Pre-Built Integrations 11.1: Utilities Guide
Release 11.1
E24458-03
May 2012
Documentation for administrators that describes how to setup Session Pool Manager (SPM) and AIA CompositeScheduler. This guide provides configuration and deployment steps, property configurations and how to develop integrations to use SPM.
Oracle Application Integration Architecture Pre-Built Integrations 11.1: Utilities Guide, Release 11.1
E24458-03
Copyright © 2001, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Oracle Corporation
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Oracle Application Integration Architecture Pre-Built Integrations 11.1: Utilities Guide.
Part I - Design: This part provides functional overviews, activity diagrams, assumptions and constraints, and technical sequence diagrams and steps.
Part II - Set up: This part provides prerequisites, data requirements, and configuration steps.
Oracle Application Integration Architecture Pre-Built Integrations 11.1 includes the following guides shared by all products delivered with this release:
This guide provides an overview of the installation process, including how to install, configure, and deploy your pre-built integrations. The steps required to upgrade your pre-built integrations to the latest release are also provided.
This guide describes:
The Product-to-Guide index lists the guides that provide information for each product delivered in this release.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
The following resources are also available:
Oracle AIA Pre-Built integrations require Foundation Pack 11.1.1.5.0 to be installed. Refer to the Foundation Pack documentation library on OTN to download the Foundation Pack guides at http://download.oracle.com/docs/cd/E21764_01/aia.htm
.
Oracle Technology Network: http://www.oracle.com/technetwork/index.html
My Oracle Support: https://support.oracle.com/
Oracle Technology Network: http://www.oracle.com/technetwork/index.html
Oracle Technology Network: http://www.oracle.com/technetwork/index.html
This chapter introduces Session Pool Manager (SPM) and includes the following sections:
SPM is a service in the Oracle SOA Suite web server whose primary function is to manage a pool of web server session tokens that can be reused by BPEL flows.
Reusing session tokens significantly enhances the overall performance of BPEL flows that call web services. This is because the session token creation process is a time-consuming operation in the application web server.
Some features of SPM include:
Understanding the functionality covered in this section helps you configure and tune SPM.
This section includes the following topics:
SPM is configured using the AIAConfigurationProperties.xml file located in <aia.home>/config/. Its properties are located under Module Configuration: SessionPoolManager.
For more information about SPM configurations, see Section 1.3, "Setting SPM Configuration Properties".
The initialization process is a time-consuming operation because the SPM must perform the following tasks:
The number of session tokens that are initially loaded is determined by the PoolInitialLoad property. You can configure the wait interval between session token requests to the application web server by setting the ServerSessionRequestRate property. These properties are set in the SessionPoolManager module configuration in the AIAConfigurationProperties.xml file located in <AIA_HOME>/aia_instances/<aia_instance_name>/AIAMetadata/config/.
Note: If the initialization process fails, SPM is set to a STOPPED state. Any concurrent and subsequent attempts to initialize SPM using the Get() operation fails. This prevents infinite loops or queuing up BPEL processes requesting a session token that fails. To reset this state, the administrator should call the Terminate() or Start() operation after fixing the problem. |
SPM may follow multiple paths when you invoke the Get() operation. The paths taken depend on the pool state and the session token state.
If SPM has not been initialized, then the initialization process is invoked.
When SPM is initialized, it proceeds to get a session token from the pool table by way of the following paths.
This is the first path taken. SPM's ability to take this path is possible when a session token is available in the pool table and SPM predicts that it is not expired. The printout enables SPM to immediately assign and pass the session token to the caller.
For more information about SPM's ability to predict the expiration status of a token, see Section 1.2.3.3, "Predicting an Expired Session Token".
If no session token is available in the pool table, SPM proceeds with the Getting a Session Token When One is Not Available in the Pool Table path.
When no session token available in the pool table, SPM waits some milliseconds, determined by the GetFromPoolTable_WaitInterval property, in anticipation that a session token becomes available. SPM then checks the pool table again. SPM continues to check and wait until the maximum number of attempts is reached. The maximum number of attempts is defined by the GetFromPoolTable_MaxAttempts property. These properties are set in the SessionPoolManager module configuration in the AIAConfigurationProperties.xml file located at <AIA_HOME>/aia_instances/<aia_instance_name>/AIAMetadata/config/.
If SPM successfully gets a session token from the pool table, the session token is checked for expiration, and if it is not expired, it is assigned and passed to the caller.
For more information about SPM's ability to predict the expiration status of a token, see Section 1.2.3.3, "Predicting an Expired Session Token".
When SPM is not able to get a session token from the pool table, then it proceeds to create a session token, if the number of existing session tokens in the pool does not match the maximum pool size. The maximum pool size is defined by the PoolSize_Max property.
If the number of existing session tokens in the pool matches the maximum pool size, the creation of a session token is denied, and the Get() operation throws a fault to the caller.
Session tokens can be expired due to their idle time or age on the application web server. To avoid providing an expired session token to a caller, SPM contains logic that tries to predict whether the session token has expired. The properties that provide the values used to predict session token expiration are PredictExpiration_Idle and PredictExpiration_Age
If SPM predicts that the session token has not expired, then it uses it.
If SPM predicts that the session token has expired, it renews it according to the following logic:
For more information about how SPM creates a session token, see Section 1.2.3.4, "Creating a Session Token".
This is a slow service.
SPM calls the application web server to get a session token. If the call is not successful, SPM waits some milliseconds, determined by the ConnectServer_WaitInterval property, and tries again. SPM repeats this wait-and-try logic until it obtains a session token, or the maximum number of attempts is reached. The maximum number of attempts is defined by the ConnectServer_MaxAttempts property.
Between attempts, SPM checks the pool table for an available session token. If one becomes available, it stops calling the application web server, assigns the available session token, and passes it to caller.
You can optionally configure the initialization process to activate a process that prevents session tokens from expiring, while also keeping a minimum number of sessions in the pool table. This process is called the Sentinel.
Sentinel guards session tokens in the pool table and keeps them from expiring due to idle time or age. It uses the logic behind predicting session expiration to detect the tokens that must be renewed. Sentinel runs in its own low-priority thread, sleeping most of the time. It awakes every x milliseconds, determined by the PredictExpiration_Idle property, to check the session tokens in the pool table.
The Sentinel resets the idle time of session tokens that it has predicted are expired. To reset the idle time, it calls the application web server that is passing the session token.
For those session tokens that it has predicted are expired due to age, the Sentinel terminates the session token, by calling the logoff operation of the application web server, and creates one for replacement by calling the application web server again.
The Sentinel terminates (removes) session tokens that have not been reused for some time. The Sentinel_Renew_Max configuration property controls this function.
SPM keeps a tally on the number of consecutive times the Sentinel renews a session token that has not been used between renewals. When the value of the Sentinel_Renew_Max property is reached for a session token, it is terminated (removed) from the pool table.
The activation of the Sentinel is also controlled by the Sentinel_Renew_Max configuration property.
For more information about the Sentinel_Renew_Max configuration property and activating the Sentinel, see Section 1.3.9, "Sentinel_Renew_Max".
Each time the Sentinel awakes and finishes renewing expired session tokens, it checks the size of the pool table. If it is smaller than the value set in the Sentinel_PoolSize_Min property, the Sentinel replenishes the pool table with new session tokens up to this minimum value.
Before and during session token creation, the Sentinel checks if any Get() operations are trying to create session tokens. If yes, then the Sentinel stops replenishing session tokens in the pool table. The next time the Sentinel awakes, it tries to replenish the remaining session tokens again, up to the Sentinel_PoolSize_Min property value. This logic should prevent the Sentinel from competing against business flows for application web server time.
The Sentinel creates session tokens sequentially, not concurrently, checking for active Get() operations between creating session tokens.
SPM keeps cumulative tallies of the operations it has implemented and the actions it has taken. These statistics can help administrators optimize their SPM configurations. These statistics are available in the Pool Status report. You generate the report using the Status operation of AIASessionPoolManager.
For more information about generating the Pool Status report, see Section 1.4, "Administering the AIASessionPoolManager Service on the SOA Server".
SPM starts tallying statistics when an administrator calls the ActivateStatistics() operation and stops when the DeactivateStatistics() operation is called. By default, this feature is deactivated.
The tallies are not reset between activation and deactivation. They are reset when the ResetStatistics() operation is called or SPM is terminated.
Note: These tallies cannot provide exact counts because this functionality is not multi thread-safe. These statistics are solely meant to provide bulk data to help you tune SPM. |
Table 1-1 shows SPM tallies statistics for the following operations:
Table 1-1 Operations Statistics
Operation	Statistic
getSession | Count of get() session token operation invocations, regardless of the outcome. |
getSession_Successful | Count of successful get() session token operations. |
getSession_Failed | Count of failed get() session token operations. The primary causes for these failures include SPM not being able to get a session token from the application web server or no session tokens were available in the pool table and the pool size had reached the maximum pool size. Severe errors are printed in the logs with causes indicated. SPM uses the AIALogger APIs to write to the Oracle Application Integration Architecture trace log. The trace log can be viewed in Oracle Enterprise Manager. Tuning tip: If the cause of the failure is that the maximum pool size was reached, increase the pool size in the SPM configuration to match or exceed the number of maximum threads in the BPEL server. |
getSession_ReleaseAhead | Count of get() session token operations that were preceded by the invocation of the release operation. Two primary causes for this scenario include: The application web server was slow. Some SOA server threads used too much bandwidth, causing other threads "starve" and timeout. In either case, the BPEL server sent a timeout to the client. The client knows that a session token is eventually assigned by SPM, so the client calls the release operation to prevent SPM from assigning a session token. Tuning tip: Balance the number of active tasks in application web server with the number of active threads in the BPEL server, with the application web server number being greater than or equal to the BPEL server number. Then set the SPM maximum pool size property value to be at least the same as the number of threads in the BPEL server. |
releaseSession | Count of invokes to the release() operation regardless of the outcome. |
releaseSession_Successful | Count of successful release session token operations with the updated session token passed by the caller. |
releaseSession_NoUpdST_Successful | Count of successful release session token operations without the updated session token passed by the caller. This does not indicate that a problem exists. |
releaseSession_Failed | Count of failed release session token operations. This is rare. SPM may be terminated or terminating while a client tried to release a session token. Check BPEL server logs for clues. |
releaseSession_NoUpdST_Failed | Count of failed release session token operations without an updated session token passed by the caller. Similar to releaseSession_Failed. Check BPEL server logs for clues. |
releaseSession_Successful_OfaFailedGet | Count of release session token operations for which corresponding get session token operations failed. This is expected to be the same or less than the getSession_Failed value. |
releaseSession_AheadOfGet | Count of release session token operations for which corresponding Get session token operations have not been completed or implemented. This scenario occurs when SPM takes too long to respond to the Get operation. Therefore, the BPEL server sends a timeout to the client. The client knows a session token is eventually assigned by SPM, so the client calls a Release operation to let SPM know that it should not assign a session token when the Get operation becomes active. Tuning tip: See getSession_ReleaseAhead. |
Sessions_Validated | Count of session tokens that were predicted to be expired, thus confirming that the session validation occurred. The validation outcome is unknown. Tuning tip: Reducing the number of validations can help free up the application web server and prevents BPEL from sending timeouts to clients. Increase the Max Idle Session Token value in the application web server and set the PredictExpiration_Idle value in SPM to a longer idle time. |
Sessions_Created | Count of session tokens that were created. Renewed session tokens are not included. |
Sessions_Discarded | Count of session tokens that were discarded, primarily because they could not be validated. This may be an indication that the application web server may be overloaded. Check BPEL logs for clues. Tuning tip: Reduce the number of threads in the BPEL server and SPM maximum pool size accordingly. |
Sentinel_SessionIdleTime_Refreshed | Count of session tokens for which idle times were refreshed by the Sentinel. Tuning tip: See Sessions_Validated. |
Sentinel_SessionAge_Renewed | Count of session tokens that the Sentinel renewed because it predicted that the session was expired. The over-aged session is terminated on the application web server and a new one is created. |
Sentinel_SessionDiscarded_NotReused | Count of session tokens that were discarded by the Sentinel because they reached the maximum number of consecutive renewals. |
Sentinel_SessionDiscarded_Error | Count of session tokens that the Sentinel discarded because their idle time could not be reset or because a new session token could not be obtained from the application web server. Tuning tip: See Sessions_Discarded. |
SPM logs the operations being implemented in the session pool in comma-separated values (CSV) files. You can use the data in these CSV files as a troubleshooting tool.
To enable trace logging in CSV files, set the TraceToAIA-SPM-CSVFile_Enabled property to TRUE.
For more information about the TraceToAIA-SPM-CSVFile_Enabled property, see Section 1.3.17, "TraceToAIA-SPM-CSVFile_Enabled".
The trace log CSV files are located in the <home>Middleware/user_projects/domains/soa_domain/servers/soa_server1/logs directory. The CSV file naming convention is aia-spm-<HostId-Time>.csv, where HostId is the value of the host ID and Time is the date and time at which the CSV file was created. For example, the directory may contain the following files:
A new CSV file is created after every 10,000 records logged. Terminating the SPM causes the closure of the current CSV file.
Table 1-2 shows data captured by the trace log CSV file.
Table 1-2 Data Description of CSV File
Column | Description |
---|---|
Date-Time | Date and time when the operation was implemented. |
Client Instance Id | Instance ID passed in Get or Release operations. A value of Sentinel indicates that the operation was implemented by Sentinel functionality. |
Operation | Operation implemented. |
Record ID | ID of the session token used for the operation. |
Session Token | Session token value. |
Created Date | Date and time when the session token was created. A value of N/A stands for Not Available. |
Age (milliseconds) | Age of the session token in milliseconds. |
Assigned Since | Date and time when the session token was assigned to the client. A value of N/A stands for Not Available, meaning the session token is not assigned. |
Idle Since | Date and time when the session token moved into an idle state. A value of N/A stands for Not Available, meaning the session token is not in an idle state. |
Renewed by Sentinel | Number of times the Sentinel has renewed the session token. |
Table 1-3 shows the operations SPM logs in the trace log CSV file.
Table 1-3 Operations in Trace Log CSV File
Opertaion | Description |
---|---|
getSession() | Session token assigned to requester. |
releaseSession() | Session token returned to the pool for reuse. |
releaseInvalidSessionToken() | Session token discarded from the session pool table because the client reported an Invalid Session error code. |
sessionTerminated() | Session token terminated and removed from the session pool table because the SPM is being terminated. |
sessionCreated() | Session token added to the pool by the SPM Start operation. |
SessionIdleTime_Refreshed() | The Sentinel validated the session token against the application server. The outcome of the validation can be that the idle time was reset, or a new session token was created because the previous one had expired. |
SessionDiscarded_Error() | An unexpected error occurred while the Sentinel was validating the session token against the application server. The primary reason for this error is that the SPM was not able to connect with the application server, so the Sentinel removed the session token from the SPM pool table. |
SessionDiscarded_NotReused() | Session token reached the renewal limit allowed by the Sentinel so the Sentinel terminated the session token and removed it from the SPM pool table. |
AgedSession_Terminated() | Session token reached its maximum age so the Sentinel terminated the session in the application server and removed the session token from the SPM pool table. |
SessionAge_Replaced() | The Sentinel created this new session token to replace a session token terminated due the age. |
SessionAdded() | The Sentinel added this session to replenish the minimum number of session tokens in the pool threshold. |
SPM is automatically configured when a integration utilizing SPM is installed. SPM is installed with a default configuration. When implementing or administering the integration, these configurations can be changed to tune the configurations to better suit your integration environment and the needs of the implemented integration.
SPM configuration properties are set in the AIAConfigurationProperties.xml file as a Module Configuration. The module name is SessionPoolManager.
SPM has the following configurable properties:
Defaults can be defined for all application web servers by using the all_hosts prefix value.
For example, the following line defines 40 as the default maximum pool size:
<Property name="all_hosts.PoolSize_Max">40</Property
>
Specific values can be defined for individual application web servers by using the HostId prefix.
For example, the following line defines 50 as the maximum pool size value for the CRM On Demand application web server, where the HostId for CRM On Demand is CRMOD_01:
<Property name="CRMOD_01.PoolSize_Max">50</Property>
All properties must be defined by application web server or default. If a property is not defined for a specific application web server, then the default property (all_hosts) is used. If no all_hosts default property is defined, the caller receives a fault indicating the missing property.
SPM can work with multiple hosts (application web servers). Therefore, each property can be set as a default for all hosts, and overridden for a specific host. The only exception is the TRACE.LOG.ENABLED property, which cannot be set to be server-specific.
Each property has a prefix that indicates the application web server. For example:
<Property name="all_hosts.PoolSize_Max">40</Property>
<Property name="SBL_03.PoolSize_Max">20</Property>
The first line defines 40 as the default maximum pool size for all hosts.
The second line overrides the default pool size to 20 for the application web server SBL_03.
The concept of system ID and HostId are synonymous.
For example, a customer installing an integration for Siebel may use SEBL_01 as the system ID for the Siebel application web server. They see SEBL_01 in the AIAConfigurationProperties.xml file as the Default.SystemID property for the services connecting to the Siebel application web server. This SEBL_01 value should also be used as the HostId value in SPM to refer to the Siebel application web server.
Another customer installing a integration for CRM On Demand may use CRMOD_01 as the system ID for the CRM On Demand application web server. Likewise, they should use CRMOD_01 as the HostId value in SPM to refer to the CRM On Demand application web server.
Example 1-1 is an example of an SPM module configuration:
Example 1-1 SPM Module Configuration
Whenever the AIAConfigurationProperties.XML file is updated, the file must be reloaded to SOA-MDS for updates to be reflected in the applications or services that use the updated properties.
For more information about how to update the AIAConfigurationProperties.xml file, see Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack, "Building AIA Integration Flows" and "How to Set Up AIA Workstation".
SPM can work with multiple application web server instances.
In this property, list the hosts for which SPM can create a session token pool. Separate the host names by spaces. Each host has its own pool.
This property is not prefixed with a HostId value.
It limits the number of session tokens that the pool can have.
When the Get() operation is invoked, the SPM creates a session token if none is available and adds it to the pool. If the number of session tokens in the pool has reached this property value, the Get() operation returns a fault error indicating that no session tokens are available and that it cannot create a new one because the pool size has reached its maximum value.
We recommend that you set this value to match the Dispatcher Invoke Threads value set for the BPEL server.
In addition, setting the BPEL server Dispatcher Invoke Threads value to be the same or lower than the maximum number of tasks that the application web server allows is recommended. For example, for Siebel, this is the value of the App Max Tasks parameter.
It indicates the number of session tokens to be initially loaded into the pool and made available when the pool is initialized for the first time.
Subsequently, if additional session tokens are needed, they are added one per Get() operation.
When creating session tokens, SPM has the logic to retry connecting to the application web server when the first attempt fails. These two properties determine the maximum number of attempts SPM makes to connect and the wait time between the failed attempt and its next attempt.
Determines the maximum number of attempts SPM makes to connect. The minimum value should be 1.
Determines the amount of time in milliseconds that SPM waits between the failed attempt and its next attempt. The value should be the same as the value you set for the ServerSessionRequestRate property, which helps ensure that the host does not mistake the connection attempts for a server attack.
For more information, see Section 1.3.5, "ServerSessionRequestRate".
It determines the amount of time in milliseconds that SPM waits between making calls requesting a session token. This property is used to slow down successful connections requests to help prevent the host from mistaking the request calls for a server attack.
For example, CRM On Demand expects a 50 millisecond wait time between requests.
If no session tokens are available in the pool for the Get() operation, SPM waits some milliseconds in anticipation that a process releases a session token and then tries to get it. If after n number of attempts without a session token being released in the pool, SPM proceeds to call the application web server to create a session token.
These properties determine the maximum number of attempts and wait time SPM uses when getting a session token from the pool before proceeding to call the application web server to create a session token.
Determines the maximum number of attempts SPM makes to obtain a session token from the pool. The minimum value should be 1.
Determines the amount of time in milliseconds that SPM waits between attempting to obtain a session token from the pool.
Usually, session tokens can expire due to idle time or age on the application web server. To prevent providing an expired session token to a Get() operation, SPM uses logic that tries to predict session token expiration. These properties provide values for predicting session token expiration.
Indicates the maximum time in milliseconds that a session token can be idle before expiring. We recommend that you set this value to a value lower than the actual maximum idle time configured for the application web server. We recommend a value lower than the actual value to compensate for the gap between the time at which the application web server responded and the time at which the BPEL flow called SPM to release the session token.
Indicates the maximum age in milliseconds that a session token can reach before expiring. We recommend that you set this value to a value lower than the actual maximum age configured for the application web server. The creation time registered in the application web server is some seconds earlier than the one registered in SPM. A value of 1 or 2 minutes is a good start. For example, if the maximum age configured on the application web server is 15 minutes, set this property to 13 minutes.
To enable trace logging for SPM, set this property to TRUE.
SPM uses the AIALogger APIs to write to Oracle Application Integration Architecture trace log. The trace log can be viewed in Oracle Enterprise Manager.
For more information, see Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack, "Using Trace and Error Logs."
It determines the maximum consecutive number of times a session token can be consecutively renewed by the Sentinel.
SPM tallies the consecutive number of times the Sentinel has renewed a session token. A consecutive renewal is defined as a renewal of a session token by the Sentinel without any Get() + Release() operations between the previous and latest renew.
This tally is reset to zero each time the session token is acted upon by the Release() operation
When a session token reaches the maximum number of consecutive renews, the session token is terminated in the application web server and it is removed from the pool table.
For more information, see Section 1.3.10, "Sentinel_PoolSize_Min".
Table 1-4 shows sample values.
It determines the minimum number of session tokens the Sentinel keeps in the pool table.
This functionality is activated only when Sentinel is activated.
It determines the trace logging level for the Sentinel. By default, only SEVERE messages are written into the log. Sentinel uses the AIALogger APIs for writing to the trace logs. The trace log can be view in Oracle Enterprise Manager. The TRACE.LOG.ENABLED property must be set to TRUE for this property to work.
For more information, see Section 1.3.8, "TRACE.LOG.ENABLED".
The Sentinel_LogLevel value should be a java.util.logging.Level value. These are the levels in descending order:
For more information, see Oracle Fusion Middleware Infrastructure Components and Utilities User's Guide for Oracle Application Integration Architecture Foundation Pack, "Using Trace and Error Logs."
It determines the password that is used to connect to the application web server. This value should contain the XPATH into AIAInstallProperties.xml. Following are some examples:
For more information about how to update the password, see Oracle Fusion Middleware Developer's Guide for Oracle Application Integration Architecture Foundation Pack, "Post Install Configurations" and "Modifying Passwords Used for AIA Deployments".
It determines the endpoint URI that uses to connect to the application web server. Following are some examples:
Note: AIAConfigurationProperties.xml content is XML sensitive. Therefore, if the URI contains &, use & to represent it. |
It determines the full class name that SPM uses to get the session tokens from the application server. The class listed in this property implements the oracle.apps.aia.core.sessionpool.PoolableResource interface.
Table 1-5 shows the list of the host types and the class names.
It determines the list of error codes that the application web server can return for a fault when the session token is not valid.
You can use regular expressions to set up multiple error codes or patterns. For example, if for application web server XXX_01 the error codes are inv-300, exp-301 and dny-303; the property can be set as follows:
For more information about Regular Expressions, see http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
.
The following error codes are configured when SPM is installed:
To enable SPM trace logging in CSV files, set this property to TRUE.
Set this property to FALSE to disable trace logging in CSV files.
This property works independent of the other trace logging properties.
For property value changes to take effect, ensure that you terminate and restart the SPM for the host ID.
For more information, see Section 1.2.6, "Understanding Trace Logging to a CSV File".
To enable SPM use proxy settings while calling the application web server, set this property to TRUE.
Set this property to FALSE to not use proxy settings.
It determines the server to be set in the system properties for http.proxyHost property.
In the java.net
API used by SPM, proxies are supported through two system properties: http.proxyHost and http.proxyPort. They must be set to the proxy server and port respectively.
This value is only set when ProxySettings_Enabled is set to TRUE.
It determines the port to be set in the system properties for the http.proxyPort property.
In the java.net
API used by SPM, proxies are supported through two system properties: http.proxyHost and http.proxyPort. They must be set to the proxy server and port respectively.
This value is only set when ProxySettings_Enabled is set to TRUE.
To help optimize the performance of SPM with your Siebel web server, balancing your Siebel web server and SPM configuration settings according to the information is this section is recommended.
Table 1-6 shows the Siebel web server parameters and the corresponding SPM configuration properties.
Table 1-6 Values to Configure Siebel Web Server
Siebel Web Server Parameter	SPM Configuration Property
SessionTimeout	N/A
SessionTokenTimeout	PredictExpiration_Idle
SessionTokenMaxAge (session token maximum age)	PredictExpiration_Age
For more information about setting Siebel web server parameters, see "Session and Session Token Timeout-Related Parameters" in Integration Platform Technologies: Siebel Enterprise Application Integration available at http://download.oracle.com/docs/cd/B40099_02/books/EAI2/EAI2_WebServices32.html	
.	
For more information about these SPM configuration properties, see Section 1.3.7, "PredictExpiration_Idle and PredictExpiration_Age".	
The Siebel web server SessionTimeout parameter value should be set to a low value.	
The value should not be so low that sessions are created too frequently. The value should also not be so high that adapter and database connections drop before sessions expire, and thus creating vulnerabilities.	
A SessionTimeout parameter value of 300 seconds (5 minutes) is a good starting point.	
The Siebel web server SessionTokenTimeout parameter value should be set to a value that is greater than the SessionTimeoutLength value.	
The parameter value is set to 15 minutes by default and is a good starting point.	
In SPM, the PredictExpiration_Idle configuration property value should be set to a value less than the Siebel web server SessionTokenTimeout parameter value. A PredictExpiration_Idle configuration property value of 720,000 milliseconds (12 minutes) is a good starting point for a SessionTokenTimeout parameter value of 15 minutes.	
The Siebel web server SessionTokenMaxAge parameter value should be set to a value that is greater than the SessionTokenTimeout value. The parameter value is set to 2880 minutes (2 days) by default and is a good starting point.	
If you choose to lower the value, just ensure that you do not set it to a value that is lower than the SessionTokenTimeout value.	
In SPM, the PredictExpiration_Age configuration property should be set to a value less than the Siebel web server SessionTokenMaxAge parameter value. 82,800,000 milliseconds (23 Hours) is a good starting point.	
Based on the recommendations discussed in this section, here are example configurations for the Siebel web server and SPM.	
This section discusses how to run the following AIASessionPoolManager administrator operations as needed on the SOA server:	
This section also describes scenarios that require manual intervention.	
To run the administrator operations, call the AIASessionPoolManager web service. You can use the test web service functionality provided by Oracle Enterprise Manager Fusion Middleware Control.	
To call the AIASessionPoolManager web service through the test web service functionality provided by Oracle Enterprise Manager Fusion Middleware Control:	
The HostId element is optional. If not specified, an SPM is started each host.	
Note: Use care when using this operation.	
WARNING: Ensure that no BPEL flows that are requesting or releasing session tokens are currently running. Forced termination of any concurrent Get() or Release() operation is aborted and a fault is thrown to each caller.	
The HostId element is optional. If not specified, SPMs running on all hosts are terminated.	
The report includes SPM state, configuration values, current pool size, some operation statistics, session token idle times and ages, and Available or In Use state.	
The HostId element is optional. If not specified, all hosts are reported.	
Regardless of the state of the Statistics property (Active or Deactivated), the current statistics are reported.	
The HostId element is required.	
SPM stops the daemon thread in which the Sentinel is running.	
The HostId element is required.	
SPM creates a daemon thread on which to run Sentinel.	
The HostId element is optional. If not specified, statistics are activated for SPMs on all hosts.	
WARNING: The logic for these statistics is not multi thread safe. Therefore, some tallies may occasionally miss one or two counts. The reason for not making the logic multi thread safe is to avoid decreasing performance of SPM.	
The HostId element is optional. If not specified, statistics are reset for SPMs on all hosts.	
The HostId element is optional. If not specified, statistics functionality is deactivated for SPMs on all hosts.	
When any of these scenarios arises, an administrator must manually terminate SPM for the host IDs in place. This cleans up invalid session pool tokens and prevents leaving open session tokens on the application web server. While Sentinel can handle this clean-up automatically for most scenarios, it cannot handle the following scenarios.	
You must terminate the AIASessionPoolManager service for the restarted application web server instance.	
For more information about terminating SPM, see Section 1.4.1.2, "Terminate(string:HostId)".	
The AIASessionPoolManager web service is the interface to SPM. If the integration you are developing, interfaces with a Siebel instance and can benefit from using SPM, you can develop your integration to call SPM client operations that get and release session tokens.	
This section includes the following topics:	
Table 1-7 shows a list of the caller responsibilities.	
For more information, see Section 1.5.2, "Release(string HostId, string InstanceId, string UpdatedSessionToken, string ErrorCode)".	
Table 1-7 Caller Responsibilities Details	
Caller	Required (Yes/No)
---	---
Hostid	Yes
InstanceId	Yes
Therefore, concurrent and subsequent attempts to initialize SPM using the Get() operation fails. This prevents infinite loops.	
Table 1-8 Caller Responsibilities Description	
Responsibily	Required (Yes/No)
---	---
HostId and InstanceID	Yes
UpdatedSessionToken	Optional
ErrorCode	Optional
Note: Be aware that depending on the application web server being called, the Error Code may not be mapped into the code element of the RuntimeFaultMessage. It may come in the summary or detail element. Therefore, map the element that contains the error code. For Siebel on Premises web services, the error code is mapped to the summary element of the RuntimeFaultMessage. For CRM On Demand web services, the error code is mapped to the detail element of the RuntimeFaultMessage.	
In addition, the internal idle time counter is restarted. This internal idle time counter is used to predict the session expiration.	
This chapter introduces AIACompositeScheduler and includes the following sections:	
AIACompositeScheduler is a utility component that is used by integrations to schedule a Service-Oriented Architecture (SOA) composite to be invoked at the specified time interval. For example, it can schedule a SOA composite to be invoked every 30 seconds. It supports scheduling composites in cluster environment as well.	
AIACompositeScheduler is implemented as a J2EE application. It uses Weblogic Timer and Job Scheduler Application Programming Interfaces (API). These APIs are used to schedule a job to run at a specific time interval. When a job is run, it invokes SOA composite using composite's direct binding.	
Currently, CRM On Demand - JD Edwards EnterpriseOne and CRM On Demand - Oracle E-Business Suite integrations use this utility component to invoke the CRMOnDemandActivationAgent composite every 30 seconds.	
For CRM On Demand - JD Edwards EnterpriseOne and CRM On Demand - Oracle E-Business Suite integrations, the deployment of this utility on the server is done automatically when the supplementary deployment plan of the integration is run. The supplementary deployment plan is run automatically when the integration deployment plan is run. When AIACompositeScheduler is deployed, it invokes CRMOnDemandActivationAgent every 30 seconds.	
Similar to the deployment on the Weblogic server, deployment of AIACompositeScheduler on the Weblogic cluster is done automatically by running the integration deployment plan. However, in the Weblogic cluster, the following additional configurations are required for scheduler to work properly:	
During installation, these are created if the Create default Job Scheduler table and data source if one does not exist option is selected when the configuration wizard is run. This option is selected by default and it creates a default table and data source, if these are not created. The default table is created in the AIA database with the name weblogic_timers and the name of the data source is JobSchedulerDataSource.	
Table and data source are used in the cluster environment to persist scheduled jobs in the database. It supports load balancing and failures in the cluster environment. When a server fails or must load balance, another server can pick up the job. In a non-cluster environment, this is not needed because scheduled jobs are in memory.	
Leasing must be enabled for Job Schedulers. You can use either high-availability database leasing or non-database consensus leasing.	
AIACompositeScheduler uses the Weblogic Job Scheduler to schedule jobs in the cluster environment. It is a requirement from the Weblogic Job Scheduler for the required configurations to be in place.	
For more information about Job Scheduler table, Data source, and Leasing, see Timer and Work Manager API (Common) Programmer's Guide, "Using the Job Scheduler."	
For CRM On Demand - JD Edwards EnterpriseOne and CRM On Demand - Oracle E-Business Suite integrations, all configurations are automatically done to invoke CRMODActivationAgent every 30 seconds.	
If you want to modify the preconfigured settings or to schedule more composites, perform the steps mentioned in Section 2.3.1, "Creating Direct Binding" and Section 2.4, "Modifying AIACompositeScheduler Properties".	
AIACompositeScheduler uses direct binding to invoke a composite. Composites that must be scheduled by AIACompositeScheduler must have a direct binding service exposed.	
To create a direct binding:	
Properties of AIACompositeScheduler are specified in web.xml. Administrators can change these properties dynamically through a weblogic deployment plan. For example, administrator can change the time interval to invoke the composite from 30 seconds to one minute.	
For CRM On Demand - JD Edwards EnterpriseOne and CRM On Demand - Oracle E-Business Suite integrations, these properties are preconfigured to invoke CRMOnDemandActivationAgent every 30 seconds. Administrator can change the preconfigured properties, if required, by completing the steps mentioned in this section.	
Table 2-1 lists the properties required by the AIACompositeScheduler:	
Table 2-1 Properties for AIACompositeScheduler	
Property Name	Description
---	---
timeInterval	Scheduling time in seconds For example, If it is set to 30 seconds, composite is invoked every 30 seconds. For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured to 30 seconds.
compositeName	Name of the composite to be invoked For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as CRMOnDemandActivationAgent.
compositeDomain	SOA domain on which the composite to be invoked is deployed For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as default.
compositeVersion	Version of the composite to be invoked For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as 1.0.
compositeDirectBindingName	Direct binding name of the composite For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as client.
bpelOperationName	Name of the operation that must be invoked For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as process.
bpelOperationPartName	Operation part name For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as command.
bpelOperationMessageValue	XML input for the operation For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, the following script is preconfigured:
bpelOperationType | Operation type This can be either one-wayrequest-responseone-way or . The option signifies one-way operation and the request-response option signifies request response operation. For CRM OD - JD Edwards EnterpriseOne and CRM OD - Oracle E-Business Suite integrations, this property is preconfigured as request-response. |
AIACompositeScheduler can invoke multiple composites. To specify multiple composites, first composite is named as compositeName and subsequent ones as compositeName1, compositeName2, and so on. You might have to append the suffix 1, 2, and so on for all properties except timeInterval. Therefore, it is compositeName1, compositeDomain1, compositeVersion1, compositeDirectBindingName1, bpelOperationName1, bpelOperationPartName1, bpelOperationMessageValue1, and bpelOperationType1.
In the cluster environment, timeInterval property less than 30 seconds is not valid, because minimum time for recurring implementation of a timer is 30 seconds.
You can view the properties in a web browser by completing the following steps:
After AIACompositeScheduler is deployed, you can specify the properties of the composite to be invoked through a deployment plan.
Complete these steps to modify the properties:
This section includes the following topics:
This section includes the following topics:
After AIACompositeScheduler is deployed, it automatically starts invoking composites for the time interval specified.
If you stop composites, these are no longer invoked. Complete the following steps to stop it:
After stopping the AIACompositeScheduler, you can restart it again to invoke composites. Complete the following steps to restart it:
In a cluster environment to stop a composite from being invoked, you must cancel the AIACompositeScheduler job. This job has the description - AIACompositeSchedulerTimerListener.
Complete the following steps to cancel this job:
The list of scheduled jobs for that server appears.
 Copyright © 2001, 2012, Oracle and/or its affiliates. All rights reserved. |