JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Linker and Libraries Guide     Oracle Solaris 10 1/13 Information Library
search filter icon
search icon

Document Information

Preface

Part I Using the Link-Editor and Runtime Linker

1.  Introduction to the Oracle Solaris Link Editors

2.  Link-Editor

3.  Runtime Linker

Shared Object Dependencies

Locating Shared Object Dependencies

Directories Searched by the Runtime Linker

Configuring the Default Search Paths

Dynamic String Tokens

Relocation Processing

Relocation Symbol Lookup

Default Symbol Lookup

Runtime Interposition

When Relocations Are Performed

Relocation Errors

Loading Additional Objects

Lazy Loading of Dynamic Dependencies

Providing an Alternative to dlopen()

Initialization and Termination Routines

Initialization and Termination Order

Security

Runtime Linking Programming Interface

Loading Additional Objects

Relocation Processing

Symbol Lookup

Obtaining New Symbols

Testing for Functionality

Using Interposition

Debugging Aids

Debugging Facility

Debugger Module

4.  Shared Objects

Part II Quick Reference

5.  Link-Editor Quick Reference

Part III Advanced Topics

6.  Direct Bindings

7.  Building Objects to Optimize System Performance

8.  Mapfiles

9.  Interfaces and Versioning

10.  Establishing Dependencies with Dynamic String Tokens

11.  Extensibility Mechanisms

Part IV ELF Application Binary Interface

12.  Object File Format

13.  Program Loading and Dynamic Linking

14.  Thread-Local Storage

Part V Appendices

A.  Linker and Libraries Updates and New Features

B.  System V Release 4 (Version 1) Mapfiles

Index

Initialization and Termination Routines

Dynamic objects can supply code that provides for runtime initialization and termination processing. The initialization code of a dynamic object is executed once each time the dynamic object is loaded in a process. The termination code of a dynamic object is executed once each time the dynamic object is unloaded from a process or at process termination.

Before transferring control to an application, the runtime linker processes any initialization sections found in the application and any loaded dependencies. If new dynamic objects are loaded during process execution, their initialization sections are processed as part of loading the object. The initialization sections .preinit_array, .init_array, and .init are created by the link-editor when a dynamic object is built.

The runtime linker executes functions whose addresses are contained in the .preinit_array and .init_array sections. These functions are executed in the same order in which their addresses appear in the array. The runtime linker executes an .init section as an individual function. If an object contains both .init and .init_array sections, the .init section is processed before the functions defined by the .init_array section for that object.

A dynamic executable can provide pre-initialization functions in a .preinit_array section. These functions are executed after the runtime linker has built the process image and performed relocations but before any other initialization functions. Pre-initialization functions are not permitted in shared objects.


Note - Any .init section within the dynamic executable is called from the application by the process startup mechanism supplied by the compiler driver. The .init section within the dynamic executable is called last, after all dependency initialization sections are executed.


Dynamic objects can also provide termination sections. The termination sections .fini_array and .fini are created by the link-editor when a dynamic object is built.

Any termination sections are passed to atexit(3C). These termination routines are called when the process calls exit(2). Termination sections are also called when objects are removed from the running process with dlclose(3C).

The runtime linker executes functions whose addresses are contained in the .fini_array section. These functions are executed in the reverse order in which their addresses appear in the array. The runtime linker executes a .fini section as an individual function. If an object contains both .fini and .fini_array sections, the functions defined by the .fini_array section are processed before the .fini section for that object.


Note - Any .fini section within the dynamic executable is called from the application by the process termination mechanism supplied by the compiler driver. The .fini section of the dynamic executable is called first, before all dependency termination sections are executed.


For more information on the creation of initialization and termination sections by the link-editor see Initialization and Termination Sections.

Initialization and Termination Order

To determine the order of executing initialization and termination code within a process at runtime is a complex procedure that involves dependency analysis. This procedure has evolved substantially from the original inception of initialization and termination sections. This procedure attempts to fulfill the expectations of modern languages and current programming techniques. However, scenarios can exist, where user expectations are hard to meet. Flexible, predictable runtime behavior can be achieved by understanding these scenarios together with limiting the content of initialization code and termination code.

The goal of an initialization section is to execute a small piece of code before any other code within the same object is referenced. The goal of a termination section is to execute a small piece of code after an object has finished executing. Self contained initialization sections and termination sections can easily satisfy these requirements.

However, initialization sections are typically more complex and make reference to external interfaces that are provided by other objects. Therefore, a dependency is established where the initialization section of one object must be executed before references are made from other objects. Applications can establish an extensive dependency hierarchy. In addition, dependencies can creating cycles within their hierarchies. The situation can be further complicated by initialization sections that load additional objects, or change the relocation mode of objects that are already loaded. These issues have resulted in various sorting and execution techniques that attempt to satisfy the original goal of these sections.

Prior to the Solaris 2.6 release, dependency initialization routines were called in reverse load order, which is the reverse order of the dependencies displayed with ldd(1). Similarly, dependency termination routines were called in load order. However, as dependency hierarchies became more complex, this simple ordering approach became inadequate.

With the Solaris 2.6 release, the runtime linker constructs a topologically sorted list of objects that have been loaded. This list is built from the dependency relationship expressed by each object, together with any symbol bindings that occur outside of the expressed dependencies.


Caution

Caution - Prior to the Solaris 8 10/00 release, the environment variable LD_BREADTH could be set to a non-null value. This setting forced the runtime linker to execute initialization and termination sections in pre-Solaris 2.6 release order. This functionality has since been disabled, as the initialization dependencies of many applications have become complex and mandate topological sorting. Any LD_BREADTH setting is now silently ignored.


Initialization sections are executed in the reverse topological order of the dependencies. If cyclic dependencies are found, the objects that form the cycle cannot be topologically sorted. The initialization sections of any cyclic dependencies are executed in their reverse load order. Similarly, termination sections are called in the topological order of the dependencies. The termination sections of any cyclic dependencies are executed in their load order.

A static analysis of the initialization order of an object's dependencies can be obtained by using ldd(1) with the -i option. For example, the following dynamic executable and its dependencies exhibit a cyclic dependency.

$ elfdump -d B.so.1 | grep NEEDED
    [1]     NEEDED      0xa9    C.so.1
$ elfdump -d C.so.1 | grep NEEDED
    [1]     NEEDED      0xc4    B.so.1
$ elfdump -d main | grep NEEDED
    [1]     NEEDED      0xd6    A.so.1
    [2]     NEEDED      0xc8    B.so.1
    [3]     NEEDED      0xe4    libc.so.1
$ ldd -i main
        A.so.1 =>        ./A.so.1
        B.so.1 =>        ./B.so.1
        libc.so.1 =>     /lib/libc.so.1
        C.so.1 =>        ./C.so.1
        libm.so.2 =>     /lib/libm.so.2

   cyclic dependencies detected, group[1]:
        ./libC.so.1
        ./libB.so.1

   init object=/lib/libc.so.1
   init object=./A.so.1
   init object=./C.so.1 - cyclic group [1], referenced by:
        ./B.so.1
   init object=./B.so.1 - cyclic group [1], referenced by:
        ./C.so.1

The previous analysis resulted solely from the topological sorting of the explicit dependency relationships. However, objects are frequently created that do not define their required dependencies. For this reason, symbol bindings are also incorporated as part of dependency analysis. The incorporation of symbol bindings with explicit dependencies can help produce a more accurate dependency relationship. A more accurate static analysis of initialization order can be obtained by using ldd(1) with the -i and -d options.

The most common model of loading objects uses lazy binding. With this model, only immediate reference symbol bindings are processed before initialization processing. Symbol bindings from lazy references might still be pending. These bindings can extend the dependency relationships so far established. A static analysis of the initialization order that incorporates all symbol binding can be obtained by using ldd(1) with the -i and -r options.

In practice, most applications use lazy binding. Therefore, the dependency analysis achieved before computing the initialization order follows the static analysis using ldd -id. However, because this dependency analysis can be incomplete, and because cyclic dependencies can exist, the runtime linker provides for dynamic initialization.

Dynamic initialization attempts to execute the initialization section of an object before any functions in the same object are called. During lazy symbol binding, the runtime linker determines whether the initialization section of the object being bound to has been called. If not, the runtime linker executes the initialization section before returning from the symbol binding procedure.

Dynamic initialization can not be revealed with ldd(1). However, the exact sequence of initialization calls can be observed at runtime by setting the LD_DEBUG environment variable to include the token init. See Debugging Facility. Extensive runtime initialization information and termination information can be captured by adding the debugging token detail. This information includes dependency listings, topological processing, and the identification of cyclic dependencies.

Dynamic initialization is only available when processing lazy references. This dynamic initialization is circumvented by the following.

The initialization techniques that have been described so far might still be insufficient to cope with some dynamic activities. Initialization sections can load additional objects, either explicitly using dlopen(3C), or implicitly through lazy loading and the use of filters. Initialization sections can also promote the relocations of existing objects. Objects that have been loaded to employ lazy binding have these bindings resolved if the same object is referenced using dlopen(3C) with the mode RTLD_NOW. This relocation promotion effectively suppresses the dynamic initialization facility that is available when resolving a function call dynamically.

Whenever new objects are loaded, or existing objects have their relocations promoted, a topological sort of these objects is initiated. Effectively, the original initialization execution is suspended while the new initialization requirements are established and the associated initialization sections executed. This model attempts to insure that the newly referenced objects are suitably initialized for the original initialization section to use. However, this parallization can be the cause of unwanted recursion.

While processing objects that employ lazy binding, the runtime linker can detect certain levels of recursion. This recursion can be displayed by setting LD_DEBUG=init. For example, the execution of the initialization section of foo.so.1 might result in calling another object. If this object then references an interface in foo.so.1 then a cycle is created. The runtime linker can detect this recursion as part of binding the lazy function reference to foo.so.1.

$ LD_DEBUG=init prog
00905: .......
00905: warning: calling foo.so.1 whose init has not completed
00905: .......

Recursion that occurs through references that have already been relocated can not be detected by the runtime linker.

Recursion can be expensive and problematic. Reduce the number of external references and dynamic loading activities that can be triggered by an initialization section so as to eliminate recursion.

Initialization processing is repeated for any objects that are added to the running process with dlopen(3C). Termination processing is also carried out for any objects that are unloaded from the process as a result of a call to dlclose(3C).

The preceding sections describe the various techniques that are employed to execute initialization and termination sections in a manner that attempts to meet user expectations. However, coding style and link-editing practices should also be employed to simplify the initialization and termination relationships between dependencies. This simplification helps make initialization processing and termination processing that is predictable, while less prone to any side affects of unexpected dependency ordering.

Keep the content of initialization and termination sections to a minimum. Avoid global constructors by initializing objects at runtime. Reduce the dependency of initialization and termination code on other dependencies. Define the dependency requirements of all dynamic objects. See Generating a Shared Object Output File. Do not express dependencies that are not required. See Shared Object Processing. Avoid cyclic dependencies. Do not depend on the order of an initialization or termination sequence. The ordering of objects can be affected by both shared object and application development. See Dependency Ordering.