
[image: Oracle Corporation]

Oracle® Communications

Offline Mediation Controller

Record Enhancement Charging Cartridge User's Guide

Release 6.0

E64449-01

June 2015

Oracle Communications Offline Mediation Controller Record Enhancement Charging Cartridge User's Guide, Release 6.0

E64449-01

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Downloading Oracle Communications Documentation
	Related Documents
	Documentation Accessibility

1 Record Enhancement Charging Cartridge Overview

	About Record Enhancement Charging
	Workflow for CDRs

2 Creating and Configuring the Record Enhancement Charging Enhancement Processor Cartridge Node

	Configuring the Database Connection
	Encoding the Database Connection Password

	Creating a Record Enhancement Charging EP Node
	Configuring the NPL Rule File for the Record Enhancement Charging EP Node

3 Working with Record Enhancement Charging Java Hooks in NPL

	About Record Enhancement Charging Java Hooks
	Record Enhancement Charging Java Hook Method Details
	load
	exists
	get
	getLoadedInfo
	getMapField
	isEmpty
	TRUE
	FALSE
	VALUE
	search
	search
	search
	search
	getByNo

Preface

This document describes how to use the Oracle Communications Offline Mediation Controller record enhancement charging Enhancement Processor (EP) cartridge to enhance call detail records (CDRs) before sending the records to the next node in the node chain.

Audience

This document is intended for solution designers who configure Offline Mediation Controller cartridges.

Downloading Oracle Communications Documentation

Product documentation is located on Oracle Help Center:

http://docs.oracle.com

Additional Oracle Communications documentation is available from the Oracle software delivery Web site:

https://edelivery.oracle.com

Related Documents

For more information, see the following documents:

	
Offline Mediation Controller Cartridge Development Kit Developer's Guide: For information about how to develop a cartridge.

	
Offline Mediation Controller Cartridge Development Kit NPL Reference Guide: For information about how to use the Node Programming Language for developing or extending a cartridge.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1 Record Enhancement Charging Cartridge Overview

This chapter provides an overview of the Oracle Communications Offline Meditation Controller record enhancement charging Enhancement Processor (EP) cartridge to enhance call detail records (CDRs) before sending the records to the next node in the mediation node chain.

Before reading this chapter, you should be familiar with:

	
Offline Mediation Controller cartridge concepts. For more information, see Offline Mediation Controller Cartridge Development Kit Developer's Guide.

About Record Enhancement Charging

Offline Mediation Controller collects CDRs from different input sources and normalizes the CDRs by mapping the following external data to the internal data formats that are supported by Oracle Communication Billing and Revenue Management (BRM) before sending the enhanced records to the next node in the mediation node chain:

	
Social number

	
Prefix description

	
Service code

	
Usage class

	
Access point name (APN)

Workflow for CDRs

When a record enhancement charging EP node is configured in the mediation node chain, depending on the configuration in the NPL rule file, the records are processed as follows:

	
The collection cartridge (CC) node processes the CDR input file.

	
If the input file is successfully processed by the CC node, the record enhancement charging EP node normalizes the CDR data by mapping the data to the internal data formats supported by BRM.

	
The next node in the mediation node chain processes the returned CDR data, which is distributed to the target charging system.

2 Creating and Configuring the Record Enhancement Charging Enhancement Processor Cartridge Node

This chapter describes how to create and configure Oracle Communications Offline Mediation Controller record enhancement charging Enhancement Processor (EP) cartridge node for enhancing call detail records (CDRs).

Before reading this chapter, you should be familiar with:

	
Offline Mediation Controller cartridge concepts and Node Programming Language (NPL).

	
Setting up event data record (EDR) enrichment for rating and setting up pipeline price list data in the Oracle Communications Billing and Revenue Management (BRM) Pipeline Manager.

Configuring the Database Connection

Before you create the record enhancement charging EP node, configure the database connection information to Oracle Communication Billing and Revenue Management (BRM) database. The record enhancement charging EP cartridge node uses the database connection information to retrieve the mapping information while enhancing the CDR data.

To configure the database connection:

	
Open the OMC_Home/config/nodemgr/prc.properties file in a text editor, where OMC_Home is the directory in which Offline Mediation Controller is installed.

	
Add the following text:

driver=oracle.jdbc.driver.OracleDriver
url= jdbc:oracle:thin:@server_name:port_number:database_alias
username=login
password=password

where:

	
server_name is the system on which the BRM database is installed.

	
port_number is the port number of the system running the BRM database.

	
database_alias is the BRM database alias of the schema you are connecting.

	
login is the user name for the database schema you are connecting.

	
password is the encoded password for login.

For information about encoding the password, see "Encoding the Database Connection Password".

	
Save and close the file.

Encoding the Database Connection Password

To encode the database connection password:

	
Go to the OMC_Home/bin directory.

	
Run the following command:

./encode password

where password is the password for the user name for the database schema you are connecting.

The command window displays password in encoded form. For example:

72,-46,62,71,41,-115,14,-68,-34,-4,-105,-113,-125,1,-18,-70

Creating a Record Enhancement Charging EP Node

To create a record enhancement charging EP node:

	
Log on to Offline Mediation Controller Administration Client.

The Node Hosts & Nodes (logical view) screen appears.

	
In the Mediation Hosts table, select a host.

	
In the Nodes on Mediation Host section, click New.

The Create a Node dialog box appears.

	
Select Wireless and click Next.

	
Select Enhancement Processor (EP) and click Next.

	
Select Record Enhancement Charging EP cartridge and click Finish.

The New Node dialog box appears.

	
In the Name field, enter a name for the node.

	
From the Rule File list, use the default sample rule file.

To edit the rule file, see "Configuring the NPL Rule File for the Record Enhancement Charging EP Node".

	
Click the General tab and do the following:

	
From the Debug list, select one of the following:

To log short debug messages in the node log file, select OFF.

To log detailed debug messages in the node log file, select ON.

	
In the Max Log File Size field, enter the maximum size in bytes for the log file. When the log file reaches its limit, the node closes the file and opens a new file. The minimum value is 50000 and the maximum value is 2000000000.

	
Select the Enable Statistics check box, which enables node statistics.

	
Select the Enable bulk read/write check box, which enables the node to read or write files in bulk.

	
In the Read Timer field, enter the number of seconds Offline Mediation Controller waits before checking for incoming records. The minimum value is 1 and the maximum value is 3600.

	
In the NARs Per File field, enter the maximum number of NARs allowed in an output file. The minimum value is 1 and the maximum value is 10000.

	
In the Idle Write Time field, enter the number of seconds Offline Mediation Controller waits before transferring the NAR output file to the output directory of the processing node, whether or not it has reached its maximum size. The minimum value is 1 and the maximum value is 3600.

	
Select the Backup NAR Files check box, which enables the node to back up each processed NAR file.

	
In the NAR File Retention Period field, enter the number of days to retain the backup NAR files.

	
Select the Input Stream Monitoring check box, which enables the node to monitor the input stream of records and trigger an alarm when no records are received for the set interval.

	
In the Interval field, enter the duration of time that the node waits for the input stream of records before triggering an alarm when no records are received for the set interval. You also select the time unit: Day, Hour, or Minute.

	
(Optional) If you want to enable file-level transactions or multi-threading, click the Advanced tab and do the following:

	
Select the File Level Transaction check box, which enables file-level transactions.

	
Select the Multi Threaded check box, which enables multi-threading in the node to process multiple files in parallel.

When the Multi Threaded check box is selected, the Processing Threads field and the Enable Ordering check box are enabled.

	
In the Processing Threads field, enter the number of processing threads you require for your thread pool. The maximum value is 20.

	
If you require the order of the output data across all threads to be processed in the same order as the input data, select the Enable Ordering check box.

	
Click the Destination tab and do the following:

	
Select the Enable check box, which enables the connection between the EP node and any destination cartridge node.

	
From the Routing list, select one of the following:

If the Enable check box is not selected, Routing is set to None.

To enable multicast routing between the EP node and the destination cartridge node, select Multicast.

To enable round-robin routing between the EP node and the destination cartridge node, select Round Robin.

	
Click Save.

Configuring the NPL Rule File for the Record Enhancement Charging EP Node

To configure the NPL rule file for record enhancement charging EP node:

	
Log on to Offline Mediation Controller Administration Client.

The Node Hosts & Nodes (logical view) screen appears.

	
In the Mediation Hosts table, select the mediation host that contains the record enhancement charging EP node.

	
In the Nodes on Mediation Host section, select the record enhancement charging EP node that you want to configure, and click Edit.

The Node dialog box appears.

	
From the Rule File list, select the sample rule file.

	
Click Edit.

The NPL Editor dialog box appears.

	
(Optional) To normalize the social numbers, add the following Java hook and the corresponding output record configuration:

JavaHook sn=oracle.communications.brm.nm.prc.nplhook.SocialNumberMethodHandler;

For example:

JavaHook sn=oracle.communications.brm.nm.prc.nplhook.SocialNumberMethodHandler;
OutputRec {
 Map map;
 String sn;
 String name;
 String empty;
 String exist;
} snOut;
String str;
str="0014085555556";
snOut.exist=sn.VALUE(sn.exists(str));
snOut.map=sn.get(str);
snOut.sn=sn.getMapField(snOut.map, "socialnumber");
snOut.name=sn.getMapField(snOut.map, "name");
if (sn.isEmpty(snOut.map)==sn.TRUE()) {
snOut.empty="get "+str+" map is empty";
} else {
snOut.empty="get "+str+" map is NOT empty";
}
write(snOut);

	
(Optional) To normalize the call destination numbers or prefix descriptions, add the following Java hook and the corresponding output record configuration:

JavaHook pd=oracle.communications.brm.nm.prc.nplhook.PrefixDescriptionMethodHandler;

For example:

JavaHook pd=oracle.communications.brm.nm.prc.nplhook.PrefixDescriptionMethodHandler;
OutputRec {
 Map map;
 String areacode;
 String type;
 String name;
 String empty;
 String exist;
} pdOut;
String str;
str="00004570";
pdOut.exist=pd.VALUE(pd.exists(str));
pdOut.map=pd.search(str);
pdOut.areacode=pd.getMapField(pdOut.map, "areacode");
pdOut.type=pd.getMapField(pdOut.map, "type");
pdOut.name=pd.getMapField(pdOut.map, "name");
if (pd.isEmpty(pdOut.map)==pd.TRUE()) {
pdOut.empty="serach "+str+" map is empty";
} else {
pdOut.empty="search "+str+" map is NOT empty";
}
write(pdOut);

	
(Optional) To normalize the service code maps, add the following Java hook and the corresponding output record configuration:

JavaHook scm=oracle.communications.brm.nm.prc.nplhook.ServiceCodeMapMethodHandler;

For example:

JavaHook scm=oracle.communications.brm.nm.prc.nplhook.ServiceCodeMapMethodHandler;
OutputRec {
 Map map;
 String mapGroup;
 String rank;
 String extServicecode;
 String usageclass;
 String locarindVasevent;
 String qosRequested;
 String qosUsed;
 String recordtype;
 String intServicecode;
 String intServiceclass;
 String empty;
 String exist;
} scmOut;
String str;
String str2;
String str3;
str="ALL_RATE";
str2="TELEPHONY";
str3="MBI";
scmOut.exist=scm.VALUE(scm.exists(str));
scmOut.map=scm.search(str, str2, str3, "", "", "", "");
scmOut.mapGroup=scm.getMapField(scmOut.map, "MAP_GROUP");
scmOut.rank=scm.getMapField(scmOut.map, "RANK");
scmOut.extServicecode=scm.getMapField(scmOut.map, "EXT_SERVICECODE");
scmOut.usageclass=scm.getMapField(scmOut.map, "USAGECLASS");
scmOut.locarindVasevent=scm.getMapField(scmOut.map, "LOCARIND_VASEVENT");
scmOut.qosRequested=scm.getMapField(scmOut.map, "QOS_REQUESTED");
scmOut.qosUsed=scm.getMapField(scmOut.map, "QOS_USED");
scmOut.recordtype=scm.getMapField(scmOut.map, "RECORDTYPE");
scmOut.intServicecode=scm.getMapField(scmOut.map, "INT_SERVICECODE");
scmOut.intServiceclass=scm.getMapField(scmOut.map, "INT_SERVICECLASS");
if (scm.isEmpty(scmOut.map)==scm.TRUE()) {
scmOut.empty="search "+str+","+str2+","+str3+" map is empty";
} else {
scmOut.empty="search "+str+","+str2+","+str3+" map is NOT empty";
}
write(scmOut);

	
(Optional) To normalize the usage class maps, add the following Java hook and the corresponding output record configuration:

JavaHook ucm=oracle.communications.brm.nm.prc.nplhook.UsageClassMapMethodHandler;

For example:

JavaHook ucm=oracle.communications.brm.nm.prc.nplhook.UsageClassMapMethodHandler;
OutputRec {
 Map map;
 String mapGroup;
 String rank;
 String extUsageclass;
 String usagetype;
 String zoneWs;
 String tariffclass;
 String tariffsubclass;
 String recordtype;
 String connecttype;
 String connectsubtype;
 String apnAddress;
 String ssPacket;
 String transitAreacode;
 String name;
 String intUsageclass;
 String empty;
 String exist;
} ucmOut;
String str;
String str2;
str="ALL_RATE";
str2="mBI";
ucmOut.exist=ucm.VALUE(ucm.exists(str));
ucmOut.map=ucm.search(str, str2, "", "", "", "", "", "", "", "", "");
ucmOut.mapGroup=ucm.getMapField(ucmOut.map, "MAP_GROUP");
ucmOut.rank=ucm.getMapField(ucmOut.map, "RANK");
ucmOut.extUsageclass=ucm.getMapField(ucmOut.map, "EXT_USAGECLASS");
ucmOut.usagetype=ucm.getMapField(ucmOut.map, "USAGETYPE");
ucmOut.zoneWs=ucm.getMapField(ucmOut.map, "ZONE_WS");
ucmOut.tariffclass=ucm.getMapField(ucmOut.map, "TARIFFCLASS");
ucmOut.tariffsubclass=ucm.getMapField(ucmOut.map, "TARIFFSUBCLASS");
ucmOut.recordtype=ucm.getMapField(ucmOut.map, "RECORDTYPE");
ucmOut.connecttype=ucm.getMapField(ucmOut.map, "CONNECTTYPE");
ucmOut.connectsubtype=ucm.getMapField(ucmOut.map, "CONNECTSUBTYPE");
ucmOut.apnAddress=ucm.getMapField(ucmOut.map, "APN_ADDRESS");
ucmOut.ssPacket=ucm.getMapField(ucmOut.map, "SS_PACKET");
ucmOut.transitAreacode=ucm.getMapField(ucmOut.map, "TRANSIT_AREACODE");
ucmOut.name=ucm.getMapField(ucmOut.map, "NAME");
ucmOut.intUsageclass=ucm.getMapField(ucmOut.map, "INT_USAGECLASS");
if (ucm.isEmpty(ucmOut.map)==ucm.TRUE()) {
ucmOut.empty="search "+str+","+str2+" map is empty";
} else {
ucmOut.empty="search "+str+","+str2+" map is NOT empty";
}
write(ucmOut);

	
(Optional) To normalize the access point name (APN) maps, add the following Java hook and the corresponding output record configuration:

JavaHook apnm=oracle.communications.brm.nm.prc.nplhook.AccessPointNameMapMethodHandler;

For example:

JavaHook apnm=oracle.communications.brm.nm.prc.nplhook.AccessPointNameMapMethodHandler;
OutputRec {
 Map map;
 String apnGroup;
 String rank;
 String servicecode;
 String accesspointname;
 String pdpAddress;
 String empty;
 String exist;
} apnmOut;
str="MY_TEST";
str2="GPR";
str3="oracle.de";
apnmOut.exist=apnm.VALUE(apnm.exists(str));
apnmOut.map=apnm.search(str, str2, str3);
apnmOut.apnGroup=apnm.getMapField(apnmOut.map, "APN_GROUP");
apnmOut.rank=apnm.getMapField(apnmOut.map, "RANK");
apnmOut.servicecode=apnm.getMapField(apnmOut.map, "SERVICECODE");
apnmOut.accesspointname=apnm.getMapField(apnmOut.map, "ACCESSPOINTNAME");
apnmOut.pdpAddress=apnm.getMapField(apnmOut.map, "PDP_ADDRESS");
if (apnm.isEmpty(apnmOut.map)==apnm.TRUE()) {
apnmOut.empty="search "+str+","+str2+","+str3+" map is empty";
} else {
apnmOut.empty="search "+str+","+str2+","+str3+" map is NOT empty";
}
write(apnmOut);

	
Compile and save the file.

	
Close the NPL Editor dialog box.

	
Click Save.

The configuration is saved.

3 Working with Record Enhancement Charging Java Hooks in NPL

This chapter lists and describes the Java hooks available for the Oracle Communications Offline Mediation Controller record enhancement charging Enhancement Processor (EP) cartridge.

About Record Enhancement Charging Java Hooks

Java hooks are an advanced feature of NPL (Node Programming Language) that enable Offline Mediation Controller to call a Java method from an NPL program. For more information on using Java hooks with NPL, see the discussion on Java hooks in Offline Mediation Controller Cartridge Development Kit NPL Reference Guide.

Table 3-1 lists the record enhancement charging Java hooks methods.

Table 3-1 Record Enhancement Charging Java Hooks Method Summary

	Modifier and Type	Method and Description
	
void

	
load() throws NodeProcessingException

Loads data from the database into memory.

	
IntField

	
exists(StringField key) throws NodeProcessingException

Searches for a key in the data collection for the configuration service.

	
MapField

	
get(StringField key) throws NodeProcessingException

Searches for the field that contains the record that matches key.

	
StringField

	
getLoadedInfo() throws NodeProcessingException

Searches for the string that represents the cached data and time it was cached.

	
StringField

	
getMapField(MapField map, StringField fieldName) throws NodeProcessingException

Searches for the value of fieldName in map.

	
IntField

	
isEmpty(DCField field) throws NodeProcessingException

Verifies if field contains any values.

	
IntField

	
TRUE() throws NodeProcessingException

Use this method instead of checking if the return value is 1 (true).

	
IntField

	
FALSE() throws NodeProcessingException

Use this method instead of checking if the return value is 0 (false).

	
StringField

	
VALUE(IntField val) throws NodeProcessingException

Use this method to return the string representation of val.

	
MapField

	
search(StringField areacode) throws NodeProcessingException

Searches for the longest best match in the cached data for areacode.

	
MapField

	
search(StringField mapGroup, StringField extServicecode, StringField usageclass, StringField locarindVasevent, StringField qosRequested, StringField qosUsed, StringField recordtype) throws NodeProcessingException

Searches for the first ranked record matching the search criteria.

	
MapField

	
search(StringField mapGroup, StringField extUsageclass, StringField usagetype, StringField zoneWs, StringField tariffclass, StringField tariffsubclass, StringField recordtype, StringField connecttype, StringField connectsubtype, StringField transitAreacode, StringField apnAddress, StringField ssPacket) throws NodeProcessingException

Searches for the first ranked record matching the search criteria.

	
MapField

	
search(StringField apnGroup, StringField servicecode, StringField accesspointname) throws NodeProcessingException

Searches for the first ranked record matching the search criteria for the access point name (APN) group.

	
MapField

	
getByNo(IntField no) throws NodeProcessingException

Searches for the network operator record having the internal ID no.

Record Enhancement Charging Java Hook Method Details

The section describes the record enhancement charging Java hook methods.

load

void load() throws NodeProcessingException

Usage

This function loads data from the database into memory.

Parameters

This method has no parameters.

Returns

This function returns nothing.

exists

IntField exists(StringField key) throws NodeProcessingException

Usage

This function searches for a key in the data collection for the configuration service.

Parameters

key is the key field in the record to search for.

Returns

1 (true) if the key is found in the record.

0 (false) if the key is not found in the record.

get

MapField get(StringField key) throws NodeProcessingException)

Usage

This function searches for the record that matches key. The database column name (case insensitive) is used as the field name in the MapField. For Service Code Map and Usage Class Map, which are keyed by the map_group, the first ranked record is returned if found.

Parameters

key is the key field in the record.

Returns

The record that matches the key.

getLoadedInfo

StringField getLoadedInfo() throws NodeProcessingException)

Usage

This function searches for the string that represents the cached data and time it was cached.

Parameters

This method has no parameters.

Returns

The string that represents the cached data and the time the data was cached.

getMapField

StringField getMapField(MapField map, StringField fieldName) throws NodeProcessingException)

Usage

This function searches for the value of fieldName in map.

Parameters

map is the MapField in which the value for fieldName is to be found.

fieldName is the field name for which the value is to be returned.

Returns

The string associated with fieldName.

An empty string ("") is returned if the field is not found.

isEmpty

IntField isEmpty(DCField field) throws NodeProcessingException)

Usage

This function verifies if field contains any values.

Parameters

field is the DCField that contains the field type and field value.

Returns

1 (true) if the field is empty.

0 (false) if the field is not empty.

TRUE

IntField TRUE() throws NodeProcessingException)

Usage

This function can be used to verify that the return value is 1 (true).

Parameters

This method has no parameters.

Returns

1 (true) if the return value is true.

FALSE

IntField FALSE() throws NodeProcessingException)

Usage

This function can be used to verify that the return value is 0 (false).

Parameters

This method has no parameters.

Returns

0 (false) if the return value is false.

VALUE

StringField VALUE(IntField val) throws NodeProcessingException)

Usage

This function returns the string representation of val.

Parameters

val is the IntField to be converted from an integer to a string.

Returns

The string representation of val.

search

MapField search(StringField areacode) throws NodeProcessingException)

Usage

This function searches for the longest best match in the cached data for areacode.

Parameters

areacode is the area code to search.

Returns

Returns the longest best match for areacode.

search

MapField search(StringField mapGroup, StringField extServicecode, StringField usageclass, StringField locarindVasevent, StringField qosRequested, StringField qosUsed, StringField recordtype) throws NodeProcessingException

Usage

This function searches for the first ranked record matching the search criteria.

Parameters

mapGroup is the map group.

extServicecode is the name of the external service code map.

usageclass is the name of the usage class map.

locarindVasevent is the MSC responsible for handling the call and the location of the equipment making or receiving the call.

qosRequested is the type of QoS requested.

qosUsed the type of QoS negotiated by the network.

recordtype is the record type.

Returns

The first ranked record matching the search criteria.

search

MapField search(StringField mapGroup, StringField extUsageclass, StringField usagetype, StringField zoneWs, StringField tariffclass, StringField tariffsubclass, StringField recordtype, StringField connecttype, StringField connectsubtype, StringField transitAreacode, StringField apnAddress, StringField ssPacket) throws NodeProcessingException

Usage

This function searches for the first ranked record matching the search criteria.

Parameters

mapGroup is the map group.

extUsageclass is the external usage class.

usagetype is the customer-related usage scenario.

zoneWs is the impact category for wholesale zone.

tariffclass is the tariff class that contains the tariff information.

tariffsubclass is the detailed tariff information.

recordtype is the record type.

connecttype is the type of connection.

connectsubtype is the detailed description of the connection or call type.

transitAreacode is the area code.

apnAddress is the logical name of the connected access point to the external packet data network.

ssPacket is the number of supplementary service records.

Returns

The first record matching the search criteria.

search

MapField search(StringField apnGroup, StringField servicecode, StringField accesspointname) throws NodeProcessingException

Usage

This function searches for the first ranked record matching the search criteria for the access point name (APN) group.

Parameters

apnGroup is the APN group.

servicecode is the service code.

accesspointname is the APN name.

Returns

The first record matching the search criteria for the APN.

getByNo

MapField getByNo(IntField no) throws NodeProcessingException

Usage

This function searches for the network operator record having the internal ID no.

Parameters

no is the internal ID for the network operator.

Returns

The network operator record having the internal ID no.

Oracle Legal Notices
Copyright Notice
Copyright © 1994-2016, Oracle and/or its affiliates. All rights reserved.
License Restrictions Warranty/Consequential Damages Disclaimer
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
Warranty Disclaimer
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
Restricted Rights Notice
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
Hazardous Applications Notice
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Trademark Notice
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.
Alpha and Beta Draft Documentation Notice
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.
Private Alpha and Beta Draft Documentation Notice
If this document is in private preproduction status:
The information contained in this document is for
informational sharing purposes only and should be considered in your
capacity as a customer advisory board member or pursuant to your beta
trial agreement only. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making
purchasing decisions. The development, release, and timing of any
features or functionality described in this document remains at the
sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property
of Oracle. Your access to and use of this confidential material is
subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to
comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle
without prior written consent of Oracle. This document is not part of
your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.
Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
[image: Oracle Logo]
OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications Offline Mediation
Controller Record Enhancement
Charging Cartridge User's Guide,
Release 6.0

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Communications Offline Mediation
Controller Record Enhancement
Charging Cartridge User's Guide,
Release 6.0

OEBPS/dcommon/oracle.gif

