Oracle® Financial Services Analytical Applications
Data Model Utilities

User Guide
Release 7.1/7.2
Part No. E17560-01

December 2011

ORACLE

Oracle Financial Services Analytical Applications Data Model Utilities User Guide, Release 7.1
Part No. E17560-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Surag Ramachandran

Contributing Author: Jilna Surag, Anuradha Muralidharan

Contributor: ~ Aravind Venketaraman

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Send Us Your Comments
Preface

1 Introduction

List of Acronyms used in the document....................... 1-1

2 Object Management

Adding Dimension Tables and Key Dimension (Leaf) Registration................cc.cccoccoein. 2-1
Adding Custom Instrument Tables..............cc.cccoiiiiiiiii e 2-16
Adding Custom Transaction Tables................cccociiiiiiiiiiiiii 2-21
Adding Custom Lookup Tables.............ccccoiiiiiiiiii e 2-24
Object Registration And Validation.................coooi e 2-29
Defining Alternate Rate Output Columns.............ccccoviiiiiiiiiiiini i 2-40
User Defined Properties...............coooiiiiiiiiiiiii e 2-41
Modifying the precision of Balance Columns In Ledger_Stat................c.ccoooviiiiiininnn. 2-45

3 Utilities

Reverse POPUIAtion.ooooiiiiiiiii e 3-1
Product Instrument Mapping..............cccoociiiiiiiiiiii i 3-5
Instrument Synchronization................coooiiiiiiiiii e 3-8
Ledger Load Undo..............coooiiiiiii e 3-12

4 Data Loaders

D3N 1a T 1S3 (o) 0) IR0 Y- Vs (=5 o TR 4-1

Historical Rates Data Loader..... ...ttt e e e e e e e e e aaes 4-17

Forecast Rate Data LOoader.........cou vt e e et e e e e e r e e e eanas 4-21

Prepayment Rate Data Loader.................coocooiiiiiiiii e 4-36
Stage Instrument Table Loader................ccoooiiiiiii e 4-40
Transaction Summary Table Loader................ccoooiiiiiiiiiii e, 4-46
Ledger Data Loader.............cooiiiiiiiii e e e 4-51
Pricing Management Transfer Rate Population Procedure......................ccoooo. 4-64
ALMBI Transformation...........c.occooiiiiiiiiiiiiii 4-66
Hierarchy Transformation................cooiiiiiiiiiii e 4-67

5 Mapping Export in Metadata Browser

Procedure

Send Us Your Comments

Oracle Financial Services Analytical Applications Data Model Utilities User Guide, Release 7.1
Part No. E17560-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

¢ Are the implementation steps correct and complete?

¢ Did you understand the context of the procedures?

¢ Did you find any errors in the information?

¢ Does the structure of the information help you with your tasks?

* Do you need different information or graphics? If so, where, and in what format?
* Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

Preface

Intended Audience

Welcome to Release 7.1 of the Oracle Financial Services Analytical Applications Data Model
Utilities User Guide.

See Related Information Sources on page viii for more Oracle E-Business Suite product
information.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Structure

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1 Introduction

This document contains various chapters related to data model utilities and data
loaders available within Oracle Financial Services Analytical Applications (OFSAA).
The four chapters present in this document are: Object Management, Utilities, Data
Loaders, and Mapping Export in Metadata Browser.

2 Object Management

This chapter details the steps involved in adding various client data objects into the
model.

3 Utilities

vii

This chapter details the steps involved in executing various data model utilities that are
available within OFSAA.
4 Data Loaders

This chapter details the steps involved in executing various data loaders that are
available within OFSAA. Data loaders move data from staging layer to processing
layer.

5 Mapping Export in Metadata Browser

Related Information Sources

Do Not Use Database Tools to Modify Oracle E-Business Suite Data

viii

Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

1

Introduction

This document contains various chapters related to data model utilities and data
loaders available within Oracle Financial Services Analytical Applications (OFSAA).
The four chapters present in this document are: Object Management, Utilities, Data
Loaders, and Mapping Export in Metadata Browser.

This chapter covers the following topics:

e List of Acronyms used in the document

List of Acronyms used in the document

Acronym Description

AAI Analytical Applications Infrastructure

ALM Asset Liability Management

AMHM Attributes, Members and Hierarchy
Management

COA Chart Of Accounts

F2T File to Table

FDM Financial Data Manager

GL General Ledger

GIT Global Temporary Table

Introduction 1-1

Acronym

Description

ICC

INFODOM

1P

OFS

OFSA

OFSAA

OFSAAI

PFT

PL/SQL

T2T

TP

UDP

Ul

Information Command Center

Information Domain

Internet Protocol

Oracle Financial Services

Oracle Financial Services Applications

Oracle Financial Services Analytical
Applications

Oracle Financial Services Analytical
Applications Infrastructure

Profitability

Procedural Language /Structured Query
Language

Table to Table

Transfer Pricing

User-Defined Property

User Interface

1-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

2

Object Management

This chapter details the steps involved in adding various client data objects into the
model.

This chapter covers the following topics:

Adding Dimension Tables and Key Dimension (Leaf) Registration
Adding Custom Instrument Tables

Adding Custom Transaction Tables

Adding Custom Lookup Tables

Object Registration And Validation

Defining Alternate Rate Output Columns

User Defined Properties

Modifying the precision of Balance Columns In Ledger_Stat

Adding Dimension Tables and Key Dimension (Leaf) Registration

The following section details the process in which users can add custom key
dimensions to the OFSAA application. Users can view the registered dimension within
the AMHM screens. Also, users can add members and hierarchies for the dimension
through AMHM screens.

Registering a new Key Dimension (called as Leaf in OFSA 4.5) requires the following
steps:

Add a set of dimension tables to store leaf values in ERwin model.
Add the key dimension column to required Entities in ERwin model.
Assign the Processing Key Column Property (Key Dimension Columns only).

Upload the model.

Object Management 2-1

® Register the Key Dimension.
e Modify Unique indexes (Key Leaf Dimension only).
e Validate tables.

Each of these steps is discussed in detail in the following sections.

Adding Dimension Tables

Each key dimension contains a set of the following tables:

e DIM_<DIMENSION>_B - Stores leaf and node member codes within the dimension.
e DIM_<DIMENSION> TL - Stores names of leaf and node and their translations.

e DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the
dimension.

e DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and
nodes that are part of hierarchies.

Note: Replace <DIMENSION> with the keyword representing the key
dimension.

Seeded key dimension tables are present in 'Fusion — Dimensions' subject area within
the ERwin model. The above tables need to be created for the new dimension. For more
information on creating dimension tables in ERwin, see leaflet
(AddingAndCustomizingLeaf.pdf).

Note: For ease of use, user can copy an existing set of dimension tables
eg, for ORG_UNIT dimension and rename the tables (in both physical
and logical view) to represent the new dimension.

Table structure of one of the seeded key dimension is given below with remarks on how
this can be used as the basis for modeling new key dimensions.

DIM_ORG_UNIT_B

Stores the ID of the members (leaf and nodes) of the dimension.

2-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical Datatype NULL Column Remarks
Column Description
Name
ORG_UNIT_ID Organizati NUMBER(14) NOT Leaf column Column name
on Unit ID NUL which stores the and description
L id for the should reflect
organization unit the new
dimension dimension.
Datatype and
other
constraints
should be
retained.
ORG_UNIT_DIS Organizati NUMBER(14) NUL Leaf column Column name
PLAY_CODE on Unit L which stores the and description
Display display code for should reflect
Code the organization the new
unit dimension dimension.
Datatype and
other
constraints
should be
retained.
ENABLED_FLA Enabled VARCHAR2(1 NOT Store if the item is Internally used
G Flag) NUL enabled or not and hence
L should be
retained in the
same form
within the new
dimension table.
LEAF_ONLY_FL Leafor VARCHAR2(1 NOT Indicates if the Internally used
AG Node Flag) NUL member is leaf and hence
L only or not should be

retained in the
same form
within the new
dimension table.

Object Management

2-3

Column Name Logical Datatype NULL Column Remarks
Column Description
Name
DEFINITION_L Definition VARCHAR2(4 NOT Language thatis Internally used
ANGUAGE Language) NUL used to define and hence
L should be
retained in the
same form
within the new
dimension table.
CREATED_BY Created VARCHAR2(3 NOT Indicates who Internally used
By 0) NUL created thisitem and hence
L should be
retained in the
same form
within the new
dimension table.
CREATION_DA Creation TIMESTAMP NOT Indicates when Internally used
TE Date NUL was this item and hence
L created should be
retained in the
same form
within the new
dimension table.
LAST_MODIFIE Last VARCHAR2(3 NOT Indicates who Internally used
D_BY Modified 0) NUL modified this item and hence
By L should be
retained in the
same form
within the new
dimension table.
LAST_MODIFIE Last TIMESTAMP NOT Indicates when Internally used
D_DATE Modified NUL was this item and hence
Date L modified should be

retained in the
same form
within the new
dimension table.

2-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical Datatype NULL Column Remarks
Column Description
Name

ORG_UNIT_CO ORG_UNI VARCHAR2(2 NUL This column is Column name

DE T_CODE 0) L used by staging and description
and contains the should reflect
alpha-numeric the new
codes for each dimension.
dimension Datatype and
member. Staging other
dimension table constraints
contains unique should be
alpha-numeric retained.

codes and a
unique numeric
identifier is
generated while
loading into
Fusion dimension
table.

DIM_ORG_UNIT_TL

Stores the names and descriptions of the members (leaf and nodes) of the dimension in
various languages.

Column Name Logical Datatype NULL Column Remarks
Column Description
Name
LANGUAGE Language = VARCHAR2(4) NOT Language Internally used
NULL and hence
should be

retained in the
same form
within the new
dimension
table.

Object Management 2-5

Column Name Logical Datatype NULL Column Remarks
Column Description
Name
ORG_UNIT_ID Organizatio NUMBER(14) NOT Leaf column Column name
n Unit ID NULL which stores and
the id for the description
organization should reflect
unit dimension the new
dimension.
Datatype and
other
constraints
should be
retained.
ORG_UNIT_NA Organizatio VARCHAR2(15 NOT Leaf column Column name
ME n Unit 0) NULL which stores and
Name the name for description
the should reflect
organization the new
unit dimension dimension.
Datatype and
other
constraints
should be
retained.
DESCRIPTION Description VARCHAR2(25 NULL Description of Internally used
5) an Item and hence
should be
retained in the
same form
within the new
dimension
table.
CREATED_BY Created By VARCHAR2(30 NOT Indicates who Internally used
) NULL created this and hence
item should be
retained in the
same form
within the new
dimension
table.

Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name

Logical
Column
Name

Datatype

NULL

Column
Description

Remarks

CREATION_DAT

E

LAST_MODIFIE
D_BY

LAST_MODIFIE
D_DATE

Creation
Date

Last
Modified
By

Last
Modified
Date

TIMESTAMP

VARCHAR2(30

)

TIMESTAMP

NOT
NULL

NOT
NULL

NOT
NULL

Indicates when
was this item
created

Indicates who
modified this
item

Indicates when
was this item
modified

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DIM_ORG_UNIT_ATTR

Stores the values of the attributes of the members (leaf and nodes) of the dimension.

Object Management 2-7

Column Name Logical Datatype NULL Column Remarks
Column Descriptio
Name n
ORG_UNIT_ID Organizati NUMBER(14) NOT Leaf Column name
on Unit ID NULL column and
which description
stores the id should reflect
for the the new
organisatio dimension.
n unit Datatype and
dimension other
constraints
should be
retained.
ATTRIBUTE_I Attribute NUMBER(22) NOT Stores Internally used
D 1D NULL attribute id and hence
number for should be
a member retained in the
of a same form
dimension within the new
dimension
table.
DIM_ATTRIBU Numeric NUMBER(22) NULL This field Internally used
TE_NUMERIC Dimension stores the and hence
_MEMBER Value number should be
values for retained in the
the same form
attribute of within the new
a member dimension
table.
DIM_ATTRIBU Varchar VARCHAR2(30) NULL This field Internally used
TE_VARCHAR Dimension stores the and hence
_MEMBER Value varchar should be
values for retained in the
the same form

attribute of
a member

within the new
dimension
table.

2-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical Datatype NULL Column Remarks

Column Descriptio
Name n
NUMBER_ASS Numeric NUMBER(22) NULL This field Internally used
IGN_VALUE Value Of A stores the and hence
Member number should be
values for retained in the
the same form
attribute of within the new
a member dimension
table.

VARCHAR_AS Varchar VARCHAR2(1000) NULL This field Internally used

SIGN_VALUE Member stores the and hence
Value varchar should be
values for retained in the
the same form

attribute of within the new
a member dimension

table.
DATE_ASSIG ~ Date Value DATE NULL Date value Internally used
N_VALUE that is and hence

assigned should be
retained in the
same form
within the new
dimension
table.

DIM_ORG_UNIT_HIER

Stores the parent-child relationship of various nodes and leaf within hierarchies of the
dimension.

Object Management 2-9

Column Name Logical Datatype NULL Column Remarks
Column Description
Name
HIERARCHY_I Hierarch NUMBER(NOT Uniqueld Internally used and
D y ID 10) NULL thatis hence should be retained
generated for in the same form within
every the new dimension table.
hierarchy
that is
created
PARENT_ID ParentID NUMBER(NOT Columnthat Internally used and
14) NULL store the id hence should be retained
of the child in the same form within
member the new dimension table.
CHILD_ID Child NUMBER(NOT Storechildid Internally used and
Member 14) NULL number fora hence should be retained
ID dimension in the same form within
the new dimension table.
PARENT_DEPT Parent NUMBER(NOT Stores parent Internally used and
H_NUM Depth 14) NULL depth hence should be retained
Number number in the same form within
the new dimension table.
CHILD_DEPTH Child NUMBER(NOT Storeschild Internally used and
_NUM Depth 14) NULL depth hence should be retained
Number number in the same form within
the new dimension table.
DISPLAY_ORD Display ¥ NUMBER(NOT Stores the Internally used and
ER_NUM Order 14) NULL display order hence should be retained
Number number for in the same form within
the member the new dimension table.
SINGLE_DEPT Single VARCHAR NOT Indicates if Internally used and
H_FLAG Depth 2(1) NULL the hierarchy hence should be retained
Flag is of single in the same form within
depth ornot the new dimension table.
CREATED_BY Created = VARCHAR NOT Indicates Internally used and
By 2(30) NULL who created hence should be retained

this item

in the same form within
the new dimension table.

2-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical Datatype NULL Column Remarks
Column Description
Name
CREATION_DA Creation TIMESTA NOT Indicates Internally used and
TE Date MP NULL when was hence should be retained
this item in the same form within
created the new dimension table.
LAST_MODIFIE Last VARCHAR NOT Indicates Internally used and
D_BY Modified 2(30) NULL who hence should be retained
By modified this in the same form within
item the new dimension table.
LAST_MODIFIE Last TIMESTA NOT Indicates Internally used and
D _DATE Modified MP NULL when was hence should be retained
Date this item in the same form within
modified the new dimension table.

Adding Dimension Column To Required Objects

Dimension column can be added to the following set of Client Data Objects:

® Tables classified as 'Instruments' and 'Instrument Profitability’

e Tables classified as 'Transaction Profitability’

® Ledger Stat table.

Dimension can be of the types — Ledger Only or Both. If the dimension is classified as
'Ledger Only', the dimension column needs to be added only to Ledger Stat table. If the
dimension is classified as '‘Both', the dimension column needs to be added to Ledger Stat
table and other tables classified as Instruments and Transactions.

For adding key dimension column to tables that are classified as 'Instruments’ and
'Instrument Profitability', add the column to LEAF_COLUMNS super-class table.

For adding key dimension column to tables that are classified as "Transaction
Profitability’, add the column to TRANS_LEAF_COLUMNS super-class table.

For adding key dimension column to Ledger Stat table, add the column to
LEDGER_LEAF_COLUMNS super-class table.

Note: Columns of super-class tables that are linked to sub-class table
are rolled down to the sub-class table during 'Model Upload' operation.

Object Management

Assigning Processing Key Property
'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This

property can have two values — Yes or No. Only those objects where the column was
added to the unique index are affected.

For tables classified as 'Transaction Profitability, this property needs to be set as 'Yes' for
one or more of the key dimension columns.

For Ledger Stat table, this property needs to be set as 'Yes' for all key dimension
columns.

Uploading ERwin Model

ERwin model with the above changes needs to be uploaded in OFSAAI environment.
Uploading the model creates these additional tables and sets these properties within the
atomic schema.

After upload, user can verify the changes in the schema as well as query OFSAAI
metadata tables like REV_COLUMN_PROPERTIES for viewing properties assigned to
each column.

For more information on data model upload process, see OFSAAI User Guide.

Leaf Registration

Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) provides an
Leaf Registration procedure to add the new Key Dimension Column to the Dimensions
metadata registry (REV_DIMENSIONS_B, REV_DIMENSIONS_TL).

Leaf Registration Procedure

This procedure performs the following:

* Registers key dimension

¢ Invalidates all Client Data Objects.

Executing Leaf Registration Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
function requires 19 parameters. The syntax for calling the procedure is:

2-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

function rev leaf registration(batch run id varchar2,
mis date varchar2
memDataType varcharz,
dimName varchar?2,
description varchar2,
memberBTableName varchar?2,
memberTLTableName varchar?2,
hierarchyTableName varchar2,
attributeTableName varchar2,
memberCol varchar2,
memberDispCodeCol varchar?2,
memberNameCol varchar?2,
memberDescCol varchar2,
dimTypeCode varchar?2,
simpleDimFlag varchar2,
keyDimFlag char,
writeFlag wvarchar?2,
catalogTableType char,
flattenedTableName varchar2)

® Dbatch_run_id : any string to identify the executed batch.
e mis_date : in the format YYYYMMDD.

¢ membDataType : member data type of Dimension as in
NUMBER,VARCHAR2,CHAR.

e dimName : name of the dimension to be added (less than 21 chars).

e description : description of the dimension (less than 255 chars).

¢ memberBTableName : Member Base Table Name input as either null or a value
with suffix '_CD'or '_B'.

table.

table.

¢ attributeTableName : Attribute Table Name input as either null or name of the
table.

name of the column.

¢ memberNameCol : Member Name Column input as either null or name of the
column.

Object Management

memberTLTableName : Member TL Table Name input as either null or name of the

hierarchyTableName : Hierarchy Table Name input as either null or name of the

memberCol : Member Column Name input as either null or name of the column.

memberDispCodeCol : Member Display Code Column Name input as either null or

memberDescCol : Member Description Column input as either null or name of the

213

column.

e dimTypeCode : Code for the dimension Type as in 'PROD for product type', 'ORGN
for Organizational Unit', 'CCOA for Common Chart of Accounts', 'FINELE for
Financial Element', 'GL for General Ledger Account', 'OTHER for any other type'.

All user defined dimensions will have DIMENSION_TYPE_CODE as 'OTHER'.
User defined dimensions which are product related will have
DIMENSION_TYPE_CODE as PROD'.

¢ simpleDimFlag : "Y' or 'N' to determine Simple Dimension.

Simple dimensions are created to store CODE and Descriptions. These tables are
used by the User Interfaces to list values in drop downs / radio buttons, and so on.
Simple dimensions are not reverse populated.

Example
Country, Currencies, Customer Type.

¢ keyDimFlag : 'Y' or 'N' to determine Key Dimension.
Key dimensions are dimensions which get reverse populated to the legacy tables.

Example
Product, Org Unit, General Ledger.

e writeFlag: "Y' or 'N' to determine whether Dimension should appear in drop down
list in Dimension Management > Members.

¢ catalogTableType : L' or 'B' to determine table type for key dimensions.

e flattenedTableName : Flattened Table Name input as either null or name of the
table.

For Example

2-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Declare
num number;
Begin
num := rev_leaf registration('BATCH NO 01°',
'20101216",
'NUMBER',
"PRODUCT 1",
'Cost Transfer Product Type ID',
'DIM PRODUCT 1 B',
'"DIM PRODUCT 1 TL',
'DIM PRODUCT 1 HIER',
'DIM PRODUCT 1 ATTR',
"PRODUCT 1 ID',
"PRODUCT 1 DISPLAY CODE',
'"PRODUCT 1 NAME',
'DESCRIPTION',
"PROD',
' ,
Ty ,
Ty ,
B! ,
'FLATTEN PROD TABLE');

End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

¢ Datastore Type:- Select appropriate datastore from list

Datastore Name:- Select appropriate name from the list
e [P address:- Select the IP address from the list
® Rule Name:- batch_leaf_registration

® Parameter List:- Member Data type , Dimension Name, Dimension Description,
Member Base Table Name, Member Translation Table Name, Hierarchy Table
Name, Attribute Table Name, Member Column , Member Display Code Column,
Member Name Column, Member Description Column , Dimension Type Code,
Simple Dimension Flag , Key Dimension Flag , writeFlag, Catalog Table Type,
Flatten Table Name

Modify Unique Indexes

For tables of 'Transaction Profitability' classification, key dimension column can be part
of the unique index. If this column is intended to be part of the unique index, alter the
unique index in the schema.

For Ledger Stat table, all key dimension columns should form part of the unique index.
Hence, alter the unique index in the schema to include this column.

Object Management 2-15

Executing Object Registration Validation

Since leaf registration invalidates all Client Data Objects, Object Registration Validation
procedure needs to be executed to validate the required tables. For more information on
Executing Object Registration Validation, see Object Registration Validation, page 2-29.

Adding Custom Instrument Tables

Instrument and Account objects are tables storing financial services information about
customers and accounts. These are most commonly used objects for OFSAA processing
and reporting operations. There are seeded instrument tables that are packaged as part
of each OFSAA. You can customize or remove any of them during implementation. In
some cases, you might also require to add a custom instrument table.

The following topics are covered in this section:

® Super-class entities

® Steps in creating a custom instrument table
* Setting Table Classifications

* Unique Index

® Object Registration Validation

Super-class Entities

Most instrument tables are used for OFSAA processing. OFSAA processing mandates
the instrument table to have a certain set of columns. These columns have been put
together in super-class entities. The following are the seeded super-class entities:

e LEAF_COLUMNS - contains the key dimension columns that are part of the
Instrument tables.

e BASIC_INSTRUMENT_REQ - contains the basic instrument columns like
ID_NUMBER, IDENTITY_CODE etc.

¢ MULTI_CUR_REQ - contains the columns required for multi-currency processing.

e CASH_FLOW_EDIT_REQ - contains the columns required for Cash flow Edit
processing.

e CASH_FLOW_PROC_REQ - contains the columns required for Cash flow
processing.

¢ TP_BASIC_REQ - contains the columns required for Transfer Pricing processing.

2-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TP_OPTION_COSTING_REQ - contains the columns required for Transfer Pricing
Option Cost processing.

PORTFOLIO_REQ - contains the columns required for Portfolio table classification.

TRANS_LEAF_COLUMNS - contains the key dimension columns that are part of
the transaction tables.

LEDGER_LEAF_COLUMNS - contains the key dimension columns that are part of
the Ledger Stat table.

For more information on list of columns present in the previous super-class tables, see
Oracle Financial Services Analytical Applications Data Model Data Dictionary.Instrument
table can link to any of the above super-class entities based on its purpose. For example,
if the instrument table is used for Cash Flow Processing, then this table should be linked
to the following super-class entities:

BASIC_INSTRUMENT_REQ
MULTI_CUR_REQ
LEAF_COLUMNS
CASH_FLOW_EDIT_REQ

CASH_FLOW_PROC_REQ

Refer to the following mapping table that specifies the list of super-class entities
required for each table classification:

Type of Client Data Object Table Classification List of Super-class entities

Instrument Instrument BASIC_INSTRUMENT_REQ

LEAF_COLUMNS

Instrument ALM Standard BASIC_INSTRUMENT_REQ

LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
CASH_FLOW_PROC_REQ

Object Management 2-17

Instrument

Instrument

Instrument

Instrument

Instrument

Transaction

Ledger Stat

TP Cash Flow

TP Non-Cash Flow

TP Option Costing

Instrument Profitability

Portfolio

Transaction Profitability

Ledger Stat

BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
CASH_FLOW_PROC_REQ
TP_BASIC_REQ

BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
TP_BASIC_REQ

BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
TP_BASIC_REQ
TP_OPTION_COSTING_REQ

BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ

BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
PORTFOLIO

TRANS_LEAF_COLUMNS

LEDGER_LEAF_COLUMNS

Steps in Creating Custom Instrument Table

The following are the steps involved in creating a custom instrument table:

218

¢ Create a new subject area within the ERwin model.

* Move the required super-class tables as part of the subject area.

¢ Create the custom instrument table in ERwin. Specify logical name, physical name
and description for the table. Define any columns that do not come from any of the
standard super-class tables as part of the custom instrument table. Specify logical,
physical names, domain and other column properties for each column.

Oracle Financial Services Analytical Applications Data Model Utilities User Guide

* Create subtype relationship between the custom instrument table and various
super-class entities.

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set
against each Client Data Object is validated through Object Registration Validation
process.

The following are the steps involved in setting table classification properties for the
custom instrument table:

Choose Physical View within the ERwin model.
Go to UDP tab within Table Properties window.

Specify 'Yes' against required Table Classifications properties.

Once the model is prepared using the above steps, user should upload the ERwin
model. After uploading the model, user can check if the custom instrument table has
been created in the schema with columns from super-class entities that have been linked
to the custom instrument table as well as the columns present in the custom instrument
table. Model upload also creates metadata entries within the following Object
Registration tables:

e REV_TABLES_B - Contains the list of table names.

¢ REV_TABLES_TL - contains the list of table display names and descriptions in
various languages.

e REV_TAB_COLUMNS - contains the list of column names.

e REV_TAB_COLUMNS_MLS - contains the list of column display names and
descriptions in various languages.

e REV_COLUMN_PROPERTIES - stores the column properties associated with each
column.

e REV_TABLE_CLASS ASSIGNMENT - stores the table classification associated
with each table.

Note:

¢ In case custom instrument table contains the column in the same
name as that of the super-class table, then column present in the
custom instrument table will take precedence over the equivalent
column of the super-class table. In case multiple super-class tables

Object Management 2-19

contain the same column, columns are resolved in the order of table
position from left to right of what you see within the ERwin model.
That is, column present in the left-most super-class table will take
precedence over the same column present in another super-class
table placed to its right.

® Physical order of the columns within the custom instrument table is
determined in the following way:

* Columns present in the custom instrument table.

® Columns present in each of the linked super-class table. In case
multiple super-class tables are linked to the custom instrument
table, columns are rolled down in the order of table position
from left to right of what you see within the ERwin model.

¢ Within any table, ERwin maintains three different column orders:

* Logical Order — Order of the columns as seen in Logical view of
the model.

* Physical Order — Order of the columns as seen in Physical view
of the model.

e Database Order — Order of the columns as seen in the Database
schema.

Unique Index

Instrument tables require unique index on ID_NUMBER and IDENTITY_CODE
column. This unique index needs to be created on the custom instrument table,
post-model upload operation.

Transaction tables require unique index on ID_NUMBER, IDENTITY_CODE and one of
the key dimension columns. This unique index needs to be created on the custom
transaction table, post-model upload operation.

Adding a new user defined column as a Portfolio column for use in a Data Filter on all
instrument tables

1. Include the column in the PORTFOLIO super-type table in the Erwin Data Model to
ensure that the column rolls down to all subtype tables.

2. Complete incremental model upload to add the column to all subtype Portfolio
tables.

2-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

3. Manually insert a row into the Atomic schema REV_PROPERTY_COLUMNS table
with TABLE_PROPERTY_CD = 40:

Insert into REV_PROPERTY COLUMNS

(TABLE PROPERTY CD,COLUMN NAME, PROTECTED FLG) values
(40, 'APPLE BRANCH CD',1);

COMMIT;

Object Registration Validation

Since leaf registration invalidates all Client Data Objects, Object Registration Validation
procedure needs to be executed to validate the required tables. For more information on
Object Registration Validation procedure, see Object Registration Validation, page 2-29.

Adding Custom Transaction Tables

Transaction tables are used within Profitability Management processing. There are
seeded transaction tables that are packaged as part of Profitability Management
application. You can customize or remove any of them during implementation. In some
cases, you might also require to add a custom transaction table.

The following topics are covered in this section:

® Super-class entities

® Stepsin creating a custom transaction table
® Setting Table Classifications

* Setting Processing Key property

¢ Unique Index

* Object Registration Validation

Super-class Entities

Profitability Management processing mandates the transaction table to have a certain
set of columns. These columns have been put together in super-class entities. The
following are the seeded super-class entities:

e TRANS_LEAF_COLUMNS - contains the key dimension columns that are part of
the Transaction tables.

For more information on list of columns present in the above super-class table, see
Oracle Financial Services Analytical Applications Data Model Data Dictionary.

Object Management 2-21

Steps In Creating Custom Transaction Table

The following are the steps involved in creating a custom transaction table:

* Create a new subject area within the ERwin model.
¢ Move TRANS_LEAF_COLUMNS into the new subject area.

¢ Create the custom transaction table in ERwin. Specify logical name, physical name
and description for the table. Define any columns that do not come from any of the
standard super-class tables as part of the custom transaction table. Specify logical,
physical names, domain and other column properties for each column.

* Create subtype relationship between the custom transaction table and
TRANS_LEAF_COLUMNS super-class entity.

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set
against each Client Data Object is validated through Object Registration Validation
process.

The following are the steps involved in setting table classification properties for the
custom transaction table:

® Choose Physical View within the ERwin model.
* Go to UDP tab within Table Properties window.
® Specify 'Yes' for 'Transaction Profitability’ user defined property.

Once the model is prepared using the above steps, user should upload the ERwin
model. After uploading the model, user can check if the custom transaction table has
been created in the schema with columns from super-class entities that have been linked
to the custom transaction table as well as the columns present in the custom transaction
table. Model upload also creates metadata entries within the following Object
Registration tables:

e REV_TABLES_B - Contains the list of table names.

e REV_TABLES_TL - contains the list of table display names and descriptions in
various languages.

e REV_TAB_COLUMNS - contains the list of column names.

e REV_TAB_COLUMNS_MLS - contains the list of column display names and
descriptions in various languages.

2-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

e REV_COLUMN_PROPERTIES - stores the column properties associated with each
column.

e REV_TABLE_CLASS_ASSIGNMENT - stores the table classification associated with
each table.

Note:

* In case custom transaction table contains the column in the same
name as that of the super-class table, then column present in the
custom transaction table will take precedence over the equivalent
column of the super-class table.

e Physical order of the columns within the custom transaction table is
determined in the following way:

® Columns present in the custom transaction table.
¢ Columns present in each of the linked super-class table.

e Within any table, ERwin maintains three different column orders:

* Logical Order — Order of the columns as seen in Logical view of
the model.

¢ Physical Order — Order of the columns as seen in Physical view
of the model.

e Database Order — Order of the columns as seen in the Database
schema.

Setting Processing Key Property

'Processing Key' user defined property needs to be set for the following columns within
the transaction table:

e ID_NUMBER
e IDENTITY_CODE
® Leaf columns that are part of the unique index

The following are the steps to set this property in ERwin:

® Choose Physical View within the ERwin model.

e Choose TRANS_LEAF_COLUMNS super-class table.

Object Management 2-23

® Choose the leaf column that needs to be set 'Processing Key' property.
e Go to UDP tab in Column Properties window for this column.

* Specify 'Yes' against 'Processing Key' user-defined property.

¢ Choose the custom transaction table.

* Go to UDP tab in Column Properties window for ID_NUMBER and
IDENTITY_CODE columns.

e Specify 'Yes' against 'Processing Key' user-defined property.

Unique Index

Transaction tables require unique index on the following columns:

e ID_NUMBER

e IDENTITY_CODE

® At-least one of the key dimension columns.

This unique index needs to be created on the custom transaction table, post-model

upload operation.

Object Registration Validation

Since leaf registration in-validates all Client Data Objects, Object Registration Validation
procedure needs to be executed to validate the required tables. For more information on
Object Registration Validation procedure, see Object Registration Validation, page 2-29.

Adding Custom Lookup Tables

Lookup tables are used within OFSAA Profitability Management application. Lookup
tables have to be created and registered within OFSAALI in order to display them in
Lookup Table Driver definition of OFSAA Profitability Management application.

The following topics are covered in this section:

® Steps in creating the lookup table in ERwin
¢ Setting Column Properties
® Setting Table Classifications

® Registering lookup tables and Validation

2-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

® Lookup Table Driver definition

Steps In Creating Lookup Table

Lookup table has to be created in the ERwin model. The following are the steps:

¢ Open the ERwin model in ERwin Data Modeler tool.

¢ Create a new subject area.

* Create a table and add columns to the table.

* Lookup table needs to at-least have one primary key column.

e Lookup table needs to at-least have one numeric non-key column. Such numeric
columns will be the return value of the lookup.

* Specify logical names, comments and primary key for the table.
® Specify logical names, domains and comments for the column.
e Domains for the columns can be LEAF, BALANCE, RATE etc.

e Save the model.

Setting Column Properties

"Processing Key' is a column level User Defined Property (UDP) in ERwin model. This
property can have two values — Yes or No. 'Processing Key' property needs to be set for
all the primary key columns of the lookup table.

'‘Balance Range' is a column level User Defined Property (UDP) in ERwin model. This
property can have two values — Yes or No. 'Balance Range' property needs to be set for
the columns that can have range values in the lookup.

The following are the steps for setting the above properties:

* Open the ERwin model in ERwin Data Modeler tool.

* Go to the subject area where lookup table was created.

e Choose the table and open the columns of the table.

¢ Go to UDP tab within the column properties for each column.
® Specify the value for the required user defined properties.

e Save the model.

Object Management 2-25

Setting Table Classifications

Table Classifications can be set for any Client Data Object. Table classification set

against each Client Data Object is validated through Object Registration Validation
process.

The following are the steps involved in setting table classification properties for the
custom lookup table:

® Choose Physical View within the ERwin model.
* Go to UDP tab within Table Properties window.

® Specify 'Yes' for 'PA Lookup Tables' user-defined property.

Registering Lookup Tables and Validation

Upload the model and execute the object registration validation.

Lookup Table Driver Definition

Post registration and validation, the lookup table is available within Lookup Table
Driver definition of OFSAA Profitability Management application.

Following is the criteria for columns to be displayed in the Source - Lookup Mapping
grid:

® Column needs to be Primary Key or be part of composite primary key.

* 'Processing Key' user defined property should be set for the column under UDP tab
as shown below.

2-26 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Mapping of Column to Processing Key

" AllFusion ERwin Data Modeler - [(FSART_Dat smodeles

G He Edt Vew Fomst Hodd Datsbase rmk'.-emm Window Help =8l x|
[Dem & amnFEa - - aaaag et |fwo Ll_ammu.aumcm\esﬂ
= S0 E B oruas Wbt T P TR ||e AR A DB ESHS |[0'8|a s v |E

3
Sl x (Mo 3
2 @ Fumn FIP |
2 @ Fution - Inbatinchae
@ Fution - Instrument - Annuty Cortiacts
2 @ Fusion - Instument - Bonowings

2 W Fution - Instrurvert - Brash Furding

5 @ Fusicn Insument - Croc Lines AERADE_BRANCE M
7 @ Fusion. Instrument - Desivatives

T e fooborre ——— —______________@&|

W Fusion- I Fubaes

5 @ Fuion - Instreneet - % Contracts Tatie: LOOKUP_TEMPLATE_TABLE J |

W Fusion« Instnurent - Guarantens
_vr__m.um.mn Invesimerts o CIE] coment 00p | toten | titary | 2l

@ Fution - Instrumert - Ledges Stal Irutrument
@ Fuon- Inatnment - Losn Cortacts (C, AVERLAGE_BALANCE b

@ Fuatson Instrutd - Marchand Cands (£, AVERAGE _BALANCE bt
B @ Ftion Insinanat - MM Cortncts (€1 DEALER_NER M
@ Fusion Inatrument - Marigage Back Sec €, DEALER_NER_MAX
@ Fusion - Inabument - Morgages QIS“—MTE-W

& W Fuion - Instrument - Mutua Funds L 153UE_DATE_Max
%@ Fusion - Instrumeert - Dpfiors. B, CREDIT_STATUS CO
W Fuion - Instrumect - Dther Senices RETURR_VaLT

© @ Fsison Inatsuriont - Fefearant Accounts RETURH JiN.2

@ W Fusion . Instument - Swaps

W Fusion - Insbrumesnt - Tem Deposits

@ @ Fusion Instnmert - Tnust

Fuien - LR B

-
3 @ Fusion LR Stess Testing
o @ Fusion Pagmant Schaduls
@ Furicn- PFT
@ Fusion - FFT Lockup
@ Fution - Rlate Manager Tabiss
3 @ Fuson- TPOL
3 @ Fuion - Taannachons - Areusly Contracks
2 @ Fusicn - Teansactions - Bonowngs
o @ Fution - Teanasctions - CASA
- @ Furion - Transactions - Coedit Cach

0 @ Fusen . hw Irvvecitrrrit:
o @ fouinn.

s cbine . | waras

i
H
i}
®
®
o
©
o
H
£
rﬁ|
e
&F

B

Following is the criteria for columns to be part of the Range:

* 'Balance Range' user defined property should be set for the column under UDP tab
as shown below.

Object Management 2-27

Mapping of Column for Range Property

°_ ANFusion ERwin Data Modeler - [0FSARL_DatamodeLerwin : Fusion - PFT Lookup (Read-Only)]

Ty Fle £t View Fomat Model Duatsbase Tooks Services Window Help

DsE & ol 7E2 <~ Q| aad|e [y =

£ I n;n-'jsm:ﬁz|

L

I

|+ 2

9998 %

S A N]

& Fusion-FTP
- W Fution- Inhastuches.

oo
Fuation: Irsinment - Biesk Furdng
Fuapon - Irgthment - CASA

Fusson - Irinumert - Cindit Canch:
Fuapon - Irtnament - Ciode Lres
Fuasion: Irctinment -

ORG_UWIT_ID
AERAGE BALSHCE VN
ERAGE RANICE ML
NEW FR RSR L

Colun
ORG_UNIT_ID

|

i, AVERAGE_BALANCE_MA
DEALER_NER_MIN
DEALER_NER.

Fution Iratument - Motigages

Futicn- Iratiument - Mutusl Funds
Fusion Iratnment - Options

Fusion - Iratrument - Ofher Services
Futicn Iratrument - Retiement Accounts

Fusion. Irainment - Swaps
® Fusion - Iratumert - Tesn Deposis
W Fusion - Instrumert - Trusts

@ Fusion - Irstnument_lisssts

@ Fution- Ledger Stat

@ Fution - Lockup.

@ Fusion- LRI

@ Fution- LA Stress Teating.

W Fusiion- Payesert Schedide

Fuasion - Feata Manager Tabiss
Fusions- TROL
Fuation Toatactins - Arrusly Contucts

5 15 5 05 [05 1%

k IS5UE_DATE_MIN

b ISSLE_DATE_Med

k CREDIT_STATUS_CD
RETURN_ VALY
RETURN_VAL2

Rt DBSyme...

Takde: LOOKUP_TEMPLATE_TABLE

EE

Hew.. Fename... Delete I

y pmE . 2]

) vose [@ Subtectiva] Displayt

T T 1 [Oracks

ﬂ;n-«l‘aoe-\ @0 o = Eal zaom
@ . iO,@ Tuesday

Following is the criteria for columns to be part Lookup Return Value:

¢ Column should not be primary key/processing key or be part of composite primary

key.

e Column domain should be defined as NUMBER under General Tab as shown

below.

2-28 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Mapping of Column for Look up Return Value

|DBHQD" FTIEBE <~ Q& DGO @ 2 |Physical =] LY== Lhh|(|00O0N2Z2 AT
|.lu-al =10 Sl B s ou o e AR 2wt T3 T wABRLDBE2 aESH (|00 a | w|f
9288 %
o =
o X an e
& W Fumsn-FTP - |
® @ Fuson - Inasuchae
% @ Fuson - Insinmert - Aredly Contiacts
® @ Fusion - Instrument - Bomowings
@ @ Fusion - Insinment - Break, Funding
W Fusson - Insirument - CASA
® @ Fusion - Insinment - Credt Carcs S ey
rsted - Cond it P
et - Derivalives At
rverd - Forwaed Flate Ageements e
-Insinumerd - Fubass
® @ Fuson -Instument - FX Contiacts Tatke: [LoOKUF_TEMPLATE_TA8LE =] -
® @ Fumon - Instument - Guaraniees
), I1SSUE_DATE_bax
€, CREDIT_STATUS_CD
RETURN_VALZ
® @ Fuson -Insinmert - Tesm Deposis
® @ Fusion - Instrumend - Trusts ™ Primas r o
5 ® Fusonlninanert Avscs J P S | vhe T Pt
% W Fusion - Ledger Stat
& @ Fuson-Looki Reset.. oK Cancel
® W Fume-LREBI
® @ Fuson-LA Stress Testrg
® @ Fuson -Papment Schadde
@ Fusion-FFT
% @ Fusion -PFT Lookus
® @ Fusion - Rate Manaper Tables
® @ Fuson: TROL
® W Fuson- Tnssctons - Annuty Contracts =i
® @ Fuson - Tiansactons - Bonowngs
B @ Fuson- Transactons - CASA
® @ Fuson - Transactons - Credk Carde
@ Fuson - Transactons - Credk Lines
® @ Fumon - Transackons - Guatanbees
@ @ Fusion - Transactions - nvestmerts =
B ety : i LTJ
[Model [@ Subiect dves Displey]
Eistort| | D @ ® - o @ | L AFusion ERwn Data Mo... [, AllFusion ERwin Data . T zairm
3 D5 Tuesduy

Object Registration And Validation

Table Classifications provide a means to designate how tables are used within the
OFSAA suite of applications. Each table classification identifies a specific purpose for
which an assigned table is allowed to be used.

Some Table Classifications have requirements that must be satisfied in order for an
object to be assigned to the classification. These requirements are designated by Table
Properties associated to the Table Classifications. These Table Properties are either
specific column name requirements or logic validations.

Table Classification assignments are stored in REV_TABLE_CLASS_ ASSIGNMENT.

Object Registration is a process of classifying a table with one or more table
classifications depending on the purpose of the table. This step is performed within the
ERwin model by setting various User Defined Properties for a client data object.
Validation procedure validates table class assignment for a client data object and needs
to be executed after model upload operation.

The following topics are covered in this section:

® User-Assignable Table Classifications

Object Management 2-29

User-Assignable Table Classification

Requirements for each Table Classification
Validation procedure
Executing the Validation Procedure

Exception Messages

User-Assignable Table Classifications are those that can be assigned by the
administrator to user-defined and client data objects, including the OFSAAI Instrument
tables. These Table Classifications identify processing and reporting functions for the
OFSAA. Some of these Table Classifications have requirements that must be met in
order for the classification to be assigned to a table or view.

All User-Assignable Table Classifications are available for assignment within the ERwin
model. The following table lists the User-Assignable Table Classifications:

Code

Table Classification Name

20

50

100

200

210

295

296

300

310

320

330

360

Instrument

Ledger Stat

Portfolio

TP Cash Flow

TP Non-Cash Flow

Codes User Defined (base tbl)

MLS Descriptions User Defined

Transaction Profitability

Instrument Profitability

User Defined

Data Correction Processing

RM Standard

2-30 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Code Table Classification Name

370 TP Option Costing

500 PA Lookup Tables

600 Derivative Instruments

530 Break Funding

197 MLS Descriptions Reserved
198 Codes Reserved (base tbl)

Requirement For Table Classification

OFSA Al requires specific table structures, column names and column characteristics for
OFSAA operations. These structures and requirements are embodied by the
User-Assignable Table Classifications.

Each Table Classification comprises individual Table Properties that define the
requirements for that classification. Table Properties are two distinct types: those
encompassing specific column requirements and those encompassing logic
requirements via stored procedures.

The following table provides the validation checks that are being done for each of the
table classification:

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments

_CLAS SIFICATION Y

SIFICA

TION_C

D

50 Ledger Stat Ledger Leaf Fields that are part Checks if columns of

Column Class of core modeling super-type Ledger

dimensions for Leaf Column Class is
Fusion PFT present

Object Management 2-31

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments
_CLAS SIFICATION Y
SIFICA
TION_C
D
100 Portfolio Portfolio Dynamic list of Checks if columns of
Requirements Portfolio fields super-type Portfolio
Requirements is
present
200 TP Cash Flow Basic Instrument Instrument Checks if columns of
Requirements Required fields super-type Basic
Instrument
Requirements is
present
200 TP Cash Flow Cash Flow Proc. Fields required by Checks if columns of
Requirements TP and RM Cash super-type Cash
Flow processing Flow Proc.
Requirements is
present
200 TP Cash Flow Cash Flow Edit Fields required by Checks if columns of
Requirements Cash Flow Editsin super-type Cash
addition to Cash Flow Edit
Flow fields Requirements is
present
200 TP Cash Flow Multi-Currency Fields required for ~ Checks if columns of
Requirements Multi-Currency super-type
Multi-Currency
Requirements is
present
200 TP Cash Flow TP Basic Non-cash flow Checks if columns of
Requirements Transfer Pricing super-type TP Basic

fields

Requirements is
present

2-32 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments
_CLAS SIFICATION Y
SIFICA
TION_C
D
200 TP Cash Flow Validate Validates that a Validation . Check if
Instrument Leaves table has all 'B’' the table has all the
leaves key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER
200 TP Cash Flow Validate Validate the unique Validation .
Instrument Key key for Instrument Instrument table
(PA, TP, RM) tables should have index
present on
ID_NUMBER and
IDENTITY_CODE
column
210 TP Non-Cash Basic Instrument Instrument Checks if columns of
Flow Requirements Required fields super-type Basic
Instrument
Requirements is
present
210 TP Non-Cash Multi-Currency Fields required for Checks if columns of
Flow Requirements Multi-Currency super-type
Multi-Currency
Requirements is
present
210 TP Non-Cash TP Basic Non-cash flow Checks if columns of
Flow Requirements Transfer Pricing super-type TP Basic
fields Requirements is
present
210 TP Non-Cash Validate Validates that a Validation . Check if
Flow Instrument Leaves table has all 'B' the table has all the
leaves key dimesion leaf

columns. The leaf
columns should be of
data type NUMBER

Object Management

2-33

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments
_CLAS SIFICATION Y
SIFICA
TION_C
D
210 TP Non-Cash Validate Validate the unique Validation .
Flow Instrument Key key for Instrument Instrument table
(PA, TP, RM) tables should have index
present on
ID_NUMBER and
IDENTITY_CODE
column
300 Transaction Basic Instrument Instrument Checks if columns of
Profitability Requirements Required fields super-type Basic
Instrument
Requirements is
present
300 Transaction Multi-Currency Fields required for Checks if columns of
Profitability Requirements Multi-Currency super-type
Multi-Currency
Requirements is
present
300 Transaction Validate Validates that a Validation . Check if
Profitability Instrument Leaves table has all 'B' the table has all the
leaves key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER
300 Transaction Validate Validate the unique = Transaction table
Profitability Transaction Key key for Transaction should have
Profitability tables composite index
present on

ID_NUMBER and
IDENTITY_CODE
and all the
processing key
columns.

2-34 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments
_CLAS SIFICATION Y
SIFICA
TION_C
D
310 Instrument Basic Instrument Instrument Checks if columns of
Profitability Requirements Required fields super-type Basic
Instrument
Requirements is
present
310 Instrument Multi-Currency Fields required for ~ Checks if columns of
Profitability Requirements Multi-Currency super-type
Multi-Currency
Requirements is
present
310 Instrument Validate Validates that a Validation . Check if
Profitability Instrument Leaves table has all 'B' the table has all the
leaves key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER
310 Instrument Validate Validate the unique Validation .
Profitability Instrument Key key for Instrument Instrument table
(PA, TP, RM) tables should have index
present on
ID_NUMBER and
IDENTITY_CODE
column
330 Data Correction Validate Processing Validate the unique Processing Key
Processing Key key for Processing Column for a table
tables have a matching
unique index
360 ALM Standard Basic Instrument Instrument Checks if columns of
Requirements Required fields super-type Basic

Instrument
Requirements is
present

Object Management

2-35

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments
_CLAS SIFICATION Y
SIFICA
TION_C
D
360 ALM Standard Cash Flow Proc. Fields required by Checks if columns of
Requirements TP and RM Cash super-type Cash
Flow processing Flow Proc.
Requirements is
present
360 ALM Standard Cash Flow Edit Fields required by Checks if columns of
Requirements Cash Flow Editsin super-type Cash
addition to Cash Flow Edit
Flow fields Requirements is
present
360 ALM Standard Multi-Currency Fields required for ~ Checks if columns of
Requirements Multi-Currency super-type
Multi-Currency
Requirements is
present
360 ALM Standard Validate Validates that a Validation . Check if
Instrument Leaves table has all 'B' the table has all the
leaves key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER
360 ALM Standard Validate Validate the unique Validation .
Instrument Key key for Instrument Instrument table
(PA, TP, RM) tables should have index
present on
ID_NUMBER and
IDENTITY_CODE
column
370 TP Option Basic Instrument Instrument Checks if columns of
Costing Requirements Required fields super-type Basic

Instrument
Requirements is
present

2-36 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments
_CLAS SIFICATION Y
SIFICA
TION_C
D
370 TP Option Cash Flow Edit Fields required by Checks if columns of
Costing Requirements Cash Flow Editsin ~ super-type Cash
addition to Cash Flow Edit
Flow fields Requirements is
present
370 TP Option Multi-Currency Fields required for ~ Checks if columns of
Costing Requirements Multi-Currency super-type
Multi-Currency
Requirements is
present
370 TP Option TP Option Costing Fields required for =~ Checks if columns of
Costing Requirements Transfer Pricing super-type TP
Option Costing Option Costing
processing Requirements is
present
370 TP Option TP Basic Non-cash flow Checks if columns of
Costing Requirements Transfer Pricing super-type TP Basic
fields Requirements is
present
370 TP Option Validate Validates that a Validation . Check if
Costing Instrument Leaves table has all 'B' the table has all the
leaves key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER
370 TP Option Validate Validate the unique Validation .
Costing Instrument Key key for Instrument Instrument table
(PA, TP, RM) tables should have index

present on
ID_NUMBER and
IDENTITY_CODE
column

Object Management

2-37

TABLE TABLE_CLAS TABLE_PROPERT DESCRIPTION Comments

_CLAS SIFICATION Y

SIFICA

TION_C

D

500 PA Lookup Validate PA Procedure to check Validation. All

Tables Lookup if there is a primary ~ Lookup table should

key for the lookup have a primary key
tables. present

530 Break Funding Break Funding Fields required as Checks if columns of

Requirements part of TP break super-type Break

funding Funding

Requirements is
present

Specific column requirements for each table property can be obtained by querying
REV_COLUMN_REQUIREMENTS table.

Validation Procedure

The OFSA_TAB_CLASS_REQ package contains all of the procedures and supporting
functions that validates if a table meets the requirements for a particular Table

Classification.

The package performs the following validations:

e VALIDATE_INST_KEY

This procedure validates if a table has ID_NUMBER and IDENTITY_CODE, or
ID_NUMBER, IDENTITY_CODE and AS_OF_DATE as its unique index and if the
Processing key designated in Column Properties is ID_NUMBER,

IDENTITY_CODE.

e UPDATABLE_INST_REQ_FIELDS

This procedure checks that all of the Instrument Required Fields are also listed as
updatable in USER_UPDATABLE_COLUMNS for the specified table or view.

e VALIDATE_INST_LEAVES

This procedure will validate a table has all the required leaf columns

e VALIDATE_TRANS_KEY

This procedure validates if a table has ID_NUMBER and IDENTITY_CODE and one

2-38 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

or more 'B' Leaf Columns in its unique index and that these columns match the
Processing key designated in Column Properties.
e VALIDATE_CORR_KEY
This procedure will validate a table has a unique index with updatable columns.
All the above procedures return a success or failure status. The

REV_TAB_CLASS_ASSIGNMENT table is updated as "Y' if a table is successfully
validated and 'N' in case of failure.

Executing the Validation Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
syntax for calling the procedure is:

Declare
Result number;
begin
result := fsi batchtableclassreqg(pbatchid, pmis date);
end;

An example of running the stored procedure from SQL*Plus

SQL> var output number;
SQL> exec fsi batchtableclassreq('VALIDATE DATAMODEL' , '20100809'");

Note: Since the package contains huge number of dbms_output
statements, user should either increase the output buffer size or disable
the server output.

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type:- Select appropriate datastore from list
¢ Datastore Name:- Select appropriate name from the list
¢ IP address:- Select the IP address from the list

® Rule Name:- Batch_Table_Class_Req

® Parameter List:- Batch Identifier and MISDATE

To execute the same procedure in SQL*Plus/PISQL Developer/SQL PLUS:

Object Management 2-39

set serveroutput off;
begin

ofsa tab class reqg.validate all tab class('1236','25-JAN-2010");
end;

Exception Messages
The OFSA_TAB_CLASS_REQ packages throws the following exceptions.

Exception 1: FAILED: Table Property 1030 - Validate Correction Key

This exception occurs when no valid unique index found.

Exception 2: FAILED: Table Property 1030 - Validate Correction Key

This exception occurs when Processing Key Column Properties do not match unique
index

Exception 3: FAILED: Table Property 1030 - Validate Transaction Key

This exception occurs when no valid unique index found.

Exception 4: FAILED: Table Property 1000 - Validate Instrument Leaves

This exception occurs when one or more Leaf Columns are missing or incorrectly
registered. Check if the datatype of the LEAF columns is NUMBER and domain of these
columns is LEAF.

Defining Alternate Rate Output Columns

This section details the steps required for defining Alternate Rate Output columns
within the OFSAA Fund Transfer Pricing Application.

The following topics are covered in this section:

e Setting User Defined Properties in ERwin

* Uploading the model and object registration

User-Defined Properties

The following are the user-defined properties that are available for identifying columns
required for alternate rate output:

¢ Transfer Pricing Output (Column Property — 80)

e Option Cost Output (Column Property — 81)

2-40 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

e Other Adj Spread Output (Column Property — 82)

e Other Adj Amount Output (Column Property — 83)

User needs to assign one of the above properties to the columns that need to be used as
Alternate Rate Output columns within the Fund Transfer Pricing application.

The following are the steps to set the user-defined property to the column:

* Open the ERwin file in ERwin Data Modeler tool.
* Go to Main Subject Area.
¢ Go to Physical View.

¢ Choose the entity that contains the alternate rate output column. This entity can
also be a super-type (like TP_BASIC_REQ).

® Select the column and open the column properties for the column.
¢ Go to UDP tab within column properties.
* Select 'YES' for one of the above user-defined properties.

e Save the model.

Note: Setting the user-defined property of the columns within a
super-type entity will apply to all the entities that are related to the
super-type.

Uploading the Model

Upload the model in OFSAAI and perform object registration. After uploading the
model, user can execute the below query to check if the user-defined properties are set
for the columns.

select * from rev column properties where column property cd in
(80,81,82,83)
where TABLE NAME = <<table name>>

Replace <<table_name>> with the relevant table name and column name in the above
query and execute the same. Above query returns the columns that are used for
alternate rate outputs.

User Defined Properties

User Defined Properties are set for tables and columns within ERwin.

Object Management 2-41

ERwin Data Modeler - [PFT_Datamodel_Changes_Phase6_22092010.erwin : Cus Oracle Table I ditas

1683 BA LA pak eelaaaad @™
~ T T Name: | BASIC_INSTRUMENT_REQ Cwrer
TN I YL &@;Qm Partitions | LOB Storage | Supplemental Logoing | Valdation | Synorym | Materiskoed View log | Ctdect Crestion Onder | UDP | Histery L
= Uses Difird Propeetis: Q
@O B%Q Propesty Value 5
== 5 3] | e 48D I
- i;nkmuc_mmmsm_nsn m o
) P :
3 B DIM_ACCOUNT :;wﬁdm" x
® |:| DIM_BOOK_BALANCE_BUCKETS T NO
% [DIM_CFS_CLASS_ATTR Defiad
% (5 DIM_CFS_CLASS B :"*;;"’;’;" :to
® 5 DIM_CFS_CLASS_HIER ST G
5 0IM_CFS_CLASS_TL TP Gption C Mo
* |:| DIM_CFS_COMPANY_ATTR T N
% 5 DIM_CFS_COMPANY_8 Strotegic Fick N
s [DIM_CFS_COMPANY_MIER M
 E5 DIM_CFS_COMPANY_TL m‘l"“ o
® 5 0IM_CFS_INST_ATTR e n
B DIM_CFS_INST_B MLS Descriptions User Defined ha
® |:| DIM_CFS_INST_HIER DUFIC FEJFE/T2T or
% [DIM_CFS_INST_TL T =
5 DIM_CFS_MISCI_ATIR M‘ “‘K‘m o
® & DIM_CFS_MISC_E D Loge
. Iﬂ DIM_CFS_MISCI_HIER et ™
g m 3
5 5 DINLCFS_MISC2 8 Feiyee e w
o] |5 DIM_CFS_MISC2_HIER P03 Dasorptions B e
B B OIM_CFS_MISC2_TL Data Correction Processing NO
T e g
5 E' DIM_CFS_MISC3_HIER [Codas Lser Oefined (hasa til O
% (5 DIM_CFS_MISCI_TL L or
w 5 DIM_CFS_VAL_TYPE_ATTR N &ﬂ(T :'
Model Subject frea CUFEDTL o
DUPEDT/T2T1 o
D L 1
- Q Mnﬂwmd NO
Break Funding Ho
Codes Reserved (base thi) NO ™
[oerncats []Physical ordy DB Sy.. Cancel
(7B Detads | A Summary
& |
Table Level User Defined Properties
The following user defined properties can be set for the table:

UDP Name Description List
of
value
S

Instrument Property to identify if the table is classified as a basic instrument YES/

table. (that is, Instrument table classification code 20) NO

TP Cash Flow Property to identify if the table is classified as 'TP Cash Flow' for the =~ YES/
purpose of generating Transfer Pricing rates using cash flow NO
methods.

TP Non Cash Property to identify if the table is classified as "TP Non-Cash Flow' YES/
Flow for the purpose of generating Transfer Pricing rates usingnoncash ~ NO
flow methods.

Transaction Property to identify if the table is classified as "Transaction' for the YES /
Profitability purpose of executing allocation rules. NO

2-42 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

UDP Name Description List
of
value
s

Portfolio Property to identify if the table is classified as Portfolio'. YES/
NO

User Defined Property to identify if the table is classified as 'User Defined' table YES/
for storing multi-lingual descriptions for codes. NO

Ledger Stat Property to identify if the table is classified as 'Ledger Stat' for the YES/
purpose of executing allocation rules. NO

ALM Standard Property to identify if the table is classified as 'ALM Standard' for YES/
the purpose of executing ALM cash flow engine to generate cash NO
flows.

TP Option Property to identify if the table is classified as "TP Option Costing' YES/

Costing for the purpose of generating Transfer Pricing rates with option NO
costing.

Break Funding Property to identify if the table is classified as 'Break Funding' for the YES/
purpose of generating Break funding charges using Transfer Pricing NO
engine.

MLS Property to identify if the table is classified as 'Reserved' table for YES/

Descriptions storing multi-lingual descriptions for codes. NO

Reserved

Codes Reserved Property to identify if the table is classified as 'Reserved' table for YES/

(base tbl) storing codes of simple dimensions. NO

Codes User Property to identify if the table is classified as 'User-defined' table for YES/

Defined (base storing codes of simple dimensions. NO

tbl)

PA Lookup Property to identify if the table is classified as "Lookup Table' for the ~ YES/

Tables purpose of defining lookup table allocation rules. NO

Instrument Property to identify if the table is classified as 'Instrument’ for the YES/

Profitability purpose of executing allocation rules. NO

Object Management

2-43

UDP Name Description List
of
value
s

Derivative Property to identify if the table is classified as 'Derivatives' for the YES/

Instruments purpose of executing ALM cash flow engine to generate cash flows ~ NO

for derivative instruments.

Data Correction Property to identify if the table is classified as 'Data Correction YES/

Processing Processing' for the purpose of executing Cash Flow Edits engine. NO

Column Level User Defined Properties
The following user defined properties can be set for the column:

UDP Name Description List of

values

Balance Range Property to identify if the column within a table classified as ' PA YES/

Lookup Table' must be displayed under 'Range’ within Lookup NO
table definition.

Balance Property to identify if the column is of type 'Balance’. YES/

NO

Standard Rate Property to identify if the column is of type 'Standard Rate'. YES/

NO

Balance Property to identify if the column is of type '‘Balance Weighted YES/

Weighted Object Object'. NO

Processing Key Property to identify if this column is used as a 'Processing Key' YES/

within the instrument, transaction and ledger_stat table. NO

Frequency Property to identify if the column is used to store 'Frequency'. YES/

Multiplier This property is used in Filters UI within OFSAAIL NO

Multiplier Property to specify the name of the column that is used to store Text

Related Field the multiplier for the corresponding 'Frequency' column. This

property is used in Filters UI within OFSAAL

2-44 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

UDP Name Description List of
values

Related Field Property to specify the name of the column that is used to store Text
the multiplier for the corresponding "Term' column. This
property is used in Filters UI within OFSAAL

Term Multiplier =~ Property to identify if the column is used to store 'Term'. This YES/
property is used in Filters UI within OFSAAL NO

Column Alias Property to specify an alias for the column. This is used within Text
the staging loader program for loading LEDGER_STAT table.

Statistic Property to identify if the column is of type 'Statistic'. YES /

NO

Transfer Pricing Property to identify if the column must be set as an alternate YES/

Output output column for writing transfer rates by transfer pricing NO
engine.

Option Cost Property to identify if the column must be set as an alternate YES/

Output output column for writing option costing output by transfer NO
pricing engine.

Other Adj Property to identify if the column must be set as an alternate YES/

Spread Output output column for writing other adjustment spread by transfer NO
pricing engine.

Other Adj Property to identify if the column must be set as an alternate YES /

Amount Output output column for writing other adjustment amount by transfer NO

pricing engine.

Modifying the precision of Balance Columns In Ledger_Stat

Steps to modify the Precision

1. Open the ALM/FTP/PFT model using AllFusion ERwin Data Modeler.

Switch to Fusion — Ledger Stat subject area.
Select Logical view.

Edit the Ledger Stat table by double clicking the table in the Logical Layer.

Object Management

2-45

5. Change the data type in Datatype tab to the revised precision and scale (example,
NUMBER (22, 3)) for the following columns:

e Month 01 Amount, Month 02 Amount, Month 03 Amount and so on.

e YTD 01 Amount, YITD 02 Amount, YTD 03 Amount and so on.

Attributes fgl
Entity: |Ledger5tat j
Attribute EIEI General Datatype | Conztraint | Definit...; 4

Identity Code o Datatype:
Year Summary
INUMBER(22.3)

Accumulation Type Code
Conzolidation Code

MUMERIC
IS ureu: Ede i NUMERICH T
kdonth 07 Amount MIMERICT

Month 02 Amount
Month 03 &mount [Mot NulF
kanth 04 Amount
Manth 05 Amount
kanth 06 Amount
kanth 07 Amount

| £

Mew... | Fename... Delete

Reszet. .. 0k | Cancel

6. Save the changes.

7. Select the Physical view.

8. Click LEDGER_STAT table and view the datatype of columns - MONTH_01 till
MONTH_12 and YTD_01 till YTD_12. The data type of these columns should

display the new precision and scale.

9. Save the model as xml in AllFusion Repository Format.

2-46 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Save As XML File x|

—Select an ¥ML Format:

" Standard XML Format
[Macros are nok expanded in this Format, and the resulking file can be
opened with allFusion ERwin DM,)
¥ | cnly: save minimum ameunt of information

[Froperties derived Fram ather properties or properties that are
read-only willlnok be saved.)

' allFusion Repository Format;

[Marcros are expanded in this Farmat, and the resulking file cannot be
opened with AllFusion ERwin DM,)

Ik I Cancel Help

10. Perform incremental model upload.

Note: In case, users decrease the precision and scale for the columns,
such columns should not have any values during model upload.

Object Management 2-47

3

Utilities

This chapter details the steps involved in executing various data model utilities that are
available within OFSAA.

This chapter covers the following topics:
® Reverse Population

e Product Instrument Mapping

¢ Instrument Synchronization

* Ledger Load Undo

Reverse Population

Reverse population procedure populates dimension members, attributes and
hierarchies from new dimension tables to OFSA legacy set of dimension tables. ALM,
TP and PFT engines refer to OFSA legacy tables for retrieving dimension member
information.

The following topics are covered in this section:

e Tables that are part of Reverse Population
* Reverse Population procedure
¢ Executing the Reverse Population Procedure

* Exception Messages

Tables As Part Of Reverse Population

Dimension data is stored in the following set of tables:

e DIM_<DIMENSION> B - Stores leaf and node member codes within the dimension.

Utilites 3-1

e DIM_<DIMENSION>_ TL - Stores names of leaf and node and their translations.

e DIM_<DIMENSION> ATTR - Stores attribute values for the attributes of the
dimension.

e DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and
nodes that are part of hierarchies.

Data present in the above set of dimension tables are transformed into the below set of
OFSA Legacy tables.

The reverse population routine synchronizes the dimension data between the new
dimension tables and the OFSA Legacy tables. Reverse population occurs automatically
if enabled in the AMHMConfig.properties file. In the AMHMConfig.properties file, set
the Parameter value to Y for a specific Dimension Id. The setting in the
AMHMConfig.properties only impacts dimension values entered through the interface.
Reverse population must be executed as a batch for bulk loading. For more information
on how to define the reverse populate parameters in the AMHMConfig.properties file,
see Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) Installation
and Configuration Guide.

* OFSA_LEAF_DESC - Stores the description of leaf members that are part of the
dimension.

e OFSA_NODE_DESC - Stores the description of nodes that are used within the
hierarchy.

e OFSA_DETAIL_LEAVES - Stores the attributes of Common COA dimension.

e OFSA_DETAIL_OTHER_COA - Stores the attributes of GL or Product or any other
key dimension.

e QOFSA_DETAIL_ELEM_B/OFSA_DETAIL_ELEM_MLS — Stores the attributes of
Financial Elements dimension.

e OFSA_IDT_ROLLUP - Stores the hierarchy as level-based.
e OFSA_LEVEL_DESC - Stores the hierarchy levels.
Reverse population is done for all key dimensions that are configured within the

OFSAAI framework.

Reverse Population Procedure

The REVERSE_POPULATION package populates the OFSA legacy dimension tables
from new dimension tables.

The procedure performs the following functions:

3-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

® Gets the list of source and target tables. The source tables for given dimension is
stored in REV_DIMENSION_B table. The OFSA target table for a given dimension
is stored in OFSA_CATALOG_OF_LEAVES.

e The REVERSE POPULATION transposes the seeded attributes, leaf members and
hierarchy data stored in the form of rows (new dimension table structure) to
columns (OFSA).

e All exception messages are logged in the FSI_MESSAGE_LOG table.

After the Reverse Population procedure is completed, you should query the OFSA
legacy tables to look for dimension members.

Executing the Reverse Population Function

You can execute this function from either within a PL/SQL block or from ICC Batch
screen within OFSAAI framework.

To run the function with a PL/SQL block, follow the below steps:

* Members Reverse Population

Function fsi batchMemberLoad(batch run id varchar2,

mis date varchar2,
pDimensionId varchar?2,
pMemberId varchar2,
pMode varchar?2)

where

e BATCH_RUN_ID is any string to identify the executed batch.

MIS_DATE in the format YYYYMMDD.
e pDIMENSIONID is the dimension id.

e pMEMBERID. This can be null. If value is provided only that member id gets
reverse populated.

* pMode can have values (1,2, 3). 1 —Insert, 2- Update, 3- Delete. For first time
load user can use pMode 1. For incremental and subsequent updates the user
can use pMode 2.

For Example:

Declare
num number;
Begin
num := fsi batchmemberload ('INFODOM 20100405','20100405'
,1,null,1);
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with

Utilites 3-3

the Task as TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type:- Select appropriate datastore from list
¢ Datastore Name:- Select appropriate name from the list
¢ IP address:- Select the IP address from the list

e Rule Name:- Batch_Member_Load

e Parameter List:- Dimension ID, Member id, Mode (insert /update/ delete)

Hierarchy Reverse Population

Function fsi batchhierarchyload(batch run id varchar2,

mis date varchar2,
pDimensionId varcharz,
pHierarchyId varchar2z2,
pMode varchar?)

where

BATCH_RUNL_ID is any string to identify the executed batch.
MIS_DATE in the format YYYYMMDD.
pDIMENSIONID is the dimension id.

PHIERARCHYID. This can be null. If value is provided only that Hierarchy gets
reverse populated

pMode can have values (1,2, 3). 1 -Insert, 2- Update, 3- Delete. For first time load
user can use pMode 1. For incremental and subsequent updates the user can use
pMode 2.

For Example:

Declare
num number;
Begin
num := fsi batchhierarchyload('INFODOM 20100405','20100405'

,1,null,1);
End;,

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

Datastore Type:- Select appropriate datastore from list
Datastore Name:- Select appropriate name from the list

IP address:- Select the IP address from the list

3-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

e Rule Name:-Batch_Hier_Load

e Parameter List:- Dimension ID, Hierarchy id, Mode (insert /update/ delete)

Note: The reverse population fsi_batchMemberLoad and
fsi_batchHierarchyLoad should be executed after fn_drmdataloader.
The fsi_batchMemberLoad reverse populates the members and the
fsi_batchHierarchyLoad reverse populates the hierarchies to the legacy
structures.

Exception Messages

The Reverse Population procedure may cause some exceptions to appear. The text and
explanation for each of these exceptions follows. If you call the procedure from a
PL/SQL block you may want to handle them so that your program can proceed.

Exception 1: Error. While getting dimension details

This exception occurs when the reverse population procedure cannot find any data
configured in the driver table (REV_DIMENSIONS_B).

Exception 2: Error. While generating hierarchy Query

This exception occurs when there is a problem generating hierarchy query dynamically.

Exception 3: Error. While populating Nodes
This exception occurs when there is an error populating the OFSA_NODE_DESC table.

Product Instrument Mapping

ALM and TP processes can be based on a set of data tables or a set of products. In case
products are selected, ALM and TP engine internally gets the list of data tables mapped
to these products and processes those data tables. During the period-ending load cycle,
data is loaded into Client Data Objects such as Instrument tables. During this load
process, all the distinct members of 'Product’ type dimension that are present within
each data table will be stored in a separate table (FSI_M_PROD_INST_TABLE_MAP) by
executing Product Instrument mapping procedure.

The following topics are covered in this section:

* Tables requiring Product-Instrument table map
® Product-Instrument table map procedure

e Executing the Product-Instrument table map Procedure

Utilites 3-56

* Exception Messages

Tables Requiring Synchronization

Product-instrument table mapping is required only for Instrument tables. Instrument
tables are defined as all tables with the Instrument Table Classification
(table_classification_cd in (20,600,200,210)) on which all of the defined Leaf Columns
exist.

Product Instrument Table Map Procedure

This function gives exact mapping of a particular 'Product’ stored in multiple
Instrument table, and mapping is stored in FSI_M_PROD_INST_TABLE_MAP for given
AS_OF_DATE. The function outputs the mapping information only if the
corresponding 'Product’ definition exits in the corresponding dimension table.

The procedure performs the following functions:

¢ Gets the list of 'Product' type dimensions from dimension registry table
(REV_DIMENSIONS_B).

e Gets the list of Instrument tables from REV_TABLE_CLASS_ASSIGNMENT.

* TFetches the distinct set of members for each 'Product’ type dimension from all
instrument tables for a given AS_OF_DATE.

® Stores the above set into a mapping table (FSI_M_PROD_INST_TABLE_MAP).

e The function outputs message in the message log if the member definition which
exists in the Instrument table is not found in the respective dimension table.

After the Product-Instrument table mapping utility run is completed, you should query
the mapping table to look for dimension members that are present as part of each
instrument table.

Executing the PRODUCT_INSTRUMENT_TABLE_MAP Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure requires 3 parameters — Batch Id — which can be used to see the log of the
procedure executed, MISDATE and the AS_OF_DATE. Identify the table name
parameter by enclosing it in single quotes and uppercase, as shown in the following
two examples. The syntax for calling the procedure is:

3-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Declare
output number;
Begin
Output:= fn Product Instrument Map ('Batch Id',
"MISDATE','AS OF DATE');
End;

* AS_OF_DATE is the date for which mapping is required.
e MISDATE is the date for which batch is run.

Both MISDATE and AS_OF_DATE should be passed as 'YYYYMMDD' format.

An example of running the function from SQL*Plus for the FSI_D_TERM_DEPOSITS
table follows:

SQL> var output number;

SQL> execute :output:= fn Product Instrument Map ('Batch Id',
'20100131,'19991231") ;

To execute the stored procedure from within a PL/SQL block or procedure, see the
example that follows. Call the procedure as often as required to synchronize all of your
instrument tables. The appropriate table parameters are enclosed in single quotes.

SQL> declare
output number;

begin

output:= fn Product Instrument Map ('Batch Id',
"MISDATE', 'AS OF DATE')

end;

/

To execute the procedure from OFSAAIICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

* Datastore Type :- Select appropriate datastore from list
® Datastore Name :- Select appropriate name from the list
e IP address :- Select the IP address from the list

* Rule Name :- Product_Inst_Mapping

e Parameter List :- AS_OF_DATE

Note: BATCHID and MISDATE will be passed explicitly in ICC
framework.

Exception Messages

The Product to Instrument Mapping function may cause two exceptions to appear. The
text and explanation for each of these exceptions follows. If you call the function from a
PL/SQL block you may want to handle them so that your program can proceed.

Utilities 3-7

Exception 1: Table does not exist
The exception message reads:

Table 'TABLE NAME' does not exist.

This exception occurs when the function does not find the Instrument table.

Exception 2: Column does not exist
The exception message reads:

Column 'Column Name' does not exists in the instrument table
'Table Name' while processing dimension 'Dimension ID'.

This error occurs when leaf column does not exist in the Instrument table.

Instrument Synchronization

During the period-ending load cycle, data is loaded into Client Data Objects such as
Instrument tables and the LEDGER_STAT table. During this load process, it is possible
for new, unidentified Dimension and Code values to be loaded into these tables.

The Instrument Synchronization procedure identifies these new Dimension and Code
values and inserts default description entries for them into the appropriate tables. The
procedure performs both of these synchronizations simultaneously. OFSAAI requires
that all Dimension and Code values have a corresponding description. This is required
for any OFSAA reporting operation to return the correct results. It also ensures that
Hierarchies work properly within the OFS analytical applications.

The following topics are covered in this section:

® Tables Requiring Synchronization

¢ Dimension Member Synchronization

® Code Synchronization

* Executing the Synchronize Instrument Procedure

* Exception Messages

Tables Requiring Synchronization

Dimension member and Code value synchronization is required only for Instrument
and LEDGER_STAT tables. Instrument tables are defined as all tables with the
Instrument Table Classification (table_classification_cd = 20) on which all of the defined
Key Dimension Columns exist.

3-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Dimension Member Synchronization

The SYNCHRONIZE_INSTRUMENT procedure synchronizes the dimension member
tables and the hierarchy tables with LEDGER_STAT and instrument tables, using

default values for member descriptions and other information columns. You can then
add the correct data to the new dimension members in AMHM member maintenance.

The procedure performs the following functions:

® Checks the specified table (LEDGER_STAT or instrument) for new dimension
members in each of that table's key dimension columns and adds the new
dimension value as leaf members to the respective dimension member tables.

¢ Adds the new dimension member to the corresponding attribute tables with default
values for mandatory attributes.

* When new dimension members are added to the dimension tables these members
include 'No Description” in the DESCRIPTION column and contain default values
for mandatory attributes.

* Reverse populates the newly added dimension members into legacy OFSA tables.
During reverse population, new members are created as orphan members, under
corresponding hierarchies.

After the SYNCHRONIZE_INSTRUMENT utility run is completed you should look for
any new dimension members using the AMHM member maintenance Ul and enter the
correct descriptions and other member information. You should also look at the orphan
node of each Hierarchy for new dimension members and move these members to the
appropriate branch in the rollup.

Codes Synchronization

The SYNCHRONIZE_INSTRUMENT procedure identifies code values in Instrument
and LEDGER_STAT tables for which a corresponding description does not exist and
inserts a default description into the appropriate Code Description object. This applies
only to CODE columns categorized as User-Editable or User-Defined (refer table
classification). CODE columns for which OFSAA reserves all of the values are not
updated by this procedure. The procedure displays a warning message for any
unidentified values in CODE columns where OFSAA reserves the entire range.

For each CODE column (REV_DATA_TYPE_CD equals 3) on the specified object, the
SYNCHRONIZE_INSTRUMENT procedure queries from
REV_DESCRIPTION_TABLES to identify the object storing the corresponding
descriptions. If the resulting object is a User-Editable or User-Defined Code Description
object (checks from REV_TABLE_CLASS_ASSIGNMENT table), then the procedure
inserts a default description for any code values for which a description record does not
already exist. If the resulting object is an OFSAA Reserved Code Description object,
then the procedure outputs a warning message indicating how many invalid code

Utilites 3-9

values exist in the specified Instrument or LEDGER_STAT table in the message log
(FSI_MESSAGE_LOG).

For more information on code value tables, see Oracle Financial Services Analytical
Applications Data Model Data Dictionary.

For example, if you are synchronizing the FSI_D_TERM_DEPOSITS table, the
procedure queries all of the CODE columns on this table. An example of a Reserved
CODE column is ACCRUAL_BASIS_CD. If the procedure finds any code values in this
column that are not present in the corresponding Code Description object
(FSI_ACCRUAL_BASIS_CD), it outputs an error message indicating the number of
invalid values present. OFSAA Reserved Code Description objects are identified by the
following SQL statement:

select table name from rev table class assignment
where table classification cd = 197;

An example of a User-Editable CODE column is SIC_CD. If the procedure finds any
code values in SIC_CD in the FSI_D_TERM_DEPOSITS table that do not have a
description in FSI_SIC_MLS, it creates a default description 'No Description' for each
value. It is then up to the users to update these descriptions as appropriate.
User-Editable Code Description objects are identified by the following SQL statement:

select * from rev description tables

where table name = 'FSI D TERM DEPOSITS'
and description table name not in
(select table name from rev table class assignment

where table classification cd = 197)

Executing the SYNCHRONIZE_INSTRUMENT Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure requires 2 parameters - table name to be synchronized and the As of Date.
Identify the table name parameter by enclosing it in single quotes and uppercase, as
shown in the following two examples. The syntax for calling the procedure is:

Declare
output number;
Begin
synchronize instrument ('Batch Id', 'TABLE NAME', output)
End;
where table_name is either:

e The name of an Instrument table
e LEDGER_STAT

An example of running the stored procedure from SQL*Plus for the
FSI_D_TERM_DEPOSITS table follows:

3-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

SQL> wvar output number;
SQL>
synchronize instrument ('INFODOM 20101231','FSI D TERM DEPOSITS', :output)

’

To execute the stored procedure from within a PL/SQL block or procedure, see the
example that follows. Call the procedure as often as required to synchronize all of your
instrument tables. The appropriate table name and AS_OF_DATE is enclosed in single
quotes.

SQL> declare
output number;
begin
synchronize instrument ('INFODOM 20101231','LEDGER STAT',output)
end;

/

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type:- Select appropriate datastore from list
e Datastore Name:- Select appropriate name from the list
e [P address:- Select the IP address from the list

* Rule Name:- fn_Synchronize_Instrmts

e Parameter List:- Instrument Table Name or LEDGER_STAT

Exception Messages

The SYNCHRONIZE_INSTRUMENT procedure may cause some exceptions to appear.
The text and explanation for each of these exceptions follows. If you call the procedure
from a PL/SQL block you may want to handle them so that your program can proceed.

Exception 1: Table is not an Instrument or LEDGER_STAT table
The exception message reads:

ORA-20002 Cannot process: table name is not an OFSA Instrument or Ledger
type table having all leaf columns.

This exception occurs when the table_name parameter is not designated as an
Instrument table or LEDGER_STAT table in the OFSAA Metadata. The procedure
identified such tables based upon the Table Classification (Instrument or
LEDGER_STAT).

Exception 2: Table has invalid seeded FINANCIAL_ELEM_ID values
The exception message reads:

ORA-20004 Cannot process: table name has new FINANCIAL ELEM ID values
that are within seeded range (less than 10000).

Utilities 3-11

This error occurs when user-defined leaf values are found in the
DIM_FINANCIAL_ELEMENTS_B table within the FDM Reserved seeded data range.
The FDM seeded data range for OFSA_LEAF_DESC is WHERE LEAF_NUM_ID=0 and
LEAF_NODE<10000. If more records are found in this range than the seeded count for
FDM version, the Synchronize Instrument procedure displays the error message and
terminates. Delete any user-defined Financial Element leaf values within the FDM
seeded data range in order to resolve this problem.

Exception 3: Description table does not exist

The exception message reads:

WARNING: 'Description Table Name' code table could not be synchronized
due to :0RA-00942: table or view does not exist. These tables must be
synchronized manually. Failure to do so may result in inaccurate
reports.

This error occurs while inserting into the description table when user defined values are
found in the Code column in dimension member and description table does not exist.

Ledger Load Undo

Parameters

Data loaded into Ledger_Stat table can be undone using the UNDO engine. The
following topics are included in this section:

¢ Parameters for the Undo engine
¢ Undo mechanism

e Executing Undo engine

The following are the parameters to the UNDO engine:

e Batch Run ID (Typical format is
INFODOM_BATCHNAME_MISDATE_EXECUTIONSEQUENCE)

* IdentityCode-AsOfDate
e Mode Of Execution

Mode of execution for undoing the ledger load is 'L'. Identity Code and As Of Date are
passed in the second parameters with a Hyphen (-) in between.

OFSAAI Batch execution framework is used to invoke the Undo engine.

3-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Undo Mechanism

Undo Engine will set the STATUS_FLAG column in FSI_DATA_IDENTITY table to
'U' to indicate the start of operation.

The engine code reads all the records from FSI_DATA_IDENTITY table. For each
record that is read, it checks whether

SOURCE_TYPE =0

TABLE_NAME = 'ledger_stat'
IDENTITY_CODE = <as entered by user>, and
AS_OF_DATE = <as entered by user>

After reading all the records from FSI_DATA_IDENTITY table, if a matching record
is not found then an error message is logged in the FSI_MESSAGE_LOG table.
However, if a matching record is found, then the Undo engine starts the undo
process as detailed below.

Based on the IDENTITY_CODE and Year specified in the AS_OF_DATE, engine
prepares and executes an update query to set the amount for the month specified in
the AS_OF_DATE to zero and attaches a decode statement to calculate the Year To
Date amount values from the Period Start month to Period End month. It also
attaches any data filter if present to this query.

Engine also prepares and executes a delete query on LEDGER_STAT table, to delete
all the records for which all the month values are 0 and IDENTITY_CODE equals to
the value input by user. All entries relevant for the IDENTITY_CODE are also
deleted from FSI_ DATA_IDENTITY table.

If the undo fails for any reason, status would be set as 'C'. If Undo is completed
successfully, the entry will be removed from FSI_DATA_IDENTITY table.

Executing Undo Engine

To execute the engine from OFSAAI ICC framework, create a new Batch with the Task
as RUN EXECUTABLE and specify the following parameters for the task:

Datastore Type:- Select appropriate datastore from list
Datastore Name:- Select appropriate name from the list
IP address:- Select the IP address from the list

Parameter List:- ./LEDGER_LOAD_UNDO.sh, <Identity Code>-<As_Of_Date>,'L'

To execute the engine from command line, the following is the syntax:

Utilites 3-13

JLEDGER_LOAD_UNDO.sh<parameters>

Parameters: <Batch_Run_Id> <IdentityCode>-<As_of_date> L'

Note: AS_OF_DATE should be passed in mm/dd/yyyy format.

Exception Messages

The ledger undo program throws both user defined exceptions and Oracle database
related exceptions. These exception messages could be seen in FSI_MESSAGES_LOG
table with the help of the Batch_Run_Id which was used during execution. The
exception list includes all possible validations on the parameters that were passed and
database related exceptions.

3-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

4

Data Loaders

This chapter details the steps involved in executing various data loaders that are
available within OFSAA. Data loaders move data from staging layer to processing
layer.

This chapter covers the following topics:

¢ Dimension Loaders

* Historical Rates Data Loader

* Forecast Rate Data Loader

¢ Prepayment Rate Data Loader

* Stage Instrument Table Loader

® Transaction Summary Table Loader

¢ Ledger Data Loader

¢ Pricing Management Transfer Rate Population Procedure
e ALMBI Transformation

e Hierarchy Transformation

Dimension Loaders

The Dimension Loader procedure populates dimension members, attributes and
hierarchies from Staging dimension tables into dimension tables registered within
OFSAAI AMHM framework. Users can view the members and hierarchies loaded by
the dimension loader through AMHM screens.

The following topics are covered in this section:

e QOverview of Dimension Loaders

* Dimension tables that are part of Staging

Data Loaders 4-1

® Setting up Loading

¢ Dimension Loader Procedure

¢ Executing the Dimension Loader

¢ Executing the Reverse Population Procedure

* Exception Messages

* Executing the Dimension Load Procedure using the Master Table approach

e Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from
DIM_<DIMENSION>_ATTR table

¢ Executing the Truncate Stage Tables Procedure

4-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Dimension Loader Overview

Flat File
Dimension
Members

Flat File
Dimension
Members

Translation

Flat File
Dimension
Members
Attributes

OFSAATF2T component

Staging Dimension Tables

v

Validations and Loading
Procedure

v
e ——

Dimension Tables

The dimension loader is used to:

FlatFile
Dimension
Hierarchy

¢ Load dimension members and their attributes from the staging area into Dimension

tables that are registered with the OFSAAI AMHM framework.

e (Create hierarchies in AMHM.

* Load hierarchical relationships between members within hierarchies from the
staging area into AMHM.

Some of the features of the dimension loader are:

® Multiple hierarchies can be loaded from staging tables.

e Validations of members and hierarchies are similar to that of being performed
within AMHM screens.

¢ Members can be loaded incrementally or fully synchronized with the staging tables.

Data Loaders 4-3

Tables that are Part Of Staging

Dimension data is stored in the following set of tables:

STG _<DIMENSION> B_INTF - Stores leaf and node member codes within the
dimension.

STG_<DIMENSION>_ TL_INTF - Stores names of leaf and node and their
translations.

STG_<DIMENSION>_ ATTR_INTF - Stores attribute values for the attributes of the
dimension.

STG_<DIMENSION>_ HIER_INTF - Stores parent-child relationship of members
and nodes that are part of hierarchies.

STG_HIERARCHIES_INTF - Stores master information related to hierarchies.

Data present in the above set of staging dimension tables are loaded into the below set
of dimension tables.

DIM_<DIMENSION>_ B - Stores leaf and node member codes within the
dimension.

DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations.

DIM_<DIMENSION>_ ATTR - Stores attribute values for the attributes of the
dimension.

DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and
nodes that are part of hierarchies.

REV_HIERARCHIES - Stores hierarchy related information.

REV_HIERARCHY_LEVELS - Stores levels of the hierarchy.

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Staging tables are present for all key dimensions that are configured within the OFSAAI
framework. For any custom key dimension that is added by the Client, respective
staging dimension tables like STG_<DIMENSION>_B_INTF, STG_<
DIMENSION>_TL_INTEF, STG_<DIMENSION>_ATTR_INTF, and
STG_<DIMENSION>_HIER_INTF have to be created in the ERwin model.

Populating STG_<DIMENSION>_HIER_INTF Table
The STG_<DIMENSION>_HIER_INTF table is designed to hold hierarchy structure.

4-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

The hierarchy structure is maintained by storing the parent child relationship in the
table. In the following hierarchy there are 4 levels. The first level node is 100, which is
the Total Rollup. The total Rollup node will have the N_PARENT_DISPLAY_CODE
and N_CHILD_DISPLAY_CODE as the same.

Column Name Column Description
V_HIERARCHY_OBJECT_NAME Stores the name of the hierarchy
N_PARENT_DISPLAY_CODE Stores the parent Display Code
N_CHILD_DISPLAY_CODE Stores the child Display Code
N_DISPLAY_ORDER_NUM Determines the order in which the structure

(nodes, leaves) of the hierarchy should be
displayed. This is used by the UI while
displaying the hierarchy. There is no
validation to check if the values in the column
are in proper sequence.

V_CREATED_BY Stores the created by user. Hard coded as -1
V_LAST_MODIFIED_BY Stores the last modified by user. Hard coded
as -1

Data Loaders 4-5

Hierarchy Structure

4 . TotalRollup(100)
4 | 12345678901247 (Node)
4 | 12345678901255(Node)
. 10001 (Leaf)
. 10002 (Leaf)
4 . 12345678901257(Node)
. 10006 (Leaf)
. 10007 (Leaf)
4 | 12345678901250 (Node)
4 . 12345678901262(Node)
. 10006 (Leaf)
. 10007 (Leaf)
4 | 12345678901264(Node)
. 30006 (Leaf)
. 30007 (Leaf)
.. 30008 (Leaf)
. 30009 (Leaf)
4 . 12345678901268 (Node)
4 . 3912228(Node)
1. 20020 (Leaf)
1. 20021 (Leaf)
. 20022 (Leaf)

4-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data

V_HIERARCHY_ N_PARENT_DISP N_CHILD_DISPLAY N_DISPLAY OR V_CREATE V_LAST_MO
OBJECT_NAME LAY_CODE _CODE DER_NUM D_BY DIFIED_BY
INCOME STMT 100 100 1 -1 -1
INCOME STMT 100 12345678901247 2 1 1
INCOME STMT 12345678901247 12345678901255 1 1 1
INCOME STMT ~ 12345678901255 10001 1 1 1
INCOME STMT 12345678901255 10002 2 1 1
INCOME STMT ~ 12345678901247 12345678901257 2 1 1
INCOME STMT 12345678901257 10006 1 1 1
INCOME STMT ~ 12345678901257 10007 2 1 1
INCOME STMT 100 12345678901250 3 -1 -1
INCOME STMT 12345678901250 12345678901262 2 1 1
INCOME STMT 12345678901262 30005 1 1 1
INCOME STMT 12345678901250 12345678901264 1 1 1
INCOME STMT 12345678901264 30006 1 -1 -1
INCOME STMT 12345678901264 30007 2 -1 1
INCOME STMT 12345678901264 30008 3 1 1
INCOME STMT ~ 12345678901264 30009 4 1 1
INCOME STMT 100 12345678901268 4 1 -1
INCOME STMT ~ 12345678901268 3912228 1 1 1
INCOME STMT 3912228 20020 1 1 1

Data Loaders 4-7

V_HIERARCHY_ N_PARENT_DISP N_CHILD_DISPLAY N_DISPLAY_ OR V_CREATE V_LAST_MO

OBJECT_NAME LAY_CODE _CODE DER_NUM D_BY DIFIED_BY
INCOME STMT 3912228 20021 2 1 1
INCOME STMT 3912228 20022 3 1 1

Dimension Load Procedure

This procedure performs the following functions:

® Gets the list of source and target dimension tables. The dimension tables for a given
dimension are stored in REV_DIMENSIONS_B table. The stage tables for a given
dimension are stored in FSI_DIM_LOADER_SETUP_DETAILS.

® The parameter Synchronize Flag can be used to completely synchronize data
between the stage and the dimension tables. If the flag ="Y' members from the
dimension table which are not present in the staging table will be deleted. If the flag
is 'N' the program merges the data between the staging and dimension table.

® The Loader program validates the members/attributes before loading them.

¢ The program validates the number of records in the base members table -
STG_<DIMENSION>_ B_INTF and translation members table -
STG_<DIMENSION>_TL_INTF. The program exits if the number of records
does not match.

* In case values for mandatory attributes are not provided in the staging tables,
the loader program populates the default value (as specified in the attribute
maintenance screens within AMHM of OFSAAI) in the dimension table.

e The program validates for data types of attribute value. For example an
attribute that is configured as NWUMERIC' cannot have non-numeric values.

e If all the member level validations are successful the loader program inserts the
data from the staging tables to the dimension tables.

e After this, the loader program loads hierarchy data from staging into hierarchy
tables.

® In case of hierarchy data the loader program validates if the members used in the
hierarchy are present in the STG_<DIMENSION>_B_INTF table.

® The program validates if the hierarchy contains multiple root nodes and logs error
messages accordingly, as multiple root notes are not supported.

4-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

After execution of the dimension loader, the user must execute the reverse population

procedure to populate OFSA legacy dimension and hierarchy tables.

Setting up Dimension Loader

FSI_DIM_LOADER_SETUP_DETAILS table should have record for each dimension that
has to be loaded using the dimension loader. The table contains seeded entries for key
dimensions that are seeded with the application.

The following are sample entries in the setup table:

Column Name

Description

Sample Value

n_dimension_id

v_intf_b_table_name

v_intf_member_colum

n

v_intf_tl_table_name

v_intf_attr_table_name

v_intf_hier table nam

e

d_start_time

d_end_time

v_comments

v_status

v_intf_member_name_
col

This stores the Dimension Id

Stores the name of the Staging Base table

Stores the name of the Staging Member Column
Name

Stores the name of the Staging Translation table

Stores the name of the Staging Member Attribute
table

Stores the name of the Staging Hierarchy table

Start time of loader - updated by the loader
program.

End time of loader - updated by the loader
program.

Stores Comments.

Status updated by the Loader program.

Stores the name of the Member

Stg_org_unit_b_i
ntf

V_org_unit_id

Stg_org_unit_tl_i
ntf

Stg_org_unit_attr
_intf

Stg_org_unit_hie
r_intf

Dimension
loader for
organization
unit.

V_org_unit_nam
e

Data Loaders 4-9

Column Name

Description Sample Value

v_gen_skey_flag

v_stg_member_colum
n

v_stg_member_name_

col

v_stg_member_desc_c
ol

Flag to indicate if surrogate key needs to be
generated for alphanumeric codes in the staging.
Applicable only for loading dimension data from
master tables. Not applicable for loading
dimension data from interface tables.

Name of the column that holds member code in
the staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

Name of the column that holds member name in
the staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

Name of the column that holds description in the
staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

Executing the Dimension Load Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
function requires 4 parameters — Batch Run Identifier, As of Date, Dimension Identifier,
Synchronize flag (Optional). The syntax for calling the procedure is:

function fn drmDataLoader (batch run id varchar2,

where

as_of date varchar2,
pDimensionId varchar2,
pSynchFlag char default 'Y'")

e BATCH_RUN_ID is any string to identify the executed batch.

e AS OF_DATE in the format YYYYMMDD.

¢ pDIMENSIONID dimension id.

4-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

* pSynchFlag this parameter is used to identify if a complete synchronization of data
between staging and dimension table is required. The default value is 'Y".

For Example:

Declare

num number;
Begin

num := fn drmDatalLoader ('INFODOM 20100405','20100405" ,1,'Y"');
End;

To execute the procedure from the OFSAAI ICC framework, create a new Batch with
the Task as TRANSFORM DATA and specify the following parameters for the task:

¢ Datastore Type:- Select appropriate datastore from list
* Datastore Name:- Select appropriate name from the list
e [P address:- Select the IP address from the list

* Rule Name:- fu_drmDataLoader

* Parameter List:- Dimension ID, Synchronize Flag

The fn_drmdataloader function calls STG_DIMENSION_LOADER package which loads
data from the stg_<dimension>_hier_intf to the dim_<dimension>_hier table.

Exception Messages

The text and explanation for each of these exceptions follows. If you call the procedure
from a PL/SQL block you may want to handle these exceptions appropriately so that
your program can proceed without interruption.

Exception 1: Error. errMandatoryAttributes

This exception occurs when the stage Loader program cannot find any data default
value for mandatory attributes.

Exception 2: Error. errAttributeValidation

This exception occurs when there is a data type mis-match between the attribute value
and configured data-type for the attribute.

Exception 3: Error. errAttributeMemberMissing

If there are member mismatch in the count between the base and the translation table.

Executing the Dimension Load Procedure using Master Table approach

FSI_DIM_LOADER_SETUP_DETAILS table should have a record for each dimension
that has to be loaded. The table contains entries for key dimensions that are seeded with

Data Loaders 4-11

the application.

The following columns must be populated for user-defined Dimensions.
v_stg_member_column

v_stg_member_name_col

v_stg_member_desc_col

Additionally, the FSI_DIM_ATTRIBUTE_MAP table should be configured with column
attribute mapping data. This table maps the columns from a given master table to

attributes.
N_DIMENSION_ID This stores the Dimension Id
V_STG_TABLE_NAME This holds the source Stage Master table
V_STG_COLUMN_NAME This holds the column from the master table
V_ATTRIBUTE_NAME This holds the name of the attribute the
column maps to
V_UPDATE_B_CODE_FLAG This column indicates if the attribute value

can be used to update the code column in the
DIM_<Dimension>_B table.

Note: fn_STGDimDataLoader does not use
FSI_DIM_ATTRIBUTE_MAP.V_UPDATE_
B_CODE_FLAG

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework. To run the procedure from
SQL*Plus, login to SQL*Plus as the Schema Owner. The function requires 5 parameters:
— Batch Run Identifier , As of Date, Dimension Identifier , Mis-Date Required Flag,
Synchronize flag (Optional). The syntax for calling the procedure is:
function fn STGDimDataLoader (batch run id varchar2,

as _of date varchar2,

pDimensionId varchar2,

pMisDateReqFlag char default 'Y',
pSynchFlag char default 'N'")

where

e BATCH_RUN_ID is any string to identify the executed batch.

e AS OF_DATE in the format YYYYMMDD.

4-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Approach 1

e pDIMENSIONID dimension id.

e pMisDateReqFlag this parameter is used to identify if AS-OF_DATE should be used
in the where clause to filter the data.

* pSynchFlag this parameter is used to identify if a complete synchronization of data
between staging and fusion table is required. The default value is 'Y".

For Example

Declare
num number;
Begin
num := fn STGDimDataLoader ('INFODOM 20100405','20100405' ,1,'Y','Y’
)7
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

¢ Datastore Type:- Select appropriate datastore from list

Datastore Name:- Select appropriate name from the list

IP address:- Select the IP address from the list

Rule Name:- fn_STGDimDataLoader
® Parameter List:- Dimension ID, Mis Date Required Flag , Synchronize Flag
Clients could face a problem while loading customer dimension into AMHM using the

Master table approach.

Configuring the setup table for CUSTOMER dimension is pretty confusing while
dealing with attributes like FIRST_NAME , MIDDLE_NAME and LAST_NAME.

Most clients would like to see FIRST_NAME , MIDDLE_NAME and LAST_NAME
forming the name of the member within the customer dimension.

Currently the STG_DIMENSION_LOADER disallows concatenation of columns.
Moreover the concatenation might not ensure unique values.

As a solution to this problem we can work on the following options:

1. Create a view on STG_CUSTOMER_MASTER table with FIRST _NAME,
MIDDLE_NAME and LAST_NAME concatenated and identify this column as
NAME.

2. Configure the name column from the view in
FSI_DIM_LOADER_SETUP_DETAILS

Data Loaders 4-13

3. Increase the size of DIM_CUSTOMER_TL.name column.

4. Disable the unique index on DIM_CUSTOMER_TL.NAME or append
Customer_code to the NAME column.

5. The NAME column will be populated into the DIM_CUSTOMER_TL.NAME
column.

Approach 2
Populate customer_code into the DIM_CUSTOMER_TL.NAME column.

Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from
DIM_<DIMENSION>_ATTR table

The stage dimension loader procedure does not insert or update the <Dimension>_code
column in the Dim_<Dimension>_B table. This section explains how the
<Dimension>_code can be updated.

Steps to be followed
1. A new attribute should be created in the REV_DIM_ATTRIBUTES_B / TL table.

Note: You should use the existing "CODE" attribute for the seeded
dimensions.

Example
PRODUCT CODE, COMMON COA CODE and so on.

2. The fsi_dim_attribute_map table should be populated with values.
The following columns must be populated:
N_DIMENSION_ID (Dimension id)
V_ATTRIBUTE_NAME (The attribute name)

V_UPDATE_B_CODE_FLAG (This flag should be 'Y'). Any given dimension can
have only one attribute with V_UPDATE_B_CODE_FLAG as 'Y'. This should only
be specified for the CODE attribute for that dimension.

Example:

N_DIMENSION_ID 4
V_ATTRIBUTE_NAME PRODUCT_CODE'
V_UPDATE_B_CODE_FLAG Y

4-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

V_STG_TABLE_NAME 'stg_product_master'

V_STG_COLUMN_NAME 'v_prod_code'

Note: The values in V_STG_TABLE_NAME and
V_STG_COLUMN_NAME are not used by the
fn_updateDimensionCode procedure, however these fields are set
to NOT NULL and should be populated.

3. Load STG_<DIMENSION>_ATTR_INTF table with data for the new ATTRIBUTE
created.

Note: The attribute values must first be loaded using the stage
dimension loader procedure, fn_drmDatalLoader, before running
this procedure. This procedure will pull values from the
DIM_<DIMENSION>_ATTR table. If these rows do not exist for
these members prior to running this procedure, the
DIM_<DIMENSION>_B.<DIMENSION>_CODE field will not be
updated.

4. Execute the fn_updateDimensionCode function. The function updates the code
column with values from the DIM_<DIMENSION>_ATTR table.

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner.
The function requires 3 parameters — Batch Run Identifier , As of Date, Dimension
Identifier. The syntax for calling the procedure is:

function fn updateDimensionCode (batch run id varchar2,
as_of date varchar2,
pDimensionId varchar2)

where

¢ BATCH_RUNLID is any string to identify the executed batch.
¢ AS_OF_DATE in the format YYYYMMDD.
e pDIMENSIONID dimension id

For Example

Data Loaders 4-15

Declare
num number;
Begin
num := fn updateDimensionCode ('INFODOM 20100405','20100405',1);
End;

To execute the procedure from OFSAAIICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

* Datastore Type:- Select appropriate datastore from list
* Datastore Name:- Select appropriate name from the list
¢ IP address:- Select the IP address from the list

* Rule Name:- Update_Dimension_Code

e Parameter List:- Dimension ID

Truncate Stage Tables Procedure

This procedure performs the following functions:

® The procedure queries the FSI_DIM_LOADER_SETUP_DETAILS table to get the
names of the staging table used by the Dimension Loader program.

* The function can either delete records from this table for a given MIS_DATE or
completely truncate the data.

Executing the Dimension Load Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
function requires 4 parameters — Batch Run Identifier, As of Date, Dimension Identifier,
Mis Date Required Flag. The syntax for calling the procedure is:

function fn truncateStageTable (batch run id varchar2,
as_of date varchar2,
pDimensionId varchar2,
pMisDateRegFlag char default 'Y')

where

e BATCH_RUN_ID is any string to identify the executed batch.
e AS_OF_DATE in the format YYYYMMDD.

e pDIMENSIONID dimension id.

4-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

* pMisDateReqFlag this parameter is used to identify the data needs to be deleted for
a given MIS Date. The default value is 'Y".

For Example

Declare
num number;
Begin
num := fn truncateStageTable ('INFODOM 20100405','20100405" ,1,'Y");
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

¢ Datastore Type:- Select appropriate datastore from list
* Datastore Name:- Select appropriate name from the list
e [P address:- Select the IP address from the list

® Rule Name:- fn_truncateStageTable

e Parameter List:- Dimension ID, Mis-Date required Flag

Historical Rates Data Loader

Historical data for currency exchange rates, interest rates and economic indicators can
be loaded into the OFSAA historical rates tables through the common staging area. The
T2T component within OFSAAI framework is used to move data from the Stage
historical rate tables into the relevant OFSAA processing tables. After loading the rates,
users can view the historical rate data through the OFSAA Rate Management Ul's.

The following topics are covered in this section:

e Tables related to Historical Rates

¢ Populating Historical Rate Stage tables

¢ Executing the Historical Rates Data Loaders
¢ Re-loading historical rates

* Exception Messages

Tables Related to Historical Rates

Historical rates are stored in the following staging area tables:

e STG_EXCHANGE_RATE_HIST - This staging table contains the historical
exchange rates for Currencies used in the system.

Data Loaders 4-17

e STG_IRC_RATE_HIST - This staging table contains the historical interest rates for
the Interest Rate codes used in the system.

e STG_IRC_TS_PARAM_HIST - This staging table contains the historical interest rate
term structure parameters, used by the Monte Carlo engine.

e STG_ECO_IND_HIST_RATES - This staging table stores the historical values for the
Economic Indicators used in the system.

Historical rates in OFSAA Rate Management are stored in the following processing
tables:

e FSI_EXCHANGE_RATE_HIST - This table contains the historical exchange rates
for the Currencies used in the system.

e FSI IRC_RATE_HIST - This table contains the historical interest rates for the
Interest Rate codes used in the system.

e FSI_IRC_TS _PARAM_HIST - This table stores the historical interest rate term
structure parameters, used by the Monte Carlo engine.

e FSI_ECO_IND_HIST RATES - This table contains the historical values for the
Economic Indicators used in the system.

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables

Data for historical rates commonly comes from external systems. Such data must be
converted into the format of the staging area tables. This data can be loaded into the
staging area using the F2T component of the OFSAAI framework. Users can view the
loaded data by querying the staging tables and various log files associated with the F2T
component.

Executing the Historical Rates Data Loader T2T

There are four pre-defined T2T mappings configured and seeded in OFSAA for the
purpose of loading historical rates. These can be executed from the ICC framework
within OFSAAL

To execute the Historical Exchange Rates Data Loader, create a new Batch and specify
the following parameters:

* Datastore Type:- Select appropriate datastore from the drop down list

* Datastore Name:- Select appropriate name from the list. Generally it is the Infodom
name.

4-18 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

e [P address:- Select the IP address from the list
e Rule Name:- T2T EXCHANGE_RATE_HIST

® Parameter List:- No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

To execute the Historical Interest Rates Data Loader, create a new Batch and specify the
following parameters:

e Datastore Type:- Select appropriate datastore from the drop down list
¢ Datastore Name:- Select appropriate name from the drop down list

¢ IP address:- Select the IP address from the list

e Rule Name:- T2T_IRC_RATE_HIST

e Parameter List: No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

To execute the Historical Term Structure Parameter Data Loader, create a new Batch
and specify the following parameters:

* Datastore Type:- Select appropriate datastore from list
e Datastore Name:- Select appropriate name from the list
e [P address:- Select the IP address from the list

* Rule Name:- T2T_IRC_TS_PARAM_HIST

e Parameter List: No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

To execute the Historical Economic Indicator Data Loader, create a new Batch and
specify the following parameters:

* Datastore Type:- Select appropriate datastore from the drop down list
® Datastore Name: - Select appropriate name from the drop down list

e [P address:- Select the IP address from the list

* Rule Name:- T2T_ECO_IND_HIST_RATES

¢ Parameter List: No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

After executing any of the above batch processes, check the T2T component logs and

Data Loaders 4-19

batch messages to confirm the status of the data load.

The T2T component can fail under the following scenario:

¢ Unique constraint error — Target table may already contain data with the primary
keys that the user is trying to load from the staging area.

Re-Load Of Historical Rates

The T2T component can only perform "Insert" operations. In case the user needs to
perform updates, previously loaded records should be deleted before loading the
current records. Function fn_deleteFusionTables is used for deleting the records in the
target that are present in the source. This function removes rows in the table if there are
matching rows in the Stage table. This function requires entries in the
FSI_DELETE_TABLES_SETUP table to be configured. Configure the below table for all
columns that need to be part of the join between the Stage table and Equivalent table.

Users can create new or use existing Data Transformations for deleting a Table. The
parameters for the Data Transformation are:

e Table to be deleted

e Batch run ID

e Asof Date

Column Name

STAGE_TABLE_NAME

STAGE_COLUMN_NAME

FUSION_TABLE_NAME

FUSION_COLUMN_NAME

Column Description

Stores the source table name
for forming the join statement

Stores the source column
name for forming the join
statement

Stores the target table name
for forming the join statement

Stores the target column
name for forming the join
statement

Sample Value

STG_EXCHANGE_RATE_HI
ST

V_FROM_CURRENCY_CD

FSI_EXCHANGE_RATE_HIS
T

FROM_CURRENCY_CD

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns that
can be used to join the stage with the equivalent table. In case if the join
requires other dimension or code tables, a view can be created joining

4-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

the source table with the respective code tables and this view can be
part of the above setup table.

Forecast Rate Data Loader

The Forecast Rate Data Loader procedure loads forecast rates into the OFSAA ALM
Forecast rates processing area tables from staging tables. In ALM, Forecast Rate
assumptions are defined within the Forecast Rate Assumptions UL The Forecast Rates
Data Loader supports the Direct Input and Structured Change methods only for
exchange rates, interest rates and economic indicators. Data for all other forecast rate
methods should be input through the User Interface. After executing the forecast rates

data loader, users can view the information in the ALM - Forecast Rates Assumptions
UL

The following topics are covered in this section:

¢ Tables related to Forecast Rate Data Loader
® Populating Forecast Rate Stage tables

* Forecast Rate Loader Program

¢ Executing the Forecast Rate Data Loader

* Exception Messages

Forecast Rate Data Loader Tables

Forecast rate assumption data is stored in the following staging area tables:

e STG_FCAST_XRATES - This table holds the forecasted exchange rate data for the
current ALM modeling period.

e STG_FCAST_IRCS - This table holds the forecasted interest rate data for the current
ALM modeling period.

e STG_FCAST EI - This table holds the forecasted economic indicator data for the
current ALM modeling period.

Rates present in the above staging tables are copied into the following ALM metadata
tables.

e FSI_FCAST_IRC_DIRECT_INPUT, FSI_FCAST_IRC_STRCT_CHG_VAL.

e FSI_FCAST _XRATE_DIRECT_INPUT, FSI_FCAST_XRATE_STRCT_CHG.

Data Loaders 4-21

e FSI_FCAST_EI DIRECT_INPUT, FSI_FCAST_EI_STRCT_CHG_VAL

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Populating Forecast Rate Stage Tables

STG_FCAST_El

v_forecast_name

V_scenario_name

v_economic_indicator_name

n_from_bucket

fic_mis_date

n_fcast_rates_sys_id

v_folder_name

The Name of the Forecast Rate
assumption rule as defined.

The Forecast name indicates the Short
Description for the Forecast Rate Sys ID
as stored in the
FSI_M_OBJECT_DEFINITION_TL table.
In case the forecast sys id is provided,
then populate this field with -1.

This field indicates the Scenario Name for
which the Forecast Rate data is
applicable.

This field indicates the Economic
Indicator Name for which the Forecast
data is applicable.

This field indicates the Start Bucket
Number for the given scenario.

This field indicates the current period As
of Date applicable to the data being
loaded.

The System Identifier of the forecast rate
assumption rule to which this data will be
loaded. In case forecast name and folder
are provided, then populate this field
with -1.

Name of the folder that holds the Forecast
Rate assumption rule definition. In case
the forecast sys id is provided, then
populate this field with -1.

4-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

v_ei_method_cd

n_economic_indicator_value

n_to_bucket

The Forecast method of economic
indicator values include: Direct Input or
Structured change.

Use DI - For Direct Input or SC - For
Structured Change

This field indicates the value for the
Economic Indicator for the given scenario
and time bucket.

This field indicates the End Bucket
Number for the assumption.

STG_FCAST_XRATES

v_forecast_name

V_scenario_name

v_iso_currency_cd

n_from_bucket

fic_mis_date

n_fcast_rates_sys_id

The Name of the Forecast Rate
assumption rule as defined.

The Forecast name indicates the Short
Description for the Forecast Rate Sys ID
as stored in the
FSI_M_OBJECT_DEFINITION_TL table.
In case the forecast sys id is provided,
then populate this field with -1.

This field indicates the Scenario Name for
which the Forecast Rate data is
applicable.

From ISO Currency Code (like USD,
EUR, JPY, GBP) of the forecast rate.

This field indicates the Start Bucket
Number for the given scenario.

This field indicates the As of Date for
which the data being loaded is applicable.

The System Identifier of the assumption
rule to which this data will be loaded. In
case forecast name and folder are
provided, then populate this field with -1.

Data Loaders 4-23

v_folder_name

n_to_bucket

v_xrate_method_cd

n_exchange_rate

Name of the folder that holds the
Forecast Rate assumption rule definition.
In case the forecast sys id is provided,
then populate this field with -1.

This field indicates the End Bucket
Number for the given scenario.

The Forecast method for exchange rate
values include: Direct Input or Structured
change.

Use DI - For Direct Input or SC - For
Structured Change

This field indicates the Exchange rate for
the Currency and given bucket Range.

STG_FCAST_IRCS

v_forecast_name

V_scenario_name

v_irc_name

n_interest_rate_term

v_interest_rate_term_mult

The Name of the Forecast Rate
assumption rule as defined.

The Forecast name indicates the Short
Description for the Forecast Rate Sys ID
as stored in the
FSI_M_OBJECT_DEFINITION_TL table.
In case the forecast sys id is provided,
then populate this field with -1.

This field indicates the Scenario Name
for which the Forecast Rate data is
applicable.

The IRC Name indicates the Name of
Interest Rate Code .

This field indicates the Interest Rate
Term applicable for the row of data.

This field indicates the Interest Rate
Term Multiplier for the row of data
being loaded.

4-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

n_from_bucket This field indicates the Start Bucket
Number for the given scenario.

fic_mis_date This field indicates the As of Date for
which the data being loaded is
applicable.

n_fcast_rates_sys_id The System Identifier of the interest rate

code forecast rate definition. In case the
forecast name and folder are provided,
then populate this field with -1.

v_folder_name Name of the folder that holds the
Forecast Rate assumption rule definition.
In case the forecast sys id is provided,
then populate this field with -1.

n_interest_rate This field indicates the Interest Rate
Change for the specified Term and for
the given scenario.

n_to_bucket This field indicates the End Bucket
Number for the given scenario.

v_irc_method_cd The Forecast method of interest rate code
values include: Direct Input or
Structured change.

Use DI - For Direct Input or SC - For
Structured Change

Forecast Rate Loader Program

The Forecast Rate Loader program updates the existing forecast rates to new forecast
rates in the ALM Forecast Rate tables for Direct Input and Structured Change
forecasting methods.

Note: The Forecast Rate Loader can only update existing forecast rate
assumption rule definitions. The initial Forecast Rate assumption rule
definition and initial methods must be created through the Forecast
Rates user interface within Oracle ALM.

The Forecast Rates Data Loader performs the following functions:

Data Loaders 4-25

1. The User can load forecast rate assumptions for either a specific Forecast Rate
assumption rule or multiple forecast rates assumption rules.

2. To Load a specific Forecast Rate assumption rule, the user should provide either the
Forecast Rate name and a folder name as defined in Oracle ALM or the Forecast
Rate System Identifier.

3. When the load parameter is to load a specific Forecast Rate assumption rule for a
given As of Date, the loader checks for Forecast Name/Forecast Rate System
Identifier's presence in the Object Definition Registration Table. If it's present, then
the combination of Forecast Name/Forecast Rate system Identifier and As of Date is
checked in each of the Forecast Rate Staging Tables one by one.

4. The data loading is done from each of the staging tables for the Direct Input and
Structured change methods where the Forecast Name and As of Date combination
is present.

5. When the load parameter is the Load All Option (Y), the Distinct Forecast Name
from the 3 staging tables is verified for its presence in Object Definition Registration
table and the loading is done for each of the Forecast Names.

6. Messages for each of the steps is written into the FSI_MESSAGE_LOG table.

After the Forecast rate loader processing is completed, the user should query the ALM
Forecast Rate tables to look for the new forecast rates. Also, the user can verify the data
just loaded using the Forecast Rate Assumption Ul

Executing the Forecast Rate Data Load Procedure

The user can execute this Forecast Rate Loader from either SQL*Plus, from within a
PL/SQL block or from the ICC Batch screen within OFSAAI framework.

Forecast Rate Loader — Method 1

To run the Forecast Rate Loader from SQL*Plus, login to SQL*Plus as the Schema
Owner. The procedure requires 6 parameters

1. Batch Execution Identifier (batch_run_id)

2. Asof Date (mis_date)

3. Forecast Rate System Identifier (pObject_Definition_ID)

4. Option for Loading All or any Specific Forecast Rate assumption rule. If the Load
All option is 'N' then either the Forecast Rate Assumption rule Name Parameter

with the Folder Name or Forecast Rate Sys ID should be provided else it raises an
error (pLoad_all)

4-26 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

5.

6.

Forecast Rate assumption rule Name (pForecast_name)

Folder name (pFolder_Name)

The syntax for calling the procedure is:

fn stg forecast rate loader (batch run id varchar2,
mis date varcharz,
pObject Definition ID number,
pLoad all char default 'N',
pForecast name varcharZ2,
pFolder Name varchar?2)

where

BATCH_RUNL_ID is any string to identify the executed batch.
mis_date in the format YYYYMMDD.

pObject_Definition_ID -The Forecast Rate System Identifier in ALM
pLoad_all indicates option for loading all forecast rates.

pForecast_Name. This can be null i.e " when the pLoad_all is "Y' else provide a valid
Forecast Rate assumption rule Name.

pFolder_Name indicates the name of the Folder where the forecast rate assumption
rule was defined.

For Example:

1.

If the user wants to Load all forecast rates assumption rules defined within a folder, say ”
RTSEG” then

Declare
num number;

Begin

Num:= fn stg forecast rate loader ('INFODOM FORECAST RATE LOADER',
'20100419",
null,
ryr,
Null,
'RTSEG') ;

End;

The loading is done for all forecast rates under folder 'RTSEG’ for as of Date
20100419.

Data Loaders 4-27

Sample Data for STG_FCAST_IRCS to Load all forecast rates defined within a folder

w_romranr b sovsn sas v ms s o ey wan s | smmer mar vvmss maua s pema_pere Ju s s [1 sun v s saman 03 [e o v s em e [scarr s wen
FOMECAST MATL 1 |Somnamal Fonss [t B 1 1 - 1 [1:] [1
FORECAIT AT E 1 [omarn! o T 02 1] [1 [= i
FORECAGT RATE | Foomana] Fiem Tos B £ &] 1 i s 1
FORECAST WATL 1 [Somrawal Fomss [t B 1 2 L] 1 I 1
FORECART AL 1 [hime! Fiom om0 £]] P I i
FORECAGT RATE | Foomana] Fiem Tos B | &] 1 s 1
FORECAST RAFE 1 [eomann P Lot B 1]] 1 3]
FOPECAST AT] 1 [t P o B € W] P i
FORECAST RATE 1 o] i T B 1 1] F] s 1
FORECALT RARE 1 [bommarn! N Pt B 1] F] = 1
FORECAST AT 1 [osmamn N Toa B0 1 [] i s 1
FORECAST MATT 1 | Sosramal Wi Tt B 1 LF]] 2 [1
FORECALT AP 1 [Lomarn! e Toe B2 1 7] [) = i
FORECART RATE 1 [homarnl Fiem Tow B £ ®] i s 1
FOMECAST MATE 1 |Somamal Foass [t O 1 @ - 2 [1
FORECALT RSP 1 [omwarmi P Pt 8527 1]]] [[l
LIMCRR 51 Hoomanal 11 Dot COF1 - eshy Ko 161 | 17] n = 1
LOACEA_EST [eomanal 164 s Cain Fat]] m 3 1
LiuEER TEET] 5 b Tem ey []] 10 = [l
TESE T] 3 mharsh Tomamne 3 [} 7] = 1

Sample Data for STG_FCAST_XRATES to Load all forecast rates defined within a

folder

¥ IoRICasT mami v_stinanag manal v o comemicy €0 |m peoes secert [y pxcsamsn mate |m po socert|v amari wimaso oo | s et |n easT amr Sv 0 |v rounes e
FORECAST RATE ¥ Cerare] Ji=] 1 038 1|85 mm_uj A|RTSEG
FORECAST RATE 1 Sconanc ush Fi 025 J|5C 4192200 -1|RTSEG

TEST 2 Srenann] LI 1 5.2 11|55 LN -|F'.‘TSEG
LOADER _FEST Srenans] LISD 1 25 1|01 41320 -1|FYTSEG

Sample Data for STG_FCAST_EI to Load all forecast rates defined within a folder

VAT DR ey e juasnd i ecad BUESTY |in i isaief sader st vitinl | 0 BoCedT |y e 60 | A ek DA | Ruiik ik | REadE RARIS i B
FORECAST RATE 1) Seenar] Eca § il = AASENHRETSES =1
FORECAST RATE 1Bl Ecs 1 15 i S LNanHRTSES -1
TI5T 2 Soananicl Eea 2 1.45] 1)0é mmaRTSEG -1
LOADER TEST |Scenanad |Ec=23 SE B EY AASEHHRTSES =1

If the user wants to Load a specific forecast rate assumption rule, they should provide the

Note: To Load all forecast rates defined within a folder, the value of
Forecast rate System identifier in the staging tables should be "-1".

unique Forecast Rate System Identifier

Declare
num number;

Begin

Num:= fn stg forecast rate loader ('INFODOM FORECAST RATE LOADER',
'20100419"',

End;

10005,
’N’,
Null,
Null) ;

4-28 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data for STG_FCAST_IRCS to load data for specific Forecast Rate providing
the Forecast Rate System Identifier

womseare s | sersame, wuur b e s Do vt s [mrvmane o, romns s [rmoms e ety 3o s [e sarreon ro e pary o sonsen s
1 Bl P T out P | [1 I |5 A0 1
1 i i P FC |]] T |[7] [l £
1 et o " pd B 1 u] A [[T]
1 p— W ¥ B 1 i " b Sarmne] i a1
1 —— =T o o v reromm] i [T b
]] LAl = [] 71 (2] [0 B
] el R T P L]] 7 o 30
1 o LAl [[] 7 Rl o]
1 ol e T P |] F] Tl o]
1] o Tpd B 1 1] 12 T i
1 ot et Piom P pd B 1 u] LA
1 p— e P e B 1 i o] a1
1 T g i o u Fi Femam] i1
1] LAl = [il (il [0 B
] ol Foam T N | & [0 2 1 o [l]
1 Fomarel LAl [[0 3 Gl [l o]
1 Sl Al]] I [Nl]
1] Tea B | 1]] ¥] [T]
v ——" W P o B 1 "] | o [Tl £
1 p— Mo P e B 1 [o F] i a1
e e e g 1) " ' e [T B
1 e LAl .}]] 1 1 xmm (2] [T L B
1] M= Toat O 1 & () 1 T] AW
1 Fomanl LAl)] F] L Gl (Gl o]
1 ol 1 bt Ty 3]] FF; o [Nl]
1] 15 D COF iy sl 250 | 13]] L] h [T mﬁ:
1 — 1k ke oot 1ot [u] [l I AN
1 — Y p—— [u [4 i T a1

Sample Data for STG_FCAST_XRATES to load data for specific Forecast Rate
providing the Forecast Rate System Identifier

N VORECAST RAML |\ WCEMARKD WAM |V A0 CURRINCY (O | PSOM BUCKET [N ENCHANGE BATE |M TO BUCKIT IV TE_AMETHOD FEC WS DATE |H PCAST RATES 33 I0 |V SCLOER HAME
K] S cenmigl IE 1 0 35 b I AR Lk A
E S gl ush 2 0.25 3jsc 48R OOCE -1
El 5 canmin] =0 1 532 [0 e 0 A
- Sienngl NE 1 25 1 [¥] R I -1

Sample Data for STG_FCAST_EI to load data for specific Forecast Rate providing the
Forecast Rate System Identifier

v pompeant wanat [y deinames sanei [y peomsas sisecaron kil [shons e [poonoune mos te puenr v n ermeot oo e s par fy souses s |n seass maris sv o |
A Srenaml Eeo 1 1 FIFF] [1EH anasnn| -1 [

] Soenam?t Eco 1 Fl 1.25 FES A3 -1 1

A Seenamt Eca 2] 1.45 1|00 1320 Kl

] Geensml Ecn 3 1 & 28] CEH 471320 1

Note: To Load data for specific Forecast Rate providing the Forecast Rate
System Identifier, the value of Forecast rate Name and Folder Name in the
staging tables should be "-1".

If the user wants to Load a specific forecast rate assumption rule within the Folder providing
the name of Forecast Rate as defined in ALM

Declare
num number;

Begin

Num:= fn stg forecast rate loader ('INFODOM FORECAST RATE LOADER',
'20100419°',
Null,
N ,
'"LOADER TEST',
'RTSEG') ;

End;

Data Loaders 4-29

Sample Data for STG_FCAST_IRCS to Load a specific forecast rate within the Folder

providing the name of Forecast Rate as defined in ALM

v pomra povn | o ay v ms sam E e T T T T e g O e L N VAP A e
FORLCAST AT L 1 |Somarm) i T B 1 1] 1 1] [AN YTMONTSLD 1
FORECALT RATE 1 [hoawarn! W Tt B0 1 F]] 1 [= LN WINORTELG 1
FORECAST RATE 1 [omaral e T L 1 3]] £ = ANRTNOATEEG]
FORECAST WATL 1 [Somrawal Fomss [t B 1 2] 1 3 1] AN VITOANTSLG 1]
FORECALT RAPE 1 (o Wi Tt B0 ¢ FT]] 1 T et [LRI RTELG 1
FFORECAGT RATE 1 |Gosanal Fiem o B 1 = C] 1 Tl 0 ANWIATSIG]
FORECAST RaTL 1 [homraal Fomss [B 1 @ - 1 th L] ANVIMARTSLG 1|
FORECAST AP 1 pmanl [em Ten e t] [] TH = AR W AR i
FORECAST AT 1 |Soman) i T B 1 1] i = ANWTNOIRTEED 1
FORECAST RASE 1 [homran! W Pt B 1) L] F L [ANSIMARTSEG 1|
FORECAST AT 1 peapal [em Ten Bt [[] 1 i = AW RTH]
FORECAST RATE 1 |Soman) Fim Tt B 1 [] 2 ::.‘% 3 ANWTNOIATSED 1
FORECALT RATL 1 [Lommarm! T [B0 1 7]) 2 TR = AN SR]
FORECAST RATE 1 [osnapul i Tom 5, 1 ® [] i FLT. = AR]
FORMECAST RATT I-' o | 'm..r--n:' 4 - 2 L. [ANWTTONTSIG 1
FORECALT RATE 1 [boamarn! W Tt B0 1 W0] 2 T = AW RTLG 1
LDACER_TEET _[iomaral 118 Dot COF1 - ey om 7161 | 53] n [T = ANWFNORTEEG]
LOAOEN TEST o | 104 Mards Cao [am & - m L [ANNIIONTSL 1
LOuEER TEET e | ¥ b Tommny []] 100 & gy [[LEl G [l
1651 7 ommeu | 3 ko Tomamne 3 [}] 13 [0 AN TN MEED]

Sample Data for STG_FCAST_XRATES to Load a specific forecast rate within the
Folder providing the name of Forecast Rate as defined in ALM

¥ osCass mansl v CAnARg meanal |v 10 ComminCy £ |m fmoen sl | EncmarnGl RaTE | B0 suCnrT| v smati MO0 0 [P sl DaTi | PCAST RATIE ST 0 | v PounEs masel
FORECAST RATE 1 Ceerians] J=i] 36 1[5 4N320N0 A|RTSES
FORECAST RATE 1 Cepnanc S Fl 025 50 4137200 -1|RTSED
TEST 2 Seenaal LIPY i 52 [sc 4N -1|RTSEG
LOSOER FEST |Seenane LED 25 i1 [¥] 413N 0 1[RTSEG

Sample Data for STG_FCAST_EI to Load a specific forecast rate within the Folder
providing the name of Forecast Rate as defined in ALM

_RORNCAST M | SCUMARSO MARSS |V SCOMOMISE ICeCaTom MAAS! |i IRSRA BUCKTT |i BCORMGIE INOArATM VLU | TO BUCKET Y [KATTHOR £0 K IS DATH |v Routdk AN |1 Reate mams oo o |
FORECAST RATE 1| Somanal Eco 1 1 E¥] 1|5E uw:uui}rn'ﬂs -1
FORECAST RATE 1[Sosnsuil Eco 1 | FH 3[sC waemolRTSEG -1
(L] §cenanl ETH 1 145 [LAAST[RTSED]
LOADER_TEST |Seenanal Erad ¥l t|sC ANANNRTSES 1

Note: To Load a specific forecast rate assumption rule within the Folder
providing the name of the Forecast Rate assumption rule as defined in
ALM, the value of the Forecast rate System identifier in the staging tables
should be "-1".

If the NUM value is 1, it indicates the load completed successfully, check the
FSI_MESSAGE_LOG for more details.

Forecast Rate Loader — Method 2

To execute Forecast Rate Loader from OFSAAI ICC framework, a seeded Batch is

provided.

Steps
1.

Loader" is the description of the batch.

4-30 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

"<INFODOM>_FORECAST_RATE_LOADER" is the Batch ID and "Forecast Rate

= OFSAA Indrmaruciure - Winéows intarmel [mpioer

Finnnciad Services Annhyticnl Apphtntcas Inknstucten

ORACLE
Coanrtedns: [aLussanro
Balshk Nalmemance L
o Hime Bich Uarimomnc
11 Sk Unded Watadats Masagar
= _duur

ET Rt FebMiaie et e
% Cpaiatiing Ul - Bace i L Auupecer s [Fes

D353 humiar Lsinksnanse [ICTEIT. Buzasan] a =

Bath Lgrigron e <

Bakch Evecuson ° Eaich Bame | &=] TS T al] 1 e

Bakn Bmadusr [mIC=Y [Baser Gevarwame " en Esttuoadon

Bakeh Lnasi [suupainrg foimcas? date Loatin Firntant ik Linde' 1

Rakh P et

Bk Cancataeen Ltk Dually s LAl tie

Taws & Tawi Gratrpti etatatatiibe | B et 6 | Pratedels
144 Lotk P

{2 OFSAR latraslfuetuie - Windows lsternet Dapleser

Financial Soradces Anabical Applhicatioss Inlrasucnn

ORACLE
Contected 13 [aLupsTeec | e ale J'
6 Home Baen Lsriaasts
w ok U] hata ks Uanaghr Yarria B
B T [w Baecs e Lk AAEERAG Forw —
=% O L J = —n
Faus Humber Upnianancs [T Bt 3 aa |
BN Lk E
Eich Eeruten Batch Mame B EEE " e OODL
Bich Seaduln EllBe=na Eaich Ceazrpien Bk Ealierbid
ELtn Lksaided ALUNSIRSD FSRICAST_RLTE L OACER RN [
m:fww 5 Task Detsiln | BEEW | ¥ 1m1en CNEIDL
Lo v Test D & Tk Dancriten Vs Vane Comporast O Precesence
7 [pen G E Tt mt [—— TRANTI DR DATA
o W e Contguianen
o i IO
& £ Advansed Analice InBagtrocun
AR § B AR B asasian

If the user intends to load data for all Forecast Rates under a Folder, then provide
the batch parameters as shown.

e Datastore Type:- Select the appropriate datastore from list
¢ Datastore Name:- Select the appropriate name from the list
¢ IP address:- Select the IP address from the list

e Rule Name:- Forecast_Rate_loader

Data Loaders 4-31

< OSAK Infrastoucts 3 Fdit Tauk Defisitian

CRACLE

Connactedso | acupss

oy Hema
) () Uniied Usladata
= [Rubas Frimisod]
0 Opaasiens

Pans HmEar Ligiy

Webpegn

) Task Dedinition
Batch Uaoracep + Tk Defrboa | ot Bade
2 Taik Cadnfss
Tast O Taakl Deiarptes el
Comyementy :'Ils'.ﬂl)ﬂ: Dama w
4 Dypams Paramatens List
Wik
EC bl
ALUREINED -
Phgdesn IRARLTE AR w
Figlg Mg Forecaa A Loaser ~
Parpmaier Lt WA . AL ATELG

Sample Data for STG_FCAST_IRCS to Load all forecast rates defined within a folder

O T T Sy ga— s vy sy, s [ey T e |5 s ey | svrvmne [ve g |y e s, 0 [v, oo [o s [e s e
FORECAST RATL 1 |Somanal i T B 1 1 N 1 1] = 1
FORECART Ra® 1 [omrarei P Do 537 § 1] i (¥l [i
FORECAST RATE 1 oo | P Tt B 1 [] - 1 (3 [0 1
FORECAST RAFE 1 [oman! i Tt B 1]] 1 L = 1
FORECAST RATE 1 homarn! i T B0 1 7]]] TE s]
FORECAST RATE 1 oo Fid Tt B 1 = - 1 FAT] [1
FORECAST RAFE 1 [Soma) Fiow Pt B2 1]] 1] = 1
FIRECART RATE 1 [omwarn! i T B0 1 [O]] T]
FORICAST RATT 1| ol Figs [B | 1 C]] [[0 1
FORECAST AWFE 1 [omar! o Fot B2 ¢ 1]] |% [!
FORECAGT RAF | [ipwwama! Fiow Tt B0 1 []] [TE [0]
FORECAST RATE 1 [Somanal s Tt B 1 7]] F] 3 = 1
FORECALF AP 1 [homarn! P Pt 507 1 E]]] ¥ [[l
FIRECART RATY 1 |owwaunl P T'ot 50 £ *®] i TN s 1
FORECAST RATE 1 |Somanal i Tt B 1] [] F] T = 1
FORECAST RATE 1 [Lomami o T 55 [T] i] s i
LOMOER_TEST o | 1710 Dl O] - Wil 08 116 [T] - o [[0 1
LOMCEA_FEST |Somant 164 Manie ot om0 []]] [= 1
LIMEER_TEET oararn | 5 oot Ty [] i & [i
el 7 Crsma A ko Tomimy 3] 1] 17 =]

Sample Data for STG_FCAST_XRATES to Load all forecast rates defined within a

folder

M IOmItaNT mant W SCEHAR RARAL |V 150 CURRINCY £0 | e _mati | e Poy st | v sk et en [Pt jirs pami |m Seast mami s o |v iounes s
FORECAST RATE ¥ Seerans] J=] 1 034 1|80 mm_uj

FORECAST RATE § Coeranc] ush Fi 025 A|5C LA 0

TEST 2 Srenan] & 1 52 njsc 4NN

LOADER FEST Scenans] Jie] 1 2.5 1|01 41320

Sample Data for STG_FCAST_EI to Load all forecast rates defined within a folder

_IRCART [eiinassd ARl | iciomaiir ovosh sl i e BCaTT |in b coaitel et viiisl [in o Bacad|v i bATTeos o0 [P bs DAt v Poudk ik P i
FORECAST RATE 15 cenanl Era § 233 1|5C AASENHRTSES sl
FORECAST RATE 1| Soena] Eca 1 13 EES LN ATNHRTEES -1
TEET 3 & ol Ega 2 1 45| i [mmamn -1
LOADER_TEST |Sewnan] |Eca3 SE B ANSANNRTSES =1

Note: To Load all forecast rates defined within a folder, the value of
Forecast rate System identifier in the staging tables should be "-1".

4. If the user wants to load data for a specific Forecast Rate assumption rule, provide
the Forecast Rate System Identifier, then define the batch parameters as shown.

* Datastore Type:- Select the appropriate datastore from list

4-32 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

e Datastore Name:- Select the appropriate name from the list

e [P address:- Select the IP address from the list

¢ Rule Name:- Forecast_Rate_loader

Task Dafinktlon vy
DECh MaTIsnance » Tesk D fneen | [08 e
= Tusk Detaiton
T Tasx! Desargien n#l
tampznanty [Pransronu pata -
& Dynamic Parameters List
_Progarty Ve
Catantzre “ype [1-1] -
ALUBEIHFG L
10134 7L 1R "
R liaeme Forecan|_Faos_Laader b
Paramater List 45085, W, ML WL

Sample Data for STG_FCAST_IRCS to load data for a specific Forecast Rate
assumption rule, with the Forecast Rate System Identifier already provided

B R L A Lo v mary e |v mevmane_nan rvmee v |w rmoss pecur b mevsen sary fm vo pcnr | v mc serreos o purn |w souoem manes fu scan pmiun gy g
1 el LAl 1] 1 o [Tl]
] e Foom T B | 1]] I8 [Tl]
1 p— o ® v B 1 " ¥ ey [l £l
1 et e " B 1 ! " i S| [T £
a] P o B 1 “]] o] o [T]
1 mran Fwss Tuat B T b [’}] N ANV a
] Lol LAl & [0] s o Rl o]
1 oo Al []] 2 Gl wmio
1 el e Tea B |] F]] T i
] el Fom o B | 1] ¥ [Tl B
i Fp——] M P ea B 1 o aXeue| o [aror bl
1 et e " B 1 ! " e T [T £
1 et Fiom B “] Fi o] (i LI
1 b mran M pat B 1 b [’} 1 ANV a
1 Lo LAl e [T o Ol Bl
1 o Al [] o ol B
1 Sl e Tea B |]] il b
] ot et W B | [F] wio
i m—— R P ea B 1 o] i o [arar bl
i et e pa B 1 ! " F | [[T b
1 i Pt B 1] u 1] o anEin 1
1 e l-'ilsl b] 1 .'_I_"" Mll'_.ﬂ a
1 oo Al C] 7 & BErl]
1 o Al [] i3 o ol B
1 el AT H I fF: F i il
] bt et 11 D O iy e g | 17 1] o [T] wio
1 — 1k ke Lot 1ot [u] [l I AV 1
1 [et 5 Mo, Tmmry [u I S| |[7] [l £

Sample Data for STG_FCAST_XRATES to load data for a specific Forecast Rate
assumption rule with the Forecast Rate System Identifier already provided

W FORICAST feanal |y SCEnamo raral |v mo CuRRImGY (0 |, BATE |M_T0 BUCKIT |v XRATE AMTHOD 00 |1 s naTe |n reast, L3 v Iounen_naws |
A Seanmel USD 1 0 34 i) E Aanm u A
4 Soenmnl [(ED] 2 0.25 C [ETRT e A
A Soenmel LY 1 53 11j5¢ AR A
A Soanmnl [E] 1 25 il [] A aran | A

Data Loaders 4-33

Sample Data for STG_FCAST_EI to load data for a specific Forecast Rate assumption
rule with the Forecast Rate System Identifier already provided

v pomieast panel [w deinames nasai [peosscans mesecation il [prone pueis |n peomosse noetlm B et [von semson cer [ek pan by pouses gt |n feass et s e |
Ll Soenan | Eca 1 1 232 1[5C el -1 [|
] Soenanl Eco 1 F] 1.25 EHES [hEFAl -1 1

il el Eco 2 i 1.45] HE] 4713200 K]

1 S eenanl Ero 1 1 5 HEH [E] i

Note: To Load data for specific Forecast Rate assumption rules, provide
the Forecast Rate System Identifier and the value of Forecast rate Name
and Folder Name in the staging tables should be "-1".

5. If the user wants to load data for specific Forecast Rate assumption rules, provide
the Forecast Rate Name as defined in ALM, then define the batch parameters as

shown.

* Datastore Type:- Select an appropriate datastore from list

e Datastore Name:- Select an appropriate name from the list

e [P address:- Select the IP address from the list

¢ Rule Name:- Forecast_Rate_loader

¢ GFSkA inraatructurs - Windews intarnet Explores

Fasane ' ™

CRACLE

Safnedn | LUBEINFOD

Home

6 1 Lvidg3 LI L L B

¥ CF Fosbes Frasmis2i

5 "0 CperaBors
Fass Famber Waickenanoe
Bath Lantrasse
Buntch Evacusios
B Ser el
Eratch Loty
Elakh Procassng Rapon
Pabth Caniglatyn
Lt Vil

v] Bach Graup

[l Byytem Comdpuraton

W i Admisigkaion

H off, Advasohd ARSEEE INfadtudhuoe

oy SLe- UL Srie Popslibon

N Edi Taak Dialinddi;

TRAMFFORY DATa

5 Dynamic Faramatasa List

Task Definiten

Feapnty

CAEY KR

4-34 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data for STG_FCAST_IRCS to Load a specific forecast rate assumption rule,
within the Folder, provide the name of Forecast Rate rule as defined in ALM

WP S — o YT G Bl v SRR i B powt i s o o s iyl 3 o v . e i M s i i el o o i o o
FORLCAST AT 1 | sommanal Tiem [L 1 ™ 1 & 01 i3 1
FORECART RATE 1 [omarn! Poom To B 1 1] ' 2t I 1
FLPECART RATE 1 [hossaatl Fiem Ton B 1 [] I © 4 s 1
FORLCAST RATE1 | Scenarat Piem Toe L 1 [] 1 i = 1
FORECART RATE 1 [fomar! Poom T B £ 2] ' 6 I i
FORECART RATE 1 Gosnanal Fiem Tou B 1 3] 1 m s 1
FORECALT RATE 1 | bomnarnt Piem To B 1] ™ \ T s i
FIPECART RATE 1 (ol Fiom Top P 1 [] i 7 i) I i
FORICAST RATE 1 Soemanal Fiem Tou B 1 1] 3 [s 1
FORECALT RATE 1 [bomarn Piem To B2 1 1] 1 [F= = 1
FIPECART RATE 1 [l Figm Ton P 1 §] 4P s 1
FORLCAST RATE 1 {Somanal Fiem Tos L 1 7]] [s 1
FORECAST RATE 1 [fomen o ot B2 1 o Cl 3 ¥ rom 0 i
FORFCAST RS 1 [Siormal ——[hem Toa P 1 x] 2 T = g
FORECAST RATE 1 [Somanal i Tt B 1] ™ 2 T 3]
FORECAST AATE 1 [homen! o e B 1 W Cl 3 ; O i
LOMCER_TEST __Rosnaral Vit Dot CF1 - ieskly oo 16 |07]] s 1
LOGCEA_TEST [scmnamat 164 Mords C o []] m = 1
LOuEER TEET e | ¥ b Tommny []] 100 [} [[l
TSI T Sousaral 3 o T &] i 1 s 1

Sample Data for STG_FCAST_XRATES to Load a specific forecast rate assumption
rule, within the Folder, provide the name of Forecast Rate rule as defined in ALM

¥ osCass mansl v tinaid reanel [v o comiiecy €0 |m imoes ot [et matt | 50 mcsrr|v amatt Mmoo [P i Banl |n reast s s o |v rouois wassn
FORECAST RATE N Ceerians] J=i] 1 01 36] 182 mmg‘] A|RTSES
FORECAST RATE 1 Cepnanc S Fl 025 50 4137200 -1|RTSED
TEST 2 Goana] LIPY i 52 [sc 4N -1|RTSEG
LOSOER FEST Sepevahe] LED 1 25 i1 [¥] 413N 0 1[RTSEG

Sample Data for STG_FCAST_EI to Load a specific forecast rate assumption rule,
within the Folder, provide the name of Forecast Rate rule as defined in ALM

v_bommea i v pennamn waner |v scososns_messates naset i moss bucert | scosoans mesaron vasi [nto sy simecs oo [me s pat |v pouoie s |n peass mams s
FORECAST RATE 1|5 canan] (K] 1 232 1= AASENHRTSES =1
FORECAST RATE 1/ 5ownul Eca 1 Fl iF b ES LNANRTEES E

TEST 3 & conancl ¥ i 145 [ANANHRTIED -1
LOADER_TEST |Ssenanal Era 3 1 53 HEY AASAHHRTSEG =]

Note: To Load a specific forecast rate assumption rule within the Folder,
provide the name of the Forecast Rate rule as defined in ALM. The
Forecast rate System identifier in the staging tables should be "-1".

6. Save the Batch.

7. Execute the Batch for the required As of Date.

Data Loaders 4-35

7 OF RAA Infraatrectung - Windows inte et Txplarer
Fmaecinl Sonacos Asathcnl Agplicoinns infradreciure

oRACLE

Exception Messages

The Forecast Rate Data Loader can have the following exceptions:

Exception 1: Error. While fetching the Object Definition ID from Object Registration Table

This exception occurs if the forecast rate assumption rule name is not present in the
FSI_M_OBJECT_DEFINTION_TL table short_desc column.

Exception 2: Error. More than one Forecast Sys ID is present.

This exception occurs when there is more than one Forecast Sys ID present for the given
forecast rate assumption rule name.

Exception 3: Error. Forecast Rate assumption rule Name and As of Date combination do not exist in the
Staging Table.
This exception occurs when the Forecast Rate assumption rule Name and as of date
combination do not exist in the Staging Table.

Prepayment Rate Data Loader

The Prepayment Rate Data Loader procedure populates prepayment model rates (used
in ALM and FTP) into the OFSAA metadata tables from the corresponding staging
tables. Prepayment model assumptions are defined within the Prepayment Model
Assumptions User Interfaces in OFSAA ALM and FTP applications. This data loader
program can be used to update the prepayment model rates on a periodic basis. After
loading the prepayment rates, users can view the latest data in the Prepayment Model
assumptions UL

The following topics are covered in this section:

* Tables related to the Prepayment rate data loader

4-36 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

® Prepayment Rate Data Load Procedure
* Executing the Prepayment Rate Data Loader

* Exception Messages

Prepayment Rate Loader Tables
The following are the tables used by the loader:

e FSI_ PPMT_MODEL_HYPERCUBE - This table contains rates defined for different
Prepayment Dimensions present in FSI_PPMT_MODEL_HYPERCUBE_MAP table.

e STG_PPMT_MDL_HYPERCUBE - contains prepayment rates for the selected
prepayment dimensions.

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Prepayment Rate Data Loader

The Prepayment Rate Data Loader program populates the OFSAA Prepayment Model
tables with the values from the staging table. The procedure will load prepayment
assumption data for all Prepayment models that are present in the staging table. The
program assumes that the prepayment model definitions have already been defined
using OFSAA Prepayment Model assumptions Uls before loading prepayment model
rates.

The program performs the following functions:

1. The Data Loader accepts the AS_OF_DATE as a parameter, that is, date to load all
prepayment rates from the Staging table into the OFSAA metadata table for the
specific as of date.

2. The program performs certain checks to determine if:
® The prepayment model dimensions present in staging are the same as those

present in the OFSAA Prepayment Model metadata tables.

* The members of each of the dimensions present in staging are same as those
present in the metadata tables.

® The number of records present in the STG_PPMT_MDL_HYPERCUBE table for
a Prepayment model is less than or equal to the maximum number of records
that are allowed which is determined by multiplying the number of buckets per
dimension of the prepayment model.

Data Loaders 4-37

Example

PPMT_MDL_SYS_ID DIMENSION_ID NUMBER_OF_BUCKETS
20100405 8 2
20100405 4 3

Then the maximum number of records = number of buckets of dimension 8 *
number of buckets of dimension 4

That is, maximum number of records=2*3
Therefore, maximum number of records = 6 records

Check is made by Prepayment Rate Data Loader whether the number of
records present in STG_PPMT_MDL_HYPERCUBE table for a Prepayment
model 20100405 is less than or equal to 6 or not.

If the above quality checks are satisfied, then the rates present in the Staging table
are updated to the OFSAA prepayment model metadata table.

3. Any error messages are logged in the FSI_MESSAGE_LOG table and can be viewed
in OFSAAI Log Viewer UL

After the Prepayment Rate loader is completed, you should query the
FSI_PPMT_MODEL_HYPERCUBE table to look for the new rates. Also, you can verify
the data using the Prepayment Model Assumption UL

Executing the Prepayment Model Data Loader

You can execute this function within a PL/SQL block or from an ICC Batch screen
within OFSAAI framework.

To run the function from SQL*Plus, login to SQL*Plus as the Schema Owner. The loader
requires 2 parameters

e Batch Execution Name
e As Of Date

fn_PPMT RATE_LOADER(batch_run_id IN VARCHAR?2, as_of date IN VARCHAR?2)
BATCH_RUNL_ID is any string to identify the executed batch.
As_of Date is the execution date in the format YYYYMMDD.

For Example:

4-38 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Declare

num number;
Begin

Num:= fn_ PPMT RATE LOADER ('INFODOM 20100405','20100405");
End;

The loader is executed for the given as of date. If the return value (NUM) is 1, this
indicates the load completed successfully. Check the FSI_MESSAGE_LOG for more
details.

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as PPMTMODELRATELOADER and specify the following parameters for the
task:

Datastore Type:- Select appropriate datastore from list
Datastore Name:- Select appropriate name from the list
IP address:- Select the IP address from the list

Rule Name:- ppmt_rate_loader

Parameter List: None

Exception Messages

The Prepayment Model Rate Loader can have the following exceptions:

Exception 1: Error while fetching the Object Definition ID from Object Definition Table.

This exception occurs if the prepayment model name is not present in the
FSI_M_OBJECT_DEFINTION_TL table.

Exception 2: Error. More than one prepayment model sys ID is present for the given definition.

This exception occurs when there is more than one Prepayment Model System 1D
present for the prepayment model name in staging.

Exception 3: Error. Data is present in additional dimension ID column than those defined in
FSI_M_PPMT_MODEL.

This exception occurs if rates are specified in staging for the dimensions that are not
part of the Prepayment Model definition.

Exception 4: The value in the Dimension ID column is not matching with the value present in the
corresponding column in metadata table.

This exception occurs if rates are specified in staging for the dimension members that
are not part of the Prepayment Model definition.

Data Loaders 4-39

model name.

This exception occurs if there are excess records in staging compared to OFSAA
metadata tables for the given prepayment model.

Stage Instrument Table Loader

Data in staging instrument tables are moved into respective OFSAA processing
instrument tables using OFSAAI T2T component. After loading the data, users can view
the loaded data by querying the processing instrument tables.

The following topics are covered in this section:

e Stage Tables

* Populating Stage tables

* Mapping between staging and OFSAA processing tables
e Populating Account Dimension

e Executing T2T data movement tasks

* Re-loading records

Stage Tables

The following are the various staging instrument tables:

e STG_LOAN_CONTRACTS - holds contract information related to various loan
products including mortgages.

e STG_TD_CONTRACTS - holds contract information related to term deposit
products.

* STG_CASA - holds information related to Checking and Savings Accounts.
e STG_OD_ACCOUNTS - holds information related to over-draft accounts.
e STG_CARDS - holds information related to credit card accounts.

e STG_LEASES - holds contract information related to leasing products.

e STG_ANNUITY_CONTRACTS - holds contract information related to annuity
contracts.

e STG_INVESTMENTS - holds information related to investment products like bond,

4-40 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

equities etc.

STG_MM_CONTRACTS - holds contract information related to short term
investments in money market securities.

STG_BORROWINGS - holds contract information related to various inter-bank
borrowings.

STG_FX_CONTRACTS - holds contract information related to FX products like FX
Spot, FX Forward etc. Leg level details, if any, are stored in various leg-specific
columns within the table.

STG_SWAPS_CONTRACTS - holds contract information related to various types of
swaps. Leg level details, if any, are stored in various leg-specific columns within the
table.

STG_OPTION_CONTRACTS - holds contract information related to various types
of options. Leg level details, if any, are stored in various leg-specific columns within
the table.

STG_FUTURES - holds contract information related to interest rate forwards and
all types of futures. Leg level details, if any, are stored in various leg-specific
columns within the table.

For more information on viewing the structure of the above staging tables, see Oracle
Financial Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables

Data can be loaded into staging tables through F2T component of OFSAAI After data is
loaded, check for data quality within the staging tables, before moving into OFSAA
processing tables. Data quality checks can include:

Number of records between external system and staging instrument tables.
Valid list of values in code columns of staging.

Valid list of values in dimension columns like product, organization unit, general
ledger etc. These members should be present in the respective dimension tables.

Valid values for other significant columns of staging tables.

Mapping To OFSAA Processing Tables

The following are the pre-defined T2T mappings between the above staging tables to
processing tables:

Data Loaders 4-41

e T2T_LOAN_CONTRACTS - for loading data from STG_LOAN_CONTRACTS to
FSI_ D LOAN_CONTRACTS.

e T2T_MORTGAGES - for loading data from STG_LOAN_CONTRACTS to
FSI_D_MORTGAGES.

e T2T_CASA - for loading data from STG_CASA to FSI_D_CASA.
e T2T_CARDS - for loading data from STG_CARDS to FSI_D_CREDIT_CARDS.

e T2T_TD_CONTRACTS - for loading data from STG_TD_CONTRACTS to
FSI_D_TERM_DEPOSITS.

e T2T_ANNUITY_CONTRACTS - for loading data from
STG_ANNUITY_CONTRACTS to FSI_D_ANNUITY_CONTRACTS.

e T2T_BORROWINGS - for loading data from STG_BORROWINGS to
FSI_D_BORROWINGS.

e T2T_FORWARD_CONTRACTS - for loading data from STG_FUTURES to
FSI_D_FORWARD_RATE_AGMTS.

e T2T_FUTURE_CONTRACTS - for loading data from STG_FUTURES to
FSI_D _FUTURES.

e T2T_FX_CONTRACTS - for loading data from STG_FX_CONTRACTS to
FSI_D_FX_CONTRACTS.

e T2T_INVESTMENTS - for loading data from STG_INVESTMENTS to
FSI_D_INVESTMENTS.

e T2T_LEASES_CONTRACTS - for loading data from STG_LEASES_CONTRACTS
to FSI_D_LEASES.

e T2T_MM_CONTRACTS - for loading data from STG_MM_CONTRACTS table to
FSI_D_MM_CONTRACTS.

e T2T_OPTION_CONTRACTS - for loading data from STG_OPTION_CONTRACTS
to FSI_D_OPTION_CONTRACTS.

e T2T_SWAP_CONTRACTS - for loading data from STG_SWAPS_CONTRACTS to
FSI_D_SWAPS.

e T2T_OD_ACCOUNTS - for loading data from STG_OD_ACCOUNTS to
FSI_D_CREDIT_LINES.

For more information regarding the details of the above mappings, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

4-42 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

User can view the extract definitions by going through the following steps:

* Go to Data Integrator -> Source Designer -> Define Extracts.
* Under FUSION_APPS application, click on STAGING_SOURCE_T2T.
® (lick on any of the T2T definition to view the extract definition.

User can view the mapping definitions by going through the following steps:

* Go to Data Integrator -> Warehouse Designer -> Define Mapping.
e Under FUSION_APPS application, click on STAGING_SOURCE_T2T.

¢ Click on any of the T2T definition to view the mapping definition.

Note: Staging instrument tables contain alphanumeric display codes for
various IDENTIFIER and CODE columns. T2T mapping looks up in
respective dimension tables for fetching an equivalent numeric ID and
CODE corresponding to the alphanumeric display code. Hence, these
dimension tables should be populated with the alphanumeric display
code before executing any data movement tasks.

Populating Accounts Dimension

Account Number is an alphanumeric unique identifier within each staging instrument
tables. ID_NUMBER is a numeric unique identifier within processing instrument tables.
Hence, there is a need to generate a numeric surrogate key for each of the account
number. This information is stored in DIM_ACCOUNT table.

Function fn_popDimAccount is a function to populate numeric surrogate key for each
account number. The function performs the following:

¢ In case surrogate key generation is required, then it uses a sequence to populate
DIM_ACCOUNT table.

¢ In case surrogate key generation is not required, then it expects that the account
number to be numeric and populates DIM_ACCOUNT with that information.

Create a new Batch with the Task and specify the following parameters for the task to
populate DIM_ACCOUNT table:

* Datastore Type:- Select appropriate datastore from the drop down list.

® Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

e P address:- Select the IP address from the list.

Data Loaders 4-43

Rule Name:- fn_popDimAccount

Parameter List:

* Surrogate Key Required Flag - Y or N

Batch run ID and As Of Date are passed internally by the batch to the Data
Transformation task.

Executing T2T Data Movement Tasks

Before executing T2T data movement tasks, user should ensure that all the dimension
tables that are required for instruments data are loaded. The following are some of the
mandatory dimensions:

DIM_ACCOUNTS
DIM_PRODUCTS_B
DIM_GENERAL_LEDGER_B
DIM_COMMON_COA_B

DIM_ORG_UNIT_B

Create a new Batch with the Task and specify the following parameters for the task for
loading Historical Exchange Rates:

Datastore Type:- Select appropriate datastore from the drop down list.

Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

IP address:- Select the IP address from the list.
Rule Name:- Select the appropriate T2T name from the above list.

Parameter List: No Parameter is passed. The only parameter is the As of Date
Selection while execution.

Check T2T component logs and batch messages for checking the status of load.

T2T component can fail because of following cases:

Unique constraint error — Target table may already contain the primary keys that
are part of the staging tables.

NOT NULL constraint error — do not have values for NOT NULL columns in the
target table.

4-44 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Re-Load Of Instrument Data

T2T component can only perform "Insert” operations. In case user needs to perform
updates, previously loaded records should be deleted before loading the current
records.

Function fn_deleteFusionTables is used for deleting the records in the target that are
present in the source. This function removes rows in the table if there are matching
rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be
configured. Configure the below table for all columns that need to be part of the join
between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to
delete existing records:

e Datastore Type: - Select appropriate datastore from the drop down list.

e Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

e [P address:- Select the IP address from the list.
e Rule Name:- fn_deleteFusionTables

e Parameter List:

e Table to be deleted

Batch run ID and As Of Date are passed internally by the batch to the Data
Transformation task.

Sample record for FSI_DELETE_TABLES_SETUP table is given below:

Column Name Column Description Sample Value

STAGE_TABLE_NAME Stores the source table name STG_EXCHANGE_RATE_HI
for forming the join statement ST

STAGE_COLUMN_NAME Stores the source column V_FROM_CURRENCY_CD
name for forming the join
statement

FUSION_TABLE_NAME Stores the target table name FSI_EXCHANGE_RATE_HIS

for forming the join statement T

Data Loaders 4-45

Column Name Column Description Sample Value

FUSION_COLUMN_NAME Stores the target column FROM_CURRENCY_CD

name for forming the join
statement

Note: Insert rows in FSI_ DELETE_TABLES_SETUP for all columns that
can be used to join the stage with the equivalent table. In case if the join
requires other dimension or code tables, a view can be created joining
the source table with the respective code tables and that view can be
part of the above setup table.

Transaction Summary Table Loader

Data in staging transaction summary tables are moved into respective OFSAA
processing transaction summary tables using OFSAAI T2T component. After loading
the data, users can view the loaded data by querying the processing transaction tables.

The following topics are covered in this section:

Stage Tables

Stage Tables

Populating Stage tables

Mapping between staging and OFSAA processing tables
Dependencies

Executing T2T data movement tasks

Re-loading records

The following are the various staging transaction summary tables:

STG_LOAN_CONTRACT_TXNS_SUMMARY - holds transaction summary
information related to the loan contracts that are present in staging instrument table
for loan contracts i.e, STG_LOAN_CONTRACTS.

STG_CARDS_TXNS_SUMMARY - holds transaction summary information related
to the credit cards present that are present in staging instrument table for credit
cards i.e, STG_CARDS.

4-46 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

STG_CASA_TXNS_SUMMARY - holds transaction summary information related
to the checking and saving accounts that are present in staging instrument table for
CASA i.e, STG_CASA.

STG_MERCHANT_CARD_TXNS_SUMMARY - holds transaction summary
information related to the merchant cards that are present in staging instrument
table for merchant cards i.e, STG_MERCHANT_CARDS.

STG_OTHER_SERVICE_TXNS_SUMMARY - holds transaction summary
information related to other services that are present in staging instrument table for
other services i.e, STG_OTHER_SERVICES.

STG_TERMDEPOSITS_TXNS_SUMMARY - holds transaction summary
information related to the term deposits that are present in staging instrument table
for term deposits i.e, STG_TD_CONTRACTS.

STG_TRUSTS_TXNS_SUMMARY - holds transaction summary information related
to the trust accounts that are present in staging instrument table for trusts i.e,
STG_TRUSTS.

For more information on viewing the structure of the above staging tables, see Oracle
Financial Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables

Data can be loaded into staging tables through F2T component of OFSAAL After data is
loaded, check for data quality within the staging tables, before moving into OFSAA
processing tables. Data quality checks can include:

Number of records between external system and staging transaction summary
tables.

Valid list of values in code columns of staging.

Valid list of values in dimension columns like product, organization unit, general
ledger etc. These members should be present in the respective dimension tables.

Valid list of values in dimension columns like product, organization unit, general
ledger etc. These members should be present in the respective dimension tables.

Valid values for other significant columns of staging tables.

Mapping To OFSAA Processing Tables

The following are the pre-defined T2T mappings between the above staging tables to
processing tables:

Data Loaders 4-47

e T2T_STG_CARDS_TXNS_SUMMARY - for loading data from
STG_CARDS_TXNS_SUMMARY to FSI_ D CREDIT_CARDS_TXNS.

e T2T_STG_CASA_TXNS_SUMMARY - for loading data from
STG_CASA_TXNS_SUMMARY to FSI_D_CASA_TXNS.

e T2T_LOAN_CONTRACT_TXNS_SUMMARY - for loading data from
STG_LOAN_CONTRACT_TXNS_SUMMARY to
FSI_D_LOAN_CONTRACTS_TXNS.

e T2T_STG_MERCHANT_CARD_TXNS_SUMMARY - for loading data from
STG_MERCHANT_CARD_TXNS_SUMMARY to
FSI_D_MERCHANT_CARDS_TXNS.

e T2T_STG_OTHER_SERVICE_TXNS_SUMMARY - for loading data from
STG_OTHER_SERVICE_TXNS_SUMMARY to FSI_ D_OTHER_SERVICES_TXNS.

e T2T_STG_TERMDEPOSITS_TXNS_SUMMARY - for loading data from
STG_TERMDEPOSITS_TXNS_SUMMARY to FSI_D_TERM_DEPOSITS_TXNS.

e T2T_STG_TRUSTS_TXNS_SUMMARY - for loading data from
STG_TRUSTS_TXNS_SUMMARY to FSI_D_TRUSTS_TXNS.

For more information regarding the details of the above mappings, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

User can view the extract definitions by going through the following steps:

* Go to Data Integrator -> Source Designer -> Define Extracts.
¢ Under FUSION_APPS application, click on STAGING_SOURCE_T2T.
® (lick on any of the T2T definition to view the extract definition.

User can view the mapping definitions by going through the following steps:

¢ Go to Data Integrator -> Warehouse Designer -> Define Mapping.
e Under FUSION_APPS application, click on STAGING_SOURCE_T2T.

* (lick on any of the T2T definition to view the mapping definition.

Note: Staging transaction summary tables contain alphanumeric
display codes for various IDENTIFIER and CODE columns. T2T
mapping looks up in respective dimension tables for fetching an
equivalent numeric ID and CODE corresponding to the alphanumeric
display code. Hence, these dimension tables should be populated with
the alphanumeric display code before executing any data movement

4-48 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Dependencies

tasks.

Instrument tables should be loaded before loading the transaction summary
information related to those instruments.

Account Number is an alphanumeric unique identifier within each staging
transaction summary tables. ID_NUMBER is a numeric unique identifier within
processing transaction summary tables. Hence, there is a need to look up into a
DIM_ACCOUNT dimension table for a numeric surrogate key for each of the
alphanumeric account number. This dimension table DIM_ACCOUNT will be
populated as part of the process that loads instrument tables. For more information
on loading instrument tables, see Loading Instrument Table Data, page 4-40.

Before executing T2T data movement tasks, user should ensure that all the
dimension tables that are required for instruments data are loaded. The following
are some of the mandatory dimensions:

e DIM_ACCOUNTS

DIM_PRODUCTS_B

DIM_GENERAL_LEDGER_B

DIM_COMMON_COA_B

DIM_ORG_UNIT_B

Executing T2T Data Movement Tasks

Create a new Batch with the Task and specify the following parameters for the task for
loading Historical Exchange Rates:

Datastore Type: - Select appropriate datastore from the drop down list.

Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

IP address:- Select the IP address from the list.
Rule Name: - Select the appropriate T2T name from the above list.

Parameter List: - No Parameter is passed. The only parameter is the As of Date
Selection while execution.

Data Loaders 4-49

Check T2T component logs and batch messages for checking the status of load.
T2T component can fail because of following cases:
¢ Unique constraint error — Target table may already contain the primary keys that

are part of the staging tables.

e NOT NULL constraint error — Staging table do not have values for mandatory
columns of the target table.

Re-Load Of Transaction Summary Data

T2T component can only perform "Insert" operations. In case user needs to perform
updates, previously loaded records should be deleted before loading the current
records.

Function fn_deleteFusionTables is used for deleting the records in the target that are
present in the source. This function removes rows in the table if there are matching
rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be
configured. Configure the below table for all columns that need to be part of the join
between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to
delete existing records:

e Datastore Type: - Select appropriate datastore from the drop down list.

¢ Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

e [P address: - Select the IP address from the list.
e Rule Name:- fn_deleteFusionTables

e Parameter List:

e Table to be deleted

Batch run ID and As Of Date are passed internally by the batch to the Data
Transformation task.

Sample record for FSI_DELETE_TABLES_SETUP table is given below:

Column Name Column Description Sample Value

STAGE_TABLE_NAME Stores the source table name STG_EXCHANGE_RATE_HI
for forming the join statement ST

4-50 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Column Description Sample Value

STAGE_COLUMN_NAME Stores the source column V_FROM_CURRENCY_CD
name for forming the join
statement

FUSION_TABLE_NAME Stores the target table name FSI_EXCHANGE_RATE_HIS

for forming the join statement T

FUSION_COLUMN_NAME Stores the target column FROM_CURRENCY_CD
name for forming the join
statement

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns that
can be used to join the stage with the equivalent table. In case if the join
requires other dimension or code tables, a view can be created joining
the source table with the respective code tables and that view can be
part of the above setup table.

Ledger Data Loader

The LEDGER_STAT load utility is an Oracle stored procedure used to load your ledger
data into the Oracle Financial Services Analytical Applications (OFSAA)
LEDGER_STAT table. The following topics are included in this section:

* TFeatures of the load procedure
* Overview of the load procedure
* Setup for the LEDGER_STAT load utility

e Executing LEDGER_STAT load procedure

Features of the load procedure

The LEDGER_STAT load utility is the only supported method for loading your ledger
data into the LEDGER_STAT table. The LEDGER_STAT load utility offers the following
features:

* You can load ledger data for one month or for a range of months.

® You can also load ledger data based on calendar as-of-dates.

Data Loaders 4-51

* A month can be undone individually, using the Ledger Load Undo process. You
can do this even though the month to be undone is included in a multiple-month
load.

* You can update columns in existing LEDGER_STAT rows using either the additive
or replacement functionality.

* You can bypass the upsert logic and insert all the rows from the load table using the
INSERT_ONLY mode. This functionality can be used either for first-time loads or to
reload for all months with each load.

Overview of the Load Process
There are three types of load tables that can be used for loading ledger data.

¢ Type I (FISCAL_ONE_MONTH) - Load table contains ONE_MONTH column for
storing data corresponding to one of the twelve fiscal months.

e Type Il (FISCAL_RANGE) - Load table contains M1 to M12 columns for storing
data corresponding to twelve fiscal months.

e Type IIl (CALENDAR_MONTHS) - Load table contains AS_OF_DATE for storing
data corresponding to an as-of-date. While Type II table contains ledger data across
fiscal months in a single row, Type III contains the same information in multiple
rows. Type III supports calendar dates and data can be for one or multiple dates.

ASCII Ledger data is loaded into any of the above staging or load tables using F2T
component of OFSAAI framework. This component can be used for loading any flat file
data into tables. For more information on how to load data using F2T, see OFSAAI User
Guide.

LEDGER_STAT load utility is a PL/SQL procedure and loads data from the above
staging tables into LEDGER_STAT table, based on the configuration. Runtime
parameters, such as the name of the load table, which all columns to load, ADD or
REPLACE update functionality, and whether or not to create offset records are passed
as parameters to the procedure and these are inserted into the Load Batch table
(FSI_LS_LOAD_BATCH).

The procedure is implemented as an Oracle PL/SQL stored procedure so it can be
invoked from SQL*Plus or Batch execution screen within OFSAAI ICC framework
component. Input parameters are read from the batch/parameter table and validated for
correctness, completeness and consistency before the load begins. Parameter errors are
written to a Message column in the batch/parameter table and FSI MESSAGE_LOG
table. Runtime statistics are written to the batch/parameter record following completion
of the load for that record.

Note: For supporting loading LEDGER_STAT from Type III staging

4-52 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

table, a global temporary table (GTT) is created within database. Data is
moved from global temporary table into LEDGER_STAT table.

Limitations

The following are the limitations.
¢ Load Table Rows Must Be Unique

A restriction imposed by the use of bulk SQL (as opposed to row-by-row)
processing is that all the rows in the load table(s) must be unique. This means that
there is one row in the load table for one row in LEDGER_STAT. A unique index is
created on each load table to enforce this uniqueness and provide acceptable
performance.

¢ Defining Financial Elements in AMHM

Occasionally, your load table may contain dimension member values for one or
more dimensions that are not defined in AMHM. The LEDGER_STAT load
procedure loads these rows anyway, except for the rows containing undefined or
incompletely defined FINANCIAL_ELEM_ID values.

Any new values for FINANCIAL_ELEM_ID must first be defined in AMHM before
running the load. Specifically, the load procedure needs the AGGREGATE_
METHOD value for each FINANCIAL_ELEM_ID value so that the YTD columns in
LEDGER_STAT can be computed using the appropriate method.

Setup for the LEDGER_STAT load utility

Setting up and Executing a Type Ill (or Type 3) Ledger Stat Load Using STG_GL_DATA

The Type 3 load takes data from STG_GL_DATA and transfers it into the
LEDGER_STAT table.

Steps to follow to setup and run a Type Il Ledger Stat Load:
Step 1: Populate STG_GL_DATA
The following columns in STG_GL_DATA must be populated with valid values:

V_GL_CODE General Ledger "Code" value.

FIC_MIS_DATE This field indicates the current period As of
Date applicable to the data being loaded.

V_ORG_UNIT_CODE Org Unit "Code" value.

Data Loaders 4-53

V_SCENARIO_CODE Populate with a value from the
CONSOLIDATION_DISPLAY_CODE column
from the FSI_CONSOLIDATION_CD table
(ex. ACTUAL, BUDGET).

V_CCY_CODE ISO Currency Code from FSI_CURRENCIES
(ex. USD)

V_PROD_CODE Product "Code" value.

V_FINANCIAL_ELEMENT_CODE Populate with a value from the

FINANCIAL_ELEM_CODE column from the
DIM_FINANCIAL_ELEMENTS_B table (ex.
ENDBAL, AVGBAL).

V_COMMON_COA_CODE Common COA "Code" value.

N_AMOUNT_LCY Balance

The following columns in STG_GL_DATA must be populated because they are defined
as NOT NULL but can be defaulted to the value of your choice because they are not
used: V_LV_CODE

V_BRANCH_CODE

F_CONSOLIDATION_FLAG

V_GAAP_CODE

Step 2: Verify data exists in the view STG_GL_DATA_V

The following SQL statement is used to populate this view:

4-54 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

SELECT v_data origin DS,
f consolidation flag ACCUM TYPE,
fcc.consolidation cd CONSOLIDAT,
v_ccy code ISOCRNCYCD,
dfeb.financial elem id FINANC ID,
doub.org unit id ORG_ID,
dglb.gl account id GL ACCT 1ID,
dccb.common coa id CMN_COA ID,
dpb.product id PRDCT ID,
fic mis date AS OF DATE,
n_amount lcy VALUE

FROM STG GL DATA SGD,

DIM GENERAL LEDGER B DGLB,

DIM ORG_UNIT B DOUB,

DIM PRODUCTS B DPB,

DIM FINANCIAL ELEMENTS B DFEB,

DIM COMMON COA B DCCB,

FSI CURRENCIES FC,

FSI CONSOLIDATION CD FCC

WHERE NVL(n_amount lcy, 0) <> 0

AND SGD.V_GL CODE = DGLB.GL ACCOUNT CODE

AND SGD.V_ORG UNIT CODE = DOUB.ORG UNIT CODE

AND SGD.V_PROD CODE = DPB.PRODUCT CODE

AND SGD.V FINANCIAL ELEMENT CODE = DFEB.FINANCIAL ELEM CODE

AND SGD.V_COMMON COA CODE = DCCB.COMMON COA CODE
AND SGD.V_CCY CODE = FC.ISO CURRENCY CD

AND SGD.V_SCENARIO CODE = FCC.CONSOLIDATION DISPLAY CODE;

Important: As seen in the code above, the view references the "_CODE"

columns on the dimension tables. For example,
COMMON_COA_CODE on DIM_COMMON_COA_B and

ORG_UNIT_CODE on DIM_ORG_UNIT_B. These code columns must

be populated for data to exist in STG_GL_DATA_V.

The "Update_Dimension_Code" (fn_updatedimensioncode) program populates these
Code columns using data from values in the "Code" dimension Attribute (ex.

COMMON COA CODE, ORG UNIT CODE, etc.)

Step 3: If using the Type 3 Ledger Stat Load for the first time, run the GTT table

creation procedure.

The GTT table creation procedure creates the Global Temporary Table

LS_LOAD_TABLE_GTT_V.

The fn_ledger_load_create_gtt function creates the table LS_LOAD_TABLE_GTT_V and

the index UK_GTT for use in the Type 3 Ledger Stat Load.

Note: If the GTT table has not been created and you try to execute the

Ledger Stat Load, you will get the following error in
FSI_MESSAGE_LOG:

WRAPPER LEDGER STAT LOAD- Error: -942: ORA-00942:
view does not exist

Step 4: Populate FSI_LS_LOAD_BATCH

table or

Data Loaders 4-55

You need to populate the following columns:

RUN_FLAG Y

SEQUENCE Sequence value (ex. 1)
LOAD_TABLE_NAME STG_GL_DATA

ONE_MONTH_ONLY N

UPDATE_MODE ADD or REPLACE

INSERT_ONLY Y or N

CREATE_OFFSETS N

IS_CALENDAR_MONTH Y

START_CALENDAR_MONTH Starting date to load in format YYYYMMDD.
END_CALENDAR_MONTH Ending date to load in format YYYYMMDD.

Step 5: Run the Ledger Stat Load

Use the following command to run the Type 3 Ledger Stat Load in SQL*Plus as the
atomic user:

DECLARE

x NUMBER :=0;

BEGIN

X =

ofsa util.wrapper ledger stat load('BATCH ID ','MIS DATE','TABLE NAME',
TABLE TYPE', 'UPDATE MODE', 'INSERT ONLY', 'START DATE', 'END DATE')
dbms output.put line ('The return variable is ' || x);

END;

Example

DECLARE x NUMBER :=0; BEGIN x :=
ofsa_util.wrapper_ledger_stat_load("ARALSLOADTYPE3_4',°20110111","STG_GL_DATA’,
"CALENDAR_MONTHS’, 'ADD’, "Y’, '20101231°, '20101231°); dbms_output.put_line ("The

return variable is ' | | x); END;

After the Ledger Load completes, check the tables FSI_ MESSAGE_LOG and
FSI_LS_LOAD_BATCH for errors.

Creating View on LEDGER_STAT table

A view is created on the LEDGER_STAT table called LSL. The purpose of this view is to
provide shorter column names for the load procedure. The LSL view must contain the

4-56 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

same columns as LEDGER_STAT. Column alias for each columns within the view
should match the COLUMN_ALIAS user-defined property that is set for each column
of LEDGER_STAT table in the ERwin model.

For any user-defined dimensions in your LEDGER_STAT you must complete the
following steps.

e In ERwin model, look up the COLUMN_ALIAS User Defined Property (UDP) for
added dimension columns within LEDGER_STAT table.

* Specify the value of the property COLUMN_ALIAS.

* Modify the view to include new dimension columns. Use the same
COLUMN_ALIAS that was mentioned in the ERwin model in the load table view.

Creating Load Table

This step is applicable for loading ledger data from Type I or Type Il load table. Staging
table STG_GL_DATA (used for Type III load) is packaged with the application. For
information on columns present in the staging table, see Oracle Financial Services
Analytical Applications Data Model Data Dictionary. Multiple load tables (Type I or Type
II) can be created as required by the System Administrator. Table structure for the Type
I and Type Il load tables is given in the following sections:

Data Loaders 4-57

-- Uncomment the ml..ml2 columns if you
(Type II Load Table).
-— Add lines for all of the LEDGER_ STAT

place
-— indicated below.

Don't forget to add

plan to load a range of months
user-defined leaf columns in the

commas if you need to.

CREATE TABLE &load table name (

ds

year s
accum_type
consolidat
isocrncycd
financ id
org id

gl acct id
cmn_coa_id
prdct id

ml
m2
m3
m4
m5
mé
m7
m8
m9
ml0
mll
ml2

one month amt

VARCHAR?2 (12)
NUMBER (5)
char (1)
NUMBER (5)
VARCHAR2
NUMBER (
NUMBER (
NUMBER (
NUMBER (
NUMBER (
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)
NUMBER (15, 4)

NUMBER (15, 4)

NOT
NOT

NULL,
NULL,
NOT NULL,
NOT NULL,
DEFAULT '002'
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,
NOT NULL,

-- data_source

NOT NULL,

14
’
14
’
’
14
’
14
’
14
’

14

for LEDGER_STAT) :

Other leaf columns

(PROPERTY COLUMN from REV COLUMN PROPERTIES

Creating Unique Index on Load Table

This step is applicable for loading ledger data from Type I or Type II load table. A
unique index has to be created on each load table specifying the column alias for each
column within the load table. Column alias should match the column alias specified for
columns within LEDGER_STAT table. LEDGER_STAT load procedure identifies the
source columns that need to be loaded using the column aliases and not by the physical
column names. Column alias for LEDGER_STAT columns are specified in the
user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin
model for getting the column alias for each of the LEDGER_STAT columns. Definition
of the unique index is given below:

4-58 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

CREATE UNIQUE INDEX &load table name

ON &load table name (ds,
year s,
accum_type,
consolidat,
isocrncycd,
financ id,
org id,
gl acct id,
cmn_coa_ id,
prdct id

-— Include all additional LEDGER_STAT primary key
-— leaf columns here (use PROPERTY COLUMN from
REV7COLUMN7PROPERTIES):

The unique key of the load table must be identical to the unique key of LEDGER_STAT,
with the exception that instead of IDENTITY_CODE, which is in LEDGER_STAT, the
load table has a column called DS (Data Source).

Creating Views on Load Table

This step is applicable for loading ledger data from Type I or Type II load table. In
addition to load tables, views have to be created on the staging tables similar to the
view LSL that was created on LEDGER_STAT. A view has to be created on each load
table specifying the columns alias for each column within the load table. Column alias
should match the column alias specified for columns within LEDGER_STAT table.
LEDGER_STAT load procedure identifies the source columns that need to be loaded
using the column alias. Column alias for LEDGER_STAT columns are specified in the
user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin
model for getting the column alias for each of the LEDGER_STAT columns. View
definition is given below:

Data Loaders 4-59

—-- Uncomment the ml..ml2 columns if you plan to load a range of months
(Type II Load table).
-— Add lines for all of the LEDGER STAT user-defined leaf columns in the

place
-— indicated

SELECT ds,

year_s,

accum_type,

consolidat,

isocrncycd,

financ id,

org id,

gl acct id,

cmn_coa_id,

prdct id,
-- NVL(ml,0) AS ml,
-— NVL (m2,0) AS m2,
-- NVL(m3,0) AS m3,
-— NVL (m4,0) AS m4,
-- NVL(m5,0) AS m5,
-— NVL(m6,0) AS mo,
-- NVL(m7,0) AS m7,
-— NVL(m8,0) AS m8,
-- NVL(m9,0) AS m9,
-— NVL(ml10,0) AS mlO,
-- NVL(ml1l1,0) AS mll,
-— NVL(ml12,0) AS ml2,

below. Don't forget to add commas if you need to.

CREATE OR REPLACE VIEW &load table name. v AS

—-— Other leaf columns

for LEDGER_STAT) :

(PROPERTY COLUMN from REV_COLUMN PROPERTIES

FROM &load table name

WHERE NVL (one _month amt,0) <> 0;

-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR
-- OR

<>
<>
<>
<>
<>
<>
<>
<>

cNoNoRoNoNoNoNoNe)

In case, the custom dimensions are added to the load table, views need to be modified

4-60 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

to reflect the same.

Setting up Global Temporary Table

This step is applicable for loading ledger data from Type III. Calendar dates present in
the data of Load table are converted to the corresponding Fiscal Year/Month.
Conversion from calendar date to fiscal year & month is done based on the
START_MONTH column present in FSI_FISCAL_YEAR_INFO table. These derived
fiscal year & fiscal month are then inserted in an intermediate Global Temporary Table
(GTT) after aggregating the rows of same months/years. Therefore, if 12 rows are
present for the same fiscal year each corresponding to a different month, then global
temporary table may have maximum of one row corresponding to the fiscal months,
these 12 rows represent.

GTT needs to contain valid dimension member identifiers and numeric codes. Since
staging table contains alphanumeric identifiers and codes, a view is created on
STG_GL_DATA table joining with other relevant dimension and CD/MLS tables before
being used in the GTT creation.

Global temporary table can be created in 2 ways as described below:

1. Using PL/SQL

Declare
output number;
Begin
Output:= fn ledger load create gtt('BATCH ID', 'AS OF DATE',
"TABLE NAME') ;
End;
AS_OF_DATE is the date for which GTT is created, in YYYYMMDD format.
TABLE_NAME is the staging table name STG_GL_DATA.

An example of running the function from SQL*Plus is as follows:

SQL> var output number;
SQL> execute :output:= fn ledger load create gtt ('BATCH ID',
'20100519', 'STG GL DATA');

2. Using OFSAAI ICC Framework

To execute the procedure from OFSAAIICC framework, run the batch mentioned
below and specify the following parameters:

* Datastore Type:- Select appropriate datastore from list
* Datastore Name:- Select appropriate name from the list
e IP address:- Select the IP address from the list

¢ Rule Name:- fn_ledgerLoad GTTCreation

e Parameter List:- AS_OF_DATE and TABLE_NAME

Data Loaders 4-61

TABLE_NAME is the staging table name STG_GL_DATA.
AS_OF_DATE should be passed as 'YYYYMMDD' format.

Note: BATCHID will be passed explicitly in ICC framework. The
appropriate table parameters are enclosed in single quotes.

Tables Related to LEDGER_STAT Load Procedure
LEDGER_STAT Loader utility uses the following tables:
e FSI_FISCAL_YEAR_INFO - The table contains the fiscal year information. This is a
setup table.

e FSI_LS_LOAD_BATCH - The table contains the parameters for the load batch that
needs to be executed for loading ledger data from staging or load table into
LEDGER_STAT. This is a setup table.

e STG_GL_DATA - The staging table contains the ledger data for various as-of-dates.

¢ LEDGER_STAT - The processing table contains the ledger data for various fiscal
months. This is loaded from staging table.

For more information on viewing the structure of the previous tables, see Oracle
Financial Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables

Data for ledger can come from external systems. Such data has to be in the format of the
staging table. This data can be loaded into staging through F2T component of OFSAAI
framework. Users can view the loaded data by querying the staging tables and various
log files associated with F2T component.

Executing LEDGER_STAT Load Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure/batch requires the following 8 parameters:

1. BATCH_ID-Any unique number to identify the execution run.
2. MIS_DATE- Date on which the loading is done expressed in YYYYMMDD format.
3. TABLE_NAME- STG_GL_DATA(Type I1I) or any other load table (TYPE I or TYPE 1)

4. TABLE_TYPE- FISCAL_ONE_MONTH or FISCAL_RANGE (TYPE I or TYPE II)

4-62 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

CALENDAR_MONTHS (TYPE III)
UPDATE_MODE-ADD/REPLACE
INSERT_ONLY- Y/N

START_DATE- Calendar start date in YYYYMMDD

END_DATE- Calendar end date in YYYYMMDD

The input parameter logic for the Type III, Type Il and Type I tables.

CALENDAR_MONTHS

If Start_Date and End_Date are null then month part of MIS_Date is taken for
processing a particular month. (Ex: if MIS_DATE is 20101231 then the December
calendar month data is processed).

In this case the Start_Date and End_Date becomes optional.

FISCAL_ONE_MONTH

FISCAL_RANGE

The Start_Date and End_Date parameters will hold numeric values identifying the
fiscal month. The value of these parameters will be between 1 and 12 (i.e. M1 till
M12).

The Start_Date and End_Date should be same.

In this case the Start_Date and End_Date are mandatory.

The Start_Date and End_Date parameters will hold numeric values identifying the
fiscal month. The value of these parameters will be between 1 and 12 (i.e. M1 till
M12).

The Start_Date and End_Date parameters will specify the range of fiscal months
which are to be processed. Ex: M1 till M6 in case the Start_Date and End_Date
values are 1 and 6.

In this case the Start_Date and End_Date are mandatory.

Ledger Load can be executed in 2 different ways:

1.

Using PL/SQL:

Data Loaders 4-63

By using the function-

ofsa util.wrapper ledger stat load('BATCH ID ','MIS DATE',
TABLE NAME', TABLE TYPE',

UPDATE MODE', "INSERT ONLY','START DATE','END DATE') ;

Example:

DECLARE

X NUMBER :=0;

BEGIN

X 1=

ofsa util.wrapper ledger stat load('batch id 1','20090202','STG GL D
ATA', 'CALENDAR MONTHS', 'ADD','Y',6 '20070430','20080331");

dbms output.put line ('The return variable is ' || x);

END;

To execute the procedure from OFSAAI ICC framework, create a new Batch with
the Task as TRANSFORM DATA and specify the following parameters for the task:

¢ Datastore Type:- Select appropriate datastore from list
¢ Datastore Name:- Select appropriate name from the list
¢ IP address:- Select the IP address from the list

* Rule Name:- fn_ledgerDataLoader

® Parameter List:- <Same as mentioned above in the parameter list>

Exception Messages

The ledger load program throws both user defined exceptions and Oracle database
related exceptions. These exception messages could be seen in FSI_MESSAGES_LOG
table with the help of the batch_id which was used during execution. The exception list
includes all possible validations on the parameters that were passed and database
related exceptions.

Pricing Management Transfer Rate Population Procedure

This function populates FSI_M_PROD_TRANSFER_RATE table from
FSI_PM_GENERATED_INSTRMTS table for particular Effective date.

After executing this procedure, you should query FSI_M_PROD_TRANSFER_RATE
table.

Executing the POPULATE_PM_TRANS_RATE_TABLE (earlier known as
POPULATE_TPOL_TRANS_RATE) Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

4-64 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner.
The procedure requires the following 6 parameters:

1. Batch Id (Batch_Id) — can be used to see the log of the procedure executed.

2. Misdate (Mis_date) - the date for which batch is run.

3. Runld (p_v_run_id) - Unique Run ID for the run.

4. Process Id (p_v_process_id) - Unique Process ID for the batch.

5. Run Execution Id (p_v_run_execution_id) - Unique Run Execution Id for the Run.
6. Run skey (p_n_run_skey) — Unique run skey generated by the run.

The syntax for calling the procedure is:

Declare

output number;

Begin

Output:= POPULATE PM TRANS RATE TABLE (Batch Id varchar2,

Mis date varchar2,

p v run id varchar2z,
p v _process id varchar2,
p_ Vv run execution id varcharZ,
p n run skey varchar2);

End;

Mis_date should be passed as "YYYYMMDD' format.

An example of running the function from SQL*Plus is as follows:

SQL> var output number;

SQL> execute: output:= POPULATE PM TRANS RATE TABLE ('Batch Id',
'20100131,"' SRUNID=1306182237482', 'SPHID=1228363751510",
'SEXEID=RQEXE016', 'SRUNSK=99") ;

To execute the stored procedure from within a PL/SQL block or procedure, see the
example that follows.

SQL> declare

output number;

begin

Output:= POPULATE PM TRANS RATE TABLE ('Batch Id','Mis date’,

' v_run id','p v process id','p v run execution id',' p n run skey');
End;

/

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

e Datastore Type :- Select appropriate datastore from the list
¢ Datastore Name :- Select appropriate name from the list

e IP address :- Select the IP address from the list

Data Loaders 4-65

e Rule Name :- POPULATE_PM_TRANS_RATE_TABLE

Note: BATCHID and MISDATE will be passed explicitly in ICC
framework

ALMBI Transformation

ALM_BI_TRANSFORMATION data definition transforms the Asset Liability
Management (ALM) processing results of an executed ALM process to ALMBI fact
tables.

This internally calls PL/SQL function FN_ALM_BI_TRANSFORMATION.

function FN ALM BI TRANSFORMATION (p batch run id varchar2Z,
p_as of date varchar2,
PID number,
p _re run flag char)

Where the parameters are,

1. p_batch_run_id - It is the batch run id. Batch Run ID value is passed from the Batch
execution UL Therefore, it is not required to define it as a parameter value in Batch
Maintenance.

2. p_as_of_date - This parameter value is passed from the Batch execution Ul
Therefore, it is not required to define it as a parameter value in Batch Maintenance.

3. PID - Pass the ALM Process Sys ID for which the transformation has to be done.
4. p_re_run_flag - This parameter value determines whether the transformation for
the ALM process is for the first time or not.
Possible values are "Y' or 'N'
Where

"Y' - Yes (This means that the transformation was already done and the user is
trying to redo the transformation once again for the ALM process).

'N' - No (This means that the user is executing the transformation for the first time
for the ALM process).

Note: The values for parameters PID and p_re_run_flag has to be
entered in the Parameter List during the batch definition.

Example
If the user is trying to do transformation of ALM process 200009 for the first time, then
the values that must be entered in the Parameter List are 200009, 'N'.

If the user is trying to do transformation of ALM process 200011, for which he had

4-66 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

already done the transformation, then the values that must be entered in the Parameter
List are 200011, 'Y".

Hierarchy Transformation

Hierarchy Flattening Transformation is used to move the hierarchy data from the
parent child storage structure in EPM AMHM (Attribute, Member and Hierarchy
Management) model to a level based storage structure in OFS Profitability Analytics. In
EPM AMHM model, hierarchy data for any hierarchy created on seeded or user defined
dimensions using the AMHM is stored within hierarchy tables of respective
dimensions. This is moved to the REV_HIER_FLATTENED table in OFS Profitability
Analytics after flattening by the Hierarchy flattening process.

batch_hierTransformation is a seeded Data Transformation program installed as part of
the OFSPA solution installer.

Executing the Hierarchy Flattening Transformation

You can execute this procedure from SQL Plus/PLSQL/ICC Batch screen within
OFSAAI framework.

1.

Using SQL Plus/PLSQL

Function Name: rev_batchHierFlatten

Parameters: batch_run_id, mis_date, pDimensionld, pHierarchyld

function rev batchHierFlatten (batch run id varcharZ,

mis date varchar2z,
pDimensionId varcharZ2,
pHierarchyld varcharZ2,

)

Where the parameters are,

batch_run_id - It is the batch run id. Batch Run ID value is passed from the
Batch execution UL Therefore, it is not required to define it as a parameter
value in Batch Maintenance.

mis_date - This parameter value is passed from the Batch execution UL
Therefore, it is not required to define it as a parameter value in Batch
Maintenance. Follow the date format, YYYYMMDD

pDimensionld- Enter the Dimension id . To find dimension id, execute the
following query in database to find the value and use the value in dimension id
column for the dimension name / description to be processed:

Select b.dimension_id,t.dimension_name,t.description from
rev_dimensions_b b inner join rev_dimensions_tl t on b.dimension_id =
t.dimension_id and t.dimension_name like '<dimension name>'

Data Loaders 4-67

Replace <dimension name> in the preceding query with the Dimension Name
you find in the UI (Financial Service Application >Master Maintenance >
Dimension Management) for the dimension on which the Hierarchy you want
to flatten is configured.

¢ pHierarchyld — Enter Hierarchy id. If all the hierarchies belonging to a
dimension are to be processed then, provide NULL as the parameter value.
Else, provide the System Identifier of the hierarchy that needs to be
transformed.

Execute the following query in database if only a single hierarchy is to be
processed and use the value in hierarchy_id column as parameter for the
hierarchy to be processed:

select b.object_definition_id , short_desc,long_desc from
fsi_m_object_definition_b b inner join fsi_m_object_definition_tl t on
b.object_definition_id = t.object_definition_id and b.id_type =5

Example

If all the hierarchies for GL Account dimension must be processed, the
parameter list should be given as follows (where 2" is the dimension id for the
seeded dimension GL Account):

2" null

Example

If a particular hierarchy with code 1000018112 must be processed (you can
obtain this code by executing the preceding query in the database), the
parameter list should be given as follows:

2','1000018112'

SQL Example

SQL> var fn return val number;

SQL> execute :fn return val:= rev batchHierFlatten ('Batchl ',
'20091231 ', '2 ', '1000018112");

SQL> print fn return val

PLSQL Example:

4-68 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

DECLARE
fn return val number :=
BEGIN
fn return val :=

1 THEN

IF fn return val =

ELSIF fn return val =

null;

rev_batchHierFlatten('Batchl',

'20091231",
v2v,
1000018112");
Dbms output.put line('Execution status of batchHierFlatten is'
| | fn_return val || ' --Successful');
0 THEN
is'

Dbms output.put line('Execution status of batchHierFlatten
| fn_return val

END IF;
EXCEPTION

WHEN OTHERS THEN

|| ' ——FAILURE');

Dbms output.put line('Execution status of batchHierFlatten is'

END;

SQLCODE

[l "=-'" || SQLERRM) ;

On successful execution of rev_batchHierFlatten function in Database, value
returned will be 1 or 0. 1 indicates successful execution and 0 indicates failure in
execution. This function will be present in Atomic Schema.

2. Using OFSAAI ICC Framework

To execute the procedure from OFSAAI ICC framework, run the batch mentioned
below and specify the following parameters:

* Datastore Type:- Select appropriate datastore from the list

¢ Datastore Name:- Select appropriate name from the list

e IP address:- Select the IP address from the list

* Rule Name:- batch_hierTransformation

e Parameter List:- Dimension ID, Hierarchy ID

For more information on Hierarchy Transformation, see Oracle Financial Services

Profitability Analytics User Guide.

Data Loaders 4-69

Mapping Export in Metadata Browser

Procedure

Login to OFSAAI Screen.

Click Unified Metadata Manager. Then, navigate to Metadata Browser.

£~ OFSAA Infrastructure - Windows Internot Explorer

ACLE

Financial Services Analytical Applications Infrastruclure

o Home
= @ Unifisd Mstadata Manager
Imgortogel

@ Data Integrator Framework
Data Entiy Forms and Queries:

@ Business Metadata Hanagement

= Mgtaoata Browser

Hetadata Erowser

@ Matadata Restareiischive

©EF Rules Framework

@y Foms Framework

& %8 Operations

=) Systern Configuration

@ i@ Adminiskation

& sty Informasion Delvery

@ <§ At.anced Anaijics infrastucture
8 AU UL O

& Population I
Financial Senices Applications |

my Start Page [_Save

Metadata Browser window will open.

3. Select the correct Segment from the dropdown

4. Then select the corresponding Source Model as shown in the below screenshots.

Mapping Export in Metadata Browser 5-1

/= Metadata Browser - Windows Internet Explarer

Financial Services Analytical Applications Infrastructure

ORACLE

Informstion

Domain

Segment ALL -]
@ Metacata Browser ~

& | Source Model

@ 22 Data Model

@ % Data Transformations
@ B Data Sets

B & Measures

® (@ Hierarchies

@ 3 Hievarchr Attibutes.
B P Maps

@ '® Dimensions

& T Buginess Processons
= Rules

@ A Process

@% Run

Questionnaire

@11 Views

&M Koy Parfarmance indicators
= Wl Dasnooaras.

& Nestod Views

e et

£~ Metadata Browser - Windows Internet Fx

_— Financial Services Anahytical Applications Infr:
ORACLE =

o

Domain
Seoment [regeen v
@) Metadata Browser L]

& Source Mode!

@& & AssessmentPlan

o8 Test

& & UserDetalls

3 apobug

& appnew

& sourceproc

T2T_FACT_ACCOUL
IT_FACT_ACCOUL
T2T_FACT_ACCOUIL
TIT_FACT_ACCOUL
T2T_FAGT_ACGOUL
B TIT_FACT_ACCOUL
TIT_FACT_ACCQUL
[TIT_FACT_ACCOUL
TIT_FACT_ACCOUL
[T2T_FACT_ACCOUL
TIT_FACT_ACCOUL
[TIT_FACT_ACCOUL
=TT FACT u‘r‘.ngl"

& Local intrarmt.

-

100w

5-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

/= Metadata Browser - Windows Internet Ex

S Financial Analytical Applications Infrastructure
romaen | NN
Domain T D ntos
Sigment fsgsen v
Details of Definition " T2T_FACT_ACCOUNT_SUMMARY_ANNUITY "
@ metsciata Browser = Source Table Source Column Destination Table Destination Column
&% Source Model DIM_COMMON_COA n_comman_caa_skey ECI_COMMON ACCOUNT_SUMMARY n_common coa_skey
& AssessmentPlan DIM_CURRENCY v_iso_cumency_cd ECT_COMION ACCOUNT SUMMARY v isg cumency od
& & Test DIM_GL_ACCOUNT n_gl_sccount_skey ECT_COMIMON ACCOUNT SUMMARY n_gl account skey
& & UserDelalls DIM_ORG_UNIT n_org_unit_skey ECT_COMION_ACCOUNT SUMMARY p_rg und_skey
22 anpbug DiM_PRODUCT n_product_skey ECT_COMMON ACCOUNT SUMMARY n_product skey
© & appnew EXPRESSION TO_NUMBER(2) ECT_COMMON ACCOUNT SUMMARY H_INSTRUMENT CATEGORY CD
&I sourcepor {seloct dirn_rem_term_bucket n_ramaining_term_buckel_no
T21_FACE_ACCOUN Eom dim_tem_term_bucket vhere
FSI_D_AHHUITY_CONTRACTS maturiy_dte- ECT_COMLION_ACCOUNT SULIIARY T T T
B TIT_FACT_ACCOUL | EXPRESSION Fg—g-mum'm.m o ol Aas borwosn
[TIT_FACT_ARCOUL dim_gém_term_ucket.n_start_day and
IT_FACT_ACCOUL dim_rem_temm_buckst n_end_day)
9 T2T_FACT_ACCOUL CASE WHEN
2 TIT_FACT_ACCOUL FSI_D_ANNUITY_CONTRACTS ORIGINATION_DATE IS NOT
4 WULL AND FSI_B_AHNUITY_CONTRACTS AS_OF_DATE =
g—"g—‘“gg”' FSID_ANNUITY_CONTRAGTS ORIGMATION DATE THEN 1
D TIT_FACTASCOU ypresgion WHENFSI_D_ARNUITY_CONTRACTS ORIGIHATION_DATE 1 Y pacct new ind
TIT_FACT_ACCOUL IS NOT NULL AND
B TIT_FACT_ACCOUT FSI_D_ANNUITY_CONTRACTS AS_OF_DATE =
B TIT_FACT_ACCOUT FSI_D_ANNUITY_CONTRACTS ORIGINATION_DATE THEN 0
[TT_FACT_ACCOUL B SE ML
73T FarT arcain® EAPRESSION FSI_D_ANNUITY_CONTRACTS ID_NUMBER FCT_COMMON_ACCOUNT_SUMMARY n_acet_ske:
< > EXPRESSION TO_NUMBER(TO_CHAR(AS_OF_DATE,YYYYRIMDD]) ECT_COMMON ACCOUNT SUMMARY n_mis date skey
e -
EXPRESSION (FSI_D_ANNUITY_CONTRACTS INSTRUMENT_TYPE_CD 400} ECT_COMMON ACCOUNT_SUMMARY. p_insiument type
EXPRESSION TO_NUMBER(D) ECT_COMUON ACCOUNT SUMMARY o un_shey
EXPRESSION TO_HUMBER(1) ECT_COMMON _ACCOUNT_SUMMARY n_amount_msnber_aiis.
EXPRESSION TO_NUMBER(TO_CHAR(ISSUE_DATE.,YYYYMIDO') ECT_COMMON ACCOUNT SUMMARY pissue date skey
TO_NUMBER(TO_CHAR
ol 7 ECT_COMMON ACCOUNT SUMMARY p_last payment date skey
BIPRESSION (LAST_PAYMENT DATE VMDY
TO_NUMBER(TO_CHAR A
i < ECT_COMIMON ACCOUNT SUMMARY p last reprcing date skey
EXPRESSION (LAST_REPRICE_DATE. YYYYMMDD))
EXPRESSION TO_NUMBER(TO_CHAR(MATURITY_DATE YYYVMMDD), ECICOMIJON ACCOUNT SUMMARY o matuity date skey
TO_NUMBER(TO_CHAR
EXPRESSION EXT BAVMEMT NATE Y¥¥VAANN ECT_COMIJON ACCOUNT SUMMARY p_nexi_gayment daie_shey >
IDone o Lot rart v Hiome .

5. In the Top Banner, select the Export button.

£ Matadata Browser - Windows Internet Explorer EBE
ORACLE Financial Services Analytical Applications Infrastructure User ficba
| EEET—~ =
Domain Trace Dedmuans
segment [rsgseq ~
e — Details of Definition ' T2T_FACT_ACCOUNT_SUMMARY_ANNUITY *
@ Metadata Browser Z ‘Source Table Source Calumn Destination Table Destination Column
& Souwrece Moan Dit_COMIMGN_COA n_common_coa_skay ECT COMMON ACCOUNT SUMMARY p_common coa skey
& & AssessmentFlan DIM_CURRENCY v_iso_currency_cd ECT COMMON ACCOUNT SUMMARY v 159 cumeacy od
& & Test DIM_GL_ACCOUNT n_gl_account_skay ECT_COMMON_ACCOUNT SUMMARY n_gl_account skay
& & UserDetalls DIM_ORG_UNIT n_org_unit_skey ECT_COMMON ACCOUNT SUMMARY pom unil skey
@ & appbug DIM_PRODUCT
= & appnew EXPRESSION
= I sourceproc
T2T_FACT_ACCOUN
TIT_FACT_ACCOUL EXPRESSION
TIT_FACT_ACCOUL
B TIT_FACT_ACCOUL
TIT_FACT_ACCOUL
B THT_FACT_ACCOUL
y 1D/ A AS_OF I
:g*"g*‘” gg”' FSI0_ANNUITY_CONTRAGTS, ORIGINATION DATE THEN 1
B TI_FACTACCOU eypression WHEH F51_D_ATNUITY_CONTRACTS ORIGHATION_DATE ECT COMMON_ACCOUNT SUMMARY n_acct new ind
TIT_FACT_ACCOUL IS NOT NULL AND
T_FACT_ACCOUL F5LD_ANNUITY_CONTRACTS AS_OF _DATE t=
FSI_D_ANNUITY_CONTRACTS ORIGINATION_DATE THEN 0
B LG
=17 FarT s EAPRESSION FSI_O_ANNUITY_CONTRACTS. ID_NUMBER ECT_COMMON_ACCOUNT SUMMARY p_accl _skey
L » EXPRESSION TO_NUMBER(TO_CHAR(AS OF DATE YYYYMMDD)) ECT_COMMON ACCOUNT SURMMARY 0 miz dale skey
(e
ECT COMMON ACCOUNT SUMMARY ninstrument fype.
=l (FSI_D_ANNUITY_CONTRACTS INSTRUMENT_FYPE_CD 400}
EXPRESSION TO_NUMBER{0) ECT_COMMON_ACCOUNT SUMMARY n_a_skey
EXPRESSION TO_HUMBER({1) ECT COMMON_ACCOUNT SUMMARY n_smouni member valus
EXPRESSION TO_NUMBER(TO_CHAR(ISSUE_DATE Y'Y YMMDD) ECT_COMMON_ACCOUNT SUMMARY nissus date skey
ExpRESSON i e ECT COMMON ACCOUNT SUMMARY o last payment e skay
(LAST_PAYMENT_DATE YYYYMMOD)
TO_NUMBER({TO_CHAR
EXPRESSION (LAST_REPRICE_DATE YYYVMIADD}) ECT COMMON ACCOUNT SUMMARY o lasl reeacing date skey
EXPRESSION TO_HUMBER(TO_CHAR(MATURITY DATE YYYYMMDD); ECT COMMON ACCOUNT SUMMARY o maturity date skey
TO_NUMBER({TO_CHAR
EXPRESSION MEYT DAVIAEMT NATE "IN ECT COMIMON ACCOUNT SUMMARY o naxt payment date skey v
jDone o Local intraont fav Rloew v

6. Export window will open as shown in the below screenshots.

Mapping Export in Metadata Browser 5-3

1.

" Metadata Browser - Windows Internet Explarer

= Export Metadata - Windows Internet Explorer
ACLE ' -
Information 6501 Commected To
Domain] Trace Carrases
Segmint fspseg (Eeseun 5
|ALL ., Selected Nodes 10150 2T_FACT_ACCOUNT_SUMMARY_ANNUITY "
@ Metacata Browser @ & Destination Table Destination Column
& Source Model @& Souce Mol ECT_COMMON_ACCOUNT SUMMARY n_common coa skey
& & Assessment? 3§ 28 Dsta ol g = ECT_COMMON_ACCOUNT SUMMARY y iso_cumency cd
&l et % Data Transformations - ECT COMHON ACCOUNT SUMMARY n_ol_sccount skey
& & UseiDetalls & Bowssee ECT_COMMON_ACCOUNT SUMMARY o o und_skey
@ 2 apptug & @ Woasures = ECT COMMON_ACCOUNT SUMMARY n_product skey
S 8 appnew (0 Hierarchiss ECT COMMON ACCOUNT_SUMMARY H_INSTRUMENT CATEGORY CD
L4 S & 2 Hisrarchy Atriutes faterm_bucksl_ne
i, [14T = -
_Fi 50 Dimensions e ECT_COMMON ACCOUNT SUMMARY p_remaining term bucke!_no
TITFAl B4 Business Protessors. o
TN @ I Rules o
ﬁ_jr: it {TION_DATE IS NOT
v @& Run TS AS_OF_DATE =
:;::A At] _DATE THEN 1
A I
DRIGHIATION DATE FCT_COMMON_ACCOUNT_SUMMARY n_acet_new_ind
a3]
9 TIT_FA DATE 1=
TIT_Fif | ssteutTizce | btle, \TION_DATE THEN 0
@ T27_FAl
= IBER ECT_COMIMON ACCOUNT SUMMARY n_acct skiy
1 — — —— TYYYYIMMDD)) ECT_COMMON ACCOUNT SUMMARY nmis date skey
(e
[XPREESION (FSI_D_ANNUITY_CONTRACTS INSTRUMENT_TYPE_c0a00) ECTCOMMOIL ACCOUNT SUMMARY pinstnument tuge
EXPRESSION TO_NUMBER{0) ECT_COMMON_ACCOUNT SUMMARY p_n_skey
EXPRESSION TO_HUMBER{1) ECT COMMON ACCOUNT SUMMARY n_amount membsr vahss
EXPRESSION TO_NUMBER{TO_CHAR{ISSUE_DATE. YYYYMMDD)} ECT COMMON ACCOUNT SUMMARY nissue data skey
TO_HUMBER(TO_CHAR
EXPRESSION (LAST_PAYMENT. DATE YYYYMUDDY) ECT COMMON ACCOUNT SUMMARY p_last payment date skey
TO_HUMBER(TO_CHAR)
r: T ECT COMMON ACCOUNT SUMMARY o last repdcing date skey
EXPRESSION (LAST_REPRICE DATE YYYYMMOD1)
EXPRESSION TO_NUMBER{TO_CHARIMATLURITY_DATE YYYYMMDD)] ECT COMMON ACCOUNT SUMMARY p_matuity date skey
TO_NUMBER{TO_CHAR
EXPRESSION MEAT BAVMENT NATE YW VILIN ECT_COMMON ACCOUNT SUMMARY p_pexi_payment dole skay >
o Local ntranet G Hiowe -

Again select the same Source Model and map to the Right Hand Side as shown

below for exporting.

_Metadata Browser - Windows Internet Explarer

| £ Export Metadata - Windows Internet Explorer
ORACLE
InomKCh (g opun Connactad To
‘Domain] Trace Defmnons
Seoment [rageeg Ll]|
AL ~ Salocted Nodos: 1150 PT_FACT_ACCOUNT_SUMMARY_ANNUITY
- Destination Table Destination Column
& Souwes Model @Bmonum:ual . © | Source Magel
& Assessment| & & Source Mode [} AppriEw ECT_COMMON ACCOUNT SUMMARY. n_common_coa_skey
. &t AssessmentPian = &1 soureprac ECT_COMMON ACCOUNT SUMMARY ¢ iso currency od
? : "!‘m = & Tast B TIT_FACT_ACCOU ECT_COMMON ACCOUNT SUMMARY n_ol account siay
? s e & & UserDstalls ECT COMMON ACCOUNT SUMMARY n_srg uni shay
e s & & sppbug = FCT_COMMON_ACCOUNT_SUMMARY n_proguct_skay
x & anpnew ECT_COMMON ACCOUNT SUMMARY HLNSTRUMENT CATEGORY_CD
e Loilold &IF sourcepsoc Pa_term_bucket_na
21 _Fd I;I
TIT_FAl - ECT_COMMON_ACCOUNT SUMIMARY. O_emaining_term_bucket_no
! B TIT_FACT_ACCOUN pte between
TN TIT_FACT_ACCOUN
g{: B TIT_FACT_ACCOUR s
= Tﬂ':FA L e A\TION_DATE IS NOT
TIT_FACT _ACCOUN S ITS AS OF DATE =
=TT FA & » gl > DATE THEN 1
B T2TFN PRIGHIATION_DATE ECT_GOMMON_ACCOUNT SUMIMARY n_scct naw_ind
B TIT_FAS Twpe: | CSv LI
TIT_FAS DATE 1=
T [otine] TION_DATE THEN 0
9 T2T_FAS
= 223 ECT_COMMON_ACCOUNT SUMIWARY n_acel_skey
Al = — —— YYYYMMOD)) ECT _COMMON_ACCOUNT SUMMARY n_mis_date skey
EXPRESSION i ECT_COMMON ACCOUNT SUMMARY o instument e
{FSI_D_ANNUITY_CONTRACTS INSTRUMENT_TYPE_CD 400
EXPRESSION TO_NUMBER{0) n_mn_skey
EXPRESSION TO_HUMBER1) ECT COMMON ACCOUNT SUMIMARY n_amount member \alue
EXPRESSION TO_HUMBER(TO_CHARISSUE_DATE YYYYMMOD') ECT_COMMON ACCOUNT SUMMARY n_issus date_skey
s o ECT_COMIOI ACCOUNT SUMMARY.
B (LAST_PAYMENT_DATE YYYYMMOD?) e et tasley
TO_NUMBER[TO_CHAR
EXPRESSION (UAST.REPRICE DATE roe) ECT_COMMON ACCOUNT SUMIAARY o last tspriing, date._sksy
EXPRESSION TO_HUMBER(TO_CHARMATURTTY_DATE YYYYMMDD)) ECT_COMMON ACCOUNT SUMIMARY n_maturty date._skey
TO_NUMBER{TO_CHAR
EXPRESSION NENT DAVMENT NATE VYVEAMANT ECT_COMMON ACCOUNT SUMMARY p_next caymen date skey v
S Local nisacat G5 - Rman <

8. Select the Export Type. Click Export.

5-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Metadata Browser - Windows Internet Explarer

Export Metadata - Windows Internet Explorer

Selected Nodes : 1150

0 fE

© & Source Model
& aponew
© I sourceproe
B TIT_FACT_ACCOU

T Cernters

PT_FACT_ACCOUNT_SUMMARY_ANNUITY "
Destination Table

Information 6501 Comected To
Domain © oo
I [steut v
AL -
bl |@ Export Metadata L]
M
? ; :i:e;:'mf & Sousce Model
& Tont & 88 AssessmentPlan
O e B Test
g 5 o & & Useretsils
e & appbg
X pid-ptset
&I sourcepro S sou
21_Fag T L)
ﬂj: I TIT_FACT_ACCOUN
mja B TIT_FACT_AGCOUN
kil | e TaT_FAcT_Accoun
= | e TaTrAcT_Accoun
| | ETIT_FACT_ACCOUNM
12T 8 -
& T2T_FA
= TIT_FA
9 TI7_FAl
TIT_FAl
@ T7_F A
7 Fal
P s, -
EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION

@M-’

-
& Cut
e

T format Painter

| Export Metadata
& Souce Moel
& & AssessmentFlan
& Test
@ B UserDetalls.
& 8 appbug
&8 appnew
&I sourceproc
| 121_FACT_ACCOUN
{9 T2T_FACT_ACCOUR
(B9 T2T_FACT_AGCOUN
{9 T2T_FACT_ACCOUR
{9 T2T_FACT_ACCOUN

| | @Tar paet_accouns
Lﬂ

Expoit Type

SIS - txport Metadata - Windows Internet Explorer

|_DATE THEN 1
FCT_COMMON_ACCOUNT SUMMSRY n_scct new_ind
DATE =
|_DATE THEN 0
BER n_pcct_skiy
- orrewremr—orr YYYYWUDD) ECT COMMON ACCOUNT SUMMARY o is date skey
NVL
o ANUTY_CONTRAGTS INSTRUMENT, TYPE. C0,400) ESI-COMHON ACCOUNT SUUMWARY p_instument tvpe
To_HUMBER(D) ECT_COMMON ACCOUNT SIMMRY o skey
TO_HUMBERY) ECT_COMMON_ACCOUNT_SUMMARY n_amount member sakse
TO_NUMBER{TO_CHARISSUE DATE YYYYMMDD)) EGT COMMON ACCOUNT SUMMARY o iawe dale skey
e U ECT COMMON ACCOUNT SUMMARY plast poyment dare_skey
(LAST_PAYMENT_DATE.YYYYMMOD)
TO_NUMBER[TO_CHAR)
(LAST_REPRICE_DATE YYYYMMDD'} ELDUMILALCINT B ARY o a el 2] €2 thes
TO_NOMBER[TO_ CHARMATURITY_DATE YYYYMIDD') ECTCOMMON ACCOUNT SUMMARY n_maluity date skey
TO_NUMBER({TO_CHAR
e P ECT_COMMOIN ACCOUNT SUMMARY o nest caymment date shay g
& Loealintrsnet v wuoew - |

Boaci..

© ¢ Source Model
& aonew
& I sourceproc
B TIT_FACT_ACCOU

B Exporting

Export is progressing message is displayed.

Mrina-

becoe AaBbCe AaBbce AADB aasbce aosvcco: aosbeen: aasboen: - £, Reptace

Heading | Heading 2 Title Subfitle Subtie Em.. Emphasis Intenie .. ri,"',.:,"

[1632] Bxporting. Please Wait

Cancel

i

i

(AR

Page: Sof § | Words:0 | % |

10. Successfully Exported message is displayed. Click Ok..

Mapping Export in Metadata Browser 5-5

£ Export Metadata - Windows

Connected To

FsoaU v

(AL

3]

@ Export Metadata
& & Sowes Mookl
& & AssessmentPian
& & Test
& & Useetalls
@ & appbug
& appnew
&I sourceproc

B TIT_FACT_ACCOUR,
T2T_FACT_ACCOUM
B TIT_FACT_ACCOUR,
D TIT_FACT_ACCOUN,

| @ TImFACT Accoun
] ,ﬂ.ﬁ
Expot Type: [C5v ‘

5 & Source Wodel
52 Appnd
& I sourcaproe
B TIT_FACT_ACCOU

osoft Word B

bceoe AaBbCe aaBbee AQDB aasbce. sosvcco aosbccor aambeenn
poci. Headingl Heading? Tie Subldtle Emphasis

Sublle Em..

Intense E..

Page:Sof S | Wordsd | F

5-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

	Oracle Financial Services Analytical Applications Data Model Utilities User Guide
	Preface
	Introduction
	List of Acronyms used in the document

	Object Management
	Adding Dimension Tables and Key Dimension (Leaf) Registration
	Adding Custom Instrument Tables
	Adding Custom Transaction Tables
	Adding Custom Lookup Tables
	Object Registration And Validation
	Defining Alternate Rate Output Columns
	User Defined Properties
	Modifying the precision of Balance Columns In Ledger_Stat

	Utilities
	Reverse Population
	Product Instrument Mapping
	Instrument Synchronization
	Ledger Load Undo

	Data Loaders
	Dimension Loaders
	Historical Rates Data Loader
	Forecast Rate Data Loader
	Prepayment Rate Data Loader
	Stage Instrument Table Loader
	Transaction Summary Table Loader
	Ledger Data Loader
	Pricing Management Transfer Rate Population Procedure
	ALMBI Transformation
	Hierarchy Transformation

	Mapping Export in Metadata Browser
	Procedure

