

ATP Callback Interface
PACKAGE cz_atp_callback AS
 PROCEDURE call_atp (p_config_session_key IN VARCHAR2,
 p_warehouse_id IN NUMBER,
 p_ship_to_org_id IN NUMBER,
 p_customer_id IN NUMBER,
 p_customer_site_id IN NUMBER,
 p_requested_date IN DATE,
 p_ship_to_group_date OUT NOCOPY DATE);
END cz_atp_callback;

Runtime Pricing Behavior
It is important to understand some aspects of pricing behavior in the runtime Oracle
Configurator, as they can affect both performance and the responsibilities of the host
application.

• The runtime Oracle Configurator caches list prices of the items until it is
terminated. The runtime Oracle Configurator assumes that the list price of any item
does not depend on which other items are selected and remains unchanged during

13-10 Oracle Configurator Implementation Guide

the configuration session.

• The runtime Oracle Configurator's performance depends critically on the
performance of the pricing interface package that you provide. List prices in
particular must be returned very quickly, because they are demanded for every
option that is displayed.

• The runtime Oracle Configurator does not save computed prices. If, after the
configuration session ends, the host application requires access to prices that were
computed during the session, it is up to the host application's interface package to
save the computed prices. Prices should be saved together with enough information
to allow them to be correlated with the components of the saved configuration.

• If the runtime Oracle Configurator is initialized with a previously saved
configuration, it is up to the host application to either return the saved list and
selling prices or to call the pricing engine to get the current price. Direct or manual
editing of prices, adjustments, discounts, and so on is the responsibility of the host
application.

Integration of Pricing and ATP with Oracle Configurator
Integrating the Oracle Configurator window with your pricing or ATP implementation
consists primarily of causing your host application to post the XML initialization
message to the OC Servlet (for example, through the coding of the Configure button),
passing as initialization parameters the names of your packages and procedures.

To use the OC pricing and ATP interfaces, you must:

1. Install the OC interface packages in your database, by installing Oracle
Configurator with Oracle Rapid Install. See Database Compatibility, page 13-11.

2. Write your own PL/SQL pricing or ATP procedures, using the OC interfaces. See
Pricing and ATP Callback Procedures, page E-2 for examples.

3. Install your packages containing your procedures into the Oracle Applications
database.

You can interface to the Oracle QP pricing engine from your own procedures.

4. In the initialization message that your host application passes to the OC Servlet,
provide parameters that specify the name of the pricing package, the name of the
ATP package, the procedure to use, and the type of pricing to perform.

See Initialization Parameters, page 13-11 for an example. See Pricing Parameters,
page 9-15 and ATP Parameters, page 9-15 for explanation of the parameters.

You can test the effect of pricing and ATP parameters when you test your Model in
Oracle Configurator Developer, by entering the Pricing Package and ATP Package

Pricing and ATP in Oracle Configurator 13-11

parameters in the in the Custom Initialization Parameters field of the Test
Preferences page.

5. Enable pricing display and update behavior, as described in Controlling Pricing
and ATP in a Runtime Oracle Configurator, page 13-12.

Note: The display and updating of pricing are controlled by the values of the
database fields CZ_UI_DEFS.PRICE_DISPLAY and CZ_UI_DEFS.PRICE_UPDATE.
If these fields are null, then the information is not displayed. For details on these
tables, see the Oracle Integration Repository.

Database Compatibility
Oracle Configurator works with Oracle Applications Release 12. To determine the
database version supported by Oracle Applications, refer to the Certify and Availability
on the Oracle Support Web site.

To obtain pricing data from an Oracle Enterprise Edition database, as used with Oracle
Applications 10.7, 11.0, you must run a concurrent program. See the Populate and
Refresh Configuration Models Concurrent Programs, page C-18.

There are several likely scenarios for pricing and ATP integration. These scenarios are
described in the following table:

To Integrate with... Do the following ...

Oracle Applications Release 12 database Write your own callback procedures (which
can call the QP Advanced Pricing engine).

To import BOM Model data to the CZ schema
tables, you run concurrent programs in the
Oracle Bills Of Material application. To
export orders to Order Management (Oracle
Applications Release 12), you use existing or
new programming in your ­host application.

Third-party database For both import and export of pricing data,
you must write custom programs.

You can use the callback interface in all these scenarios.

Initialization Parameters
Initialization Message Using Release 12 Pricing and ATP Parameters, page 13-12 is a
test page that shows how you would specify pricing and ATP parameters in your
initialization message. The names of the pricing and ATP parameters are
typographically emphasized. This example shows parameters for use with Oracle

13-12 Oracle Configurator Implementation Guide

Applications Release 12. See Pricing Parameters, page 9-15 and ATP Parameters, page 9-
15.

Initialization Message Using Release 12 Pricing and ATP Parameters
<html>
<head>
<title>Pricing Test</title>
</head>
<script language="javascript" >function init()
{document.test1.submit();}</script>
<body onload="init();">
<form action="http://www.mysite.com:8802/OA_HTML/CZInitialize.jsp"
method="post" id="test1" name="test1"><input type="hidden" name="XMLmsg"
value='<initialize>
<param name="database_id">serv02_sid01</param>
<param name="user">operations</param>
<param name="pwd">welcome</param>
<param name="calling_application_id">708</param>
<param name="responsibility_id">22713</param>
<param name="ui_type">JRAD</param>
<param name="ui_def_id">3080</param>
<param name="pricing_package_name">cz_price_test</param>
<param name="price_mult_items_proc">price_multiple_items</param>
<param name="configurator_session_key">1234</param>
<param name="atp_package_name">cz_atp_callback_stub</param>
<param name="get_atp_dates_proc">call_atp</param>
<param name="warehouse_id">207</param>
<param name="customer_id">1000</param>
<param name="customer_site_id">1567</param>
</initialize>'>
</form>

Loading ...
</body>
</html>

To obtain the final prices calculated by your pricing package and ATP package, you
need to specify a value of full for the initialization parameter
terminate_msg_behavior, page 9-35. When your configuration session terminates
normally, Oracle Configurator returns the final prices in the termination message. Your
host application can then save the prices as needed.

Controlling Pricing and ATP in a Runtime Oracle Configurator
This section describes how to display prices and Available to Promise (ATP)
information in a runtime Oracle Configurator.

Following is an overview of the process:

1. Define the following profile options, as required: CZ: Enable List Prices, CZ: Enable
Selling Prices, CZ: Enable ATP.

For details, see the Oracle Configurator Installation Guide.

2. In Oracle Configurator Developer, select pricing and ATP settings for the generated
User Interface.

Pricing and ATP in Oracle Configurator 13-13

For details, see Displaying Prices and ATP Information, page 13-13.

3. If you are deploying a custom application, set the appropriate parameters in the
initialization message that is posted to the OC Servlet.

For details about the initialization and termination messages for pricing and ATP,
see Session Initialization, page 9-1 and Session Termination, page 10-1.

For details about the pricing interface package, see Pricing Callback Interface , page
13-4.

Displaying Prices and ATP Information
If you have defined the required profile options, you can control which types of prices
and availability information is displayed and how they are updated in a generated User
Interface. To do this, edit the UI Definition in Oracle Configurator Developer and
modify the Price and Availability Display settings.

For example, you set CZ: Enable List Prices and CZ: Enable ATP to Yes. You can
prevent list prices and ATP data from appearing in a UI by deselecting the List Prices
and Availability settings in the UI Definition.

For details about the pricing and ATP settings available at the UI Definition level, and
how to modify them, see the Oracle Configurator Developer User's Guide.

Updating Prices
If pricing is enabled and the UI Definition's pricing settings are set to display prices at
runtime, the Recalculate Prices setting controls what action causes selling prices to be
updated. You can set this to

• On Request

• On Page Load

• On Change

For details about these settings, see the Oracle Configurator Developer User's Guide.

Examples of Controlling Pricing
This section lists how the various settings that control pricing can be used together.

Example: List Prices Only
List Price Profile Option and UI Definition Settings, page 13-14 lists the recommended
property or setting if you want to display only list prices at runtime.

13-14 Oracle Configurator Implementation Guide

List Price Profile Option and UI Definition Settings

Profile Option or Setting Value

CZ: Enable List Prices Yes

Price Display Style List Price

Price Update On Request

Example: Selling Prices Only
The table Selling Price Profile Option and UI Definition Settings, page 13-14 lists
recommended settings if you want to display only selling prices.

Selling Price Profile Option and UI Definition Settings

Property or Setting Value

CZ: Enable Selling Prices Yes

Price Display Style Selling Price

Price Update On Request

Multiple Language Support 14-1

14
Multiple Language Support

This chapter explains how Item descriptions are entered in Oracle Applications and can
be displayed in multiple languages when deploying an Oracle Configurator User
Interface.

This chapter covers the following topics:

• Overview

• Introduction

• Data Import

• Installed Languages in Multiple Server Environments

• Deploying a User Interface that Supports MLS

• Translating Data in CZ_LOCALIZED_TEXTS

• Translating XML Documents

Overview
This chapter describes the impact of Multiple Language Support (MLS). It includes:

• Data Import, page 14-2

• Installed Languages in Multiple Server Environments, page 14-3

• Deploying a User Interface that Supports MLS, page 14-3

• Translating Data in CZ_LOCALIZED_TEXTS, page 14-4

• Translating XML Documents, page 14-5

For general information about creating a configuration model and User Interface that
can be deployed in multiple languages, see the Oracle Configurator Developer User's
Guide.

14-2 Oracle Configurator Implementation Guide

For additional information about MLS, refer to the following sources:

• Oracle E-Business Suite Concepts: This document contains general information about
language support in Oracle Applications.

• Oracle E-Business Suite Installation Guide: Using Rapid Install: The chapter on setting
up National Language Support contains a list of languages supported by all Oracle
Applications products.

Introduction
All predefined Configurator Developer messages are stored in the following tables:

• FND_NEW_MESSAGES

• FND_LOOKUPS

• CZ_LOOKUP_VALUES_VL

Oracle translates all messages in this table into each installed language.

All text that a Configurator Developer user enters that appears in a generated UI is
stored in the CZ_LOCALIZED_TEXTS table in the user's base language. For a list of all
Configurator Developer text that is stored in this table, see the Oracle Configurator
Developer User's Guide. If you are deploying a configuration model and UI in other
languages, then the data in this table must be translated.

Translating text into different languages is typically accomplished by:

• Extracting the database file (text) into a legible and editable format by spooling the
output of a query from SQL*Plus

• Sending the file to a third-party company that edits the file and translates the data

• Re-uploading the file to the database using SQLLoader

This process is described in Translating Data in CZ_LOCALIZED_TEXTS, page 14-4.

Data Import
Before importing a BOM Model, be sure that all Items defined in Oracle Inventory have
descriptions. All translated Item descriptions are stored in the
MTL_SYSTEM_ITEMS_TL table.

The Populate Configuration Models concurrent program:

• Extracts all strings associated with BOM Models imported from
MTL_SYSTEM_ITEMS_TL for all languages installed on the import target database

Multiple Language Support 14-3

• Populates CZ_LOCALIZED_TEXTS with
MTL_SYSTEM_ITEMS_TL.DESCRIPTION

New Models
When importing a new BOM Model, the Oracle Configurator import procedures import
all translated descriptions of each BOM Model item.

Existing Models
When refreshing an existing imported BOM Model, the import procedures update the
CZ_LOCALIZED_TEXTS table if translations were added or modified in Oracle
Inventory.

For more information, see Refreshing Imported Data, page 5-16.

Installed Languages in Multiple Server Environments
Publishing in a multi-server environment (such as multiple development instances and
a production instance), requires that source and target instances have the same base
language as well as the same set of installed languages. If either the base language or
the set of installed languages are not the same, then the concurrent program fails when
copying the publication to the target database or when migrating Models from one
development database to another. When the source and target instances have the same
base language and set of installed languages, then any missing or superfluous data in
the target database (which can cause errors at runtime) is eliminated. For more
information, see Database Instances, page 3-1.

Deploying a User Interface that Supports MLS
Like Configurator Developer, all Oracle Applications products that can host an Oracle
Configurator use the Languages setting to control the session language. For more
information on the Languages setting, see the Oracle Configurator Developer User's Guide.
When a host application launches Oracle Configurator to configure an item, the
language specified in the database ICX session ticket is passed to Oracle Configurator.
Oracle Configurator uses this information to determine which translated text to retrieve
from the database and display in the UI.

Note: When a new language is added in Oracle Applications and you
want to see the user interface labels in the new language, you must
re-publish the Models.

For more information about deploying a UI, see User Interface Deployment, page 19-1
.

14-4 Oracle Configurator Implementation Guide

Translating Data in CZ_LOCALIZED_TEXTS
Following is an example of how you can extract and translate data in
CZ_LOCALIZED_TEXTS.

1. Extract data from CZ_LOCALIZED_TEXTS using SQL*Plus.

For example:
SQL> set linesize 2000
set heading off
spool <file>
select
to_char (intl_text_id) ││
',"' ││
 to_char (model_id) ││ ',' ││
 to_char (ui_def_id) ││ ',' ││
 language ││ '","' ││
 source_lang ││ '","' ││
 replace (localized_str, '"', '""') ││ '"'
 from
 cz_localized_texts
 where
 language = 'US' and
 deleted_flag = '0' and
 (
 model_id in (4687, 8546, 11574) or
 ui_def_id in (68487, 56468, 8375)
)
 ;
 spool off

Note: The query in this example extracts only the 'US' records
(language = 'US'). If you need to translate the text into multiple
languages, copy the file for each target language. Alternatively, you
can extract all translations by removing this filter in the query.

2. Edit the file and translate the text. (This is typically performed by a third party that
specializes in translating data.)

For example:
SQL> 78546,4687,68487,"US","US","Here ""Harry"" is a dog"
92115,4687,68487,"FR","FR","Ici <<Henri>> est chien"

Note that all string data is in quotation marks. Quotation marks within the
translatable strings are doubled but they may need to be altered to fit quotation
conventions in the target language. The LANGUAGE and SOURCE_LANG values
should be changed to the target language of the translation.

3. Delete the existing records.

For example:

Multiple Language Support 14-5

SQL> delete from cz_localized_texts
 where
 (
model_id in (4687, 8546, 11574) or
 ui_def_id in (68487, 56468, 8375)
)

In this example, the script does not contain the filters "deleted_flag = '0' and
language = 'US' " because it removes the deleted records and replaces them with the
new translations.

4. Load the data using SQLLoader.

For example:
SQL> sqlldr userid=apps@CUSTDB
 control=loadtexts.ctl
 log=loadtexts.log

Below is an example of an SQLLoader control file:
LOAD DATA
 INFILE 'customer_texts.dat'
 BADFILE 'customer_texts.bad'
APPEND
 INTO TABLE CZ.CZ_LOCALIZED_TEXTS
 FIELDS TERMINATED BY ","
 OPTIONALLY ENCLOSED BY '"'
 (INTL_TEXT_ID, MODEL_ID,
 UI_DEF_ID, LANGUAGE,
 SOURCE_LANG, LOCALIZED_STR)

5. Translate XML documents as necessary.

See Translating XML Documents, page 14-5.

Translating XML Documents
After translating all text in CZ_LOCALIZED_TEXTS and unit testing the UI, it is
possible that some text in your UI pages (XML documents) will still require translation.
Some examples include the text of a Static Styled Text UI element and column header
text for elements that represent the columns of a table. For details about these UI
elements, see the Oracle Configurator Developer User's Guide.

The Oracle Applications Extension Translation toolset deals with translatable
information contained in OA Extension pages using XLIFF, a widely used XML format
for transferring and manipulating translatable resources. You can use this toolset to
translate the XML documents that make up your generated UI.

For details, refer to the following documents, which are available on Oracle
Applications Documentation, on the Oracle Technology Network:

• Oracle Application Framework Personalization Guide

14-6 Oracle Configurator Implementation Guide

• Oracle Application Framework Developer's Guide

Part 4
Configuration Model

This Part presents information that enables you to extend a BOM Model's structure,
rules, and UI to reflect your business requirements and integrate with a host application
as described in Model Development Tasks, page 1-6.

Controlling the Development Environment 15-1

15
Controlling the Development Environment

This chapter covers the following topics:

• Overview

• Setting up Oracle Configurator Developer

• Setting up Access to Configurator Developer

• Oracle Configurator Developer

Overview
This chapter presents the following topics:

• Setting up Oracle Configurator Developer, page 15-1

• Setting up Access to Configurator Developer, page 15-2

• Oracle Configurator Developer, page 15-3

Setting up Oracle Configurator Developer
To utilize some Oracle Configurator Developer functionality or access a runtime Oracle
Configurator from other Oracle Applications such as Order Management, you must set
some profile options. See the Oracle Configurator Installation Guide for information about
Oracle Configurator Developer profile options.

Multiple Language Support (MLS) enables you to create a Model and one or more user
interfaces in your base language and then display the runtime UI in any language in
which you do business. For more information on MLS see the Oracle Configurator
Developer User's Guide and Multiple Language Support, page 14-1.

For background on the relationship of Oracle Configurator Developer to the Oracle
Configurator architecture, see Configurator Architecture, page 2-1.

15-2 Oracle Configurator Implementation Guide

Setting up Access to Configurator Developer
Some setup is required to provide access to Configurator Developer. This section
provides an overview of the process.

Access to specific Configurator Developer functions, such as creating Model structure,
defining rules, and generating a User Interface, is controlled by the responsibility to
which each Oracle Applications user is assigned. For example, a responsibility may
enable user CTHOMAS to generate UIs, but not allow that user to define or modify
rules.

For more information about Oracle Applications responsibilities and function security,
see the Oracle E-Business Suite System Administrator's Guide.

To set up access to Oracle Configurator Developer, your System Administrator must:

1. Define Oracle Configurator Developer users in Oracle Applications.

For details, see the Oracle E-Business Suite System Administrator's Guide.

2. Assign at least one of the predefined Configurator Developer responsibilities listed
below in The Predefined Configurator Developer Responsibilities to each Oracle
Configurator Developer user.

p

The following table describes the predefined Oracle Configurator Developer
responsibilities.

The Predefined Configurator Developer Responsibilities

Responsibility Description

Configurator
Administrator

Access to all forms-based Oracle Configurator related concurrent
programs. For more information on concurrent programs, see
Concurrent Programs, page C-1.

Configurator Developer Access to some forms-based Oracle Configurator related
concurrent programs. For more information on concurrent
programs, see Concurrent Programs, page C-1.

Controlling the Development Environment 15-3

Responsibility Description

Oracle Configurator
Administrator

Can create, edit, and delete the same objects as the Configurator
Developer responsibility (see below).

Can create, import, migrate, refresh, publish, synchronize, and
populate Models.

Has access to all HTML-based Oracle Configurator related
concurrent programs. For more information on concurrent
programs, see Configurator Administration Concurrent
Programs, page C-2 for more information.

Oracle Configurator
Developer

Unrestricted read-only access to all objects (including Model
structure, rules, User Interfaces, UI Templates, and so on).

Can create, edit, and delete the following: Folders, Model
structure; rules and rule folders; Properties; Items and Item
Types; Usages; Effectivity Sets; UI Templates; User Interfaces.

Can create, import, refresh, publish, and populate Models.

Has access to some HTML-based Oracle Configurator related
concurrent programs. For more information on concurrent
programs, see Concurrent Programs, page C-1.

Oracle Configurator
Viewer

Unrestricted read-only access to all objects (including Model
structure, rules, User Interfaces, UI Templates, and so on).

Cannot modify any objects.

Warning: Oracle strongly recommends that you do not modify the
predefined Oracle Configurator Developer responsibilities. If you need
to provide access to a different combination of menus and functions,
then define new responsibilities in Oracle Applications. For information
about defining responsibilities, see the Oracle E-Business Suite System
Administrator's Guide.

Oracle Configurator Developer
Oracle Configurator Developer provides an intuitive and powerful environment for the
creation and maintenance of configuration models.

Model Development
Using Oracle Configurator Developer, the developer makes modifications to a Model

15-4 Oracle Configurator Implementation Guide

(structure, rules, UI definitions). These modifications of the model data are committed
to the Oracle Applications database server. This is shown as the Model development
environment in Three tier Architectural Overview of Oracle Configurator Developer,
page 2-12.

After making modifications to the Model, the Model can be tested in either the runtime
Oracle Configurator or the Model Debugger. For more information see the Oracle
Configurator Developer User's Guide.

The unit-testing configuration data is committed to the database, after the developer
clicks Apply or Finish.

Runtime Testing
All Oracle Configurator runtime database commits are through JDBC. When the end
user closed the Configurator window, the resulting configuration data is saved directly
to the database.

To test the configuration model, there are certain objects that must be in place:

• In order for Functional Companions to run, you must have access to Java classes.
For more information, see the Oracle Configurator Developer User's Guide.

• OC Servlet must be restarted if you add or modify the Java class for a Configurator
Extension.

• Open a new configuration session in a new browser window by going to the
Model's Utility page to view any Model, rules, or UI changes.

• Check that the OC Servlet is running and what version of the runtime Oracle
Configurator software is being used. Enter the following URL in a browser using
the specific local settings for host and port where the OC Servlet is installed:

Example
http://host:port/OA_HTML/configurator/UiServlet?test=version

For more information about the runtime Oracle Configurator and Oracle Configurator
Developer, see Configurator Architecture, page 2-1.

Publishing Configuration Models 16-1

16
Publishing Configuration Models

This chapter explains the database processes for publishing configuration models to
make them available to host applications.

This chapter covers the following topics:

• Overview

• Planning Publications

• How Host Applications Select a Published Model

• Defining a Publication

• Publishing a Configuration Model

• Maintaining Publications

Overview
This chapter presents information about:

• Planning Publications, page 16-1

• How Host Applications Select a Published Model, page 16-3

• Defining a Publication, page 16-5

• Publishing a Configuration Model, page 16-10

• Maintaining Publications, page 16-14

Planning Publications
Publishing is a process that creates a copy of a configuration model on a specific
database and makes it available to host applications for testing or production use. The
copied data is called a publication, and it includes the Model's structure, rules, User

16-2 Oracle Configurator Implementation Guide

Interface, and Global User Interface Templates. The publishing process is explained in
the Oracle Configurator Developer User's Guide.

Publishing configuration models requires careful planning, based on a thorough
understanding of the process by which publications of configuration models are
defined and made available to host applications.

As part of your planning, consider the following:

• How will each publication be used?

• Which host application(s) need to access the publication?

• How will the configuration model be presented to the end user?

• How can the Oracle Configurator publication functionality help you achieve your
deployment?

• Are you working with BOM Models or non-BOM Configurator Developer Models?

Once you have determined how the publication functionality applies to your situation,
identify the necessary tasks in Oracle Applications and Oracle Configurator Developer .

Creating configuration models and publication requests is explained in the Oracle
Configurator Developer User's Guide .

Designing A Project
Your project design should account for how you use host applications, Usages, effective
date ranges, languages, publication modes, and database instances.

Consider the following:

• How many databases are you going to set up?

For example, are you going to develop, test, and go live on only one database, or do
you plan to develop test configuration models, but run your production
environment on a separate, production database? For important things to consider
regarding publishing and database instances, see Model Development, page 3-7.

• Are you going to use Usages to control a publication's availability?

See Example: How a Usage Affects Model Structure, Rules, and Model Publications
at Runtime, page 16-4.

• Are you going to use effective dates, Effectivity Sets, and Usages within
configuration models to limit the availability of specific Model structure nodes or
rules?

For more information, see the chapter on effectivity in the Oracle Configurator
Developer User's Guide .

Publishing Configuration Models 16-3

• What host applications will access your publications?

• Is your host application registered in Oracle Applications?

For information about registering applications, see the Oracle E-Business Suite
System Administrator's Guide.

• Will you use the publication Mode to restrict access to testers and end users?

For example, when testing on the production database before going live, setting the
publication mode to Test excludes end users from accessing a publication, even
though the publication still exists in the production database.

Preventing Publication Access Errors
To prevent end users from receiving errors, you should plan for and try to create
publications for all circumstances in which host applications access your configuration
models. Applications that can host a runtime Oracle Configurator can access different
publications for a single configuration model. A publication corresponds to only one
configuration model and one User Interface. A configuration model can have multiple
User Interfaces and you can create many publications for the same Model.

How Host Applications Select a Published Model
All applications that can host a runtime Oracle Configurator select a specific Model
publication to view by sending an initialization message to the Oracle Configurator
Servlet. If a publication's applicability parameters match the parameters in this
message, then the corresponding configuration model and UI appear in the
Configurator window. If no matching publication is found but the Model was created
from an imported BOM Model, then Oracle Configurator displays the BOM Model in
the Generic Configurator UI. If no matching publication is found and the Model was
created in Oracle Configurator, then Oracle Configurator displays an error.

For example, in your business you know that two different host applications, Oracle
Order Management (OM) and Oracle iStore, will be used to configure Model M1. You
define two unique UIs in Configurator Developer and create two publications for this
Model. You set the Applications applicability parameter to Oracle Order Management
for the first publication, and Oracle iStore for the second. An Oracle Applications user
whose responsibility is assigned to Oracle Order Management selects Model M1 in the
Sales Orders window, and clicks Configure.

Using the information in the initialization message, the OC Servlet selects the only
publication in the database that:

• Has the Applications parameter set to Oracle Order Management

• Matches all of the other parameters specified in the initialization message

16-4 Oracle Configurator Implementation Guide

The OC Servlet then displays the configuration model and UI that you defined
specifically for orders placed from Order Management in the Configurator window.

For detailed information about the initialization message, see Session Initialization,
page 9-1.

For information about entering applicability parameters when creating a publication,
see the Oracle Configurator Developer User's Guide.

Example: How a Usage Affects Model Structure, Rules, and Model Publications at
Runtime

Your company makes and sells cars and has two types of Oracle Order Management
users: experienced users, who are very familiar with each vehicle, and new users, who
are either still in training or have worked for the company for only a short time.

The US Environmental Protection Agency (EPA) requires that cars sold in California
meet more rigorous emissions standards than other states in the U.S. Therefore, cars
that are sold in California must have different engine and exhaust components than cars
sold elsewhere. Your experienced users need to be able to quickly configure orders and
do not require much information except the state in which the customer lives. However,
your less experienced users require more detailed information and guidance to
consistently create valid, orderable configurations.

When defining the configuration model, you create additional Model structure, rules,
and a UI to guide inexperienced users. The additional Model structure and rules
provide the guided buying and selling questions to ensure that inexperienced users
correctly configure each vehicle based on the state in which the customer lives. You
then create a Usage called "Experienced User" and select this Usage for the guided
buying or selling structure and rules in your Model.

Your System Administrator sets the profile option CZ: Publication Usage at the User
level for each Oracle Configurator end user. For the experienced users, the System
Administrator sets this profile option to "Experienced User". For inexperienced users,
the System Administrator accepts the profile option's default value, which is "Any
Usage."

You create two publications for the Model. One publication is intended for experienced
users, so you select the appropriate UI and the Experienced User Usage when defining
the publication's applicability parameters. The other publication is intended for
inexperienced users, so you select the UI that has additional controls and information
for configuring the car, but do not select a Usage (that is, you accept the default value,
which is Any Usage).

When an end user wants to configure a car, Oracle Configurator checks how the CZ:
Publication Usage profile option is set for that user, and applies this value to the
configuration session. If the Usage specified is "Any Usage," then Oracle Configurator
displays the publication and UI intended for the inexperienced user. This publication
has additional UI controls, rules, and guided buying or selling questions to guide the
user's selections.

Publishing Configuration Models 16-5

If the Usage specified is "Experienced User," then Oracle Configurator displays the
publication and UI intended for the experienced user. This publication has fewer rules
and a very basic UI that enables the end user to select options and create a valid
configuration very quickly.

Defining a Publication
This section explains:

• Source and Remote Publications, page 16-5

• Tables Used in Publishing, page 16-6

• Publication Details, page 16-6

• Publication Applicability Parameters, page 16-8

Source and Remote Publications
Defining a publication in Oracle Configurator Developer creates a source publication
with a unique publication ID in the CZ_MODEL_PUBLICATIONS table in the
development database instance. When the publication and Model data is exported to
the target database instance (by running a concurrent program), a record of the
publication is created on the target database: this is called a remote publication. Each
value in a source publication record corresponds to a value in the remote publication
record. For details, see Data created when a configuration model is published, page 16-
10. For details on creating a publication in Oracle Configurator Developer, see
Configuration Model Publication Concurrent Programs, page C-15.

Do not confuse the term "remote publication" with the process of publishing a Model to
a remote database instance. Creating a remote publication means creating a publication
on an instance other than the one on which Configurator Developer is running. For
more information, see Target Database Instance, page 16-8.

If a publication target instance is converted to a development instance, the source
publication records are modified accordingly (see the Convert Publication Target
Instance to Development Instance, page C-8 concurrent program for details). The
publications on the source instance are marked as OBSOLETE, and the only action
allowed on these publications is Delete.

When you define a publication record, Oracle Configurator Developer checks the
source publication's attributes and applicability parameters to be sure they do not
overlap with other source publications.

Warning: Configurator Developer does not compare the source
publication to any remote publications, even if the target database is the
same database on which Configurator Developer is running. In other

16-6 Oracle Configurator Implementation Guide

words, the publishing process does not prevent users from publishing
Models from multiple development instances to the same target
instance. You can only be sure that you are not creating publications
with overlapping applicability parameters in the same database (and
possibly causing data synchronization errors) if you publish from a
single development instance. For this reason, be sure that users publish
configuration models from only one source database.

Tables Used in Publishing
The following database tables are used during the publishing process:

• CZ_EXT_APPLICATIONS

• CZ_MODEL_PUBLICATIONS

• CZ_MODEL_USAGES

• CZ_MODEL_USAGES_TL

• CZ_PB_CLIENT_APPS

• CZ_PB_LANGUAGES

• CZ_PB_MODEL_EXPORTS

• CZ_PUBLICATION_USAGES

• CZ_UI_ACTIONS

• CZ_UI_DEF

For detailed information about the publishing tables (or any other tables in the CZ
schema), see the Oracle Integration Repository.

Publication Details
Access to a publication is determined in part by a publication's details and applicability
parameters. When you create a new publication or edit an existing publication, these
details are found in the Publications area of the Repository in Configurator Developer.
A publication's details define the runtime circumstances and environment in which the
published configuration model (that is, the publication) is available.

This section contains information about how the publication's details are used internally
by the runtime Oracle Configurator. The publication details described are:

• Model , page 16-7

Publishing Configuration Models 16-7

• Product ID, page 16-7

• User Interface, page 16-8

• Target Database Instance, page 16-8

• Mode, page 16-8

For general information about the publication attributes, including how to specify them
when creating the publication record, see the Oracle Configurator Developer User's Guide.

Model
The Product ID column in the Publications area of the Workbench corresponds to the
MODEL_KEY field in the CZ_MODEL_PUBLICATIONS table. This MODEL_KEY is
the CZ_DEVL_PROJECTS.DEVL_PROJECT_ID that displays the
CZ_DEVL_PROJECTS.NAME. This is the Model name that appears in the General areas
of the Workbench in Configurator Developer.

Product ID
Product ID is a designation relevant when publishing in Oracle Configurator
Developer. There is no corresponding Product node in a configuration model's
structure.

The Product ID field in the Publications area of the Workbench displays different
information depending on whether the specified Model is an imported BOM Model or a
Oracle Configurator (non-BOM) Model.

If the configuration model is based on an imported BOM Model, the Product ID consists
of the organization ID and Oracle Inventory Item ID, which are derived from Oracle
Inventory (for example, 101 : 214738). This value is stored as the PRODUCT_KEY in
CZ_MODEL_PUBLICATIONS, CZ_DEVL_PROJECTS, and
CZ_IMP_DEVL_PROJECTS. In this case, the Product ID is read-only.

If the publication is based on a non-BOM Model that does not reference an imported
BOM Model, and the PRODUCT_KEY field in CZ_DEVL_PROJECTS is not null, then
that value is used in the publication record and is read-only. If the value is null, then the
user enters a value.

If the publication is based on a non-BOM Model and does contain a Reference to a BOM
Model, the Product ID consists of the imported BOM Model's Oracle Inventory Item ID
and Organization ID. In this case, the Product ID is read-only.

Note: If the Model you specified is a non-BOM Model, then the default
Product ID is the name of the root Model node. For imported BOM
Models, this value consists of the BOM Model's Item ID and
Organization ID (defined in Oracle Inventory). You can change the
Product ID when publishing a non-BOM Model; otherwise, it is

16-8 Oracle Configurator Implementation Guide

read-only.

The PRODUCT_KEY and the product_id parameter specified by the host application's
session initialization message are the same. For more information about the session
initialization message, see Session Initialization, page 9-1.

User Interface
If the configuration model specified by the publication has multiple User Interfaces,
then the list of available User Interfaces on the Publications Repository page comes
from the CZ_UI_DEFS table. The available User Interfaces are determined by the
selected configuration model.

Target Database Instance
The list of values for this parameter includes all databases listed in the CZ_SERVERS
table. This parameter indicates the database to which the publication and Model data
are copied when you run one of the Configuration Model Publication Concurrent
Programs, page C-15. The database you specify can be the same instance on which
Configurator Developer is running, or a different one (that is, a remote database
instance). However, Oracle strongly recommends that all source and target instances
which participate in publishing be located on the same local area network. When
publishing over a wide area network, performance can be degraded by network factors.

Before you can publish to a remote database instance, it must be defined and enabled.
For details, see the Server Administration Concurrent Programs. , page C-9Note that
the first time you create a publication on a remote database instance, the instance
changes to a publication target, and Configurator Developer can no longer be accessed
on that instance. To change it back to a development instance, run the Convert
Publication Target Instance to Development Instance , page C-8concurrent program.

Mode
Values for this parameter include Test, Production, or Disabled. For
information about the publication_mode parameter in the session initialization
message, see Initialization Parameter Descriptions, page 9-17. See the Oracle Configurator
Installation Guide for information on the Oracle Applications profile option CZ:
Publication Lookup Mode.

Publication Applicability Parameters
Applicability parameters determine the availability of a publication to host applications.
This section describes how the publication applicability parameters are used internally
by the runtime Oracle Configurator. The applicability parameters are:

• Applications, page 16-9

Publishing Configuration Models 16-9

• Languages, page 16-9

• Usages, page 16-9

• Date Range, page 16-10

For general information about applicability parameters, including how to specify them
when publishing, see the Oracle Configurator Developer User's Guide. For more
information about how a host application interacts with these parameters to select a
publication, see Model Publication Identification Parameters, page 9-13.

Applications
When creating a publication, the entries in the CZ_EXT_APPLICATIONS table appear
in Applications list of values on the Publications page. These entries are host
applications that support Oracle Configurator as well as any application that an Oracle
Configurator Administrator has added to the CZ_EXT_APPLICATIONS table.

If an application does not appear in the Applications list, and you want to make
publications available to that application, then the Oracle Configurator Administrator
can add it to the list by running the Add Application to Publication Applicability List,
page C-9 concurrent program. For more information about the
CZ_EXT_APPLICATIONS table, see the Oracle Integration Repository.

When you save a publication, the specified applications and publication ID are stored in
the CZ_PB_CLIENT_APPS table.

Languages
The Languages applicability parameter is stored in the LANGUAGE column in
CZ_MODEL_APPLICABILITIES_V. The Language list of values is retrieved from the
FND_LANGUAGES table.

For information about Multiple Language Support (MLS), see Multiple Language
Support, page 14-1.

Usages
The Usages defined in Oracle Configurator Developer are stored in the following tables:

• CZ_MODEL_USAGES contains the numeric Usage ID assigned by the database (
MODEL_USAGE_ID) and the Usage Name that you assign when you create the
Usage (NAME).

• CZ_MODEL_USAGES_TL contains the translatable Usage Descriptions that you
can create in each installed language (DESCRIPTION).

The Usage Names are displayed in the list of values when assigning Usages to a
publication on the Model Publication page. The Usages assigned to a publication are

16-10 Oracle Configurator Implementation Guide

stored in CZ_PUBLICATION_USAGES.

For an example of how Usages are used by a host application at runtime, see Example:
How a Usage Affects Model Structure, Rules, and Model Publications at Runtime, page
16-4.

For general information about Usages and how to define them in Configurator
Developer, see the Oracle Configurator Developer User's Guide.

Date Range
A publication's effective dates are stored in the columns APPLICABLE_FROM and
APPLICABLE_UNTIL in the CZ_MODEL_PUBLICATIONS table.

Publishing a Configuration Model
After defining a source publication in Oracle Configurator Developer, the configuration
model data must be copied to the target database by doing one of the following:

• Submitting a concurrent program request through Oracle Applications. For more
information, see Configuration Model Publication Concurrent Programs, page C-15
.

When you submit an Oracle Applications concurrent request to publish Model data
to a target database, the Model, any referenced Models, and any referenced UI
Content Templates must either be unlocked or locked by you. For more information
on locking, see the Oracle Configurator Developer User's Guide.

• Using the cz_modeloperations_pub.publish_model API through
SQL*PLUS. For more information, see Programmatic Tools for Maintenance, page
18-1.

• Running a batch process.

Each of these tasks create a remote publication on the target database. When the
publication completes successfully, the remote publication can be accessed by host
applications such as Oracle Order Management or iStore. The
CZ_MODEL_PUBLICATIONS table stores the high level information about the
publication. A new entry is entered into the CZ_DEVL_PROJECT table. For table details
see the Oracle Integration Repository.

Data created when a configuration model is published, page 16-10 shows some of the
data that is created when a configuration model is published.

Data created when a configuration model is published
• Source publication record:

• PUBLICATION_ID: 5721

• SERVER_ID: 5

Publishing Configuration Models 16-11

• REMOTE_PUBLICATION_ID:5760

• SOURCE_TARGET_FLAG: S

• Corresponding remote publication record:

• PUBLICATION_ID: 5760

• SERVER_ID: 5

• REMOTE_PUBLICATION_ID:5721

• SOURCE_TARGET_FLAG: T

Illustration of a Publication Record Mapping, page 16-11 illustrates how the source and
target publication records have corresponding values in the database. This
correspondence allows source and target publications to be matched when updating or
synchronizing the publication data.

Illustration of a Publication Record Mapping, page 16-11 illustrates how
PUBLICATION_ID 5721 in the source publication corresponds to
REMOTE_PUBLICATION_ID 5721 in the target publication. The illustration also shows
that REMOTE_PUBLICATION_ID 5760 in the source publication corresponds to
PUBLICATION_ID 5760 in the target publication. The source publication's SERVER_ID
is 5, which corresponds to the SERVER_ID entry in the CZ_SERVERS table (whose
value is also 5).

Illustration of a Publication Record Mapping

In the source database instance, the SERVER_ID column in the CZ_SERVERS table
identifies the target's SERVER_ID. This same column and table on the target database
instance is the target's SERVER_ID (not the source's SERVER_ID).

For more information about defining publications, examples of overlapping
publications, and UI Templates, see the Oracle Configurator Developer User's Guide.

For more information, see Configuration Model Publication Concurrent Programs, page
C-15.

16-12 Oracle Configurator Implementation Guide

Publication Profile Options
If a Usage or publication mode is not specified in the session initialization message,
then the following profile options provide default values for these parameters:

• CZ: Publication Usage

• CZ: Publication Lookup Mode

Publishing and Model References
If you are publishing a configuration model that has References to other Models, then
all of the referenced Models are also copied to the target database and are part of the
publication. If a referenced Model itself is not published, then it can only be configured
as part of its parent (the published Model). In other words, an end user can configure
only Models that have been published.

The availability of referenced Models is controlled by the Usages and Date Range
applicability parameters. See the Oracle Configurator Developer User's Guide for more
information on the Usages and Date Range applicability parameters.

Copying User Interface Data
The runtime Oracle Configurator UI supports the use of UI Templates and generated
User Interfaces. Publishing a configuration model copies the following UI-specific data:

• Database records in the following tables that have UI_DEF_ID as part of the
primary key in the target database instance:

• CZ_UI_ACTIONS

• CZ_UI_CONT_TYPE_TEMPLS

• CZ_UI_DEFS

• CZ_UI_PAGES

• CZ_UI_PAGE_REFS

• CZ_UI_PAGE_SETS

• CZ_UI_REFS

• CZ_UI_TEMPLATES

• Generated User Interfaces for a given UI_DEF_ID and listed in the following:

Publishing Configuration Models 16-13

• CZ_UI_CONT_TYPE_TEMPLS

• CZ_UI_PAGES.jrad_doc

• CZ_UI_TEMPLATES.jrad_id

All translations are stored in the JRAD repository and are copied to the target
database when the generated UI is copied.

Copying Model Rules
By default, the publishing process copies all configuration model data to the target
database. You can control whether rules defined in Configurator Developer are copied
using the PublishingCopyRules, page 4-20 setting in the CZ_DB_SETTINGS table. This
setting does not affect Configurator Extension Rules; all Configurator Extension Rules
are always copied when you publish or republish a configuration model.

For more information about the PublishingCopyRules setting, see
PublishingCopyRules, page 4-20.

Checking BOM Model and Configuration Model Similarity
When you are publishing to a remote server, the publication concurrent programs call
the Model synchronization concurrent programs. If there are key discrepancies between
the source BOM Model and the configuration model to be published, such as the Items
on both Models are not the same, then an error message is logged by the publication
concurrent program and the configuration model is not published.

Publishing Error when Checking BOM Model and Configuration Model, page 16-13
illustrates an error found in CZ_DB_LOGS file when attempting to publish a
configuration model (publication ID = 28261).

Publishing Error when Checking BOM Model and Configuration Model
Unable to proceed with publishing because the configuration model
'SOURCE MODEL1-Pub Synch(204 501069)' does not match the corresponding
bill on the target server. The model has not been published.
 28261 36638
BOM Synchronization, version 115.29, started 2002/12/18/16:27:41,
session run ID: 36639
 28261 36638
Maximum quantity does not match for item 'ATO OC6' with parent 'ATO
Model4' in configuration model '
SOURCE MODEL1=>PTO Model2=>ATO Model3=>ATO Model4'
 28261 36638
Process terminated for publication_id: 28261
 28261 36638

For more synchronization information, see The BOM Model Synchronization Process,
page 7-2.

16-14 Oracle Configurator Implementation Guide

Maintaining Publications
Typically, a configuration model may undergo many iterations of testing and updates
before it is made available to customers in a production environment. Publishing gives
you complete control over each step in a configuration model's lifecycle, enabling you
to maintain and update Models that are under development while making approved
versions available in your production environment.

The following illustration shows an overview of the publication process, in which a user
creates a new publication from Configurator Developer on the Development database,
tests the Publication, updates the Model in Configurator Developer, and republishes the
Model. Once the publication has been tested thoroughly, a Developer user changes the
Mode applicability parameter to Production, or creates a new publication and selects
the Production database as its target.

Example of the Publication Process

Publication Status
The operations you can perform on an existing publication depend on its current status.
You can view detailed information about publications, including their status, on the
Model Publication page in Configurator Developer.

The table Publication Status and Valid Operations, page 16-15 lists each status and the
corresponding tasks you can perform.

Publishing Configuration Models 16-15

Publication Status and Valid Operations

Status New or

New Copy

Edit Republish Delete Disabled Edit UI

Complete Y Y Y Y Y N

Pending Y Y N Y Y N

Update Pending Y N N N N N

Processing Y N N N N N

Error Y N N Y N N

Obsolete Y N N Y N N

Configurator Developer updates the status of all publications whenever you navigate to
the Publication Repository page or click the Browser Refresh. The Status column may
change, for example, when one of the publication concurrent programs completes
successfully.

Following is a description of each publication status:

• Complete: The Oracle Applications concurrent program successfully copied the
configuration model to the publication target database.

• Pending: A request to create a new publication has been created in Configurator
Developer. When the Oracle Applications concurrent program successfully copies
the Model data to the publication target database, the pending status changes to
Complete. If an error occurs during the publication concurrent program, then the
publication's status changes to Error.

• Pending Update: A request to update the existing publication has been created.
When the Oracle Applications concurrent program successfully copies the Model
data to the publication target database, the Pending Update status changes to
Complete. If an error occurs during the update, then the publication's status rolls
back to Complete so that the user can republish the Model.

• Processing: The Oracle Applications concurrent manager is processing a request to
create or update this publication.

• Error: An error occurred while processing the request to create or update this
publication. An error can occur, for example, when you create a new source

16-16 Oracle Configurator Implementation Guide

publication but another Configurator Developer user updates the Model before the
Oracle Applications concurrent program is complete.

• Obsolete: When a publication's target instance is converted to a source
development instance, all publications on that target database instance for
publishing are marked as Obsolete in the original source instance. A copy of the
obsolete publication can be made, but the publication details page will not list the
original publication's target server. You must choose a new target server.

Editing Publications
When an Oracle Configurator Developer user edits a publication, the changes are
automatically propagated to the remote publication in the
CZ_MODEL_PUBLICATIONS table (in the target database).

Depending on the changes made in Oracle Configurator Developer, editing the
publication may involve adding or deleting records in the CZ_PB_CLIENT_APPS or
CZ_PUBLICATION_USAGES tables, or changing the publication's mode or valid date
range.

For information on how to edit a publication, see the Oracle Configurator Developer User's
Guide.

Note: If you publish a new version of the Model and there are previous
published versions in memory because you are still running on the
same Apache JServ, users could get out of memory errors if the max
heap size can't accommodate all of the published Models in memory.
You can increase the maximum heap size (which could degrade
performance) or bounce Apache to clear the previous publication out of
memory. Oracle Applications Java Caching Framework provides the
ability to manage the caching and decaching of Model and UI data,
which optimizes both runtime performance and memory management.
For more information, see the Oracle Configurator Performance Guide.

Disabling, Deleting, and Re-enabling Publications
You can make a publication unavailable to host applications by disabling it in the
Publication Repository. When a publication is disabled, it remains listed in the
Publication Repository, its status does not change, but the publication's Disabled
column notes that the publication has been disabled. When a publication is disabled
you can modify its applicability parameters or re-enable it.

You can also delete a publication. When you delete a publication, it no longer appears
in the Publication Repository page in Oracle Configurator Developer, and it cannot be
recovered. However, the publication record still exists in the CZ schema until the Purge
Configurator Tables concurrent program is run. For more information on the Purge

Publishing Configuration Models 16-17

Configurator Tables concurrent program, see Purge Configurator Tables, page C-4.

See the Oracle Configurator Developer User's Guide for more information on disabling,
deleting and re-enabling publications.

Republishing
This section describes the database tables that are updated when you republish a
configuration model. For information about how to republish a configuration model in
Configurator Developer, see the Oracle Configurator Developer User's Guide.

When an Oracle Configurator Developer user republishes a configuration model, the
following occurs:

1. The status of the original publication changes to PUP (Pending Update) in the
Publication Repository, and STATUS is PUP in the CZ_PB_MODEL_EXPORTS
table. The publication status does not change until one of the publication concurrent
programs completes successfully.

2. A new publication record is created in the CZ_MODEL_PUBLICATIONS,
CZ_PB_CLIENT_APPS, and CZ_PUBLICATION_USAGES tables of the publication
source development instance. This publication record has the same applicability
parameters as the original publication.

Note: If you set the profile option CZ: Populate Decimal Quantity Flags
to Yes and then reimport or refresh your BOM Models, you must
republish existing Model publications to ensure that they use the new
setting. Decimal quantities are explained in Importing Decimal or
Integer Quantities, page 5-13.

Note: If a new language has been added to Oracle Applications, then
you must republish your Models in order for the User Interface labels
to be displayed in the new foreign language. For more information on
MLS, see Multiple Language Support, page 14-1.

Determining Publishing Information
Knowing the UI_DEF_ID can be helpful when you want to look up information about a
publication using SQL*Plus. Using the Publication ID from Oracle Configurator
Developer's Publication Repository in a simple SQL*Plus query returns the UI_DEF_ID.
The UI_DEF_ID can then be used in queries on the CZ_CONFIG_HDRS,
CZ_MODEL_PUBLICATIONS, CZ_UI_DEFS, CZ_UI_NODES, CZ_UI_NODE_PROPS,
CZ_UI_PROPERTIES.

16-18 Oracle Configurator Implementation Guide

Query for UI_DEF_ID
select ui_def_id
from cz_model_publications
where publication_id=publication number ;
 UI_DEF_ID
 2760

UI_DEF_ID can also be found in CZ_UI_DEFS, or by calling the PL/SQL function
cz_cf_api.ui_for_item. For more information about this function, see Reference
for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages, page 17-11.

Retrieving Orders from Previously Published Models
A situation may develop where you want to retrieve prior orders that were placed
against a previously published Model, rather than the more recent Model that has new
structure and new rules. For example, when the first Model was published the From
and To Date Range applicability parameters were not specified.

To retrieve orders for the previously published Model, you must:

1. Edit the first published Model's Date Range applicability parameter to have an end
date.

2. Republish the Model.

3. Publish the newer Model with the From Date Range applicability parameter equal
to the To Date Range of the first published Model.

Note: If a previously published configuration model is modified in
Configurator Developer and is then republished, then end users can
restore any saved configurations that were created using the original
publication. However, if the Model's structure or rules have changed,
the end user may need to make additional selections to create a valid
and complete configuration.

See the Oracle Configurator Developer User's Guide to learn how to perform these tasks.

Synchronizing Publication Data
Publication data must be synchronized whenever you:

• Clone a publication source or target database instance

• Migrate data from one database instance to another

For more information, see Synchronizing Data, page 7-1.

Publishing Configuration Models 16-19

Example of Maintaining Publications
This section provides an example of how a business may develop configuration models
and maintain publications in a development environment. An organization has a laptop
computer called M1A that is currently in production. However, a new version of M1A
is under development and this computer, M1B, will replace M1A by the end of the year.
The new Model must replace the older version in the production environment and there
can be no period of time when neither is available to customers.

Maintaining Publications, page 16-19 provides an overview of how this organization
plans to develop, test, and release M1B into production. It is a time line that lists the
typical activities involved in maintaining a Model publication. Details of each step and
a description of the table are provided in the text following the table.

Maintaining Publications

Details
The following steps correspond to the ID column in the project schedule shown in
Maintaining Publications, page 16-19.

1. Using Configurator Developer, the development team creates a new configuration
model (M1B) to reflect the new product's features and enhancements. The Model is
unit tested periodically in Oracle Configurator Developer, but it is not yet made
available for system testing.

2. The new configuration model is complete and ready for system testing.

3. Developers create publication P1 and sets its publication Mode to Test. The
publication is effective immediately and no end date is required because it can be
modified at any time. The Applications and Usages parameters specify which host
applications and end users can access the Model.

4. The quality assurance (QA) group accesses and tests the configuration model for

16-20 Oracle Configurator Implementation Guide

product M1B and reports any problems to the development group. The host
application that the testers use selects the configuration model to display based on
the applicability parameters defined for publication P1.

5. The first round of testing configuration model M1B is complete.

6. Developers incorporate comments from testers by updating the configuration
model in Configurator Developer. This may include building new Model structure,
creating or modifying rules, or updating the User Interface.

7. When changes to the Model are complete, developers republish the Model.
Republishing copies any new or modified data to the specified database so that the
QA group can begin a second round of testing. Republishing does not change any
of the original applicability parameters, so publication P1 is available to the same
host applications and users as in the first round of testing.

8. The QA group performs a second round of testing Model M1B.

9. The second round of testing is complete and additional comments are reported to
the development group.

10. Developers update the configuration model in Configurator Developer.

11. Company management and the development group agree that the configuration
model is ready for production. In this enterprise, the development and production
environments exist on the same database, so a developer makes the product
available to customers by modifying the applicability parameters of the existing
publications as follows:

1. Change the publication Mode P1 from Test to Production

2. Change the To Effectivity Date of the now obsolete publication for Model M1A
to 12:00:00 a.m. on 01/01/01

3. Specify a From Effectivity Date for publication P1 of 12:00:00 a.m. on 01/01/01

This modification ensures that there is no gap in the availability of the old and new
products because M1A becomes obsolete at the same time M1B becomes available
in production.

See the Oracle Configurator Developer User's Guide for more information.

Programmatic Tools for Development 17-1

17
Programmatic Tools for Development

This chapter describes a set of programmatic tools (PL/SQL procedures and functions)
that may be useful in developing a configuration model and deploying a runtime
Oracle Configurator.

This chapter covers the following topics:

• Overview

• Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages

• Choosing the Right Tool for the Job

• Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages

• COMMON_BILL_FOR_ITEM

• CONFIG_MODEL_FOR_ITEM

• CONFIG_MODELS_FOR_ITEMS

• CONFIG_MODEL_FOR_PRODUCT

• CONFIG_MODELS_FOR_PRODUCTS

• CONFIG_UI_FOR_ITEM

• CONFIG_UI_FOR_ITEM_LF

• CONFIG_UI_FOR_PRODUCT

• CONFIG_UIS_FOR_ITEMS

• CONFIG_UIS_FOR_PRODUCTS

• COPY_CONFIGURATION

• CZ_CONFIG_API_PUB.COPY_CONFIGURATION

• COPY_CONFIGURATION_AUTO

• CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO

• DEFAULT_NEW_CFG_DATES

17-2 Oracle Configurator Implementation Guide

• DEFAULT_RESTORED_CFG_DATES

• DELETE_CONFIGURATION

• ICX_SESSION_TICKET

• MODEL_FOR_ITEM

• MODEL_FOR_PUBLICATION_ID

• POOL_TOKEN_FOR_PRODUCT_KEY

• PUBLICATION_FOR_ITEM

• PUBLICATION_FOR_PRODUCT

• PUBLICATION_FOR_SAVED_CONFIG

• REGISTER_MODEL_TO_POOL

• UNREGISTER_MODEL_FROM_POOL

• UNREGISTER_POOL

• UI_FOR_ITEM

• UI_FOR_PUBLICATION_ID

• VALIDATE

• CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION

Overview
This chapter describes programmatic tools that you can use primarily to develop a
configuration model and deploy a runtime Oracle Configurator. This includes:

• Choosing the Right Tool for the Job, page 17-7

• Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages, page 17-
11

Important: For the latest reference information on these APIs, see
the Oracle Integration Repository, which is installed with your
patched instance of the Oracle E-Business Suite, as described in the
Preface of this guide. In the Integration Repository, the package
described in this chapter can be located by using the Search
function on the Internal Name CZ_CF_API.

Important: This chapter includes references to DHTML user
interfaces, but these are temporarily retained for historical
informational purposes only. As of this release, DHTML UIs are no

Programmatic Tools for Development 17-3

longer supported.

For information on tools for maintaining a deployed runtime Oracle Configurator, see
Programmatic Tools for Maintenance, page 18-1.

Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages
The programmatic tools that you use while developing or deploying a runtime Oracle
Configurator are provided in the PL/SQL packages CZ_CF_API and
CZ_CONFIG_API_PUB.

Purpose of the Packages
The CZ_CF_API package contains a set of APIs that enable you to perform various tasks
such as the following:

• Copying and deleting configurations that are not networked configurations

• Determining default dates used by the runtime Oracle Configurator

• Establishing session identity

• Identifying publications

• Validating configurations

• Verifying configurations

The CZ_CONFIG_API_PUB package contains a set of APIs that enable you to copy
configurations including networked configurations and view an existing configuration
in the CZ schema.

Overview of Procedures and Functions
The table Overview of Procedures and Functions in the Package CZ_CF_API, page 17-
4 summarizes and categorizes the procedures and functions available in the packages
CZ_CF_API and CZ_CONFIG_API_PUB. The column labeled P/F indicates whether an
API is a procedure or a function.

These procedures and functions are described in individual detail in Reference for the
CZ_CF_API and the CZ_CONFIG_API_PUB Packages, page 17-11.

17-4 Oracle Configurator Implementation Guide

Overview of Procedures and Functions in the Package CZ_CF_API

Category API Name P/F

Working with Common Bills,
page 17-8

COMMON_BILL_FOR_ITEM, page 17-14 P

Copying and Deleting
Configurations, page 17-7

COPY_CONFIGURATION, page 17-37

CZ_CONFIG_API_PUB.COPY_CONFIGURATION,
page 17-39

P

COPY_CONFIGURATION_AUTO, page 17-42
CZ_CONFIG_API_PUB.COPY_CONFIGURATION_A
UTO, page 17-45

P

DELETE_CONFIGURATION, page 17-51 P

Setting Configuration Dates,
page 17-7

DEFAULT_NEW_CFG_DATES, page 17-48 P

DEFAULT_RESTORED_CFG_DATES, page 17-49 P

Establishing Session Identity,
page 17-7

ICX_SESSION_TICKET, page 17-53 F

Identifying Publications, page
17-8

CONFIG_MODEL_FOR_ITEM, page 17-15 F

CONFIG_MODEL_FOR_PRODUCT, page 17-19 F

CONFIG_MODELS_FOR_ITEMS, page 17-17 F

CONFIG_MODELS_FOR_PRODUCTS, page 17-21 F

CONFIG_UI_FOR_ITEM, page 17-23 F

CONFIG_UI_FOR_ITEM_LF, page 17-26 F

CONFIG_UI_FOR_PRODUCT, page 17-29 F

CONFIG_UIS_FOR_ITEMS, page 17-31 F

Programmatic Tools for Development 17-5

Category API Name P/F

CONFIG_UIS_FOR_PRODUCTS, page 17-34 F

MODEL_FOR_ITEM, page 17-54 F

MODEL_FOR_PUBLICATION_ID, page 17-56 F

PUBLICATION_FOR_ITEM, page 17-58 F

PUBLICATION_FOR_PRODUCT, page 17-59 F

PUBLICATION_FOR_SAVED_CONFIG, page 17-61 F

UI_FOR_ITEM, page 17-66 F

UI_FOR_PUBLICATION_ID, page 17-68 F

Routing Models to Specified
JVMs, page 17-11

REGISTER_MODEL_TO_POOL, page 17-63 P

UNREGISTER_MODEL_FROM_POOL, page 17-64 P

UNREGISTER_POOL, page 17-65 P

POOL_TOKEN_FOR_PRODUCT_KEY, page 17-57 F

Validating Configurations,
page 17-7

VALIDATE, page 17-69 P

Verifying Configurations,
page 17-7

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION,
page 17-72

P

Installation of the Packages
These packages are installed in the Oracle Applications database as part of Oracle
Configurator.

• If you installed a new instance of Oracle Applications, then these packages were
installed by using Oracle Rapid Install.

• If you installed Oracle Configurator in an existing instance of Oracle Applications,
then these packages were installed by applying the appropriate Oracle Configurator

17-6 Oracle Configurator Implementation Guide

patch.

See the Oracle Configurator Installation Guide for details about installing Oracle
Configurator.

References for Working with PL/SQL Procedures and Functions
For background information and details on basic aspects of working with the PL/SQL
procedures and functions in this package, refer to the table below, References for
Working with PL/SQL Procedures and Functions, page 17-6.This table lists relevant
topics in the Oracle documentation library.

References for Working with PL/SQL Procedures and Functions

For this topic ... See this reference document area ...

• User-defined data types

• Procedures and packages

Oracle database concepts

• Using procedures and packages

• Calling stored procedures

• Understanding the Oracle programmatic
environments

Oracle Application's developer's guide
fundamentals

• Language elements

• Packages

• Index-by tables

• Collections and records

• User-defined subtypes

PL/SQL user's guide and reference

• Using SQL*Plus SQL*Plus user's guide and reference

• UTL_HTTP Oracle supplied PL/SQL packages reference

Programmatic Tools for Development 17-7

Choosing the Right Tool for the Job
These procedures and functions are described in detail in Procedures and Functions in
the CZ_CF_API and CZ_CONFIG_API_PUB Packages, page 17-12.

Establishing Session Identity
Use the following function to establish the identity of a Oracle Applications database
session:

• ICX_SESSION_TICKET, page 17-53

Setting Configuration Dates
Use these procedures to determine the dates used for configurations:

• DEFAULT_NEW_CFG_DATES, page 17-48

• DEFAULT_RESTORED_CFG_DATES, page 17-49

Validating Configurations
Use this procedure to validate a configuration:

• VALIDATE, page 17-69

Verifying Configurations
Use this procedure to verify that the configuration exists and that it is both valid and
complete:

• CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION, page 17-72

Copying and Deleting Configurations
Use these procedures to copy and delete configurations:

• COPY_CONFIGURATION, page 17-37 - not to be used with networked
configurations

• COPY_CONFIGURATION_AUTO, page 17-42 - not to be used with networked
configurations

• CZ_CONFIG_API_PUB.COPY_CONFIGURATION, page 17-39 - used with
networked configurations

17-8 Oracle Configurator Implementation Guide

• CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO, page 17-45 - used with
networked configurations

• DELETE_CONFIGURATION, page 17-51

Working with Common Bills
Use this procedure to retrieve a common bill:

• COMMON_BILL_FOR_ITEM, page 17-14

Identifying Publications
After publishing Models, you can verify whether a publication lookup will succeed for
a given set of applicability parameters. See Applicability Parameters, page 17-9 for
details about specifying applicability parameters.

Functions for Identifying Publications
Use these functions to look up publications for a given set of applicability parameters:

• CONFIG_MODEL_FOR_ITEM, page 17-15

• CONFIG_MODEL_FOR_PRODUCT, page 17-19

• CONFIG_MODELS_FOR_ITEMS, page 17-17

• CONFIG_MODELS_FOR_PRODUCTS, page 17-21

• CONFIG_UI_FOR_ITEM, page 17-23

• CONFIG_UI_FOR_ITEM_LF, page 17-26

• CONFIG_UI_FOR_PRODUCT, page 17-29

• CONFIG_UIS_FOR_ITEMS, page 17-31

• CONFIG_UIS_FOR_PRODUCTS, page 17-34

• MODEL_FOR_ITEM, page 17-54

• MODEL_FOR_PUBLICATION_ID, page 17-56

• PUBLICATION_FOR_ITEM, page 17-58

• PUBLICATION_FOR_PRODUCT, page 17-59

• PUBLICATION_FOR_SAVED_CONFIG, page 17-61

Programmatic Tools for Development 17-9

• UI_FOR_ITEM, page 17-66

• UI_FOR_PUBLICATION_ID, page 17-68

Applicability Parameters
Applicability parameters control the availability of a publication in your development
or production environment

You can use applicability parameters in Oracle Configurator Developer (OCD) to
determine which Model and UI to display when you publish a Model. See the Oracle
Configurator Developer User's Guide for more information about applicability parameters
and publishing.

You can also use applicability parameters in the initialization message that a host
application sends to the Oracle Configurator Servlet. See Session Initialization, page 9-1
for more information.

The table Applicability Parameters for Publication Searches, page 17-9 lists the
applicability parameters in the CZ_CF_API package that many of the functions and
procedures in this package use to search for Models, UIs, and publications.

This table lists each parameter's data type, the corresponding field in the Model
Publishing window in Oracle Configurator Developer, and a describes each parameter.

Applicability Parameters for Publication Searches

Parameter in this
package

Data
type

Parameter
as it
appears in
Configurato
r Developer

Description

calling_application_id number Applications The registered ID of an application for
which the Model is published. This is a
valid APPLICATION_ID from
FND_APPLICATION.

Example value: 660

config_lookup_date date Date (From,
To)

Provide a date that falls inside the
applicable range for the publication. Use
the standard Oracle TO_DATE function to
format the date.

17-10 Oracle Configurator Implementation Guide

Parameter in this
package

Data
type

Parameter
as it
appears in
Configurato
r Developer

Description

language varchar2 Languages Language code for an installed language
(such as 'US'). CZ_PB_LANGUAGES is
accessed to identify the publication
assigned to the specified language. The
default is NULL. If the parameter is NULL,
then userenv("LANG") determines the
language.

Example value: 'US'

product_key varchar2 Product ID For imported models, the product_key is
the ORGANIZATION_ID concatenated
with the INVENTORY_ITEM_ID, in
MTL_SYSTEMS_ITEMS.

For Models created in Oracle Configurator
Developer, the Product ID is generated
from the name of the Model when you
publish the Model.

Example value (for an imported Model):
204:2510

publication_mode varchar2 Mode The publication mode for the publication.
Values are 'P' (production) or 'T' (test). The
default is NULL. If NULL, then the CZ:
Publication Lookup Mode profile option
value is checked.

Example value: 'T'

usage_name varchar2 Usages Name of a Usage defined in Oracle
Configurator Developer. If this is NULL,
then the CZ: Publication Usage profile
option value is checked.

Example value: 'my usage'

List Parameters
In order to reduce the number of function calls when an application must find Models
for multiple products or items, some functions in this package take parameters that are
lists of values, and return a list of values (as identified in the syntax for the function). To

Programmatic Tools for Development 17-11

pass a list of values, this package defines several custom data types that are collections.

Parameters in this package that are of one of these list types do not default to NULL.

See Custom Data Types, page 17-11 for the definition of these types.

Routing Models to Specified JVMs
Use these procedures and functions to register and unregister Models in the pool
mapping table. See Routing Models to Specified JVMs, page 20-10 for background.

• REGISTER_MODEL_TO_POOL, page 17-63

• UNREGISTER_MODEL_FROM_POOL, page 17-64

• UNREGISTER_POOL, page 17-65

• POOL_TOKEN_FOR_PRODUCT_KEY, page 17-57

Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages
• This section provides descriptions of each of the procedures and functions in the

CZ_CF_API and CZ_CONFIG_API_PUB packages. These procedures and functions
are listed alphabetically in Procedures and Functions in the Packages CZ_CF_API
and CZ_CONFIG_API_PUB, page 17-13

• Descriptions of the custom data types defined in the package are provided in
Custom Data Types, page 17-11.

• For a basic example of how to call one of the functions in the CZ_CF_API package,
see Using the UI_FOR_PUBLICATION_ID Function, page 17-69.

• See Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages, page 17-3.

Custom Data Types
Custom Data Types in the Package CZ_CF_API, page 17-12 describes the custom data
types that are defined in this package.

• For background on the record data type, see the references for collections and
records.

• For background on the table data type, see the references for collections.

• For background on subtypes, see the references for user-defined subtypes.

• For background on the UTL_HTTP package, see the references for UTL_HTTP.

17-12 Oracle Configurator Implementation Guide

For background on these custom data types, see the references under References for
Working with PL/SQL Procedures and Functions, page 17-6:

The following table includes the custom data types and provides a description of each.

Custom Data Types in the Package CZ_CF_API

Custom Type Description

INPUT_SELECTION Record consisting of:

COMPONENT_CODE VARCHAR2(1200)

QUANTITY NUMBER

INPUT_SEQ NUMBER

CONFIG_ITEM_ID DEFAULT NULL

CFG_INPUT_LIST Table of INPUT_SELECTION, page 17-12 indexed by
BINARY_INTEGER

CFG_OUTPUT_PIECES This is a result of the batch validation message. Subtype of
UTL_HTTP.HTML_PIECES. It is a table of VARCHAR2(2000).

NUMBER_TBL_TYPE Table of NUMBER

DATE_TBL_TYPE Table of DATE

VARCHAR2_TBL_TYPE Table of VARCHAR2(255)

Procedures and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB Packages
This section provides descriptions of each of the procedures and functions in the
CZ_CF_API and CZ_CONFIG_API_PUB packages, arranged alphabetically. These
procedures and functions are listed alphabetically in Procedures and Functions in the
Packages CZ_CF_API and CZ_CONFIG_API_PUB, page 17-13.

The following table lists the API procedures and functions in the CZ_CF_API package.
The column labeled P/F indicates whether an API is a procedure or a function.

Programmatic Tools for Development 17-13

Procedures and Functions in the Packages CZ_CF_API and CZ_CONFIG_API_PUB

API Name P/F

COMMON_BILL_FOR_ITEM, page 17-14 P

CONFIG_MODEL_FOR_ITEM, page 17-15 F

CONFIG_MODEL_FOR_PRODUCT, page 17-19 F

CONFIG_MODELS_FOR_ITEMS, page 17-17 F

CONFIG_MODELS_FOR_PRODUCTS, page 17-21 F

CONFIG_UI_FOR_ITEM, page 17-23 F

CONFIG_UI_FOR_ITEM_LF, page 17-26 F

CONFIG_UI_FOR_PRODUCT, page 17-29 F

CONFIG_UIS_FOR_ITEMS, page 17-31 F

CONFIG_UIS_FOR_PRODUCTS, page 17-34 F

COPY_CONFIGURATION, page 17-37 P

COPY_CONFIGURATION_AUTO, page 17-42 P

CZ_CONFIG_API_PUB.COPY_CONFIGURATION, page 17-39 P

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO, page 17-45 P

DEFAULT_NEW_CFG_DATES, page 17-48 P

DEFAULT_RESTORED_CFG_DATES, page 17-49 P

DELETE_CONFIGURATION, page 17-51 P

ICX_SESSION_TICKET, page 17-53 F

MODEL_FOR_ITEM, page 17-54 F

17-14 Oracle Configurator Implementation Guide

API Name P/F

MODEL_FOR_PUBLICATION_ID, page 17-56 F

POOL_TOKEN_FOR_PRODUCT_KEY, page 17-57 F

PUBLICATION_FOR_ITEM, page 17-58 F

PUBLICATION_FOR_PRODUCT, page 17-59 F

PUBLICATION_FOR_SAVED_CONFIG, page 17-61 F

REGISTER_MODEL_TO_POOL, page 17-63 P

UNREGISTER_MODEL_FROM_POOL, page 17-64 P

UNREGISTER_POOL, page 17-65 P

UI_FOR_ITEM, page 17-66 F

UI_FOR_PUBLICATION_ID, page 17-68 F

VALIDATE, page 17-69 P

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION, page 17-72 P

COMMON_BILL_FOR_ITEM
This procedure retrieves the common bill item, if any, for the organization ID and
inventory item ID that are passed in as parameters.

This procedure is used by the PUBLICATION_FOR_ITEM, page 17-58 function to
retrieve the common bill's details if the Model has not been published.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE common_bill_for_item (in_inventory_item_id IN NUMBER,
 in_organization_id IN NUMBER,
 common_inventory_item_id OUT NOCOPY
NUMBER,
 common_organization_id OUT NOCOPY
NUMBER);

Programmatic Tools for Development 17-15

The table Parameters for the COMMON_BILL_FOR_ITEM Procedure, page 17-15 lists
the parameters for the COMMON_BILL_FOR_ITEM procedure. The description
includes the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the COMMON_BILL_FOR_ITEM Procedure

Parameter Data
Type

Mod
e

Note

in_inventory_item_id number in Inventory Item ID of item for which
common bill may be defined.

in_organization_id number in Organization ID of Item for which
common bill may be defined.

common_inventory_item_id number out Inventory Item ID of the common bill item.
NULL if no common bill defined.

common_organization_id number out Organization ID of the common bill Item.
NULL if no common bill defined.

CONFIG_MODEL_FOR_ITEM
This function finds a published configuration model for an item, and other applicability
parameters. Returns NULL if the Model cannot be found.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, profile
option values will be checked. However, Oracle Applications session parameters are
not defined by default within a SQL*Plus session. If profile option values are not

17-16 Oracle Configurator Implementation Guide

defined for this or any other reason, the defaults for usage_name and/or
publication_mode will be "Any Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_model_for_item (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT
NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The table Parameters for the CONFIG_MODEL_FOR_ITEM Function, page 17-16
describes the parameters for the CONFIG_MODEL_FOR_ITEM function. The table
includes the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the CONFIG_MODEL_FOR_ITEM Function

Parameter Data
Type

Mod
e

Note

inventory_item_id number in If the Model was imported from Oracle BOM, this
is the Inventory Item ID for the published Model,
from the MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle BOM, this
is the organization ID for the published Model,
from the MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date in Date to search for inside the applicable range for
the publication.

See Applicability Parameters, page 17-9.

calling_application_id number in The registered ID of an application for which the
Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar
2

in Usage name to search for in the publication.

See Applicability Parameters, page 17-9.

Programmatic Tools for Development 17-17

Parameter Data
Type

Mod
e

Note

publication_mode varchar
2

in Publication mode to search for in the publication.

See Applicability Parameters, page 17-9.

language varchar
2

in Language code to search for in the publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
This function returns the devl_project_id of the configuration model published
for this combination of inputs. NULL is returned if there is no matching publication.

CONFIG_MODELS_FOR_ITEMS
This function finds the Models that are associated with each entry in a list of Inventory
Items that are published with the matching applicability parameters. The function
returns the list of Model IDs (devl_project_id values) that meet the specified
parameters.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be

17-18 Oracle Configurator Implementation Guide

checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_models_for_items (inventory_item_id IN NUMBER_TBL_TYPE,
 organization_id IN NUMBER_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 calling_application_id IN
NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

The following table describes the parameters for the CONFIG_MODELS_FOR_ITEMS
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the CONFIG_MODELS_FOR_ITEMS Function

Parameter Data Type Mod
e

Note

inventory_item_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of Inventory Item IDs
for the published Model from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of organization IDs for
the published Model from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date_tbl_type in List of dates to search for inside the
applicable range for the publication.

See Applicability Parameters, page 17-9.

Programmatic Tools for Development 17-19

Parameter Data Type Mod
e

Note

calling_application_id number_tbl_type in List of registered IDs of applications for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2_tbl_type in List of Usage names to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2_tbl_type in List of publication modes to search for in
the publication.

See Applicability Parameters, page 17-9.

language varchar2_tbl_type in List of language codes to search for in the
publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
This function returns an array in which each element is a devl_project_id value
for the associated item. NULL is returned if there is no matching publication.

CONFIG_MODEL_FOR_PRODUCT
This function finds a published configuration model for a product key and other
applicability parameters. Returns NULL if the Model cannot be found.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

17-20 Oracle Configurator Implementation Guide

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_model_for_product (product_key IN VARCHAR2,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT
NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the
CONFIG_MODEL_FOR_PRODUCT function. This includes the data type, the mode (in
or out), and a brief note about the parameter.

Parameters for the CONFIG_MODEL_FOR_PRODUCT Function

Parameter Data
Type

Mod
e

Note

product_key varchar2 in Product key to search for in the publication.

See Applicability Parameters, page 17-9.

config_lookup_date date in Date to search for inside the applicable range for
the publication.

See Applicability Parameters, page 17-9.

Programmatic Tools for Development 17-21

Parameter Data
Type

Mod
e

Note

calling_application_id number in The registered ID of an application for which the
Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2 in Usage name to search for in the publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2 in Publication mode to search for in the publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
This function returns the devl_project_id of the configuration model published
for this combination of inputs. NULL is returned if there is no matching publication.

CONFIG_MODELS_FOR_PRODUCTS
This function returns a list of Model IDs (devl_project_id values) associated with
each entry in a list of product keys that are published with matching applicability
parameters.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

17-22 Oracle Configurator Implementation Guide

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_models_for_products (product_key IN VARCHAR2_TBL_TYPE,
 config_lookup_date IN
DATE_TBL_TYPE,
 calling_application_id IN
NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN
VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

The following table describes the parameters for the
CONFIG_MODELS_FOR_PRODUCTS function. This includes the data type, the mode
(in or out), and a brief note about the parameter.

Parameters for the CONFIG_MODELS_FOR_PRODUCTS Function

Parameter Data Type Mode Note

product_key varchar2_tbl_type in List of product keys to search for in the
publication.

See Applicability Parameters, page 17-9.

config_lookup_date date_tbl_type in List of dates to search for inside the
applicable range for the publication.

See Applicability Parameters, page 17-9.

Programmatic Tools for Development 17-23

Parameter Data Type Mode Note

calling_application_id number_tbl_type in List of registered IDs of applications for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2_tbl_type in List of Usage names to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2_tbl_type in List of publication modes to search for
in the publication.

See Applicability Parameters, page 17-9.

language varchar2_tbl_type in List of language codes to search for in
the publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
This function returns a list of Model IDs (devl_project_id values) associated with
each entry in a list of product keys that are published with matching applicability
parameters.

CONFIG_UI_FOR_ITEM
This function returns the user interface ID associated with the publication found for the
input item, organization ID, and applicability.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

17-24 Oracle Configurator Implementation Guide

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_ui_for_item (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 ui_type IN OUT NOCOPY VARCHAR2,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the CONFIG_UI_FOR_ITEM function.
This includes the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the CONFIG_UI_FOR_ITEM Function

Parameter Data Type Mode Note

inventory_item_id number in If the Model was imported from Oracle
BOM, this is the Inventory Item ID for
the published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, this is the organization ID for the
published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

Programmatic Tools for Development 17-25

Parameter Data Type Mode Note

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Applicability Parameters, page 17-9.

ui_type varchar2 in/out This is the type of published UI sought
and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
then the API returns the user interface ID
of the BOM JRAD UI.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2 in Usage name to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

17-26 Oracle Configurator Implementation Guide

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

CONFIG_UI_FOR_ITEM_LF
This function does the same work as CONFIG_UI_FOR_ITEM, page 17-23, but also
returns the look_and_feel of the UI ('APPLET', 'BLAF', or 'FORMS').

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Programmatic Tools for Development 17-27

Example
FUNCTION config_ui_for_item_lf (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 ui_type IN OUT NOCOPY VARCHAR2,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 look_and_feel OUT NOCOPY VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT
NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the CONFIG_UI_FOR_ITEM_LF
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the CONFIG_UI_FOR_ITEM_LF Function

Parameter Data Type Mode Note

inventory_item_id number in If the Model was imported from Oracle
BOM, this is the Inventory Item ID for
the published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, this is the organization ID for the
published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Applicability Parameters, page 17-9.

17-28 Oracle Configurator Implementation Guide

Parameter Data Type Mode Note

ui_type varchar2 in/out This is the type of published UI sought
and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
then the API returns the user interface ID
of the BOM JRAD UI.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2 in Usage name to search for in the
publication.

See Applicability Parameters, page 17-9.

look_and_feel varchar2 out This is a tag that overrides the default
look and feel for component-style UIs
(when UI_STYLE=0) in the CZ_UI_DEFS
table.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Programmatic Tools for Development 17-29

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

CONFIG_UI_FOR_PRODUCT
This function finds a UI for a product, and returns NULL if no UI can be found. If
ui_type is passed in, the function will validate the UI it finds against this type. If the
types do not match, no UI will be returned. If no ui_type is passed, the type of the UI
will be returned in ui_type.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

17-30 Oracle Configurator Implementation Guide

Example
FUNCTION config_ui_for_product (product_key IN VARCHAR2,
 config_lookup_date IN DATE,
 ui_type IN OUT NOCOPY VARCHAR2,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT
NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the CONFIG_UI_FOR_PRODUCT
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the CONFIG_UI_FOR_PRODUCT Function

Parameter Data Type Mode Note

product_key varchar2 in Product key to search for in the
publication.

See Applicability Parameters, page 17-9.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Applicability Parameters, page 17-9.

ui_type varchar2 in/out This is the type of published UI sought
and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
and if the product_key corresponds to
the inventory item, then the user
interface ID of the BOM UI is returned

Programmatic Tools for Development 17-31

Parameter Data Type Mode Note

calling_application_id number in The registered ID of an application for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2 in Usage name to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
If ui_type is passed in, then the function will validate the UI it finds against this type.
This is the type of published UI sought and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If DHTML or JRAD is passed and the
item does not have a publication available, and if the product_key corresponds to the
inventory item, then the user interface ID of the BOM UI is returned.

If APPLET is passed, then the publication UI type can be either APPLET, DHTML, or
JRAD.

CONFIG_UIS_FOR_ITEMS
This function returns a list of user interfaces that are associated with each entry in the
list of Inventory Items that are published with matching applicability parameters.

17-32 Oracle Configurator Implementation Guide

Considerations Before Running
None

Timing
This function should be used after publishing Models to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_uis_for_items (inventory_item_id IN NUMBER_TBL_TYPE,
 organization_id IN NUMBER_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 ui_type IN OUT NOCOPY VARCHAR2_TBL_TYPE,
 calling_application_id IN
NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

The following table describes the parameters for the CONFIG_UIS_FOR_ITEMS
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Programmatic Tools for Development 17-33

Parameters for the CONFIG_UIS_FOR_ITEMS Function

Parameter Data Type Mode Note

inventory_item_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of Inventory Item IDs
for the published Model from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number_tbl_type in If the Model was imported from Oracle
BOM, this is a list of organization IDs
for the published Model from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date_tbl_type in List of dates to search for inside the
applicable range for the publication.

See Applicability Parameters, page 17-9.

ui_type varchar2_tbl_type in/ out This is the type of published UI sought
and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed,
then the publication UI type must be
either DHTML or JRAD. Otherwise
NULL is returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
then the API returns the user interface
ID of the BOM JRAD UI.

calling_application_id number_tbl_type in List of registered IDs of applications for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2_tbl_type in List of Usage names to search for in the
publication.

See Applicability Parameters, page 17-9.

17-34 Oracle Configurator Implementation Guide

Parameter Data Type Mode Note

publication_mode varchar2_tbl_type in List of publication modes to search for
in the publication.

See Applicability Parameters, page 17-9.

language varchar2_tbl_type in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

CONFIG_UIS_FOR_PRODUCTS
This function returns a list of user interfaces that are associated with each entry in the
list of product keys that are published with matching applicability parameters.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Programmatic Tools for Development 17-35

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION config_uis_for_products (product_key IN VARCHAR2_TBL_TYPE,
 config_lookup_date IN DATE_TBL_TYPE,
 ui_type IN OUT NOCOPY
VARCHAR2_TBL_TYPE,
 calling_application_id IN
NUMBER_TBL_TYPE,
 usage_name IN VARCHAR2_TBL_TYPE,
 publication_mode IN VARCHAR2_TBL_TYPE,
 language IN VARCHAR2_TBL_TYPE)
RETURN NUMBER_TBL_TYPE;

The following table describes the parameters for the CONFIG_UIS_FOR_PRODUCTS
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the CONFIG_UIS_FOR_PRODUCTS Function

Parameter Data Type Mode Note

product_key varchar2_tbl_type, in List of product keys to search for in the
publication.

See Applicability Parameters, page 17-9.

config_lookup_date date_tbl_type, in List of dates to search for inside the
applicable range for the publication.

See Applicability Parameters, page 17-9.

17-36 Oracle Configurator Implementation Guide

Parameter Data Type Mode Note

ui_type varchar2_tbl_type, in/out This is the type of published UI sought
and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed,
then the publication UI type must be
either DHTML or JRAD. Otherwise
NULL is returned.

If APPLET is passed, then the
publication UI type can be either
APPLET, DHTML, or JRAD.

If DHTML or JRAD is passed and there
is no publication available for the item,
and if the product_key corresponds to
the inventory item, then the user
interface ID of the BOM UI is returned

calling_application_id number_tbl_type, in List of registered IDs of applications for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2_tbl_type, in List of Usage names to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2_tbl_type, in List of publication modes to search for
in the publication.

See Applicability Parameters, page 17-9.

language varchar2_tbl_type in List of language codes to search for in
the publication.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
If ui_type is passed in, then the function will validate the UI it finds against this type.
This is the type of published UI sought and found for each product. Values are

Programmatic Tools for Development 17-37

'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If DHTML or JRAD is passed and the
item does not have a publication available, and if the product_key corresponds to the
inventory item, then the user interface ID of the BOM UI is returned.

If APPLET is passed, then the publication UI type can be either APPLET, DHTML, or
JRAD.

COPY_CONFIGURATION
This procedure in the CZ_CF_API package is used to copy configurations models. It is
not to be used to copy networked configuration models.

This procedure copies a configuration in the database. If the NEW_CONFIG_FLAG is 1,
then a new CONFIG_HDR_ID value is generated for the new configuration and it is
REV_NBR 1. If NEW_CONFIG_FLAG is 0, the copy keeps the CONFIG_HDR_ID and
has a REV_NBR incremented to be greater than the original.

Considerations Before Running
None

Prerequisites
The configuration to be copied must exist. This procedure must not be used with
networked Models.

Note: If you want to copy a networked configuration model, then you
must use the copy_configuration procedure in the
CZ_CONFIG_API_PUB package. For more information see
CZ_CONFIG_API_PUB.COPY_CONFIGURATION, page 17-39.

Timing
This procedure should be used every time a configuration is copied. The procedure will
ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_value will be zero, and
error_message will contain error information.

Note: COPY_CONFIGURATION procedure does not commit the copy
data. It is your responsibility to commit the copied configuration.

17-38 Oracle Configurator Implementation Guide

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE copy_configuration(config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 new_config_flag IN VARCHAR2,
 out_config_hdr_id IN OUT NOCOPY NUMBER,
 out_config_rev_nbr IN OUT NOCOPY NUMBER,
 error_message IN OUT NOCOPY
VARCHAR2,
 return_value IN OUT NOCOPY NUMBER,
 handle_deleted_flag IN VARCHAR2 DEFAULT
NULL,
 new_name IN VARCHAR2 DEFAULT
NULL);

The following table describes the parameters for the COPY_CONFIGURATION
procedure. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the COPY_CONFIGURATION Procedure

Parameter Data Type Mode Note

config_hdr_id number in Specifies which configuration to copy. Uses
CZ_CONFIG_HDRS,
CZ_CONFIG_INPUTS,
CZ_CONFIG_ITEMS,
CZ_CONFIG_MESSAGES, and
CZ_CONFIG_ATTRIBUTES.

config_rev_nbr number in Specifies which configuration to copy. Uses
CZ_CONFIG_HDRS,
CZ_CONFIG_INPUTS,
CZ_CONFIG_ITEMS,
CZ_CONFIG_MESSAGESl, and
CZ_CONFIG_ATTRIBUTES.

new_config_flag varchar2 in A '1' indicates that the copied configuration
should have a new CONFIG_HDR_ID. A
'0' indicates that the copied configuration
should have the same CONFIG_HDR_ID
and a unique CONFIG_REV_NBR. For
example it is a revision of the existing
configuration.

Programmatic Tools for Development 17-39

Parameter Data Type Mode Note

out_config_hdr_id number in/out Identifies the new copy of the
configuration.

out_config_rev_nbr number in/out Identifies the new copy of the
configuration.

error_message varchar2 in/out Contains an error message if an error
occurs.

return_value number in/out Indicates the success (1) or failure (0) of the
copy.

handle_deleted_flag varchar2 in When '0', it will undelete the copied
configuration if the original configuration
is deleted.

new_name varchar2 in Applies a new name for the configuration

Considerations After Running
None

Results
This procedure copies all database records associated with a configuration to a new
config_hdr_id and config_rev_nbr.

Troubleshooting
Examine return_value and error_message to determine what the next step should be

CZ_CONFIG_API_PUB.COPY_CONFIGURATION
This API procedure in the CZ_CONFIG_API_PUB package is used to copy
configurations as well as configurations that contain connectors and support
connectivity.

This procedure creates a new configuration by copying the original configuration's
CONFIG_HDR_ID and CONFIG_REV_NBR

This procedure copies a configuration in the database. If the NEW_CONFIG_FLAG is 1,
then a new CONFIG_HDR_ID value is generated for the new configuration and it is
REV_NBR 1. If NEW_CONFIG_FLAG is 0, the copy keeps the CONFIG_HDR_ID and

17-40 Oracle Configurator Implementation Guide

has a REV_NBR incremented to be greater than the original.

Considerations Before Running
None

Prerequisites
The configuration to be copied must exist.

Timing
This procedure should be used every time a configuration is copied. The procedure will
ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_status will be
FND_API.G_RET_STS_ERROR or FND_API.G_RET_STS_UNEXP_ERROR if an error
occurs within the procedure, and msg_data will contain error information.

Note: CZ_CONFIG_API_PUB.COPY_CONFIGURATION procedure
does not commit the copy data. It is your responsibility to commit the
copied configuration.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE copy_configuration(p_api_version IN NUMBER,
 p_config_hdr_id IN NUMBER,
 p_config_rev_nbr IN NUMBER,
 p_copy_mode IN VARCHAR2,
 x_config_hdr_id OUT NOCOPY NUMBER,
 x_config_rev_nbr OUT NOCOPY NUMBER,
 x_orig_item_id_tbl OUT NOCOPY
CZ_API_PUB.number_tbl_type,
 x_new_item_id_tbl OUT NOCOPY
CZ_API_PUB.number_tbl_type,
 x_return_status OUT NOCOPY
VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY
VARCHAR2,
 p_handle_deleted_flag IN VARCHAR2 :=
NULL,
 p_new_name IN VARCHAR2 :=
NULL);

The following table describes the parameters for the
CZ_CONFIG_API_PUB.COPY_CONFIGURATION procedure. This includes the data

Programmatic Tools for Development 17-41

type, the mode (in or out), and a brief note about the parameter.

Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION Procedure

Parameter Data Type Mode Note

p_api_version number in Required. See API Version Numbers, page
18-9

p_config_hdr_id number in Required. Specifies which configuration to
copy. Uses CZ_CONFIG_HDRS,
CZ_CONFIG_INPUTS,
CZ_CONFIG_ITEMS,
CZ_CONFIG_MESSAGES, and
CZ_CONFIG_ATTRIBUTES.

p_config_rev_nbr number in Required. Specifies which configuration to
copy. Uses CZ_CONFIG_HDRS,
CZ_CONFIG_INPUTS,
CZ_CONFIG_ITEMS,
CZ_CONFIG_MESSAGESl, and
CZ_CONFIG_ATTRIBUTES.

x_config_hdr_id number out Identifies the new copy of the
configuration.

x_config_rev_nbr number out Identifies the new copy of the
configuration.

p_copy_mode varchar2 in Required. Specifies whether the new
configuration has a new header ID or a
new revision number.

x_orig_item_id_tbl number out A table of the item IDs for the items in the
original configuration.

x_new_item_id_tbl number out A table of the item IDS for the items in the
new configuration.

x_return_status varchar2 out Must return
FND_API.G_RET_STS_SUCCESS if
procedure completed successfully;
otherwise return
FND_API.G_RET_STS_ERROR or
FND_API.G_RET_STS_UNEXP_ERROR if
an error occurs within the procedure

17-42 Oracle Configurator Implementation Guide

Parameter Data Type Mode Note

x_msg_count number out Required. The number of error messages
returned in the x_msg_data parameter.

x_msg_data varchar2 out Contains an error message if the procedure
is returning an x_return_status value
of FND_API.G_RET_STS_ERROR or
FND_API.G_RET_STS_UNEXP_ERROR

p_handle_deleted_fl
ag

varchar2 in When '0', it will undelete the copied
configuration if the original configuration
is deleted.

p_new_name varchar2 in Applies a new name for the configuration

COPY_CONFIGURATION_AUTO
This procedure runs COPY_CONFIGURATION, page 17-37 within an autonomous
transaction. If the copy is successful, new data will be committed to the database
without affecting the caller's transaction.

See other information for COPY_CONFIGURATION, page 17-37.

Considerations Before Running
None

Prerequisites
The configuration to be copied must exist. This procedure must not be used with
networked Models.

Note: If you want to copy a networked configuration model
autonomously, then you must use the copy_configuration procedure in
the CZ_CONFIG_API_PUB package. For more information see
CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO, page 17-
45.

Timing
This procedure should be used every time a configuration is copied. The procedure will
ensure that all inputs, outputs, attributes, and messages are copied.

Programmatic Tools for Development 17-43

Warnings
If the configuration does not exist, or if the copy fails, return_value will be zero, and
error_message will contain error information.

Note: COPY_CONFIGURATION_AUTO procedure does not commit
the copy data. It is your responsibility to commit the copied
configuration.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE copy_configuration_auto(config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 new_config_flag IN VARCHAR2,
 out_config_hdr_id IN OUT NOCOPY
NUMBER,
 out_config_rev_nbr IN OUT NOCOPY
NUMBER,
 Error_message IN OUT NOCOPY
VARCHAR2,
 Return_value IN OUT NOCOPY
NUMBER,
 handle_deleted_flag IN VARCHAR2
DEFAULT NULL,
 new_name IN VARCHAR2
DEFAULT NULL);

The following table describes the parameters for the COPY_CONFIGURATION_AUTO
procedure. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the COPY_CONFIGURATION_AUTO Procedure

Parameter Data Type Mode Note

config_hdr_id number in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

config_rev_nbr number in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

17-44 Oracle Configurator Implementation Guide

Parameter Data Type Mode Note

new_config_flag varchar2 in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

out_config_hdr_id number in/out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

out_config_rev_nbr number in/out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

error_message varchar2 in/out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

return_value number in/out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

handle_deleted_flag varchar2 default null in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

new_name varchar2 default null in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

Considerations After Running
None

Results
This procedure copies all database records associated with a configuration to a new
config_hdr_id and config_rev_nbr.

Programmatic Tools for Development 17-45

Troubleshooting
Examine return_value and error_message to determine what the next step should be.

CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO
This procedure runs COPY_CONFIGURATION, page 17-37 within an autonomous
transaction. If the copy is successful, new data will be committed to the database
without affecting the caller's transaction. This procedure can be used with networked
configurations.

See other information for COPY_CONFIGURATION, page 17-37.

Considerations Before Running
None

Prerequisites
The configuration to be copied must exist.

Timing
This procedure should be used every time a configuration is copied. The procedure will
ensure that all inputs, outputs, attributes, and messages are copied.

Warnings
If the configuration does not exist, or if the copy fails, return_status will be
FND_API.G_RET_STS_ERROR or FND_API.G_RET_STS_UNEXP_ERROR if an error
occurs within the procedure, and msg_data will contain error information.

Note: CZ_AUTO_API_PUB.COPY_CONFIGURATION_AUTO
procedure does not commit the copy data. It is your responsibility to
commit the copied configuration.

Syntax and Parameters
The syntax for this procedure is:

17-46 Oracle Configurator Implementation Guide

Example
PROCEDURE copy_configuration_auto (p_api_version IN NUMBER,
 p_config_hdr_id IN NUMBER,
 p_config_rev_nbr IN NUMBER,
 p_copy_mode IN VARCHAR2,
 x_config_hdr_id OUT NOCOPY NUMBER,
 x_config_rev_nbr OUT NOCOPY NUMBER,
 x_orig_item_id_tbl OUT NOCOPY CZ_API_PUB.number_tbl_type,
 x_new_item_id_tbl OUT NOCOPY CZ_API_PUB.number_tbl_type,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY VARCHAR2,
 p_handle_deleted_flag IN VARCHAR2 := NULL,
 p_new_name IN VARCHAR2 := NULL);

The following table describes the parameters for the
CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO procedure. This includes
the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO Procedure

Parameter Data Type Mode Note

p_api_version number in See API Version Numbers, page 18-9.

p_config_hdr_id number in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

p_config_rev_nbr number in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

p_copy_mode varchar2 in Required. Specifies whether the new
configuration has a new header ID or a
new revision number.

x_config_hdr_id number out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

x_config_rev_nbr number out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

Programmatic Tools for Development 17-47

Parameter Data Type Mode Note

x_orig_item_id_tbl number out A table of the item IDs for the items in
the original configuration.

x_new_item_id_tbl number out A table of the item IDS for the items in
the new configuration.

x_msg_count number out Required. The number of error
messages returned in the x_msg_data
parameter.

x_msg_data varchar2 out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

x_return_status number out See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

p_handle_deleted_fl
ag

varchar2 default null in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

p_new_name varchar2 default null in See corresponding parameter in
Parameters for the
COPY_CONFIGURATION Procedure,
page 17-38.

Considerations After Running
None

Results
This procedure copies all database records associated with a configuration to a new
config_hdr_id and config_rev_nbr.

Troubleshooting
Examine return_value and error_message to determine what the next step should be.

17-48 Oracle Configurator Implementation Guide

DEFAULT_NEW_CFG_DATES
This utility procedure provides default date values used by Oracle Configurator for a
new configuration. The caller should pass in dates that will be included in the
initialization message for the runtime Oracle Configurator. The procedure will return
the value that will be used by the runtime Oracle Configurator for any dates not passed
in.

Considerations Before Running
None

Prerequisites
None.

Timing
This procedure should be used to find out the default dates used by the runtime Oracle
Configurator for publication lookup, effectivity, and configuration creation.

Dependencies
None.

Restrictions and Limitations
None.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE DEFAULT_NEW_CFG_DATES(p_creation_date IN OUT NOCOPY DATE,
 p_lookup_date IN OUT NOCOPY DATE,
 p_effective_date IN OUT NOCOPY DATE);

The following table describes the parameters for the DEFAULT_NEW_CFG_DATES
procedure. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Programmatic Tools for Development 17-49

Parameters for the DEFAULT_NEW_CFG_DATES Procedure

Parameter Data Type Mode Note

p_creation_date date in/out This specifies the creation date for the new
configuration.

p_lookup_date date in/out This specifies the lookup date for the new
configuration.

p_effective_date date in/out This specifies the effective date for the new
configuration.

Considerations After Running
None

Results
Any of the parameters (p_creation_date, p_lookup_date, p_effective_date)
that were not passed in are populated with the date that the runtime Oracle
Configurator would use for that parameter.

DEFAULT_RESTORED_CFG_DATES
This utility procedure provides default date values used by Oracle Configurator for a
restored configuration. The caller should pass in dates that will be included in the
initialization message for the runtime Oracle Configurator. The procedure will return
the value that will be used by the runtime Oracle Configurator for any dates not passed
in. The CONFIG_HEADER_ID and a configuration revision (CONFIG_REV_NBR) must
be supplied. .

Considerations Before Running
None

Prerequisites
Configuration must exist.

Timing
This procedure should be used to find out the default dates used by the runtime Oracle
Configurator for publication lookup, effectivity, and configuration creation.

17-50 Oracle Configurator Implementation Guide

Dependencies
None.

Restrictions and Limitations
None.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE DEFAULT_RESTORED_CFG_DATES(p_config_hdr_id IN NUMBER,
 p_config_rev_nbr IN NUMBER,
 p_creation_date IN OUT NOCOPY
DATE,
 p_lookup_date IN OUT NOCOPY DATE,
 p_effective_date IN OUT NOCOPY
DATE);

The following table describes the parameters for the
DEFAULT_RESTORED_CFG_DATES procedure. This includes the data type, the mode
(in or out), and a brief note about the parameter.

Parameters for the DEFAULT_RESTORED_CFG_DATES Procedure

Parameter Data Type Mode Note

p_config_hdr_id number in Specifies which configuration to use.

p_config_rev_nbr number in Specifies which configuration to use

p_creation_date date in/out If this is not null, then it will be returned as is.

If this is null and if p_lookup_date is null
and RestoredConfigDefaultModelLookupDate
in CZ_DB_SETTINGS is set to
config_creation_date, then sysdate is
returned. See
RestoredConfigDefaultModelLookupDate,
page 4-23 for more information

Programmatic Tools for Development 17-51

Parameter Data Type Mode Note

p_lookup_date date in/out If this is not null, then it will be returned as is.

If this is null, and if
RestoredConfigDefaultModelLookupDate in
CZ_DB_SETTINGS is set to
config_creation_date, then
p_lookup_date is set to the order line
creation date. If
RestoredConfigDefaultModelLookupDate in
CZ_DB_SETTINGS is not set to
config_creation_date, then sysdate is
returned. See
RestoredConfigDefaultModelLookupDate,
page 4-23 for more information.

p_effective_date date in/out If this is not null, then it will be returned as is.
Otherwise, the existing setting for this
configuration is returned.

Considerations After Running
None

Results
Any of the parameters (p_creation_date, p_lookup_date, p_effective_date)
that were not passed in are populated with the date that the runtime Oracle
Configurator would use for that parameter.

DELETE_CONFIGURATION
This procedure removes a configuration from the database.

Considerations Before Running
None

Prerequisites
The configuration to be deleted must exist. If the specified configuration does not exist,
then the procedure runs but it does not delete anything and no issues are reported.

17-52 Oracle Configurator Implementation Guide

Timing
This procedure should be used when a configuration is obsolete.

Warnings
Do not delete configurations that are referred to by any host applications.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE delete_configuration(config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 usage_exists IN OUT NOCOPY NUMBER,
 Error_message IN OUT NOCOPY VARCHAR2,
 Return_value IN OUT NOCOPY NUMBER);

The following table describes the parameters for the DELETE_CONFIGURATION
procedure. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the DELETE_CONFIGURATION Procedure

Parameter Data Type Mode Note

config_hdr_id number in Specifies the header ID of the
configuration to be deleted

config_rev_nbr number in Specifies the revision number of the
configuration to be deleted

usage_exists number in/out This returns 1 if a configuration usage
record exists and the configuration is
not deleted. (Requires custom code to
populate the CZ_CONFIG_USAGES
table.)

error_message varchar2 in/out If there is an error, then this field
contains a message describing the
error.

return_value number in/out If 1, then the configuration was
successfully deleted. If 0, then deletion
of the configuration failed.

Programmatic Tools for Development 17-53

Considerations After Running
None

Troubleshooting
Examine the output in the error_message parameter.

ICX_SESSION_TICKET
This function returns a value for the ICX session ticket that Oracle Applications should
pass in the icx_session_ticket parameter of the initialization message when
calling Oracle Configurator. See icx_session_ticket, page 9-26 in Session Initialization,
page 9-1 for information about that parameter.

The session ticket allows the runtime Oracle Configurator to maintain the Oracle
Applications session identity. A null value is returned if user_id, resp_id, or
appl_id are not defined within the Oracle Applications session or if the ICX calls fail.

For more information about the ICX session ticket, including the profile option ICX:
Session Timeout, see the Oracle E-Business Suite System Administrator's Guide -
Maintenance.

Considerations Before Running
None

Prerequisites
In order to use this function, the database session must have been initialized with
Oracle Applications parameters in order for the icx_session_ticket to return a value.

Timing
This function should be used before launching a configuration session from PL/SQL.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION icx_session_ticket RETURN VARCHAR2;

There are no parameters for this function. It derives its inputs from the environment of
the database session.

17-54 Oracle Configurator Implementation Guide

Considerations After Running
None

Results
This function returns the ICX ticket that represents the Oracle Applications session.

Troubleshooting
If this function returns NULL, the database session is not an Oracle Applications
session.

MODEL_FOR_ITEM
This function returns a published Model passed on the inventory item ID, organization
id, and applicability.

This function is used for backward compatibility. It calls
CONFIG_MODEL_FOR_ITEM, page 17-15 with usage_name equal to "Any Usage" and
publication_mode equal to 'P'.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Programmatic Tools for Development 17-55

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION model_for_item(inventory_item_id NUMBER,
 organization_id NUMBER,
 config_creation_date DATE,
 user_id NUMBER,
 responsibility_id NUMBER,
 calling_application_id NUMBER)
RETURN NUMBER;

The following table lists of the parameters for the MODEL_FOR_ITEM function,
including the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the MODEL_FOR_ITEM Function

Parameter Data Type Mod
e

Note

inventory_item_id number in If the Model was imported from Oracle
BOM, then this is the inventory item ID for
the published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, then this is the organization ID for
the published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_creation_date date in This is the lookup date for the
configuration

user_id number in This is the ID for the Oracle Applications
user that is logged into from FND_USER.

responsibility_id number in This is the responsibility that the Oracle
Applications user had in the host
application.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Applicability Parameters, page 17-9.

17-56 Oracle Configurator Implementation Guide

Considerations After Running
None

Results
This function returns the devl_project_id of the configuration model published
for this combination of inputs. NULL is returned if there is no matching publication.

MODEL_FOR_PUBLICATION_ID
This function returns the Model ID for a specified publication.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION model_for_publication_id (publication_id NUMBER)
RETURN NUMBER;

The following table describes the parameters for the MODEL_FOR_PUBLICATION_ID
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the MODEL_FOR_PUBLICATION_ID Function

Parameter Data Type Mod
e

Note

publication_id number in This is the specified publication id in the
CZ_MODEL_PUBLICATIONS table.

Programmatic Tools for Development 17-57

POOL_TOKEN_FOR_PRODUCT_KEY
This function returns the name of the JVM pool registered for a given Product Key, by
looking up the JVM pool registered to the specified Model in the mapping table
(CZ_MODEL_POOL_MAPPINGS).

Considerations Before Running
Use of this function assumes that you are routing Models to JVM pools, as described in
Routing Models to Specified JVMs, page 20-10.

Timing
This function should be used when you need to obtain the name of the JVM pool to
which a specific Model is registered. The Model is identified by the Product Key.

Dependencies
The profile option CZ: Add Model Routing Cookie must be set to True for Model
routing to occur at runtime.

Syntax and Parameters
The syntax for this procedure is:

Example
FUNCTION pool_token_for_product_key (p_product_key IN VARCHAR2)
RETURN VARCHAR2;

The following table describes the parameters for the
POOL_TOKEN_FOR_PRODUCT_KEY function. This includes the data type, the mode
(in or out), and a brief note about the parameter.

Parameters for the POOL_TOKEN_FOR_PRODUCT_KEY Function

Parameter Data Type Mod
e

Note

p_product_ke
y

varchar2 in Product Key of the Model for which the registered
pool name is desired.

For details on Product Key, see Applicability
Parameters, page 17-9.

17-58 Oracle Configurator Implementation Guide

PUBLICATION_FOR_ITEM
This function returns the publication ID for a specified inventory item.

Considerations Before Running
None

Timing
This function should be used after publishing Models to verify that publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION publication_for_item (inventory_item_id IN NUMBER,
 organization_id IN NUMBER,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT
NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the PUBLICATION_FOR_ITEM
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Programmatic Tools for Development 17-59

Parameters for the PUBLICATION_FOR_ITEM Function

Parameter Data Type Mod
e

Note

inventory_item_id number in If the Model was imported from Oracle
BOM, then this is the Inventory Item ID
for the published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the Model was imported from Oracle
BOM, then this is the organization ID for
the published Model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Applicability Parameters, page 17-9.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2 in Usage name to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

PUBLICATION_FOR_PRODUCT
This function returns the publication ID for a product key.

17-60 Oracle Configurator Implementation Guide

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a Model to be returned. This function must be run on the
instance that the Model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, profile
option values will be checked. However, Oracle Applications session parameters are
not defined by default within a SQL*Plus session. If profile option values are not
defined for this or any other reason, the defaults for usage_name and/or
publication_mode will be "Any Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION publication_for_product(product_key IN VARCHAR2,
 config_lookup_date IN DATE,
 calling_application_id IN NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2 DEFAULT
NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the PUBLICATION_FOR_PRODUCT
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Programmatic Tools for Development 17-61

Parameters for the PUBLICATION_FOR_PRODUCT Function

Parameter Data Type Mod
e

Note

product_key varchar2 in Product key to search for in the
publication.

See Applicability Parameters, page 17-9.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Applicability Parameters, page 17-9.

calling_application_id number in The registered ID of an application for
which the Model is published.

See Applicability Parameters, page 17-9.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

PUBLICATION_FOR_SAVED_CONFIG
This function is used to determine the publication that should be used to reopen a saved
configuration. The function returns a publication ID for an existing configuration based
on its model information and applicability parameters.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

17-62 Oracle Configurator Implementation Guide

Dependencies
Publications must exist for a model to be returned. This function must be run on the
instance that the model is published to.

Warnings
If usage_name and/or publication_mode are NULL or not provided, the CZ:
Publication Usage and/or CZ: Publication Lookup Mode profile option values will be
checked. However, Oracle Applications session parameters are not defined by default
within a SQL*Plus session. If profile option values are not defined for this or any other
reason, the defaults for usage_name and/or publication_mode will be "Any
Usage" and "P" (Production) respectively.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION publication_for_saved_config (config_hdr_id IN NUMBER,
 config_rev_nbr IN NUMBER,
 config_lookup_date IN DATE,
 calling_application_id IN
NUMBER,
 usage_name IN VARCHAR2,
 publication_mode IN VARCHAR2
DEFAULT NULL,
 language IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

The following table describes the parameters for the
PUBLICATION_FOR_SAVED_CONFIG function. This includes the data type, the mode
(in or out), and a brief note about the parameter.

Parameters for the PUBLICATION_FOR_SAVED_CONFIG Function

Parameter Data Type Mod
e

Note

config_hdr_id number in Identifies the saved configuration to use.

config_rev_nbr number in Identifies the saved configuration.

config_lookup_date date in Date to search for inside the applicable
range for the publication.

See Applicability Parameters, page 17-9.

Programmatic Tools for Development 17-63

Parameter Data Type Mod
e

Note

calling_application_id number in The registered ID of an application for
which the model is published.

See Applicability Parameters, page 17-9.

usage_name varchar2 in Usage name to search for in the
publication.

See Applicability Parameters, page 17-9.

publication_mode varchar2 in Publication mode to search for in the
publication.

See Applicability Parameters, page 17-9.

language varchar2 in Language code to search for in the
publication.

See Applicability Parameters, page 17-9.

REGISTER_MODEL_TO_POOL
This procedure registers a Model to a JVM pool, by creating a mapping in the mapping
table (CZ_MODEL_POOL_MAPPINGS) that registers the specified Model to the
specified JVM pool.

If references to the specified pool do not exist in the mapping table, this procedure
creates rows that implicitly register that pool, with an autonomous transaction.

Considerations Before Running
Use of this procedure assumes that you are routing Models to JVM pools, as described
in Routing Models to Specified JVMs, page 20-10.

Timing
This procedure should be used when you need to register a Model to a JVM to reduce
the Model's memory footprint and improve performance.

Dependencies
The profile option CZ: Add Model Routing Cookie must be set to True for Model
routing to occur at runtime.

17-64 Oracle Configurator Implementation Guide

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE register_model_to_pool (p_pool_identifier IN VARCHAR2,
 p_model_product_key IN VARCHAR2);

The following table describes the parameters for the REGISTER_MODEL_TO_POOL
function. This includes the data type, the mode (in or out), and a brief note about the
parameter.

Parameters for the REGISTER_MODEL_TO_POOL Function

Parameter Data Type Mod
e

Note

p_pool_identi
fier

varchar2 in The JVM pool to which the specified Model is to be
registered.

p_model_pro
duct_key

varchar2 in Product Key of the Model to be registered.

For details on Product Key, see Applicability
Parameters, page 17-9.

UNREGISTER_MODEL_FROM_POOL
This procedure unregisters a Model from a JVM pool, by deleting the mapping in the
mapping table (CZ_MODEL_POOL_MAPPINGS) that registered the specified Model to
the specified JVM pool. Uses an autonomous transaction.

Considerations Before Running
Use of this procedure assumes that you are routing Models to JVM pools, as described
in Routing Models to Specified JVMs, page 20-10.

Timing
This procedure should be used when you need to unregister a Model from a JVM.

Dependencies
The profile option CZ: Add Model Routing Cookie must be set to True for Model
routing to occur at runtime.

Programmatic Tools for Development 17-65

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE unregister_model_from_pool (p_pool_identifier IN VARCHAR2,
 p_model_product_key IN VARCHAR2);

The following table describes the parameters for the
UNREGISTER_MODEL_FROM_POOL function. This includes the data type, the mode
(in or out), and a brief note about the parameter.

Parameters for the UNREGISTER_MODEL_FROM_POOL Function

Parameter Data Type Mod
e

Note

p_pool_identi
fier

varchar2 in The JVM pool to which the specified Model was
registered.

p_model_pro
duct_key

varchar2 in Product Key of the Model that was registered.

For details on Product Key, see Applicability
Parameters, page 17-9.

UNREGISTER_POOL
This procedure unregisters a JVM pool, by deleting all the mappings in the mapping
table (CZ_MODEL_POOL_MAPPINGS) that refer to the specified JVM pool. Uses an
autonomous transaction.

Considerations Before Running
Use of this procedure assumes that you are routing Models to JVM pools, as described
in Routing Models to Specified JVMs, page 20-10.

Timing
This procedure should be used when you need to unregister a JVM pool.

Dependencies
The profile option CZ: Add Model Routing Cookie must be set to True for Model
routing to occur at runtime.

17-66 Oracle Configurator Implementation Guide

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE unregister_pool (p_pool_identifier IN VARCHAR2);

The following table describes the parameters for the UNREGISTER_POOL function.
This includes the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the UNREGISTER_POOL Function

Parameter Data Type Mod
e

Note

p_pool_identi
fier

varchar2 in The JVM pool to be unregistered.

UI_FOR_ITEM
This function returns a UI definition (ui_def_id) for a given inventory item (
inventory_item_id) and organization item (organization_id) based on
publication applicability parameters.

This function is used for backward compatibility. It calls CONFIG_UI_FOR_ITEM, page
17-23 with usage_name equal to "Any Usage" and publication_mode equal to 'P'.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a model to be returned. This function must be run on the
instance that the model is published to.

Syntax and Parameters
The syntax for this function is:

Programmatic Tools for Development 17-67

Example
FUNCTION ui_for_item(inventory_item_id NUMBER,
 organization_id NUMBER,
 config_creation_date DATE,
 ui_type VARCHAR2,
 user_id NUMBER,
 responsibility_id NUMBER,
 calling_application_id NUMBER)
RETURN NUMBER;

The following table describes the parameters for the UI_FOR_ITEM function. This
includes the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the UI_FOR_ITEM Function

Parameter Data Type Mod
e

Note

inventory_item_id number in If the model was imported from Oracle
BOM, then this is the Inventory Item ID
for the published model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

organization_id number in If the model was imported from Oracle
BOM, then this is the organization ID for
the published model, from the
MTL_SYSTEM_ITEMS table, on which
configuration models are based.

config_creation_date date in This is the date the configuration was
created.

ui_type varchar2 in This is the type of published UI sought
and found for each product. Values are
'APPLET', 'DHTML', or 'JRAD'.

If either DHTML or JRAD is passed, then
the publication UI type must be either
DHTML or JRAD. Otherwise NULL is
returned.

If APPLET is passed, then the publication
UI type can be either APPLET, DHTML,
or JRAD.

If DHTML or JRAD is passed and there is
no publication available for the item, then
the API returns the user interface ID of
the BOM JRAD UI.

17-68 Oracle Configurator Implementation Guide

Parameter Data Type Mod
e

Note

user_id number in This is the ID for the Oracle Applications
user that is logged into from FND_USER.

responsibility_id number in This is the responsibility that the Oracle
Applications user had in the host
application.

calling_application_id number in The registered ID of an application for
which the model is published.

See Applicability Parameters, page 17-9.

Considerations After Running
None

Results
This function returns the user interface ID associated with the selected publication.

If the ui_type is APPLET, then the publication UI type can be either APPLET,
DHTML, or JRAD.

If the ui_type is either DHTML or JRAD, then the publication UI type must be either
DHTML or JRAD. Otherwise NULL is returned. If there is no publication available for
the item, then the API returns the user interface ID of the BOM JRAD UI.

UI_FOR_PUBLICATION_ID
This function returns a UI definition (ui_def_id) for a specified publication ID.

Considerations Before Running
None

Timing
This function should be used after publishing Models, to verify if publication lookup
will succeed for a given set of applicability parameters.

Dependencies
Publications must exist for a model to be returned. This function must be run on the

Programmatic Tools for Development 17-69

instance that the model is published to.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION ui_for_publication_id (publication_id NUMBER)
RETURN NUMBER;

The following table describes the parameters for the UI_FOR_PUBLICATION_ID
function. See Using the UI_FOR_PUBLICATION_ID Function, page 17-69 for an
example of how these parameters are used. This includes the data type, the mode (in or
out), and a brief note about the parameter.

Parameters for the UI_FOR_PUBLICATION_ID Function

Parameter Data Type Mod
e

Note

publication_id number in This is the specified publication id in the
CZ_MODEL_PUBLICATIONS table.

Example
When called in SQL*Plus, this example prints out the ID of the UI definition associated
with the publication identified by the publication_id parameter. If the publication
has no associated UI, then a message is printed.

Using the UI_FOR_PUBLICATION_ID Function
Example
set serveroutput on
DECLARE
v_ui_def_id number;
BEGIN
-- The publication must have status of 'OK' ("Complete").
 v_ui_def_id := cz_cf_api.ui_for_publication_id(12345);
 IF v_ui_def_id IS NULL THEN
 dbms_output.put_line('UI Def ID: '││'NOT FOUND');
 ELSE
 dbms_output.put_line('UI Def ID: '││v_ui_def_id);
 END IF;
END;

VALIDATE
This procedure validates a configuration. You can use this procedure to check whether
a configuration is still valid after an event that may cause it to become invalid. Such
events might include the following:

17-70 Oracle Configurator Implementation Guide

• A change in the configuration rules

• The importing of the configuration from another system

• A change to the configuration inputs by another program

• The ordered configured BOM Items (input_list) do not match the batch validation
BOM Items (from a previously processed configuration)

This procedure is a single call validation procedure that uses tables to exchange
multi-valued data. A validation_status, page 17-71 and a table of XML messages are
returned.

Considerations Before Running
None

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE VALIDATE (config_input_list IN CFG_INPUT_LIST,
 init_message IN VARCHAR2,
 config_messages IN OUT NOCOPY CFG_OUTPUT_PIECES,
 validation_status IN OUT NOCOPY NUMBER,
 URL IN VARCHAR2 DEFAULT
FND_PROFILE.Value('CZ_UIMGR_URL'),
 p_validation_type IN VARCHAR2 DEFAULT
CZ_API_PUB.VALIDATE_ORDER));

The following table describes the parameters for the VALIDATE procedure. This
includes the data type, the mode (in or out), and a brief note about the parameter.

Parameters for the VALIDATE Procedure

Parameter Data Type Mode Note

config_input_list CFG_INPUT_LIS
T, page 17-12. See
Custom Data
Types, page 17-11
for a definition of
this type.

in This is a list of input selections.

init_message varchar2 in Initialization message

Programmatic Tools for Development 17-71

Parameter Data Type Mode Note

config_messages CFG_OUTPUT_P
IECES, page 17-12
. See Custom Data
Types, page 17-11
for a definition of
this type.

out This is a table of the output XML messages
produced by validating the configuration.

validation_status varchar2 out The status code returned by validating the
configuration: 0 - CONFIG_PROCESSED,
page 17-72 1 -
CONFIG_PROCESSED_NO_TERMINATE,
page 17-72 2 - INIT_TOO_LONG, page 17-72
3 - INVALID_OPTION_REQUEST, page 17-
72 4 - CONFIG_EXCEPTION, page 17-72 5 -
DATABASE_ERROR, page 17-72 6 -
UTL_HTTP_INIT_FAILED, page 17-72 7 -
UTL_HTTP_REQUEST_FAILED, page 17-72

url varchar2 in The URL for the Oracle Configurator Servlet.
Default will interrogate the current profile for
this URL, using
FND_PROFILE.Value('CZ_UIMGR_URL').

p_validation_typ
e

varchar2 in The possible values are
CZ_API_PUB.VALIDATE_ORDER,
CZ_API_PUB.VALIDATE_FULFILLMENT,
and CZ_API_PUB.INTERACTIVE. The
default is CZ_API_PUB.VALIDATE_ORDER.

Example
For an example of how these parameters are used, see Calling the
CZ_CF_API.VALIDATE Procedure, page 11-4.

Considerations After Running
None

Results
This procedure returns the values listed in the tableValues Returned by the VALIDATE
Procedure., page 17-72

17-72 Oracle Configurator Implementation Guide

Values Returned by the VALIDATE Procedure

Return Value Description

CONFIG_PROCESSED Configuration processed successfully, and a
termination message was returned.

CONFIG_PROCESSED_NO_TERMINAT
E

Configuration processed, but no termination
message was returned.

INIT_TOO_LONG Initialization message must be less than 2048
characters.

INVALID_OPTION_REQUEST Returned when an input does not include a
component code or quantity.

CONFIG_EXCEPTION Unknown error

DATABASE_ERROR Unknown error

UTL_HTTP_INIT_FAILED Procedure uses UTL_HTTP package to pass data
to Configurator Servlet. These exceptions can be
returned by UTL_HTTP procedures. See the
documentation resources on supplied PL/SQL
packages for additional information.

UTL_HTTP_REQUEST_FAILED

CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION
This procedure verifies that the specified configuration exists and returns whether it is
valid or complete. This procedure functions like a view. The procedure queries the
configuration data checking that the configuration exists in the CZ schema. This query
provides essential information to downstream applications without directly querying
the database.

Considerations Before Running
None

Timing
This procedure validates that the configuration header is a session header and not an
instance header.

Programmatic Tools for Development 17-73

Dependencies
None

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE verify_configuration(p_api_version IN NUMBER,
 p_config_hdr_id IN NUMBER,
 p_config_rev_nbr IN NUMBER,
 x_exists_flag OUT NOCOPY
VARCHAR2,
 x_valid_flag OUT NOCOPY
VARCHAR2,
 x_complete_flag OUT NOCOPY
VARCHAR2,
 x_return_status OUT NOCOPY
VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY
VARCHAR2);

The following table describes the parameters for the
CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION, page 17-72 procedure.

Parameters for the CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION Procedure

Parameter Data Type Mode Note

p_api_version number in Required. See API Version Numbers, page 18-
9.

p_config_hdr_id number in Required. Header ID of the configuration to
be verified.

p_config_rev_nb
r

number in Required. Revision number of the
configuration to be verified.

x_exists_flag varchar2 out If config_hdr_id and config_rev_nbr describe
a saved configuration, then
FND_API.G_TRUE is returned. If there is no
saved configuration, then
FND_API.G_FALSE is returned.

17-74 Oracle Configurator Implementation Guide

Parameter Data Type Mode Note

x_valid_flag varchar2 out If the configuration exists and is valid, then
FND_API.G_TRUE is returned. If the
configuration exists but is invalid, then
FND_API.G_FALSE is returned. If the
configuration does not exist then NULL.

x_complete_flag varchar2 out If the configuration exists and is complete,
then FND_API.G_TRUE is returned. If the
configuration exists but is incomplete, then
FND_API.G_FALSE is returned. If the
configuration does not exist, then NULL.

x_return_status varchar2 out Must return FND_API.G_RET_STS_SUCCESS
if procedure completed successfully;
otherwise return
FND_API.G_RET_STS_ERROR or
FND_API.G_RET_STS_UNEXP_ERROR if an
error occurs within the procedure

x_msg_count number out The number of error messages returned in the
x_msg_data parameter.

x_msg_data varchar2 out See corresponding parameter in Parameters
for the
CZ_CONFIG_API_PUB.COPY_CONFIGURA
TION Procedure, page 17-41.

Programmatic Tools for Maintenance 18-1

18
Programmatic Tools for Maintenance

This chapter describes a set of programmatic tools (PL/SQL procedures) that you can
use primarily to maintain a deployed runtime Oracle Configurator.

This chapter covers the following topics:

• Overview

• Overview of the CZ_modelOperations_pub Package

• Choosing the Right Tool for the Job

• Queries to Support the CZ_modelOperations_pub Package

• Reference for the CZ_modelOperations_pub Package

• CREATE_RP_FOLDER

• CREATE_UI

• CREATE_JRAD_UI

• DEEP_MODEL_COPY

• EXECUTE_POPULATOR

• FORCE_UNLOCK_MODEL

• FORCE_UNLOCK_TEMPLATE

• GENERATE_LOGIC

• IMPORT_SINGLE_BILL

• IMPORT_GENERIC

• PUBLISH_MODEL

• MIGRATE_MODELS

• REFRESH_SINGLE_MODEL

• REFRESH_UI

• REFRESH_JRAD_UI

18-2 Oracle Configurator Implementation Guide

• REPOPULATE

• REPUBLISH_MODEL

• RP_FOLDER_EXISTS

Overview
This chapter describes a set of programmatic tools that you can use primarily to
maintain a deployed runtime Oracle Configurator. This includes:

• Choosing the Right Tool for the Job, page 18-3

• Queries to Support the CZ_modelOperations_pub Package, page 18-5

• Reference for the CZ_modelOperations_pub Package, page 18-9

Important: For the latest reference information on these APIs, see
the Oracle Integration Repository, which is installed with your
patched instance of the Oracle E-Business Suite, as described in the
Preface of this guide. In the Integration Repository, the package
described in this chapter can be located by using the Search
function on the Internal Name CZ_MODELOPERATIONS_PUB.

Important: This chapter includes references to DHTML user
interfaces, but these are temporarily retained for historical
informational purposes only. As of this release, DHTML UIs are no
longer supported.

For information on tools for developing a configuration model or deploying a runtime
Oracle Configurator, see Programmatic Tools for Development, page 17-1.

Overview of the CZ_modelOperations_pub Package
The programmatic tools that you use to maintain a deployed runtime Oracle
Configurator are provided in the PL/SQL package CZ_modelOperations_pub.

Purpose of the Package
The CZ_modelOperations_pub package contains a set of APIs that enable you to
automate day-to-day maintenance activities, thus reducing the maintenance workload.
The operations covered by this are:

• Importing and refreshing configuration models with data from Oracle Applications
BOMs

Programmatic Tools for Maintenance 18-3

• Migrating Models to another development instance

• Generation and refreshing of logic and User Interfaces

• Publication of generated logic and User Interfaces

• Initial execution and refreshing of Item Master Populators

• Force unlocking of Models in Oracle Configurator

• Force unlocking of User Interface Content Templates in Oracle Configurator

Installation of the Package
The information provided for the package CZ_CF_API in Installation of the Packages,
page 17-5 also applies to the package CZ_modelOperations_pub.

References for Working with PL/SQL Procedures and Functions
For background information and details on basic aspects of working with the PL/SQL
procedures and functions in this package, see References for Working with PL/SQL
Procedures and Functions, page 17-6 in References for Working with PL/SQL
Procedures and Functions, page 17-6, which suggests relevant topics in the Oracle
Documentation Library.

Choosing the Right Tool for the Job
Use the table below to choose the appropriate procedure or function for the task you
want to perform. These procedures and functions are described in detail in Procedures
and Functions in the CZ_modelOperations_pub Package, page 18-11.

Uses of Procedures and Functions in the CZ_modelOperations_pub package

Area For This Purpose ... Use This Procedure or
Function ...

Repository To create a folder in the Repository, or
check whether a folder exists

CREATE_RP_FOLDER, page
18-12

RP_FOLDER_EXISTS, page
18-38

18-4 Oracle Configurator Implementation Guide

Area For This Purpose ... Use This Procedure or
Function ...

Models To import, refresh, or migrate Models IMPORT_SINGLE_BILL, page
18-26

IMPORT_GENERIC, page 18-
27

MIGRATE_MODELS, page
18-30

REFRESH_SINGLE_MODEL,
page 18-32

To make a deep copy of a specified
Model

DEEP_MODEL_COPY, page
18-19

To publish or republish Models PUBLISH_MODEL, page 18-
29

REPUBLISH_MODEL, page
18-37

To run Populators EXECUTE_POPULATOR,
page 18-20

REPOPULATE, page 18-35

To force unlock a Model FORCE_UNLOCK_MODEL,
page 18-21

Rules To generate logic GENERATE_LOGIC, page 18-
25

User Interfaces To generate or refresh a user interface CREATE_JRAD_UI, page 18-
17

REFRESH_JRAD_UI, page 18-
34

CREATE_UI, page 18-14
(DHTML or Java Applet UI)

REFRESH_UI, page 18-33
(DHTML or Java Applet UI)

To force unlock a UI Content Template FORCE_UNLOCK_TEMPLA
TE, page 18-23

Programmatic Tools for Maintenance 18-5

Queries to Support the CZ_modelOperations_pub Package
This section contains PL/SQL queries that indicate the values you need to provide as
parameters to certain procedures in the CZ_modelOperations_pub package.

Querying for Model and Folder IDs
You can determine the IDs of Models and folders in the Repository of Oracle
Configurator Developer by customizing a View so that it displays the column
DatabaseId. See the Oracle Configurator Developer User's Guide for details on customizing
Views.

You can also use a database query to list these IDs. Query for Models and Folders, page
18-6 provides a SQL query that lists the names and IDs of source (not published)
Models, and the folders that contain them in the Repository of Oracle Configurator
Developer.

The ID of a Model is stored as CZ_DEVL_PROJECTS.DEVL_PROJECT_ID. This query
selects a value for DEVL_PROJECT_ID. This ID can then be used as a value for the
parameter p_devl_project_id or p_model_id to the following procedures:

• CREATE_JRAD_UI, page 18-17

• CREATE_UI, page 18-14

• DEEP_MODEL_COPY, page 18-19

• FORCE_UNLOCK_MODEL, page 18-21

• GENERATE_LOGIC, page 18-25

• REFRESH_SINGLE_MODEL, page 18-32

• REPOPULATE, page 18-35

The ID of a folder that contains a specified Model is stored as
CZ_RP_ENTRIES.ENCLOSING_FOLDER. This query selects a value for
ENCLOSING_FOLDER. This ID can then be used as a value for the parameter
p_encl_folder_id to the following procedures:

• CREATE_RP_FOLDER, page 18-12

• RP_FOLDER_EXISTS, page 18-38

18-6 Oracle Configurator Implementation Guide

Query for Models and Folders
Example
select
 P.devl_project_id,
 P.name,
 R.enclosing_folder,
 R2.name FOLDER
from
 cz_devl_projects P,
 cz_rp_entries R,
 cz_rp_entries R2
where
 R.object_type = 'PRJ' and
 R.deleted_flag = '0' and
 P.deleted_flag = '0' and
 P.devl_project_id = R.object_id and
 R2.object_id = R.enclosing_folder and
 R2.object_type ='FLD';

You can add the following condition to the beginning of the WHERE clause of this
query to specify the name of a particular Model as it appears in Oracle Configurator
Developer.

Example
P.name like '%your Model's name%' and

You can add the following condition to the beginning of the WHERE clause of this
query to specify the name of a particular folder as it appears in Oracle Configurator
Developer.

Example
R2.name like 'your folder's name%' and

Querying for User Interface IDs
You can determine the IDs of User Interfaces by examining the UI ID column in the
User Interfaces area of the Workbench of Oracle Configurator Developer. See the Oracle
Configurator Developer User's Guide for details on customizing Views.

You can also use a database query to list these IDs. Query for User Interface IDs, page
18-7 provides a SQL query that lists the names and IDs of available user interfaces for
a specified Model. To determine the devl_project_ID for the specified Model, use
the query in Query for Models and Folders, page 18-6.

This query selects values for the column CZ_UI_DEFS.UI_DEF_ID. This UI_DEF_ID is
returned by the procedures CREATE_UI, page 18-14 and CREATE_JRAD_UI, page 18-
17. You would use this ID as a value for the p_ui_def_id parameter for the
procedures REFRESH_UI, page 18-33 and REFRESH_JRAD_UI, page 18-34.

Programmatic Tools for Maintenance 18-7

Query for User Interface IDs
Example
select
 ui_def_id,
 name
from
 cz_ui_defs
where
 devl_project_id = devl_project_ID
and
 deleted_flag = '0';

Querying for Referenced User Interface IDs
Query for Referenced DHTML and Java Applet User Interface IDs, page 18-7 provides
a SQL query that lists the UIs for a given Model and all referenced Models of the given
Model.

Query for Referenced DHTML and Java Applet User Interface IDs, page 18-7 provides
a SQL query that lists the IDs of available referenced (child)DHTML and Java Applet
user interfaces for a specified parent_ui_def_ID. To determine the
parent_ui_def_ID for a specified Model, use the query in Query for User Interface
IDs, page 18-7.

This query selects a value for the column CZ_UI_NODES.UI_DEF_ID. Use this value as
a parameter for the following procedures:

• REFRESH_UI, page 18-33

Query for Referenced DHTML and Java Applet User Interface IDs
Example
select distinct
 ui_def_id
from
 cz_ui_nodes
where
 cz_ui_nodes.deleted_flag = '0'
start with
 ui_def_id = parent_ui_def_ID
connect by
 prior cz_ui_nodes.ui_def_ref_id = cz_ui_nodes.ui_def_id
 and prior deleted_flag = '0'
order by
 cz_ui_nodes.ui_def_id;

Querying for Populators
Query for Populators, page 18-8 provides a SQL query that lists the names and IDs of
Populators for a given Model.

To determine the devl_project_ID_for_model for the specified Model, use the
query in Query for Models and Folders, page 18-6.

This query selects a value for the column CZ_POPULATORS.POPULATOR_ID. Use
this value as a parameter for the following procedures:

18-8 Oracle Configurator Implementation Guide

• EXECUTE_POPULATOR, page 18-20

Query for Populators
Example
select
 populator_id,
 a.name POPULATOR_NAME,
 b.ps_node_id,
 b.name
from
 cz_populators a,
 cz_ps_nodes b
where
 a.owned_by_node_id = b.ps_node_id
and
 b.devl_project_id = devl_project_ID_for_model
and
 a.deleted_flag = '0'
 and b.deleted_flag = '0';

Querying for Error and Warning Information
Query for Error and Warning Information, page 18-9 provides a SQL query that
retrieves the error and warning information that is recorded in the table CZ_DB_LOGS
after you run one of the following procedures:

• CREATE_UI, page 18-14

• CREATE_JRAD_UI, page 18-17

• CREATE_RP_FOLDER, page 18-12

• DEEP_MODEL_COPY, page 18-19

• EXECUTE_POPULATOR, page 18-20

• FORCE_UNLOCK_MODEL, page 18-21

• FORCE_UNLOCK_TEMPLATE, page 18-23

• GENERATE_LOGIC, page 18-25

• IMPORT_GENERIC, page 18-27

• IMPORT_SINGLE_BILL, page 18-26

• MIGRATE_MODELS, page 18-30

• PUBLISH_MODEL, page 18-29

• REFRESH_JRAD_UI, page 18-34

Programmatic Tools for Maintenance 18-9

• REFRESH_SINGLE_MODEL, page 18-32

• REFRESH_UI, page 18-33

• REPOPULATE, page 18-35

• REPUBLISH_MODEL, page 18-37

This query selects values for the columns URGENCY, STATUSCODE, and MESSAGE
from the table CZ_DB_LOGS.

URGENCY and STATUSCODE only have significant values when populated by the
GENERATE_LOGIC, page 18-25 procedure. The URGENCY values used by are 0 for
errors and 1 for warnings. STATUSCODE values are not meaningful to the user but are
important to the Oracle Configurator engineering team for the debugging of logic
generation code.

Query for Error and Warning Information
Example
select
 urgency,
 statuscode,
 message
from
 cz_db_logs
where
 run_id = run_ID_returned_from_procedure;

Reference for the CZ_modelOperations_pub Package
• This section provides descriptions of each of the procedures in the

CZ_modelOperations_pub package. These procedures are listed alphabetically in
Procedures and Functions in the Package CZ_modelOperations_pub, page 18-11.

• Descriptions of the custom data types defined in the package are also provided, in
Custom Data Types, page 18-9.

• For a basic example of how to call one of the functions in the CZ_CF_API package,
see Using the GENERATE_LOGIC Procedure, page 18-26.

• See also Overview of the CZ_modelOperations_pub Package, page 18-2.

Custom Data Types
There are no custom data types defined in the CZ_modelOperations_pub package.

API Version Numbers
Oracle APIs incorporate a mechanism called API version numbers. This mechanism:

18-10 Oracle Configurator Implementation Guide

• Allows an API to differentiate between changes that require you to change your
API calling code and those that don't.

• Allows an API to detect incompatible calls.

• Allows you to quickly determine if calling a new version of an API requires you to
change any of your code.

• Allows you to easily figure out which version of an API you need to call to take
advantage of new features.

Format of API Version Numbers
API version numbers consist of two segments separated by a decimal point. The first
segment is the major version number; the second segment is the minor version number.
The starting version number for an API is always 1.0.

The following table shows an example of an API Version number and the major and
minor version derived from the API version.

API Version Number Major Version Minor Version

1.0 1 0

2.4 2 4

If the major version number has changed, then you probably need to modify your
programs that call that API. Major version changes include changes to the list of
required parameters or changing the value of an API OUT parameter.

If only the minor version number has changed, then you probably do not need to
modify your programs.

Current API Version Number for This Package
The API version number for the APIs included in the current version of the
CZ_modelOperations_pub package is:
1.0

The local constant that stores this version number is:
l_api_version CONSTANT NUMBER

Checking for Incompatible API Calls
To detect incompatible calls, programs calling an API must pass an API version number
as one of the input parameters. The API can then compare the passed version number to
its current version number, and detect any incompatible calls.

Programmatic Tools for Maintenance 18-11

The Oracle standard parameter used by all procedures in this package to pass in the
API version number is:

Example
p_api_version IN NUMBER

This parameter is required, and has no initial values, thus forcing your program to pass
this parameter when calling an API.

If your call to the API results in a version incompatibility, then an error message is
inserted in the table CZ_DB_LOGS. You can examine the message using a query like the
one shown in Query for Error and Warning Information, page 18-9.

Procedures and Functions in the CZ_modelOperations_pub Package
This section provides descriptions of each of the procedures and functions in the
CZ_modelOperations_pub package, arranged alphabetically. These procedures and
functions are listed in Procedures and Functions in the Package
CZ_modelOperations_pub, page 18-11.

The following table lists the API procedures and functions in the
CZ_modelOperations_pub package.

Procedures and Functions in the Package CZ_modelOperations_pub

API Name P/FP =
proced
ure, F
=
functio
n

CREATE_RP_FOLDER, page 18-12 P

CREATE_UI, page 18-14 P

CREATE_JRAD_UI, page 18-17 P

DEEP_MODEL_COPY, page 18-19 P

EXECUTE_POPULATOR, page 18-20 P

FORCE_UNLOCK_MODEL, page 18-21 P

FORCE_UNLOCK_TEMPLATE, page 18-23 P

GENERATE_LOGIC, page 18-25 P

18-12 Oracle Configurator Implementation Guide

API Name P/FP =
proced
ure, F
=
functio
n

IMPORT_SINGLE_BILL, page 18-26 P

IMPORT_GENERIC, page 18-27 P

MIGRATE_MODELS, page 18-30 P

PUBLISH_MODEL, page 18-29 P

REFRESH_SINGLE_MODEL, page 18-32 P

REFRESH_UI, page 18-33 P

REFRESH_JRAD_UI, page 18-34 P

REPOPULATE, page 18-35 P

REPUBLISH_MODEL, page 18-37 P

RP_FOLDER_EXISTS, page 18-38 F

CREATE_RP_FOLDER
The CREATE_RP_FOLDER procedure creates a new folder in the specified enclosing
(parent) folder of the Repository of Oracle Configurator Developer.

If a folder with the same name already exists in the enclosing folder, then that folder's
ID is returned in the x_new_folder_id parameter. You can use the function
RP_FOLDER_EXISTS, page 18-38 to determine beforehand whether a folder exists.

See also:

• RP_FOLDER_EXISTS, page 18-38

Considerations Before Running
None

Programmatic Tools for Maintenance 18-13

Alternatives
As an alternative to using this procedure, you can create a folder in Oracle Configurator
Developer, by using the Create icon in the Repository. See the Oracle Configurator
Developer User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE create_rp_folder(p_api_version IN NUMBER
 ,p_encl_folder_id IN
CZ_RP_ENTRIES.OBJECT_ID%TYPE
 ,p_new_folder_name IN
CZ_RP_ENTRIES.NAME%TYPE
 ,p_folder_desc IN

CZ_RP_ENTRIES.DESCRIPTION%TYPE
 ,p_folder_notes IN
CZ_RP_ENTRIES.NOTES%TYPE
 ,x_new_folder_id OUT NOCOPY
CZ_RP_ENTRIES.OBJECT_ID%TYPE
 ,x_return_status OUT NOCOPY VARCHAR2
 ,x_msg_count OUT NOCOPY NUMBER
 , OUT NOCOPY VARCHAR2
);

The following table describes the parameters for the CREATE_RP_FOLDER procedure.
This includes the mode (in or out), the data type, and a brief note about the parameter.

Parameters for the CREATE_RP_FOLDER Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9
.

p_encl_folder_id in number Required. The ID of the enclosing (parent)
folder in which you are creating the new
folder. To determine the ID of a folder, see
Querying for Model and Folder IDs, page 18-5.
To specify the root folder of the Repository,
use the constant RP_ROOT_FOLDER.

p_new_folder_name in varchar2 Required. The name of the new folder that you
are creating.

18-14 Oracle Configurator Implementation Guide

Parameter Mod
e

Data Type Note

p_folder_desc in varchar2 A description for the new folder that you are
creating

p_folder_notes in varchar2 Notes text for the new folder that you are
creating

x_new_folder_id out number The ID of the new folder created. If a folder
with the same new name already exists in the
enclosing folder, the ID of that existing folder.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR,
FND_API.G_RET_STS_SUCCESS,
FND_API.G_RET_STS_UNEXP_ERROR.

x_msg_count out number The number of error messages returned in the
x_msg_data parameter.

x_msg_data out varchar2 A string that contains any error messages.

CREATE_UI
The CREATE_UI procedure generates a new user interface for a model. This procedure
generates only legacy Configurator User Interfaces (DHTML or Java applet) of the type
generated with the limited edition of Oracle Configurator Developer.

If referenced models are present, then the behavior is the following:

1. If a referenced model has one or more user interfaces of the input UI style (DHTML
or Applet), then the root UI will refer to the last UI created with this style.

2. If a referenced model has no user interface, the procedure will generate a new UI
for that model.

See also:

• REFRESH_UI, page 18-33

• CREATE_JRAD_UI, page 18-17

Considerations Before Running
None

Programmatic Tools for Maintenance 18-15

Alternatives
As an alternative to using this procedure, you can create a UI in the limited edition of
Oracle Configurator Developer. For more information see the Oracle Configurator
Release Notes for this release.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE create_ui(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 x_ui_def_id OUT NOCOPY NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER,
 p_ui_style IN VARCHAR2 DEFAULT 'COMPONENTS',
 p_frame_allocation IN NUMBER DEFAULT 30,
 p_width IN NUMBER DEFAULT 640,
 p_height IN NUMBER DEFAULT 480,
 p_show_all_nodes IN VARCHAR2 DEFAULT '0',
 p_look_and_feel IN VARCHAR2 DEFAULT 'BLAF',
 p_wizard_style IN VARCHAR2 DEFAULT '0',
 p_max_bom_per_page IN NUMBER DEFAULT 10,
 p_use_labels IN VARCHAR2 DEFAULT '1');

The following table describes the parameters for the CREATE_UI procedure. This
includes the mode (in or out), the data type, and a brief note about the parameter.

Parameters for the CREATE_UI Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9
.

p_devl_project_id in number The ID of the Model for which to create a UI.
See Query for Models and Folders, page 18-6
for a query that provides this ID
(DEVL_PROJECT_ID).

x_ui_def_id out number The ID of the UI that is created. This is stored
as CZ_UI_DEFS.UI_DEF_ID.

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If
there are no warnings or errors, then 0 is
stored.

18-16 Oracle Configurator Implementation Guide

Parameter Mod
e

Data Type Note

x_status out number Either G_STATUS_ERROR or
G_STATUS_SUCCESS.

p_ui_style in varchar2 The style of the UI. Values are: '0' or
'COMPONENTS' for a Component Tree
(DHTML) style, '3' or 'APPLET' for an Applet
UI style. The default is 'COMPONENTS'.

p_frame_allocation in number The left-hand frame allocation for the new UI,
in %. The default is 30 (30% of the screen
allocated to the left-hand frame).

p_width in number The width of the screens in the new UI, in
pixels. The default is 640.

p_height in number The height of the screens in the new UI, in
pixels. The default is 480.

p_show_all_nodes in varchar2 Controls whether the "include in generated UI"
flag on Model nodes is respected.

If this parameter is '1', then the new UI will
include all Model nodes including those
marked as "do not include in generated UI".

If this parameter is '0', then the new UI will
respect the "include in generated UI" flag on
Model nodes.

The default is '0'.

p_look_and_feel in varchar2 The look and feel for the new UI. Values are:
'BLAF', 'APPLET', or 'FORMS'. The default is
'BLAF'. 'FORMS' can only be used if
p_ui_style, page 18-16 is 'COMPONENTS'. The
default is 'BLAF'.

p_wizard_style in varchar2 Whether to generate wizard style navigation.
Values are: '0' for No, '1' for Yes. The default is
'0' (No).

p_max_bom_per_page in number The maximum number of BOM Option Class
children per screen. The default is 10.

Programmatic Tools for Maintenance 18-17

Parameter Mod
e

Data Type Note

p_use_labels in varchar2 Indicates how to generate captions: '0' for
description only, '1' for name only, '2', for
name and description. The default is '1'.

CREATE_JRAD_UI
The CREATE_JRAD_UI procedure generates a new User Interface for a Model. This
procedure generates only User Interfaces that are based on the OA Framework. For
more information on the OA Framework, see the Oracle Application Framework
Documentation Resources, Release 12, on the Oracle Support Web site.

See also:

• REFRESH_JRAD_UI, page 18-34

• CREATE_UI, page 18-14

Considerations Before Running
None

Alternatives
As an alternative to using this procedure, you can create a UI in Oracle Configurator
Developer, in the UI area of the Workbench. See the Oracle Configurator Developer User's
Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE create_jrad_ui(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 p_show_all_nodes IN VARCHAR2,
 p_master_template_id IN NUMBER,
 p_create_empty_ui IN VARCHAR2,
 x_ui_def_id OUT NOCOPY NUMBER,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 OUT NOCOPY VARCHAR2);

The following table describes the parameters for the CREATE_JRAD_UI procedure.
This includes the mode (in or out), the data type, and a brief note about the parameter.

18-18 Oracle Configurator Implementation Guide

Parameters for the CREATE_JRAD_UI Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9
.

p_devl_project_id in number The ID of the Model for which to create a UI.
See Query for Models and Folders, page 18-6
for a query that provides this ID
(DEVL_PROJECT_ID).

p_show_all_nodes in varchar2 'Controls whether the "include in generated
UI" flag on Model nodes is respected. If this
parameter is '1', then the new UI will include
all Model nodes including those marked as "do
not include in generated UI". If this parameter
is '0', then the new UI will respect the "include
in generated UI" flag on Model nodes.The
default is '0'.

p_master_template_id in number You can determine the IDs of UI master
Templates in the Repository of Oracle
Configurator Developer by customizing a
View so that it displays the column
DatabaseId. See the Oracle Configurator
Developer User's Guide for details on
customizing Views.

p_create_empty_ui in varchar2 If this parameter is '1', then the new UI will be
an "empty" UI. See the Oracle Configurator
Developer User's Guide for details on empty UIs.

x_ui_def_id out number The ID of the UI that is created. This is stored
as CZ_UI_DEFS.UI_DEF_ID.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR,
FND_API.G_RET_STS_SUCCESS,
FND_API.G_RET_STS_UNEXP_ERROR

x_msg_count out number The number of error messages returned in the
x_msg_data parameter.

x_msg_data out varchar2 A string that contains any error messages.

Programmatic Tools for Maintenance 18-19

DEEP_MODEL_COPY
The DEEP_MODEL_COPY procedure performs a deep copy of a specified Model.

Deep copying creates a new copy of the specified Model, along with new copies of any
referenced Models. You can choose to copy the Model without its configuration rules,
user interfaces, or referenced child Models.

Considerations Before Running
None

Alternatives
As an alternative to using this procedure, you can perform a deep copy of a Model in
Oracle Configurator Developer, by using the Copy command in the Repository. See the
Oracle Configurator Developer User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE deep_model_copy(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 p_folder IN NUMBER,
 p_copy_rules IN NUMBER,
 p_copy_uis IN NUMBER,
 p_copy_root IN NUMBER,
 x_devl_project_id OUT NOCOPY NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The table Parameters for the DEEP_MODEL_COPY Procedure, page 18-19 describes
the parameters for the DEEP_MODEL_COPY procedure. This includes mode (in or
out), the data type, and a brief note about the parameter.

Parameters for the DEEP_MODEL_COPY Procedure

Parameter Mode Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_devl_project_id in number The ID of the Model of which a copy is to be made.
See Query for Models and Folders, page 18-6 for a
query that provides this ID (DEVL_PROJECT_ID).

18-20 Oracle Configurator Implementation Guide

Parameter Mode Data
Type

Note

p_folder in number The folder to which the copy is made. See Query for
Models and Folders, page 18-6 for a query that
provides this number (ENCLOSING_FOLDER).

p_copy_rules in number Set to 1 to copy configuration rules with the model, 0
to omit the rules.

p_copy_uis in number Set to 1 to copy user interfaces with the model, 0 to
omit the user interfaces.

p_copy_root in number Set to 1 to copy only the root model, 0 to copy all
referenced models.

x_devl_project_id out number The ID (DEVL_PROJECT_ID) of the Model created
by the copying operation.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

EXECUTE_POPULATOR
The EXECUTE_POPULATOR procedure can be used to refresh the CZ_PS_NODES
table by implementing a Populator.

A Populator is a mechanism that automatically builds Model structure from data in the
Item Master. See the Oracle Configurator Developer User's Guide for more details on
Populators.

The CZ_PS_NODES table in the CZ schema describes the structure of the generated
logic.

See the description of REPOPULATE, page 18-35 for information on the related
procedure for repopulating Model structure.

Considerations Before Running
Before running the EXECUTE_POPULATOR procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Programmatic Tools for Maintenance 18-21

Alternatives
As an alternative to using this procedure, you can define and run a Populator using
Oracle Configurator Developer. See the Oracle Configurator Developer User's Guide for
instructions on using Populators.

Another alternative to using this procedure is to run the Execute Populators in Model
concurrent program. See Execute Populators in Model Concurrent Program, page C-29
for details on running this concurrent program.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE execute_populator(p_api_version IN NUMBER,
 p_populator_id IN NUMBER,
 p_imp_run_id IN OUT NOCOPY VARCHAR2,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the EXECUTE_POPULATOR
procedure. This includes mode (in or out), the data type, and a brief note about the
parameter.

Parameters for the EXECUTE_POPULATOR Procedure

Parameter Mode Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_populator_id in number The value of CZ_POPULATORS.POPULATOR_ID for
the Populator to be used.

p_imp_run_id in/out varchar2 Stored in CZ_IMP_PS_NODES.RUN_ID.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID. If there are no
warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

FORCE_UNLOCK_MODEL
The FORCE_UNLOCK_MODEL procedure unlocks one or more Models according to

18-22 Oracle Configurator Implementation Guide

user-defined criteria.

Model locking provides a mechanism that protects multiple users from modifying the
same Model at the same time. The FORCE_UNLOCK_MODEL procedure only works
when it is run as the user who has access to the force unlock functionality. See the Oracle
Configurator Developer User's Guide for more information on Model locking.

Considerations Before Running
Before running the FORCE_UNLOCK_MODEL procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, the Oracle Configurator Administrator can
unlock any object that is locked by another user. See the Oracle Configurator Developer
User's Guide for more information on force unlocking.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE force_unlock_model(p_api_version IN NUMBER,
 p_model_id IN NUMBER,
 p_unlock_references IN VARCHAR2,
 p_init_msg_list IN VARCHAR2,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY VARCHAR2);

The following table describes the parameters for the FORCE_UNLOCK_MODEL
procedure. This includes mode (in or out), the data type, and a brief note about the
parameter.

Parameters for the FORCE_UNLOCK_MODEL Procedure

Parameter Mode Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_model_id in number Required. The value of
CZ_DEVL_PROJECTS.MODEL_ID for the Model to be
unlocked.

Programmatic Tools for Maintenance 18-23

Parameter Mode Data
Type

Note

p_unlock_refer
ences

in varchar2 Controls whether to unlock just the Model or to unlock
the Model and the entire tree of referenced Models.

The values are FND_API.G_TRUE or
FND_API.G_FALSE

If this parameter is FND_API.G_FALSE, then the just
the Model is unlocked.

The default is FND_API.G_FALSE.

p_init_msg_list in varchar2 Either FND_API.G_TRUE if the FND stack should be
initialized, or FND_API.G_FALSE if the FND stack
should not be initialized.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR,
FND_API.G_RET_STS_SUCCESS,
FND_API.G_RET_STS_UNEXP_ERROR.

x_msg_count out number The number of error messages that are available on the
FND error stack after the completion of the procedure.

x_msg_data out varchar2 A string that contains any error messages.

FORCE_UNLOCK_TEMPLATE
The FORCE_UNLOCK_TEMPLATE procedure unlocks a UI Content Template.

Locking UI Content Templates provides a mechanism that protects multiple users from
modifying the same UI Content Template at the same time. The
FORCE_UNLOCK_TEMPLATE API only works when it is run as the user who has
access to the force unlock functionality. See the Oracle Configurator Developer User's
Guide for more information on UI Content Template locking.

Considerations Before Running
Before running the FORCE_UNLOCK_TEMPLATE procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

18-24 Oracle Configurator Implementation Guide

Alternatives
As an alternative to using this procedure, the Oracle Configurator Administrator can
unlock any object that is locked by another user. See the Oracle Configurator Developer
User's Guide for more information on force unlocking.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE force_unlock_template(p_api_version IN NUMBER,
 p_template_id IN NUMBER,
 p_init_msg_list IN VARCHAR2,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY VARCHAR2);

The following table describes the parameters for the FORCE_UNLOCK_TEMPLATE
procedure. This includes mode (in or out), the data type, and a brief note about the
parameter.

Parameters for the FORCE_UNLOCK_TEMPLATE Procedure

Parameter Mode Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_template_id in number Required. The value of
CZ_UI_TEMPLATES.TEMPLATE_ID for the UI
Content Template to be unlocked.

p_init_msg_list in varchar2 Either FND_API.G_TRUE if the FND stack should be
initialized, or FND_API.G_FALSE if the FND stack
should not be initialized.

x_return_status out varchar2 Either FND_API.G_RET_STS_ERROR,
FND_API.G_RET_STS_SUCCESS,
FND_API.G_RET_STS_UNEXP_ERROR.

x_msg_count out number The number of error messages that are available on the
FND error stack after the completion of the procedure.

x_msg_data out varchar2 A string that contains any error messages.

Programmatic Tools for Maintenance 18-25

GENERATE_LOGIC
The GENERATE_LOGIC procedure generates the logic for a Model and all of its
referenced Models if necessary.

Considerations Before Running
Before running the GENERATE_LOGIC procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, you can generate logic in Oracle Configurator
Developer, in the General area of the Workbench. See the Oracle Configurator Developer
User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE generate_logic(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the GENERATE_LOGIC procedure.
This includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the GENERATE_LOGIC Procedure

Parameter Mod
e

Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_devl_project_id in number The ID of the Model for which to generate logic. See
Query for Models and Folders, page 18-6 for a query
that provides this ID (DEVL_PROJECT_ID).

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID. If there are no
warnings or errors, then 0 is stored.

18-26 Oracle Configurator Implementation Guide

Parameter Mod
e

Data
Type

Note

x_status out number Either G_STATUS_ERROR, G_STATUS_WARNING,
or G_STATUS_SUCCESS.

Example
When called in SQL*Plus, this example generates logic for a model with the ID
(DEVL_PROJECT_ID) specified by the p_devl_project_id parameter. After the
procedure runs, it prints the run ID and status.

Using the GENERATE_LOGIC Procedure
Example
set serveroutput on
declare
x_run_id number;
x_status varchar2(100);
begin
CZ_modelOperations_pub.generate_logic(1.0,12345,x_run_id,x_status);
dbms_output.put_line('Run id: '││x_run_id);
dbms_output.put_line('x_status: '││x_status);
end;

IMPORT_SINGLE_BILL
The IMPORT_SINGLE_BILL procedure can be used to import a model from Oracle Bills
of Materials (BOM).

See also:

• IMPORT_GENERIC, page 18-27

Considerations Before Running
Before running the IMPORT_SINGLE_BILL procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, you can run the Populate Configuration
Models concurrent program. See Populate and Refresh Configuration Models
Concurrent Programs, page C-18 program for details.

Programmatic Tools for Maintenance 18-27

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE import_single_bill(p_api_version IN NUMBER,
 p_org_id IN NUMBER,
 p_top_inv_item_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the IMPORT_SINGLE_BILL
procedure. This includes mode (in or out), the data type, and a brief note about the
parameter.

Parameters for the IMPORT_SINGLE_BILL Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_org_id in number Required. The organization ID of the bill to be
imported.

p_top_inv_item_id in number The Inventory Item ID of the top item to be
imported (the BOM root).

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or
G_STATUS_SUCCESS.

IMPORT_GENERIC
The IMPORT_GENERIC procedure processes and imports data from the CZ interface
tables as part of a custom import. See Custom Import, page 5-30 for details about
custom (generic) import.

See also:

• IMPORT_SINGLE_BILL, page 18-26

18-28 Oracle Configurator Implementation Guide

Considerations Before Running
Before running the IMPORT_GENERIC procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, you can run the Populate Configuration
Models concurrent program. See Populate and Refresh Configuration Models
Concurrent Programs, page C-18 program for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE import_generic(p_api_version IN NUMBER
 ,p_run_id IN NUMBER
 ,p_rp_folder_id IN NUMBER
 ,x_run_id OUT NOCOPY NUMBER
 ,x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the IMPORT_GENERIC procedure.
This includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the IMPORT_GENERIC Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9
.

p_run_id in number Required. The Run ID generated by previously
populating the import (CZ_IMP_*) tables.
Specify the ID of the records that you want to
process during a particular generic import
session. If this ID is NULL, then all the records
in the import tables where run_id is NULL will
be processed. You should obtain the Run ID
from the sequence CZ_XFR_RUN_INFOS_S, to
avoid possible conflicts with the
IMPORT_SINGLE_BILL, page 18-26
procedure.

Programmatic Tools for Maintenance 18-29

Parameter Mod
e

Data Type Note

p_rp_folder_id in number Required. The ID of the folder in the
Repository into which you want to import the
Model. To determine the ID of a folder, see
Querying for Model and Folder IDs, page 18-5.
To specify the root folder of the Repository,
use the constant RP_ROOT_FOLDER.

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If
there are no warnings or errors, then 0 is
stored.

Used to get results from
CZ_XFR_RUN_INFOS and
CZ_XFR_RUN_RESULTS.

x_status out number Either G_STATUS_ERROR,
G_STATUS_SUCCESS, or
G_STATUS_WARNING.

PUBLISH_MODEL
After a publication record is created in Oracle Configurator Developer, the
PUBLISH_MODEL procedure exports the publication to the target database (that is,
Model and UI data).

Considerations Before Running
Before running the PUBLISH_MODEL procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Restrictions and Limitations
This procedure should only be run on publications with a status of Pending.

Alternatives
As an alternative to using this procedure, you can publish models in Oracle
Configurator Developer in the Publications area of the Repository. See the Oracle
Configurator Developer User's Guide for details.

18-30 Oracle Configurator Implementation Guide

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE publish_model(p_api_version IN NUMBER,
 p_publication_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the PUBLISH_MODEL procedure. This
includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the PUBLISH_MODEL Procedure

Parameter Mod
e

Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_publication_id in number The publication ID generated when you publish a
model in Oracle Configurator Developer , stored as
CZ_MODEL_PUBLICATIONS.PUBLICATION_ID.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

MIGRATE_MODELS
The MIGRATE_MODELS procedure copies the model's structure, rules, UIs, UI Content
Templates, UI Master Templates, Usages, Effectivity Sets, Configurator Extension
Archives, Populators, corresponding Item Master, and Properties to another
development instance.

Considerations Before Running
None

Restrictions and Limitations
None

Programmatic Tools for Maintenance 18-31

Alternatives
As an alternative to using this procedure, you can migrate Models from Oracle
Configurator Developer .. See the Oracle Configurator Developer User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE migrate_models(p_api_version IN NUMBER,
 p_model_list_tab IN cz_pb_mgr.t_ref,
 p_tgt_instance_id IN
cz_servers.server_local_id%TYPE,
 p_tgt_folder_id IN
cz_rp_entries.object_id%TYPE,
p_enable_shallow IN VARCHAR2,
p_user_id IN NUMBER,
 p_resp_id IN NUMBER,
 p_appl_id IN NUMBER,
 p_run_id IN NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 x_msg_data OUT NOCOPY VARCHAR2
)
;

The following table describes the parameters for the MIGRATE_MODELS procedure.
This includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the MIGRATE_MODELS Procedure

Parameter Mod
e

Data
Type

Note

p_model_list_ta
b

in number Table of numbers that contains a list of all Models
selected for migration from the source instance..

p_tgt_instance_i
d

in number Identifies the database instance where the Models will
be migrated.

p_tgt_folder_id in number Identifies the remote Repository folder where the
Models are migrated. This is the object_id in the
target's cz_rp_entries table.

p_userid

p_respid

p_applid

in number Standard parameters required for locking.

18-32 Oracle Configurator Implementation Guide

Parameter Mod
e

Data
Type

Note

p_run_id in number Identifies the session. If this is Null, then the procedure
generates a number and returns it in x_run_id.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or G_STATUS_SUCCESS.

REFRESH_SINGLE_MODEL
The REFRESH_SINGLE_MODEL procedure can be used to refresh a model imported
from Oracle Bills of Materials (BOM).

Considerations Before Running
Before running the REFRESH_SINGLE_MODEL procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE refresh_single_model(p_api_version IN NUMBER,
 p_devl_project_id IN VARCHAR2,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the REFRESH_SINGLE_MODEL
procedure. This includes mode (in or out), the data type, and a brief note about the
parameter.

Parameters for the REFRESH_SINGLE_MODEL Procedure

Parameter Mode Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

Programmatic Tools for Maintenance 18-33

Parameter Mode Data
Type

Note

p_devl_project_id in varchar2 Required. The ID of the Model for which to refresh
imported data. See Query for Models and Folders,
page 18-6 for a query that provides this ID
(DEVL_PROJECT_ID).

x_run_id out number The ID of the running of this procedure. This value
is stored in CZ_DB_LOGS.RUN_ID.

x_status out number Either G_STATUS_ERROR or
G_STATUS_SUCCESS.

REFRESH_UI
The REFRESH_UI procedure refreshes an existing user interface based on the current
model data. This procedure operates only on legacy Configurator User Interfaces
(DHTML or Java applet) of the type generated with the limited edition of Oracle
Configurator Developer.

See also:

• CREATE_UI, page 18-14

• REFRESH_JRAD_UI, page 18-34

Considerations Before Running
Before running the REFRESH_UI procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Restrictions and Limitations
This procedure only refreshes the UI specified. Referenced user interfaces are not
refreshed if the specified UI is DHTML. If the referenced UI is one that is based on the
OA Framework, then referenced user interfaces are refreshed.

Alternatives
As an alternative to using this procedure, you can refresh a UI in the limited edition of
Oracle Configurator Developer. For more information see the Oracle Configurator
Release Notes for this release.

18-34 Oracle Configurator Implementation Guide

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE (p_api_version IN NUMBER,
 p_ui_def_id IN OUT NOCOPY NUMBER,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the REFRESH_UI procedure. This
includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the REFRESH_UI Procedure

Parameter Mode Data
Type

Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_ui_def_id in/out number UI definition ID of user interface to be refreshed. If user
interface is Applet style, then a new ui_def_id is returned
through this parameter. If the style is DHTML, then the
same ui_def_id is returned.

x_run_id out number The ID of the running of this procedure. This value is
stored in CZ_DB_LOGS.RUN_ID. If there are no
warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR, G_STATUS_WARNING or
G_STATUS_SUCCESS.

REFRESH_JRAD_UI
The REFRESH_JRAD_UI procedure refreshes an existing user interface based on the
current Model data. This procedure generates only User Interfaces based on the OA
Framework. For more information on the OA Framework, see the Oracle Application
Framework Documentation Resources, Release 12, on the Oracle Support Web site.

See also:

• CREATE_JRAD_UI, page 18-17

• REFRESH_UI, page 18-33

Programmatic Tools for Maintenance 18-35

Considerations Before Running
None

Alternatives
As an alternative to using this procedure, you can refresh a UI in Oracle Configurator
Developer, in the User Interface area of the Workbench. See the Oracle Configurator
Developer User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE refresh_jrad_ui(p_api_version IN NUMBER,
 p_ui_def_id IN OUT NOCOPY NUMBER,
 x_return_status OUT NOCOPY VARCHAR2,
 x_msg_count OUT NOCOPY NUMBER,
 OUT NOCOPY VARCHAR2);

The following table describes the parameters for the REFRESH_JRAD_UI procedure.
This includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the REFRESH_JRAD_UI Procedure

Parameter Mode Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9
.

p_ui_def_id in/out number Identifies the UI to refresh

x_return_status out varchar2 Either G_STATUS_ERROR,
G_STATUS_SUCCESS, or
G_STATUS_WARNING.

x_msg_count out number The number of error messages returned in the
x_msg_data parameter.

x_msg_data out varchar2 A string that contains any error messages.

REPOPULATE
The REPOPULATE procedure iterates through all Populators associated with the input
model and repopulates them.

18-36 Oracle Configurator Implementation Guide

Considerations Before Running
Before running the REPOPULATE procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, you can repopulate the Model with current
data when data in the Item Master changes in Oracle Configurator Developer. See the
Oracle Configurator Developer User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE repopulate(p_api_version IN NUMBER,
 p_devl_project_id IN NUMBER,
 p_regenerate_all IN VARCHAR2 , -- DEFAULT '1',
 p_handle_invalid IN VARCHAR2 , -- DEFAULT '1',
 p_handle_broken IN VARCHAR2 , -- DEFAULT '1',
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the REPOPULATE procedure. This
includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the REPOPULATE Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_devl_project_id in number The ID of the Model to repopulate. See Query for
Models and Folders, page 18-6 for a query that
provides this ID (DEVL_PROJECT_ID).

p_regenerate_all in varchar2 Set to 0 if all Populators should be regenerated
unconditionally before execution. Set to 1 to
regenerate only modified Populators. The default
is 1.

Programmatic Tools for Maintenance 18-37

Parameter Mod
e

Data Type Note

p_handle_invalid in varchar2 Allows caller to specify how to handle invalid
Populators. Pass 0 to skip invalid Populators, or
pass 1 to regenerate them. The default is 1.

p_handle_broken in varchar2 Allows caller to specify whether to continue (1) or
not (0) when a Populator cannot be regenerated
successfully. The default is 1.

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If there
are no warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR or
G_STATUS_SUCCESS.

REPUBLISH_MODEL
The REPUBLISH_MODEL procedure is the server side API to create a publication
request and republish the model.

Only valid publications can be republished. A valid publication's DELETED_FLAG=0,
STATUS=OK, and SOURCE_TARGET_FLAG=S.

Possible reasons for the REPUBLISH_MODEL procedure to fail, are:

• Input dates were not valid for the p_publication_id

• There is an overlap with existing publications for the same Model

• The Model was regenerated and the UI was refreshed

If the validation fails for any reason, the error messages are logged in CZ_DB_LOGS.

Considerations Before Running
Before running the REPUBLISH_MODEL procedure, you must first run
fnd_global.APPS_INITIALIZE procedure. This procedure sets up global variables
and profile values in a database session. Call this procedure to initialize the global
security context for a database session.

Alternatives
As an alternative to using this procedure, you can republish an existing model in Oracle

18-38 Oracle Configurator Implementation Guide

Configurator Developer in the Publications area of the Repository. See the Oracle
Configurator Developer User's Guide for details.

Syntax and Parameters
The syntax for this procedure is:

Example
PROCEDURE republish_model(p_api_version IN NUMBER,
 p_publication_id IN NUMBER,
 p_start_date IN DATE,
 p_end_date IN DATE,
 x_run_id OUT NOCOPY NUMBER,
 x_status OUT NOCOPY NUMBER);

The following table describes the parameters for the REPUBLISH_MODEL procedure.
This includes mode (in or out), the data type, and a brief note about the parameter.

Parameters for the REPUBLISH_MODEL Procedure

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9.

p_publication_id in number Required. This is the ID of the publication that is
being republished.

p_start_datel in date This is the start date of the original publication.

p_end_date in date This is the end date of the original publication.

x_run_id out number The ID of the running of this procedure. This
value is stored in CZ_DB_LOGS.RUN_ID. If there
are no warnings or errors, then 0 is stored.

x_status out number Either G_STATUS_ERROR,
G_STATUS_SUCCESS, or
G_STATUS_WARNING.

RP_FOLDER_EXISTS
The RP_FOLDER_EXISTS function checks whether a specified folder already exists in
the Repository of Oracle Configurator Developer. You can use this function before you
use CREATE_RP_FOLDER, page 18-12, to avoid trying to create a folder with a
conflicting name.

Programmatic Tools for Maintenance 18-39

This function returns the values listed in the tableValues Returned by
RP_FOLDER_EXISTS, page 18-39, given the conditions shown.

Values Returned by RP_FOLDER_EXISTS

Enclosing folder (
p_encl_folder_id)

Target folder (p_rp_folder) Function Returns
...

Null Exists anywhere in the Repository TRUE

Not null and exists anywhere in
the Repository

Exists inside enclosing folder. TRUE

Null Does not exist anywhere in the
Repository

FALSE

Not null and does not exist
anywhere in the Repository

N/A FALSE

Not null Does not exist inside enclosing
folder.

FALSE

See also:

• CREATE_RP_FOLDER, page 18-12

Considerations Before Running
None

Alternatives
As an alternative to using this procedure, you can search for the target folder in Oracle
Configurator Developer, by expanding some or all folders in the Repository. See the
Oracle Configurator Developer User's Guide for details.

Syntax and Parameters
The syntax for this function is:

Example
FUNCTION rp_folder_exists (p_api_version IN NUMBER
 ,p_encl_folder_id IN NUMBER
 ,p_rp_folder_id IN NUMBER) RETURN BOOLEAN;

The following table describes the parameters for the RP_FOLDER_EXISTS function.
This includes mode (in or out), the data type, and a brief note about the parameter.

18-40 Oracle Configurator Implementation Guide

Parameters for the RP_FOLDER_EXISTS Function

Parameter Mod
e

Data Type Note

p_api_version in number Required. See API Version Numbers, page 18-9
.

p_encl_folder_id in number Required. The ID of the enclosing (parent)
folder containing the target folder name. To
determine the ID of a folder, see Querying for
Model and Folder IDs, page 18-5. To specify
the root folder of the Repository, use the
constant RP_ROOT_FOLDER.

p_rp_folder_id in number Required. The ID of the folder that is the target
of your search. To determine the ID of a folder,
see Querying for Model and Folder IDs, page
18-5.

Part 5
Runtime Configurator

This Part presents information for deploying a runtime Oracle Configurator that is
embedded in a host Oracle Application or a custom host application as described in
Deployment Tasks, page 1-7.

User Interface Deployment 19-1

19
User Interface Deployment

This chapter describes the activities required to complete the User Interface deployment
of a runtime Oracle Configurator embedded in a host Oracle Application such as Order
Management or iStore.

This chapter covers the following topics:

• Overview

• Calling an Embedded Oracle Configurator

Overview
Deployment involves making a runtime Oracle Configurator available to end users.
This chapter describes the types of User Interfaces that may be deployed in a runtime
Oracle Configurator.

Oracle Configurator can be deployed in these scenarios:

• Embedded in a host Oracle Application such as Order Management, using either a
User Interface generated in Configurator Developer or the Generic Configurator
User Interface.

• Embedded in a host application outside of Oracle Applications using a User
Interface generated in Configurator Developer.

• Embedded in a host application outside of Oracle Applications using an entirely
custom-written user interface that accesses the Configuration Interface Object
(CIO). This scenario is not described directly in any Oracle Configurator
documentation.

The CIO and its basic usage is described in the Oracle Configurator Extensions and
Interface Object Developer's Guide.

19-2 Oracle Configurator Implementation Guide

Calling an Embedded Oracle Configurator
Oracle Applications uses an internet server, such as Oracle Application Server, to run
the Oracle Configurator (OC) Servlet. The OC Servlet connects the runtime Oracle
Configurator's URL to the CZ schema. The Oracle Configurator's URL is set by the
profile option BOM: Configurator URL of UI Manager.

See the Oracle Configurator Installation Guide for information about installing the OC
Servlet and configuring the internet server.

An Oracle Configurator embedded in Oracle Applications uses one of the following
user interfaces:

• A simple, non-customized UI that shows only BOM items.

For details, see Generic Configurator User Interfaces, page 19-2.

• A customized HTML UI that is generated and optionally customized in
Configurator Developer.

For more information, see the Oracle Configurator Developer User's Guide.

For information about activities required to complete deployment of a runtime Oracle
Configurator embedded in a host Oracle Application such as Order Management or i
Store, see Deployment Considerations, page 20-1.

See Database Uses, page 3-2 for an overview of possible deployment environments and
architecture.

Generic Configurator User Interfaces
A Generic Configurator User Interface can be accessed by host applications that are part
of the Oracle E-Business Suite to configure a BOM Model. Examples of Oracle
E-Business Suite host applications include Order Management, Bills of Material,
Quoting, and iStore.

Generic Configurator UIs are not User Interfaces that are created in Oracle Configurator
Developer. These UIs display only BOM Model items and enforce only implicit BOM
rules. In other words, any Model structure nodes, rules, or UI elements that are defined
in Configurator Developer are not available in a Generic Configurator UI. This is
because Generic Configurator UIs access BOM Model data directly from the Oracle Bills
of Material database tables, not from the CZ schema.

Deploying a configuration model that is based on a BOM Model and uses rules defined
in Configurator Developer typically involves creating a UI in Configurator Developer
and then publishing both the configuration model and the UI. For details, see the Oracle
Configurator Developer User's Guide.

You may want your end users to use a Generic Configurator UI to configure a BOM
Model item if:

User Interface Deployment 19-3

• Your end users do not need a UI that provides unique selection controls,
company-specific logos, custom images, and so on (for example, internal order
entry employees or sales representatives).

• The BOM Model does not require additional structure or rules to support guided
buying or selling questions (that is, structure and rules defined in Configurator
Developer).

Criteria for Launching a Generic Configurator User Interface
A Generic Configurator UI is used when an Oracle E-Business Suite host application
sends a request to configure:

• A BOM Model item that has not been imported into Configurator Developer.

• A BOM Model item that has been imported into Configurator Developer, but has
not been published.

• A BOM Model item for which no matching publication is found.

Note: If the host application sends a request to configure a Model
that was created in Configurator Developer and no matching
publication is found, Oracle Configurator displays an error.

Generic Configurator UI Types
The available types of Generic Configurator UIs are the HTML Hierarchical Table UI
and the Java Applet UI. The HTML Hierarchical Table UI appears in a Web browser, is
based on the Oracle Applications Framework, and is available from both Oracle
Forms-based and HTML-based host applications. This UI appears when the profile
option CZ: Generic Configurator UI Type is set to HTML Hierarchical Table and
the item being configured meets the criteria described in Criteria for Launching a
Generic Configurator User Interface, page 19-3. In this UI, the BOM Model is presented
in a hierarchical table and controls are provided to expand and collapse configurable
items, select options, and enter a quantity for each option. For more information, see
Generic Configurator User Interfaces: Additional Features and Limitations, page 19-4.

The Java Applet UI does not run in a Web browser and it is available only from
Forms-based host applications, such as Oracle Order Management. The Java Applet UI
appears when all of the following are true:

• The host application is Forms-based

• The profile option CZ: Generic Configurator UI Type is set to Java Applet (see
Setting Up a Generic Configurator User Interface, page 19-4)

• The item being configured meets the criteria described in Criteria for Launching a

19-4 Oracle Configurator Implementation Guide

Generic Configurator User Interface, page 19-3

The Java Applet UI contains three regions. The region on the left displays the BOM
Model's hierarchical structure and enables the end user to navigate to each configurable
component. End users use the region at the top of the screen to select options. The
region at the bottom of the screen displays a summary of all selected options and the
status of the configuration. For more information, see Generic Configurator User
Interfaces: Additional Features and Limitations, page 19-4.

For more information about Forms-based applications, see the Oracle E-Business Suite
User's Guide.

Setting Up a Generic Configurator User Interface
The following profile options modify the behavior and appearance of the HTML
Hierarchical Table UI:

• CZ: BOM Tree Expansion State

• CZ: Generic Configurator UI Max Child Rows

• CZ: Hide Focus in Generic Configurator UI

By default, Forms-based host applications such as Oracle Order Management use the
Java Applet UI to configure items that meet the criteria described in Criteria for
Launching a Generic Configurator User Interface, page 19-3. For details about the Java
Applet UI, see Generic Configurator UI Types, page 19-3.

BOM Models can contain Items that support decimal quantities and some Items may
have a default quantity that is a decimal value. To configure such a BOM Model using
the Generic Configurator UI, the profile option CZ: Populate Decimal Quantity Flags
must be set to Yes. For UIs created in Configurator Developer, this profile option
determines whether the BOM Model supports decimal quantities when it is imported
into the CZ schema, not when the UI is launched from a host application.

If your host application is either Oracle iStore and Oracle Quoting, verify that the
profile option CZ: Use Generic Configurator UI is set correctly for your installation.

For more information about any of the profile options referred to in this section, see the
Oracle Configurator Installation Guide.

Generic Configurator User Interfaces: Additional Features and Limitations
The Generic Configurator User Interfaces:

• Can display pricing and Available To Promise (ATP) information (if implemented).

To set up pricing and ATP, see Pricing and ATP in Oracle Configurator , page 13-1.

• Enable end users to search for items based on the item name or description

User Interface Deployment 19-5

After the end user searches for an item in the HTML Hierarchical Table UI, the
following columns are available: View in Hierarchy and Path. The View in
Hierarchy column provides an icon that enables an end user to navigate directly to
the item. The Path column indicates the item's location in the Model using item
descriptions. For example:

Premium Custom Laptop Model.Hard Drive Option Class.40 GB
Hard Drive

• Identify unsatisfied items and items that are required to create a valid configuration

• Provide multiple languages support (MLS)

• Support secure sockets layer (SSL)

• Display currency in the same format as the host application

The Generic Configurator User Interfaces do not support:

• Multiple instantiation (creating multiple instances of configurable components)

• Connectivity (connecting configurable components)

In other words, an Oracle Configurator end user can connect and create multiple
instances of configurable components only in User Interfaces that are created in
Configurator Developer.

For more information about multiple instantiation and Connectivity, see the Oracle
Configurator Developer User's Guide.

Keyboard Access in the Runtime Configurator
Oracle Configurator Developer enables end users with disabilities to navigate the
runtime Configurator window using only the keyboard. For information on the
available keystrokes and the corresponding actions at runtime, see the Oracle
Configurator Developer User's Guide.

Deployment Considerations 20-1

20
Deployment Considerations

This chapter describes the strategies you should consider when you are ready to
complete the deployment of a runtime Oracle Configurator.

This chapter covers the following topics:

• Overview

• Deployment Strategies

• Architectural Considerations

• Server Considerations

• Establishing End User Access

• Determining the Runtime User Interface

• Load Balancing and Secure Sockets Layer

• Network Considerations

• Security Considerations

• Multiple Language Support Considerations

• Performance Considerations

• Routing Models to Specified JVMs

Overview
This chapter and User Interface Deployment, page 19-1 describe activities required to
complete deployment of a runtime Oracle Configurator embedded in a host Oracle
Application such as Order Management or iStore. The activities include:

• Deployment Strategies, page 20-2

• Architectural Considerations, page 20-2

20-2 Oracle Configurator Implementation Guide

• Server Considerations, page 20-3

• Establishing End User Access, page 20-5

• Determining the Runtime User Interface, page 20-5

• Load Balancing and Secure Sockets Layer, page 20-6

• Network Considerations, page 20-6

• Security Considerations, page 20-7

• Multiple Language Support Considerations, page 20-9

• Performance Considerations, page 20-10

Additionally, see Database Uses, page 3-2 for an overview of possible deployment
environments and architecture.

Deployment Strategies
No single factor is likely to make your deployment succeed. A successful deployment
depends on the relationship and interaction of several critical factors that are mentioned
in this chapter.

This chapter describes the principles that affect a typical Oracle Configurator
deployment.

Architectural Considerations
The architecture of an application often limits its operation. An inefficient configuration
model design cannot overcome the limitation by simply tuning your server software of
augmenting your hardware.

Model loading and data access depend on how the application was implemented. To
get the information required to start tuning your servlet requires you to understand the
application. You need to take the time to plan a model of what steps end users will
experience and what variety of options will be presented, such as:

• What users select page by page

• How users navigate from page to page

• What interruptions can occur during a configuration session (for example, when a
user pauses a long time to consider their choices, or turns to another task before
returning to make a selection)

Deployment Considerations 20-3

Server Considerations
A critical factor in deploying Oracle Configurator on your internet server is the number
of instances of the servlet engine (Apache JServ) that you deploy. This number is based
on the number of end users that you expect to be conducting simultaneous
configuration sessions in each instance, and the kind of data access that they are going
to experience.

You need to consider these factors in determining the load balance of users per JServ:

• Network data access calls made by your application

• The length of time that a user requires to work through the application

• The number of times a user can work through the application in an hour

• How many of this type of user can use your application at the same time without
interfering with other users needing to access the database (for instance, to save a
configuration)

Consequently, the architecture of your application affects your ability to balance the
load on your server, which determines the server resources that your application
requires.

The factors that affect the number of users per JServ include:

• The size of the application (the number of pages or screens)

• The size of the Model (the number of nodes)

• The number or complexity of any Configurator Extensions used by the application

• The number of CPUs

• The memory per CPU

The JDK uses about 16 megabytes. The JVM for each JServ uses about 45 megabytes.
Oracle Configurator uses native threads.

• The number of JServ instances running

• The number of connections available in the connection pool (see Connection
Pooling, page 20-4)

Example
Consider a hypothetical deployment that includes:

• 6 CPUs

20-4 Oracle Configurator Implementation Guide

• 2 JServ instances per CPU

• 20 end users expected per JServ

This deployment can support 240 simultaneous user configuration sessions:

6 CPUs x 2 JServs per CPU x 20 users per JServ = 240 users

Due to the nature of the application, and the kind of data access that occurs in the
application, you should consider what kind of peak events might occur when several
users perform a "save" operation in the same minute.

If there are not enough database connections in the connection pool when many users
save their configuration at the same time, those users will experience an unacceptable
wait until enough connections are freed.

The Oracle Applications Java Caching Framework (OAJCF) is the caching mechanism
for all Oracle Applications products. This mechanism stores database results and Java
objects in memory for repeated usage, thus minimizing expensive object initializations
and database round-trips as well as improving application performance. Consider
setting up a dedicated JServ for running Oracle Configurator.

For more information, see the Oracle Configurator Performance Guide.

Connection Pooling
Connection pooling allows multiple configuration sessions in a JServ instance to make
database connections. (Previous versions of Oracle Configurator were only able to use a
single database connection for each JServ instance.)

When a configuration session is started by the posting of the initialization message to
the OC Servlet, a connection is obtained from the pool. When the session is over, the
connection is returned to the pool. Each connection requires memory.

Oracle Configurator uses AOL/J (Java classes for AOL (Applications Object Library)) to
provide connection pooling. To modify the default setting for connection pooling, you
use the AdminAppServer class to create or update a DBC file, setting a value for the
parameter FND_MAX_JDBC_CONNECTIONS.

The parameter FND_MAX_JDBC_CONNECTIONS specifies the maximum number of
open connections in the JDBC connection cache. This number is dependent on the
amount of memory available, the number of processes specified in the init.ora file of
the database, and the per-processor file descriptor limit.

The maximum pool size is the maximum allowed sum of the number of available
connections and the number of locked connections. If the .dbc file does not have a
setting for maximum pool size, the default value is used. The default value is the Java
static field Integer.MAX, which normally has a value of about 2 billion. Therefore, the
default value is essentially unlimited.

The parameter FND_JDBC_MAX_WAIT_TIME specifies the length of time a request
waits for a connection to be established. The default value is 10 seconds, and this

Deployment Considerations 20-5

parameter is not configurable.

Establishing End User Access
End users ability to access the runtime Oracle Configurator are established by the
Oracle Applications System Administrator. For more information, see the Oracle
E-Business Suite System Administrator's Guide. For more information about the behavior
of the runtime Oracle Configurator as it affects end users, see the Oracle Configurator
Developer User's Guide.

Publication applicability parameters also affect end-user access to configuration models.
For example, the effective dates and times of the configuration model publication must
be valid for the time setting on the computer where the host application is running. For
more information about publication applicability parameters, see Determining the
Runtime User Interface, page 20-5, and the Oracle Configurator Developer User's Guide.

Determining the Runtime User Interface
The settings of a Model publication's applicability parameters, the initialization
message sent by the host application, and the end user's responsibility determine which
type of user interface is displayed in a runtime Oracle Configurator. For more
information, see User Interface Deployment, page 19-1.

For example, an end user is expecting to see a generated Configurator UI at runtime but
instead sees the Generic Configurator User Interface. This can happen when the host
application is not specified in the publication's applicability parameters, or the end
user's responsibility is not valid for the host application. For details about the Generic
Configurator UI, see Generic Configurator User Interfaces, page 19-2.

To determine what responsibilities are valid for an application, two queries can be run.
By querying the local database with the specified application short name, the
application ID can be retrieved and then used in a second query to determine what
responsibility IDs are valid for the specified application ID.

Example
SELECT application_id, application_short_name, description
FROM FND_APPLICATION_Vl
WHERE application_short_name='CSS'
APPLICATION_ID APPLICATION_SHORT_NAME DESCRIPTION
514 CSS Support

Using the returned APPLICATION_ID you can then run another query to determine the
responsibilities that are allowed for that application:

20-6 Oracle Configurator Implementation Guide

SELECT application_id, responsibility_id, responsibility_name,
responsibility_key
FROM fnd_responsibility_VL
WHERE application_ID = '514'
APPLICATION_ID RESPONSIBILITY_ID RESPONSIBILITY_NAME
RESPONSIBILITY_KEY
 514 12345 Customer Support Test
Oracle_Support
 514 67890 Customer Support USA
Customer_Support

For information about legacy UIs, see the current release or patch information for
Oracle Configurator on MetaLink, Oracle's technical support Web site.

Load Balancing and Secure Sockets Layer
Oracle strongly recommends using Oracle Application Server 10g. This version can be
set up to use a process manager that automatically load balances server processes and
supports Secure Sockets Layer (SSL) for greater security when transmitting data over
the Internet.

Refer to Oracle Application Server documentation. For additional SSL information, see
Oracle Applications Documentation, on the Oracle Technology Network.

If you are not using Oracle Application Server, refer to the following Apache Web sites
for more information about load balancing and SSL:

Example
http://java.apache.org/jserv/howto.load-balancing.html
http://www.apache-ssl.org

Network Considerations
There are a number of network issues that can cause serious problems for your
deployment if not handled correctly.

Firewalls and Timeouts
If your application requires more than one server system, then it is recommended that
there be separate servers for the Oracle database server and the internet server. If there
are firewalls between servers, then these firewalls must allow persistent database
connections between them. Persistent database connections are SQL links that do not
close when the execution of your script ends.

The OC Servlet is a stateful application. A stateful application keeps its critical data in
memory, rather than writing and reading it from disk storage. Oracle Configurator
keeps in memory critical data, such as the Properties cache and the state of the logic
engine, until a configuration is saved.

Stateful applications require a persistent connection between the database server port
and the ports used by the servlet engine (in this case, Apache JServ). The default
timeout for the JServ engine is 30 minutes.

Deployment Considerations 20-7

Warning: If there is an idle time limit set on the TCP/IP database
connection across a firewall, then this limit can prevent Oracle
Configurator from operating.

See Security Considerations, page 20-7 for firewall recommendations.

Router Timeouts
Routers have a setting referred to as "stickiness." Router stickiness connects the HTTP
request made by a particular client browser (that is, the browser displaying the runtime
Oracle Configurator) with a particular instance of the servlet engine (JServ).

The stickiness setting is a time limit on the total time allowed for the connection
between client and servlet engine. After the time limit is exceeded by the client browser,
the connection to the servlet engine instance is broken. If the end user attempts to use
the browser, then it is possible that the router may connect that browser to a different,
and wholly incorrect, servlet engine instance.

You must determine the appropriate length of time for your application. For instance, if
you feel that your users may wish to use your application for one hour, then you must
set the router stickiness to match that time.

Warning: If the "stickiness" time limit of your router is too small for the
correct use of your application, this limit can prevent Oracle
Configurator from operating.

See Security Considerations, page 20-7 for router recommendations.

Miscellaneous Issues
• Your application must run in an environment that resolves domain names to allow

it to communicate with other servers.

• You must set up your router and server so that all users and processes have the
access privileges and permissions they need in order to carry out their functions.

Security Considerations
If you are implementing Oracle Configurator outside your firewall, then consider the
following recommendations:

• Protect your servers with a firewall.

• Have an additional firewall between the application server and the database server.
This additional firewall can guard against unauthorized access to the database

20-8 Oracle Configurator Implementation Guide

server. It should be configured to open only designated ports for application server
access to the database.

Additional servers intended for internal use should also be behind this firewall.

• Use hardware routers and front-door products like Oracle's WebCache to provide
an additional level of security.

• Use separate computers or clusters for the application server and the database
server. This is always recommended for performance reasons, but in the context of
security it also provides the benefit of preventing a denial-of service attack from
disabling the database server.

Some risks still remain in that a malicious user could gain access to the application
server. Oracle recommends the following:

• Dedicate a computer or cluster to the public Web site's application server. This will
minimize the functionality to which a malicious user would have access. This server
should not mount sensitive file systems and should be isolated from the internal
servers by a firewall.

• Do not store database connection parameters (for example, .dbc files) that provide
extensive database access on the same application server that is used for public Web
site access. For more information on database connections, see Server
Considerations, page 20-3 and Internet User Access , page 20-8.

• Disable default database account and Oracle Applications users that ship with
Oracle products.

Internet User Access
There is no direct database connection from non-authenticated Internet users to your
production database because:

• The database connection is established by the Configurator middle tier that is
running on the application server. The connection is not established by any
software running on the client's computer.

• Database connection parameters are secured on the application server using AOL/J
functionality based on Oracle Applications FND authentication. For more
information, see Oracle Applications Documentation, on the Oracle Technology
Network.

• Database connection information is not transmitted over the Internet. An encrypted
ICX session ticket that is valid just for a single application server session is
transmitted. For more information on an ICX session ticket see Configurator
Architecture, page 2-1, and the Oracle Configurator Extensions and Interface Object
Developer's Guide.

Deployment Considerations 20-9

• Application server sessions for a public Web site logs into Oracle Applications with
an Oracle Applications user ID assigned for walk-in users. The walk-in user is
defined to have a valid Oracle Applications responsibility that provides access only
to the necessary functions. The walk-in user will not have database login privileges.
For additional access, see Establishing End User Access, page 20-5.

Additional Security Precautions
The following security precautions may also be considered if your public Web site does
not require live access to production data such as entering orders or updating account
information:

• Use a second Oracle Applications instance to host the implementation of the
runtime Oracle Configurator if the runtime Oracle Configurator does not require
data from any part of Oracle Applications other than the CZ schema.

• Application server sessions for the public Web site connect to the runtime Oracle
Configurator database instance, not the production database instance. Database
access from the public application server to the production database instance is not
available.

• Create and maintain configuration models in the production database instance, and
then publish the Models to the runtime Oracle Configurator database instance. Any
custom data that is needed for the public Web site would need to be stored or
duplicated on the runtime Oracle Configurator instance.

• If there are any transactions that a consumer could start through the public Web
site, then you would have to implement a procedure to extract the transactional
data from the runtime Oracle Configurator database instance and import it to the
production database instance for processing. This extraction is not necessary if the
only output of the public Web site is information for the consumer.

• If feedback on the state of transactions in the production database instance must be
provided to end users on the public Web site, then you have to implement a
procedure to extract this data from the production database instance and import it
into the runtime Oracle Configurator database instance. This data would only be as
current as of the most recent extraction.

Multiple Language Support Considerations
If you are implementing Multiple Language Support (MLS), see Multiple Language
Support, page 14-1.

20-10 Oracle Configurator Implementation Guide

Performance Considerations
For information about improving the performance of your runtime Oracle Configurator,
see the Oracle Configurator Performance Guide.

Routing Models to Specified JVMs
To improve performance and reduce memory usage, you can route specific Models at
runtime to specific JVMs.

Solution Overview
By default, Oracle Configurator caches all Models in a session on every Java Virtual
Machine (JVM) running on the web server. If you have very large Models, you may
encounter performance problems related to the large memory footprint of those
Models. Caching of large Models can overload the JVMs, eventually hitting the
maximum heap limit, which in turn causes JVMs to die.

To circumvent this situation, you can route specific Models only to specific pools of
JVMs, thus reducing the memory footprint load on the other JVMs. This solution
requires the use of a Load Balancing Router (LBR), which is a hardware item that
distributes HTTP requests to the servers in a server farm based on load-balancing
methods such as round-robin or least-load. An LBR can read the HTTP information of
the traffic to and from the web servers connected to it.

To augment the pool-routing capability of an LBR, Oracle Configurator exposes the
pool-specifying information of a Model when the Model is launched at the beginning of
a configuration session. The pool information for a given Model is placed in the HTTP
response message, enabling the LBR to read the pool information for the Models from
the HTTP traffic during a configuration session and thus route HTTP request messages
to the desired JVM pool.

This routing capability requires a combination of the following elements:

• Changes in your LBR routing rules to read a new pool token cookie, czPoolToken,
from the incoming cookies for each HTTP request and accordingly route the request
to a specified JVM pool.

• Creation of mappings between JVM pools and Oracle Configurator Models, which
you insert in the table CZ_MODEL_POOL_MAPPINGS using the procedure
CZ_CF_API .REGISTER_MODEL_TO_POOL, page 17-63, to specify the Models to
be routed to specified pools. The table includes the rows MODEL_PRODUCT_KEY
and POOL_IDENTIFIER to store the mappings.

Efficient routing rules and mappings can improve performance and reduce the memory
footprint in each JVM.

Deployment Considerations 20-11

Solution Processing
The general processing in this solution is as follows:

• The profile option CZ: Add Model Routing Cookie must be set to True for Model
routing to occur.

• The runtime Oracle Configurator launches a Model via the initialization message.

• Oracle Configurator looks up the publication used for the Model and obtains a
Product Key that identifies it.

(The Product Key for a Model appears in the General area of the Workbench in
Oracle Configurator Developer. For BOM Models, its value is a combination of the
Inventory Item ID and Inventory Organization ID, such as 204:143. See the Oracle
Configurator Developer User's Guide for more details about Product Key. The Product
Key is the same as the Product ID, page 16-7 used when publishing Models.

• Oracle Configurator uses the Product Key to obtain the name of the intended JVM
pool for the Model from the table CZ_MODEL_POOL_MAPPINGS.

• Oracle Configurator adds an HTTP cookie named czPoolToken to the HTTP
response message from the server. The cookie contains the name of the JVM pool
for the Model being configured.

• Subsequent HTTP requests include the pool token, which enables the LBR to route
the request to the intended JVM pool. The pool token cookie is destroyed when the
end user exits the configuration session by selecting Finish or Cancel.

Solution Procedure
To implement this model routing solution:

1. Set the profile option CZ: Add Model Routing Cookie to True.

This enables the addition of the routing cookie to the HTTP response content. By
default, the value is False. This profile option can be set only at Site level. See the
Oracle Configurator Installation Guide for details.

2. Register your Models to the JVM server pools that should serve requests to
configure them. To do this, run the procedure CZ_CF_API
.REGISTER_MODEL_TO_POOL, page 17-63.

Example: The following simplified example registers the Model with Product Key
204:143 to the JVM pool PoolA:
cz_cf_api .register_model_to_pool('PoolA', '204:143')

You can examine your mappings with the following SQL query:

20-12 Oracle Configurator Implementation Guide

select MODEL_PRODUCT_KEY, POOL_IDENTIFIER from
CZ_MODEL_POOL_MAPPINGS;

The query might produce output like the following example of mappings for
several Models and pools:
MODEL_PRODUCT_KEY POOL_IDENTIFIER
----------------- ------------------------
204:143 PoolA
204:137 PoolB
204:19886 PoolC

3. Modify your LBR routing rules so that they read the new pool token in the cookie
named czPoolToken and route the Configurator requests to the correct JVM
pools.

Example: The following rule for the BIG-IP LBR routes an Oracle Configurator pool
token for the CZ mapping table identifier PoolA to the LBR pool identified in the
LBR rules as pool_x, which must be previously defined for the LBR:
if (exists http_cookie ("czPoolToken") and http_cookie
("czPoolToken ") contains "PoolA")
{ use pool pool_x }
else { use pool pool_y }

4. Continue with the procedures that are specific to your LBR for putting the LBR
rules into effect.

Managing Configurations 21-1

21
Managing Configurations

This chapter describes the data structures produced by Oracle Configurator during a
configuration session, and how to manage the life cycle of a configuration.

This chapter covers the following topics:

• Overview

• About Configurations

• Configuration Identity

• Host Applications and Oracle Configurator

• Batch Validation of a Configured Item

• Reconfiguring a Configured Item

• Copying a Host Application's Entity

• Passing a Saved Configuration to Another Host Application

• Deleting a Host Application Entity

Overview
This chapter explains the data structures produced by Oracle Configurator during a
configuration session and how to manage the lifecycle of saved configurations. It
includes the following topics:

• About Configurations, page 21-2

• Configuration Identity, page 21-4

• Host Applications and Oracle Configurator, page 21-5

• Batch Validation of a Configured Item, page 21-5

• Reconfiguring a Configured Item, page 21-6

21-2 Oracle Configurator Implementation Guide

• Copying a Host Application's Entity, page 21-7

• Passing a Saved Configuration to Another Host Application, page 21-8

• Deleting a Host Application Entity, page 21-8

For general information, see Configurator Architecture, page 2-1. For related
information about configuration models and rules, and about the behavior of the
runtime Oracle Configurator, see the Oracle Configurator Developer User's Guide.

About Configurations
A configuration is the record of a configuration session. It is the output produced by the
runtime Oracle Configurator, as a product of processing an end-user's selections, which
cause configuration rules to be applied against a configuration model. Oracle
Configurator validates the selections, resulting in a configuration.

Once a configuration has been saved during a configuration session, it is identified by a
configuration header ID, which is stored in the CZ schema as
CZ_CONFIG_HDRS.CONFIG_HDR_ID.

When a configurable item is successfully configured, the config_hdr_id and
config_rev_nbr that is returned in the XML termination message should be stored in
the application entity that is associated with the configured item. For example, in Oracle
Order Management, this is stored on the order line. In Oracle Order Capture, it is stored
on a quote line.

A configuration can be:

• Valid or invalid

A valid configuration contains no contradictions to the rules, whereas an invalid
configuration contains contradictions.

• Complete or incomplete

A complete configuration includes all the required selections. An incomplete
configuration lacks some required selections; in other words, some of the
configuration rules are unsatisfied.

• New, saved, restored, or cancelled

A new configuration is one in which the user has not made any selections, and the
logic state of many elements is Unknown.

Saving a Configuration
At any time during a configuration session the configuration can be saved, thus
recording the selections made against the nodes of the Model structure, which are
called configuration inputs. A configuration does not have to be valid or complete in

Managing Configurations 21-3

order to be saved. You can save any configuration, even if it is invalid and incomplete.
The saved configuration should be stored in the host application entity even if its status
indicates that the configuration is invalid or incomplete.

If a configuration has been saved, then later it can be restored for further selections and
validation. When a configuration is restored, it is not the final saved state of the Model
that is restored, but only the configuration inputs to the Model. The restored inputs are
reasserted against the Model to produce a configuration. See Configuration Identity,
page 21-4 for more information.

If the configuration model or rules have changed since the configuration was saved,
then validation failures may occur as a result of inputs that no longer match the Model.

Because restoring a configuration reasserts all the configuration inputs to the Model,
restoring a configuration programmatically with the CIO is normally not faster than
restoring a configuration interactively, and under some circumstances can be slower.

A configuration can also be canceled during a configuration session, by terminating the
runtime Oracle Configurator without saving the configuration. In this case, the
configuration inputs are discarded.

Restoring Saved Configurations
Modifying previously saved configurations are validated against a comparable Model.
After a configuration is saved, the original Model's structure, rules or UI may change or
be migrated to a new instance. When a Model is migrated to a new instance, the
synchronization creates a comparable Model that allows the previously saved
configuration to be restored and validated against.

See Synchronizing Migrated Model Data, page 6-8 for more information on
synchronization criteria.

The following illustration shows what happens when a saved configuration is restored
against a Model that has been migrated to and changed in another instance after the
configuration was saved.

21-4 Oracle Configurator Implementation Guide

Restoring Saved Configurations Created from a Migrated Model

Model A1 is migrated to another instance as Model B1. Configurations are made against
Model B1. A copy of Model A1 is made on the source instance (Model A2). At a later
time Model A2 is migrated to the same target instance (Model B2). When the saved
configurations are restored, they are restored against Model B2 (the most recent version
of the Model).

Usually, Model node names are unique within an individual tree level and can be used
when restoring configurations. Occasionally, the node name matching may fail. If you
want to restore configurations that were saved against a Model that has been migrated,
you must run either the Add Model Node Names to Configurations by Model Items,
page C-35 or the Add Model Node Names to Configurations by Product Key, page C-
37 concurrent program.

Configuration Identity
Configurations commonly consist of a single instance of your configuration model and
a set of configuration inputs.

When a configuration is restored and changed, the changes are saved as a revision to
that configuration. Each saved revision is identified by a Configuration Revision
Number, which is stored as CZ_CONFIG_HDRS.CONFIG_REV_NBR. The combination
of Header ID and Revision Number identifies a unique configuration record. The
identity of each item in the configuration is recorded by a Configuration Item ID (stored
as CZ_CONFIG_ITEMS.CONFIG_ITEM_ID). For detailed information about these and
other tables, see the Oracle Integration Repository.

Managing Configurations 21-5

Host Applications and Oracle Configurator
Oracle Configurator does not provide a UI to manage saved configurations. Oracle
Configurator is an embedded component of other applications referred to as host
applications. It is the responsibility of the host application to manage saved
configurations. The host application has the following responsibilities in its relationship
with Oracle Configurator:

• Maintain an index of configuration product keys that can be used to launch the
runtime Oracle Configurator UI or batch validation. The product key usually
consists of the Inventory Item ID followed by its Inventory Organization ID. For
example, 452:1534. The product key could also be any name that identifies a
configurable object in the host application's domain.

• Implement the runtime Oracle Configurator UI or batch validation by providing a
product key or the ID of a saved configuration. To launch a saved configuration you
must know the configuration's header ID (config_header_id) and revision
number (config_rev_number). For more information about the configuration's
identity, see Configuration Identity, page 21-4.

• Keep track of the saved configurations returned by the runtime Oracle Configurator
by storing the config_header_id and the config_rev_number with an entity
in the host application.

Note: Oracle Configurator creates saved configurations at the end
of an interactive or batch configuration session when the
initialization message includes instructions to do so and the session
terminates normally. For more information on the initialization
message, see Session Initialization, page 9-1.

• Delete saved configurations by using CZ_CF_API.DELETE_CONFIGURATION,
page 17-51 when configurations are no longer associated with any host application
entity.

Batch Validation of a Configured Item
Batch validation allows a host application to perform tasks such as:

• Validating a BOM-based configuration in the background

• Determining a configuration quantity

A host application calls batch validation through the CZ_CF_API.VALIDATE PL/SQL
procedure. For more information on batch validation, see Batch Validation, page 11-1.

21-6 Oracle Configurator Implementation Guide

If batch validation is unsuccessful (CZ_CF_API.VALIDATE, page 17-69 returns
validation_status>0), then the original config_hdr_id and config_rev_nbr, if any,
should be preserved in the host application's entity.

If batch validation is successful (CZ_CF_API.VALIDATE, page 17-69 returns
validation_status=0), then the host application must decide whether to store the
returned config_hdr_id and config_rev_nbr in the host application's entity.
Consider the following when storing the returned config_hdr_id and
config_rev_nbr:

• If the validation is for an item that was not previously configured, then the returned
config_hdr_id and config_rev_nbr should always be stored, because this is
the original configuration of the item.

• If the validated configuration is complete and valid, then the new config_hdr_id
and config_rev_nbr should be stored, replacing the previous values. The previously
saved configuration should be deleted by
CZ_CF_API.DELETE_CONFIGURATION, page 17-51.

• If the validated configuration is incomplete or invalid, then there are two different
approaches that the host application may adopt. The host application may:

• Choose to present the validation messages to the user and roll back whatever
change in the configuration or status is being validated. In this case, the new
saved configuration that is returned by batch validation should be deleted with
CZ_CF_API.DELETE_CONFIGURATION, page 17-51. This is the approach that
is adopted by Oracle Order Management.

• Choose to accept any changes to the configuration, replace the previously saved
configuration with the new configuration, present the validation messages to
the user and roll back any proposed change in status. In this case, the
previously saved configuration should be deleted with
CZ_CF_API.DELETE_CONFIGURATION, page 17-51.

The key requirement is that the host application must delete whichever saved
configuration that is not retained in the host application's entity.

Reconfiguring a Configured Item
The host application's action following the reconfiguration of a configured item
depends on the value of the termination message's exit, page 10-6 element.

• If the exit value is save, then the termination message also contains new values for
config_hdr_id and config_rev_nbr. These new values should be stored in the
host application's entity that is associated with the configured item. The previously
saved configuration should be deleted by calling
CZ_CF_API.DELETE_CONFIGURATION, page 17-51 and passing the values of

Managing Configurations 21-7

and config_rev_nbr that were previously stored with the host application's
entity.

Note: This assumes that the reconfigured item replaces the
previous configuration on the same host application entity. If the
reconfiguration is performed in the process of creating a new copy
or revision of the entity, then the new values of config_hdr_id
and config_rev_nbr should be stored with the new copy or
revision, and the original values should remain associated with the
original entity.

In this case the previously saved configuration should not be
deleted, because it is accessible through the original host
application entity.

This behavior is independent of whether the newly saved configuration is valid or
complete. The user chose to save the configuration knowing its status (valid or
complete), so it should be stored with the host application's entity.

• If the exit value is cancel, error, or processed, then the previously stored
values of config_hdr_id and config_rev_nbr should be retained in the host
application's entity.

Note: Changing the Instantiability settings for a Model or
Component node within a published Model may change the
number of instances that exist when an end user restores a saved
configuration. For example, decreasing the Initial Minimum in
Configurator Developer and then republishing the Model may
cause some instances of the component to be lost when the
configuration is restored. (In this case, Oracle Configurator displays
a message indicating that a validation failure occurred.) Similarly,
increasing the Initial Minimum value may create additional
instances in a restored configuration.

Copying a Host Application's Entity
When a host application creates a copy of a configuration that holds a reference to a
saved configuration it should copy the saved configuration with
CZ_CF_API.COPY_CONFIGURATION, page 17-37. The new config_hdr_id and
config_rev_nbr that are returned from should be stored with the copy of the host
application entity. The original saved configuration should not be deleted.

This same logic applies when the host application creates a new revision of its
configuration that holds a reference to a saved configuration.

If the copied configuration must be revalidated at the time of copying, the best

21-8 Oracle Configurator Implementation Guide

approach is to use CZ_CF_API.VALIDATE, page 17-69 to create the copied
configuration. Pass the parameter save_config_behavior, page 9-33=new_config in the
initialization message, and store the config_hdr_id and config_rev_nbr to
identify the copied configuration. The host application that uses this approach must be
prepared to handle validation failures that may occur during the copying of a
configuration.

For more information on the initialization message, see Session Initialization, page 9-1.
For more information on the procedures and functions in CZ_CF_API, see
Programmatic Tools for Development, page 17-1.

Passing a Saved Configuration to Another Host Application
When a saved configuration is handed off from one host application to another as part
of the business flow, the saved configuration should be copied. See Copying a Host
Application's Entity, page 21-7.

Assuming that the entity is still accessible in the original host application, the original
host application entity should retain its reference (config_hdr_id and
config_rev_nbr) to the original saved configuration. The corresponding entity in the
second host application should store a reference to the copied configuration. In this
case, the original saved configuration should not be deleted. An example of this flow is
the transition from Oracle Order Capture to Oracle Order Management when a quote is
submitted as an order.

Deleting a Host Application Entity
When a host application deletes, purges, or otherwise makes an entity inaccessible that
holds a reference to a saved configuration, the host application should delete the
configuration using the procedure CZ_CF_API.DELETE_CONFIGURATION, page 17-
51.

Terminology A-1

A
Terminology

This appendix defines the terms that are found in the Oracle Configurator Implementation
Guide that are not defined in the Glossary.

This appendix covers the following topics:

• Overview

Overview
This chapter presents terminology used in this book and not included in the Glossary of
Terms and Acronyms.

The following table lists terms that are used throughout this book.

Terminology Used in This Book

Term Description

concurrent manager A process manager that coordinates the concurrent processes
generated by users' concurrent requests. An Oracle Applications
product group can have several concurrent managers.

concurrent process A task that can be scheduled and is run by a concurrent
manager. A concurrent process runs simultaneously with
interactive functions and other concurrent processes.

concurrent processing
facility

An Oracle Applications facility that runs time-consuming,
non-interactive tasks in the background.

concurrent request A user-initiated request issued to the concurrent processing
facility to submit a non-interactive task, such as running a
report.

A-2 Oracle Configurator Implementation Guide

Term Description

ICX Inter-Cartridge Exchange

See the Glossary, page Glossary-1 for additional terms.

Common Tasks B-1

B
Common Tasks

This appendix describes certain tasks that may be required while implementing an
Oracle Configurator.

This appendix covers the following topics:

• Overview

• Running Configurator Concurrent Programs

• Connecting to a Database Instance

• Verifying CZ Schema Version

• Server Administration

• Viewing the Status of Configurator Concurrent Requests

• Viewing Log Files

• Managing Oracle Configurator Caching

• Checking BOM Model and Configuration Model Similarity

Overview
This appendix describes common tasks of an Oracle Configurator implementation:

• Running Configurator Concurrent Programs, page B-2

• Connecting to a Database Instance, page B-2

• Verifying CZ Schema Version, page B-3

• Server Administration, page B-3

• Viewing the Status of Configurator Concurrent Requests, page B-4

• Viewing Log Files, page B-4

B-2 Oracle Configurator Implementation Guide

• Checking BOM Model and Configuration Model Similarity, page B-4

• Managing Oracle Configurator Data Caching, page B-4

For details about specific Oracle Configurator concurrent programs, see Concurrent
Programs, page C-1.

Running Configurator Concurrent Programs
To run any Oracle Configurator concurrent programs, you must log in to Oracle
Applications and select one of the predefined Oracle Configurator responsibilities. For
details about these responsibilities, including to which concurrent programs they
provide access, see The Predefined Configurator Developer Responsibilities section in
Chapter 15 of this document. For information about assigning responsibilities, see the
Oracle E-Business Suite System Administrator's Guide.

The procedure for running concurrent programs is provided in the Oracle E-Business
Suite User Guide.

For details about specific Oracle Configurator concurrent programs, see Concurrent
Programs, page C-1.

Connecting to a Database Instance
Some implementation tasks must be performed using SQL*Plus while connected to a
specific database instance. For example, during data migration you must connect to
your source database instance prior to running a SQL script that sets up the migration
packages, database link, and appropriate log file.

Note: Connecting to a database instance using SQL*Plus is not to be
confused with starting and logging on to Oracle Applications. For
information on logging on to Oracle Applications, see the Oracle
Application User's Guide.

To connect to a specific database, you must specify a user or schema and the instance in
which it is defined. For example:

1. Connect to your CZ schema by connecting to the database instance as a user of the
schema.

Example
Example:
SQL> connect oc/ocpass@appssid

where oc is the owner (DBOwner) of the CZ schema, and ocpass is the owner's
password, and appssid is the name for the database instance.

Alternatively, connect to the database instance as a user with DBA privileges:

Common Tasks B-3

Example
Example:
SQL> connect dba/dbapass@appssid

Verifying CZ Schema Version
You can determine the version information of an CZ schema by either running the View
Configurator Parameters , page C-2 concurrent program or by querying the
CZ_DB_SETTINGS table as follows:

1. Connect to the database instance in which you need to know the version
information of the CZ schema.

2. Use SQL*Plus to enter the following query:

Example
SQL> select setting_id, value, desc_text
from cz_db_settings
where setting_id like '%_VERSION"

Querying the version of Release 12 available with the publication of this book results in
MAJOR_VERSION = 27, MINOR_VERSION = a.

These values will vary depending on the latest installed version. To determine which
version of the limited edition of Oracle Configurator Developer goes with which
version of Oracle Configurator, refer to the Oracle Configurator Patch Matrix (Doc ID
131088.1) on the Oracle Support Web site.

For information about MAJOR_VERSION, MINOR_VERSION, and other
CZ_DB_SETTINGS parameters, see CZ_DB_SETTINGS Table, page 4-10.

Server Administration
If you are using separate database instances you need to define, enable, and possibly
modify the remote server. Defining and enabling a remote server establishes the
database link for:

• Importing data (see Populating the CZ Schema, page 5-1)

• Publishing configuration models (see Publishing Configuration Models, page 16-1)

Oracle Configurator provides the following Server Administration concurrent
programs for the Oracle Configurator Administrator responsibility in Oracle
Applications:

• Define Remote Server, page C-10

• Enable Remote Server, page C-12

• Modify Server Definition, page C-14

B-4 Oracle Configurator Implementation Guide

• View Servers, page C-13

For details on running these concurrent programs, see Server Administration
Concurrent Programs, page C-9.

Viewing the Status of Configurator Concurrent Requests
Any Oracle Applications reportor program that you submit is sent to the concurrent
manager and is stored in a queue with other requests until it is selected for processing.
You can view the status of your concurrent requests by selecting Concurrent Programs
> View from the Oracle Application Navigator window. The Requests page displays the
Name, Status, Phase, Scheduled Date, Request ID and other details about your requests.
To view the log file for a completed concurrent program, click the icon in the Details
column, and then click View Log.

For additional information, see the Oracle Application User's Guide.

Viewing Log Files
Log files contain error and warning messages that result from running a concurrent
program or a SQL script. For information about the location of log files generated when
running scripts, see Oracle Configurator Installation Guide. For information about viewing
log files that result from running a concurrent program, see Viewing the Status of
Configurator Concurrent Requests, page B-4. See Publishing Error when Checking
BOM Model and Configuration Model, page 16-13 for an illustration of an error found
in CZ_DB_LOGS.

Managing Oracle Configurator Caching
Oracle Applications Java Caching Framework (OAJCF) is the caching mechanism for all
Oracle Applications products. OAJCF provides the ability to manage the caching and
decaching of Model and UI data thereby improving performance of a runtime Oracle
Configurator. For more information, see the Oracle Configurator Performance Guide.

Checking BOM Model and Configuration Model Similarity
See Synchronizing BOM Model Data, page 7-2 for more information on checking the
similarity between the configuration model and the original BOM Model.

Concurrent Programs C-1

C
Concurrent Programs

This appendix describes the concurrent programs available to either the Oracle
Configurator Administrator or Oracle Configurator Developer responsibility.

This appendix covers the following topics:

• Overview

• Configurator Administration Concurrent Programs

• Convert Publication Target Instance to Development Instance

• Server Administration Concurrent Programs

• Configuration Model Publication Concurrent Programs

• Populate and Refresh Configuration Models Concurrent Programs

• Model Synchronization Concurrent Programs

• Execute Populators in Model

• Migration Concurrent Programs

• Migrate Functional Companions

• Model Management

• Publication Synchronization Concurrent Programs

Overview
This appendix explains how to use the Oracle Configurator concurrent programs that
are available to the Oracle Configurator Developer and Oracle Configurator
Administrator responsibility in Oracle Applications:

For general information about concurrent requests, programs, and processes, see the
Oracle E-Business Suite System Administrator's Guide - Maintenance.

• Configurator Administration Concurrent Programs, page C-2

C-2 Oracle Configurator Implementation Guide

• Server Administration Concurrent Programs, page C-9

• Configuration Model Publication Concurrent Programs, page C-15

• Populate and Refresh Configuration Models Concurrent Programs, page C-18

• Model Synchronization Concurrent Programs, page C-25

• Execute Populators in Model Concurrent Program, page C-29

• Migration Concurrent Programs, page C-30

• Migrate Functional Companions, page C-32

• Model Management, page C-35

• Publication Synchronization Concurrent Programs, page C-40

• Viewing the Status of a Configurator Concurrent Request, page B-4

For general information about running Oracle Configurator concurrent programs, see
Running Configurator Concurrent Programs, page B-2.

Configurator Administration Concurrent Programs
The configurator administration concurrent programs are:

• View Configurator Parameters , page C-2

• Modify Configurator Parameters, page C-3

• Purge Configurator Tables, page C-4

• Purge Configurator Import Tables, page C-5

• Purge To Date Configurator Import Tables, page C-6

• Purge To Run ID Configurator Import Tables, page C-7

• Convert Publication Target Instance to Development Instance, page C-8

View Configurator Parameters
The View Configurator Parameters concurrent program allows the viewing of
parameter values stored in the CZ_DB_SETTINGS table. See CZ_DB_SETTINGS Table,
page 4-10 for details about the parameters in that table.

Use the procedure described in Running Configurator Concurrent Programs, page B-2

Concurrent Programs C-3

to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs >Schedule

Parameters
The following table describes the parameters for the View Configurator Parameters
concurrent program

Parameters for the View Configurator Parameters Concurrent Program

Parameter Description

Section Name From the list of values, select the SECTION_NAME of the section
in the Oracle Configurator CZ_DB_SETTINGS Table, page 4-10
where the setting resides. For example IMPORT. See Settings in
CZ_DB_SETTINGS Table, page 4-12 for more information.

Setting ID From the list of values, select the SETTING_ID in the Oracle
Configurator CZ_DB_SETTINGS Table, page 4-10 for the setting.
For example, CommitSize, page 4-17. See for more information.

Output
The output containing the values for the specified SECTION_NAME and SETTING_ID
is recorded in a log file (see Viewing the Status of a Configurator Concurrent Request,
page B-4).

Modify Configurator Parameters
The Modify Configurator Parameters concurrent program allows the changing of
parameter values in the CZ_DB_SETTINGS table. Configurator parameters are stored in
the CZ_DB_SETTINGS table. See CZ_DB_SETTINGS Table, page 4-10 for details about
the parameters in that table.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

C-4 Oracle Configurator Implementation Guide

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule

Parameters
The following table describes the parameters for the Modify Configurator Parameters
concurrent program

Parameters for the Modify Configurator Parameters Concurrent Program

Parameter Description

Section Name From the list of values, select the name of the section in the
Oracle Configurator CZ_DB_SETTINGS table where the setting
resides. See Settings in CZ_DB_SETTINGS Table, page 4-12.

Setting ID From the list of values, selectthe setting in the Oracle
Configurator CZ_DB_SETTINGS table you want to modify. See
Settings in CZ_DB_SETTINGS Table, page 4-12 for more
information on the settings in each SECTION_NAME.

Value Enter the value for the particular parameter. See
CZ_DB_SETTINGS Table, page 4-10 for more information on
valid values for each of the settings in each SECTION_NAME.

Type From the list of values, select the data type (1= number or 4=
string) of the setting you are modifying.

Description Enter a brief description for this value selection.

Output
The output containing the modified values of the CZ_DB_SETTINGS Parameters, page
4-11 you specified is recorded in a log file. For details, see Viewing the Status of a
Configurator Concurrent Request., page B-4

Purge Configurator Tables
The Purge Configurator Tables concurrent program physically removes all

Concurrent Programs C-5

logically-deleted records in the tables and subschemas of the CZ schema. Periodically
running this concurrent program improves database performance. See CZ Schema
Maintenance , page 8-1 for more information about purging the CZ schema. See the
Oracle Configurator Performance Guide for additional information about improving
database performance.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule

Parameters
None

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Purge Configurator Import Tables
The Purge Configurator Import Tables concurrent program deletes all data in the
CZ_IMP tables, and the corresponding data in the CZ_XFR_RUN_INFOS, and
CZ_XFR_RUN_RESULTS control tables. Periodically running this concurrent program
improves import performance. See CZ Schema Maintenance , page 8-1 for more
information about purging the CZ schema. See the Oracle Configurator Performance Guide
for additional information about improving database performance.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs: Schedule.

C-6 Oracle Configurator Implementation Guide

Parameters
None

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Purge To Date Configurator Import Tables
The Purge To Date Configurator Import Tables concurrent program deletes data in the
CZ_IMP tables, and the corresponding data in the CZ_XFR_RUN_INFOS and
CZ_XFR_RUN_RESULTS control tables. The data for the number of days specified in
the input parameter is retained. Periodically running this concurrent program improves
import performance. See CZ Schema Maintenance , page 8-1 for more information
about purging the CZ schema. See the Oracle Configurator Performance Guide for
additional information about improving database performance.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs: Schedule.

Parameters
The following table lists the parameters for the Purge To Date Configurator Import
Tables Concurrent Program.

Parameter for the Purge To Date Configurator Import Tables Concurrent Program

Parameter Description

Number of Days This is the number of days back that you want to retain your
imported data. All data imported prior to the specified number
of days back is deleted.

Concurrent Programs C-7

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Purge To Run ID Configurator Import Tables
The Purge To Run ID Configurator Import Tables concurrent program deletes data in
the CZ_IMP tables, and the corresponding data in the CZ_XFR_RUN_INFOS, and
CZ_XFR_RUN_RESULTS control tables. All subsequent data from the specified Run ID
input parameter is retained. Periodically running this concurrent program improves
import performance. See CZ Schema Maintenance , page 8-1 for more information
about purging the CZ schema. See the Oracle Configurator Performance Guide for
additional information about improving database performance.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs: Schedule.

Parameters
Th following table lists the parameters for the Purge To Date Configurator Import
Tables concurrent program.

Parameter for the Purge To Date Configurator Import Tables Concurrent Program

Parameter Description

Run ID This is the earliest import run ID that you want to retain. All
data imported prior to the specified run ID is deleted.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

C-8 Oracle Configurator Implementation Guide

Convert Publication Target Instance to Development Instance
This concurrent program converts a database that is flagged as a remote publication
target instance to an instance on which you can run Oracle Configurator Developer (or
use as a target when migrating Models). If, for example, a user publishes a Model from
Instance A to Instance B, the latter instance becomes a publication target and users can
no longer run Configurator Developer on that instance.

Caution: Frequent use of this concurrent program can result in corrupt
publication data or other issues. Therefore, run this program only when
absolutely necessary, such as when a development instance is
accidentally converted to a publication target instance.

Converting a publication target instance is a form of publication synchronization. The
existing data in CZ_SERVERS, CZ_MODEL_PUBLICATIONS, and associated tables are
modified to reflect the change in the network mapping of the publication. Existing
publications are modified to make them consistent with the new mapping. The
concurrent program updates the server definition on the source instance to indicate that
the target instance has been converted.

If an error occurs while changing the instance from a remote publication target instance
to a development instance, then the conversion is cancelled and the instance reverts to
its prior state. This does not interrupt any Developer sessions as Developer remains
disabled in the instance.

The concurrent program is run on the instance that is to be converted. Note that existing
published Models are not visible in the Repository after this concurrent program is run.
Once converted to a development instance, the Models can be migrated to this instance.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administratoror Configurator
Administrator >Concurrent Programs:Convert Publication Target Instance to
Development Instance.

Parameters
None

Concurrent Programs C-9

Server Administration Concurrent Programs
The server administration concurrent programs are:

• Add Application to Publication Applicability List, page C-9

• Define Remote Server, page C-10

• Enable Remote Server, page C-12

• Modify Server Definition, page C-14

• View Servers, page C-13

See Database Instances, page 3-1 for information about a multi-server environment
requiring use of these concurrent programs.

Add Application to Publication Applicability List
The Add Application to Publication Applicability List concurrent program adds a
registered Oracle application to the CZ_EXT_APPLICATIONS table. Entries in the
CZ_EXT_APPLICATIONS table are displayed in the Applications list of values
parameter on the Publications page. For more information on the Applications
parameter, see Applications, page 16-9.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Add Application to Publication
Applicability List concurrent program.

C-10 Oracle Configurator Implementation Guide

Parameter for the Add Application to Publication Applicability List Concurrent Program

Parameter Description

Application Name From the list of values, select the desired application. The
displayed applications are registered Oracle Applications found
in the FND_APPLICATION table.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Define Remote Server
The Define Remote Server concurrent program creates a new remote server definition
and adds the name of the remote database instance to the:

• CZ_SERVERS table (see the Oracle Integration Repository. or the Oracle Support
Web site for details)

• Database Instance publication applicability parameter list in Oracle Configurator
Developer

• Target Database Instance list in Oracle Configurator Developer (used when
migrating Models)

• Target Instance parameter for the Models synchronization concurrent programs

• Source Name parameter for the Setup Configurator Data Migration concurrent
program

• Target Instance parameter for the Publication synchronization concurrent programs
and (after running the Enable Remote Server concurrent program) the
Configuration Model Publication concurrent programs

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:

Concurrent Programs C-11

Schedule.

Parameters
The following table describes the parameters for the Define Remote Server concurrent
program

Parameters for the Define Remote Server Concurrent Program

Parameter Description

Local Name This is the local name for the remote instance. It is the name that:

• appears in the list when creating a publication record and
specifying a Target Database Instance

• is in the list of values when a Target or Source Instance
parameter is needed for running a concurrent program

• appears in the list of values when enabling a remote server.
For example, "production"

Host Name A TCP host name for the server where the CZ schema is found.
This can be an IP address or the actual name of the server. This is
the actual computer. For example, ap123dbs.

DB Listener Port A TCP port number on which this database server is listening for
client connections. For example, 1523.

Instance Name The Instance Name identifies a specific instance of the Oracle
database. This is the instance name on the remote server. Also
known as the SID. The Instance Name appears in the
TNSNAMES.ORA file.

Oracle Applications
Schema Name (FNDNAM)

The Name of Oracle Applications Schema (FNDNAM). For
example, "apps".

Global Identity When the database initialization parameter GLOBAL_NAMES is
set to true, this field should be set to the name of the remote
server. When GLOBAL_NAMES is true, the name of the FND
Link Name must match the global name of the database you are
linking to.

Description Any notes you want to make regarding this server.

C-12 Oracle Configurator Implementation Guide

Parameter Description

FND Link Name The name of the remote server link to the Oracle Applications
schema. For example, czvis1.world.

Import Enabled (Y/N) Enable or disable import on the remote server. Only one remote
server can be enabled for import at a time.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Enable Remote Server
Enable Remote Server concurrent program performs all the operations needed to enable
a remote server for import, publishing, synchronizing and migrating data. When a
remote server is enabled, the list of remote BOM Models are linked into the local
instance for use by the Populate/Refresh Configuration Models concurrent program. If a
remote server is going to be the source for importing data, then the Import Enabled
parameter must be set to Y. If the remote server will be a publication target instance,
then the Import Enabled parameter must be set to N.

For more information about importing data, see Populating the CZ Schema, page 5-1.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Enable Remote Server concurrent
program

Concurrent Programs C-13

Parameters for the Enable Remote Server Concurrent Program

Parameter Description

Server Local Name Select from the list of values or enter the name of the server entry
that you want to enable. "FOREIGN" (-1) and the local server (0)
are invalid parameters.

Password This is the password for the Oracle Applications schema
(FNDNAM) on this remote server.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

View Servers
The View Servers concurrent program writes each defined server's information to the
concurrent program log.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
None

Output
The log file lists each defined server's Server Name (corresponding input parameter is
Local Name), Host Name, Port, Instance Name, Server Db Version, FND Name, Global
Name, Notes (corresponding input parameter is Description), FND Link Name, Import
Enabled. There is no indication whether the defined server has been enabled.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

C-14 Oracle Configurator Implementation Guide

Modify Server Definition
The Modify Server Definition concurrent program allows the changing of the server's
previously defined input parameters. For example, if you are changing your import
source from the local server to a remote server, you must run the Modify Server
Definition concurrent program to change the value of the Import Enabled parameter
for the local server in addition to defining and enabling the remote server for import.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Modify Server Definition
concurrent program

Parameters for the Modify Server Definition Concurrent Program

Parameter Description

Local Name This is the local name for the remote instance. It is the name that:

• appears in the list when creating a publication record and
specifying the Database Instance applicability parameter

• is in the list of values when a Target or Source Instance
parameter is needed for running a concurrent program

• appears in the list of values when enabling a remote server.
For example, production

Host Name A TCP host name for the server where the CZ schema is found.
This can be an IP address or the actual name of the server. This is
the actual computer. For example, myserver

DB Listener Port A TCP port number on which this database server is listening for
client connections.

Concurrent Programs C-15

Parameter Description

Instance Name The Instance Name identifies a specific instance of the Oracle
database. Also known as the SID. This name appears in the
TNSNAMES.ORA file.

Oracle Applications
Schema Name (FNDNAM)

A Name of Oracle Applications Schema (FNDNAM).

Global Identity When the database initialization parameter GLOBAL_NAMES is
set to true, this field should be set to the name of the remote
server. When GLOBAL_NAMES is true, the name of the FND
Link Name must match the global name of the database you are
linking to.

Description Any notes you want to make regarding this server.

FND Link Name The Name of the remote server link to the Oracle Applications
schema. For example, czvis1.world.

Import Enabled (Y/N) Enable or disable import on this server. Only one remote server
can be enabled for import at a time.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Configuration Model Publication Concurrent Programs
The publication concurrent programs include:

• Process Pending Publications, page C-16

• Process a Single Publication, page C-17

These concurrent programs create a copy of a configuration model's structure, rules,
and UI by copying the data from the development database instance to the
CZ_MODEL_PUBLICATIONS table on the target Database Instance specified in the
Oracle Configurator Developer Model Publication page.

These concurrent programs must be run in the source database. The source database is
the database in which the configuration model and its publication record are defined.
The target database for the publication process is specified by the publication's
applicability parameters. See the Oracle Configurator Developer User's Guide and

C-16 Oracle Configurator Implementation Guide

Publication Applicability Parameters, page 16-8 for more information about
applicability parameters.

Typically, concurrent programs are scheduled to run automatically. If for some reason
you do not have these concurrent programs scheduled, or you cannot wait to publish
your Model until the next scheduled request run, you can run either program manually.

The target publication database instance must be defined and enabled as a remote
server unless the target server is the same as the source server. If the target server is the
same as the source server, then the target server does not have to be enabled. See Server
Administration Concurrent Programs, page C-9 .

Running the publication concurrent programs includes BOM Model synchronization.
For details, see Checking BOM and Model Similarity, page 7-3 and Publishing a
Configuration Model, page 16-10.

Process Pending Publications
The Process Pending Publications concurrent program copies all Model data (source
publications) in the CZ_PB_MODEL_EXPORTS table that have a STATUS of PEN
(pending) to the instance specified when creating the publication in Configurator
Developer.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database where the configuration model and its
publication are defined.

Note: When running the Process Pending Publications concurrent
program, all affected Models including referenced Models are
temporarily locked while the program is running. If any affected Model
is already locked by a user other than the one making the request, the
concurrent program logs an error without completing the request. For
details about locking objects, see the Oracle Configurator Developer User's
Guide.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
None

Concurrent Programs C-17

Output
To see if there are any errors or warnings for the concurrent program, examine the log
files. See Viewing Log Files, page B-4.

Process a Single Publication
The Process a Single Publication concurrent program copies a specific Model
publication to a the instance specified when creating the publication in Configurator
Developer..

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database where the configuration model and its
source publication are defined.

Note: When running the Process a Single Publication concurrent
program, all affected Models including referenced Models are
temporarily locked while the program is running. If any affected Model
is already locked by a user other than the one making the request, the
concurrent program logs an error without completing the request. For
details about locking objects, see the Oracle Configurator Developer User's
Guide .

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
The following table describes the parameters for the Process a Single Publication
concurrent program

C-18 Oracle Configurator Implementation Guide

Parameters for the Process a Single Publication Concurrent Program

Parameter Description

Publication Select from the list of values or enter the publication ID of the
publication you want to export to the database instance specified
in the publication record. The publication ID is displayed in the
Model Publication page in Oracle Configurator Developer, and is
stored in the CZ_MODEL_PUBLICATIONS table.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Populate and Refresh Configuration Models Concurrent Programs
The concurrent programs for populating and refreshing configuration models are:

• Populate Configuration Models, page C-19

• Refresh a Single Configuration Model, page C-21

• Refresh All Imported Configuration Models, page C-22

• Disable/Enable Refresh of a Configuration Model, page C-23

• Import Configuration Rules, page C-23

Use the Populate/Refresh Configuration Models concurrent programs to import data
into the CZ schema, including:

• Extracting BOM Model data into the correct format for transfer (Standard Import,
page 5-4, only)

• Loading the data into the import tables (Standard Import, page 5-4, only)

• Populating the online CZ schema with the data from the import tables

For more information about data import, see Populating the CZ Schema, page 5-1.

Note: The Populate and Refresh Configuration Models concurrent
programs do not provide an automated or scheduled mechanism that
clears the import tables.

Concurrent Programs C-19

Oracle does not recommend running Populate and Refresh
Configuration Models Concurrent Programs, page C-18 and Import
Configuration Rules, page C-23 concurrent program at the same time.

Populate Configuration Models
The Populate Configuration Models concurrent program populates the CZ schema
online tables with data for creating configuration models that are based on existing
BOMs or legacy data.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database into which you are importing data.

Note: When running the Populate/Refresh Configuration Models
concurrent program, all affected BOM Models including referenced
Models are temporarily locked while the program is running. If any
affected BOM Model is already locked by a user other than the one
making the request, the concurrent program logs an error without
completing the request. For details about locking objects, see the Oracle
Configurator Developer User's Guide'.

You cannot run simultaneous Populate/Refresh Configuration Models
requests. If there is another Populate/Refresh Configuration Models
running when you start the concurrent program, then your request will
terminate.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
If no data is available in the list of values for the following parameters, see Populate
Configuration Models Concurrent Program Error Messages, page C-20.

The following table describes the parameters for the Populate Configuration Models
concurrent program

C-20 Oracle Configurator Implementation Guide

Parameters for the Populate Configuration Models Concurrent Program

Parameter Description

Organization Code Required. Select from the list of values or enter the BOM Models'
Inventory organization that you want to import the BOM Models
from.

Model Inventory Item
From

Select the first Model Inventory Item in the range of BOM Models
you want to import.

All Model Inventory Items between and including the first and
last specified in this and the next field, are included in the data
import. The range can include multiple types of Model Inventory
Items. For example, from ATO800 to PTO500 is a valid range.

Model Inventory Item To Select the last Model Inventory Item in the range of items for
which you want to import data. If you want to import a single
model, enter the same Model Inventory Item that you entered for
the Model Inventory Item From parameter.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Populate Configuration Models Concurrent Program Error Messages
On certain error conditions there is no data in the extraction views and the list of values
for a new import does not have any data. In these cases, the list of values for the
Populate Configuration Models concurrent program displays a 'No entries found
for List of Values' message. Possible reasons for the missing data include:

• The server's Enabled for Import parameter has not been set to Y

• The Enable Remote Server concurrent program did not complete successfully

• The database link is down

• The remote database is down

• The extraction views are invalid

If the database link is down, the following message appears:

Example
'error 2019: connection description for remote database not found'

Concurrent Programs C-21

(The SQL statement that is currently running follows this message.)

Action:
1. The Oracle Configurator Administrator must run the Modify Server Definition,

page C-14 concurrent program and Enable Remote Server, page C-12 for import (if
one is not already selected). See Parameters for the Modify Server Definition
Concurrent Program, page C-14 and Parameters for the Enable Remote Server
Concurrent Program, page C-13.

2. Run Enable Remote Server, page C-12 if the enabled server is not LOCAL. See
Parameters for the Enable Remote Server Concurrent Program, page C-13.
Rerunning this concurrent program recreates the extraction views.

Refresh a Single Configuration Model
The Refresh a Single Configuration Model concurrent program updates the imported
BOM Model data in the CZ schema when information in Oracle Applications Bills of
Material and Inventory has changed.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database in which you are refreshing data.

Note: When running the Refresh a Single Configuration Model
concurrent program, all affected BOM Models including referenced
Models are temporarily locked while the program is running. If any
affected BOM Model is already locked by a user other than the one
making the request, the concurrent program logs an error without
completing the request. For details about locking objects, see the Oracle
Configurator Developer User's Guide.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
Parameters for the Refresh a Single Configuration Model and Disable/Enable Refresh
Concurrent Programs, page C-22 lists the parameters used for the Refresh a Single
Configuration Model concurrent programs.

The following table describes the parameters for the Refresh a Single Configuration
Model and the Disable/Enable Refresh concurrent programs.

C-22 Oracle Configurator Implementation Guide

Parameters for the Refresh a Single Configuration Model and Disable/Enable Refresh
Concurrent Programs

Parameter Description

Folder Enter the name of the Configurator Developer Repository Folder
in which the configuration model resides, or select a Folder from
the list of values.

Configuration Model ID Select a Model from the list of values.

Output
To see if there are any errors or warnings for the concurrent program, examine the log
files. See Viewing Log Files, page B-4.

Refresh All Imported Configuration Models
The Refresh All Imported Configuration Models concurrent program updates all of
your imported BOM Model data.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database in which you are refreshing data.

Note: When running the Refresh All Imported Configuration Models
concurrent program, all affected BOM Models including referenced
Models are temporarily locked while the program is running. If any
affected BOM Model is already locked by a user other than the one
making the request, the concurrent program logs an error without
completing the request. For details about locking objects, see the Oracle
Configurator Developer User's Guide.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
None

Concurrent Programs C-23

Disable/Enable Refresh of a Configuration Model
The Disable/Enable Refresh of a Configuration Model concurrent program prevents
(disables) or allows (enables) either of the Refresh Configuration Model concurrent
programs to update a specific configuration model. You may want to prevent a
configuration model from being updated if you are currently designing its
configuration rules in Configurator Developer. This concurrent program is run in the
database instance where the configuration model resides.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database containing the configuration model
whose refresh is being controlled.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
The following table lists the parameters for the Disable/Enable Refresh of a
Configuration Model concurrent program.

Parameters for the Disable/Enable Refresh Concurrent Program

Parameter Description

Folder Enter the name of the Configurator Developer Repository Folder
in which the configuration model resides, or select a Folder from
the list of values.

Configuration Model ID Select a Model from the list of values.

Refresh Enabled (Y/N) The response of Yes or No indicates whether the specified Model
is refreshed when the Refresh concurrent programs are run.

Import Configuration Rules
The Import Configuration Rules concurrent program imports rules that are written in
Constraint Definition Language format into the CZ schema. For more information, see
Rule Import, page 5-21.

C-24 Oracle Configurator Implementation Guide

Note: You cannot run simultaneous Import Configuration Rules
requests. If there is another Import Configuration Rules request
running, then your rule import request will terminate.

If the rule's Model is locked, then an appropriate message is returned
and the configuration rules are not imported into the CZ schema.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
Thefollowing table lists the parameters for the Import Rules concurrent program.

Parameter for the Import Configuration Rules Concurrent Program

Parameter Description

Run ID This is an optional import session parameter. Run ID identifies a
set of source data that is converted into rules after the data is
imported into the CZ schema. If this parameter is null, then the
records in CZ_IMP_RULES with RUN_ID, REC_STATUS, and
DISPOSITION that are NULL are imported into the CZ schema
and will have a generated RUN_ID.

If Run ID is not null, then all records in CZ_IMP_RULES with
the given RUN_ID are processed and refreshed in the CZ
schema.

If the Run ID is an invalid Run ID, then the following message is
returned: 'No data found in the CZ_IMP_RULES table
with RUN_ID = &RUNID'.

Note: If you want to refresh a set of rules that have the same Run ID,
you must first manually set CZ_IMP_RULES.REC_STATUS,
CZ_IMP_RULES.DISPOSITION,
CZ_IMP_LOCALIZED_TEXTS.REC_STATUS, and
CZ_IMP_LOCALIZED_TEXTS.DISPOSITION to NULL for those
records that have the desired Run ID. You then run the Import

Concurrent Programs C-25

Configuration Rules concurrent program with the Run ID. Note that
any changes made to the rule in Configurator Developer will be
overridden with the newly imported rule.

Output
Rules are validated for CDL structure and rule participants. If an imported rule has a
parsing error, the parsing error is written in both the concurrent program log file and
CZ_IMP_RULES.MESSAGE. The REC_STATUS for CZ_IMP_RULES and
CZ_IMP_LOCALIZED_TEXTS is ERR, and
CZ_IMP_LOCALIZED_TEXTS.DISPOSITION is R. Rules imported into the CZ schema
can be edited either in Configurator Developer or the source environment.

The rule import run data is logged in the CZ_XFR_RUN_INFOS table as well as the
CZ_XFR_RUN_RESULTS table. For more information about these tables and the tables
used during rule import, see the Oracle Integration Repository or the Oracle Support
Web site.

Any concurrent program errors or warnings are in the FND log file. See Viewing Log
Files, page B-4.

Model Synchronization Concurrent Programs
The model synchronization concurrent programs include:

• Check Model/Bill Similarity, page C-25

• Check All Models/Bills Similarity, page C-27

• Synchronize All Models, page C-27

Check Model/Bill Similarity, page C-25 and Check All Models/Bills Similarity, page C-
27 compare the imported model and the BOM Model to see if they are similar enough
to synchronize. If key validation fields are not equal, then the requests generate a
Model/Bill Similarity Check Report, page C-28 listing the fields with discrepancies. The
user must resolve the discrepancies before synchronizing the models. This is an
iterative process. Once the validation fields are corrected and the report no longer
returns discrepancies, the Synchronize All Models, page C-27 can be run.

See Synchronizing Data, page 7-1for more information.

Check Model/Bill Similarity
The Check Model/Bill Similarity concurrent program compares a single configuration
model with the BOM Model on which it is based, and produces a Model/Bill Similarity
Check Report, page C-28 of discrepancies, if any. See Criteria for BOM Model
Similarity, page 7-3 for information about the validation criteria used by this concurrent

C-26 Oracle Configurator Implementation Guide

program.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database containing the configuration model that
must be checked.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
The following table describes the parameters for the Check Model/Bill Summary
concurrent program

Parameters for the Check Model/Bill Similarity Concurrent Program

Parameter Description

Target Instance A list of available instances, as defined by the Define Remote
Server, page C-10 concurrent program. Select the instance that
contains the source BOM Model with which the configuration
model must be synchronized.

Folder A list of folders (Configurator Developer Repository Folders) on
the specified Target instance. Select the Folder that contains the
Model to be checked against the BOM Model in the Target
Instance.

List of Models A list of all Models in the specified Folder on the specified Target
instance. Select a Model from the list of values.

Output
A report is generated with the results. See Model/Bill Similarity Check Report, page C-
28.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Concurrent Programs C-27

Check All Models/Bills Similarity
The Check All Model/Bill Similarity concurrent program compares all configuration
modes in the local database instance with the BOM Models on which they are based,
and produces a Model/Bill Similarity Check Report, page C-28 of discrepancies, if any.
See Criteria for BOM Model Similarity, page 7-3 for information about the validation
criteria used by this concurrent program.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database containing the configuration models that
need to be checked.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
The following table describes the parameters for the Check All Models/Bills Similarity
concurrent program

Check All Models/Bills Similarity Parameters

Parameter Description

Target Instance A list of available instances, as defined by the Define Remote
Server, page C-10 concurrent program. Select the instance that
contains the source BOM Model with which the configuration
model must be synchronized.

Output
A report is generated with the results. See Model/Bill Similarity Check Report, page C-
28.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Synchronize All Models
The Synchronize All Models concurrent program modifies the configuration models on

C-28 Oracle Configurator Implementation Guide

the local database instance to match the corresponding BOM Models in the Bills of
Material schema that is to serve as the new import server or publication target. All
imported models in the CZ schema of the current instance are synchronized with the
corresponding structures of the bills on a target instance.

The Synchronize All Models concurrent program is run after all errors and
discrepancies in the report generated by the Check All Models/Bills Similarity, page C-
27 concurrent program have been corrected (see Model/Bill Similarity Check Report,
page C-28).

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database containing the configuration model that
must be synchronized.

Warning: Oracle Configurator Developers must not modify Models
when the Synchronize All Models concurrent program is running.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
None

Output
A report is generated with the results. See Model/Bill Similarity Check Report, page C-
28.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Model/Bill Similarity Check Report
The Model/Bill Similarity Check Report is generated every time you run the Check
Model/Bill Similarity, page C-25, Check All Models/Bills Similarity, page C-27 and
Synchronize All Models, page C-27 concurrent programs. The report is displayed in a
standard report log file generated by concurrent programs. For detailed information on
concurrent processing reporting options, see the Oracle Application's User's Guide. For a
list of validation criteria used to generate the report, see Criteria for BOM Model
Similarity, page 7-3.

The Model/Bill Similarity Check Report contains a comprehensive message describing

Concurrent Programs C-29

the list of problems that were encountered. The list starts with a message providing the
version of the package and the run time. For example, the following message occurs
when the BOM Model does not exist on the target server:

Example
BOM Synchronization, version 115.15, started 2001/10/23/14:05:16,
session run ID: 12017
There is no root bill for configuration model Name of the Model, unable
to verify the model."

The following message occurs when there is a discrepancy with an Inventory Item.

Example
BOM Synchronization, version 115.15, started 2001/10/29/14:05:16,
session run ID: 12018
'PTO_OC1' with parent 'BOM_SYNCH' in configuration model 'BOM_SYNCH'
cannot be matched with any inventory item.

Execute Populators in Model
Use this concurrent program to run all Populators defined for a specific Model. This
concurrent program allows you to automate the process of updating a Models with data
that has changed in the Item Master For information about Populators, see the Oracle
Configurator Developer User's Guide.

Do not confuse the Execute Populators in Model concurrent program with the Populate
Configuration Models concurrent program. You run the Populate Configuration
Models program to import data from Oracle Bills of Material. The Execute Populators in
Model concurrent program updates Model structure that was created in Configurator
Developer from data in the CZ schema's Item Master.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the database containing the Models you want to
repopulate.

Responsibility
Oracle Configurator Administrator or Oracle Configurator Developer

Navigation
Navigator window >Oracle Configurator Administrator or Oracle Configurator
Developer >Concurrent Programs:Schedule.

Parameters
The following table describes the parameters for the Execute Populators in Model
concurrent program

C-30 Oracle Configurator Implementation Guide

Parameters for the Execute Populators in Model Concurrent Program

Parameter Description

Folder A list of folders (Configurator Developer Repository Folders) on
the current instance. Select the Folder that contains the Model in
which you want Populators to be implemented.

Configuration Model ID Select a Model from the list of values. Configuration Model ID is
the same ID as the DEVL_PROJECT_ID.

Output
To see if there are any errors or warnings for the concurrent program, examine the log
files. See Viewing Log Files, page B-4.

Migration Concurrent Programs
Migration concurrent programs move data from a source CZ schema to an empty target
CZ schema, or copy Models from one database instance to another development
database instance.

The migration concurrent programs that move data from a source CZ schema to an
empty target CZ schema are:

• Setup Configurator Data Migration, page C-30

• Migrate Configurator Data, page C-32

See Migrating Data from A CZ Schema, page 6-2 for prerequisites before running the
migration concurrent programs.

The source database server must be defined and enabled as the remote server (see
Server Administration Concurrent Programs, page C-9.

The migration concurrent program that copies Models from one database instance to
another development database instance is:

• Migrate Models, page C-38

Setup Configurator Data Migration
The Setup Configuration Data Migration concurrent program identifies the source
database instance of a data migration.

Use the procedure described in Running Configurator Concurrent Programs, page B-2

Concurrent Programs C-31

to run this concurrent program in the target database into which you are migrating
data.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Setup Configurator Migration
concurrent program

Parameters for the Setup Configurator Data Migration Concurrent Program

Parameter Description

Source Enter the name of the source database instance containing the
data to be migrated, or select a source from the list of values
defined by the Define Remote Server, page C-10 concurrent
program.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file (see Viewing Log Files Program, page B-4).

In the Request concurrent program, view the log file to verify that no issues were found
during the migration setup. Possible issues are:

• Specified instance name does not have an associated database link

• Associated database link is not functional

• Database error occurred during the population of the control tables

• Schema versions for the source and target databases are not the same

• Difference in table structure

If any issues are reported, correct them and run Setup Configuration Data Migration
again.

C-32 Oracle Configurator Implementation Guide

Migrate Configurator Data
The Migrate Configurator Data concurrent program migrates the data from the source
database instance to the target database instance. See Migrating Data, page 6-1 for
migration requirements.

Use the procedure described in Running Configurator Concurrent Programs, page B-2
to run this concurrent program in the empty target database into which you want to
migrate data.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Migrate Configurator Data
concurrent program

Parameters for the Migrate Configurator Data Concurrent Program

Parameter Description

Proceed when database not
empty?

Enter Yes or No to this prompt. The migration should only be
run against an empty target database. However, if for some
reason the original migration does not complete successfully (for
example a roll back segments problem), then the migration must
be rerun after the roll back segments problem has been resolved.
If the migration is repeated after such a correction, then the
Proceed when database not empty? prompt can be
answered Yes

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Migrate Functional Companions
The Functional Companion migration concurrent programs are:

Concurrent Programs C-33

• Migrate All Functional Companions, page C-33

• Migrate Functional Companions for a Single Model, page C-34

These concurrent programs transform existing Functional Companion association data
in the database to the new form of association data used for Configurator Extensions.

After you upgrade to the release of Oracle Configurator described in this document,
you may need to migrate Functional Companions that were created with previous
releases.

See the Oracle Configurator Installation Guide for background information.

Migrate All Functional Companions
The Migrate All Functional Companions concurrent program creates Configurator
Extension associations for all Functional Companions in the database.

Note: You must perform some setup tasks before and after running this
concurrent program. See the Oracle Configurator Installation Guide.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
None

Output
If the migration finishes without errors, then Configurator Extension Rules (association
data) are created for all Functional Companions in the database.

Warning: After you successfully migrate Functional Companions to
Configurator Extensions, all existing Functional Companion data is
logically deleted from the database.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4. If errors occur while processing a
Model, the migration for that Model stops, and all transactions are rolled back.
Processing continues for other Models in the database.

C-34 Oracle Configurator Implementation Guide

Migrate Functional Companions for a Single Model
The Migrate Functional Companions for a Single Model concurrent program creates
Configurator Extension associations for the Functional Companions associated with a
specified Model.

Note: You must perform some setup tasks before and after running this
concurrent program. See the Oracle Configurator Installation Guide.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Migrate Functional Companions
for a Single Model concurrent program.

Parameters for the Migrate Functional Companions for a Single Model Concurrent Program

Parameter Description

Model ID This is the Model that contains Functional Companions to be
migrated. A list of all Models is available to select from,
including those that do not contain Functional Companions at all
and those that do not contain Functional Companions but whose
child Models contain Functional Companions. If you choose a
Model that does not contain Functional Companions then the
migration still runs, but the migration log shows that the Model
contained no Functional Companions. To migrate Functional
Companions that are contained in any child Models, you must
choose the option for deep migration.

Migrate Child Model's FC This is a Yes/No flag indicating whether you want the concurrent
program to perform a deep migration. A Yes response means that
all of the Functional Companions associated with the selected
Model and its child Models will be migrated.

Concurrent Programs C-35

Output
If the migration finishes without errors, then Configurator Extension Rules (association
data) are created for all Functional Companions associated with the selected Model.

Warning: After you successfully migrate Functional Companions for a
Model to Configurator Extensions, the existing Functional Companion
data for the Model is logically deleted from the database.

To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4. If no errors occur in the migration,
then all transactions related to the specified Model are committed. If errors occur while
processing the Model, the migration process stops and all transactions are rolled back.

Model Management
The Model Management concurrent programs are:

• Add Model Node Names to Configurations by Model Items, page C-35

• Add Model Node Names to Configurations by Model Product Key, page C-37

• Migrate Models, page C-38

Add Model Node Names to Configurations by Model Items
Before the Model migration functionality was introduced, the persistent node ID was a
consistent set of references to the same Model node. When Models are migrated to other
development database instances, the persistent node ID becomes a one-to-many
relationship, and can no longer be relied upon when identifying a saved configuration.

The Add Model Node Names to Configurations by Model Items concurrent program
adds Model node names to saved configurations of a Model based on the Item or range
of Items that you specify. It enables Oracle Configurator to uniquely identify Model
nodes using their names rather than persistent_node_id values when restoring saved
configurations. This is required to successfully restore configurations that were saved
against migrated Models.

Alternatively, you can use the Add Model Node Names to Configurations by Model
Product Key, page C-37 concurrent program to update saved configurations.

You run this concurrent program in the database instance where the migrated Models
are located. To run this concurrent program, use the procedure described in the
Running Configurator Concurrent Programs, page B-2.

If the Model for a deleted publication exists, then the configurations for the deleted
publication are upgraded using the configuration's source Model. The example Saved
Configurations and a Copied Model, page C-36 shows what can prevent Oracle

C-36 Oracle Configurator Implementation Guide

Configurator from identifying all of the inputs in a saved configuration, resulting in a
validation failure message.

Saved Configurations and a Copied Model
There are two Models, ModelA and its copy, ModelA'. In Oracle Configurator
Developer, a new node called Option1 is added to ModelA. ModelA is published and a
configuration is saved against ModelA. A new node Option1 is added to ModelA', and
ModelA' is published.

When restoring an order saved against ModelA, a validation failure message appears
because Oracle Configurator is unable to match Option1 that was added to ModelA'
with Option1 in ModelA.

Responsibility
Oracle Configurator Administrator or Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Add Model Node Names to
Configurations by Model Items concurrent program.

The parameters you specify determine which published Models will be used to update
the configurations. The values of the profile options CZ: Publication Usage and CZ:
Publication Lookup Mode are also used to further refine the search for published
Models. Oracle Configurator profile options are described in the Oracle Configurator
Installation Guide.

Parameters for the Add Model Node Names to Configurations by Model Items

Parameter Description

Organization The Inventory Organization of the Item(s) you want to update

Model Inventory Item From The beginning of a range of Models to be processed

(To update saved configurations of a single Model, enter the
same value for this parameter and the 'Model Inventory Item To'
parameter.)

Model Inventory Item To The end of a range of Models to be processed

Concurrent Programs C-37

Parameter Description

Application Enter a valid host application to update only configurations
published for that application.

Configuration Begin Date The date of the oldest configuration to be updated (use the
format DD-MON-YYYY)

Configuration End Date The date of the newest configuration to be updated (use the
format DD-MON-YYYY)

The default date is the system date.

Output
To see if there are any errors or warnings for the concurrent program, examine the
CZ_DB_LOGS file. For details, see Viewing Log Files, page B-4.

Add Model Node Names to Configurations by Model Product Key
This concurrent program is similar to Add Model Node Names to Configurations by
Model Items, page C-35, but this program adds Model node names to saved
configurations based on the Product Key that you specify, rather than an Item or range of
Items.

You run this concurrent program in the database instance where the migrated Models
are located. To run this program, use the procedure described in Running Configurator
Concurrent Programs, page B-2.

Responsibility
Oracle Configurator Administrator or Configurator Administrator

Navigation
Navigator window > Oracle Configurator Administrator > Concurrent Programs:
Schedule.

Parameters
The following table lists the parameters for the Add Model Node Names to
Configurations by Model Product Key concurrent program.

The parameters you specify determine which published Models will be used to update
the configurations. The values of the profile options CZ: Publication Usage and CZ:
Publication Lookup Mode are also used to further refine the search for published
Models. Oracle Configurator profile options are described in the Oracle Configurator

C-38 Oracle Configurator Implementation Guide

Installation Guide.

Parameters for the Add Model Node Names to Configurations by Model Product Key

Parameter Description

Product key The Item's Inventory Organization and Item number. For
example: 204:5717.

Application Enter a valid host application to update only configurations
published for that application.

Configuration Begin Date The date of the oldest configuration to be updated (use the
format DD-MON-YYYY)

Configuration End Date The date of the newest configuration to be updated (use the
format DD-MON-YYYY)

The default date is the system date.

Output
To see if there are any errors or warnings for the concurrent program, examine the log
files. See Viewing Log Files, page B-4.

Migrate Models
This concurrent program migrates (copies) a configuration model its to another
database instance. For details about what data is migrated, see Migrating Models, page
6-3.

For information about how data is synchronized when Models are migrated, see
Synchronizing Migrated Model Data, page 6-8.

Before running this concurrent program, you must:

• Define and enable the target instance as a remote server.

For details, see Define Remote Server, page C-10 and Enable Remote Server, page
C-12

Note: Models cannot be migrated to a remote publication target
instance. For details, see Convert Publication Target Instance to
Development Instance, page C-8.

• Identify the Models you want to migrate in Oracle Configurator Developer.

Concurrent Programs C-39

For details, see the Oracle Configurator Developer User's Guide.

When you identify the Models to be migrated, Configurator Developer generates a
Migration Group ID. You specify this value for the Migration Group parameter when
running the Migrate Models concurrent program.

While the Migrate Models concurrent program is running, the specified root Model and
all of its referenced Models are locked in Configurator Developer. If the program cannot
lock any of the Models (for example, because they are locked by another user), the
program fails and displays an error. Model locking is explained in the Oracle
Configurator Developer User's Guide.

To migrate Models, the target and source instances must be at the same Oracle
Configurator patch level, and the same sets of languages must be installed on each
instance.

When the Migrate Models concurrent program completes successfully, review the log
file to review the results of the migration. For details, see Synchronizing Migrated
Model Data, page 6-8.

Important: After running the Migrate Models program, review
Restoring Saved Configurations of Migrated Models, page 6-7 for
important information.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Migrate Models concurrent
program.

Parameters for the Migrate Models Concurrent Program

Parameter Description

Migration Group The Migration Group ID that is generated when you identify the
Model(s) to be migrated in Oracle Configurator Developer. This
number identifies the Models to be migrated from the source
instance and the destination folder on the target instance.

C-40 Oracle Configurator Implementation Guide

Output
To see if there are any errors or warnings for the concurrent program, examine the log
files. See Viewing Log Files, page B-4.

Publication Synchronization Concurrent Programs
The publication synchronization concurrent programs are:

• Synchronize Cloned Target Data, page C-40

• Synchronize Cloned Source Data, page C-41

These concurrent programs resolve data inconsistencies that result when a source or
target database instance is cloned or migrated from a different database instance.

Publication synchronization updates publication record pointers to servers, checks
overlaps of applicability parameters and item definitions, and realigns relationships
between publication records that became invalid.

Before running these concurrent programs, the target database instance must be defined
and enabled to establish the database link. See Server Administration Concurrent
Programs, page C-9 for information about defining and enabling a remote server.

Synchronize Cloned Target Data
The Synchronize Cloned Target Data ensures that publication data on the cloned
publication target database instance matches that on the publication source database
instance. For example, you have published models and are working with two database
instances: a publication source and a publication target. You then clone the publication
target. The publication data on the cloned publication target does not recognize the
publication source until you run the Synchronize Cloned Target Data. For more
information see Synchronizing Publication Data after a Database Instance is Cloned,
page 7-7.

If the publication records on the target exist on the source database instance, then the
SERVER_ID of the target publication is updated and a new publication record is created
on the source database instance with updated references.

Note: Do not:

• Publish or republish Models when the synchronization concurrent
programs are running

• Synchronize publications when publishing or republishing Models

The Synchronize Cloned Target Data concurrent program must be run in the database
instance that serves as the publication source for the cloned publication target. Use the

Concurrent Programs C-41

procedure described in Running Configurator Concurrent Programs, page B-2 to run
this concurrent program.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for Synchronize Cloned Target Data.

Synchronize Cloned Target Data

Parameter Description

Target database instance Enter the name of the cloned publication target database
instance, or select a cloned publication target from the list of
values defined by the Define Remote Server, page C-10
concurrent program.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

If the Model and UI in the target database instance publication record do not match the
Model and UI in the source database instance publication record from which the
Synchronize Cloned Target Data concurrent program is running, then the program logs
an error, and the concurrent program terminates. The Model Publication page in Oracle
Configurator Developer displays Error in the Status column (see the Oracle Configurator
Developer User's Guide).

Synchronize Cloned Source Data
The Synchronize Cloned Source Data ensures that publication data on the publication
target database instance points to the cloned publication source database instance. For
example, you have published models and are working with two database instances: a
publication source and a publication target. You then clone the publication source. The
publication data on the publication target does not recognize the publication source
until you run the Synchronize Cloned Source Data. For more information see Example
of Synchronizing Publication Data on a Cloned Source, page 7-12.

C-42 Oracle Configurator Implementation Guide

Before running the concurrent program, the cloned source database instance must be
defined and enabled to establish the database link. See Define Remote Server, page C-10
and Enable Remote Server, page C-12. This concurrent program is run from the cloned
source database instance.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters for the Synchronize Cloned Source Data
concurrent program

Synchronize Cloned Source Data

Parameter Description

Decommission Original
Source? (Yes/No)

If the original source server is decommissioned, then the
CZ_SERVERS.SOURCE_SERVER_FLAG on the target is updated
to no longer point to the original source server. If the original
source server is not decommissioned, then the publication entries
are logically deleted from the tables on the cloned source server
to avoid conflicts with the original publication source.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

Select Tables to be Imported
You may want to specify only a group of tables from which extracted data is loaded
into the import tables. The CZ_XFR_TABLES.DISABLED field determines if a specific
table is enabled or disabled for import.

Responsibility
Oracle Configurator Administrator

Concurrent Programs C-43

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
All parameters for this concurrent program are required.

The following table describes the parameters Import Data into Specific Tables
concurrent program

Import Data into Specific Tables

Parameter Description

Name This is a list of concurrent programs. Select the Select Tables To
Be Imported concurrent program from the list.

Destination Table Name This is a list of tables in the CZ schema for which import is
enabled or disabled. The table names display with a description
of Import, Extract, Generic, or Populators. Be sure to select the
table name with the appropriate description.

Import Group From the list of values, select the name of the phase or group in
which import is to be enabled or disabled for the specified table:
Export, Import or Generic

Enable (Y or N) From the list of values, select N to disable or Y to enable the
specified table for the specified import phase.

Importing Data into a Specific Table
The following is an example that enables a table for importing data.
Destination Table Name: CZ_ITEM_MASTERS
Import Group: Import
Enable:Y

Action
After specifying the parameters click OK. In the Submit Request window, click Submit.

Output
To see if there are any errors or warnings for the concurrent program, you must
examine the log file. See Viewing Log Files, page B-4.

C-44 Oracle Configurator Implementation Guide

Show Tables to be Imported
You can display the tables that are currently enabled for import.

Responsibility
Oracle Configurator Administrator

Navigation
Navigator window >Oracle Configurator Administrator >Concurrent Programs:
Schedule.

Parameters
The following table describes the parameters Show Tables to be imported requested
task.

Show Tables to be Imported

Parameter Description

Table Name Enter the table in the CZ schema that you are querying the
import disability.

Import Group: Enter either Extract, Generic, or Import for which you want to
display the Import Enable setting.

Show Tables to be Imported
The following example displays the current Disable setting for the CZ_XFR_TABLES.
Table Name: CZ_ITEM_MASTERS
Phase Name: Import

Action
After specifying the parameters click OK. In the Submit Request window, click Submit.

Output
To see if there are any errors or warnings for the concurrent program, examine the log
files. See Viewing Log Files, page B-4. The return for Show Tables to be Imported, page
C-44:

Return from the Show Tables to be Imported Concurrent Program
DST_TABLE = CZ_ITEM_MASTERSXFR_GROUP = IMPORTDISABLED_FLAG = 0

CZ Subschemas D-1

D
CZ Subschemas

This appendix lists the CZ tables that make up each of the subschemas in the CZ
schema. For table details, see the Oracle Integration Repository.

This appendix covers the following topics:

• Oracle Configurator Subschemas

Oracle Configurator Subschemas
The following sections list the tables in each subschema. For detailed information about
these and other tables, see the Oracle Integration Repository.

ADMN Administrative Tables
These tables are uses for customizable site parameters and auditing information.

• CZ_DB_LOGS

• CZ_DB_SETTINGS

• CZ_DB_SIZES

CNFG Configuration Tables
These tables hold configuration information.

• CZ_CONFIG_ATTRIBUTES

• CZ_CONFIG_CONTENTS_V

• CZ_CONFIG_DETAILS_V

• CZ_CONFIG_EXT_ATTRIBUTES

D-2 Oracle Configurator Implementation Guide

• CZ_CONFIG_HDRS

• CZ_CONFIG_HDRS_V

• CZ_CONFIG_INPUTS

• CZ_CONFIG_ITEMS

• CZ_CONFIG_ITEMS_V

• CZ_CONFIG_MESSAGES

• CZ_CONFIG_MESSAGES_V

• CZ_CONFIG_USAGES

ITEM Item-Master Tables
Thefollowing tables store information about Items that are used to build a Model:

• CZ_IMP_ITEM_MASTER

• CZ_IMP_ITEM_PROPERTY_VALUE

• CZ_IMP_ITEM_TYPE

• CZ_IMP_ITEM_TYPE_PROPERTY

• CZ_IMP_PROPERTY

• CZ_ITEM_MASTERS

• CZ_ITEM_PROPERTY_VALUES

• CZ_ITEM_TYPES

• CZ_ITEM_TYPE_PROPERTIES

• CZ_PROPERTIES

LCE Logic for Configuration Tables
These tables store the generated logic for a Model.

• CZ_LCE_CLOBS

• CZ_LCE_HEADERS

CZ Subschemas D-3

• CZ_LCE_LINES

• CZ_LCE_LOAD_SPECS

• CZ_LCE_OPERANDS

• CZ_LCE_TEXTS

PB Publication Tables
These tables store information that is used when publishing a Model.

• CZ_EFFECTIVITY_SETS

• CZ_EXT_APPLICATIONS

• CZ_EXT_APPLICATIONS_V

• CZ_MODEL_PUBLICATIONS

• CZ_MODEL_USAGES

• CZ_MODEL_USAGES_TL

• CZ_PB_CLIENT_APPS

• CZ_PB_LANGUAGES

• CZ_PB_MODEL_EXPORTS

• CZ_PB_TEMP_IDS

• CZ_PUBLICATION_USAGES

• CZ_SRC_MODEL_PUBLICATIONS_V

PRC Pricing Tables
These tables are used to pass pricing and configuration information to a PL/SQL
callback procedure that is used for calculating ATP (availability-to-promise).

• CZ_ATP_REQUESTS

• CZ_PRICING_STRUCTURES

D-4 Oracle Configurator Implementation Guide

PROJ Project Structure Tables
These tables are used to store project information in Oracle Configurator Developer for
building configuration models.

• CZ_COMMON_CHILDNDPROPS_V

• CZ_CONVERSION_RELS_V

• CZ_DATA_TYPES_V

• CZ_DEVL_PROJECTS

• CZ_EXPLMODEL_NODES_V

• CZ_EXPLNODES_WITHIMAGES_V

• CZ_FUNC_COMP_SPECS

• CZ_IMP_DEVL_PROJECT

• CZ_IMP_MODEL_REF_EXPLS

• CZ_IMP_PS_NODES

• CZ_MODELS_V

• CZ_MODEL_ARCHIVES_V

• CZ_MODEL_BOMREF_COUNTS_V

• CZ_MODEL_REF_EXPLS

• CZ_NODE_CAPTION_PROPERTIES_V

• CZ_NODE_JAVA_PROPERTIES_V

• CZ_NODE_NO_PROPERTIES_V

• CZ_NODE_RULE_PROPERTIES_V

• CZ_NODE_USER_PROPERTIES_V

• CZ_POPULATORS

• CZ_PSNODE_REFRULE_IMAGES_V

• CZ_PSNODE_REFUI_IMAGES_V

CZ Subschemas D-5

• CZ_PSNODE_RULE_REFS_V

• CZ_PSNODE_WITH_UIREFS_V

• CZ_PS_NODES

• CZ_PS_PROP_VALS

• CZ_SRC_DEVL_PROJECTS_V

• CZ_SYSTEM_PROPERTIES_V

• CZ_SYSTEM_PROPERTY_RELS_V

• CZ_TEMPLATE_DEFS_V

• CZ_TERMINATE_MSGS

• CZ_TERMINATE_MSGS_V

• CZ_TGT_MODEL_PUBLICATIONS_V

RP Repository Tables
These tables are used for actions performed in the Repository as well as references to
Models, Effectivity Sets, and Usages.

• CZ_ACCESS_SUMMARY_LKV

• CZ_ACTIONDISPLAYUPDT_LKV

• CZ_ACTIONMODELINTER_LKV

• CZ_ACTIONNAV_LKV

• CZ_ACTIONRULENODES_LKV

• CZ_ACTIONSESSIONCTRL_LKV

• CZ_ACTIONSONMODELNODES_LKV

• CZ_ACTIONSONREPOSITORYN_LKV

• CZ_ACTIONTYPEGROUP_LKV

• CZ_AMPM_LKV

• CZ_ANYALLTRUE_LKV

D-6 Oracle Configurator Implementation Guide

• CZ_ARCHIVES

• CZ_ARCHIVES_PICKER_V

• CZ_ARCHIVE_REFS

• CZ_ASSOCIATEDMODELNODE_LKV

• CZ_BASIC_LAYOUT_REGION_LKV

• CZ_CAPCONFIGSYSPROP_LKV

• CZ_CAPMSGSYSPROP_LKV

• CZ_CAPNODESYSPROP_LKV

• CZ_CFGEXT_ARGS_SPEC_TYPE_LKV

• CZ_CFGEXT_EVENT_SCOPE_LKV

• CZ_CFGEXT_INST_SCOPE_LKV

• CZ_CFGEXT_SYSTEM_PARAMS_LKV

• CZ_CFG_SAVEASBEHAVIOR_LKV

• CZ_CFG_SEARCHCRITERIA_LKV

• CZ_COMPAT_TEMPL_SIGS_V

• CZ_COPYDESTINATION_LKV

• CZ_COPYSOURCE_LKV

• CZ_CREATEOPTIONPSNODETY_LKV

• CZ_CREATEPSNODEPSNODETY_LKV

• CZ_CREATEREPOSITORYOBJE_LKV

• CZ_CREATERULEOBJECT_LKV

• CZ_DATATYPE_LKV

• CZ_DETAILEDRULETYPES_LKV

• CZ_DETLSELECTIONSTATE_LKV

CZ Subschemas D-7

• CZ_EFFECTIVITYMETHODS_LKV

• CZ_EFFECTIVITYTYPE_LKV

• CZ_EFFSETS_PICKER_V

• CZ_EVENTTYPES_LKV

• CZ_EXNEXPRTYPE_LKV

• CZ_FEATURETYPE_LKV

• CZ_HORIZONTALALIGNMENT_LKV

• CZ_HOURS_LKV

• CZ_ICONLOOKUP_LKV

• CZ_IMAGELOOKUPS_V

• CZ_ITEMMASTEROPS_LKV

• CZ_ITEMTYPEOPERATOR_LKV

• CZ_ITEMTYPE_LKV

• CZ_JAVASYSPROPVALS_LKV

• CZ_LAYOUTREGIONS_LKV

• CZ_LAYOUT_UI_STYLE_LKV

• CZ_LISTLAYOUTREGIONS_LKV

• CZ_LOCK_HISTORY

• CZ_LOGICRULE_LKV

• CZ_LOOKUP_VALUES

• CZ_LOOKUP_VALUES_VL

• CZ_MDLNODE_CPDST_LKV

• CZ_MDLNODE_CPSRC_LKV

• CZ_MENUITEMTYPES_LKV

D-8 Oracle Configurator Implementation Guide

• CZ_MENUTYPES_LKV

• CZ_MINUTES_LKV

• CZ_MODEL_REFERENCES_PICKER_V

• CZ_MSGLISTLAYOUTREGIONS_LKV

• CZ_NODEINSTANTIABILITY_LKV

• CZ_NODELISTLAYOUTREGIONS_LKV

• CZ_NODELIST_LAYOUT_REGION_LKV

• CZ_OTHERCONTENT_LKV

• CZ_PROPERTY_PICKER_V

• CZ_PSNODERELATION_LKV

• CZ_PSNODETYPE_LKV

• CZ_PUBLICATIONMODE_LKV

• CZ_RECALCULATEPRICES_LKV

• CZ_REPOSCREATEOPS_LKV

• CZ_REPOSITORYCOPYDESTIN_LKV

• CZ_REPOSITORYCOPYMODELO_LKV

• CZ_REPOSITORY_MAIN_HGRID_V

• CZ_REPOS_TREE_V

• CZ_RPOBJECTTYPES_LKV

• CZ_RP_BOM_MODELS_V

• CZ_RP_DIRECTORY_V

• CZ_RP_EFF_DIRECTORY_V

• CZ_RP_ENTRIES

• CZ_RP_PRJ_DIRECTORY_V

CZ Subschemas D-9

• CZ_RP_USG_DIRECTORY_V

• CZ_RTCONDCOMPAR_LKV

• CZ_RTCONDOBJSETTINGS_LKV

• CZ_RULERADIOGROUP_LKV

• CZ_RULETYPECODES_LKV

• CZ_RULEUNSATMESSAGECHOI_LKV

• CZ_RULEVIOLATIONMESSAGE_LKV

• CZ_SERVERS

• CZ_SIMPLECONTROLS_LKV

• CZ_SORTORDER_LKV

• CZ_SOURCEENTITYTYPES_LKV

• CZ_SUBTYPEBOMMODEL_LKV

• CZ_SUBTYPEBOMOPTIONCLAS_LKV

• CZ_SUBTYPEBOMSTDITEM_LKV

• CZ_SUBTYPECOMPONENT_LKV

• CZ_SUBTYPEFEATURE_LKV

• CZ_SUBTYPEFEATUREGROUP_LKV

• CZ_SUBTYPEOPTION_LKV

• CZ_SUBTYPEPRODUCT_LKV

• CZ_SUBTYPERESOURCE_LKV

• CZ_SUBTYPETOTAL_LKV

• CZ_UCTMESSAGETYPE_LKV

• CZ_UCT_PARNTCONTTY_LKV

• CZ_UI_HGRID_ACTIONS_LKV

D-10 Oracle Configurator Implementation Guide

• CZ_UI_MSTTMP_BOMCON_UILAY_LKV

• CZ_UI_MSTTMP_CNTRLLAYOUT_LKV

• CZ_UI_MSTTMP_NBOMCON_UILAY_LKV

• CZ_UI_MSTTMP_PAGINATION_LKV

• CZ_UI_MSTTMP_PAG_CMP_LKV

• CZ_UI_MSTTMP_PAG_DDNCTRL_LKV

• CZ_UI_MSTTMP_PAG_NOC_LKV

• CZ_UI_MSTTMP_PAG_REF_LKV

• CZ_UI_MSTTMP_PRINAV_LKV

• CZ_UI_MSTTMP_SUPDIS_LKV

• CZ_UI_MSTTMP_TMPUSG_LKV

• CZ_UI_MSTTMP_TMPUSG_MSGUTL_LKV

• CZ_USAGES_PICKER_V

• CZ_VALIDRESULTFORCOMPON_LKV

• CZ_VALIDRESULTFOROPTFEA_LKV

• CZ_VERTICALALIGNMENT_LKV

• CZ_VIEWBYSELECTION_LKV

RULE Rule Tables
These tables hold Rule information and information on the participants in a rule.

• CZ_COMBO_FEATURES

• CZ_COMPATCELL_NODE_V

• CZ_DES_CHART_CELLS

• CZ_DES_CHART_COLUMNS

• CZ_DES_CHART_FEATURES

CZ Subschemas D-11

• CZ_EXPRESSION_NODES

• CZ_FILTER_SETS

• CZ_GRID_CELLS

• CZ_GRID_COLS

• CZ_GRID_DEFS

• CZ_IMP_RULES

• CZ_MODELRULEFOLDER_IMAGES_V

• CZ_MODEL_ALL_RULEFOLDERS_V

• CZ_NODETYPE_SYSPROPS_V

• CZ_NODE_USAGE_IN_RULES_V

• CZ_PSN_TYPED_RULE_REFS_V

• CZ_RULES

• CZ_RULES_WITH_ARGS_V

• CZ_RULETEMPLS_BYLABEL_V

• CZ_RULE_EXPRDETLS_V

• CZ_RULE_EXPRESSION_V

• CZ_RULE_FOLDERS

• CZ_RULE_PARTICIPANTS_V

• CZ_RUL_TYPEDPSN_V

• CZ_TYPED_RULES_V

TXT - Text Tables
These tables store the text that is displayed during runtime Configurator as well as MLS
information.

• CZ_IMP_LOCALIZED_TEXTS

• CZ_LOCALIZED_TEXTS

D-12 Oracle Configurator Implementation Guide

TYP - Data Typing
These tables store the various types of Model nodes, the structure of rule templates, and
the elements contained in generated User Interfaces.

• CZ_DATA_SUBTYPES_V

• CZ_NODETYPE_PROPERTIES_V

• CZ_NODE_DISPCOND_PROPERTIES_V

• CZ_PARENT_CHILD_RELS_V

• CZ_TYPE_RELATIONSHIPS

• CZ_VALID_RESULT_TYPES_V

UI User Interface Tables
These tables store information that is used in the User Interfaces, such as image
information, UI actions, messages, User Interface references, and so on.

• CZ_JRAD_CHUNKS

• CZ_PS_UI_CTRL_MAPS

• CZ_PSNODETYPE_IMAGES_V

• CZ_RULETYPE_IMAGES_V

• CZ_UIDEF_SIGNATURE_TEMPLS_V

• CZ_UIELEMENT_IMAGES_V

• CZ_UITEMPLS_FOR_PSNODES_V

• CZ_UITEMPL_CONTROLS_V

• CZ_UITEMPL_MESSAGES_V

• CZ_UITEMPL_UTILITY_V

• CZ_UI_ACTIONS

• CZ_UI_COLLECT_TMPLS_V

• CZ_UI_CONT_TYPE_TEMPLS

CZ Subschemas D-13

• CZ_UI_CONT_TYPE_TEMPLS_VV

• CZ_UI_DEFS

• CZ_UI_ELEMENT_ATTRIBUTES_V

• CZ_UI_IMAGES

• CZ_UI_NODES

• CZ_UI_NODE_PROPS

• CZ_UI_PAGES

• CZ_UI_PAGE_ELEMENTS

• CZ_UI_PAGE_REFS

• CZ_UI_PAGE_SETS

• CZ_UI_PATHED_IMAGES_V

• CZ_UI_PROPERTIES

• CZ_UI_REFS

• CZ_UI_REF_TEMPLATES

• CZ_UI_TEMPLATES_VV

• CZ_UI_TEMPLATES

• CZ_UI_TYPEDPSN_V

• CZ_UI_XMLS

XFR Transfer Specifications and Control Tables
These tables contain information that is used during import.

• CZ_XFR_FIELDS

• CZ_XFR_PROJECT_BILLS

• CZ_XFR_RUN_INFOS

• CZ_XFR_RUN_RESULTS

D-14 Oracle Configurator Implementation Guide

• CZ_XFR_STATUS_CODES

• CZ_XFR_TABLES

Code Examples E-1

E
Code Examples

This appendix covers the following topics:

• Overview

• Pricing and ATP Callback Procedures

• Implementing a Return URL Servlet

Overview
This chapter contains code examples that support other chapters of this document.
These examples are more complete and longer than the examples provided in the rest of
this document, which are often fragments. See the cited background sections for details.

The following table lists the code examples provided in this chapter.

Code Examples Provided

Purpose of Example Example

Pricing and ATP Callback
Procedures, page E-2

Example of Multiple-item Callback Pricing Procedure,
page E-2

Example of Callback ATP Procedure, page E-3

Implementing a Return URL Servlet,
page E-3

Example Return URL Servlet (Checkout.java), page E-
5

You should consult these other documents for details on the tasks described in this
section:

• For information on how to write and compile Configurator Extensions, and on how
to incorporate them into your configuration model, see the Oracle Configurator

E-2 Oracle Configurator Implementation Guide

Extensions and Interface Object Developer's Guide.

• For information on how to install Configurator Extensions, see the Oracle
Configurator Installation Guide.

• For an explanation of building a configuration model and updating configurations,
see the Oracle Configurator Developer User's Guide.

Pricing and ATP Callback Procedures
This appendix contains minimal examples of PL/SQL procedures you might write to
use the OC callback interface for pricing and ATP procedures.

See the following sections for background:

• Pricing and ATP in Oracle Configurator , page 13-1

• Pricing Callback Interface , page 13-4

• ATP Callback Interface, page 13-8

• Pricing Parameters, page 9-15

• ATP Parameters, page 9-15

Example of Multiple-item Callback Pricing Procedure
Example
PROCEDURE price_multiple_items (p_configurator_session_key IN VARCHAR2,
 p_price_type IN VARCHAR2,
 p_total_price OUT NUMBER) AS
BEGIN
 update cz_pricing_structures set list_price = 3.0*seq_nbr,
 selling_price = 2.0*seq_nbr,
 where configurator_session_key =
 p_configurator_session_key;
-- calculation using pricing table for storage
 select sum(selling_price) into p_total_price from
cz_pricing_structures
 where configurator_session_key = p_configurator_session_key;
 -- hard-coded price amount
 -- p_total_price := 343.00;
END price_multiple_items;

Code Examples E-3

Example of Callback ATP Procedure
Example
PROCEDURE call_atp (p_config_session_key IN VARCHAR2,
 p_warehouse_id IN NUMBER,
 p_ship_to_org_id IN NUMBER,
 p_customer_id IN NUMBER,
 p_customer_site_id IN NUMBER,
 p_requested_date IN DATE,
 p_ship_to_group_date OUT DATE) IS
 BEGIN update cz_atp_requests set ship_to_date = sysdate-10
 where configurator_session_key
 = p_config_session_key;
 p_ship_to_group_date := sysdate;
 END call_atp;

Implementing a Return URL Servlet
The first step in implementing a return URL is to register an alias name for the return
URL servlet. For details, see the Oracle Configurator Installation Guide.

The section Example Return URL Servlet (Checkout.java), page E-5 shows the
complete source code for Checkout.java, which you can use as a template for
constructing your own return URL servlet.

The Java servlet shown here obtains the value of the valid_configuration element
from the configuration outputs element of the termination message and displays it in
the place of the Oracle Configurator window after the end user has closed the window
and saved the configuration session.

See the following sections for background:

• The Return URL, page 10-13

• Session Termination, page 10-1

• Submission, page 10-4

• Configuration Status, page 10-5

• Configuration Outputs, page 10-8

The parts of the code that you should customize to work with a configuration output
element other than valid_configuration are typographically emphasized.

Note the use of top.location in the example which causes the servlet output to
replace the contents of the runtime Oracle Configurator window.

Note that this example places Checkout.java in a package myorg.myservlets,
which requires the addition of path information to the following line:
out.println("top.location = \"/myorg/myservlets/Checkout?ValidConfig=" +
validConfig + "\"");

For more information, see the Oracle Configurator Installation Guide section on registering

E-4 Oracle Configurator Implementation Guide

a return URL servlet.

Code Examples E-5

Example Return URL Servlet (Checkout.java)
Example
package myorg.myservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.apps.cz.common.XmlUtil;
import oracle.xml.parser.v2.XMLDocument;
import org.xml.sax.SAXException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
public class Checkout extends HttpServlet {
 // Responds to the UiServlet request containing the <terminate> XML
message
 public void doPost(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
 String terminateString = request.getParameter("XMLmsg");
 XMLDocument terminateDoc;
 try {
 terminateDoc = XmlUtil.parseXmlString(terminateString);
 } catch (SAXException se) {
 throw new ServletException(se.getMessage());
 }
 String validConfig = getValidConfig(terminateDoc);
 System.err.println("configuration valid?: " + validConfig);
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<script language=\"javascript\">");
 out.println("top.location = \"/myorg/myservlets/Checkout?ValidConfig
=" + validConfig + "\"");
 out.println("</script>");
 out.println("</html>");
 }
 // Responds to the secondary request for the page to replace the
content frame
 // containing the ValidConfig
 public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
 String validConfig = request.getParameter("ValidConfig");
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Checked Out with Valid Configuration
</title></head>");
 out.println("<body>");
 out.println("Configuration Valid?: " + validConfig);
 out.println("</body>");
 out.println("</html>");
 }
 String getValidConfig(XMLDocument doc) {
 return getTagValue(doc, "valid_configuration", null); // get element
from termination msg
 }
 String getTagValue(XMLDocument doc, String tagName, String
defaultValue) { Node n = doc.getDocumentElement();
 if (n != null) {
 NodeList nl = n.getChildNodes();
 if (nl != null) {
 for (int i = 0; i < nl.getLength(); i++) {

E-6 Oracle Configurator Implementation Guide

Node cn = nl.item(i);
 if (cn.getNodeName().equals(tagName)) {
 NodeList cnl = cn.getChildNodes();
 if (cnl != null) {
 return cnl.item(0).getNodeValue();
 }
 }
 }
 }
 }
 return defaultValue;
 }
}

Glossary-1

Glossary

This glossary contains definitions relevant to working with Oracle Configurator.

A

Archive Path

The ordered sequence of Configurator Extension Archives for a Model that determines
which Java classes are loaded for Configurator Extensions and in what order.

B

base node

The node in a Model that is associated with a Configurator Extension Rule. Used to
determine the event scope for a Configurator Extension.

batch validation

A background process for validating selections in a configuration.

binding

Part of a Configurator Extension Rule that associates a specified event with a chosen
method of a Java class. See also event.

BOM item

The node imported into Oracle Configurator Developer that corresponds to an Oracle
Bills of Material item. Can be a BOM Model, BOM Option Class node, or BOM Standard
Item node.

BOM Model

A model that you import from Oracle Bills of Material into Oracle Configurator
Developer. When you import a BOM Model, effective dates, ATO (Assemble To Order)
rules, and other data are also imported into Configurator Developer. In Configurator
Developer, you can extend the structure of the BOM Model, but you cannot modify the
BOM Model itself or any of its attributes.

Glossary-2

BOM Model node

The imported node in Oracle Configurator Developer that corresponds to a BOM Model
created in Oracle Bills of Material.

BOM Option Class node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Option Class created in Oracle Bills of Material.

BOM Standard Item node

The imported node in Oracle Configurator Developer that corresponds to a BOM
Standard Item created in Oracle Bills of Material.

Boolean Feature

An element of a component in the Model that has two options: true or false.

C

CDL (Constraint Definition Language)

A language for entering configuration rules as text rather than assembling them
interactively in Oracle Configurator Developer. CDL can express more complex
constraining relationships than interactively defined configuration rules can.

The CIO is the API that supports creating and navigating the Model, querying and
modifying selection states, and saving and restoring configurations.

CIO (Oracle Configuration Interface Object)

A server in the runtime application that creates and manages the interface between the
client (usually a user interface) and the underlying representation of model structure
and rules in the generated logic.

command event

An event that is defined by a character string and detected by a command listener.

Comparison Rule

An Oracle Configurator Developer rule type that establishes a relationship to determine
the selection state of a logical Item (Option, Boolean Feature, or List-of-Options Feature)
based on a comparison of two numeric values (numeric Features, Totals, Resources,
Option counts, or numeric constants). The numeric values being compared can be
computed or they can be discrete intervals in a continuous numeric input.

Compatibility Rule

An Oracle Configurator Developer rule type that establishes a relationship among
Features in the Model to control the allowable combinations of Options. See also,

Glossary-3

Property-based Compatibility Rule.

Compatibility Table

A kind of Explicit Compatibility Rule. For example, a type of compatibility relationship
where the allowable combination of Options are explicitly enumerated.

component

A piece of something or a configurable element in a model such as a BOM Model,
Model, or Component.

Component

An element of the model structure, typically containing Features, that is configurable
and instantiable. An Oracle Configurator Developer node type that represents a
configurable element of a Model.

Component Set

An element of the Model that contains a number of instantiated Components of the
same type, where each Component of the set is independently configured.

configuration

A specific set of specifications for a product, resulting from selections made in a
runtime configurator.

configuration attribute

A characteristic of an item that is defined in the host application (outside of its
inventory of items), in the Model, or captured during a configuration session.
Configuration attributes are inputs from or outputs to the host application at
initialization and termination of the configuration session, respectively.

configuration model

Represents all possible configurations of the available options, and consists of model
structure and rules. It also commonly includes User Interface definitions and
Configurator Extensions. A configuration model is usually accessed in a runtime Oracle
Configurator window. See also model.

configuration rule

A Logic Rule, Compatibility Rule, Comparison Rule, Numeric Rule, Design Chart,
Statement Rule, or Configurator Extension rule available in Oracle Configurator
Developer for defining configurations. See also rules.

configuration session

The time from launching or invoking to exiting Oracle Configurator, during which end
users make selections to configure an orderable product. A configuration session is

Glossary-4

limited to one configuration model that is loaded when the session is initialized.

configurator

The part of an application that provides custom configuration capabilities. Commonly,
a window that can be launched from a host application so end users can make
selections resulting in valid configurations. Compare Oracle Configurator.

Configurator Developer

See OCD.

Configurator Extension

An extension to the configuration model beyond what can be implemented in
Configurator Developer.

A type of configuration rule that associates a node, Java class, and event binding so that
the rule operates when an event occurs during a configuration session.

A Java class that provides methods that can be used to perform configuration actions.

Configurator Extension Archive

An object in the Repository that stores one or more compiled Java classes that
implement Configurator Extensions.

connectivity

The connection across components of a model that allows modeling such products as
networks and material processing systems.

Connector

The node in the model structure that enables an end user at runtime to connect the
Connector node's parent to a referenced Model.

Constraint Definition Language

See CDL

Container Model

A type of BOM Model that you import from Oracle Bills of Material into Oracle
Configurator Developer to create configuration models that support connectivity and
contain trackable components. Configurations created from Container Models can be
tracked and updated in Oracle Install Base

Contributes to

A relation used to create a specific type of Numeric Rule that accumulates a total value.
See also Total.

Glossary-5

Consumes from

A relation used to create a specific type of Numeric Rule that decrements a total value,
such as specifying the quantity of a Resource used.

count

The number or quantity of something, such as selected options. Compare instance.

CZ

The product shortname for Oracle Configurator in Oracle Applications.

CZ schema

The implementation version of the standard runtime Oracle Configurator
data-warehousing schema that manages data for the configuration model. The
implementation schema includes all the data required for the runtime system, as well as
specific tables used during the construction of the configurator.

D

default

In a configuration, the automatic selection of an option based on the preselection rules
or the selection of another option.

Defaults relation

An Oracle Configurator Developer Logic Rule relation that determines the logic state of
Features or Options in a default relation to other Features and Options. For example, if
A Defaults B, and you select A, B becomes Logic True (selected) if it is available (not
Logic False).

Design Chart

An Oracle Configurator Developer rule type for defining advanced Explicit
Compatibilities interactively in a table view.

E

element

Any entity within a model, such as Options, Totals, Resources, UI controls, and
components.

end user

The ultimate user of the runtime Oracle Configurator. The types of end users vary by
project but may include salespeople or distributors, administrative office staff,
marketing personnel, order entry personnel, product engineers, or customers directly

Glossary-6

accessing the application via a Web browser or kiosk. Compare user.

event

An action or condition that occurs in a configuration session and can be detected by a
listener. Example events are a change in the value of a node, the creation of a
component instance, or the saving of a configuration. The part of model structure inside
which a listener listens for an event is called the event binding scope. The part of model
structure that is the source of an event is called the event execution scope. See also
command event.

Excludes relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an excluding relation to other Features and Options. For
example, if A Excludes B, and if you select A, B becomes Logic False, since it is not
allowed when A is true (either User or Logic True). If you deselect A (set to User False),
there is no effect on B, meaning it could be User or Logic True, User or Logic False, or
Unknown. See Negates relation.

F

feature

A characteristic of something, or a configurable element of a component at runtime.

Feature

An element of the model structure. Features can either have a value (numeric or
Boolean) or enumerated Options.

G

generated logic

The compiled structure and rules of a configuration model that is loaded into memory
on the Web server at configuration session initialization and used by the Oracle
Configurator engine to validate runtime selections. The logic must be generated either
in Oracle Configurator Developer or programmatically in order to access the
configuration model at runtime.

guided buying or selling

Needs assessment questions in the runtime UI to guide and facilitate the configuration
process. Also, the model structure that defines these questions. Typically, guided selling
questions trigger configuration rules that automatically select some product options
and exclude others based on the end user's responses.

H

Glossary-7

host application

An application within which Oracle Configurator is embedded as integrated
functionality, such as Order Management or iStore.

I

implementer

The person who uses Oracle Configurator Developer to build the model structure, rules,
and UI customizations that make up a runtime Oracle Configurator. Commonly also
responsible for enabling the integration of Oracle Configurator in a host application.

Implies relation

An Oracle Configurator Developer Logic Rule type that determines the logic state of
Features or Options in an implied relation to other Features and Options. For example,
if A Implies B, and you select A, B becomes Logic True. If you deselect A (set to User
False), there is no effect on B, meaning it could be User or Logic True, User or Logic
False, or Unknown. See Requires relation.

import server

A database instance that serves as a source of data for Oracle Configurator's Populate,
Refresh, Migrate, and Synchronization concurrent processes. The import server is
sometimes referred to as the remote server.

initialization message

The XML (Extensible Markup Language) message sent from a host application to the
Oracle Configurator Servlet, containing data needed to initialize the runtime Oracle
Configurator. See also termination message.

instance

A runtime occurrence of a component in a configuration that is determined by the
component node's Instance attribute specifying a minimum and maximum value. See
also instantiate. Compare count.

Also, the memory and processes of a database.

instantiate

To create an instance of something. Commonly, to create an instance of a component in
the runtime user interface of a configuration model.

item

A product or part of a product that is in inventory and can be delivered to customers.

Glossary-8

Item

A Model or part of a Model that is defined in the Item Master. Also data defined in
Oracle Inventory.

Item Master

Data stored to structure the Model. Data in the CZ schema Item Master is either entered
manually in Oracle Configurator Developer or imported from Oracle Applications or a
legacy system.

Item Type

Data used to classify the Items in the Item Master. Item Catalogs imported from Oracle
Inventory are Item Types in Oracle Configurator Developer.

L

listener

A class in the CIO that detects the occurrence of specified events in a configuration
session.

Logic Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of logic relationships. Logic Rules directly or indirectly set the logical
state (User or Logic True, User or Logic False, or Unknown) of Features and Options in
the Model.

There are four primary Logic Rule relations: Implies, Requires, Excludes, and Negates.
Each of these rules takes a list of Features or Options as operands. See also Implies
relation, Requires relation, Excludes relation, and Negates relation.

M

model

A generic term for data representing products. A model contains elements that
correspond to items. Elements may be components of other objects used to define
products. A configuration model is a specific kind of model whose elements can be
configured by accessing an Oracle Configurator window.

Model

The entire hierarchical "tree" view of all the data required for configurations, including
model structure, variables such as Resources and Totals, and elements in support of
intermediary rules. Includes both imported BOM Models and Models created in
Configurator Developer. May consist of BOM Option Classes and BOM Standard Items.

Glossary-9

model structure

Hierarchical "tree" view of data composed of elements (Models, Components, Features,
Options, BOM Models, BOM Option Class nodes, BOM Standard Item nodes,
Resources, and Totals). May include reusable components (References).

N

Negates relation

A type of Oracle Configurator Developer Logic Rule type that determines the logic state
of Features or Options in a negating relation to other Features and Options. For
example, if one option in the relationship is selected, the other option must be Logic
False (not selected). Similarly, if you deselect one option in the relationship, the other
option must be Logic True (selected). Compare Excludes relation.

node

The icon or location in a Model tree in Oracle Configurator Developer that represents a
Component, Feature, Option or variable (Total or Resource), Connector, Reference,
BOM Model, BOM Option Class node, or BOM Standard Item.

Numeric Rule

An Oracle Configurator Developer rule type that expresses constraint among model
elements in terms of numeric relationships. See also, Contributes to and Consumes from.

O

object

Entities in Oracle Configurator Developer, such as Models, Usages, Properties,
Effectivity Sets, UI Templates, and so on. See also element.

OCD

See Oracle Configurator Developer.

option

A logical selection made in the Model Debugger or a runtime Oracle Configurator by
the end user or a rule when configuring a component.

Option

An element of the Model. A choice for the value of an enumerated Feature.

Oracle Configurator

The product consisting of development tools and runtime applications such as the CZ
schema, Oracle Configurator Developer, and runtime Oracle Configurator. Also the

Glossary-10

runtime Oracle Configurator variously packaged for use in networked or Web
deployments.

Oracle Configurator Developer

The tool in the Oracle Configurator product used for constructing and maintaining
configuration models.

Oracle Configurator engine

The part of the Oracle Configurator product that uses configuration rules to validate
runtime selections. Compare generated logic. See also generated logic.

Oracle Configurator schema

See CZ schema.

Oracle Configurator Servlet

A Java servlet that participates in rendering legacy user interfaces for Oracle
Configurator.

Oracle Configurator window

The user interface that is launched by accessing a configuration model and used by end
users to make the selections of a configuration.

P

Populator

An entity in Oracle Configurator Developer that creates Component, Feature, and
Option nodes from information in the Item Master.

Property

A named value associated with a node in the Model or the Item Master. A set of
Properties may be associated with an Item Type. After importing a BOM Model, Oracle
Inventory Catalog Descriptive Elements are Properties in Oracle Configurator
Developer.

Property-based Compatibility Rule

An Oracle Configurator Developer Compatibility Rule type that expresses a kind of
compatibility relationship where the allowable combinations of Options are specified
implicitly by relationships among Property values of the Options.

publication

A unique deployment of a configuration model (and optionally a user interface) that
enables a developer to control its availability from host applications such as Oracle
Order Management or iStore. Multiple publications can exist for the same configuration

Glossary-11

model, but each publication corresponds to only one Model and User Interface.

publishing

The process of creating a publication record in Oracle Configurator Developer, which
includes specifying applicability parameters to control runtime availability and running
an Oracle Applications concurrent process to copy data to a specific database.

R

reference

The ability to reuse an existing Model or Component within the structure of another
Model (for example, as a subassembly).

Reference

An Oracle Configurator Developer node type that denotes a reference to another Model.

Repository

Set of pages in Oracle Configurator Developer that contains areas for organizing and
maintaining Models and shared objects in a single location.

Requires relation

An Oracle Configurator Developer Logic Rule relationship that determines the logic
state of Features or Options in a requirement relation to other Features and Options. For
example, if A Requires B, and if you select A, B is set to Logic True (selected). Similarly,
if you deselect A, B is set to Logic False (deselected). See Implies relation.

Resource

A variable in the Model used to keep track of a quantity or supply, such as the amount
of memory in a computer. The value of a Resource can be positive or zero, and can have
an Initial Value setting. An error message appears at runtime when the value of a
Resource becomes negative, which indicates it has been over-consumed. Use Numeric
Rules to contribute to and consume from a Resource.

Also a specific node type in Oracle Configurator Developer. See also node.

rules

Also called business rules or configuration rules. In the context of Oracle Configurator
and CDL, a rule is not a business rule. Constraints applied among elements of the
product to ensure that defined relationships are preserved during configuration.
Elements of the product are Components, Features, and Options. Rules express logic,
numeric parameters, implicit compatibility, or explicit compatibility. Rules provide
preselection and validation capability in Oracle Configurator.

See also Comparison Rule, Compatibility Rule, Design Chart, Logic Rule and Numeric
Rule.

Glossary-12

runtime

The environment in which an implementer (tester), end user, or customer configures a
product whose model was developed in Oracle Configurator Developer. See also
configuration session.

S

Statement Rule

An Oracle Configurator Developer rule type defined by using the Oracle Configurator
Constraint Definition Language (text) rather than interactively assembling the rule's
elements.

T

termination message

The XML (Extensible Markup Language) message sent from the Oracle Configurator
Servlet to a host application after a configuration session, containing configuration
outputs. See also initialization message.

Total

A variable in the Model used to accumulate a numeric total, such as total price or total
weight.

Also a specific node type in Oracle Configurator Developer. See also node.

U

UI

See User Interface.

UI Templates

Templates available in Oracle Configurator Developer for specifying UI definitions.

Unknown

The logic state that is neither true nor false, but unknown at the time a configuration
session begins or when a Logic Rule is executed. This logic state is also referred to as
Available, especially when considered from the point of view of the runtime Oracle
Configurator end user.

user

The person using a product or system. Used to describe the person using Oracle
Configurator Developer tools and methods to build a runtime Oracle Configurator.
Compare end user.

Glossary-13

user interface

The visible part of the application, including menus, dialog boxes, and other on-screen
elements. The part of a system where the user interacts with the software. Not
necessarily generated in Oracle Configurator Developer. See also User Interface.

User Interface

The part of an Oracle Configurator implementation that provides the graphical views
necessary to create configurations interactively. A user interface is generated from the
model structure. It interacts with the model definition and the generated logic to give
end users access to customer requirements gathering, product selection, and any
extensions that may have been implemented. See also UI Templates.

V

validation

Tests that ensure that configured components will meet specific criteria set by an
enterprise, such as that the components can be ordered or manufactured.

W

Workbench

Set of pages in Oracle Configurator Developer for creating, editing, and working with
Repository objects such as Models and UI Templates.

Index-1

Index

A
Access control

Function security, 15-2
Active Model

See configuration models
Administration

Oracle Configurator ADMN subschema, D-1
ADMN subschema

CZ_DB_LOGS, D-1
CZ_DB_SETTINGS, D-1
CZ_DB_SIZES, D-1

Advanced Pricing
integration, 13-11
pricing method, 9-15

alt_database_name (initialization parameter), 9-
19
AltBatchValidateURL

CZ_DB_SETTINGS, 4-12
usage, 4-15

AOL/J (Applications Object Library/Java classes)
connection pooling, 20-4
security, 20-8

Apache
servlet engine

number of instances, 20-3
setup, 1-5

Apache Web listener
load balance

deployment task, 1-8
API

version numbers, 18-9

APIs
COMMON_BILL_FOR_ITEM, 17-14
CONFIG_MODEL_FOR_ITEM, 17-15
CONFIG_MODEL_FOR_PRODUCT, 17-19
CONFIG_MODELS_FOR_ITEMS, 17-17
CONFIG_MODELS_FOR_PRODUCTS, 17-21
CONFIG_UI_FOR_ITEM, 17-23
CONFIG_UI_FOR_ITEM_LF, 17-26
CONFIG_UI_FOR_PRODUCT, 17-29
CONFIG_UIS_FOR_ITEMS, 17-31
CONFIG_UIS_FOR_PRODUCTS, 17-34
COPY_CONFIGURATION, 17-37
COPY_CONFIGURATION_AUTO, 17-42, 17-
45
CREATE_JRAD_UI, 18-17
CREATE_RP_FOLDER, 18-12
CREATE_UI, 18-14
CZ_CONFIG_API_PUB.COPY_CONFIGURA
TION, 17-39
CZ_CONFIG_API_PUB.COPY_CONFIGURA
TION_AUTO, 17-45
CZ_CONFIG_API_PUB.VERIFY_CONFIGUR
ATION, 17-72
DEEP_MODEL_COPY, 18-19
DEFAULT_NEW_CFG_DATES, 17-48
DEFAULT_RESTORED_CFG_DATES, 17-49
DELETE_CONFIGURATION, 17-51
EXECUTE_POPULATOR, 18-20
GENERATE_LOGIC, 18-25
ICX_SESSION_TICKET, 17-53
IMPORT_GENERIC, 18-27
IMPORT_SINGLE_BILL, 18-26
MIGRATE_MODELs, 18-30

Index-2

MODEL_FOR_ITEM, 17-54
MODEL_FOR_PUBLICATION_ID, 17-56
POOL_TOKEN_FOR_PRODUCT_KEY, 17-57
PUBLICATION_FOR_ITEM, 17-58
PUBLICATION_FOR_PRODUCT, 17-59
PUBLICATION_FOR_SAVED_CONFIG, 17-
61
PUBLISH_MODEL, 18-29
REFRESH_JRAD_UI, 18-34
REFRESH_SINGLE_MODEL, 18-32
REFRESH_UI, 18-33
REGISTER_MODEL_TO_POOL, 17-63
REPOPULATE, 18-35
UI_FOR_ITEM, 17-66
UI_FOR_PUBLICATION_ID, 17-68
UNREGISTER_MODEL_FROM_POOL, 17-64
UNREGISTER_POOL, 17-65
VALIDATE, 17-69

ApJServVMTimeout, 1-9
applicability parameters

Applications, 16-9
calling_application_id, 17-9
config_lookup_date, 17-9
Date Range, 16-10
definition and listing, 16-8
initialization message, 17-9
language, 17-10
Languages, 16-9
Mode, 16-8
product_key, 17-10
publication_mode, 17-10
publishing, 9-13
usage_name, 17-10
Usages, 16-9

APPLICATION_ID (database column)
host application, 9-20, 9-20

application_id (initialization parameter), 9-20
application program interfaces

See APIs
applications

stateful, 20-6
Applications

applicability parameter
CZ_EXT_APPLICATIONS, 16-9

calling_application_id (initialization
parameter), 9-20

apps_connection_info (initialization parameter),

9-20
architecture

configurator, 2-1
development three tier, 2-11
multitiered, 2-9
Oracle Configurator ATP, 13-2
Oracle Configurator Developer, 2-2
Oracle Configurator pricing, 13-2
runtime four tiers, 2-10
runtime Oracle Configurator, 2-2
runtime three tiers, 2-10

ATO (Assemble To Order)
implicit rules when importing, 5-6
preparing the BOM, 5-8

atp_date (XML element), 10-9
atp_package_name (initialization parameter), 9-
20
atp_package_name (initialization parameter), 9-
15
ATP (Available To Promise)

architecture, 13-2
creating BOM Models, 5-9
custom Web application, 13-1
initialization parameters

atp_package_name, 9-15
configurator_session_key, 9-15

initialization parameters
customer_id, 9-16
customer_site_id, 9-16
get_atp_dates_proc, 9-15
operating_unit_org_id, 9-15, 9-16
requested_date, 9-16
ship_to_org_id, 9-16
warehouse_id, 9-16

atp-rollup-date (XML element), 10-9
Available To Promise

See ATP (Available To Promise)

B
BadItemPropertyValue

CZ_DB_SETTINGS, 4-12
disposition codes, 4-16
usage, 4-16

BatchSize
CZ_DB_SETTINGS, 4-12
usage, 4-16

Index-3

batch validation
calling, 11-2
configured item, 21-5
CZ: Fail BV if Configuration Changed, 11-9
CZ: Fail BV If Input Quantities Not
Maintained, 11-9
CZ: Skip Validation Procedure, 11-9
definition, 2-4, 11-1
message, 11-2, 21-6
tasks performed, 11-2
UtlHttpTransferTimeout, 4-25
VALIDATE procedure, 11-4

bitmap files, 12-3
BMP files

See bitmap files
BOM

data, 13-11
imported data, 5-6

BOM_EXPLOSIONS (database table)
BOM_BILL_OF_MATERIAL, 4-23
BOM_INVENTORY_COMPONENTS, 4-24
configuration output, 10-10
data refresh, 4-23
DESCRIPTION field in CZ_INTL_TEXTS, 4-23

bom_item_type (XML element), 10-9
BOM_REVISION

CZ_DB_SETTINGS, 4-12
usage, 4-17

BOM: Configurator URL of UI Manager
host application, 2-4
profile option, 19-2

BOM Allowed
importing components, 5-9

BOM Models
defining an ATO for import, 5-8
defining an Item Type for import, 5-8
defining a PTO for import, 5-8
exploding BOMs for import, 4-23
imported BOM rules, 5-6
imported data, 5-6
imported Properties, 5-8
importing

common bills, 5-21
locking Models, 5-3

Mutually Exclusive Items, 5-9
mutually exclusive rules, 5-6
NOUPDATE flag for populating and

refreshing, 4-10
ORIG_SYS_REF, 7-4
referencing a common bill, 5-21
synchronizing BOMs, 7-2

BOM Option Classes
Mutually Exclusive Items, 5-9

bom-quantity (XML element), 10-10
BOM Standard Items

definition, 5-8
BOM Synchronization

Check All Models/Bills Similarity
concurrent program, C-27

Check Model/Bill Similarity
concurrent program, C-25

concurrent programs, 7-6
CZ_DEVL_PROJECTS, 7-4
CZ_ITEM_MASTERS, 7-3, 7-4
CZ_ITEM_PROPERTY_VALUES, 7-6
CZ_ITEM_TYPE_PROPERTY_VALUES, 7-6
CZ_ITEM_TYPES, 7-4
CZ_LOCALIZED_TEXTS, 7-5
CZ_MODEL_PUBLICATIONS, 7-5
CZ_PS_NODES, 7-3, 7-5
CZ_XFR_PROJECT_BILLS, 7-5
imported Properties, 7-6
import server, 5-10
MTL_SYSTEM_ITEMS, 7-3
synchronized fields, 7-4
validation criteria, 7-3

BOM Synchronized fields
COMPONENT_ITEM_ID (database column),
7-5
COMPONENT_SEQUENCE_ID (database
column), 7-5
COMPONENT_SEQUENCE_PATH (database
column), 7-5
ORGANIZATION_ID (database column), 7-5
ORIG_SYS_REF (database column), 7-4
PRODUCT_KEY (database column), 7-5
SOURCE_SERVER (database column), 7-5
TOP_ITEM_ID (database column), 7-5, 7-5

browser
configuring for MLS, 1-2

C
caching, 9-34

Index-4

connection cache, 20-4
managing the Oracle Configurator data cache,
B-4
of list prices, 13-9

call_atp() procedure, 13-9
example, E-3

callback interface
ATP example, 13-9
ATP parameters, 13-8
ATP parameters

parameters, 9-15
See also initialization

Multiple Items parameters, 13-5
pricing example, 13-7
pricing parameters, 9-15
pricing procedure example, E-2

calling_application_id (applicability parameter),
17-9
calling_application_id (initialization parameter),
9-6, 9-20
CDL (Constraint Definition Language)

importing rules, 5-21
CIO (Configuration Interface Object)

definition, 2-7
tuning, 2-7

CLASSPATH
environment variables, 12-2

client_header (initialization parameter), 9-21
client_line_detail (initialization parameter), 9-22
client_line (initialization parameter), 9-22
CNFG subschema

CZ_ATP_REQUESTS, D-3
CZ_CONFIG_ATTRIBUTES, D-1
CZ_CONFIG_CONTENTS_V, D-1
CZ_CONFIG_DETAILS_V, D-1
CZ_CONFIG_EXT_ATTRIBUTES, D-1
CZ_CONFIG_HDRS, D-2
CZ_CONFIG_HDRS_V, D-2
CZ_CONFIG_INPUTS, D-2
CZ_CONFIG_ITEMS, D-2
CZ_CONFIG_ITEMS_V, D-2
CZ_CONFIG_MESSAGES, D-2
CZ_CONFIG_MESSAGES_V, D-2
CZ_CONFIG_USAGES, D-2
CZ_PRICING_STRUCTURES, D-3

collections
custom data type, 17-10

CommitSize
CZ_DB_SETTINGS, 4-12
usage, 4-17

COMMON_BILL_FOR_ITEM (API), 17-14
common bill

importing, 5-21
complete_configuration (XML element), 10-6
COMPONENT_CODE (database column), 10-10
component_code (XML element), 10-10, 10-11
COMPONENT_ITEM_ID (database column)

BOM synchronization, 7-5
COMPONENT_SEQUENCE_ID (database
column)

BOM synchronization, 7-5
COMPONENT_SEQUENCE_PATH (database
column)

BOM synchronization, 7-5
concurrent programs

Add Application to Publication Applicability
List, C-9
Check All Models/Bills Similarity, C-27
Check Model/Bill Similarity, C-25
Convert Publication Target Instance to
Development Instance, C-8
Define Remote Server, C-10
Disable/Enable Refresh of a Configuration
Model, C-23
editing Oracle Configurator settings, 4-11
Enable/Disable Refresh of a Configuration
Model, 5-17
Enable Remote Server, C-12
Enable Remote Server, C-20
Execute Populators in Model, C-29
Import Configuration Rules, 5-29, C-23
importing configuration rules, 5-3
importing data, 13-11
importing data, 5-3
Migrate All Functional Companions, C-33
Migrate Configurator Data, C-32
Migrate Functional Companions for a Single
Model, C-34
migrating data, 5-3
Modify Configurator Parameters, C-3
Modify Server Definition, 5-10, C-21
Populate Configuration Models, C-19
Process a Single Publication, 16-13, C-17
Process a Single Publication, C-17

Index-5

Process Pending Publications, 16-13, C-16
Purge Configurator Import Tables, 8-3, C-5
Purge Configurator Import Tables, C-5
Purge Configurator Tables, 8-2
Purge Configurator Tables, C-4
Purge To Date Configurator Import Tables, 8-3
Purge To Date Configurator Import Tables, C-
6
Purge To Run ID Configurator Import Tables,
8-3
Purge To Run ID Configurator Import Tables,
C-7
Refresh All Imported Configuration Models,
C-22
Refresh All Previously Imported Models, 5-16
Refresh a Single Configuration Model, C-21
Refresh a Single Configuration Model, 5-17
Requests

Select Tables to be Imported, C-43
responsibilities, 1-2
Select Tables to be Imported, 5-32
Setup Configurator Data Migration, C-30
Show Tables to be Imported, 5-12
Synchronize All Models, 7-6
Synchronize Cloned Source Data, C-41
Synchronize Cloned Target Data, C-40
View Configurator Parameters, C-2
viewing requests, B-4
View Servers, C-13

config_creation_date
CZ_DB_SETTINGS value, 4-14
usage in CZ_DB_SETTINGS, 4-23

config_creation_date (initialization parameter), 9-
22
config_effective_date (initialization parameter),
9-23
config_effective_usage_id (initialization
parameter), 9-12, 9-23
config_effective_usage (initialization parameter),
9-23
CONFIG_HDR_ID (database column), 9-24
config_header_id (initialization parameter), 9-11,
9-24
config_header_id (XML element), 10-6
CONFIG_ITEM_ID (database column)

configuration output, 10-10
configuration output for parent node, 10-10

usage in pricing, 13-7
config_lookup_date (applicability parameter),
17-9
config_messages (XML element), 10-11, 10-11
CONFIG_MODEL_FOR_ITEM (API), 17-15
CONFIG_MODEL_FOR_PRODUCT (API), 17-19
config_model_lookup_date (initialization
parameter), 9-24
CONFIG_MODELS_FOR_ITEMS (API), 17-17
CONFIG_MODELS_FOR_PRODUCTS (API), 17-
21
config_outputs (XML element), 10-9
CONFIG_REV_NBR (database column), 9-25
config_rev_nbr (initialization parameter), 9-11, 9-
25
config_rev_nbr (XML element), 10-6
config_total_price (pricing procedure parameter),
13-5
CONFIG_UI_FOR_ITEM_LF (API), 17-26
CONFIG_UI_FOR_ITEM (API), 17-23
CONFIG_UI_FOR_PRODUCT (API), 17-29
CONFIG_UIS_FOR_ITEMS (API), 17-31
CONFIG_UIS_FOR_PRODUCTS (API), 17-34
Configuration

Oracle Configurator CNFG subschema, D-1
configuration attributes

importing, 1-4
input, 9-22
input, 9-21, 9-22

configuration files
cz_init.txt, 1-5

Configuration Interface Object
See CIO (Configuration Interface Object)

configuration models
communication with user interface, 2-7
Configurator Extensions, 2-9
managing saved configurations, 21-5
OC Servlet, 2-6
runtime Oracle Configurator, 2-6
saved revisions, 21-4
testing

system, 3-9
unit, 3-8

configuration outputs, 10-8
configurations

canceled, 21-2
complete, 21-2

Index-6

incomplete, 21-2
inputs, 21-2
invalid, 21-2
new, 21-2
restoring saved configurations

determining values, 17-49
Instantiability changes, 21-7
orders from previous publications, 16-18
state, 21-2

valid, 21-2
configuration session, 10-8

ATP dates, 13-9
batch_validate, 11-2
configuration messages, 10-11
configurator_session_key, 9-25
connection pooling, 20-4
end user access, 2-3
ICX_SESSION_TICKET, 17-53
initialization message, 2-5, 9-3
log files, 9-8
model quantity change, 9-27
pricing, 13-7
return URL, 9-14, 9-33
runtime pricing behavior, 13-9
saving a configuration, 21-2
termination message, 9-14, 10-7
UI read only, 9-32

configuration tables
ADMN subschema, D-1
CNFG subschema, D-1
ITEM subschema, D-2
LCE subschema, D-2
PB subschema, D-3
PRC subschema, D-3
PROJ subschema, D-4
RULE subschema, D-10
UI subschema, D-12

configurator
architecture, 2-1

Configurator, 19-1
See also Java applet

configurator_session_key (ATP procedure
parameter), 13-8
CONFIGURATOR_SESSION_KEY (database
column), 13-6
configurator_session_key (initialization
parameter), 9-15, 9-25

configurator_session_key (initialization
parameter), 9-15
configurator_session_key (pricing procedure
parameter), 13-4
Configurator Extensions

concurrent programs for migrating to, C-32
importing, 1-4, 5-3
Multiple Organization Access Control, 9-29
tuning, 2-7

Configure button, 9-2, 13-2
configuring

usage of initialization parameters, 9-31
context_org_id (initialization parameter), 9-12, 9-
25
control tables, 5-31

role in importing data, 4-9
conventions

used in this guide, 1-9
COPY_CONFIGURATION_AUTO (API), 17-42,
17-45
COPY_CONFIGURATION (API), 17-37, 17-39
copying

host application entity, 21-7
Models

programmatically, 18-19
publications, 16-6

without rules, 4-20
CREATE_JRAD_UI (API), 18-17
CREATE_RP_FOLDER (API), 18-12
CREATE_UI (API), 18-14
currency display, 9-30
custom data types

collections, 17-10
in CZ_CF_API, 17-11
record, 17-11
subtype, 17-11
table, 17-11

customer_id (ATP procedure parameter), 13-8
customer_id (initialization parameter), 9-25
customer_id (initialization parameter), 9-16
customer_site_id (ATP procedure parameter), 13-
8
customer_site_id (initialization parameter), 9-25
customer_site_id (initialization parameter), 9-16
custom user interface

developed with CIO, 2-5
custom Web application

Index-7

initialization parameters, 9-10
pricing and ATP integration, 13-1

CZ_ACCESS_SUMMARY_LKV (database table)
table in RP subschema, D-5

CZ_ACTIONDISPLAYUPDT_LKV (database
table)

table in RP subschema, D-5
CZ_ACTIONMODELINTER_LKV (database
table)

table in RP subschema, D-5
CZ_ACTIONNAV_LKV (database table)

table in RP subschema, D-5
CZ_ACTIONRULENODES_LKV (database table)

table in RP subschema, D-5
CZ_ACTIONSESSIONCTRL_LKV (database
table)

table in RP subschema, D-5
CZ_ACTIONSONMODELNODES_LKV
(database table)

table in RP subschema, D-5
CZ_ACTIONSONREPOSITORYN_LKV
(database table)

table in RP subschema, D-5
CZ_ACTIONTYPEGROUP_LKV (database table)

table in RP subschema, D-5
CZ_AMPM_LKV (database table)

table in RP subschema, D-5
CZ_ANYALLTRUE_LKV (database table)

table in RP subschema, D-5
CZ_ARCHIVE_REFS (database table)

table in RP subschema, D-6
CZ_ARCHIVES_PICKER_V (database table)

table in RP subschema, D-6
CZ_ARCHIVES (database table)

table in RP subschema, D-6
CZ_ASSOCIATEDMODELNODE_LKV
(database table)

table in RP subschema, D-6
CZ_ATP_REQUESTS (interface table)

custom Web ATP integration, 13-1
table in CNFG subschema, D-3
usage in ATP callback, 13-9
usage in ATP package, 13-9

CZ_BASIC_LAYOUT_REGION_LKV (database
table)

table in RP subschema, D-6
CZ_CAPCONFIGSYSPROP_LKV (database

table)
table in RP subschema, D-6

CZ_CAPMSGSYSPROP_LKV (database table)
table in RP subschema, D-6

CZ_CAPNODESYSPROP_LKV (database table)
table in RP subschema, D-6

CZ_CF_API (package), 17-3
batch validation, 11-2
reference for, 17-11

CZ_CFG_SAVEASBEHAVIOR_LKV (database
table)

table in RP subschema, D-6
CZ_CFG_SEARCHCRITERIA_LKV (database
table)

table in RP subschema, D-6
CZ_CFGEXT_ARGS_SPEC_TYPE_LKV
(database table)

table in RP subschema, D-6
CZ_CFGEXT_EVENT_SCOPE_LKV (database
table)

table in RP subschema, D-6
CZ_CFGEXT_INST_SCOPE_LKV (database
table)

table in RP subschema, D-6
CZ_CFGEXT_SYSTEM_PARAMS_LKV
(database table)

table in RP subschema, D-6
CZ_COMBO_FEATURES (database table)

table in RULE subschema, D-10
CZ_COMMON_CHILDNDPROPS_V (database
table)

table in PROJ subschema, D-4
CZ_COMPAT_TEMPL_SIGS_V (database table)

table in RP subschema, D-6
CZ_COMPATCELL_NODE_V (database table)

table in RULE subschema, D-10
CZ_CONFIG_API_PUB.COPY_CONFIGURATI
ON_AUTO (API), 17-45
CZ_CONFIG_API_PUB.COPY_CONFIGURATI
ON (API), 17-39
CZ_CONFIG_API_PUB.VERIFY_CONFIGURAT
ION (API), 17-72
CZ_CONFIG_API_PUB (package), 17-3

reference for, 17-11
CZ_CONFIG_ATTRIBUTES (interface table)

table in CNFG subschema, D-1
CZ_CONFIG_CONTENTS_V (database table)

Index-8

table in CNFG subschema, D-1
CZ_CONFIG_DETAILS_V (database table)

table in CNFG subschema, D-1
CZ_CONFIG_EXT_ATTRIBUTES (database
table)

table in CNFG subschema, D-1
CZ_CONFIG_HDRS_V (database table)

table in CNFG subschema, D-2
CZ_CONFIG_HDRS (database table)

table in CNFG subschema, D-2
usage in initialization message, 9-25

CZ_CONFIG_HDRS (database table)
usage in initialization message, 9-24

CZ_CONFIG_INPUTS (database table)
table in CNFG subschema, D-2

CZ_CONFIG_ITEMS_V (database table)
table in CNFG subschema, D-2

CZ_CONFIG_ITEMS (database table)
configuration output, 10-10
configuration output for parent node, 10-10
table in CNFG subschema, D-2

CZ_CONFIG_MESSAGES_V (database table)
table in CNFG subschema, D-2

CZ_CONFIG_MESSAGES (database table)
table in CNFG subschema, D-2

CZ_CONFIG_USAGES (database table)
table in CNFG subschema, D-2

CZ_CONVERSION_RELS_V (database table)
table in PROJ subschema, D-4

CZ_COPYDESTINATION_LKV (database table)
table in RP subschema, D-6

CZ_COPYSOURCE_LKV (database table)
table in RP subschema, D-6

CZ_CREATEOPTIONPSNODETY_LKV
(database table)

table in RP subschema, D-6
CZ_CREATEPSNODEPSNODETY_LKV
(database table)

table in RP subschema, D-6
CZ_CREATEREPOSITORYOBJE_LKV (database
table)

table in RP subschema, D-6
CZ_CREATERULEOBJECT_LKV (database
table)

table in RP subschema, D-6
CZ_DATA_SUBTYPES_V (database table)

table in TYP subschema, D-12

CZ_DATA_TYPES_V (database table)
table in PROJ subschema, D-4

CZ_DATATYPE_LKV (database table)
table in RP subschema, D-6

CZ_DB_LOGS (database table)
table in ADMN subschema, D-1

CZ_DB_SETTINGS (database table)
AltBatchValidateURL, 4-15
BadItemPropertyValue, 4-16
BatchSize, 4-16
BOM_REVISION, 4-17
CommitSize, 4-17
customizable settings, 1-3
DISPLAY_INSTANCE_NAME, 4-17
FREEZE_REVISION, 4-18
GenerateGatedCombo, 4-18
GenerateUpdatedOnly, 4-18
GenStatisticsCZ, 4-18
MAJOR_VERSION, 4-18, B-3
MaximumErrors, 4-18
MemoryBulkSize, 4-19
MINOR_VERSION, 4-19, B-3
MULTISESSION, 4-19
OracleSequenceIncr, 4-19
PsNodeName, 4-20
PublicationLocalBOMSynch, 4-20
PublicationLogging, 4-20
PublishingCopyRules, 4-20
RefPartNbr, 4-21
ResolvePropertyDataType, 5-9
ResolvePropertyDataType, 4-22
RestoredConfigDefaultModelLookupDate, 4-
23
Revision Date/User, 4-23
RUN_BILL_EXPLODER, 4-23
sections

IMPORT, 4-11
LogicGen, 4-11
ORAAPPS_INTEGRATE, 4-11
SCHEMA, 4-11
UISERVER, 4-11

SETTING_ID
OracleSequenceIncr, 4-13
Revision Date/User, 4-14

SETTING_ID
AltBatchValidateURL, 4-12
BadItemPropertyValue, 4-12

Index-9

BatchSize, 4-12
BOM_REVISION, 4-12
CommitSize, 4-12
DISPLAY_INSTANCE_NAME, 4-12
FREEZE_REVISION, 4-12
GenerateGatedCombo, 4-12
GenerateUpdatedOnly, 4-12
GenStatisticsBOM, 4-13
GenStatisticsCZ, 4-13
MAJOR_VERSION, 4-13
MaximumErrors, 4-13
MemoryBulkSize, 4-13
MINOR_VERSION, 4-13
MULTISESSION, 4-13
PsNodeName, 4-13
PublicationLocalBOMSynch, 4-14
PublicationLogging, 4-13
PublishingCopyRules, 4-14
PurgeDeleteConfigBatchsize, 4-14, 4-21
RefPartNbr, 4-14
ResolvePropertyDataType, 4-14
RestoredConfigDefaultModelLookupDat
e, 4-14
RUN_BILL_EXPLODER, 4-14
SuppressSuccessMessage, 4-14
TimeImport, 4-15
UI_NODE_NAME_CONCAT_CHARS,
4-15
UseLocalTableInExtractionViews, 4-15
UtlHttpTransferTimeout, 4-15

SuppressSuccessMessage, 4-24
table in ADMN subschema, D-1
TimeImport, 4-24
UI_NODE_NAME_CONCAT_CHARS, 4-24
usage, 4-10
UseLocalTableInExtractionViews, 4-25
UtlHttpTransferTimeout, 4-25

CZ_DB_SIZES (database table)
table in ADMN subschema, D-1

CZ_DES_CHART_CELLS (database table)
table in RULE subschema, D-10

CZ_DES_CHART_COLUMNS (database table)
table in RULE subschema, D-10

CZ_DES_CHART_FEATURES (database table)
table in RULE subschema, D-10

CZ_DETAILEDRULETYPES_LKV (database
table)

table in RP subschema, D-6
CZ_DETLSELECTIONSTATE_LKV (database
table)

table in RP subschema, D-6
CZ_DEVL_PROJECTS (database table)

synchronized fields, 7-4
table in PROJ subschema, D-4

CZ_EFFECTIVITY_SETS (database table)
importing dependency, 4-9
table in PB subschema, D-3

CZ_EFFECTIVITYMETHODS_LKV (database
table)

table in RP subschema, D-7
CZ_EFFECTIVITYTYPE_LKV (database table)

table in RP subschema, D-7
CZ_EFFSETS_PICKER_V (database table)

table in RP subschema, D-7
CZ_EVENTTYPES_LKV (database table)

table in RP subschema, D-7
CZ_EXNEXPRTYPE_LKV (database table)

table in RP subschema, D-7
CZ_EXPLMODEL_NODES_V (database table)

table in PROJ subschema, D-4
CZ_EXPLNODES_WITHIMAGES_V (database
table)

table in PROJ subschema, D-4
CZ_EXPRESSION_NODES (database table)

table in RULE subschema, D-11
CZ_EXT_APPLICATIONS_V (database table)

table in PB subschema, D-3
CZ_EXT_APPLICATIONS (database table)

publishing applications, 16-9
publishing application table, 16-6
table in PB subschema, D-3

CZ_FEATURETYPE_LKV (database table)
table in RP subschema, D-7

CZ_FILTER_SETS (database table)
table in RULE subschema, D-11

CZ_FUNC_COMP_SPECS (database table)
table in PROJ subschema, D-4

CZ_GRID_CELLS (database table)
table in RULE subschema, D-11

CZ_GRID_COLS (database table)
table in RULE subschema, D-11

CZ_GRID_DEFS (database table)
table in RULE subschema, D-11

CZ_HORIZONTALALIGNMENT_LKV

Index-10

(database table)
table in RP subschema, D-7

CZ_HOURS_LKV (database table)
table in RP subschema, D-7

CZ_ICONLOOKUP_LKV (database table)
table in RP subschema, D-7

CZ_IMAGELOOKUPS_V (database table)
table in RP subschema, D-7

CZ_IMP_DEVL_PROJECT (interface table)
importing dependency, 4-8, 4-8, 4-9
order during populating import tables, 5-12
table in PROJ subschema, D-4

CZ_IMP_INTL_TEXT (interface table)
importing dependency, 4-8

CZ_IMP_ITEM_MASTER (interface table)
importing dependency, 4-7, 4-8, 4-8
order during populating import tables, 5-12
table in ITEM subschema, D-2

CZ_IMP_ITEM_PROPERTY_VALUE (interface
table)

BadItemPropertyValue, 4-16
importing dependency, 4-8
order during populating import tables, 5-12
table in ITEM subschema, D-2
values for custom import, 5-33

CZ_IMP_ITEM_TYPE_PROPERTY (interface
table)

importing dependency, 4-8
order during populating import tables, 5-12
table ITEM subschema, D-2

CZ_IMP_ITEM_TYPE (interface table)
importing, 4-1
importing dependency, 4-7, 4-8, 4-8
order during populating import tables, 5-12
table in ITEM subschema, D-2

CZ_IMP_LOCALIZED_TEXTS (interface table)
imported rule data, 5-28
importing

legacy rules, 5-29
populate fields, 5-24

importing dependency, 4-8
order during populating import tables, 5-12
table in UI subschema, D-11

CZ_IMP_MODEL_REF_EXPLS (interface table)
table in PROJ subschema, D-4

CZ_IMP_PROPERTY (interface table)
importing dependency, 4-3, 4-8, 4-8

order during populating import tables, 5-12
table in ITEM subschema, D-2
values for custom import, 5-33

CZ_IMP_PS_NODES (interface table)
importing dependency, 4-9
order during populating import tables, 5-12
table in PROJ subschema, D-4

CZ_IMP_RULES (interface table)
imported rule data, 5-27
importing

legacy rules, 5-29
populate fields, 5-22

table in RULE subschema, D-11
CZ_INTL_TEXTS (database table)

usage in exploding BOMs, 4-23
CZ_ITEM_MASTERS (database table)

BOM synchronization, 7-3
DECIMAL_QTY_FLAG, 5-14
RefPartNbr setting in CZ_DB_SETTINGS, 4-21
synchronized fields, 7-4
table in ITEM subschema, D-2

CZ_ITEM_PROPERTY_VALUES (database table)
BOM synchronization, 7-6
table in ITEM subschema, D-2

CZ_ITEM_TYPE_PROPERTIES (database table)
BOM synchronization, 7-6
table in ITEM subschema, D-2

CZ_ITEM_TYPES (database table)
synchronized fields, 7-4
table in ITEM subschema, D-2

CZ_ITEMMASTEROPS_LKV (database table)
table in RP subschema, D-7

CZ_ITEMTYPE_LKV (database table)
table in RP subschema, D-7

CZ_ITEMTYPEOPERATOR_LKV (database
table)

table in RP subschema, D-7
CZ_JAVASYSPROPVALS_LKV (database table)

table in RP subschema, D-7
CZ_JRAD_CHUNKS (database table)

table in UI subschema, D-12
CZ_LAYOUT_UI_STYLE_LKV (database table)

table in RP subschema, D-7
CZ_LAYOUTREGIONS_LKV (database table)

table in RP subschema, D-7
CZ_LCE_CLOBS (database table)

table in LCE subschema, D-2

Index-11

CZ_LCE_HEADERS (database table)
table in LCE subschema, D-2

CZ_LCE_LINES (database table)
table in LCE subschema, D-3

CZ_LCE_LOAD_SPECS (database table)
table in LCE subschema, D-3

CZ_LCE_OPERANDS (database table)
table in LCE subschema, D-3

CZ_LCE_TEXTS (database table)
table in LCE subschema, D-3

CZ_LISTLAYOUTREGIONS_LKV (database
table)

table in RP subschema, D-7
CZ_LOCALIZED_TEXTS (database table)

synchronized fields, 7-5
table in UI subschema, D-11
tooltip translations, 14-2
translation strings, 14-3

CZ_LOCK_HISTORY (database table)
table in RP subschema, D-7

CZ_LOGICRULE_LKV (database table)
table in RP subschema, D-7

CZ_LOOKUP_VALUES_VL (database table)
table in RP subschema, D-7

CZ_LOOKUP_VALUES (database table)
table in RP subschema, D-7

CZ_MDLNODE_CPDST_LKV (database table)
table in RP subschema, D-7

CZ_MDLNODE_CPSRC_LKV (database table)
table in RP subschema, D-7

CZ_MENUITEMTYPES_LKV (database table)
table in RP subschema, D-7

CZ_MENUTYPES_LKV (database table)
table in RP subschema, D-8

CZ_MINUTES_LKV (database table)
table in RP subschema, D-8

CZ_MODEL_ALL_RULEFOLDERS_V (database
table)

table in RULE subschema, D-11
CZ_MODEL_ARCHIVES_V (database table)

table in PROJ subschema, D-4
CZ_MODEL_BOMREF_COUNTS_V (database
table)

table in PROJ subschema, D-4
CZ_MODEL_PUBLICATIONS (database table),
9-31

publication table, 16-5

publication table, 16-6
publishing, 16-16
synchronized fields, 7-5
table in PB subschema, D-3

CZ_MODEL_REF_EXPLS (database table)
importing dependency, 4-9
table in PROJ subschema, D-4

CZ_MODEL_REFERENCES_PICKER_V
(database table)

table in RP subschema, D-8
CZ_MODEL_USAGES_TL (database table)

publication table, 16-6
table in PB subschema, D-3

CZ_MODEL_USAGES (database table)
publication table, 16-6
table in PB subschema, D-3

CZ_MODEL_USAGES (database table)
usage in initialization message, 9-24
usage in publishing, 16-9, 16-9

CZ_modelOperations_pub (package), 18-2
reference for, 18-9

CZ_MODELRULEFOLDER_IMAGES_V
(database table)

table in RULE subschema, D-11
CZ_MODELS_V (database table)

table in PROJ subschema, D-4
CZ_MSGLISTLAYOUTREGIONS_LKV
(database table)

table in RP subschema, D-8
CZ_NODE_CAPTION_PROPERTIES_V
(database table)

table in PROJ subschema, D-4
CZ_NODE_DISPCOND_PROPERTIES_V
(database table)

table in TYP subschema, D-12
CZ_NODE_JAVA_PROPERTIES_V (database
table)

table in PROJ subschema, D-4
CZ_NODE_NO_PROPERTIES_V (database
table)

table in PROJ subschema, D-4
CZ_NODE_RULE_PROPERTIES_V (database
table)

table in PROJ subschema, D-4
CZ_NODE_USAGE_IN_RULES_V (database
table)

table in RULE subschema, D-11

Index-12

CZ_NODE_USER_PROPERTIES_V (database
table)

table in PROJ subschema, D-4
CZ_NODEINSTANTIABILITY_LKV (database
table)

table in RP subschema, D-8
CZ_NODELIST_LAYOUT_REGION_LKV
(database table)

table in RP subschema, D-8
CZ_NODELISTLAYOUTREGIONS_LKV
(database table)

table in RP subschema, D-8
CZ_NODETYPE_PROPERTIES_V (database
table)

table in TYP subschema, D-12
CZ_NODETYPE_SYSPROPS_V (database table)

table in RULE subschema, D-11
CZ_OTHERCONTENT_LKV (database table)

table in RP subschema, D-8
CZ_PARENT_CHILD_RELS_V (database table)

table in TYP subschema, D-12
CZ_PB_CLIENT_APPS (database table)

publications, 16-16
publication table, 16-6
publishing applications, 16-9
table in PB subschema, D-3

CZ_PB_LANGUAGES (database table)
publication table, 16-6
table in PB subschema, D-3

CZ_PB_MODEL_EXPORTS (database table)
publication table, 16-6
publishing, 16-17
table in PB subschema, D-3

CZ_PB_TEMP_IDS (database table)
table in PB subschema, D-3

CZ_POPULATORS (database table)
table in PROJ subschema, D-4

CZ_PRICING_STRUCTURES (interface table)
custom Web pricing integration, 13-1
pricing limitations, 13-7
runtime pricing usage, 13-3
table description, 13-5
table in CNFG subschema, D-3
usage in multiple items procedures, 13-5

CZ_PROPERTIES (database table)
table in ITEM subschema, D-2

CZ_PROPERTY_PICKER_V (database table)

table in RP subschema, D-8
CZ_PS_NODES (database table)

BOM synchronization, 7-3
DECIMAL_QTY_FLAG, 5-14
synchronized fields, 7-5
table in PROJ subschema, D-5

CZ_PS_PROP_VALS (database table)
table in PROJ subschema, D-5

CZ_PS_UI_CTRL_MAPS (database table)
table in UI subschema, D-12

CZ_PSN_TYPED_RULE_REFS_V (database
table)

table in RULE subschema, D-11
CZ_PSNODE_REFRULE_IMAGES_V (database
table)

table in PROJ subschema, D-4
CZ_PSNODE_REFUI_IMAGES_V (database
table)

table in PROJ subschema, D-4
CZ_PSNODE_RULE_REFS_V (database table)

table in PROJ subschema, D-5
CZ_PSNODE_WITH_UIREFS_V (database table)

table in PROJ subschema, D-5
CZ_PSNODERELATION_LKV (database table)

table in RP subschema, D-8
CZ_PSNODETYPE_IMAGES_V (database table)

table in UI subschema, D-12
CZ_PSNODETYPE_LKV (database table)

table in RP subschema, D-8
CZ_PUBLICATION_USAGES (database table)

publication table, 16-6
publishing, 16-16
table in PB subschema, D-3

CZ_PUBLICATIONMODE_LKV (database table)
table in RP subschema, D-8

CZ_RECALCULATEPRICES_LKV (database
table)

table in RP subschema, D-8
CZ_REPOS_TREE_V (database table)

table in RP subschema, D-8
CZ_REPOSCREATEOPS_LKV (database table)

table in RP subschema, D-8
CZ_REPOSITORY_MAIN_HGRID_V (database
table)

table in RP subschema, D-8
CZ_REPOSITORYCOPYDESTIN_LKV (database
table)

Index-13

table in RP subschema, D-8
CZ_REPOSITORYCOPYMODELO_LKV
(database table)

table in RP subschema, D-8
CZ_RP_BOM_MODELS_V (database table)

table in RP subschema, D-8
CZ_RP_DIRECTORY_V (database table)

table in RP subschema, D-8
CZ_RP_EFF_DIRECTORY_V (database table)

table in RP subschema, D-8
CZ_RP_ENTRIES (database table)

table in RP subschema, D-8
CZ_RP_PRJ_DIRECTORY_V (database table)

table in RP subschema, D-8
CZ_RP_USG_DIRECTORY_V (database table)

table in RP subschema, D-9
CZ_RPOBJECTTYPES_LKV (database table)

table in RP subschema, D-8
CZ_RTCONDCOMPAR_LKV (database table)

table in RP subschema, D-9
CZ_RTCONDOBJSETTINGS_LKV (database
table)

table in RP subschema, D-9
CZ_RUL_TYPEDPSN_V (database table)

table in RULE subschema, D-11
CZ_RULE_EXPRDETLS_V (database table)

table in RULE subschema, D-11
CZ_RULE_EXPRESSION_V (database table)

table in RULE subschema, D-11
CZ_RULE_FOLDERS (database table)

table in RULE subschema, D-11
CZ_RULE_PARTICIPANTS_V (database table)

table in RULE subschema, D-11
CZ_RULERADIOGROUP_LKV (database table)

table in RP subschema, D-9
CZ_RULES_WITH_ARGS_V (database table)

table in RULE subschema, D-11
CZ_RULES (database table)

table in RULE subschema, D-11
CZ_RULETEMPLS_BYLABEL_V (database table)

table in RULE subschema, D-11
CZ_RULETYPE_IMAGES_V (database table)

table in UI subschema, D-12
CZ_RULETYPECODES_LKV (database table)

table in RP subschema, D-9
CZ_RULEUNSATMESSAGECHOI_LKV
(database table)

table in RP subschema, D-9
CZ_RULEVIOLATIONMESSAGE_LKV
(database table)

table in RP subschema, D-9
CZ_SERVERS (database table)

Import Enabled, C-12
table in RP subschema, D-9

CZ_SIMPLECONTROLS_LKV (database table)
table in RP subschema, D-9

CZ_SORTORDER_LKV (database table)
table in RP subschema, D-9

CZ_SOURCEENTITYTYPES_LKV (database
table)

table in RP subschema, D-9
CZ_SRC_DEVL_PROJECTS_V (database table)

table in PROJ subschema, D-5
CZ_SRC_MODEL_PUBLICATIONS_V (database
table)

table in PB subschema, D-3
CZ_SUBTYPEBOMMODEL_LKV (database
table)

table in RP subschema, D-9
CZ_SUBTYPEBOMOPTIONCLAS_LKV
(database table)

table in RP subschema, D-9
CZ_SUBTYPEBOMSTDITEM_LKV (database
table)

table in RP subschema, D-9
CZ_SUBTYPECOMPONENT_LKV (database
table)

table in RP subschema, D-9
CZ_SUBTYPEFEATURE_LKV (database table)

table in RP subschema, D-9
CZ_SUBTYPEFEATUREGROUP_LKV (database
table)

table in RP subschema, D-9
CZ_SUBTYPEOPTION_LKV (database table)

table in RP subschema, D-9
CZ_SUBTYPEPRODUCT_LKV (database table)

table in RP subschema, D-9
CZ_SUBTYPERESOURCE_LKV (database table)

table in RP subschema, D-9
CZ_SUBTYPETOTAL_LKV (database table)

table in RP subschema, D-9
CZ_SYSTEM_PROPERTIES_V (database table)

table in PROJ subschema, D-5
CZ_SYSTEM_PROPERTY_RELS_V (database

Index-14

table)
table in PROJ subschema, D-5

CZ_TEMPLATE_DEFS_V (database table)
table in PROJ subschema, D-5

CZ_TERMINATE_MSGS_V (database table)
table in PROJ subschema, D-5

CZ_TERMINATE_MSGS (database table)
table in PROJ subschema, D-5

CZ_TGT_MODEL_PUBLICATIONS_V (database
table)

table in PROJ subschema, D-5
CZ_TYPE_RELATIONSHIPS (database table)

table in TYP subschema, D-12
CZ_TYPED_RULES_V (database table)

table in RULE subschema, D-11
CZ_UCT_PARNTCONTTY_LKV (database
table)

table in RP subschema, D-9
CZ_UCTMESSAGETYPE_LKV (database table)

table in RP subschema, D-9
CZ_UI_ACTIONS (database table)

publishing UI_DEF_IDs, 16-12
table in UI subschema, D-12

CZ_UI_ACTIONS (database table)
publication table, 16-6

CZ_UI_COLLECT_TMPLS_V (database table)
table in UI subschema, D-12

CZ_UI_CONT_TYPE_TEMPLS_VV (database
table)

table in UI subschema, D-13
CZ_UI_CONT_TYPE_TEMPLS (database table)

publishing generated UIs for a UI_DEF_ID,
16-13
publishing UI_DEF_IDs, 16-12
table in UI subschema, D-12

CZ_UI_DEFS (database table), 9-36
publication table, 16-6
publishing UI_DEF_IDs, 16-12
table in UI subschema, D-13

CZ_UI_ELEMENT_ATTRIBUTES_V (database
table)

table in UI subschema, D-13
CZ_UI_HGRID_ACTIONS_LKV (database table)

table in RP subschema, D-9
CZ_UI_IMAGES (database table)

table in UI subschema, D-13
CZ_UI_MSTTMP_BOMCON_UILAY_LKV

(database table)
table in RP subschema, D-10

CZ_UI_MSTTMP_CNTRLLAYOUT_LKV
(database table)

table in RP subschema, D-10
CZ_UI_MSTTMP_NBOMCON_UILAY_LKV
(database table)

table in RP subschema, D-10
CZ_UI_MSTTMP_PAG_CMP_LKV (database
table)

table in RP subschema, D-10
CZ_UI_MSTTMP_PAG_DDNCTRL_LKV
(database table)

table in RP subschema, D-10
CZ_UI_MSTTMP_PAG_NOC_LKV (database
table)

table in RP subschema, D-10
CZ_UI_MSTTMP_PAG_REF_LKV (database
table)

table in RP subschema, D-10
CZ_UI_MSTTMP_PAGINATION_LKV
(database table)

table in RP subschema, D-10
CZ_UI_MSTTMP_PRINAV_LKV (database
table)

table in RP subschema, D-10
CZ_UI_MSTTMP_SUPDIS_LKV (database table)

table in RP subschema, D-10
CZ_UI_MSTTMP_TMPUSG_LKV (database
table)

table in RP subschema, D-10
CZ_UI_MSTTMP_TMPUSG_MSGUTL_LKV
(database table)

table in RP subschema, D-10
CZ_UI_NODE_PROPS (database table)

table in UI subschema, D-13
CZ_UI_NODES (database table)

table in UI subschema, D-13
CZ_UI_PAGE_ELEMENTS (database table)

table in UI subschema, D-13
CZ_UI_PAGE_REFS (database table)

publishing UI_DEF_IDs, 16-12
table in UI subschema, D-13

CZ_UI_PAGE_SETS (database table)
publishing UI_DEF_IDs, 16-12
table in UI subschema, D-13

CZ_UI_PAGES (database table)

Index-15

publishing generated UIs for a UI_DEF_ID,
16-13
publishing UI_DEF_IDs, 16-12
table in UI subschema, D-13

CZ_UI_PATHED_IMAGES_V (database table)
table in UI subschema, D-13

CZ_UI_PROPERTIES (database table)
table in UI subschema, D-13

CZ_UI_REF_TEMPLATES (database table)
table in UI subschema, D-13

CZ_UI_REFS (database table)
publishing UI_DEF_IDs, 16-12
table in UI subschema, D-13

CZ_UI_TEMPLATES_VV (database table)
table in UI subschema, D-13

CZ_UI_TEMPLATES (database table)
publishing generated UIs for a UI_DEF_ID,
16-13
publishing UI_DEF_IDs, 16-12
table in UI subschema, D-13

CZ_UI_TYPEDPSN_V (database table)
table in UI subschema, D-13

CZ_UI_XMLS (database table)
table in UI subschema, D-13

CZ_UIDEF_SIGNATURE_TEMPLS_V (database
table)

table in UI subschema, D-12
CZ_UIELEMENT_IMAGES_V (database table)

table in UI subschema, D-12
CZ_UITEMPL_CONTROLS_V (database table)

table in UI subschema, D-12
CZ_UITEMPL_MESSAGES_V (database table)

table in UI subschema, D-12
CZ_UITEMPL_UTILITY_V (database table)

table in UI subschema, D-12
CZ_UITEMPLS_FOR_PSNODES_V (database
table)

table in UI subschema, D-12
CZ_USAGES_PICKER_V (database table)

table in RP subschema, D-10
CZ_VALID_RESULT_TYPES_V (database table)

table in TYP subschema, D-12
CZ_VALIDRESULTFORCOMPON_LKV
(database table)

table in RP subschema, D-10
CZ_VALIDRESULTFOROPTFEA_LKV (database
table)

table in RP subschema, D-10
CZ_VERTICALALIGNMENT_LKV (database
table)

table in RP subschema, D-10
CZ_VIEWBYSELECTION_LKV (database table)

table in RP subschema, D-10
CZ_XFR_FIELDS (interface table)

import process, 4-10
table in XFR subschema, D-13
usage, 4-10

CZ_XFR_PROJECT_BILLS (interface table)
importing BOM Models, 4-23, 5-13
importing BOM Models, 5-13
import process, 4-10
synchronized fields, 7-5
table in XFR subschema, D-13

CZ_XFR_RUN_INFOS (interface table)
import information, 4-10
purging concurrent programs, C-5, C-6, C-7
purging data, 8-3
table in XFR subschema, D-13

CZ_XFR_RUN_RESULTS (interface table)
import information, 4-10
purging, C-5
purging concurrent programs, C-6, C-7
purging data, 8-3
table in XFR subschema, D-13

CZ_XFR_STATUS_CODES (interface table)
import information, 4-10
table in XFR subschema, D-14

CZ_XFR_TABLES (interface table)
import dependency, 4-7
importing data, 5-12
import process, 4-10
table in XFR subschema, D-14
usage, 4-10

CZ_XFR control tables
Oracle Configurator XFR subschema, D-13
use with concurrent programs, 4-9

CZ: BOM Tree Expansion State
Hierarchical Table UI, 19-4

CZ: Fail BV if Configuration Changed
batch validation, 11-9

CZ: Fail BV If Input Quantities Not Maintained
batch validation, 11-9
profile option, 11-9

CZ: Generic Configurator UI Max Child Rows

Index-16

Hierarchical Table UI, 19-4
CZ: Generic Configurator UI Type

Hierarchical Table UI, 19-3
Java Applet UI, 19-3

CZ: Hide Focus in Generic Configurator UI
Hierarchical Table UI, 19-4

CZ: Populate Decimal Quantity Flags
Generic Configurator User Interface, 19-4
importing, 5-14
profile option, 5-13
publishing, 5-14

CZ: Publication Lookup Mode
publishing, 16-12

CZ: Publication Usage
publishing, 16-12

CZ: Skip Validation Procedure
profile option, 11-9

cz.uiserver.allow_alt_database_login, 9-19
cz.uiservlet.pre_load_filename

contribution to performance, 9-3
czlce.dll

file for Servlet directory, 12-3
cz schema

customization, 4-3
CZ schema

characteristics, 4-1
imported BOM data

Refresh All Imported Configuration
Models concurrent program, C-22
Refresh a Single Configuration Model
concurrent program, 5-17, C-21

import table dependencies, 4-8
overview, 2-7
populating, 5-1
Purge Configurator Import Tables, C-5
Purge Configurator Tables, C-4
Purge To Date Configurator Import Tables, C-
6
Purge To Run ID Configurator Import Tables,
C-7
purging

before publishing, 3-9
concurrent programs, 8-2
logically deleted records, 5-7

redoing sequences, 8-4
subschemas, 4-1, 4-2
synonyms, 4-3

verifying version, B-3

D
data

import
control fields, 4-4
security, 20-9

purging, 8-2
synchronizing migrated Model data, 6-8
transfer file format, 5-32

database
linking, B-3

Define and Enable Remote Servers, 3-6
enabling a remote server, 5-10
Modify Server Definition, 5-10
production environment, 3-9
publishing, 16-8

database_id (initialization parameter), 9-6, 9-25
Database Instance

concurrent program parameter, C-15
database instances

decommissioning, 3-6
development, 3-2
exploding BOMs, 1-3, 5-10
production, 3-2
remote publication, 16-5
SID, 3-7, C-11, C-15
source publication, 16-5
synchronizing, 3-6
synchronizing BOMs, 1-3

Date Range
applicability parameter, 16-10

DBC file
connection pooling, 20-4
connectivity, 9-25

DECIMAL_QTY_FLAG (database column)
importing a BOM, 5-13

decimal quantities
importing a BOM, 5-13
Standard Item, 5-13

DEEP_MODEL_COPY (API), 18-19
deep copy, 18-19
DEFAULT_NEW_CFG_DATES (API), 17-48
DEFAULT_RESTORED_CFG_DATES (API), 17-
49
DELETE_CONFIGURATION (API), 17-51

Index-17

deleting
publications, 16-16

deployment
custom, 1-9
requirements for Web, 19-2
tasks, 1-8
Web, 19-2

DESCRIPTION (database column), 16-9
Descriptive Elements

imported data, 5-6
importing BOM Properties

ResolvePropertyDataType, 5-9
synchronizing, 7-6
usage with ResolvePropertyDataType when
importing, 4-22

development
database instance, 3-2
environment, 3-7

DHTML (legacy UIs)
Configurator

recommended screen resolution, 1-8
CREATE_UI, 18-14
REFRESH_UI, 18-33

directories
Servlet, 12-2

disabling
multisession, 4-19
publications, 16-16
servers, 5-10
tables for import, 5-12

discounted_price (XML element), 10-10
DISPLAY_INSTANCE_NAME

CZ_DB_SETTINGS, 4-12
usage, 4-17

DISPOSITION
import control field, 4-5

disposition codes
BadItemPropertyValue, 4-16
import control field, 4-5

document element, 9-3
drivers

thin required, 9-20
DTD (Document Type Definition)

for XML elements, 10-3

E

effectivity
date for planning publications, 16-2

Effectivity Sets
planning publications, 16-2

end users
responsibilities, 9-21

environment variables, 12-2
examples

calling programmatic tools, 17-69
PL/SQL, 17-69

exceptions
data sent to return URL, 9-14

EXECUTE_POPULATOR (API), 18-20
exit (XML element), 10-6
exploding BOMs

CZ_XFR_PROJECT_BILLS, 5-13
multiple database instances, 1-3
multiple database instances, 5-10

F
firewalls

effect on servlet connections, 20-6
interference with application, 20-7
security deployment, 20-7

flexfields
Item structure, 7-5
System Item, 4-21

FND_APPLICATION (database table), 9-20, 9-20
FND_JDBC_MAX_WAIT_TIME, 20-4
FND_MAX_JDBC_CONNECTIONS, 20-4
FND_USER (database table), 9-37
Foreign Surrogate Key

importing, 4-7
FREEZE_REVISION

CZ_DB_SETTINGS, 4-12
usage, 4-18

From Date and To Date
applicability parameter, 16-10

Functional Companions, 1-4
concurrent programs for migrating from, C-32
migrating, 1-4
migrating, C-30

Function security, 15-2

G
Gated Combinations

Index-18

False logic state in rules, 4-18
GENERATE_LOGIC (API), 18-25
GenerateGatedCombo

CZ_DB_SETTINGS, 4-12
usage, 4-18

GenerateUpdatedOnly
CZ_DB_SETTINGS, 4-12
usage, 4-18

Generic Configurator User Interface
CZ: BOM Tree Expansion State, 19-4
CZ: Generic Configurator UI Max Child Rows,
19-4
CZ: Generic Configurator UI Type, 19-3, 19-3
CZ: Hide Focus in Generic Configurator UI,
19-4
CZ: Populate Decimal Quantity Flags, 19-4
definition, 19-2
deployment, 19-1
publishing in host application, 2-6, 16-3
setting up, 19-4

generic import
synonym for custom import, 18-27

GenStatisticsBOM
CZ_DB_SETTINGS, 4-13

GenStatisticsCZ
CZ_DB_SETTINGS, 4-13
usage, 4-18

get_atp_dates_proc (initialization parameter), 9-
26
get_atp_dates_proc (initialization parameter), 9-
15
Get ATP Dates, 13-9

ATP interface procedure, 13-8
GIF files, 12-3
guided buying or selling

Oracle Order Management, 9-35
termination message, 9-35

H
heartbeat mechanism

for guided selling, 9-35
hierarchical structure

configuration model, 13-7
host application

batch validation, 21-5
BOM: Configurator URL of UI Manager, 2-4

copying an entity, 21-7
delete obsolete configurations, 21-5
initialization message, 2-4
invoking Oracle Configurator, 2-4
login, 2-4
managing saved configurations, 21-5
responsibilities, 9-3
types, 2-4

I
ICX_SESSION_TICKET (API), 17-53
icx_session_ticket (initialization parameter), 9-26
ICX session ticket, 2-4

Language setting, 14-3
security, 20-8

import
rule

validation, 5-29
rule status, 5-28

IMPORT
CZ_DB_SETTINGS, 4-11

IMPORT_GENERIC (API), 18-27
IMPORT_SINGLE_BILL (API), 18-26
imported Properties

defining Inventory Items for import, 5-8
usage during BOM synchronization, 7-6

Import Enabled (parameter), C-12, C-14
importing

BOM rules, 5-6
common bill, 5-21
concurrent programs, 5-3
configuration attributes, 1-4
configuration rules, 1-4, 5-3
Configurator Extensions, 1-4, 5-3
control tables, 5-31
custom, 5-30

single tables, 4-7
CZ_XFR_FIELDS, 4-10
CZ_XFR_PROJECT_BILLS, 4-10
CZ_XFR_RUN_INFOS, 4-10
CZ_XFR_RUN_RESULTS, 4-10
CZ_XFR_STATUS_CODES, 4-10
CZ_XFR_TABLES, 4-10, 5-12
CZ: Fail BV if Configuration Changed profile
option, 11-9
CZ: Fail BV If Input Quantities Not

Index-19

Maintained profile option, 11-9
CZ schema performance, 5-7
data

NOUPDATE, 4-10
data control fields, 4-4
data control fields

DISPOSITION, 4-5
REC_NBR, 4-4
REC_STATUS, 4-6
RUN_ID, 4-4

DECIMAL_QTY_FLAG, 5-13
decimal quantity flag, 5-14
defining and enabling a remote server, 5-6, 5-
10
defining items

MLS descriptions, 5-8
Oracle Applications, 5-8

dependencies among tables, 4-7
execution, 4-23
exploding BOM Models, 5-6
foreign surrogate key fields, 4-7
Import Configuration Rules, 5-15
Item descriptions, 14-2
legacy rules

CZ_IMP_LOCALIZED_TEXTS (interface
table), 5-29
CZ_IMP_RULES, 5-29

locking Models, 5-3
Modify Server Definition, 5-10
MTL_SYSTEM_ITEMS, 5-13
order of populating import tables, 5-12
ORGANIZATION_ID, 5-13
Populate Configuration Models, 5-6, 5-15
Populate Configuration Models, C-19
properties from Oracle Inventory, 5-6
referenced BOMs, 5-17
Refresh All Imported Configuration Models,
C-22
Refresh a Single Configuration Model, C-21
rules, 5-21
schedule during development, 5-31
setup process, 5-11
Standard Items

EXPLOSION_TYPE, 5-13
integer or decimal quantity, 5-13

surrogate primary key, 4-7
synchronization, 5-6, 5-15

table cleanup, C-18
Purge Configurator Import Tables, C-5
Purge To Date Configurator Import
Tables, C-6
Purge To Run ID Configurator Import
Tables, C-7

testing imported configuration models, 5-31
UseLocalTableInExtractionViews, 4-25

init.ora file, 20-4
initialization

applicability parameters, 9-13
definition, 9-2
message

syntax, 9-4
message

ATP parameter example, 13-9
ATP parameters, 13-10
defined, 9-3
host application, 2-4
introduction, 9-1
pricing and ATP example, 13-11
pricing parameter example, 13-7
pricing parameters, 13-10
publishing, 16-3
return URL, 10-13
setting parameters, 9-3
testing, 9-7
usage, 2-4
use in preloading servlet, 9-3
validation of parameters, 9-8

parameters, 9-9
alt_database_name, 9-19
application_id, 9-20
apps_connection_info, 9-20
arbitrary type, 9-16
atp_package_name, 9-20
calling_application_id, 9-20
client_header, 9-21
client_line, 9-22
client_line_detail, 9-22
config_creation_date, 9-22
config_effective_date, 9-23
config_effective_usage, 9-23
config_effective_usage_id, 9-23
config_header_id, 9-24
config_model_lookup_date, 9-24
config_rev_nbr, 9-25

Index-20

configuration identification type, 9-10
configurator_session_key, 9-25
context_org_id, 9-25
customer_id, 9-25
customer_site_id, 9-25
database_id, 9-25
default values, 9-5
empty, 9-5
errors, 9-5
get_atp_dates_proc, 9-26
icx_session_ticket, 9-26
ignoring, 9-5
inventory_item_id, 9-26
jrad_standalone, 9-26
login type, 9-9
model_id, 9-27
model_quantity, 9-27
omitted, 9-5, 9-5
operating_unit_org_id, 9-29
organization_id, 9-29
parameter names, 9-5
price_mult_items_mls_proc, 9-30
price_mult_items_proc, 9-30
price_single_item_proc, 9-30
pricing_package_name, 9-31
pricing type, 9-15
product_id, 9-31
publication_mode, 9-32
pwd, 9-32
read_only, 9-32
requested_date, 9-32
responsibility_id, 9-32
return_url, 9-33
return URL type, 9-14
save_config_behavior, 9-33
sbm_flag, 9-34
ship_to_org_id, 9-35
template_url, 9-35
terminate_id, 9-35
terminate_msg_behavior, 9-35
types, 9-9
ui_def_id, 9-36
ui_type, 9-36
user, 9-37
user_id, 9-37
warehouse_id, 9-37

parameters

obtaining list of, 9-16
initialization parameters

custom Web application, 9-10
initialize

XML element, 9-3
installing

deployment environment, 3-8
development environment, 3-7
maintenance environment, 3-8
production environment, 3-8
scenarios, 2-6
test environment, 3-9

instances, 3-3
See also database instances
importing min and max settings, 5-15

instantiation
pricing limitations, 13-7
sbm_flag initialization parameter, 9-34
supporting multiple instantiation, 9-14

Integer Quantity
Standard Item, 5-13

interface tables
CZ_ATP_REQUESTS, 13-9

availability-to-promise information, D-3
custom host applications, 13-1

CZ_CONFIG_ATTRIBUTES
configuration information, D-1

CZ_IMP_DEVL_PROJECT
import dependency, 4-8, 4-8, 4-9, 5-12
project information, D-4

CZ_IMP_INTL_TEXT
import dependency, 4-8

CZ_IMP_ITEM_MASTER
import dependency, 4-7, 4-8, 4-8, 5-12
Model information, D-2

CZ_IMP_ITEM_PROPERTY_VALUE
import dependency, 4-8, 5-12
Item information, D-2
loading Property values, 5-33

CZ_IMP_ITEM_TYPE
import dependency, 4-1, 4-7, 4-8, 4-8, 5-
12
Item information, D-2

CZ_IMP_ITEM_TYPE_PROPERTY
import dependency, 4-8, 5-12
Item information, D-2

CZ_IMP_LOCALIZED_TEXTS

Index-21

import dependency, 4-8, 5-12
MLS information, D-11

CZ_IMP_MODEL_REF_EXPLS
project information, D-4

CZ_IMP_PROPERTY
import dependency, 4-3, 4-8, 4-8, 5-12
Item information, D-2
loading Property values, 5-33

CZ_IMP_PS_NODES
import dependency, 4-9, 5-12
project information, D-4

CZ_PRICING_STRUCTURES
pricing information, D-3
runtime pricing usage, 13-3, 13-5

CZ_XFR_FIELDS
import dependency, 4-10
import information, D-13

CZ_XFR_PROJECT_BILLS
import dependency, 5-13
import information, D-13

CZ_XFR_RUN_INFOS
import information, D-13

CZ_XFR_RUN_RESULTS
import information, D-13

CZ_XFR_STATUS_CODES
import information, D-14

CZ_XFR_TABLES
import dependency, 4-7, 4-10
import information, D-14

INVENTORY_ITEM_ID (database column), 9-26,
9-27, 10-10
inventory_item_id (initialization parameter), 9-12
inventory_item_id (initialization parameter), 9-26
inventory_item_id (XML element), 10-10
ITEM_KEY_TYPE (database column), 13-6
ITEM_KEY (database column), 13-6
item_name (XML element), 10-11
Item Master

Oracle Configurator ITEM subschema, D-2
ITEM subschema

CZ_IMP_ITEM_MASTER, D-2
import dependencies, 4-7

CZ_IMP_ITEM_PROPERTY, D-2
CZ_IMP_ITEM_PROPERTY_VALUE

BadItemPropertyValue, 4-16
import dependency, 4-8

CZ_IMP_ITEM_TYPE, D-2

importing, 4-1
CZ_IMP_ITEM_TYPE_PROPERTY, D-2
CZ_IMP_PROPERTY, D-2
CZ_ITEM_MASTERS, D-2
CZ_ITEM_PROPERTY_VALUES, D-2
CZ_ITEM_TYPE_PROPERTIES, D-2
CZ_ITEM_TYPES, D-2
CZ_PROPERTIES, D-2

Item Types
BOM, 5-8
defining an Item Type for import, 5-8

J
Java applet (legacy UIs)

CREATE_UI, 18-14
REFRESH_UI, 18-33
usage, 2-6

Java Applet UI
Generic Configurator User Interface type, 19-3

JDBC
connection cache, 20-4
thin drivers, 9-20

JPG files, 12-3
jrad_standalone (initialization parameter), 9-26
JServ

setup, 1-5
JVM (Java Virtual Machine)

routing Models to, 20-10

L
language (applicability parameter), 17-10
languages

multiple database instances, 14-3
Languages

applicability parameter, 16-9
setting, 14-3

LCE subschema
CZ_LCE_CLOBS, D-2
CZ_LCE_HEADERS, D-2
CZ_LCE_LINES, D-3
CZ_LCE_LOAD_SPECS, D-3
CZ_LCE_OPERANDS, D-3
CZ_LCE_TEXTS, D-3

LD_LIBRARY_PATH, 12-3
libczlce.so

file for Servlet directory, 12-2

Index-22

links
database, 3-6
publication synchronization, 7-9
synchronizing data, 7-1

LIST_PRICE (database column), 13-6
list_price (XML element), 10-10
load balancing

general information, 20-6
routing Models, 20-10

log files
configuration session, 9-8
publications, 4-20
session, 9-6
viewing, B-4
written by the OC Servlet, 12-2

Logic for Configuration, D-2
Oracle Configurator LCE subschema, D-2

LogicGen
CZ_DB_SETTINGS, 4-11

login parameters
Oracle Applications, 9-10

M
machines

multiple servers, 5-10
maintenance

database instance, 3-8
purging

CZ schema, 8-2, 8-3, 8-3, 8-3
purging

import procedure, 5-7
Purge Configurator Import Tables
concurrent program, C-5
Purge Configurator Tables concurrent
program, C-4
Purge To Date Configurator Import
Tables concurrent program, C-6
Purge To Run ID Configurator Import
Tables concurrent program, C-7

REDO_SEQUENCES, 8-4
MAJOR_VERSION

CZ_DB_SETTINGS, 4-13
usage, 4-18

MaximumErrors
CZ_DB_SETTINGS, 4-13
usage, 4-18

MemoryBulkSize
CZ_DB_SETTINGS, 4-13
usage, 4-19

message_text (XML element), 10-12
message_type (XML element), 10-12
message (XML element), 10-11
messages

validation, 21-6
MIGRATE_MODEsL (API), 18-30
migrating

concurrent programs, C-30
CZ_IMP tables, 6-1
Functional Companions, 1-4

See also Configurator Extensions
Functional Companions

concurrent programs, C-32
Migrate All Functional Companions, C-33
Migrate Configurator Data, C-32
Migrate Functional Companions for a Single
Model, C-34
Oracle Configurator Release 12 schema, 6-2
Setup Configurator Data Migration, C-30
tasks, 6-2

migration
Migrating Models, 6-3
restoring saved configurations of migrated
Models, 6-7
synchronizing migrated Models, 6-8

MINOR_VERSION
CZ_DB_SETTINGS, 4-13
usage, 4-19

MLS (Multiple Language Support)
BOM Item descriptions

importing, 14-2
ICX session ticket

Language setting, 14-3
importing

defining items, 5-8
Oracle Configurator Developer, 15-1
price_mult_items_mls_proc (procedure), 9-30
publishing, 14-3, 14-3
support

initialization parameter, 9-30
translating data example, 14-4
translating text, 14-2

MODEL_FOR_ITEM (API), 17-54
MODEL_FOR_PUBLICATION_ID (API), 17-56

Index-23

model_id (initialization parameter), 9-12, 9-27
model_quantity (initialization parameter), 9-27
MODEL_USAGE_ID (database column), 9-24, 16-
9
Models

imported BOM Model
BOM_EXPLODER procedure, 4-23
common bill, 5-21
locking, 5-3
publishing, 16-7

locking, 16-10
migrating, 6-3
synchronizing migrated data, 6-8

MSG_DATA (database column), 13-7
MTL_SYSTEM_ITEMS (database table)

importing decimal or integer quantities, 5-13
inventory item ID, 10-10
organization ID, 9-25, 9-30, 10-10

MTL_SYSTEM_ITEMS (database table)
BOM synchronization, 7-3
inventory item ID, 9-26, 9-27
translation strings, 14-2, 14-2

multiple currencies, 9-30
MULTISESSION

CZ_DB_SETTINGS, 4-13
usage, 4-19

Mutually Exclusive Items, 5-9
mutually exclusive rules, 5-6

N
NAME (database column), 16-9
NOUPDATE

populating and refreshing BOMs, 4-10
populating and refreshing BOMs, 4-23

O
OA_HTML

default location of HTML directory, 12-3
OA_MEDIA

default location of Media directory, 12-3
OC Servlet

batch validation, 2-6
legacy Configurator user interfaces, 2-6
properties

customizing behavior, 2-7
session log, 9-6

UI server, 2-7
OE_ORDER_LINES_ALL (database table), 9-35,
9-37
operating_unit_org_id (initialization parameter),
9-12, 9-29
operating_unit_org_id (initialization parameter),
9-15, 9-16
Operating Unit

default, 9-29
ORAAPPS_INTEGRATE

CZ_DB_SETTINGS, 4-11
Oracle Applications

login parameters, 9-10
Oracle Configurator

deployment upgrades, 3-8
engine

See Oracle Configurator engine
release upgrade, 3-8
viewing parameters, C-2

Oracle Configurator Administrator
responsibility, 15-3

Oracle Configurator Developer
Multiple Language Support (MLS), 15-1
overview, 2-8
responsibility, 15-3
setting up

profile options, 15-1
unit testing, 2-9

Oracle Configurator engine
configuration, 2-7
definition, 2-7

Oracle Configurator schema
See CZ schema
See CZ schema

Oracle Configurator Viewer
responsibility, 15-3

Oracle Integration Repository, 16-6
Oracle Order Management

exploding BOMS, 5-10
organization_id, 9-29
publishing Application parameter, 16-3

Oracle Rapid Install
overview, 2-3

OracleSequenceIncr
CZ_DB_SETTINGS, 4-13
REDO_SEQUENCES procedure, 8-4
usage, 4-19

Index-24

Oracle Support Web site
support, 16-6

ORG_ORGANIZATION_DEFINITIONS
(database column)

BOM synchronization, 7-5
ORGANIZATION_ID (database column)

BOM exploder, 9-25, 9-30
BOM synchronization, 7-5
imported BOM, 5-13
imported BOM, 5-13
termination message, 10-10

organization_id (initialization parameter), 9-12,
9-29
organization_id (XML element), 10-10
ORIG_SYS_REF (database column)

BOM synchronized field, 7-4
pricing usage, 13-6

overriding
default parameters, 9-5

P
packages

CZ_CF_API, 17-3
CZ_CONFIG_API_PUB, 17-3
CZ_modelOperations_pub, 18-2

param
XML element, 9-4

parameters, 9-19, 16-9
initialization

See initialization
PARENT_CONFIG_ITEM_ID (database column),
13-7
parent_line_id (XML element), 10-10
passwords

exploding a BOM, 5-11
initialization parameter for, 9-6
pwd (initialization parameter), 9-32

PATH
references files in Servlet directory, 12-2

PB subschema
CZ_EFFECTIVITY_SETS, D-3
CZ_EXT_APPLICATIONS, D-3
CZ_EXT_APPLICATIONS_V, D-3
CZ_MODEL_PUBLICATIONS, D-3
CZ_MODEL_USAGES, D-3
CZ_MODEL_USAGES_TL, D-3

CZ_PB_CLIENT_APPS, D-3
CZ_PB_LANGUAGES, D-3
CZ_PB_MODEL_EXPORTS, D-3
CZ_PB_TEMP_IDS, D-3
CZ_PUBLICATION_USAGES, D-3
CZ_SRC_MODEL_PUBLICATIONS_V, D-3

performance
delete configuration data

database tasks, 1-4
effect of

routing to specified JVMs, 20-10
effect of

preloading servlet, 9-3
restoring configurations, 21-2

LoadRunner, 1-8
managing the Oracle Configurator data cache,
B-4
preloading configuration model, 1-8
pricing interface package, 13-10
purge tables

database tasks, 1-4
PL/SQL

application code requiring use of VALIDATE
procedure, 11-4
functions

COMMON_BILL_FOR_ITEM, 17-14
CONFIG_MODEL_FOR_ITEM, 17-15
CONFIG_MODEL_FOR_PRODUCT, 17-
19
CONFIG_MODELS_FOR_ITEMS, 17-17
CONFIG_MODELS_FOR_PRODUCTS,
17-21
CONFIG_UI_FOR_ITEM, 17-23
CONFIG_UI_FOR_ITEM_LF, 17-26
CONFIG_UI_FOR_PRODUCT, 17-29
CONFIG_UIS_FOR_ITEMS, 17-31
CONFIG_UIS_FOR_PRODUCTS, 17-34
ICX_SESSION_TICKET, 17-53
MODEL_FOR_ITEM, 17-54
MODEL_FOR_PUBLICATION_ID, 17-56
POOL_TOKEN_FOR_PRODUCT_KEY,
17-57
PUBLICATION_FOR_ITEM, 17-58
PUBLICATION_FOR_PRODUCT, 17-59
PUBLICATION_FOR_SAVED_CONFIG,
17-61
REGISTER_MODEL_TO_POOL, 17-63

Index-25

UI_FOR_ITEM, 17-66
UI_FOR_PUBLICATION_ID, 17-68
UNREGISTER_MODEL_FROM_POOL,
17-64
UNREGISTER_POOL, 17-65

procedures
CZ_CONFIG_API_PUB.COPY_CONFIG
URATION, 17-39
CZ_CONFIG_API_PUB.VERIFY_CONFI
GURATION, 17-72

procedures
COPY_CONFIGURATION, 17-39
VERIFY_CONFIGURATION, 17-72

procedures
COPY_CONFIGURATION, 17-37
COPY_CONFIGURATION_AUTO, 17-
42, 17-45
CREATE_JRAD_UI, 18-17
CREATE_RP_FOLDER, 18-12
CREATE_UI, 18-14
CZ_CONFIG_API_PUB.COPY_CONFIG
URATION_AUTO, 17-45
DEEP_MODEL_COPY, 18-19
DEFAULT_NEW_CFG_DATES, 17-48
DEFAULT_RESTORED_CFG_DATES,
17-49
DELETE_CONFIGURATION, 17-51
EXECUTE_POPULATOR, 18-20
GENERATE_LOGIC, 18-25
IMPORT_GENERIC, 18-27
IMPORT_SINGLE_BILL, 18-26
MIGRATE_MODESL, 18-30
PUBLISH_MODEL, 18-29
REFRESH_JRAD_UI, 18-34
REFRESH_SINGLE_MODEL, 18-32
REFRESH_UI, 18-33
REPOPULATE, 18-35
VALIDATE, 17-69

POOL_TOKEN_FOR_PRODUCT_KEY (API), 17-
57
populating BOMs

See importing
pop-up blocker

deployment tasks, 1-8
port

setting for the OC Servlet, 15-4
positional notation, 13-5, 13-8

POST (method), 9-3
preloading

configuration model, 1-8
servlet

use of initialization message, 9-3
price_mult_items_mls_proc (initialization
parameter), 9-15
price_mult_items_mls_proc (initialization
parameter), 9-30
price_mult_items_proc (initialization parameter),
9-30
price_mult_items_proc (initialization parameter),
9-15
price_single_item_proc (initialization parameter),
9-15, 9-30
price_type (pricing procedure parameter), 13-4
Price Multiple Items

description of, 13-4
MLS

description of, 13-5
pricing interface package procedure, 13-4

pricing interface package procedure, 13-4
use of database, 13-5

prices
settings to displaying prices, 13-12

prices_calculated_flag (XML element), 13-3
prices_calculated_flag (XML element), 10-6
pricing

adjustments, 13-10
architecture, 13-2, 13-2
custom Web application, 13-1
discounts, 13-10
editing, 13-10
in an Oracle Configurator window, 13-2
interface package

definition, 13-2
procedures, 13-4

Oracle Configurator PRC subschema, D-3
parameters

callback, 9-15
through Advanced Pricing engine, 9-15
types of, 13-2

pricing_package_name (initialization parameter),
9-15, 9-31
product_id (initialization parameter), 9-12, 9-31
product_key (applicability parameter), 17-10
PRODUCT_KEY (database column), 9-31

Index-26

BOM synchronization, 7-5
Product ID (publication attribute), 9-12, 16-7
production database instances, 3-2
profile options

BOM: Configurator URL of UI Manager, 19-2
CZ: Fail BV if Configuration Changed, 11-9
CZ: Fail BV If Input Quantities Not
Maintained, 11-9
CZ: Populate Decimal Quantity Flags, 5-13, 5-
14
CZ: Publication Lookup Mode, 16-8, 16-12
CZ: Publication Usage, 16-12

Project Structure
Oracle Configurator PROJ subschema, D-4

PROJ subschema
CZ_COMMON_CHILDNDPROPS_V, D-4
CZ_CONVERSION_RELS_V, D-4
CZ_DATA_TYPES_V, D-4
CZ_DEVL_PROJECTS, D-4
CZ_EXPLMODEL_NODES_V, D-4
CZ_EXPLNODES_WITHIMAGES_V, D-4
CZ_FUNC_COMP_SPECS, D-4
CZ_IMP_DEVL_PROJECT, D-4
CZ_IMP_MODEL_REF_EXPLS, D-4
CZ_IMP_PS_NODES, D-4
CZ_MODEL_ARCHIVES_V, D-4
CZ_MODEL_BOMREF_COUNTS_V, D-4
CZ_MODEL_REF_EXPLS, D-4
CZ_MODELS_V, D-4
CZ_NODE_CAPTION_PROPERTIES_V, D-4
CZ_NODE_JAVA_PROPERTIES_V, D-4
CZ_NODE_NO_PROPERTIES_V, D-4
CZ_NODE_RULE_PROPERTIES_V, D-4
CZ_NODE_USER_PROPERTIES_V, D-4
CZ_POPULATORS, D-4
CZ_PS_NODES, D-5
CZ_PS_PROP_VALS, D-5
CZ_PSNODE_REFRULE_IMAGES_V, D-4
CZ_PSNODE_REFUI_IMAGES_V, D-4
CZ_PSNODE_RULE_REFS_V, D-5
CZ_PSNODE_WITH_UIREFS_V, D-5
CZ_SRC_DEVL_PROJECTS_V, D-5
CZ_SYSTEM_PROPERTIES_V, D-5
CZ_SYSTEM_PROPERTY_RELS_V, D-5
CZ_TEMPLATE_DEFS_V, D-5
CZ_TEMPLATE_MSGS_V, D-5
CZ_TERMINATE_MSGS, D-5

CZ_TGT_MODEL_PUBLICATIONS_V, D-5
PS_NODE_ID (database column), 13-6
ps_node_id (XML element), 10-11
PsNodeName

CZ_DB_SETTINGS, 4-13
usage, 4-20

PTO (Pick To Order)
implicit rules when importing, 5-6
preparing the BOM, 5-8

publication
convert publication target instance concurrent
program, C-8

PUBLICATION_FOR_ITEM (API), 17-58
PUBLICATION_FOR_PRODUCT (API), 17-59
PUBLICATION_FOR_SAVED_CONFIG (API),
17-61
publication_mode (applicability parameter), 17-
10
publication_mode (initialization parameter), 9-12
, 9-32, 16-8
PublicationLocalBOMSynch

CZ_DB_SETTINGS, 4-14
usage, 4-20

PublicationLogging
CZ_DB_SETTINGS, 4-13
usage, 4-20

publications, 7-2, 16-1, 16-1, 16-6
applicability parameters, 4-10, 9-12, 9-13

See also initialization parameters
applicability parameters

Application, 16-9
Date Range, 16-10
determining availability, 16-8
Languages, 16-9
Usages, 16-9
used in initialization message, 9-12

attributes
Model definition, 16-7

attributes
database instance, 16-7
database instance definition, 16-8
determining access, 16-6
Model, 16-6
product, 16-7
product ID definition, 16-7
UI definition, 16-7, 16-8

configuration models, 16-2

Index-27

copying without rules, 4-20
database linking, 16-8
defining, 16-5
defining, 16-5
definition, 16-1
deleting, 16-16
disabling, 16-16
editing, 16-16
example of maintaining publications, 16-19
host applications, 16-3
initialization message, 16-3
initialization message, 16-3, 16-8
log files, 4-20
maintaining, 16-14
mode

user access, 16-3
Oracle Configurator PB subschema, D-3
planning, 16-1
Product ID, 16-7
Product ID, 9-12
records, 16-5
re-enabling, 16-16
remote, 16-5
selecting a publication, 16-3
source, 3-5, 16-5
status

complete, 16-15
error, 16-15
obsolete, 16-16
pending, 16-15
processing, 16-15
publication pending update, 16-15

synchronizing, 7-2
tables used, 16-6
target, 3-5
UI_DEF_ID, 16-17
updating, 16-17
user access, 16-2

publication tables
CZ_EXT_APPLICATIONS, 16-6
CZ_MODEL_PUBLICATIONS, 16-5, 16-6
CZ_MODEL_USAGES, 16-6
CZ_MODEL_USAGES_TL, 16-6
CZ_PB_CLIENT_APPS, 16-6
CZ_PB_LANGUAGES, 16-6
CZ_PB_MODEL_EXPORTS, 16-6
CZ_PUBLICATION_USAGES, 16-6

CZ_UI_ACTIONS, 16-6
CZ_UI_DEFS, 16-6

PUBLISH_MODEL (API), 18-29
publishing, 16-1

across applications, 16-9
Add Application to Publication Applicability
List, C-9
Applications applicability parameter, C-9
configuration models, 16-2
convert publication target instance concurrent
program , C-8
decimal quantity flag, 5-14
definition, 16-1
enabling a server, 16-8
example of maintaining publications, 16-19
example of the publication process, 16-14
Generic Configurator User Interface, 2-6, 16-3
host application in initialization message, 9-20
host applications, 16-3
Model locking, 16-10
Multiple Language Support, 14-3
performance

networks, 3-5, 16-8
planning, 16-1
Product ID, 16-7
Product ID, 9-12
profile option, 16-8
referenced Models, 16-12
status, 16-14
synchronization

multiple database instances, 7-2
synchronization

Synchronize Cloned Source Data, C-41
Synchronize Cloned Target Data, C-40

Usage parameters, 9-24
PublishingCopyRules

CZ_DB_SETTINGS, 4-14
usage, 4-20

Purge Configurator Tables
concurrent programs, 5-7

PurgeDeleteConfigBatchsize
CZ_DB_SETTINGS, 4-14, 4-21

purging
concurrent programs, 3-9, 8-2, 8-3, 8-3, 8-3
DB maintenance package, 8-3, 8-3, 8-3
DB maintenance package

Purge Configurator Tables concurrent

Index-28

program, 8-2
DB maintenance package

performance, 5-7
Purge Configurator Import Tables
concurrent program, C-5
Purge Configurator Tables concurrent
program, C-4
Purge To Date Configurator Import
Tables concurrent program, C-6
Purge To Run ID Configurator Import
Tables concurrent program, C-7

imported data, 5-7
Purge Configurator Tables concurrent
program, C-4
Purge To Date Configurator Import Tables
concurrent program, C-6
Purge To Run ID Configurator Import Tables
concurrent program, C-7

pwd (initialization parameter), 9-6, 9-32

Q
QP

ATP interface, 13-10
integrating with Oracle Applications, 13-11
pricing method, 9-15

QUANTITY (database column), 13-6
quantity (XML element), 10-10

R
Rapid Install

See Oracle Rapid Install
read_only (initialization parameter), 9-32
REC_NBR

import control field, 4-4
REC_STATUS

import control field, 4-6
reconfiguration

termination message, 21-6
record

custom data type, 17-11
REDO_SEQUENCES

DB maintenance package, 8-4
invoking by scripts, 8-4

References
BOM Models, 5-21
importing, 5-17

publishing, 16-12
refreshing BOM Models, 5-19

RefPartNbr
CZ_DB_SETTINGS, 4-14
usage, 4-21

REFRESH_JRAD_UI (API), 18-34
REFRESH_SINGLE_MODEL (API), 18-32
REFRESH_UI (API), 18-33
refreshing

BOM imported data, 5-14, 5-16
BOM referenced BOM Models, 5-19
concurrent programs, C-18
Refresh All Imported Configuration Models,
C-22
Refresh a Single Configuration Model, C-21
UseLocalTableInExtractionViews, 4-25

REGISTER_MODEL_TO_POOL (API), 17-63
remote server

defining, enabling, or modifying, B-3
REPOPULATE (API), 18-35
republishing, 16-17

See also publishing
requested_date (ATP procedure parameter), 13-8
requested_date (initialization parameter)

definition, 9-32
requested_date (initialization parameter)

ATP callback parameter, 9-16
requests

viewing submitted concurrent program
requests, B-4

ResolvePropertyDataType
CZ_DB_SETTINGS, 4-14
Descriptive Elements, 4-22

importing BOM Properties, 5-9
usage, 4-22

responsibilities
Oracle Configurator Administrator, 15-3
Oracle Configurator Developer, 15-3
Oracle Configurator Viewer, 15-3
predefined configurator developer, 15-2

responsibility_id (initialization parameter), 9-7,
9-32
restored

configurations
Instantiability changes, 21-7

RestoredConfigDefaultModelLookupDate
CZ_DB_SETTINGS, 4-14

Index-29

usage, 4-23
restoring

configurations
Migrated Models, 6-7

configurations
definition, 21-2
determining values, 17-49
effective date, 9-23
Model changed, 16-18
orders from previous publications, 16-18
performance, 21-2
revision number, 9-11
setting in CZ_DB_SETTINGS table, 4-23

restoring configurations
rules changed, 16-18

return_url (initialization parameter), 9-7, 9-14, 9-
33
return URL

definition, 10-13
host application responsibility, 9-3
implementing, 10-14
specification in initialization message, 9-14
submission behavior, 10-4
template code, E-3

Revision Date/User
CZ_DB_SETTINGS, 4-14
usage, 4-23

rollback segment, 4-17
routers

security, 20-8
RP subschema

CZ_ACCESS_SUMMARY_LKV, D-5
CZ_ACTIONDISPLAYUPDT_LKV, D-5
CZ_ACTIONMODELINTER_LKV, D-5
CZ_ACTIONNAV_LKV, D-5
CZ_ACTIONRULENODES_LKV, D-5
CZ_ACTIONSESSIONCTRL_LKV, D-5
CZ_ACTIONSONMODELNODES_LKV, D-5
CZ_ACTIONSONREPOSITORYN_LKV, D-5
CZ_ACTIONTYPEGROUP_LKV, D-5
CZ_AMPM_LKV, D-5
CZ_ANYALLTRUE_LKV, D-5
CZ_ARCHIVE_REFS, D-6
CZ_ARCHIVES, D-6
CZ_ARCHIVES_PICKER_V, D-6
CZ_ASSOCIATEDMODELNODE_LKV, D-6
CZ_BASIC_LAYOUT_REGION_LKV, D-6

CZ_CAPCONFIGSYSPROP_LKV, D-6
CZ_CAPMSGSYSPROP_LKV, D-6
CZ_CAPNODESYSPROP_LKV, D-6
CZ_CFG_SAVEASBEHAVIOR_LKV, D-6
CZ_CFG_SEARCHCRITERIA_LKV, D-6
CZ_CFGEXT_ARGS_SPEC_TYPE_LKV, D-6
CZ_CFGEXT_EVENT_SCOPE_LKV, D-6
CZ_CFGEXT_INST_SCOPE_LKV, D-6
CZ_CFGEXT_SYSTEM_PARAMS_LKV, D-6
CZ_COMPAT_TEMPL_SIGS_V, D-6
CZ_COPYDESTINATION_LKV, D-6
CZ_COPYSOURCE_LKV, D-6
CZ_CREATEOPTIONPSNODETY_LKV, D-6
CZ_CREATEPSNODEPSNODETY_LKV, D-6
CZ_CREATEREPOSITORYOBJE_LKV, D-6
CZ_CREATERULEOBJECT_LKV, D-6
CZ_DATATYPE_LKV, D-6
CZ_DETAILEDRULETYPES_LKV, D-6
CZ_DETLSELECTIONSTATE_LKV, D-6
CZ_EFFECTIVITYMETHODS_LKV, D-7
CZ_EFFECTIVITYTYPE_LKV, D-7
CZ_EFFSETS_PICKER_V, D-7
CZ_EVENTTYPES_LKV, D-7
CZ_EXNEXPRTYPE_LKV, D-7
CZ_FEATURETYPE_LKV, D-7
CZ_HORIZONTALALIGNMENT_LKV, D-7
CZ_HOURS_LKV, D-7
CZ_ICONLOOKUP_LKV, D-7
CZ_IMAGELOOKUPS_V, D-7
CZ_ITEMMASTEROPS_LKV, D-7
CZ_ITEMTYPE_LKV, D-7
CZ_ITEMTYPEOPERATOR_LKV, D-7
CZ_JAVASYSPROPVALS_LKV, D-7
CZ_LAYOUT_UI_STYLE_LKV, D-7
CZ_LAYOUTREGIONS_LKV, D-7
CZ_LISTLAYOUTREGIONS_LKV, D-7
CZ_LOCK_HISTORY, D-7
CZ_LOGICRULE_LKV, D-7
CZ_LOOKUP_VALUES_VL, D-7
CZ_LOOOKUP_VALUES, D-7
CZ_MDLNODE_CPDST_LKV, D-7
CZ_MDLNODE_CPSRC_LKV, D-7
CZ_MENUITEMTYPES_LKV, D-7
CZ_MENUTYPES_LKV, D-8
CZ_MINUTES_LKV, D-8
CZ_MODEL_REFERENCES_PICKER_V, D-8
CZ_MSGLISTLAYOUTREGIONS_LKV, D-8

Index-30

CZ_NODEINSTANTIABILITY_LKV, D-8
CZ_NODELIST_LAYOUT_REGION_LKV, D-
8
CZ_NODELISTLAYOUTREGIONS_LKV, D-8
CZ_OTHERCONTENT_LKV, D-8
CZ_PROPERTY_PICKER_V, D-8, D-8
CZ_PSNODETYPE_LKV, D-8
CZ_PUBLICATIONMODE_LKV, D-8
CZ_RECALCULATEPRICES_LKV, D-8
CZ_REPOS_TREE_V, D-8
CZ_REPOSCREATEOPS_LKV, D-8
CZ_REPOSITORY_MAIN_HGRID_V, D-8
CZ_REPOSITORYCOPYDESTIN_LKV, D-8
CZ_REPOSITORYCOPYMODELO_LKV, D-8
CZ_RP_BOM_MODELS_V, D-8
CZ_RP_DIRECTORY_V, D-8
CZ_RP_EFF_DIRECTORY_V, D-8
CZ_RP_ENTRIES, D-8
CZ_RP_PRJ_DIRECTORY_V, D-8
CZ_RP_USG_DIRECTORY_V, D-9
CZ_RPOBJECTTYPES_LKV, D-8
CZ_RTCONDCOMPAR_LKV, D-9
CZ_RTCONDOBJSETTINGS_LKV, D-9
CZ_RULERADIOGROUP_LKV, D-9
CZ_RULETYPECODES_LKV, D-9
CZ_RULEUNSATMESSAGECHOI_LKV, D-9
CZ_RULEVIOLATIONMESSAGE_LKV, D-9
CZ_SERVERS, D-9
CZ_SIMPLECONTROLS_LKV, D-9
CZ_SORTORDER_LKV, D-9
CZ_SOURCEENTITYTYPES_LKV, D-9
CZ_SUBTYPEBOMMODEL_LKV, D-9
CZ_SUBTYPEBOMOPTIONCLAS_LKV, D-9
CZ_SUBTYPEBOMSTDITEM_LKV, D-9
CZ_SUBTYPECOMPONENT_LKV, D-9
CZ_SUBTYPEFEATURE_LKV, D-9
CZ_SUBTYPEFEATUREGROUP_LKV, D-9
CZ_SUBTYPEOPTION_LKV, D-9
CZ_SUBTYPEPRODUCT_LKV, D-9
CZ_SUBTYPERESOURCE_LKV, D-9
CZ_SUBTYPETOTAL_LKV, D-9
CZ_UCT_PARNTCONTTY_LKV, D-9
CZ_UCTMESSAGETYPE_LKV, D-9
CZ_UI_HGRID_ACTIONS_LKV, D-9
CZ_UI_MSTTMP_BOMCON_UILAY_LKV,
D-10
CZ_UI_MSTTMP_CNTRLLAYOUT_LKV, D-

10
CZ_UI_MSTTMP_NBOMCON_UILAY_LKV,
D-10
CZ_UI_MSTTMP_PAG_CMP_LKV, D-10
CZ_UI_MSTTMP_PAG_DDNCTRL_LKV, D-
10
CZ_UI_MSTTMP_PAG_NOC_LKV, D-10
CZ_UI_MSTTMP_PAG_REF_LKV, D-10
CZ_UI_MSTTMP_PAGINATION_LKV, D-10
CZ_UI_MSTTMP_PRINAV_LKV, D-10
CZ_UI_MSTTMP_SUPDIS_LKV, D-10
CZ_UI_MSTTMP_TMPUSG_LKV, D-10
CZ_UI_MSTTMP_TMPUSG_MSGUTL_LKV,
D-10
CZ_USAGES_PICKER_V, D-10
CZ_VALIDRESULTFORCOMPON_LKV, D-
10
CZ_VALIDRESULTFOROPTFEA_LKV, D-10
CZ_VERTICALALIGNMENT_LKV, D-10
CZ_VIEWBYSELECTION_LKV, D-10

Rule
Oracle Configurator RULE subschema, D-10

rules
importing, 1-4
importing legacy rules, 5-21

RULE subschema
CZ_COMBO_FEATURES, D-10
CZ_COMPATCELL_NODE_V, D-10
CZ_DES_CHART_CELLS, D-10
CZ_DES_CHART_COLUMNS, D-10
CZ_DES_CHART_FEATURES, D-10
CZ_EXPRESSION_NODES, D-11
CZ_FILTER_SETS, D-11
CZ_GRID_CELLS, D-11
CZ_GRID_COLS, D-11
CZ_GRID_DEFS, D-11
CZ_IMP_RULES, D-11
CZ_MODEL_ALL_RULEFOLDERS_V, D-11
CZ_MODELRULEFOLDER_IMAGES_V, D-11
CZ_NODE_USAGE_IN_RULES_V, D-11
CZ_NODETYPE_SYSPROPS_V, D-11
CZ_PSN_TYPED_RULE_REFS_V, D-11
CZ_RUL_TYPEDPSN_V, D-11
CZ_RULE_EXPRDETLS_V, D-11
CZ_RULE_EXPRESSION_V, D-11
CZ_RULE_FOLDERS, D-11
CZ_RULE_PARTICIPANTS_V, D-11

Index-31

CZ_RULES, D-11
CZ_RULES_WITH_ARGS_V, D-11
CZ_RULETEMPLS_BYLABEL_V, D-11
CZ_TYPED_RULES_V, D-11

RUN_BILL_EXPLODER
CZ_DB_SETTINGS, 4-14
data refresh, 4-23
usage, 4-23

RUN_ID
import control field, 4-4

runtime
managing the Oracle Configurator data cache,
B-4

runtime Oracle Configurator
architecture, 2-2
generated UI, 2-6
Generic Configurator User Interface, 2-6, 19-2
legacy Configurator UI, 2-6, 18-14, 18-33
overview, 2-3
Standard UI, 18-17, 18-34

S
save_config_behavior (initialization parameter),
9-33
saved configurations

restoring in new Oracle Configurator version,
16-18

sbm_flag (initialization parameter), 9-14
sbm_flag (initialization parameter), 9-34
schema

ADMN subschema tables, D-1
CNFG subschema tables, D-1
ITEM subschema tables, D-2
LCE subschema tables, D-2
PB subschema tables, D-3
PRC subschema tables, D-3
PROJ subschema tables, D-4
RULE subschema tables, D-10
UI subschema tables, D-12
verifying version, B-3

SCHEMA
CZ_DB_SETTINGS, 4-11

Secure Sockets Layer (SSL)
setting up Oracle Configurator, 20-6

security
additional Oracle Applications instance, 20-9

AOL/J, 20-8
clusters, 20-8
connection parameters, 20-8
connection to runtime instance, 20-9
data extraction, 20-9
firewalls, 20-7
Function security, 15-2
ICX session ticket, 20-8
implementing Secure Sockets Layer, 20-6
routers, 20-8
separate machines, 20-8
walk-in users, 20-9

selection_line_id (XML element), 10-10
SELLING_PRICE (database column), 13-6
SEQ_NBR (database column), 13-6
sequence

reset increments in REDO_SEQUENCES
procedure, 8-4

server
security, 20-8

servlet
See OC Servlet

Servlet directory, 12-2
session log, 9-6
SHIP_FROM_ORG_ID (database column), 9-37
ship_to_group_date (ATP procedure parameter),
13-8
ship_to_org_id (ATP procedure parameter), 13-8
SHIP_TO_ORG_ID (database column), 9-35
ship_to_org_id (initialization parameter), 9-16, 9-
35
shopping cart, 10-4
SOURCE_SERVER (database column)

BOM synchronization, 7-5
SRC_APPLICATION_ID

importing dependency, 4-9
standard_validation (XML element), 10-7
stateful application, 20-6
Statement Rules

importing, 5-21
status

rule import, 5-28
stickiness

effect on servlet connections, 20-7
router property, 20-7

subschemas
ADMN (Administrative), 4-2

Index-32

CNFG (Configuration), 4-2
definition, 4-2
ITEM (Item-Master), 4-2
LCE (Logic for Configuration), 4-2
PB (Publication), 4-2
PROJ (Project Structure), 4-2
RP (Repository), 4-2
RULE (Rule), 4-2
TXT (Text), 4-2
TYP (Data Typing), 4-2
UI (User Interface), 4-2
XFR (Transfer specifications and control), 4-2

subtype
custom data type, 17-11

support
getting help with Oracle Configurator, 1-11
Oracle Support Web site, 16-6

SuppressSuccessMessage
CZ_DB_SETTINGS, 4-14
usage, 4-24

surrogate key fields
foreign surrogate key, 4-7
surrogate primary key, 4-7

synchronizing
BOM data, 7-2

multiple database instances, 1-3
CZ_MODEL_PUBLICATIONS, 16-5
EXPLOSION_TYPE setting, 7-6
import, 5-6, 5-15
migrated Model data, 6-8
publishing to another database, 7-2
tasks, 7-2
validation criteria, 7-3

System Item
flexfields, 4-21

system testing
configuration models, 3-9

T
tables

administration information, D-1
configuration information, D-1
custom data type, 17-11
data type information, D-12, D-12
import information, D-13
Item information, D-2

logic generation information, D-2
pricing information, D-3
project information, D-4
publication information, D-3
repository action information, D-5
rule import, 5-26
Rule information, D-10
runtime text information, D-11
UI information, D-12

TCP/IP
time limit, 20-7

template_url (initialization parameter), 9-35
terminate_id (initialization parameter), 9-35
terminate_msg_behavior (initialization
parameter), 9-35
terminate (XML element), 10-3
terminate (XML element), 10-3
termination

ID parameter, 9-35
message

behavior, 9-35
conditions, 10-3
for guided selling, 9-35
passed to return URL, 9-14

message
for guided selling, 10-5
passed to return URL, 10-13
reconfigured item, 21-6
structure, 10-3, 10-3
syntax, 10-3

test
environment, 3-9
page example, 9-7, 13-11

testing
system, 3-9

thin drivers, 9-20
TimeImport

CZ_DB_SETTINGS, 4-15
usage, 4-24

timeouts
database connection, 20-7
JServ

default, 20-6
router, 20-7

TOP_ITEM_ID (database column)
BOM synchronization, 7-5, 7-5
identifying a BOM Model for import, 5-13

Index-33

total_price (XML element), 10-7
transfer specifications

See CZ_XFR control tables
translations, 14-2

See also MLS (Multiple Language Support)
Item descriptions, 14-2
XML documents, 14-5

troubleshooting
Oracle Configurator issues, 1-11

tuning
CIO, 2-7

TYP subschema
CZ_DATA_SUBTYPES_V, D-12
CZ_NODE_DISPCOND_PROPERTIES_V, D-
12
CZ_NODETYPE_PROPERTIES_V, D-12
CZ_PARENT_CHILD_RELS_V, D-12
CZ_TYPE_RELATIONSHIPS, D-12
CZ_VALID_RESULT_TYPES_V, D-12

U
UI_DEF_ID (database column), 9-36
ui_def_id (initialization parameter), 9-7, 9-11, 9-
36
UI_FOR_ITEM (API), 17-66
UI_FOR_PUBLICATION_ID (API), 17-68
UI_NODE_NAME_CONCAT_CHARS

CZ_DB_SETTINGS, 4-15
usage, 4-24

ui_type (initialization parameter), 9-7, 9-36
UISERVER

CZ_DB_SETTINGS, 4-11
UI Server

element of the OC Servlet, 2-7
UI subschema

CZ_IMP_LOCALIZED_TEXTS, D-11
CZ_JRAD_CHUNKS, D-12
CZ_LOCALIZED_TEXTS, D-11
CZ_PS_UI_CTRL_MAPS, D-12
CZ_PSNODETYPE_IMAGES_V, D-12
CZ_RULETYPE_IMAGES_V, D-12
CZ_UI_ACTIONS, D-12
CZ_UI_COLLECT_TMPLS_V, D-12
CZ_UI_CONT_TYPE_TEMPLS, D-12
CZ_UI_CONT_TYPE_TEMPLS_VV, D-13
CZ_UI_DEFS, D-13

CZ_UI_ELEMENT_ATTRIBUTES_V, D-13
CZ_UI_IMAGES, D-13
CZ_UI_NODE_PROPS, D-13
CZ_UI_NODES, D-13
CZ_UI_PAGE_ELEMENTS, D-13
CZ_UI_PAGE_REFS, D-13
CZ_UI_PAGE_SETS, D-13
CZ_UI_PAGES, D-13
CZ_UI_PATHED_IMAGES_V, D-13
CZ_UI_PROPERTIES, D-13
CZ_UI_REF_TEMPLATES, D-13
CZ_UI_REFS, D-13
CZ_UI_TEMPLATES, D-13
CZ_UI_TEMPLATES_VV, D-13
CZ_UI_TYPEDPSN_V, D-13
CZ_UI_XMLS, D-13
CZ_UIDEF_SIGNATURE_TEMPLS_V, D-12
CZ_UIELEMENT_IMAGES_V, D-12
CZ_UITEMPL_CONTROLS_V, D-12
CZ_UITEMPL_MESSAGES_V, D-12
CZ_UITEMPL_UTILITY_V, D-12
CZ_UITEMPLS_FOR_PSNODES_V, D-12

unit testing
configuration models, 3-8

UNREGISTER_MODEL_FROM_POOL (API), 17-
64
UNREGISTER_POOL (API), 17-65
UOM_CODE (database column), 13-6
uom (XML element), 10-11
updating

BOM Models, 5-16
BOM referenced Models, 5-19
CZ_SERVERS, 7-8
during import, 4-10
logic generation, 4-18
pricing, 13-7
property values, 4-16

upgrading
Oracle Configurator, 3-8

usage_name (applicability parameter), 17-10
Usages

config_effective_usage_id (initialization
parameter), 9-24
initialization message, 16-4
planning publications, 16-2
publication applicability parameter, 16-9

UseLocalTableInExtractionViews

Index-34

CZ_DB_SETTINGS, 4-15
usage, 4-25

USER_ID (database column), 9-37
user_id (initialization parameter), 9-37
user (initialization parameter), 9-6, 9-37
user access

publications mode, 16-3
User Interface

communication with Active Model, 2-7
Configurator Extensions, 2-7
generated UI, 2-6
Generic Configurator User Interface, 19-2
language, 14-3
legacy Configurator UI, 2-6, 18-14, 18-33
Oracle Configurator UI subschema, D-12
publishing tables, 16-12
restrictions, 12-3
runtime types, 2-6
Standard UI, 18-17, 18-34

UTL_HTTP package, 17-11
UtlHttpTransferTimeout

CZ_DB_SETTINGS, 4-15
usage, 4-25

V
valid_configuration (XML element), 10-8
VALIDATE (API), 17-69
VALIDATE (procedure)

used for batch validation, 11-2
validation

rule import, 5-29
synchronizing criteria, 7-3

VERIFY_CONFIGURATION (API), 17-72
verifying

data import, 5-16
schema version, B-3

W
warehouse_id (ATP procedure parameter), 13-8
warehouse_id (initialization parameter), 9-37
warehouse_id (initialization parameter), 9-16
Web deployment, 19-2

X
XFR_ control tables

See CZ_XFR control tables
XFR subschema

CZ_XFR_FIELDS, D-13
CZ_XFR_PROJECT_BILLS, D-13
CZ_XFR_RUN_INFOS, D-13
CZ_XFR_RUN_RESULTS, D-13
CZ_XFR_STATUS_CODES, D-14
CZ_XFR_TABLES, D-14

XML
translating data, 14-5
use for initialization message, 9-3
use of quotation marks, 9-5

XML elements
DTD for, 10-3
initialize, 9-3
param, 9-4
termination message

atp_date, 10-9
atp-rollup-date, 10-9
bom_item_type, 10-9
bom-quantity, 10-10
complete_configuration, 10-6
component_code, 10-10, 10-11
config_header_id, 10-6
config_messages, 10-11, 10-11
config_outputs, 10-9
config_rev_nbr, 10-6
discounted_price, 10-10
exit, 10-6
inventory_item_id, 10-10
item_name, 10-11
list_price, 10-10
message, 10-11
message_text, 10-12
message_type, 10-12
organization_id, 10-10
parent_line_id, 10-10
prices_calculated_flag, 10-6
ps_node_id, 10-11
quantity, 10-10
selection_line_id, 10-10
standard_validation, 10-7
terminate, 10-3, 10-3
total_price, 10-7
uom, 10-11
valid_configuration, 10-8

	Oracle Configurator Implementation Guide
	Preface
	 Introduction
	Implementation Tasks
	Overview
	General Implementation Tasks
	Database Tasks
	Required Database Tasks
	Optional Database Tasks

	Integration Tasks
	Required Tasks for All Integrations
	Optional Integration Tasks
	Tasks for Custom Integration

	Model Development Tasks
	Required Tasks for Model Development
	Optional Tasks for Model Development

	Deployment Tasks
	Required Tasks for All Deployments
	Optional Tasks for Deployment
	Tasks for Custom Deployments

	Conventions
	Product Support
	Troubleshooting

	Configurator Architecture
	Overview
	Introduction
	Runtime Oracle Configurator
	Access
	Type of Host Application
	Login to Host Application
	Invocation of Oracle Configurator by Host Application
	Incorporation of Oracle Configurator in the Host Application's UI

	Oracle Configurator Security on Publicly Accessible Web Servers
	Runtime UI Types
	Oracle Configurator Servlet
	UI Server
	Configuration Interface Object (CIO)
	Oracle Configurator Engine

	Oracle CZ Schema
	Oracle Configurator Developer
	Access
	Types of Configuration Models
	Unit Testing

	Multi-Tier Architecture
	Runtime Oracle Configurator
	Oracle Configurator Developer Three Tiers

	Database Instances
	Overview
	Database Uses
	Multiple Database Instances
	Model Availability on Multiple Database Instances
	Import Source and Target
	Publication Source and Target
	Decommissioning a Database Instance
	Migration Source and Target
	BOM Synchronization Source and Target

	Linking Multiple Database Instances
	Instance and Host System Names

	Model Development
	Maintenance
	Production
	System Testing
	Deploying a Model
	Converting a Publication Target Instance to a Development Instance

	Data
	The CZ Schema
	Overview
	Characteristics of the Oracle CZ Schema
	Online Tables and Integration Tables
	CZ Subschemas
	Public Synonyms
	Schema Customization

	Import Tables
	Import Control Fields
	Online Data Fields
	Surrogate Key Fields
	Dependencies Among Import Tables

	Control Tables
	CZ_DB_SETTINGS Table
	Accessing the CZ_DB_SETTINGS Table
	Organization of the CZ_DB_SETTINGS Table
	CZ_DB_SETTINGS Parameters
	AltBatchValidateURL
	BadItemPropertyValue
	BatchSize
	BOM_REVISION
	CommitSize
	DISPLAY_INSTANCE_NAME
	FREEZE_REVISION
	GenerateGatedCombo
	GenerateUpdatedOnly
	GenStatisticsBOM
	GenStatisticsCZ
	MAJOR_VERSION
	MaximumErrors
	MemoryBulkSize
	MINOR_VERSION
	MULTISESSION
	OracleSequenceIncr
	PsNodeName
	PublicationLocalBOMSynch
	PublicationLogging
	PublishingCopyRules
	PurgeDeleteConfigBatchsize
	RefPartNbr
	ResolvePropertyDataType
	RestoredConfigDefaultModelLookupDate
	Revision Date and User
	RUN_BILL_EXPLODER
	SuppressSuccessMessage
	TimeImport	
	UI_NODE_NAME_CONCAT_CHARS
	UseLocalTableInExtractionViews
	UtlHttpTransferTimeout

	Populating the CZ Schema
	Overview
	Introduction
	Types of Data Stored in the CZ Schema During Development and Runtime
	Means of Populating the CZ Schema
	CZ_IMP Tables

	Standard Import
	Inventory and BOM Data That Can Be Imported
	Overall Standard Import Procedure
	Determining the Import Data Source Instance and the Target Instance
	Preparing the Data for Import
	Defining Inventory Items for Configuration
	Creating BOM Models for Configuration

	Defining and Enabling a Server for Import
	Exploding BOM Models in Oracle Applications
	Exploding a BOM Model in Release 12
	Exploding a BOM Model in Release 10.7 or 11.0

	Controlling the Data for Import
	Importing Data Into Specific Tables
	Importing Data from Specific Fields
	Populating Import Tables
	Modifying EXPLOSION_TYPE
	Identifying a BOM Model for Import
	Importing Decimal or Integer Quantities
	Importing Minimum and Maximum Instances

	Importing the Data
	Verifying the Data Import
	Refreshing Imported Data
	Refreshing Imported Data Recommendations
	Refreshing Procedures

	Importing a BOM Model that Contains Other BOM Models
	Refreshing a BOM Model that Contains Other BOM Models
	BOM Model References Have Changed
	BOM Models Referenced by Previously Imported BOM Model Have Changed

	BOM Model with a Common Bill

	Rule Import
	Populating CZ_IMP_RULES
	Populating CZ_IMP_LOCALIZED_TEXTS
	Rule Import Tables
	Stages of Rule Import
	Rule Validation

	Rule Import Procedure
	Custom Import
	Overview of Custom Data Import
	Identifying Data for a Custom Data Import
	Required ASCII File Format for Custom Import
	Loading Property Values by Type

	Custom Import Procedure

	Migrating Data
	Introduction
	Migrating Data from a CZ Schema
	Migrating Models
	Migrating Referenced Models
	Restoring Saved Configurations of Migrated Models
	Synchronizing Migrated Model Data
	Synchronization Criteria During Model Migration

	Synchronizing Data
	Overview
	Introduction
	Synchronizing BOM Model Data
	The BOM Model Synchronization Process
	Checking BOM and Model Similarity
	Criteria for BOM Model Similarity
	Result of Synchronizing BOM Models

	Synchronizing Publication Data
	Synchronizing Publication Data after a Database Instance is Cloned
	Example of Synchronizing Publication Data
	CZ_SERVERS Table
	CZ_MODEL_PUBLICATIONS Table
	Example Publication Data Before Cloning
	Example of Synchronizing Publication Data on a Cloned Target
	Example of Synchronizing Publication Data on a Cloned Source

	CZ Schema Maintenance
	Overview
	Introduction
	Refreshing or Updating the Production CZ Schema
	Purging Configurator Tables
	Purge Configurator Tables
	Purge Configurator Import Tables
	Purge To Date Configurator Import Tables
	Purge To Run ID Configurator Import Tables

	Redoing Sequences

	Integration
	Session Initialization
	Overview
	Introduction
	Definition of Session Initialization
	Responsibilities of the Host Application

	Setting Parameters
	Parameter Syntax
	Omitting Parameters or Values

	Typical Parameter Values
	Minimal Test of Initialization
	Parameter Validation
	Logging of Parameter Use

	Initialization Parameter Types
	Login Parameters
	Model Identification Parameters
	Identifying the User Interface Definition
	Identifying the Configuration
	Identifying the Model

	Model Publication Identification Parameters
	Support of Multiple Instantiation
	Return URL Parameter
	Pricing Parameters
	ATP Parameters
	Arbitrary Parameters
	Parameter Compatibility

	Initialization Parameter Descriptions

	Session Termination
	Introduction
	Overview
	Relationship to Initialization Message
	Definition of Session Termination

	XML Message Structure
	Submission
	Configuration Status
	Subelements for Configuration Status

	Configuration Outputs
	Subelements for Configuration Outputs

	Configuration Messages
	Subelements for Configuration Messages

	Cancellation
	Error
	The Return URL
	Specifying the Return URL
	Implementing the Return URL

	Batch Validation
	Overview
	Introduction
	Passing the Batch Validation Message
	Calling the CZ_CF_API.VALIDATE Procedure
	Batch Validation Failure
	Skipping Batch Validation
	PL/SQL Callback
	PL/SQL Callback and Models that use Configurator Extensions

	Custom Integration
	Overview
	General Directory Structure
	Files for the Servlet Directory
	Files for the HTML Directory
	Files for the Media Directory

	Pricing and ATP in Oracle Configurator
	Overview
	Introduction
	Runtime Oracle Configurator Pricing Architecture
	Pricing Callback Interface Package
	Pricing Callback Interface
	Use of the Database in the Price Multiple Items Procedures
	Examples of the Pricing Callback Interface

	ATP Callback Interface
	Use of the Database with the ATP Callback Interface
	Examples of the ATP Callback Interface

	Runtime Pricing Behavior
	Integration of Pricing and ATP with Oracle Configurator
	Database Compatibility
	Initialization Parameters

	Controlling Pricing and ATP in a Runtime Oracle Configurator
	Displaying Prices and ATP Information
	Updating Prices
	Examples of Controlling Pricing
	Example: List Prices Only
	Example: Selling Prices Only

	Multiple Language Support
	Overview
	Introduction
	Data Import
	New Models
	Existing Models

	Installed Languages in Multiple Server Environments
	Deploying a User Interface that Supports MLS
	Translating Data in CZ_LOCALIZED_TEXTS
	Translating XML Documents

	Configuration Model
	Controlling the Development Environment
	Overview
	Setting up Oracle Configurator Developer
	Setting up Access to Configurator Developer
	Oracle Configurator Developer
	Model Development
	Runtime Testing

	Publishing Configuration Models
	Overview
	Planning Publications
	Designing A Project
	Preventing Publication Access Errors

	How Host Applications Select a Published Model
	Example: How a Usage Affects Model Structure, Rules, and Model Publications at Runtime

	Defining a Publication
	Source and Remote Publications
	Tables Used in Publishing
	Publication Details
	Model
	Product ID
	User Interface
	Target Database Instance
	Mode

	Publication Applicability Parameters
	Applications
	Languages
	Usages
	Date Range

	Publishing a Configuration Model
	Publication Profile Options
	Publishing and Model References
	Copying User Interface Data
	Copying Model Rules
	Checking BOM Model and Configuration Model Similarity

	Maintaining Publications
	Publication Status
	Editing Publications
	Disabling, Deleting, and Re-enabling Publications
	Republishing
	Determining Publishing Information
	Retrieving Orders from Previously Published Models
	Synchronizing Publication Data
	Example of Maintaining Publications

	Programmatic Tools for Development
	Overview
	Overview of the CZ_CF_API and CZ_CONFIG_API_PUB Packages
	Purpose of the Packages
	Overview of Procedures and Functions
	Installation of the Packages
	References for Working with PL/SQL Procedures and Functions

	Choosing the Right Tool for the Job
	Establishing Session Identity
	Setting Configuration Dates
	Validating Configurations
	Verifying Configurations
	Copying and Deleting Configurations
	Working with Common Bills
	Identifying Publications
	Functions for Identifying Publications
	Applicability Parameters
	List Parameters

	Routing Models to Specified JVMs

	Reference for the CZ_CF_API and the CZ_CONFIG_API_PUB Packages
	Custom Data Types
	Procedures and Functions in the CZ_CF_API and CZ_CONFIG_API_PUB Packages

	COMMON_BILL_FOR_ITEM
	Syntax and Parameters

	CONFIG_MODEL_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_MODELS_FOR_ITEMS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_MODEL_FOR_PRODUCT
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_MODELS_FOR_PRODUCTS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UI_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UI_FOR_ITEM_LF
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UI_FOR_PRODUCT
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UIS_FOR_ITEMS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	CONFIG_UIS_FOR_PRODUCTS
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	COPY_CONFIGURATION
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	CZ_CONFIG_API_PUB.COPY_CONFIGURATION
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters

	COPY_CONFIGURATION_AUTO
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	CZ_CONFIG_API_PUB.COPY_CONFIGURATION_AUTO
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	DEFAULT_NEW_CFG_DATES
	Considerations Before Running
	Prerequisites
	Timing
	Dependencies
	Restrictions and Limitations

	Syntax and Parameters
	Considerations After Running
	Results

	DEFAULT_RESTORED_CFG_DATES
	Considerations Before Running
	Prerequisites
	Timing
	Dependencies
	Restrictions and Limitations

	Syntax and Parameters
	Considerations After Running
	Results

	DELETE_CONFIGURATION
	Considerations Before Running
	Prerequisites
	Timing
	Warnings

	Syntax and Parameters
	Considerations After Running
	Troubleshooting

	ICX_SESSION_TICKET
	Considerations Before Running
	Prerequisites
	Timing

	Syntax and Parameters
	Considerations After Running
	Results
	Troubleshooting

	MODEL_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters
	Considerations After Running
	Results

	MODEL_FOR_PUBLICATION_ID
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	POOL_TOKEN_FOR_PRODUCT_KEY
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	PUBLICATION_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters

	PUBLICATION_FOR_PRODUCT
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters

	PUBLICATION_FOR_SAVED_CONFIG
	Considerations Before Running
	Timing
	Dependencies
	Warnings

	Syntax and Parameters

	REGISTER_MODEL_TO_POOL
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	UNREGISTER_MODEL_FROM_POOL
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	UNREGISTER_POOL
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	UI_FOR_ITEM
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters
	Considerations After Running
	Results

	UI_FOR_PUBLICATION_ID
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters
	Example

	VALIDATE
	Considerations Before Running
	Syntax and Parameters
	Example
	Considerations After Running
	Results

	CZ_CONFIG_API_PUB.VERIFY_CONFIGURATION
	Considerations Before Running
	Timing
	Dependencies

	Syntax and Parameters

	Programmatic Tools for Maintenance
	Overview
	Overview of the CZ_modelOperations_pub Package
	Purpose of the Package
	Installation of the Package
	References for Working with PL/SQL Procedures and Functions

	Choosing the Right Tool for the Job
	Queries to Support the CZ_modelOperations_pub Package
	Querying for Model and Folder IDs
	Querying for User Interface IDs
	Querying for Referenced User Interface IDs
	Querying for Populators
	Querying for Error and Warning Information

	Reference for the CZ_modelOperations_pub Package
	Custom Data Types
	API Version Numbers
	Format of API Version Numbers
	Current API Version Number for This Package
	Checking for Incompatible API Calls

	Procedures and Functions in the CZ_modelOperations_pub Package

	CREATE_RP_FOLDER
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	CREATE_UI
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	CREATE_JRAD_UI
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	DEEP_MODEL_COPY
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	EXECUTE_POPULATOR
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	FORCE_UNLOCK_MODEL
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	FORCE_UNLOCK_TEMPLATE
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	GENERATE_LOGIC
	Considerations Before Running
	Alternatives

	Syntax and Parameters
	Example

	IMPORT_SINGLE_BILL
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	IMPORT_GENERIC
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	PUBLISH_MODEL
	Considerations Before Running
	Restrictions and Limitations
	Alternatives

	Syntax and Parameters

	MIGRATE_MODELS
	Considerations Before Running
	Restrictions and Limitations
	Alternatives

	Syntax and Parameters

	REFRESH_SINGLE_MODEL
	Considerations Before Running
	Syntax and Parameters

	REFRESH_UI
	Considerations Before Running
	Restrictions and Limitations
	Alternatives

	Syntax and Parameters

	REFRESH_JRAD_UI
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	REPOPULATE
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	REPUBLISH_MODEL
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	RP_FOLDER_EXISTS
	Considerations Before Running
	Alternatives

	Syntax and Parameters

	Runtime Configurator
	User Interface Deployment
	Overview
	Calling an Embedded Oracle Configurator
	Generic Configurator User Interfaces
	Criteria for Launching a Generic Configurator User Interface
	Generic Configurator UI Types
	Setting Up a Generic Configurator User Interface
	Generic Configurator User Interfaces: Additional Features and Limitations

	Keyboard Access in the Runtime Configurator

	Deployment Considerations
	Overview
	Deployment Strategies
	Architectural Considerations
	Server Considerations
	Connection Pooling

	Establishing End User Access
	Determining the Runtime User Interface
	Load Balancing and Secure Sockets Layer
	Network Considerations
	Firewalls and Timeouts
	Router Timeouts
	Miscellaneous Issues

	Security Considerations
	Internet User Access
	Additional Security Precautions

	Multiple Language Support Considerations
	Performance Considerations
	Routing Models to Specified JVMs

	Managing Configurations
	Overview
	About Configurations
	Saving a Configuration
	Restoring Saved Configurations

	Configuration Identity
	Host Applications and Oracle Configurator
	Batch Validation of a Configured Item
	Reconfiguring a Configured Item
	Copying a Host Application's Entity
	Passing a Saved Configuration to Another Host Application
	Deleting a Host Application Entity

	Terminology
	Overview

	Common Tasks
	Overview
	Running Configurator Concurrent Programs
	Connecting to a Database Instance
	Verifying CZ Schema Version
	Server Administration
	Viewing the Status of Configurator Concurrent Requests
	Viewing Log Files
	Managing Oracle Configurator Caching
	Checking BOM Model and Configuration Model Similarity

	Concurrent Programs
	Overview
	Configurator Administration Concurrent Programs
	View Configurator Parameters
	Modify Configurator Parameters
	Purge Configurator Tables
	Purge Configurator Import Tables
	Purge To Date Configurator Import Tables
	Purge To Run ID Configurator Import Tables

	Convert Publication Target Instance to Development Instance
	Server Administration Concurrent Programs
	Add Application to Publication Applicability List
	Define Remote Server
	Enable Remote Server
	View Servers
	Modify Server Definition

	Configuration Model Publication Concurrent Programs
	Process Pending Publications
	Process a Single Publication

	Populate and Refresh Configuration Models Concurrent Programs
	Populate Configuration Models
	Populate Configuration Models Concurrent Program Error Messages

	Refresh a Single Configuration Model
	Refresh All Imported Configuration Models
	Disable/Enable Refresh of a Configuration Model
	Import Configuration Rules

	Model Synchronization Concurrent Programs
	Check Model/Bill Similarity
	Check All Models/Bills Similarity
	Synchronize All Models
	Model/Bill Similarity Check Report

	Execute Populators in Model
	Migration Concurrent Programs
	Setup Configurator Data Migration
	Migrate Configurator Data

	Migrate Functional Companions
	Migrate All Functional Companions
	Migrate Functional Companions for a Single Model

	Model Management
	Add Model Node Names to Configurations by Model Items
	Add Model Node Names to Configurations by Model Product Key
	Migrate Models

	Publication Synchronization Concurrent Programs
	Synchronize Cloned Target Data
	Synchronize Cloned Source Data
	Select Tables to be Imported
	Show Tables to be Imported

	CZ Subschemas
	Oracle Configurator Subschemas
	ADMN Administrative Tables
	CNFG Configuration Tables
	ITEM Item-Master Tables
	LCE Logic for Configuration Tables
	PB Publication Tables
	PRC Pricing Tables
	PROJ Project Structure Tables
	RP Repository Tables
	RULE Rule Tables
	TXT - Text Tables
	TYP - Data Typing
	UI User Interface Tables
	XFR Transfer Specifications and Control Tables

	Code Examples
	Overview
	Pricing and ATP Callback Procedures
	Implementing a Return URL Servlet

	Common Glossary for Oracle Configurator
	Index

