

Oracle® Fusion Middleware
Interaction Management Guide for Oracle WebLogic Portal

10g Release 3 (10.3.4)

E14238-03

November 2011

Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal, 10g Release 3 (10.3.4)

E14238-03

Copyright © 2010, 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: William Witman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xv
Conventions ... xv

Part I Architecture

1 Introduction

1.1 Introducing Personalization .. 1-1
1.1.1 Using Interaction Management Tools .. 1-2
1.1.2 Understanding the Features... 1-2
1.2 Interaction Management in the Portal Life Cycle .. 1-3
1.2.1 Architecture .. 1-3
1.2.2 Development .. 1-4
1.2.3 Staging... 1-5
1.2.4 Production .. 1-5
1.3 Getting Started... 1-5

2 Planning an Interaction Strategy

2.1 Choosing the Type of Interaction Management to Develop .. 2-1
2.1.1 Understanding Conditions .. 2-3
2.2 Checklist for Planning Your User Interaction Strategy ... 2-3
2.3 Checklist for Planning Your Campaign Strategy ... 2-5
2.4 Planning Your Behavior Tracking Strategy .. 2-7
2.4.1 Understanding When to Use a Predefined Event ... 2-7
2.4.2 Understanding When to Create a Custom Event.. 2-8
2.4.2.1 Planning Behavior Tracking Events... 2-8
2.4.2.2 Planning Regular Events ... 2-8
2.4.3 Understanding When to Create a Custom Event Listener .. 2-8
2.5 Updating Interaction Management Features.. 2-9
2.6 Upgrading Interaction Features from Portal 8.1 .. 2-9

iv

3 Setting up Content

3.1 Adding Content... 3-1
3.2 Determining Content Priority ... 3-2

Part II Development

4 Creating a Property Set

4.1 Setting up a Property Set ... 4-2
4.1.1 Creating a User Profile Property Set ... 4-3
4.1.2 Creating a User Segment Property Set ... 4-3
4.1.2.1 Setting Dates and Times .. 4-5
4.1.3 Creating a Session Property Set ... 4-6
4.1.4 Creating a Request Property Set.. 4-6
4.1.5 Creating a Community or Remote Portlet Property Set .. 4-7
4.1.6 Creating an Event Property Set ... 4-7
4.2 Adding Properties or Conditions to a Property Set... 4-8
4.3 Modifying Properties and Conditions ... 4-9
4.3.1 Editing Properties ... 4-10
4.3.2 Editing Property Values... 4-10
4.3.3 Retrieving Properties from External Data Stores ... 4-10
4.4 Deleting a Property or a Property Set ... 4-11

5 Creating a User Segment

5.1 Creating a User Segment ... 5-1
5.1.1 Setting Dates and Times ... 5-3
5.2 Modifying a User Segment .. 5-3

6 Creating a Content Selector

6.1 Setting Up Content to Display .. 6-1
6.2 Creating a Content Selector ... 6-2
6.2.1 Creating the Content Selector File... 6-3
6.2.1.1 Building a Content Query with Expressions .. 6-6
6.2.1.1.1 Using Rules to Build a Query .. 6-7
6.2.1.1.2 Selecting Properties... 6-7
6.2.1.1.3 Using Comparators .. 6-10
6.2.1.1.4 Supplying Values ... 6-12
6.2.1.1.5 Creating Complex Queries.. 6-13
6.2.1.1.6 Using Sample Queries ... 6-13
6.2.2 Using a JSP Tag to Display a Content Selector File ... 6-16
6.2.2.1 Adding a Content Selector to a JSP... 6-16
6.2.2.1.1 Dragging a Content Selector to a Portal File .. 6-17
6.2.2.1.2 Using More than One Content Selector .. 6-18
6.3 Using the <pz:div> Tag Instead of a Content Selector ... 6-18
6.4 Deleting a Content Selector Query.. 6-19
6.5 Deleting a Content Selector .. 6-19
6.6 Modifying a Content Selector .. 6-19

v

7 Creating a Placeholder

7.1 Selecting Content for a Placeholder ... 7-2
7.1.1 Displaying Additional MIME Types in a Placeholder ... 7-2
7.1.1.1 Creating and Compiling a Java Class to Generate HTML 7-2
7.1.1.2 Registering the New Class .. 7-3
7.1.1.2.1 Method 1... 7-3
7.1.1.2.2 Method 2... 7-4
7.1.2 Adding Content to a Placeholder .. 7-4
7.2 Creating a Placeholder ... 7-4
7.2.1 Creating a Placeholder File... 7-4
7.2.1.1 Choosing the Type of Placeholder Query to Run.. 7-9
7.2.2 Building a Content Query ... 7-10
7.2.2.1 Using Expressions ... 7-10
7.2.2.2 Using Comparators ... 7-10
7.2.2.3 Using Values .. 7-10
7.2.2.4 Following Guidelines for Complex Queries.. 7-11
7.2.3 Determining Which Query and Content to Display.. 7-11
7.2.3.1 Choosing a Query to Run... 7-11
7.2.3.2 Choosing Which Content Item to Display ... 7-11
7.2.4 Adding a Placeholder to a JSP .. 7-11
7.3 Modifying a Placeholder... 7-12
7.4 Using the <ad:adTarget> Tag Instead of a Placeholder ... 7-12

8 Building a Campaign

8.1 Performing the Prerequisite Tasks ... 8-2
8.2 Building a Campaign.. 8-2
8.2.1 Planning Your Campaign Logic .. 8-3
8.2.2 Creating a Campaign File ... 8-4
8.2.2.1 Setting Goal Definitions... 8-5
8.2.2.2 Adjusting Goal Definitions ... 8-7
8.2.2.3 Creating URLs to Portal Resources.. 8-7
8.2.2.3.1 Troubleshooting the URLs .. 8-8
8.2.3 Adding a Scenario to a Campaign... 8-9
8.2.4 Adding an Action to a Scenario's Rule .. 8-10
8.2.4.1 Adding a New Object Instance.. 8-10
8.2.4.2 Invoking a Static Method ... 8-12
8.2.4.3 Invoking an Instance Method .. 8-14
8.2.4.4 Placing Content in a Placeholder .. 8-16
8.2.4.5 Sending an E-Mail in a Campaign .. 8-18
8.2.5 Setting Up Automatic E-Mail Messages.. 8-19
8.2.5.1 Setting Up Bulk E-Mail Messages ... 8-20
8.2.5.1.1 Modifying the Send-Mail Script to Work from a Remote Host................... 8-21
8.2.5.1.2 Modifying the Send-Mail Script to Work in a Clustered Environment 8-21
8.2.5.1.3 Using the Mailmanager Commands.. 8-21
8.2.5.2 Sending Bulk E-Mail Messages ... 8-22
8.2.5.3 Scheduling Bulk E-mail Delivery .. 8-23

vi

8.2.5.4 Deleting E-Mail Batches.. 8-23
8.2.5.5 Setting Up E-Mail Security... 8-23
8.2.5.5.1 Storing E-Mail Files in a Different Directory.. 8-24
8.2.6 Targeting a Campaign to Tracked Anonymous Users.. 8-25
8.3 Testing a Campaign... 8-26
8.4 Triggering a Campaign ... 8-30
8.4.1 Troubleshooting Campaign Actions.. 8-30
8.5 Turning Off a Campaign... 8-30
8.6 Resetting a Campaign ... 8-31
8.6.1 Resetting a Campaign in the Development Environment.. 8-31
8.6.2 Resetting a Campaign in the Production Environment .. 8-32
8.6.2.1 Setting Campaign Content Caches ... 8-32

9 Setting Up Events and Behavior Tracking

9.1 Choosing How to Handle Events ... 9-2
9.2 Completing Your Behavior Tracking Strategy ... 9-5
9.2.1 Planning the Deployment of Custom Events, Listeners, and Property Sets............... 9-6
9.3 Using Predefined Events.. 9-6
9.3.1 Using the SessionLoginEvent... 9-7
9.3.2 Using the SessionBeginEvent and SessionEndEvent ... 9-7
9.3.3 Using the UserRegistrationEvent .. 9-7
9.3.4 Using the AddToCartEvent.. 9-7
9.3.5 Using the RemoveFromCartEvent .. 9-7
9.3.6 Using the PurchaseCartEvent .. 9-8
9.3.7 Using the Rule Events ... 9-8
9.3.8 Using the DisplayCampaignEvent.. 9-8
9.3.8.1 Using the Display Content Event Control .. 9-8
9.3.8.2 Using the Display Product Events JSP Tag... 9-9
9.3.9 Using the CampaignUserActivityEvent... 9-9
9.3.10 Using the ClickCampaignEvent .. 9-9
9.3.11 Using the ClickProductEvent... 9-9
9.3.12 Using the ClickContentEvent.. 9-10
9.4 Generating Events for Content Clicks... 9-10
9.4.1 Using the ClickThroughEventFilter ... 9-10
9.4.1.1 JSP Example.. 9-11
9.4.1.2 Enabling Campaign Clickthroughs .. 9-11
9.5 Generating Content Events... 9-11
9.5.1 Using the ContentConfigEvent... 9-11
9.5.2 Using the ContentCreateEvent ... 9-12
9.5.3 Using the ContentDeleteEvent ... 9-12
9.5.4 Using the ContentUpdateEvent.. 9-12
9.6 Providing Event Attribute Values ... 9-12
9.7 Enabling Behavior Tracking ... 9-13
9.7.1 Enabling Behavior Tracking in the Administration Console 9-14
9.7.2 Configuring Behavior Tracking.. 9-15
9.7.3 Adjusting Behavior Tracking for Optimal Performance... 9-16
9.7.4 Storing Behavior Tracking Data in Other Ways... 9-17

vii

9.7.5 Creating a Separate Database for Behavior Tracking Events..................................... 9-17
9.7.6 Enabling Behavior Tracking in Oracle Enterprise Pack for Eclipse 9-17
9.8 Creating Custom Events ... 9-18
9.8.1 Creating the Event Class.. 9-18
9.8.1.1 Creating a Regular Event Class ... 9-18
9.8.1.2 Creating a Behavior Tracking Event Class .. 9-21
9.8.1.3 Creating an Event With a Scriptlet.. 9-24
9.8.2 Creating an XML Schema for Behavior Tracking .. 9-25
9.8.2.1 Packaging the Schema... 9-26
9.9 Creating Custom Event Listeners.. 9-26
9.10 Dispatching Events .. 9-29
9.11 Using Events in Campaigns ... 9-31
9.11.1 Registering Events for Campaigns... 9-32
9.11.1.1 Changing Event Properties .. 9-33
9.12 Debugging the Event Service ... 9-33
9.13 Tracking Content Changes ... 9-33
9.14 Disabling Behavior Tracking.. 9-35
9.14.1 Unregistering the Behavior Tracking Listener ... 9-36
9.14.2 Removing an Individual Event... 9-36

10 Creating Advanced Personalization with Rules

10.1 Using Rules in Portal Applications ... 10-1
10.1.1 Choosing Personalization Components .. 10-2
10.1.2 Understanding the Rules Service ... 10-4
10.1.2.1 Using the Rules Service .. 10-5
10.1.2.2 Understanding the Advantages of Using the Rules Service 10-6
10.2 Creating a Rule ... 10-6
10.2.1 Creating a Rule Set ... 10-6
10.2.1.1 Creating a Rule Set Manually .. 10-7
10.2.1.2 Using a Method in a Rule ... 10-10
10.2.1.3 Working with Invalid Rule Sets .. 10-11
10.2.2 Deploying a Rule Set .. 10-11
10.2.2.1 Deploying a Rule Set in Oracle Enterprise Pack for Eclipse 10-11
10.2.2.2 Deploying a Rule Set in a Staging or Production Environment 10-11
10.2.3 Adding Objects to Working Memory .. 10-12
10.2.3.1 Adding a Credit Score to Working Memory from an Integer........................... 10-12
10.2.3.2 Adding a Credit Score to Working Memory from a User Profile 10-12
10.2.3.3 Using Type Mappings... 10-12
10.2.3.3.1 Using Mappings for <type-alias> Tags... 10-12
10.2.3.3.2 Mappings for <variable> Tags ... 10-13
10.2.4 Invoking the Rules Service to Evaluate Objects ... 10-13
10.2.4.1 Using an Existing Rule Set ... 10-13
10.2.4.2 Inserting the Control in the Page Flow... 10-13
10.2.4.2.1 Understanding the Benefits of Using the Control 10-15
10.2.4.3 Using the Control to Determine the User's Path in the Page Flow 10-15
10.2.5 Filtering the Results.. 10-17
10.2.5.1 Filtering with the RulesManager EJB ... 10-18

viii

10.2.6 Using the Results in Your Application .. 10-18
10.3 Rules Control Reference.. 10-19

Part III Staging

11 Modifying Property Set Values

11.1 Editing a Property Value .. 11-1
11.1.1 Editing Properties in Oracle Enterprise Pack for Eclipse.. 11-1
11.1.2 Editing Property Values in WebLogic Portal Administration Console.................... 11-2
11.2 Deleting a Property Value .. 11-3

12 Modifying a User Segment

12.1 Modifying a User Segment ... 12-1
12.2 Modifying a User Segment's Properties ... 12-2
12.3 Copying a User Segment .. 12-2
12.4 Removing a User Segment.. 12-3

13 Modifying a Content Selector

13.1 Modifying a Content Selector .. 13-1
13.2 Deleting a Content Selector and Query .. 13-2

14 Modifying a Placeholder

14.1 Changing Content for a Placeholder... 14-1
14.2 Modifying a Placeholder... 14-2
14.3 Deleting a Query or a Placeholder .. 14-3
14.4 Managing Placeholders for Optimal Performance ... 14-3

15 Managing a Campaign

15.1 Modifying a Campaign ... 15-1
15.1.1 Changing a Campaign's Description or Sponsor ... 15-1
15.1.2 Changing a Campaign Start or Stop Date ... 15-2
15.1.3 Activating and Deactivating a Campaign... 15-2
15.1.4 Turning Off a Campaign ... 15-3
15.1.5 Resetting Campaign Settings .. 15-4
15.1.6 Duplicating a Campaign.. 15-4
15.2 Modifying a Rule ... 15-4
15.2.1 Modifying a Content Action ... 15-4
15.2.2 Modifying an E-Mail Action ... 15-6
15.2.3 Previewing a Modified Campaign Action .. 15-6
15.3 Managing a Campaign for Optimal Performance... 15-6

Part IV Production

ix

x

List of Examples

6–1 JSP File with Other JSP and HTML Tags.. 6-17
6–2 Using the <pz:contentSelector> JSP Tag for Multiple Content Selectors 6-18
8–1 Add this Section to the Web.xml File.. 8-25
9–1 Adding Event Types to a P13N Configuration File .. 9-17
9–2 Dispatching an Event from a JSP Page ... 9-30
10–1 Rule Set that Adds an Object to Working Memory .. 10-8
10–2 Condition... 10-10
10–3 Method To Which the Condition Maps.. 10-10
10–4 Mappings for <type-alias> Tags .. 10-12
10–5 Mappings for <variable> Tags... 10-13
10–6 Sample Code to Direct a User to a Page, Based on the Results of the Rules Service ... 10-16
10–7 Design a Filter with the RulesManager EJB .. 10-18
10–8 Sample Code that Retrieves Silver Card Members ... 10-18

xi

List of Figures

2–1 Simple Example of Interaction Management Logic and Flow .. 2-3
4–1 This User Segment is Called birdlover.seg ... 4-4
4–2 A Single Restricted Property Lets You Pick a Value From a List that You Define 4-8
4–3 This Property Has Three Possible Values ... 4-9
5–1 Add a Condition to the User Segment... 5-2
6–1 Create a New Content Selector ... 6-4
6–2 A Content Query that Retrieves a Binary File Called IRACampaign 6-5
6–3 Content Selector File in Oracle Enterprise Pack for Eclipse ... 6-6
6–4 Properties on a Book.. 6-13
6–5 Adding a Content Selector to a JSP in Oracle Enterprise Pack for Eclipse...................... 6-17
7–1 Placeholders can Display Default Content and Campaign Content 7-1
7–2 Define a Default Query by Dragging the New Query into the Placeholder Editor 7-6
7–3 Click Show List to View Hidden Tabs ... 7-6
7–4 Choose a Content Type and a Content Property.. 7-7
7–5 Select an Item for the Comparison Field and Enter a Value... 7-8
7–6 Placeholders can Display Default Content or Campaign Content 7-10
7–7 The Two Parts of a Placeholder: a Placeholder File and a JSP Tag................................... 7-12
8–1 Sample Properties for a New Campaign ... 8-5
8–2 Click the Ellipsis Button to Get to the Edit Campaign Goals Window............................... 8-5
8–3 You Can Reset a Campaign by Selecting the Reset All Options Check Box 8-7
8–4 Campaign Property Editor .. 8-9
8–5 Drag the Action to Your Scenario's Rule .. 8-11
8–6 Enter ** to See all Available Java Types.. 8-12
8–7 Click the All Link to Determine What Will Cause the Action to Occur 8-13
8–8 Enter ** to See all Available Java Types.. 8-14
8–9 Click the All Link to Determine What Will Cause the Action to Occur 8-16
8–10 Base the Content Query on a Comparison to a Value You Enter 8-17
8–11 You Can Set Up Where to Get E-Mail Addresses for Automatic E-Mails....................... 8-19
8–12 Change the E-mail Directory.. 8-25
8–13 Change the Display Flush Size to 1 ... 8-27
8–14 Right-Click in the Campaign Editor to Reset the Campaign... 8-28
8–15 Reset a Campaign .. 8-29
8–16 You Can Automatically Reset a Campaign After You Edit It ... 8-32
8–17 You Can Enable or Disable a Cache Setting... 8-33
9–1 The Event Framework.. 9-3
9–2 The New Class Appears in the Class Name Field... 9-15
9–3 Configuring Behavior Tracking ... 9-16
9–4 Enter a Project Name ... 9-19
9–5 Enter the Class Name and Superclass... 9-20
9–6 Enter the Class Name and Superclass... 9-22
9–7 Using an Event to Trigger a Campaign Scenario .. 9-32
9–8 Identify the Behavior Tracking Listener... 9-34
9–9 Click Add Event Type ... 9-35
9–10 Select the Delete Check Box.. 9-36
10–1 Using Rules to Control a Page Flow.. 10-6
10–2 A Rule Set that Uses The Visitor is a Member of a Predefined User Segment Condition........

10-7
10–3 Building a Rule with an XML Editor .. 10-9
11–1 Click Edit to Change the Property Value ... 11-2
12–1 Click Edit to Change the User Segment Property ... 12-2
13–1 Edit a Content Selector Property ... 13-1
13–2 Change a Content Selector Property ... 13-2
14–1 Select the Placeholder and Content Item.. 14-2
14–2 Change a Content Query .. 14-2

xii

15–1 Change a Campaign Property.. 15-2
15–2 Select Active to Start a Campaign.. 15-3
15–3 Click Edit to Change a Content Action... 15-5

xiii

xiv

List of Tables

2–1 Types of Interaction Management... 2-2
2–2 User Interaction Strategy Checklist... 2-4
2–3 Campaign Strategy Checklist ... 2-6
4–1 Conditions that Identify Users to Target and the Actions that Will Occur....................... 4-4
6–1 System Content Properties ... 6-8
6–2 Available Comparators .. 6-10
6–3 Example Queries ... 6-14
6–4 Complex Queries... 6-15
6–5 Other Useful Queries (Not Related to the Sample Content) .. 6-15
6–6 JSP Tags for Content Selectors .. 6-18
8–1 A Campaign Scenario that Targets Females Who Recently Visited the Web Site............ 8-2
8–2 Campaign Action Rules .. 8-3
8–3 Mailmanager Command Arguments... 8-22
8–4 Examples of Mailmanager Commands ... 8-22
9–1 The Event Framework... 9-4
9–2 Getting Attributes for Predefined Events.. 9-13
9–3 Behavior Tracking Settings.. 9-16
10–1 WebLogic Portal Personalization Components.. 10-3
10–2 How Control Properties Map to Method and Constructor Arguments 10-14
10–3 Rules Control Elements for the Rules Engine... 10-19

xv

Preface

This guide describes how to set up personalized content to enhance how users interact
with your portal application.

Audience
Portal developers find information in this guide on creating property sets, user
segments, campaigns, and other rule-based entities for user interaction. These entities
define how personalized content is delivered to end users. Portal administrators use
this guide to learn about changing and managing interaction entities using the Portal
Administration Console.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the WebLogic Portal
documentation set:

■ Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal

■ Oracle Fusion Middleware User Management Guide for Oracle WebLogic Portal

■ Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal

Conventions
The following text conventions are used in this document:

xvi

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Architecture

This section contains guidelines to help you plan the type of user interaction you will
add to your portal. Developing a user interaction strategy can save you time during
the other phases of the portal life cycle.

When you are planning how your users will interact with your portal, determine the
following:

■ What type of personalized content to display

■ How to set up and store content

■ If content will be controlled by the type of user

■ How long to display each type of content

■ How to cycle through content

■ If you want to send automatic e-mails or give automatic discounts

■ Where to store the user information you gather

For a detailed description of the architecture phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part I contains the following chapters:

■ Chapter 1, "Introduction"

■ Chapter 2, "Planning an Interaction Strategy"

■ Chapter 3, "Setting up Content"

1

Introduction 1-1

1Introduction

Personalized content can include content or images targeted to specific users or
audiences. For example, you can create dynamic images or links that are personalized
for each user. You could dynamically guide users through a process (such as signing
up for employee benefits or shopping online) that takes them to different places based
on their personal preferences or characteristics.

You can even record the path users take through your portal to gauge the effectiveness
of the portal, its design, or your process flows. This Behavior Tracking provides
information that can validate your strategies or help you make improvements.

This chapter includes the following sections:

■ Section 1.1, "Introducing Personalization"

■ Section 1.2, "Interaction Management in the Portal Life Cycle"

■ Section 1.3, "Getting Started"

1.1 Introducing Personalization
This section contains the following topics:

■ Section 1.1.1, "Using Interaction Management Tools"

■ Section 1.1.2, "Understanding the Features"

Developers use Oracle Enterprise Pack for Eclipse (OEPE) to set up Personalization
features, such as Campaigns, Content Selectors, Placeholders, User Segments, and
Rule Sets. Developers can also create rules for Personalization and events for Behavior
Tracking. Portal administrators use the WebLogic Portal Administration Console to
modify Campaigns, Content Selectors, Placeholders, and User Segments to fit the
needs of the portal's audience.

Developing Interaction Management features often involves setting up related pieces.
For example, if you want to target users with personalized content in a Campaign, you
have to add content to WLP's Virtual Content Repository, create Placeholders that
display the content, set up properties (such as User Profile or session properties) that
are used to define the conditions under which users will be targeted with Campaign
content, and finally, create the Campaign.

This chapter describes the tools you can use to create Interaction Management features
and the logic that drives the tools. Each tool uses a rules engine to match users with
appropriate content.

Introducing Personalization

1-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

1.1.1 Using Interaction Management Tools
You can use the following tools to create and maintain Interaction Management
features in the portal life cycle:

1. Oracle Oracle Enterprise Pack for Eclipse – Developers create the following
items:

■ User Segments, Property Sets, Content Selectors, Placeholders, Campaigns and
Behavior Tracking – Create these Personalization features and then use Java
Server Page (JSP) tags or controls to enable the feature in a Page Flow or JSP.

■ JSP Tags – Use JSP tags to display personalized content to users. For example,
Campaigns show web content using a JSP tag called a Placeholder:
<ph:placeholder name="myPlaceholder1"/>. You can add JSP
Placeholder tags (identified by the name attribute) anywhere in your portal's
JSPs. For more information on Java classes, see the Oracle Fusion Middleware
JSP Tag Java API Reference for Oracle WebLogic Portal.

■ Java Controls – Use Java controls (predefined Java functionality) in your Page
Flows and Web Services to display personalized content. For example, you can
use the Rules Executor control to help determine a user's path through a Page
Flow based on specific conditions, such as User Profile values or session
properties. For more information on controls, see the Oracle Fusion Middleware
Java API Reference for Oracle WebLogic Portal.

2. Java API – Developers can also utilize a full API to programmatically develop
Interaction Management functionality.

3. WebLogic Portal Administration Console – Portal Administrators can modify
values and some properties for User Segments, Property Sets, Content Selectors,
Placeholders, and Campaigns. They can also change the target audience that will
see Personalization features, or modify Campaign dates. Administrators can use
the Administration Console to test the new features you have developed and
adjust the target audience. If you need to modify or fine tune any of them, you can
use Oracle Enterprise Pack for Eclipse to return to the Development phase and
make changes. You must redeploy your portal application to see the changes in the
Staging environment.

1.1.2 Understanding the Features
Oracle Enterprise Pack for Eclipse provides the following features to help you deliver
personalized content:

■ Property Sets – A Property Set Editor lets developers define User Profile
properties, request properties, session properties, and custom events to create
conditions that uniquely identify users. For example, you can create a NewHire
property to target new users with benefit enrollment information. An Employee
property set could have an attribute (or property) called NewHire, as well as
HireDate.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Interaction Management in the Portal Life Cycle

Introduction 1-3

■ User Segments – User Segments help you dynamically categorize users based on
conditions or criteria that define the target visitor. For example, you can define
conditions that dynamically identify gender, occupation, movie fans, or pet lovers.

■ Content Selectors – A Content Selector targets users with personalized web
content from the WLP Virtual Content Repository. For example, you can display a
list of recommended movies to users identified as movie fans.

■ Campaigns – Campaigns let you target specific users with a single piece of
personalized content or automatically send them a predefined e-mail. Campaigns
run for a limited time and drive online behavior and Personalization to achieve a
specific business goal.

■ Placeholders – Campaigns use Placeholders to display personalized content on a
portal page. A Placeholder is a predefined location in a JSP that displays a single
piece of web content retrieved from the WLP Virtual Content Repository. A
Placeholder uses queries to retrieve and display content, and can rotate the content
to display something different on each browser refresh. Campaigns are targeted to
Placeholders.

■ Events and Behavior Tracking – Events let you create actions that happen in a
user's interaction with your portal, or respond to actions that occur. Events, such
as a user clicking a button or registering in your portal, can trigger a Campaign.
You could generate an event when a user logs in or logs out. You can also use a
Campaign to respond in real time to an event. For example, if a user clicks an
image, an event is generated. You would know which image is clicked and you
can display other information in another portlet. For example, you clicked a
camera image and camera accessories display in another portlet.

See Chapter 2 for more details and examples of each type of interaction.

The following terms are used in this guide:

■ Authentication – Registers (verifies) the user and logs the user into the portal.

■ Authorization – Determines what the user can access.

1.2 Interaction Management in the Portal Life Cycle
This section contains the following topics:

■ Section 1.2.1, "Architecture"

■ Section 1.2.2, "Development"

■ Section 1.2.3, "Staging"

■ Section 1.2.4, "Production"

The tasks in this guide are organized according to the portal life cycle. The portal life
cycle contains four phases: Architecture, Development, Staging, and Production.
Adding Personalization and user interaction to your portal is an important part of the
portal life cycle. For more information about the portal life cycle, see the Oracle Fusion
Middleware Overview for Oracle WebLogic Portal.

1.2.1 Architecture
In the Architecture phase, you plan the type of interaction that your portal users will
experience. Architects decide who to target, what type of personalized content users
will see, how often the content changes, and how to update the content. For more

Interaction Management in the Portal Life Cycle

1-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

information about the portal life cycle, see the Oracle Fusion Middleware Overview for
Oracle WebLogic Portal.

The following chapters provide guidance on Architecture tasks:

■ Chapter 2 describes when to use different types of Personalization and explains
the relationships between the Interaction Management features.

■ Chapter 3 describes the properties you can add to content items in the WLP
Virtual Content Repository that support Interaction Management functionality.

1.2.2 Development
In the Development phase, developers use Oracle Enterprise Pack for Eclipse to create
user property sets and properties, User Segments, Placeholders, Content Selectors,
Campaigns, and Behavior Tracking to add Personalization without custom coding.
Developers can also work directly with the Java API to add Personalization.

Personalization features allow you to target users with personalized web content,
display a single piece of web content retrieved from the WLP Virtual Content
Repository, or automatically send a user a predefined e-mail.

Developers can also categorize users based on specific characteristics or criteria and
then target those User Segments.

Tools: Oracle Enterprise Pack for Eclipse and the Java API.

The following chapters provide instructions on Development tasks:

■ Chapter 4 provides instructions on how to set up conditions that drive Interaction
Management and the choices you need to make.

■ Chapter 5 describes how to dynamically group users based on conditions you
define.

■ Chapter 6 describes Content Selectors and how to use them to display multiple
personalized content items from the virtual content repository.

■ Chapter 7 describes Placeholders and how to use them to display single content
items from the Virtual Content Repository. This chapter describes how to use
Placeholders by themselves to display non-personalized content and how to use
them with Campaigns to display personalized content.

■ Chapter 8 provides the setup steps and things to consider when building a
Campaign.

■ Chapter 9 describes the event framework and when to use predefined Behavior
Tracking events. The chapter also discusses when and how to create regular events
and custom events for Behavior Tracking, and how to use events in a Campaign.

■ Chapter 10 explains how to customize rules to create advanced Personalization.
This type of Personalization can help you do things like control each user's path
through a Page Flow or use runtime information to determine conditional logic.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Getting Started

Introduction 1-5

1.2.3 Staging
In the Staging phase, portal administrators use a browser to test the Content Selectors,
Placeholders, Campaigns, and so on that developers created in the Development
phase. If any of the functionality needs to change, you can use the Administration
Console to make changes, or return to the Development phase and use Oracle
Enterprise Pack for Eclipse and make changes. Developers can also utilize the Java
API. Developers must redeploy the portal application to see the changes in the Staging
environment. The Development phase and the Staging phase often occur
simultaneously.

Tools: Administration Console.

The following chapters provide instructions on Staging tasks:

■ Chapter 11 shows how to change the values in your User Profile property sets.

■ Chapter 12 describes how to change User Segment properties (conditions) to
dynamically group users.

■ Chapter 13 provides the steps to edit a Content Selector property, so that you can
change the content that is displayed.

■ Chapter 14 shows how to manage the content that populates Placeholders.

■ Chapter 15 gives instructions on making changes to a Campaign, including the
start or stop date and modifying the query user name.

1.2.4 Production
After developers test the portal application in the Staging phase, portal administrators
use the Production phase to fine-tune the live production environment. For example,
in the Production phase, administrators could use the Administration Console to
modify Placeholders, Content Selectors, or Campaigns. They can change a Campaign's
effective dates, update web content, or add a new User Segment to attract a different
audience.

If you need to change any of these features, developers can use Oracle Enterprise Pack
for Eclipse to return to the Development phase and make changes. Developers must
redeploy the portal application to see the changes in the Staging and Production
environments.

Tools: Administration Console.

1.3 Getting Started
If you are new to portal development, see the Oracle Fusion Middleware Overview for
Oracle WebLogic Portal for more information about the portal life cycle.

You can also consult the following information:

■ Oracle Fusion Middleware Overview for Oracle WebLogic Portal

■ Oracle Fusion Middleware Security Guide for Oracle WebLogic Portal

■ Oracle Fusion Middleware User Management Guide for Oracle WebLogic Portal

Getting Started

1-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

2

Planning an Interaction Strategy 2-1

2Planning an Interaction Strategy

This chapter describes when to use different types of Personalization and explains the
relationships between the Interaction Management features.

This chapter includes the following sections:

■ Section 2.1, "Choosing the Type of Interaction Management to Develop"

■ Section 2.2, "Checklist for Planning Your User Interaction Strategy"

■ Section 2.3, "Checklist for Planning Your Campaign Strategy"

■ Section 2.4, "Planning Your Behavior Tracking Strategy"

■ Section 2.5, "Updating Interaction Management Features"

■ Section 2.6, "Upgrading Interaction Features from Portal 8.1"

2.1 Choosing the Type of Interaction Management to Develop
Use Table 2–1 to determine which type of Interaction Management to develop.

This section contains the following topic:

■ Section 2.1.1, "Understanding Conditions"

Choosing the Type of Interaction Management to Develop

2-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Table 2–1 Types of Interaction Management

If you want to ...do this

Display different graphics – each
time an employee visits the
Intranet portal, display a different
picture from the company picnic.

This action displays a binary
property from a single content item
from the virtual content repository
that can change each time a user
visits your portal or clicks Refresh.

■ Create a generic rotation of content for all users by creating a
Placeholder and adding a default query for the Placeholder that
displays the range of content you want.

■ Create a targeted rotation of content for each user based on each user's
characteristics by creating a Placeholder and a Campaign.

■ Set up the Campaign with content actions that put different types of
content in the Placeholder for different types of users.

■ Define the necessary conditions and rules to use in the Campaign.

You can also use the <ad:adTarget> JSP tag as an alternative to a
Placeholder to manually embed a content query in a JSP.

See Chapter 7 for more information.

Display a graphic specific to the
user type – when a certain type of
user visits the portal, display a
graphic specific to the user type.

For example, if a manager user
views the portal, show the
manager the performance review
reminder graphic. If a regular
employee user views the portal,
show the employee the benefits
open enrollment graphic.

This action displays a binary
property from a single content
node from the Virtual Content
Repository that shows the same
content node for each type of user.

Target specific users differently by creating a Placeholder with a default
query for all users or a Placeholder used by a Campaign to target specific
users differently. Use one of the following ways to show the same content
node without content rotation:

■ Set up your content with properties and values that can uniquely
identify each piece of content.

■ Create highly focused content queries in the Placeholder or the
Campaign to retrieve those single unique content items.

See Chapter 7 and Chapter 8 for more information.

Show each user a unique list of
recommended books – the list is
based on the user's characteristics.

This action displays multiple
content nodes and properties from
the virtual content repository
simultaneously.

Show multiple content nodes from the Virtual Content Repository
simultaneously by creating Content Selectors and adding them to your JSPs.

See Chapter 6 for more information.

Show content that matches a user's
characteristics – provide different
sections of HTML content in a JSP
but show users only the sections
that match their characteristics.

This action displays personalized
content from an inline section of a
JSP.

Display personalized inline JSP content by creating User Segments and
using the <pz:div> JSP tag to wrap personalized content.

You can also use the following JSP tags to display inline JSP content based
on the device that is viewing the content (for example, a handheld device or
a PC): <cscm:default>, <cscm:not-default>, <cscm:recognized>,
<cscm:not-recognized>, <cscm:when>, and <cscm:when-not>. The
cscm tags are Portal Multichannel JSP tags. The are contained in the
client_taglib.jar file.

See Chapter 6 and the Oracle Fusion Middleware JSP Tag Java API Reference for
Oracle WebLogic Portal for more information.

Send users automatic e-mails. Create and store e-mail message files and create a Campaign that uses an
e-mail action. See Chapter 8.

Use rules in Page Flows and Web
Services to provide a personalized
user experience

Use the Rules Executor control in your Page Flows and Web Services. See
Chapter 10.

Note: Page flows are a feature of Apache Beehive, which is an optional
framework that you can integrate with WLP. See "Apache Beehive and
Apache Struts Supported Configurations" in the Oracle Fusion Middleware
Portal Development Guide for Oracle WebLogic Portal.

Checklist for Planning Your User Interaction Strategy

Planning an Interaction Strategy 2-3

2.1.1 Understanding Conditions
Interaction Management uses a variety of conditions that identify users and what they
are doing.

When you build Interaction Management functionality, you use conditions to perform
the following actions:

1. Specify the exact characteristics that identify the users you want to target

2. Define the actions that occur when users that match those conditions visit your
portal

Figure 2–1 illustrates how personalized content is dynamically displayed to users with
a Content Selector. Conditions are captured, specific users are identified, and actions
occur for those users.

Figure 2–1 Simple Example of Interaction Management Logic and Flow

A rules engine runs behind the scenes on a server in a portal domain, reads all
available conditions in memory, evaluates those conditions against the rules you
created, and executes the actions you defined if the conditions match your rules.

For example, the following list contains some of the conditions that a Campaign can
use to determine which users to target with personalized content:

■ Dynamically predefined groups of users (User Segments).

■ Properties in a User's Profile (such as personal preferences).

■ Specific properties in the HTTP request or session.

■ An event that occurs (such as performing a click).

■ Date and time factors.

2.2 Checklist for Planning Your User Interaction Strategy
Adding Personalization to your portal can involve setting up several related pieces.
The checklist in Table 2–2 includes items that you should consider when planning a
personalized portal.

Checklist for Planning Your User Interaction Strategy

2-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Table 2–2 User Interaction Strategy Checklist

Check box Planning Item Description

[] 1. Create content Determine the content you want to display, when it should display,
and set specific properties on your content items. For example, you can
use Oracle Enterprise Pack for Eclipse to add properties to your
content that can make an image clickable, end a Campaign after a
specific number of clicks, start a movie, provide a clickable URL, and
so on. See Chapter 3 for instructions. You should also consult the
Oracle Fusion Middleware Content Management Guide for Oracle WebLogic
Portal for information on creating and maintaining a virtual content
repository.

[] 2. Set up Property Sets and
properties

Property sets use properties to create conditions that uniquely identify
users. The properties you create in Oracle Enterprise Pack for Eclipse
are used in the conditions you define for your Personalization logic.
For example, you could create a NewHire property set to target these
users with benefit enrollment information.

Oracle Enterprise Pack for Eclipse provides editors to help you define
the following properties to create conditions that identify users:

■ User Profile properties determine which user information to save.
User Profile properties can also be used to define Visitor
Entitlement and Delegated Administration roles.

■ Request properties capture and use specific HTTP request
information to trigger Personalization.

■ Session properties capture and use specific HTTP session
information to trigger Personalization.

■ Custom Events can trigger Personalization and Campaigns and
track user behavior.

Based on the logic conditions, each user is dynamically served
personalized, accurate web content, and automatic e-mails. See
Chapter 4 for instructions.

[] 3. Set up users Access existing users in external databases or add new users to your
portal. For instructions on setting up and managing users, see the
Oracle Fusion Middleware User Management Guide for Oracle WebLogic
Portal.

[] 4. Create User Segments You can create User Segments to dynamically categorize users based
on conditions or criteria that define the target visitor. Those conditions
can include characteristics, such as occupation, browser type, User
Profile values, or other user properties.

For example, you could classify all users who ordered more than five
on-demand movies in the last 30 days If visitors match the defined
characteristics, they automatically become members of that User
Segment and are shown specific web content with Content Selectors or
are targeted with Campaign Actions.

User Segments can be used over and over in Content Selectors,
Placeholders, and Campaigns. See Chapter 5 for instructions.

[] 5. Create Content Selectors A Content Selector lets you target specific groups of people with
content items from the WLP Virtual Content Repository. For example,
after you create a User Segment to trigger Personalization, you can
create a Content Selector that defines the content that is shown to users
in a specific User Segment. You could display a list of recommended
movies to users identified as movie fans. For instructions, see Chapter 6.

Checklist for Planning Your Campaign Strategy

Planning an Interaction Strategy 2-5

One of the most important benefits of using Interaction Management is that the logic is
decoupled from your source code. The files you create (Campaigns, Placeholders,
Content Selectors, and so on) contain the Personalization logic and content queries,
and your code references those files. For example, Campaigns show web content using
a JSP tag called a Placeholder.

The next step is to define your Campaign to use the existing Placeholders, each of
which can display content unique to the Campaign and to the individual users.
Campaigns can change and new ones can be added, but you never have to change
your JSP code. The Placeholders you need in the JSPs stay the same.

2.3 Checklist for Planning Your Campaign Strategy
Campaigns provide a broad set of features for delivering personalized functionality,
such as displaying personalized web content, and triggering e-mail messages. For
detailed information about campaigns, see Chapter 8.

The following sample use cases illustrate some ways to use Campaigns to deliver
personalized content and functionality:

■ A company provides open benefits enrollment for its employees, where employees
can change their current benefits choices. In the internal Human Resources portal,
the company creates a Campaign that runs from November 1 - 30. During that
time the Campaign displays an Open Enrollment graphic in the portal header

[] 6. Create Placeholders A Placeholder displays a single personalized content item on a JSP. The
content item is dynamically retrieved from the WLP Virtual Content
Repository.

A Placeholder uses queries to retrieve and display one piece of content
at a time. For example, if a user is identified as a bird lover, a
Placeholder in a Campaign can display an image of a bird with a store
discount. The image can change with a browser refresh to show other
birds as well. You can also use Placeholders by themselves to display
specific types of non-personalized content that is not provided by a
Campaign. See Chapter 7.

[] 7. Create Campaigns A Campaign lets you target specific users with a single piece of
personalized content at a time, automatically send them a predefined
e-mail.

Campaigns run for a limited time and drive online behavior and
Personalization to achieve a specific business goal. Your Marketing
Department generally drives the content of a Campaign. For
instructions, see Chapter 8.

[] 8. Set up Behavior
Tracking

You can use events to trigger Campaigns, persist event data in the
database, and other actions. Events are generated when users interact
with a web interface, such as logging in, clicking or viewing a graphic,
clicking a button, navigating to another page in a portal, and so on.
These events that occur in a user's path through your portal are logged
to the database, so you can analyze the user behavior in your portal.
For example, you could determine how many users have registered in
a portal and then create a Campaign that automatically sends each
user a welcome e-mail when the registration event occurs.

You can also be notified of custom events at runtime and respond
accordingly. You might decide to forward events to another system or
make runtime decisions on the basis of those events.

See Chapter 9 for more information.

Table 2–2 (Cont.) User Interaction Strategy Checklist

Check box Planning Item Description

Checklist for Planning Your Campaign Strategy

2-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

region and when employees make changes to their benefits and click Submit, a
confirmation e-mail is automatically sent.

■ A large online retailer is running a holiday special for its external customers. The
retailer creates a Campaign that provides a one-time discount of 30% off the cost of
books when the total cost of books in any order is $100 or more.

■ A mobile devices ISP creates a Campaign that shows targeted add-on services that
are specific to each type of mobile device when users click the New Stuff! link.

If you plan to use a Campaign in your portal, use the checklist in Table 2–3.

Note: Campaigns and Behavior Tracking are not currently supported
for anonymous, non-trackable users. See the Oracle Fusion Middleware
User Management Guide for Oracle WebLogic Portal.

Table 2–3 Campaign Strategy Checklist

Check box Planning Item Notes

[] 1. Create a Portal application See the Oracle Fusion Middleware Tutorials for Oracle WebLogic Portal.

[] 2. Set up content When you show personalized content with a Campaign (using a
content rule), the content is retrieved from the WLP Virtual
Content Repository and displayed in a Placeholder. There are
many properties you can add to your content that enable necessary
and helpful features for Campaigns For example, to increase the
chances of a specific content item being shown in a Placeholder,
create an adWeight property (as an Integer) for your content items.
The greater the adWeight number you enter for a content item, the
greater the chances that it will be displayed in a Placeholder if it is
retrieved by a query.

For more information on setting up content for use in Interaction
Management, see Chapter 3.

[] 3. Decide if you will use Goal
Setting

Goal Setting ends a Campaign based on the number of content
items displayed or clicked. For more information on Goal Setting,
see Section 8.2.1, "Planning Your Campaign Logic" and
Section 8.2.2.1, "Setting Goal Definitions."

[] 4. Create Placeholders Campaigns use Placeholders to display personalized web content.
If you display personalized content through Campaigns, create the
Placeholders that will hold your Campaign queries and display the
web content.

For more information on Placeholders, see Chapter 7.

[] 5. Create User Segments If you want to trigger a Campaign based on users who are grouped
dynamically based on specific characteristics, create User
Segments. For more information on User Segments, see Chapter 5.

Planning Your Behavior Tracking Strategy

Planning an Interaction Strategy 2-7

2.4 Planning Your Behavior Tracking Strategy
WebLogic Portal's event framework provides many options for generating and
handling events, to track the behavior of visitors to your portal. This section provides
guidelines to help you determine the pieces of the event framework you want to use to
implement the functionality you need.

This section contains the following topics:

■ Section 2.4.1, "Understanding When to Use a Predefined Event"

■ Section 2.4.2, "Understanding When to Create a Custom Event"

■ Section 2.4.3, "Understanding When to Create a Custom Event Listener"

2.4.1 Understanding When to Use a Predefined Event
WebLogic Portal provides many predefined Behavior Tracking events you can use in
your applications, described in Section 9.3, "Using Predefined Events." Each event
collects specific attributes and structures those attributes as XML, and the Behavior
Tracking listener puts the XML in a buffer to insert into the BT_EVENT database table.

Most of the predefined events also have predefined event property sets in Oracle
Enterprise Pack for Eclipse, stored in the portal application's /data/src/events
directory. These property sets let you use events in your Campaign definitions to
trigger Campaign actions when the events occur or when events have specific attribute
values.

The following list explains when to use WebLogic Portal's predefined events:

■ You want to store event data as XML in the BT_EVENT table

■ The predefined events capture specified attributes

■ The events capture the attributes you want, but you want to handle the events in a
customized way by creating your own event listener

■ You want to use the events in your Campaign

[] 6. Create Property Sets If you plan to trigger a Campaign based on properties from users,
events, HTTP sessions, or HTTP requests, perform the following
relevant procedures:

■ Create User Profile properties

■ Register Custom Events

■ Create Session Properties

■ Create Request Properties

For more information on how these properties are used in
Interaction Management, see Section 4.1, "Setting up a Property
Set."

[] 7. Set up e-mail messages You can send automatic e-mails in a Campaign. Follow the steps in
Section 8.2.5, "Setting Up Automatic E-Mail Messages."

[] 8. Trigger the Campaign Set up a Regular or Behavior Tracking event that start your
Campaign. A commonly used event is SessionLoginEvent. For
instructions, see Section 8.4, "Triggering a Campaign."

See Section 9.11, "Using Events in Campaigns" and Section 9.11.1,
"Registering Events for Campaigns" for instructions.

Table 2–3 (Cont.) Campaign Strategy Checklist

Check box Planning Item Notes

Planning Your Behavior Tracking Strategy

2-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

2.4.2 Understanding When to Create a Custom Event
If none of WebLogic Portal's predefined events capture the specific combinations of
attributes you need, create a custom event. There are two types of custom events you
can create: Behavior Tracking events and regular events.

See Chapter 9 for instructions on setting up events.

2.4.2.1 Planning Behavior Tracking Events
Create a custom Behavior Tracking event when none of Portal's predefined events
captures the event attributes you want and you want to use Portal's Behavior Tracking
framework to persist event data as XML in the BT_EVENT table. You can use these
events in Campaigns and create a custom listener that performs special handling on
the event, but unless you want to use the Behavior Tracking framework to store event
data as XML, you do not need to create a custom Behavior Tracking event.

If you do not want to use the Behavior Tracking service, create a custom regular event.

2.4.2.2 Planning Regular Events
Create a custom regular event when none of WebLogic Portal's predefined events
captures the event attributes you want and you do not want to use the Behavior
Tracking service for persisting event data as XML in the BT_EVENT table.

The following list describes when to create a custom regular event:

■ You want to capture a specific set of attributes with an event and use that event to
trigger Campaigns

■ You want to capture a specific set of attributes with an event and execute custom
functionality when that event occurs (using a custom event listener)

2.4.3 Understanding When to Create a Custom Event Listener
WebLogic Portal provides two listeners: a Campaign listener and a Behavior Tracking
listener.

The Campaign listener tells the Campaign service when an event has occurred (with
the exception of the ignored events in the wps.jar file's listener.properties
file). The Campaign service reads the current request and executes Campaign actions if
the request data matches the conditions of any of your Campaigns. If your Campaign
definitions include any event conditions, which you were able to supply with event
property sets, the Campaign service evaluates those as well to determine if it must
execute Campaign actions.

The Behavior Tracking listener listens for only the Behavior Tracking events that are
registered with the Behavior Tracking service. When it receives an event it is interested
in, it moves the XML document for that event into a buffer for later persistence into the
BT_EVENT table at an interval you determine.

Create a custom event listener if you want to execute functionality not provided by the
Campaign listener or the Behavior Tracking listener. For example, if you want to
perform your own event data persistence, modify a User Profile, redirect the user to
another part of a Page Flow, or provide any other type of real-time response to the
event, create a custom event listener that provides the functionality you want.

Upgrading Interaction Features from Portal 8.1

Planning an Interaction Strategy 2-9

See Chapter 9 for more information.

2.5 Updating Interaction Management Features
After you create Property Sets, User Segments, Content Selectors, Placeholders, and
Campaigns in Oracle Enterprise Pack for Eclipse, you can modify the settings and
queries for those components in the WebLogic Portal Administration Console For
instructions, see Chapter 11, Chapter 12, Chapter 13, Chapter 14, and Chapter 15.

If you need to create new Interaction Management features or modify properties, use
Oracle Enterprise Pack for Eclipse and then iteratively push your updates to the
running server. For more information, see the Oracle Fusion Middleware Production
Operations Guide for Oracle WebLogic Portal.

2.6 Upgrading Interaction Features from Portal 8.1
When you run the Oracle WebLogic Upgrade Wizard, the wizard upgrades your
WebLogic Portal 8.1 or 9.2 interaction features, such as Content Selectors, Placeholders,
Campaigns, and so on.

When you run the Oracle WebLogic Upgrade Wizard and it detects your Portal 8.1 or
9.2 installation, you can select the Upgrade RDBMSAuthenticator option. Selecting
this option replaces the existing authentication provider with the new
SQLAuthenticator authentication provider and upgrades all content, including
personalization features. You can also choose to manually upgrade your
personalization features from Portal 8.1 SP4, SP5, or SP6 to the Portal 10.x RDBMS user
store later. For step-by-step instructions on running the Oracle WebLogic Upgrade
Wizard, see the Oracle Fusion Middleware Upgrade Guide for Oracle WebLogic Portal.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Upgrading Interaction Features from Portal 8.1

2-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

3

Setting up Content 3-1

3Setting up Content

Targeting users with personalized content is an important part of Interaction
Management. You can use Placeholders and Campaigns to control the type of content
you display and how long the content appears. The first step is to add content types
and content to your WLP Repository.

This chapter includes the following sections:

■ Section 3.1, "Adding Content"

■ Section 3.2, "Determining Content Priority"

3.1 Adding Content
Use the Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal
to learn how to add content to your WLP Repository. You can set up a hierarchy of
folders and add content types (each of which contain properties). Content types
determine the metadata you associate with a content file and how the content is
retrieved in a search.

You can create your own custom content types, or use the following five content types
that ship with WebLogic Portal:

■ Ad Content Type

■ Article Content Type

■ Book Content Type

■ Image Content Type

■ Message Content Type

Plan your content types carefully. You can add a property definition to the content
type after you have instances of the type. However, you cannot modify or delete
existing property definitions of the type. Content type properties describe the content
and help you manage that content. The more properties you associate with content
items, the more granular your search results can be.

Adding specific properties to content items in your repository can make an image
clickable, end a Campaign after a specific number of clicks, start a movie, provide a
clickable URL, and so on. You can also perform repository management with content
properties by viewing the date (a Content Type property) that the item was added to
the repository.

Content type properties can be any of the following data types: Boolean, Long Integer,
Number with a Decimal, String, Date/Time, Binary, Nested Content Type, or Link. See

Determining Content Priority

3-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

the Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal for
more information.

If you create Visitor Entitlements on a Content Management resource, these
entitlements can prevent a portal visitor from seeing content they would normally see
according to Personalization rules.

3.2 Determining Content Priority
A Placeholder—the JSP tag in a JSP that displays general content or personalized
content for a Campaign—displays one piece of content at a time. When a content
query in a Placeholder (a default Placeholder query or a query put in the Placeholder
by a Campaign) returns multiple possible content items to a Placeholder, the
Placeholder determines which content item to display. Use a content type property
called adWeight to change the chance of displaying content in a Placeholder when the
content items are retrieved with a query.

The adWeight property is an Integer property type. The higher the adWeight number
you assign to a content item, the better the chance it will display in the Placeholder.
See Chapter 7 for instructions on using the adWeight property.

Tip: You should set up your content type properties before you
create Placeholders and Campaigns that access this content.

Part II
Part II Development

Developers use Oracle Enterprise Pack for Eclipse in the Development phase to create
user property sets and properties, User Segments, Placeholders, Content Selectors,
Campaigns, and Behavior Tracking. Portal administrators can use the WebLogic Portal
Administration Console to update some of these features' properties and values.

Developers can use these property sets, User Segments, Placeholders, and Campaigns
that they create in the Development phase to personalize a portal by performing some
of the following tasks:

■ Target users with personalized web content (property sets and Content Selectors).

■ Display a single piece of web content retrieved from the WLP Virtual Content
Repository (Placeholders).

■ Send a user an automatic predefined e-mail (Campaign).

■ Categorize users based on specific characteristics or criteria and then target those
segments (User Segments).

For a detailed description of the development phase of the portal life cycle, see the
Oracle Fusion Middleware Overview for Oracle WebLogic Portal.

Part II contains these chapters:

■ Chapter 4, "Creating a Property Set"

■ Chapter 5, "Creating a User Segment"

■ Chapter 6, "Creating a Content Selector"

■ Chapter 7, "Creating a Placeholder"

■ Chapter 8, "Building a Campaign"

■ Chapter 9, "Setting Up Events and Behavior Tracking"

■ Chapter 10, "Creating Advanced Personalization with Rules"

4

Creating a Property Set 4-1

4Creating a Property Set

Developing user interaction that uses Personalization and Campaigns can involve
several steps. For example, if you want to target users with personalized content in a
Campaign, you will add content to WLP's Virtual Content Repository, create
Placeholders that display the content, set up properties (such as User Profile or Session
properties) that are used to define the conditions under which users will be targeted
with Campaign content, and then create the Campaign.

This chapter describes how to create these property sets that have conditions to
identify users. The properties are used in the conditions you define for your
Personalization logic. Each user is dynamically served personalized web content, or
automatic e-mails based on the logic conditions.

Oracle Enterprise Pack for Eclipse provides editors to help you define the following
properties and events to create conditions that identify and track users:

■ User Profile properties – Determine which user information to save. User Profile
properties can also be used to define Visitor Entitlement and Delegated
Administration roles.

■ Request properties – Capture and use specific HTTP request information to
trigger Personalization. Request properties are associated with a request and are
not persisted between requests. Request properties can also be used to define
Visitor Entitlement and Delegated Administration roles.

■ Session properties – Capture and use specific HTTP session information to trigger
Personalization. Session properties are associated with a session and are not
persisted between sessions. Session properties can also be used to define Visitor
Entitlement and Delegated Administration roles.

■ Custom Events – Trigger Personalization and Campaigns and track user behavior.
You must register custom events so that your application recognizes them.

Developers use Oracle Enterprise Pack for Eclipse to create property sets and
properties. Portal administrators can use WebLogic Portal Administration Console to
update the values in the property set. See Section 2.2, "Checklist for Planning Your
User Interaction Strategy" for information on designing a property set, and see
Chapter 11 to learn how to update property set values.

This chapter includes the following sections:

■ Section 4.1, "Setting up a Property Set"

■ Section 4.2, "Adding Properties or Conditions to a Property Set"

■ Section 4.3, "Modifying Properties and Conditions"

■ Section 4.4, "Deleting a Property or a Property Set"

Setting up a Property Set

4-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

For information on setting up and managing users that will use Interaction
Management features, see the Oracle Fusion Middleware User Management Guide for
Oracle WebLogic Portal.

4.1 Setting up a Property Set
You can use Oracle Enterprise Pack for Eclipse to create a property set in for a User
Profile, User Segment, HTTP session or request data, date and time condition, or an
event.

For example, a User Profile consists of additional attributes you collect and store about
a user. Each piece of metadata in a User Profile is called a property. User properties can
range from statically-defined properties, such as a user's phone number and e-mail
address, to dynamically-created and persisted properties (web site tracking
information for the user, for example).

You could create a property set called human resources that contains properties, such
as gender, hire date, and e-mail-address. User Profile properties appear as
input fields in the WebLogic Portal Administration Console when you edit a User
Profile value. (You can also assign Group Profile property values to groups.) The
properties you create are also used to define rules for Personalization, as well as
Delegated Administration and Visitor Entitlement roles. Users and groups can have
multiple profiles, if a a profile equates to a property set. WebLogic Portal provides a
default User Profile property set called CustomerProperties.usr that contains
common properties.

There are specific properties you can set on content items to enhance Personalization
in your applications. See Chapter 6 for more information. For general information on
Content Management, see the Oracle Fusion Middleware Content Management Guide for
Oracle WebLogic Portal.

After you create the necessary Personalization properties and conditions and set up
users and content, you can create Interaction Management functionality for your
portal. For example, after you create a User Segment to trigger Personalization, you
can create a Content Selector that defines the content that is shown to users in a
specific User Segment.

The following section describes how to create a property set for a User Profile, User
Segment, HTTP Session or Request, event, Community, or remote portlet. Property
sets are application-scoped; any additional scoping or namespacing must be
performed by the application.

Property Sets and other Interaction Management features use a variety of conditions
that identify users and what they are doing. For more information on conditions, see
Section 2.1.1, "Understanding Conditions."

This section contains the following topics:

■ Section 4.1.1, "Creating a User Profile Property Set"

■ Section 4.1.2, "Creating a User Segment Property Set"

■ Section 4.1.3, "Creating a Session Property Set"

■ Section 4.1.4, "Creating a Request Property Set"

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be
named differently.

Setting up a Property Set

Creating a Property Set 4-3

■ Section 4.1.5, "Creating a Community or Remote Portlet Property Set"

■ Section 4.1.6, "Creating an Event Property Set"

4.1.1 Creating a User Profile Property Set
Consult the Section 2.2, "Checklist for Planning Your User Interaction Strategy" for
more details on designing a property set.

Perform the following steps to create a property set for a User Profile:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, right-click the
<data>\src\userprofiles folder in the Package Explorer View and choose New >
User Property Set.

2. In the New User Property Set window, enter a name for the User Profile property
set in the File name field. Keep the .usr file extension.

3. Click Finish. The User Profile Editor appears.

4. Add properties to the property set by following the instructions in Section 4.2,
"Adding Properties or Conditions to a Property Set."

4.1.2 Creating a User Segment Property Set
You can target visitors with web content or automatic e-mails by defining and using
groups called User Segments (similar to segments of a population). User Segments
dynamically group users based on characteristics, such as group membership, browser
type, profile values, and other user properties. If users match the characteristics, they
automatically and dynamically become members of that User Segment. You can use
User Segments in Content Selectors, Placeholders, and Campaigns.

Perform the following steps to create a User Segment:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, right-click the
<data>\src folder in the Package Explorer View and choose New > User Segment.

2. In the New User Segment window, enter a name for the User Segment in the File
name field. Keep the .seg file extension.

3. Click Finish. The User Segment Editor appears.

4. In the Design Palette tab, drag the conditions you want to use into the User
Segment Editor. See Figure 4–1.

Setting up a Property Set

4-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 4–1 This User Segment is Called birdlover.seg

5. When you add a condition to the User Segment, click the condition link to set the
conditions.

For example, if you drag the condition The visitor has specific characteristics into the
User Segment Editor, click the link in the Editor to select the User Profile
properties and their values that make a user a member of the User Segment.

Properties for the user, HTTP session, and HTTP request conditions are based on
the User Profile, HTTP sessions, and HTTP request properties you create.

Choose conditions based on the descriptions in Table 4–1.

Table 4–1 Conditions that Identify Users to Target and the Actions that Will Occur

Condition Description

Bind a variable If you pick a type and bind a variable to it, the action can invoke a method where
the bound variable is used as an argument.

Invoke an instance method You can use it as a condition to trigger an action. If you invokes an instance
method on a variable with specific arguments, then an action that you specify
occurs.

The visitor is a member of a
predefined User Segment

If the visitor to your web site belongs to a predefined User Segment, execute the
specified action. For example, if the visitor belongs to the Gold Customer User
Segment, show the visitor a specific piece of web content (action).

The visitor has specific
characteristics

If a visitor's characteristics are compared to values you specify and those
comparisons evaluate as true, execute a specified action. For example, if the
visitor's salary (characteristic) is greater than or equal to (comparison) $50,000
(value), send the visitor an e-mail (action).

The visitor's HTTP request
has specific properties

If the HTTP request's properties are compared to values you specify and those
comparisons evaluate as true, execute a specified action.

The visitor's HTTP session
has specific properties

If the HTTP session's properties are compared to values you specify and those
comparisons evaluate as true, execute a specified action. An HTTP session is
information your organization might want to track to learn about a visitor's
browsing session on the web site.

An application property has
specific values

After you create an application-defined Property Set (see Section 4.1.5, "Creating a
Community or Remote Portlet Property Set") and some properties, you can use the
An application property has specific values condition. You must have an existing
property set in place to use this condition.

Setting up a Property Set

Creating a Property Set 4-5

6. Save the User Segment file by choosing File > Save.

4.1.2.1 Setting Dates and Times
When you set date and time conditions, the dates and times represent the time in your
region. For example, if you are creating a Campaign action that will be triggered at 8
p.m., that means 8 p.m. in your region. For a time zone that is two hours behind you,
the action will be triggered at 6 p.m. in that time zone.

This also affects dates you set. The date you set becomes effective at midnight in your
time zone. In a time zone that is six hours ahead of yours, that date becomes effective
for that time zone at 6 p.m. your time the day before.

Time changes also affect time-triggered actions. For example, you created a Campaign
that begins October 1 at noon and ends October 31 at noon. If a change to standard
time (one hour earlier) occurs on October 29, the Campaign will actually end on

An event has specific
characteristics

If an event's characteristics are compared to values you specify and those
comparisons evaluate as true, execute a specified action.

An event has occurred (e.g.,
login, click, etc.)

After an event occurs (for example, a user logged into the portal or clicked a link),
an action occurs.

The date is If the current date is equal to the one you specify, execute a specified action. For
example, if the date is equal to July 22, 2006, send users an e-mail about an
upcoming sale (action). The current date refers to the date at the point that the
condition is evaluated for a user visiting the web site. For more information, see
Section 4.1.2.1, "Setting Dates and Times."

It is after a given date If the current date is after a date you specify, execute a specified action. For
example, if the date is after December 18, 2005, offer users a discount (action). The
current date refers to the date at the point that the condition is evaluated for a user
visiting the web site. For more information, see Section 4.1.2.1, "Setting Dates and
Times."

It is after a given date and
time

If the current date and time are after a date and time you specify, execute a
specified action. For example, if the date and time are after July 22, 2006 at 3 p.m.,
send users an e-mail about an upcoming sale (action). The current date and time
refer to the date and time at the point that the condition is evaluated for a user
visiting the web site. For more information, see Section 4.1.2.1, "Setting Dates and
Times."

It is between two times If the current time falls within a range of times you specify, execute a specified
action. For example, if the time is between 3 p.m. and 5 p.m., offer users a discount
(action). The current time refers to the time at the point that the condition is
evaluated for a given user visiting the web site. For more information, see
Section 4.1.2.1, "Setting Dates and Times."

It is between two dates If the current date falls within a range of dates you specify, execute the specified
action. For example, if the date is between December 18, 2005 and December 18,
2006, show users a sale ad (action). The current date refers to the date at the point
that the condition is evaluated for a given user visiting the web site. For more
information, see Section 4.1.2.1, "Setting Dates and Times."

It is between two date/times If the current date and time fall within a range of dates and times you specify,
execute the specified action. For example, if the date and time is between July 22,
2005 at 3 p.m. and July 22, 2006 at 3 p.m., show users a sale ad (action). The range
of dates is inclusive. The current date and time refer to the date and time at the
point that the condition is evaluated for a user visiting the web site. For more
information, see Section 4.1.2.1, "Setting Dates and Times."

The visitor is selected in a
random sample

If the visitor to your web site is selected in a random sample, execute the specified
action. This condition applies only to Campaigns and Rule Sets.

Table 4–1 (Cont.) Conditions that Identify Users to Target and the Actions that Will Occur

Condition Description

Setting up a Property Set

4-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

October 31 at 11 a.m. If you want the Campaign to end at noon on the new standard
time, set the end time to 1 p.m.

4.1.3 Creating a Session Property Set
Session properties capture and use specific HTTP session information to trigger
Personalization and Campaigns. Session properties are associated with a session and
are not persisted between sessions. An example of a Session property set could be
PortalA.

Perform the following steps to create a Session property set:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, right-click the
<data>\src folder in the Package Explorer View and choose New > Other.

2. Select the WebLogic Portal folder, the Property Sets folder, the Session Property
Set folder, and click Next.

3. Enter a name for the Session property set in the File name field. Keep the .ses file
extension.

4. Click Finish. The Session Editor appears.

5. Add properties to the property set by following the instructions in Section 4.2,
"Adding Properties or Conditions to a Property Set."

Use code in a JSP or Java Page Flow to populate the session.

4.1.4 Creating a Request Property Set
Request properties capture and use specific HTTP request information to trigger
Personalization. Request properties are associated with a request and are not persisted
between requests.

Request properties can also store values that are populated programmatically. For
example, the DefaultRequestPropertySet.req property set in the
<project>\data\src\request\ directory is included with every portal web project, and
contains properties called User-Agent and Client Classification. These properties are
populated automatically when a device accesses a portal, providing a key component
of the framework that delivers appropriate web content to mobile devices.

Perform the following steps to create a Request property set:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, right-click the
<data>\src\request folder in the Package Explorer View and choose New >
Request Property Set

Note: Because of the different dates and times on which actions will
be triggered around the country or world, it is important to tell users
that dates and times are effective for your time zone. This type of
information allows users to calculate when in their time zone they can
take advantage of your promotions.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Setting up a Property Set

Creating a Property Set 4-7

2. In the New Request Property Set window, enter a name for the Request property
set in the File name field with the .req file extension.

3. Click Finish. The Request Property Set Editor appears.

4. Add properties to the property set by following the instructions in Section 4.2,
"Adding Properties or Conditions to a Property Set."

4.1.5 Creating a Community or Remote Portlet Property Set
You can create an application-defined property set to store profile data for entities that
are not users or groups. These entities include Communities and remote portlets, or a
custom entity created by an application programmer.

Perform the following steps to create a property set for an Application-defined
property set:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, right-click the
<data>\src folder in the Package Explorer View and choose New > Other.

2. In the New Select a Wizard window, expand the WebLogic Portal folder and
expand the Property Sets folder.

3. Select the Application-Defined Property Set and click Next.

4. Enter a name for the Community or remote portlet property set in the File name
field. Keep the .propset file extension.

5. Click Finish. The Application-Defined Property Set Editor appears.

6. Add properties to the property set by following the instructions in Section 4.2,
"Adding Properties or Conditions to a Property Set."

4.1.6 Creating an Event Property Set
You must register custom events that you create so that your portal application
recognizes the events. After you register your events, you can use them to trigger
Personalization and Campaigns and track user behavior in your portals.

Events need event listeners to listen for them. Register the event listeners for your
custom event in the <PORTAL_APP>\META-INF\wps-config.xml file.

Perform the following steps to create an Event property set:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, right-click the
<data>\src folder in the Package Explorer View and choose New > Other.

2. In the New Select a Wizard window, expand the WebLogic Portal folder and
expand the Property Sets folder.

3. Select Event Property Set and click Next.

4. Enter a name for the Event property set in the File name field, keeping the .evt
file extension.

5. Click Finish. The Event Editor appears.

6. In the New Event Property Set window, enter a name for the Event property set in
the File name field. Keep the .evt file extension.

7. Click Finish. The Event Editor appears.

8. Add properties to the property set by following the instructions in Section 4.2,
"Adding Properties or Conditions to a Property Set."

Adding Properties or Conditions to a Property Set

4-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

4.2 Adding Properties or Conditions to a Property Set
After you create a property set for a User Profile, HTTP Session or Request,
Community, or WSRP, add the properties you want to it. The following steps assume
you have created a property set according to the instructions in Section 4.1, "Setting up
a Property Set."

Perform the following steps to add a property to a property set:

1. In Oracle Enterprise Pack for Eclipse, open the property set file you created in
Section 4.1, "Setting up a Property Set."

2. In the Design Palette tab, drag one of property types into the Property Set Editor
window, as shown in Figure 4–2.

Figure 4–2 A Single Restricted Property Lets You Pick a Value From a List that You Define

The type defines the number of values that can be entered for the property.
Following are descriptions of each type.

■ Single Unrestricted – A single unrestricted property can have only one value,
but you can enter any value. For example, date of birth.

■ Single Restricted – A single restricted property can have only one value, and
you are restricted to selecting that value from a predefined list. For example, a
Gender property can be Male or Female.

■ Multiple Unrestricted – A multiple unrestricted property can have multiple
values, and you can enter any value. Generally, this property is used for a
single category, such as names of your children. Other examples are a favorite
color or preferred browser.

■ Multiple Restricted – A multiple restricted property can have multiple values,
and you are restricted to selecting the values from a predefined list. Other
examples are city and state. You could also use a check all that apply type
data.

3. Select the Properties tab and enter the following:

Modifying Properties and Conditions

Creating a Property Set 4-9

■ Click the drop-down list and select the Data Type for the property value. For
example, if you select Boolean, your property's Values can be only true or
false. (Properties with a Boolean data type are automatically set to Single
Restricted.)

■ Enter a Description and a Property Name.

■ In the Selection Mode and Value Range fields, you can change the property
type. For example, you can change a property from Single Unrestricted to
Multiple Restricted.

■ Use the Values field to enter values for Restricted types or to set the default
value for Unrestricted types. Click the ellipsis icon (...) to enter values. (In the
Enter Property Value dialog box that appears for a Restricted type, enter a
value and click Add after each entry. Click OK after you enter all values.) See
Figure 4–3.

Figure 4–3 This Property Has Three Possible Values

4. Save the properties by choosing File > Save.

4.3 Modifying Properties and Conditions
You can edit properties and values in Oracle Enterprise Pack for Eclipse or you can
edit just the property values in the WebLogic Portal Administration Console.

This section contains the following topics:

■ Section 4.3.1, "Editing Properties"

■ Section 4.3.2, "Editing Property Values"

■ Section 4.3.3, "Retrieving Properties from External Data Stores"

Note: Any change to the Data Type, Selection Mode, or Value
Range fields removes anything previously entered in the Values
field.

Caution: You can also use the Property control to create and manage
properties. However, properties created with this control do not
appear in the WebLogic Portal Administration Console. The
properties must be modified and updated programmatically.

Modifying Properties and Conditions

4-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

4.3.1 Editing Properties
Perform the following steps in Oracle Enterprise Pack for Eclipse to modify properties
or conditions and their values for User Profiles, User Segments, HTTP session or
request data, date and time conditions, or events:

1. In Oracle Enterprise Pack for Eclipse, double-click the property set file.

2. In the Properties tab, change the property or its default value.

3. Save your change by choosing File > Save.

You can also use the <profile:setProperty> JSP tag in your JSPs or the Property
control in your Page Flows to modify existing property values for users.

4.3.2 Editing Property Values
Portal administrators can use the WebLogic Portal Administration Console to modify a
property's value. For instructions, see Section 11.1, "Editing a Property Value."

4.3.3 Retrieving Properties from External Data Stores
If you created a Unified User Profile (UUP) to access external user or group properties,
you can use those properties to define rules for Personalization, Delegated
Administration, or Visitor Entitlement.

After you create a UUP to access the properties stored in an external user store, such as
an LDAP server, you can access those external properties only through WebLogic
Portal's JSP tags, controls, or API. After you deploy a UUP, when the Administration
Console focuses on the associated property set, it will call on the UUP to read values.
A UUP must implement writable interfaces if you want to be able to write to the UUP
properties.

If you want to use those external properties in defining rules for Personalization,
Delegated Administration, or Visitor Entitlement, you must retrieve those properties
in the WebLogic Portal Administration Console. Simply defining rules requires access
only to the property set "schema", which you created in Section 4.1.1, "Creating a User
Profile Property Set." When the rules are evaluated, the actual values are fetched. You
do not have to use the Administration Console.

A password is not considered a property.

Perform the following steps to retrieve user or group properties from an external data
store:

1. Create a UUP for the external data store. See the Oracle Fusion Middleware User
Management Guide for Oracle WebLogic Portal for instructions.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: The properties you retrieve from an external user store may be
read-only, and their values cannot be updated in the WebLogic Portal
Administration Console. To make those properties writable, your
custom UUP must implement writable properties.

Deleting a Property or a Property Set

Creating a Property Set 4-11

2. To create the User Profile property set for the external data store, locate the name
of the property set to create. In your enterprise application root directory, inside
the p13n_app.jar file, copy the /META-INF/p13n-profile-config.xml file
to your own application's /META-INF directory.

3. Modify the p13n-profile-config.xml file in the /META-INF directory of
your own application. See the instructions in the Oracle Fusion Middleware User
Management Guide for Oracle WebLogic Portal.

4. Add properties to the property set that exactly match the property names in the
external store you want to surface. If you are using the LDAP UUP provided by
WebLogic Portal, the property set might be named ldap.usr

5. Save the property set file.

4.4 Deleting a Property or a Property Set
You can delete individual properties from a property set, and you can delete an entire
property set.

Perform the following steps to delete a property from a property set:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, double-click the
property set file.

2. In the Editor window, select the property. For example, a User Segment could
contain the condition The visitor has specific characteristics.

3. Right-click the property and choose Delete.

Perform the following steps to delete a property set:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, double-click the
property set file.

2. Right-click the property set and choose Delete.

You can also use the <profile:removeProperty> JSP tag in your JSPs or the
Property control in your Page Flow to remove existing property values from a user's
profile.

Note: "Apache Beehive and Apache Struts Supported
Configurations"Page flows are a feature of Apache Beehive, which is
an optional framework that you can integrate with WLP. See in the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic
Portal.

Deleting a Property or a Property Set

4-12 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

5

Creating a User Segment 5-1

5Creating a User Segment

You can use User Segments to dynamically group users based on conditions you
define. Instead of creating groups of users, you can create groups of characteristics,
such as gender, browser type, and date or time. If a user matches the characteristics,
the user automatically and dynamically becomes a member of that User Segment. You
can then target these groups with web content, and automatic e-mails based on the
User Segment.

You can define User Segment conditions that identify gender, occupation, movie fans,
or pet lovers. For example, you could classify all users who ordered more than five
on-demand movies in the last 30 days. After you identify and group users into User
Segments, you can target segments with personalized actions through Campaigns and
Content Selectors.

Developers can use Oracle Enterprise Pack for Eclipse to create User Segments. Portal
administrators can use the WebLogic Portal Administration Console to change the
User Segment conditions to dynamically group users. Developer time is not required
to update User Segments.

This chapter includes the following sections:

■ Section 5.1, "Creating a User Segment"

■ Section 5.2, "Modifying a User Segment"

5.1 Creating a User Segment
You can target visitors with web content and automatic e-mails by defining and using
groups called User Segments (as in segments of a population). Instead of being groups
of hard-coded users, User Segments are groupings of characteristics, such as gender,
the type of browser being used, and date or time information. If users match the
characteristics, they are automatically and dynamically members of that User
Segment. When you use User Segments in Content Selectors and Campaigns, users
that belong to those User Segments are targeted with the web content, or e-mail that
you determine.

Perform the following steps to create a User Segment:

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Creating a User Segment

5-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

1. Start the WebLogic server by choosing Run As > Run on Server in Oracle
Enterprise Pack for Eclipse. For instructions on configuring the WebLogic Server,
see the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. In the Portal Perspective, right-click the
<data>\src\segments\GlobalClassifications folder in the Package Explorer View
and choose New > User Segment.

3. In the New User Segment window, enter a name for the User Segment in the File
name field and use the .seg file extension.

4. Click Finish. The User Segment Editor appears.

5. In the Design Palette tab, drag the conditions you want to use into the User
Segment Editor. See Figure 5–1.

Figure 5–1 Add a Condition to the User Segment

6. For each condition you add to the User Segment, click the condition link to set the
conditions.

For example, if you drag the condition The visitor has specific characteristics into the
User Segment Editor, click the corresponding characteristics hyperlink in the User
Segment Editor. The Visitor Characteristics window lets you select the User Profile
properties and their values that will make a user a member of the User Segment.
See Table 4–1, " Conditions that Identify Users to Target and the Actions that Will
Occur".

Properties for the user, HTTP session, and HTTP request conditions are based on
the User Profile, HTTP session, and HTTP request properties you created. For
more information on conditions, see Section 2.1.1, "Understanding Conditions."

7. Save the file by choosing File > Save.

Modifying a User Segment

Creating a User Segment 5-3

This section contains the following topic:

■ Section 5.1.1, "Setting Dates and Times"

5.1.1 Setting Dates and Times
When you set date and time conditions, the dates and times represent the time in your
region. For example, if you are creating a Campaign action that will be triggered at 8
p.m., that means 8 p.m. in your region. For a time zone that is two hours behind you,
the action will be triggered at 6 p.m. in that time zone.

The time zone also affects dates you set. The date you set becomes effective at
midnight in your time zone. In a time zone that is six hours ahead of yours, that date
becomes effective for that time zone at 6 p.m. your time the day before.

Time changes also affect time-triggered actions. For example, you created a Campaign
that begins October 1 at noon and ends October 31 at noon. If a change to standard
time (one hour earlier) occurs on October 29, the Campaign will actually end on
October 31 at 11 a.m. So if you want the Campaign to end at noon on the new standard
time, set the end time to 1 p.m.

5.2 Modifying a User Segment
After you create a User Segment in Oracle Enterprise Pack for Eclipse, you can edit a
User Segment using the following methods:

■ Oracle Enterprise Pack for Eclipse – Developers can use Oracle Enterprise Pack
for Eclipse to modify a User Segment. See Chapter 12 for instructions.

■ WebLogic Portal Administration Console – Portal administrators can use the
Administration Console to edit a User Segment's value. See Chapter 12 for
instructions.

Note: You can use User Segments in Content Selectors and
Campaigns.

Tip: Because of the different dates and times on which actions will be
triggered around the country or world, it is important to tell users that
dates and times are effective for your time zone. This type of
information allows users to calculate when in their time zone they can
take advantage of your promotions.

Modifying a User Segment

5-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

6

Creating a Content Selector 6-1

6Creating a Content Selector

Content Selectors use rules to target specific groups of people with content items from
the WLP Virtual Content Repository. Content Selectors return and display content. For
example, if a user logs in and is identified in the User Profile as a book fan, a Content
Selector can display a list of recommended books.

Developers can use Oracle Enterprise Pack for Eclipse to create and update Content
Selectors and place them in a JSP. Portal administrators use the Administration
Console to make changes to the Content Selectors that display content in your portal.
You can retrieve both published and versioned content in a content selector. For more
information about publishing content, see Adding Content to a WLP Repository in the
Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal.

Users do not have to be authenticated (logged in) to be targeted by Content Selectors.
For example, the presence of specific HTTP request or session properties, or specific
date and time conditions can trigger content to be displayed. You can, for example,
display targeted holiday content to users who visit your portal in the month of
December and view your portal with a specific type of web browser.

However, authenticated users (as well as anonymous tracked users) have profile
information associated with them that you can use to target them with personalized
content. A book fan is an example of this type of User Profile data.

This chapter includes the following sections:

■ Section 6.1, "Setting Up Content to Display"

■ Section 6.2, "Creating a Content Selector"

■ Section 6.3, "Using the <pz:div> Tag Instead of a Content Selector"

■ Section 6.4, "Deleting a Content Selector Query"

6.1 Setting Up Content to Display
Content Selectors retrieve content properties, which are usually text or numeric values.
For example, you want your Content Selectors to retrieve information about books.
Book content can be assigned many properties, such as title, author, publication date,
ISBN, and a URL to the publisher's web site. You may want your Content Selector to
display a bulleted list of titles and link each title to the publisher's web site. This list
and link is accomplished through using just the text values of the content properties.

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Creating a Content Selector

6-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

However, your book content could also have a binary property that stores an image of
the book's cover. The Content Selector can also display that binary property—the
actual image—using the ShowProperty servlet, as described in Section 7.2.1,
"Creating a Placeholder File." The type of binary content that Content Selectors can
display is dependent on the MIME types you have configured. By default, WebLogic
Portal provides MIME support for displaying images and other types of files. See
Section 7.1.1, "Displaying Additional MIME Types in a Placeholder" for more
information on other types.

6.2 Creating a Content Selector
Content Selectors are scoped to the enterprise application, so you can include a
Content Selector in any JSP within the enterprise application.

A Content Selector consists of the following two parts:

1. Content Selector file – The Content Selector file that you create in Oracle
Enterprise Pack for Eclipse contains the following parts:

a. Personalization rules – The conditions that define when the Content Selector
runs its query and displays the content. The following conditions can be used
to trigger a Content Selector:

– The visitor is a member of a predefined User Segment

– The visitor has specific characteristics (User Profile properties)

– Specific HTTP session or request properties exist

– Date and time conditions

b. A content query that retrieves a specific set of content properties.

2. The <pz:contentSelector> JSP tag – This companion tag performs the processing
and is also created in Oracle Enterprise Pack for Eclipse. Content returned from
Content Selectors is usually displayed in portlets. When a user views a portlet or a
portal desktop that contains a Content Selector, the Content Selector's rules and
logic look for a match of properties, such as User Profile information. If the
properties match the Content Selector rules, the Content Selector runs a query and
retrieves and displays all content matching the query.

Use the following guidelines when you create Content Selectors.

■ Create a Content Selector for each audience you want to target. If you have five
audiences you want to target with content, create five Content Selectors, then add
five <pz:contentSelector> tags to your JSP, each of which references its own
Content Selector file.

■ When a Content Selector is triggered and runs its query, the results (node objects)
are returned to the <pz:contentSelector> JSP tag and stored in the tag's id
attribute. At this point, you need other tags or code to process and display the

Tip: During development, the rules files reload when they change
(just like JSPs), so you can quickly develop with Content Selectors.
However, when the server is in production mode, Content Selectors
are loaded into the database (from the file-based definitions in the
application) where they can be modified in the WebLogic Portal
Administration Console without redeploying the application or
restarting the server.

Creating a Content Selector

Creating a Content Selector 6-3

content. The tags described in Table 6–6 are useful tags for displaying retrieved
content.

■ The Search.setSortCriteria method only works for searching published
content. This method is not supported for searching versioned content.

■ To display binary content retrieved by Content Selectors, use the ShowProperty
servlet. The following code example shows how to use the ShowProperty
servlet:

<pz:contentSelector rule="classic" id="nodes"/>
<utility:notNull item="<%=nodes%>">

<utility:forEachInArray array="<%=nodes%>" id="node"
type="com.bea.content.Node">
<img src="<%=request.getContextPath() + "/ShowProperty" + node.getPath()%>">
</utility:forEachInArray>

</utility:notNull>

The HTML tag's source path is constructed to use the path to the content item
in the Virtual Content Repository. The path includes the ShowProperty servlet to
render the binary file. In the node.getPath() method, node is a specific content
item stored by the <utility:forEachInArray> tag's id attribute. If the
<utility:forEachInArray> id attribute value was foo, the method would look
similar to the following: foo.getPath().

This section contains the following topics:

■ Section 6.2.1, "Creating the Content Selector File"

■ Section 6.2.2, "Using a JSP Tag to Display a Content Selector File"

6.2.1 Creating the Content Selector File
Perform the following steps to create a Content Selector file:

1. Start the WebLogic server by choosing Run As > Run on Server in Oracle
Enterprise Pack for Eclipse. For instructions on configuring the WebLogic Server,
see the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. In the Portal Perspective, right-click the
<data>\src\contentselectors\GlobalContentSelectors folder in the Package
Explorer View and choose New > Content Selector.

3. Enter a name for the Content Selector in the File name field, using the .sel file
extension, as shown in Figure 6–1.

Creating a Content Selector

6-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 6–1 Create a New Content Selector

4. Click Finish. The Content Selector Editor appears.

5. Select the Properties tab to change the description for the Content Selector.

6. Select the Design Palette tab to see the Available Conditions under which the
Content Selector will run. As you select conditions, corresponding links appear in
the top of the Editor window.

7. In the Content Selector Editor window, click the corresponding links to create the
conditions you selected, and enter the appropriate information.

8. In the Content Selector Editor window, click the query's empty content search link
to define the query. This requires a connection to WLP's Virtual Content
Repository, which is set up in the WebLogic Portal Administration Console.

9. You can define the query in advanced mode using WebLogic Portal's expression
syntax (on the Advanced tab) or in graphical mode (on the Query tab):

■ Advanced mode – In the Content Search window, select the Advanced tab and
build a query using the instructions in Section 6.2.1.1, "Building a Content
Query with Expressions." The Advanced tab provides code coloring to
highlight context errors in your queries. You can reuse existing queries by
pasting them into the Advanced tab.

■ Graphical mode – Use the following steps in the Query tab to build a content
query by selecting content properties, comparators, and values to retrieve
content items.

a. In the Content Search window, select the Query tab.

b. Select a property set and a property within the content type, and click Add.
One of the default property sets is Standard Versioned, which retrieves
versioned content. Use the Standard Versioned properties to narrow your
content search. For example, you can retrieve only the latest version of a
graphic by selecting the cm_latestVersion property.

Creating a Content Selector

Creating a Content Selector 6-5

c. In the Content Search Values dialog that appears, use one of the following
tabs:

– Values tab – To define the query based on a comparison to a value you
enter. For example, the query could be set to retrieve content with an
investorRiskLevel property that is marked as high. You could also
retrieve binary content with a name of IRACampaign. See Figure 6–2 for
an example and Table 6–6 for more details.

Figure 6–2 A Content Query that Retrieves a Binary File Called IRACampaign

Properties tab – To define the content query based on the property value that
is dynamically fed in from another type of property, such as a user profile
property. For example, instead of creating a query based on static content
properties, you can create a query that reads in the value of the current user's
investorRiskLevel to populate the query. The query would be different for
each user.

10. Click Add. The query descriptor is added in the Content Search window.

11. You can add more value phrases to the query, then set the appropriate option in
the For multiple descriptors area at the bottom of the window.

12. Click OK in the Content Search window to add the query to the search.

13. You can preview the content that will be retrieved by the query by clicking the
Content Preview tab. If you defined the query to use values from a User Profile
property, the retrieved content will be different for each user, so you must enter
the user name of an existing user in the Preview User field to see which content
will be retrieved for that user. By default, you preview published content. If you
want to preview versioned content, click Controls whether this will preview

Note: The properties you select are system content properties, rather
than property set properties like user profile or session properties.

Creating a Content Selector

6-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

versioned or published content, as shown below. (Click the Menu icon next to
this icon to toggle between versioned content and published content.)

For more information about publishing content, see Adding Content to a WLP
Repository in the Oracle Fusion Middleware Content Management Guide for Oracle
WebLogic Portal.

14. Save the Content Selector file by choosing File > Save.

15. To use the Content Selector, add the <pz:contentSelector> tag to the relevant
JSPs. See Section 6.2.2, "Using a JSP Tag to Display a Content Selector File" for
more information on using the <pz:contentSelector> tag to display text
content (including text binaries, such as HTML files) and non-text binaries
(graphics).

Figure 6–3 shows a Content Selector file called classic.sel. The condition that
triggers the Content Selector is a user with a property set of SalesRegion with a value
of Americas. The content that is retrieved is any content with a binary file name that
contains IRACampaign.

Figure 6–3 Content Selector File in Oracle Enterprise Pack for Eclipse

Users do not have to be authenticated to be targeted by Content Selectors.

6.2.1.1 Building a Content Query with Expressions
You can use the WebLogic Portal Expression language in WebLogic Portal
Administration Console to build content queries. You can build queries with the
Advanced Query window from content-related JSP tags and when you are creating
queries for Placeholders, Campaigns, and Content Selectors.

Tip: Content Selectors can display binary content, such as images.
See the Oracle Fusion Middleware Content Management Guide for Oracle
WebLogic Portal for instructions.

Tip: When library services (for example, versioning and workflow
status) are enabled for a WLP Repository, system properties are
always available to queries unless the content item has a retired status.
You can search for both published and versioned content. If you want
to retrieve content based on its content type, you must use the
cm_objectClass system property in your content query. If your
queries use only system properties, the query retrieves all content
items with matching system properties that are not retired.

Creating a Content Selector

Creating a Content Selector 6-7

The query compares a content property to a value that you enter. A query contains the
following three parts: <property><comparator><value>.

If the comparison is true, all matching content items are retrieved.

For example, employee_type == 'manager'. This query retrieves any content
item from the WLP Virtual Content Repository with a property called
employee_type that contains the exact (==) String manager.

Queries are often made up of multiple clauses using and (&&) and or (||) logic. For
example:

This section contains the following topics:

■ Section 6.2.1.1.1, "Using Rules to Build a Query"

■ Section 6.2.1.1.2, "Selecting Properties"

■ Section 6.2.1.1.3, "Using Comparators"

■ Section 6.2.1.1.4, "Supplying Values"

6.2.1.1.1 Using Rules to Build a Query Use the following rules when you build a query:

■ Queries are case sensitive.

■ Queries can be simple, one-clause queries, or they can be more complex,
multi-clause queries. In complex queries, parentheses control the order of
evaluation for multiple query clauses, and clauses are evaluated using and (&&)
and or (||) logic.

■ In a Placeholder, only one content item can be displayed at a time. If you are using
a Placeholder to run queries from a Campaign (as well as its own default queries),
you can run several queries, but only one query at a time. The query is determined
by the Placeholder's weighting system. After the query runs, the query can return
multiple content items, but the Placeholder displays only one of the retrieved
content items.

6.2.1.1.2 Selecting Properties The following two types of properties exist for content:

Query Description

(genre == 'rock' || genre
== 'alternative') &&

platinum_records > 2

This query retrieves any content item with a genre
property that has an exact value of rock or (||)
alternative and (&&) with a platinum_records
property value greater than 2. The parentheses
separates one section of the query from the next,
controlling the order of evaluation.

(genre=='rock' ||
genre=='country') &&
artist=='dead'

This query retrieves any content item with a genre
property that has an exact value of rock or
country and an artist property value of dead.

Tip: With your development server running, create a test
Placeholder or Content Selector in Oracle Enterprise Pack for Eclipse
and construct queries for it using the Advanced tab in the Content
Search window. The retrieved content is displayed in the Content
Preview tab. If you utilize the userProperty() format to retrieve values
for your query, you must enter a user name in the Preview User field
of the Content Preview tab to retrieve the values for that user and
display the retrieved content items.

Creating a Content Selector

6-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ User-defined content properties.

■ System content properties. See Table 6–6 for a list of system content properties.

You can use both properties in a query.

User-defined content properties are stored in sets called types, which are defined in the
WebLogic Portal Administration Console. For example, you can create a type called
Book and add properties, such as title, author, pub_date, and isbn.

System content properties are automatically associated with all content items and are
automatically assigned values for a content item when the content item is added to the
content repository. System properties can be used to retrieve published content or
versioned content. These properties, which are also listed in the
com.bea.content.expression.Search class, include the items listed in
Table 6–1.

Table 6–1 System Content Properties

Property API
Type of
Content Description

cm_uid Node.id.uid Published and

Versioned

The unique ID for a content item. You
can view a content item's unique ID
by selecting the content item in the
Administration Console and viewing
its description.

cm_createdDate Node.createDate Published The date on which a content item was
created. You can view Creation Date
information for content items by
selecting their content folder in the
Administration Console and selecting
the Summary tab.

cm_createdBy Node.createdBy Published The user who created the content
item. You can view Created By
information for content items by
selecting the content folder in the
Administration Console and selecting
the Summary tab.

cm_modifiedDate Node. modifiedDate Published and

Versioned

The date the content item was last
modified. You can view Modified
Date information for content items by
selecting their content folder in the
Administration Console and selecting
the Summary tab.

cm_modifiedBy Node.modifiedBy Published and

Versioned

The user who last edited the content.

cm_nodeName Node.name Published and

Versioned

The name of the content item, as
shown in the Administration Console.

cm_path Node.path Published The Virtual Content Repository path
to the content item. For example,

/WLPRepository/
juvenilebooks/
TheCrazyAdventure.

Creating a Content Selector

Creating a Content Selector 6-9

cm_isHierarchy Node.type ==
Node.HIERARCHY

Published Identifies a content folder rather than
a content item. Content folders can
contain content items and child
content folders. When using this
property in queries, compare it using
a Boolean value of true or false.

cm_isContent Node.type ==
Node.CONTENT

Published Identifies a content item rather than a
content folder. Content items contain
properties from the type with which
they are associated. When using this
property in queries, compare it using
a Boolean value of true or false.

cm_objectClass Node. objectClass.
name

Published The content type associated with a
content item. You can view Type
information for content items by
selecting the Types tab in the
Administration Console and selecting
the Summary tab.

cm_objectClassInstance The instance of an object
class

Published Finds all instances of a given object
class and all of its children.

cm_value The value Published and

Versioned

A metadata search for any property
with a given value. This property is
similar to a wildcard search.

cm_contentType BinaryValue.
contentType

Published and

Versioned

The MIME type for content item
binary properties. For example,
image/jpeg. You can view the
MIME type of a content item by
selecting it in the Administration
Console and looking at the Primary
Property Data Type field.

cm_binarySize BinaryValue. size

(For Node Properties)

Published and

Versioned

The size of the binary value of content
items. You can view the size of a
content item's binary value by
selecting the content item in the
Administration Console, selecting the
Properties tab, and clicking
Download File. Click Save and
right-click the displayed binary file to
view the file properties.

When you use this property in a
query, specify binary size in bytes.

cm_binaryName BinaryValue. name

(For Node Properties)

Published and

Versioned

The file name of the binary value of a
content item. You can view the name
of a content item's binary value by
selecting the content item in the
Administration Console and viewing
the Name value in the Summary tab.

cm_assignedToUser VirtualNode Versioned The user to which the node is
assigned. For example,
cm_assignedToUser = 'joe'.

cm_checkedOut VirtualNode Versioned If the node is checked out. For
example, cm_checkedOut = false.

Table 6–1 (Cont.) System Content Properties

Property API
Type of
Content Description

Creating a Content Selector

6-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

When you construct a query, you can specify property names by themselves without
quotes. For example: title <comparator> <value>. However, if a property name
contains spaces, double quotes, or dashes, you must enclose the property name within
a toProperty() format. For example: toProperty('Favorite Author') <comparator>
<value>.

The query looks for the property name in all content types and returns any content
item with that property value (if the content item meets the conditions of the query).
However, you can also isolate a property within a specific type. For example, if you
have a books type and an articles type that both contain a title property, you can
retrieve content items with a specific title from within only the book type using the
cm_objectClass property.

For example: title likeignorecase '*Adventure' && cm_objectClass =
'books'

6.2.1.1.3 Using Comparators Comparators provide the logic that compares a query's
property to the value you enter. If a content item meets the conditions of the query, the
content item is returned. Table 6–2 contains a list of the comparators you can use in
your queries.

cm_latestVersion N/A Versioned The latest version of the content. For
example, cm_latestVersion =
true.

cm_role VirtualNode Versioned The role to which the node is
assigned. For example, cm_role =
'Admin'.

cm_version Version Versioned The version number of the content.
This value is a string. For example,
cm_version = '5'.

cm_versionComment Version Versioned Text describing the changes to the
version. For example,
cm_versionComment = Includes
updates from Marketing.

Table 6–2 Available Comparators

Comparator Description (Property Formats on Which the Comparator Can Act)

= or == Checks to see if a single-value property (including a single value
containing a list) is exactly equal to the case-sensitive value you enter
(Boolean, date and time, numeric, and string values). For example, genre
== 'fantasy' retrieves any content item that has case-sensitive
fantasy as the value for the genre property.

!= Checks to see if a single-value property (including a single value
containing a list) is not equal to the case-sensitive value you enter
(Boolean, date and time, numeric, and string values). For example, genre
!= 'mystery' retrieves any content item that does not have
case-sensitive mystery as the value for the genre property.

> Checks to see if a single-value property is greater than the value you
specify (date or time and numeric values). For example, pub_date >
toDate('MM-dd-yyyy', '01-01-2000') retrieves any content item
with a pub_date property set to a value later than January 1, 2006.

Table 6–1 (Cont.) System Content Properties

Property API
Type of
Content Description

Creating a Content Selector

Creating a Content Selector 6-11

< Checks to see if a single-value property is less than the value you specify
(date or time and numeric values). For example, books in series <
3. Because the property name contains spaces, you must use
toProperty(), as shown in toProperty('books in series') <
3 to retrieve any content item with a value less than 3 for the books in
series property.

>= Checks to see if a single-value property is greater than or equal to the
value you specify (date or time and numeric values). For example,
toProperty('books in series') >= 3 retrieves any content item
with a value greater than or equal to 3 for the books in series property.
The property value of the sample content item is 1.

<= Checks to see if a single-value property is less than or equal to the value
you specify (date or time and numeric values). For example,
toProperty('books in series') <= 3 retrieves any content item
with a value less than or equal to 3 for the books in series property.

like Checks to see if a single-value property is like the case-sensitive value
you enter. You can use wildcard characters * (one or more characters) or ?
(single character). For example, author like 'P?nm*' retrieves any
content that contains case-sensitive Penman, Panmen, or any other
variation with a different character between the P and the n and any
characters after the m for the author property.

Note: If you do not put the asterisk (*) at the end, the content item is not
retrieved, because more text follows the name Penman in the property
value.

likeignorecase Checks to see if a single-value property is like the value you enter. You
can use the wildcard characters * and ?. Character case is ignored. For
example, author likeignorecase 'pen*' retrieves any content
with an author value that begins with pen in any case combination, such
as penman, Penman, Penfield, and so on.

contains Checks to see if a multi-value property contains exactly the single value
you specify (date or time, numeric, and string values). In some
implementations, this comparator may also work against single-value
properties. For example, genre contains 'fantasy' retrieves any
content containing an genre property value of exactly fantasy.

containsall Checks to see if a multi-value property contains all of the exact values
you specify (date or time, numeric, and string values). For example,
genre containsall ('fantasy', 'children') retrieves any
content that contains genre property values of fantasy and children.
In some implementations, this comparator can also work against
single-value properties.

containsany Checks to see if a multi-value property contains any of the exact values
you specify (date or time, numeric, and string values). For example,
genre containsany ('fantasy', 'children', 'scifi')
retrieves any content that contains genre property values of fantasy,
children, or scifi. In some implementations, this comparator can also
work against single-value properties.

in Checks to see if a single-value property contains any of the values you
enter. If the value you enter is not a list of possible values (is a single
value), in is the same as = or == (date or time, numeric, and string
values). For example, isbn in ('pending', 'not_available')
retrieves any content that contains the isbn property value of pending or
not_available.

Table 6–2 (Cont.) Available Comparators

Comparator Description (Property Formats on Which the Comparator Can Act)

Creating a Content Selector

6-12 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

6.2.1.1.4 Supplying Values Values represent the content you want the query to return.
By supplying values to a query, you are telling the query which content to retrieve or
ignore based on the values stored on the content items.

For example, if you have a content type called book with a property called title, all
content items you associate with the book type have a title field. Each title value is
unique, so in a query, you can enter the unique value you want, resulting in the query
retrieving a specific content item (or ignoring the content item, depending on the
comparator you use).

You can enter values in two ways:

1. Hard code values in the queries – Use hard-coded values so that you get
predictability with your queries. Hard-coded values let you pinpoint the specific
content you want to retrieve.

2. Get values from User Profiles and other types of property sets (Session and
Request) – When you populate values from User Profile, session, or request
property sets, the value in each specified User Profile, session, or request property
is inserted programmatically into the query, letting you create personalized
queries based on the current user's preferences or the current session or request.

For example, in a query where a content property is author, you can get the value
of the user's FavoriteAuthor profile property to supply the value for the query,
letting the query retrieve content associated with the user's favorite author.

Use the following guidelines to build values in queries:

■ Enclose string literal values in single quotes. For example: 'pending'.

■ To supply a single or double quote, use a backslash for the quoting character
(unicode characters are not supported). For example, if a book title is stored
with double quotes, such as "The Crazy Adventure", enter the value like
this: '\"The Crazy Adventure\"'. If the title is stored with single quotes,
enter the value like this: title = '\'The Crazy Adventure\'' .

■ Unicode (such as "\u6565"), octal (such as "\7", "\65", "\377"), and
standard Java escape sequences (such as "\n", "\r", "\b") are allowed in the
string literals.

■ Boolean literals are either the true or false keyword (lowercase, without
quotes).

■ Number literals are Java form (scientific notation is supported).

Date or time literals are presented in toDate('formatStr', 'dateStr')
format, where formatStr is the date and time format you want to use (such
as 'MM/dd/yyyy') and dateStr is the actual date and time you enter (such
as '01/01/2006').

The formatStr must be a valid java.text.SimpleDateFormat string. If
you omit the formatStr, the toDate() expects the date and time you enter
to be in the following format: 'MM/dd/yyyy HH:mm:ss z' (where z is the
time zone, such as MDT). For example: toDate('12/01/2004 06:00:00
MDT').

To specify date values only, enter the format you want for the formatStr. For
example, for a date value only, specify toDate('MM/dd/yyyy',
'12/01/2004'). You can also specify only the month and year, such as
'MM-yyyy'.

Use the now keyword to specify the time at which the expression is being
parsed at run time.

Creating a Content Selector

Creating a Content Selector 6-13

■ To supply query values from user, request, or session properties, use the
following format: <type>Property(<propertyset>, <propertyname>),
where the type is user, request, or session. For example:
userProperty('userpreferences', 'FavoriteAuthor').

6.2.1.1.5 Creating Complex Queries You can combine multiple independent query
clauses, tying them together with and (&&) and or (||) logic and controlling the order
of evaluation with parentheses the way you would with algebraic expressions. This
lets you create more complex queries. You can also include not logic (!) in complex
queries by using the exclamation point in front of a parenthetical grouping.

See the Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal
for more information about queries.

6.2.1.1.6 Using Sample Queries Figure 6–4 shows the properties set on a book stored in
WLP's Virtual Content Repository.

Figure 6–4 Properties on a Book

The example queries in Table 6–3, Table 6–4, and Table 6–5 use properties in the
sample content item, and the description for each sample query tells you if the query
will retrieve the content item.

Creating a Content Selector

6-14 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Table 6–3 Example Queries

Query
Will Retrieve
Sample? Description\

genre == 'fantasy' Yes Retrieves any content item that has case-sensitive
fantasy as the value for the genre property.

will_visit_schools == true Yes Retrieves any content item with the
will_visit_schools property set to true. There
are no single quotes around true, and true is
lowercase.

genre != 'mystery' Yes Retrieves any content item that does not have
case-sensitive mystery as the value for the
genre property.

pub_date > toDate('MM-dd-yyyy',
'01-01-2005')

Yes Retrieves any content item with a pub_date
property set to a value later than January 1,
2005.

books in series < 3 No Because the property name contains spaces, you
must use toProperty(), as shown in the next
example.

toProperty('books in series') < 3 Yes Retrieves any content item with a value less than
3 for the books in series property.

toProperty('books in series') >= 3 No Retrieves any content item with value greater
than or equal to 3 for the books in series
property. The property value of the sample
content item is 1.

toProperty('books in series') <= 3 Yes Retrieves any content item with value less than
or equal to 3 for the books in series property.

author like 'P?nm*' Yes Retrieves any content that contains case-sensitive
Penman, Panmen, or any other variation with a
different character between the P and the n and
any characters after the m for the author
property. Without an asterisk (*) at the end, the
content item would not be retrieved, because
more text follows the name Penman in the
property value.

author likeignorecase 'pen*' Yes Retrieves any content with an author value that
begins with pen in any case combination, such
as penman, Penman, Penfield, and so on.

genre contains 'fantasy' Yes Retrieves any content containing an genre value
of exactly fantasy.

genre contains 'child*' No The contains comparator does not allow
wildcard characters.

genre containsall ('fantasy',
'children')

Yes Retrieves any content that contains genre
property values of fantasy and children.

genre containsall ('fantasy',
'children', 'scifi')

No Retrieves any content that contains genre
property values of fantasy, children, and
scifi. The sample content item contains
fantasy and children, but not scifi.

genre containsany ('fantasy',
'children', 'scifi')

Yes Retrieves any content that contains genre
property values of fantasy, children, or
scifi.

isbn in ('pending',
'not_available')

Yes Retrieves any content that contains the isbn
property value of either pending or
not_available.

Creating a Content Selector

Creating a Content Selector 6-15

Table 6–4 Complex Queries

Query
Will Retrieve
Sample? Description

toProperty('books in series') >= 3
&& pub_date >
toDate('MM-yyyy','1-2005')

No Retrieves books that are part of a trilogy that
were published after January 2005.

(genre contains 'children' ||
keywords like '*children*') &&
will_visit_schools == true

Yes Retrieves books with a genre value set to
children or has *children* in the keyword
value; and whose author is available to visit
schools.

((genre contains 'children' ||
keywords like '*children*') &&
will_visit_schools == true) && isbn
!= 'pending'

No Retrieves books with a genre value set to
children or has *children* in the keyword
value; and whose author is available to visit
schools; and with an isbn value that does not
equal pending (meaning the book is not yet
published). The parenthetical nesting controls
the order of evaluation.

(title likeignorecase '*adventure'
|| genre contains 'fantasy') &&
(pub_date >= toDate('MM-yyyy',
'01-2005') || isbn == 'pending')

Yes Retrieves books whose title contains
*adventure or whose genre contains
fantasy; and whose pub_date is after January
2005 or whose isbn is still pending (not yet
published).

(genre containsany
userProperty('userpreferences',
'BookGenre') && (keywords
likeignorecase '*pixies')) ||
author likeignorecase
userProperty('userpreferences',
'FavoriteAuthor')

Depends Reads the User's Profile properties and uses
specific property values to supply the values in
the query. The query provides personalized
content retrieval, because retrieved content is
based on user preferences.

For example, if the current user has her
BookGenre property set to mystery and her
FavoriteAuthor set to Penman, Piper, this
query will return the sample content. Even
though the BookGenre value doesn't match in
the first clause, the FavoriteAuthor in the or
(||) second clause does match.

If you are using the Property control or the
setProperty JSP tag to set user property sets
and properties programmatically (rather than
creating property sets in Oracle Enterprise Pack
for Eclipse), you can still use userProperty()
in your queries.

Table 6–5 Other Useful Queries (Not Related to the Sample Content)

Query Description

language ==
userProperty('userpreferences',
'userPreferredLang')

This approach lets you serve language-appropriate
content to each user based on the user language
preference (userPreferredLang) stored in a property
set. You could also use sessionProperty() to get the
language preference from the session; or you could use
requestProperty('DefaultRequestPropertySet
', 'Locale'), which returns the user's locale string,
such as en-US.

((UserAge <= 35 && colors contains 'red'
|| UserAge > 35 && !(colors contains
'black')) && mimeType == 'text/html')
&&toProperty('Launch Date') < now &&
!(expireDate > toDate('MM-yyyy',
'12-2004'))

This query uses not logic, as shown in the !(colors
contains 'black') clause.

Creating a Content Selector

6-16 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

6.2.2 Using a JSP Tag to Display a Content Selector File
After you have created a Content Selector file (see Section 6.2.1, "Creating the Content
Selector File"), you must use the <pz:contentSelector> JSP tag to display the
content. The following JSP tag uses the classic Content Selector shown in
Figure 6–3:

<pz:contentSelector rule="classic" id="nodes"/>

The JSP tag has two required attributes:

■ The rule attribute – Contains the name of the Content Selector file (without the file
extension). This attribute tells the JSP tag which personalization rules and query to
use.

■ The id attribute – When a Content Selector runs its query, the content is retrieved
from the virtual content repository as an array of content properties. The id
attribute, which is a String you enter when you set up the JSP tag, serves as a
container that holds the array. At this point, you must use other JSP tags to handle
the array and display the content. For details on what you can do with the array of
properties to display the content, see Section 7.1.1, "Displaying Additional MIME
Types in a Placeholder."

There are other attributes you can set on the <pz:contentSelector> tag. See the
Oracle Fusion Middleware JSP Tag Java API Reference for Oracle WebLogic Portal for more
information on the class.

6.2.2.1 Adding a Content Selector to a JSP
After you create a Content Selector file in Oracle Enterprise Pack for Eclipse, you can
use any of the following three methods to add the Content Selector to a JSP in Oracle
Enterprise Pack for Eclipse:

■ Drag a Content Selector from the Design Palette onto a page of an open portal file.
See the instructions in Section 6.2.2.1.1, "Dragging a Content Selector to a Portal
File."

■ Open the JSP to which you want to add the Content Selector, and drag the Content
Selector file from the Design Palette into the JSP. The JSP tag is added
automatically, the rule attribute is automatically populated with the name of the
Content Selector, and the id attribute is included (without a value). The include
statement for the tag library is automatically added. See Figure 6–5.

Creating a Content Selector

Creating a Content Selector 6-17

Figure 6–5 Adding a Content Selector to a JSP in Oracle Enterprise Pack for Eclipse

■ Drag the <pz:contentSelector> JSP tag from the JSP Design Palette window
(in the Portal Personalization category) into an open JSP and populate the tag's
attributes manually. Get to the JSP Design Palette by choosing Window > Show
View > Design Palette. The include statement for the tag library is
automatically added.

6.2.2.1.1 Dragging a Content Selector to a Portal File Perform the following steps to drag a
Content Selector to an open portal file:

1. In the Portal Perspective, locate a Content Selector file.

2. Drag a Content Selector from the Design Palette onto a page of an open portal file.
When you do this, three things occur:

a. The Portlet Wizard appears, letting you quickly create a portlet that will
display the Placeholder.

b. The resulting portlet is automatically added to the portal page.

c. A JSP file is automatically created for the Content Selector.

The JSP file contains the Content Selector JSP tag with the rule and id attributes
automatically populated, and the include statement for the tag library is
automatically added. Other JSP and HTML tags are also added automatically, as
shown in Example 6–1.

Example 6–1 JSP File with Other JSP and HTML Tags

<pz:contentSelector rule="modern" id="nodes"/>
<utility:notNull item="<%nodes%">

 <utility:forEachInArray array="<%=nodes%>" id="node"
 type="com.bea.content.Node">
 <cm:getProperty id="node" name="cm_nodeName"
 conversionType="html"/>
 </utility:forEachInArray>

</utility:notNull>

Table 6–6 describes the JSP tags you can use with a Content Selector.

Using the <pz:div> Tag Instead of a Content Selector

6-18 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

6.2.2.1.2 Using More than One Content Selector You can use multiple Content Selectors
with conditional logic to get hierarchical personalized content, where you try to match
the most specific to the least specific, or for mutually exclusive Content Selectors.
Example 6–2 demonstrates how to use multiple Content Selectors for personalized
content.

Example 6–2 Using the <pz:contentSelector> JSP Tag for Multiple Content Selectors

<%@ taglib uri="http://www.bea.com/servers/portal/tags/content" prefix="cm"%>
<%@ taglib uri="http://www.bea.com/servers/p13n/tags/utility" prefix="utility"%>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/personalization"
 prefix="pz"%>
<pz:contentSelector rule="FemaleContent" id="nodes" sortBy="cm_nodeName desc"/>
<% if (nodes == null || nodes.length <= 0) { %>
<pz:contentSelector rule="MaleContent" id="nodes" sortBy="cm_nodeName desc"/>
<% }%>
<% if (nodes == null || nodes.length <= 0) { %>
 Sorry, you don't get a free lunch today.
<% }%>
 Found <%=nodes.length%> Node(s):
<dl>
<utility:forEachInArray array="<%=nodes%>" id="node"
 type="com.bea.content.Node">
<dt><cm:getProperty id="node" name="title" conversionType="html"/></dt>
<dd><ad:render id="node" /></dd>
</utility:forEachInArray>
</dl>

6.3 Using the <pz:div> Tag Instead of a Content Selector
The <pz:div> JSP tag can provide in-line HTML Personalization. You can populate a
JSP with sets of in-line content and wrap it with the tag. The tag uses a rule attribute
that takes the name of an existing User Segment. Only members of that User Segment
can see the in-line content. For example, you created a User Segment called
bookfanUserSegment.seg in Oracle Enterprise Pack for Eclipse that makes anyone
a member who has a bookfan User Profile property set value set of true. The following
sample code illustrates this:

<pz:div rule="bookfanUserSegment">
 <p>Only users who are book nerds will see this text!</p>
</pz:div>

Table 6–6 JSP Tags for Content Selectors

JSP Tag Description

<utility:notNull> Checks to see if the array actually contains content.

 Provides a container for listing content items in a bulleted
list.

<utility:forEachInArray> Iterates through the array and isolates each content item
until all items in the array have been processed. Each item
is given its own bullet.

<cm:getProperty> Takes each content item from
<utility:forEachInArray> and designates which
content property is going to be displayed.

Modifying a Content Selector

Creating a Content Selector 6-19

User Segment rules (conditions) are the same as those available to Content Selectors,
so the <pz:div> tag provides a similar level of Personalization. The difference is that
Content Selectors retrieve their content from the virtual content repository, while the
<pz:div> tag encloses its content in-line in the JSP.

6.4 Deleting a Content Selector Query
Deleting a Content Selector query removes the query from the Content Selector in
Oracle Enterprise Pack for Eclipse and the Administration Console.

Developers perform the following steps to remove a query in a Content Selector:

1. In the Portal Perspective, open the Content Selector file in the
<data>\src\contentselectors\GlobalContentSelectors folder in the Package
Explorer View.

2. Click the query link in the Content Selector Editor.

3. Select the query in the Content Search dialog.

4. Click Remove.

5. Click OK.

6.5 Deleting a Content Selector
Removing a Content Selector removes it from Oracle Enterprise Pack for Eclipse and
from the Administration Console.

Perform the following steps to delete a Content Selector:

1. In the Portal Perspective, open the Content Selector file in the
<data>\src\contentselectors\GlobalContentSelectors folder in the Package
Explorer View.

2. Right-click the Content Selector and choose Delete.

3. Click Yes to confirm the deletion.

6.6 Modifying a Content Selector
You can use the following methods to edit the content that a Content Selector displays:

■ Oracle Enterprise Pack for Eclipse – Developers can use Oracle Enterprise Pack
for Eclipse to modify a Content Selector's conditions and queries. For instructions,
see Chapter 13.

Tip: Content Selectors can display binary content, such as images.
See the Oracle Fusion Middleware Content Management Guide for Oracle
WebLogic Portal for instructions.

Note: The steps in this chapter refer to the <data>\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Tip: You should also delete any <pz:contentSelector> tags in your
JSPs that reference the Content Selector you deleted.

Modifying a Content Selector

6-20 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ Administration Console – Portal administrators can use the Administration
Console to edit a Content Selector's properties or description. For instructions, see
Chapter 13.

7

Creating a Placeholder 7-1

7Creating a Placeholder

A Placeholder is a predefined location in a JSP that displays a single piece of web
content at a time that is dynamically retrieved from the WLP Virtual Content
Repository. If more than one content query is registered for a Placeholder, the
Placeholder uses predefined queries and logic to determine which query to run and
which content item to display. If a content query does not return data, the Placeholder
runs another registered query, if there is one. Each query has a priority, or weight that
determines the specific content to display.

For example, a Placeholder for a pet store could use a Campaign query to determine if
the user is a bird lover and then display a special bird offer, as shown in Figure 7–1.

Figure 7–1 Placeholders can Display Default Content and Campaign Content

A Placeholder is made up of two parts:

1. A Placeholder file you create in Oracle Enterprise Pack for Eclipse

2. A companion JSP tag that performs the processing

When you create a Placeholder, you select the content to display, choose a query for
the Placeholder, and then create the Placeholder itself.

This chapter includes the following sections:

■ Section 7.1, "Selecting Content for a Placeholder"

■ Section 7.2, "Creating a Placeholder"

■ Section 7.3, "Modifying a Placeholder"

Selecting Content for a Placeholder

7-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ Section 7.4, "Using the <ad:adTarget> Tag Instead of a Placeholder"

7.1 Selecting Content for a Placeholder
Placeholders use a document's MIME-type attribute to generate the appropriate
HTML tags that the browser requires. By default, Placeholders generate the
appropriate HTML tags only for the following MIME types:

■ Images – A Placeholder generates an tag with attributes that the browser
needs to display the image. If you want images to be clickable, you must specify
the target URL and other link-related information as ad attributes in your Content
Management system.

■ Other types – A Placeholder passes the text directly to the JSP.

This section contains the following topics:

■ Section 7.1.1, "Displaying Additional MIME Types in a Placeholder"

■ Section 7.1.2, "Adding Content to a Placeholder"

7.1.1 Displaying Additional MIME Types in a Placeholder
To display content, Placeholders refer to a document's MIME type and then generate
the HTML tags that a browser requires for the specific document type. For example, to
display an image-type document, an ad placeholder must generate the tag that
a browser requires for images. By default, ad Placeholders can generate the
appropriate HTML only for the MIME types listed in the Section 7.1, "Selecting
Content for a Placeholder" section for images and other types of files.

■ Images – A Placeholder generates an tag with attributes that the browser
needs to display the image. If you want images to be clickable, you must specify
the target URL and other link-related information as content properties in the
Virtual Content Repository.

■ Other types– A Placeholder passes the text directly to the JSP.

If you are familiar with basic Java programming, you can write classes that enable
Placeholders to generate HTML for additional MIME types. A video clip is an example
of an additional MIME type.

Perform the following tasks to display additional MIME types in a Placeholder:

1. Create a utility or EJB project and add the Portal Web Application Services facet to
the project. For general instructions, see Section 9.8.1.1, "Creating a Regular Event
Class."

2. Create and compile a Java class to generate HTML.

3. Register the new class.

7.1.1.1 Creating and Compiling a Java Class to Generate HTML
To generate the HTML that the browser requires to display the MIME type, use Oracle
Enterprise Pack for Eclipse to create a utility or EJB project, add the Portal Web
Application Services facet to the project with the web project's Properties dialog. (You
can also add this facet to an existing utility or EJB project that is part of your EAR file.)

Caution: The <EMBED> tags do not always work correctly in all
browsers. The behavior depends on the plug-ins you have configured.

Selecting Content for a Placeholder

Creating a Placeholder 7-3

The next steps is to create a Java class that implements the
com.bea.p13n.ad.AdRenderableContentProvider interface. For information
on this interface, see the Oracle Fusion Middleware Java API Reference for Oracle
WebLogic Portal.

7.1.1.2 Registering the New Class
After you save the class in a directory that is in your CLASSPATH, you must notify
WebLogic Portal of its existence. You can do this manually or with the Administration
Console. Choose Section 7.1.1.2.1, "Method 1" or Section 7.1.1.2.2, "Method 2" to add
the class to your CLASSPATH.

7.1.1.2.1 Method 1 Perform the following steps to manually add the class to your
CLASSPATH:

1. To add the class manually, stop the WebLogic Server.

2. Create a backup copy of your application's META-INF\wps-config.xml file.

3. Open the wps-config.xml file in a text editor and find the <AdService>
element.

4. Add the following as a sub-element of <AdService>:

<AdContentProvider
Name="MIME-type"
Provider="YourClass.class"
Properties="optional-properties-for-your-class"
>
</AdContentProvider>

Provide the following values for the attributes of the AdContentProvider
element:

■ Name – The name of the MIME type that you want to support.

■ Provider – The name of the compiled Java file. If you saved the file below a
directory that your CLASSPATH environment variable names, you must
include the file's path name, starting one directory level below the directory in
CLASSPATH.

■ Properties – Any additional properties or parameters want to pass to your
object.

For example, if you added <PORTAL_APP>/classes to the system CLASSPATH,
save your class to support AVI files as
<PORTAL_APP>/classes/myclasses/MimeAvi.class. The following code
sample shows sample attribute values:

<AdContentProvider
Name="video/x-msvideo"
Provider="myclasses.MimeAvi"
Properties=""
>
</AdContentProvider>

5. Save your changes to the wps-config.xml file.

6. Restart the WebLogic Server.

You can also add the class to the CLASSPATH using the steps in Section 7.1.1.2.2,
"Method 2."

Creating a Placeholder

7-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

7.1.1.2.2 Method 2 Rather than manually adding the class to your CLASSPATH and
activating the content provider, you can use the Administration Console to perform
the following steps:

1. In Oracle Enterprise Pack for Eclipse, start the Administration Console by
choosing Run > Open Portal Administration Console.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. Select Interaction Management in the Resource Tree and click Ad Service in the
Browse tab.

4. In the Ad Content Providers section, click Add Ad Content Provider.

5. Enter a Description and a Name for the new content provider. In the Content
Provider field, specify the name of the class that generates the HTML elements
that the browser requires to display an ad of this MIME type. If you write your
own class, it must implement the
com.bea.p13n.ad.adRenderableContentProvider interface.

6. Click Update.

7. After you add the content provider, you can add additional properties.

7.1.2 Adding Content to a Placeholder
You can add specific properties to content items that support using content in
Placeholders. See Chapter 3.

7.2 Creating a Placeholder
Creating a Placeholder involves two steps:

1. Create a Placeholder file in Oracle Enterprise Pack for Eclipse.

2. Use companion <ph:placeholder> JSP tags in any relevant JSPs. See the Oracle
Fusion Middleware JSP Tag Java API Reference for Oracle WebLogic Portal for more
information on the Java class.

Each <ph:placeholder> JSP tag must use its name attribute to reference a
Placeholder you have created in Oracle Enterprise Pack for Eclipse.

This section contains the following topics:

■ Section 7.2.1, "Creating a Placeholder File"

■ Section 7.2.2, "Building a Content Query"

■ Section 7.2.3, "Determining Which Query and Content to Display"

■ Section 7.2.4, "Adding a Placeholder to a JSP"

7.2.1 Creating a Placeholder File
A Placeholder is a predefined location in a JSP that displays a single piece of web
content retrieved from the WLP Virtual Content Repository. A Placeholder uses
queries to retrieve and display content.

By default, Placeholders support the following MIME types: HTML, XML, plain text,
and images. To display additional MIME types in Placeholders, see Section 7.1.1,
"Displaying Additional MIME Types in a Placeholder."

Creating a Placeholder

Creating a Placeholder 7-5

Content returned from a Placeholder is displayed in a portlet. When a user views a
portlet or a portal desktop containing a Placeholder, the Placeholder's rules and
back-end logic run a query, retrieve zero or more pieces of content matching the query,
and display one of the returned items. If no content is retrieved, none is displayed.

The queries for a Placeholder originate from two different locations:

■ From the Placeholder itself – When you create a Placeholder in the Placeholder
Editor, you can also define default queries to run in the Placeholder. Default
queries run for all anonymous and authenticated visitors.

■ From a Campaign – When you create a Campaign in the Campaign Editor, one
option is to display targeted personalized content in a Placeholder for a specific
type of visitor.

Because a Placeholder can contain multiple queries, the Placeholder can display a
different piece of content each time a user accesses the JSP containing the Placeholder.
The following procedure includes a step that lets you set a query's priority to increase
or decrease the chances that the query is run instead of other queries present in the
Placeholder.

Placeholders are scoped to the enterprise application, so you can include Placeholders
in any JSPs within the enterprise application.

Perform the following steps to create a Placeholder:

1. Start the WebLogic Server in Oracle Enterprise Pack for Eclipse by choosing Run
As > Run on Server. For instructions on configuring the WebLogic Server, see the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. In the Portal Perspective, right-click the <data>\src\placeholders folder in the
Package Explorer View and choose New > Content Placeholder.

3. In the New Placeholder File window, enter a name for the Placeholder in the File
name field. Keep the .pla file extension.

4. Click Finish. The Placeholder Editor appears.

5. In the Design Palette tab, drag the New Query into the Placeholder Editor to
define a default query, as shown in Figure 7–2.

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Creating a Placeholder

7-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 7–2 Define a Default Query by Dragging the New Query into the Placeholder Editor

Every query you add to the Placeholder in this way is a default query
(non-Campaign). Campaigns can also put queries in this Placeholder, but Campaign
queries are not defined in the Placeholders themselves. They are defined in the
Campaigns.

Figure 7–3 Click Show List to View Hidden Tabs

6. In the Property Editor window, set values for the following:

■ Name – Enter a name for the query. The query name is used only for display
purposes.

Note: If you do not see the Design Palette tab, click Show List to
see other tabs that are not visible, as shown in Figure 7–3.

Creating a Placeholder

Creating a Placeholder 7-7

■ Priority – Select the query's priority relative to other queries. A query with a
higher priority is more likely to be run.

7. To define the query, click the empty content search link in the New Query item
you added. You can define the query using WebLogic Portal's expression syntax
(on the Advanced tab) or in graphical mode (on the Query tab).

■ Advanced Mode – In the Content Search window, click the Advanced tab and
build a query using the instructions in Section 6.2.1.1, "Building a Content
Query with Expressions."

■ Graphical Mode – Begin with Step a and build a content query by selecting
content properties, comparators, and values to retrieve content items.

a. In the Content Search window, select the Query tab.

b. Select a content type in the Property set field, select a content property in the
Property field, and click Add as shown in Figure 7–4. This example shows a
content type of ad and a property of adTargetUrl. The adTargetUrl property
makes an image clickable and provides a target for the clickthrough, expressed
as a URL. See the Oracle Fusion Middleware Content Management Guide for Oracle
WebLogic Portal for more information.

Figure 7–4 Choose a Content Type and a Content Property

8. In the Content Search Values window that appears, select one of the following
tabs:

Values Tab – Define the query based on a comparison to a value you enter. For
example, the query could be set to retrieve content with an investorRiskLevel
property that is marked as high. The example in Figure 7–5 sets the query to
retrieve an adTargetUrl of a web site.

Properties Tab – To define the content query based on the property value that is
dynamically obtained from another type of property, such as a User Profile
property. For example, instead of creating a query based on static content
properties, you can create a query that reads the value of the current user's

Note: The properties you select are content properties (types) rather
than property set properties, such as User Profile or session
properties.

Creating a Placeholder

7-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

investorRiskLevel to populate the query. The query would be different for each
user.

Figure 7–5 Select an Item for the Comparison Field and Enter a Value

9. Click Add. The query descriptor is added to the Value Phrases section.

You can add more value phrases to the query and then set the appropriate option
in the For multiple value phrases section at the bottom of the window.

10. Click OK in the Content Search Values window.

11. Create additional queries as needed in the Content Search window. You can add
more value phrases to the query in the Content Search window, and then set the
appropriate option in the For multiple descriptors section at the bottom of the
window. Click OK when you are done.

12. Click OK on the Content Search dialog.

13. You can preview the content that will be retrieved by the query by selecting the
Content Preview tab below the Editor. If you defined the query to use values from
a User Profile property, the retrieved content will be different for each user, so you
must enter the user name of an existing user in the Preview User field to see the
content that will be retrieved for that user.

14. The Content Preview window shows content that the query will retrieve.
However, since a Placeholder can show only one piece of content at a time, the
single piece of content that is displayed varies depending on which query is run
(determined by the priority you set for a query and the settings for Campaign
queries) and the adWeight property setting on content.

15. You must add the adWeight property to a content type as a single-value Integer.
Content with a higher adWeight number has a higher likelihood of being selected
for display in a Placeholder.

16. Save the Placeholder file.

Creating a Placeholder

Creating a Placeholder 7-9

17. Add the Placeholder JSP tag called <ph:placeholder> to the relevant JSP. You
must add the Placeholder filename to the Placeholder tag and run the JSP to see
the results.

7.2.1.1 Choosing the Type of Placeholder Query to Run
Placeholders can run two types of queries: default queries and Campaign queries.

Both types of queries have the same structure but originate from different places:

■ Default Query – When you create a Placeholder file in Oracle Enterprise Pack for
Eclipse, you can also add one or more queries to that Placeholder file that always
remain with the Placeholder (unless you change or remove the queries in Oracle
Enterprise Pack for Eclipse). These are called default queries. They return content
from the virtual content repository regardless of who is viewing the portlet or JSP
in your portal.

A Placeholder can run a default query every time a user loads a page that includes
the Placeholder. For example, you define a header for a particular shell that
contains a JSP file with a Placeholder. If that Placeholder contains a default query,
a user is likely to see different content in the header each time the user visits or
refreshes the desktop.

If a Campaign also targets the Placeholder, you can configure the Placeholder to
show only content from that Campaign, or integrate Campaign content along with
default query content.

■ Campaign Queries – When you create a Campaign in Oracle Enterprise Pack for
Eclipse, one of the things you might want to do is trigger Campaign-specific
content to appear in a specific place on the desktop. Campaigns use Placeholders
to display personalized content. When you define a content action in a Campaign,
one of the steps is to select an existing Placeholder to run the Campaign query you
define. Campaign content queries are dynamically placed by a Campaign when
certain actions (events) occur. For example, a user who belongs to a certain User
Segment logs into the desktop.

You can set default queries to not run when a query placed by a Campaign is
present in the Placeholder.

Figure 7–6 shows the location on a page where the Placeholder displays an image,
either from a default query or a Campaign query. The image is retrieved from the WLP
Virtual Content Repository through a query. A Placeholder uses different factors to
determine which query to run and then which retrieved content item to display.

Note: An alternative to using Placeholders is using the
<ad:adTarget> JSP tag to hard-code a content query within the tag. See
Section 7.4, "Using the <ad:adTarget> Tag Instead of a Placeholder" for
more information.

Tip: You should create a default query for a Placeholder, because it
ensures that a content item always appears in the Placeholder.

Creating a Placeholder

7-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 7–6 Placeholders can Display Default Content or Campaign Content

7.2.2 Building a Content Query
You can use the WebLogic Portal Expression language in Oracle Enterprise Pack for
Eclipse to build content queries. The advanced query-building window is available
from content-related JSP tags and when building queries for Placeholders, Campaigns,
and Content Selectors.

If more than one content query is registered for a Placeholder, for example, the
Placeholder uses predefined queries and logic to determine which query to run and
which content item to display. If a content query does not return data, the Placeholder
runs another registered query, if there is one. Each query has a priority, or weight that
determines the specific content to display.

A query contains three parts: <property> <comparator> <value>.

7.2.2.1 Using Expressions
The following two types of properties are available for content, and you can use both
in queries:

■ User-defined content properties

■ Explicit (system) content properties

See Section 6.2.1.1, "Building a Content Query with Expressions" for instructions and a
list of explicit content properties.

7.2.2.2 Using Comparators
Comparators provide the logic that compares a query's property to the value you
enter. If a content item meets the conditions of the query, the content item is returned.
See Section 6.2.1.1.3, "Using Comparators" for instructions.

7.2.2.3 Using Values
Values represent the content you want the query to return. By supplying values to a
query, you're telling the query which content to retrieve (or ignore) based on the
values stored on the content items. See Section 6.2.1.1.4, "Supplying Values" for
instructions.

Creating a Placeholder

Creating a Placeholder 7-11

7.2.2.4 Following Guidelines for Complex Queries
You can combine multiple independent query clauses, tying them together with and
(&&) and or (||) logic and controlling the order of evaluation with parentheses the
way you would with algebraic expressions. This lets you create more complex queries.
See the Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal
for instructions and a list of example queries.

7.2.3 Determining Which Query and Content to Display
Placeholders perform a two-step process to choose which content to display. This
section describes the following tasks:

1. How a Placeholder chooses which query to run

2. Once a query runs, how a Placeholder chooses which content item to display from
the query

7.2.3.1 Choosing a Query to Run
When you add a default query to a Placeholder or create a Campaign query in Oracle
Enterprise Pack for Eclipse, you can assign each query a priority: highest, high,
normal, low, or lowest. The higher the priority, the higher the likelihood that the
query will be run instead of other queries.

If a query does not find any documents, the Placeholder chooses another query and
runs it.

You can also define default queries so that they do not run when Campaign queries
are present. For instructions, see Chapter 14.

7.2.3.2 Choosing Which Content Item to Display
Depending on how broadly you define a query and on the number of documents in
your Content Management system, a query could return multiple content items. By
default, a Placeholder randomly selects a content item to display. To make this
selection less of a random choice, you can add a property called adWeight to your
content items, as described in Section 3.2, "Determining Content Priority."

The higher the adWeight number you assign to a content item, the better the chance
that the content item will be displayed in a Placeholder when the content item is
retrieved by a query.

7.2.4 Adding a Placeholder to a JSP
After you create a Placeholder file in Oracle Enterprise Pack for Eclipse, you can use
any of the following methods to add the Placeholder to a JSP in Oracle Enterprise Pack
for Eclipse:

■ Drag a Placeholder from the Design Palette onto a page of an open portal file.
When you do this, three things happen:

1. The Portlet Wizard appears, letting you quickly create a portlet that displays
the Placeholder.

2. The resulting portlet is automatically added to the portal page.

3. A JSP file is automatically created for the Placeholder. The JSP file contains the
Placeholder JSP tag with the name attribute automatically populated with the
name of the Placeholder. The include statement for the tag library is
automatically added.

Modifying a Placeholder

7-12 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ Open the JSP where you want to add the Placeholder, and drag the Placeholder
file from the Design Palette into the JSP in either Design View or Source View. The
JSP tag is added automatically, the name attribute is automatically populated with
the name of the Placeholder, and the tag library include statement is
automatically added.

■ Drag the <ph:placeholder> JSP tag from the JSP Design Palette (the Portal
Content Placeholder category) into an open JSP and populate the tag's name
attribute manually. The tag library include statement is added automatically. In
Figure 7–7, the Placeholder file is called foo, and the JSP tag references the
Placeholder file.

Figure 7–7 The Two Parts of a Placeholder: a Placeholder File and a JSP Tag

7.3 Modifying a Placeholder
You can use either of the following two ways to modify a Placeholder:

■ Developers can use Oracle Enterprise Pack for Eclipse – For instructions on
modifying Placeholder properties or queries in Oracle Enterprise Pack for Eclipse,
Chapter 14.

■ Portal administrators can use the WebLogic Portal Administration Console – For
instructions on modifying Placeholder values in Administration Console, see
Chapter 14.

See Section 14.4, "Managing Placeholders for Optimal Performance" for information on
changing Placeholders to improve performance.

7.4 Using the <ad:adTarget> Tag Instead of a Placeholder
You can also use the <ad:adTarget> JSP tag to display a content item on a JSP. This
tag does not rely on a definition file like a Placeholder does. You simply add a query
using the tag's query attribute. The query retrieves one or more content items (the

Tip: During the development phase of your project when you are
updating content frequently, consider disabling or flushing the portal
caches. To do this, use the Portal Cache Manager tool. To start this
tool, select Run > Portal Cache Manager in Oracle Enterprise Pack for
Eclipse.

Using the <ad:adTarget> Tag Instead of a Placeholder

Creating a Placeholder 7-13

same types of content items that Placeholders can display), and the tag chooses which
content item to display in the same manner as the <ph:placeholder> tag.
Campaigns do not put queries into an <ad:adTarget> tag, so the tag cannot display
personalized content. You can also use <pz:contentQuery> and <cm:search> tags
to execute runtime queries and return content that can be displayed.

For more information on the class for the <ad:adTarget> JSP tag, see the Oracle
Fusion Middleware JSP Tag Java API Reference for Oracle WebLogic Portal.

The following code sample shows how to set up rotating banner-style content:

<%@ taglib uri="http://www.bea.com/servers/portal/tags/ad" prefix="ad"%>
<ad:adTarget query=" color == userProperty('GeneralInfo', 'FavoriteColor') "/>

Tip: You can get rotating banner-style content on your portal by
picking one content item and cycle through the matching items on
subsequent requests. You can use the <ad:adTarget> JSP tag, which
uses the AdConflictResolver to pick which content to show. That will
get each node's adWeight property (converted to a number) as the
relative weight of each node and then use a random number to pick
which content to use. The higher the weight, the more likely the
content is to be displayed. If the item doesn't have an adWeight
property, it assumes a value of 1.

Using the <ad:adTarget> Tag Instead of a Placeholder

7-14 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

8

Building a Campaign 8-1

8Building a Campaign

WebLogic Portal's Campaigns help you accurately target visitors and trigger multiple
actions—or even simultaneous actions—in a browsing session. Campaigns deliver the
right content to the right user at the right time.

You can use Campaigns to personalize your portal in the following ways:

■ Display personalized web content – When you use a Campaign to display
personalized content, the content (for example, an image) is retrieved from the
WLP Virtual Content Repository through a query and displayed in a Placeholder
on a JSP. The JSP can exist in a portlet or in a desktop header region.

■ Send predefined e-mails automatically – The Campaign service reads User
Profile properties to obtain a user's e-mail address, and then sends a predefined
e-mail to that user.

Marketing goals generally drive the content of a Campaign. For example, you might
want people who log in with a certain browser type at lunch time to view content
related to lunch specials. A bank might determine which portfolio to recommend, or a
travel site would recommend a specific hotel chain.

Campaigns are flexible, because they let you create business logic without requiring
code changes. For example, Campaigns show web content using a JSP tag called a
Placeholder that is similar to the following: <ph:placeholder
name="myPlaceholder1"/>. Add JSP Placeholder tags (uniquely identified by the
name attribute) anywhere in your portal's JSPs. Then define your Campaigns to use
the existing Placeholders, each of which can display content unique to the Campaign
and to the individual users. You can change and add new Campaigns, but you never
have to change your JSP code. The Placeholders you need stay the same.

In addition to providing flexibility and Personalization, Campaigns begin at a specific
time and end when their purpose has been fulfilled (when specific goals are achieved
or a time deadline is reached). Campaigns can even be set up to run only once for each
visitor.

Structurally, a Campaign contains at least one scenario. Each scenario contains one or
more actions that show personalized content, send an automatic e-mail, or provide a
personalized discount. The advantage of scenarios as containers for actions is that you
can use User Segments to determine which users are eligible to be targeted with the
actions in a scenario (but you are not required to assign User Segments to scenarios).
For example, you could create a Campaign with two scenarios: one that targets its

Note: A Campaign can also work for tracked anonymous users. See
Section 8.2.6, "Targeting a Campaign to Tracked Anonymous Users."

Performing the Prerequisite Tasks

8-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

actions only to males and the other that targets its actions to females. Table 8–1 shows
how the logic works in a scenario for females.

The chapter includes the following sections:

■ Section 8.1, "Performing the Prerequisite Tasks"

■ Section 8.2, "Building a Campaign"

■ Section 8.3, "Testing a Campaign"

■ Section 8.4, "Triggering a Campaign"

■ Section 8.5, "Turning Off a Campaign"

■ Section 8.6, "Resetting a Campaign"

8.1 Performing the Prerequisite Tasks
Complete the following tasks before you create a Campaign:

1. Read the Section 2.3, "Checklist for Planning Your Campaign Strategy."

2. If you decided to use Session or Request properties to trigger Campaign actions,
verify that you performed the following tasks:

■ In the JSP containing the event to be fired, get the request attribute through a
variable or set it directly in the JSP

■ In the JSP containing the event to be fired, get or set any event properties you
want to use

■ If you want to use session properties to trigger Campaign actions, verify that
the firing event is in the same session containing the session properties you
want to use

For more information on Session or Request properties, see Section 4.1.3, "Creating
a Session Property Set" or Section 4.1.4, "Creating a Request Property Set."

3. Determine if you plan to use goal setting to end your Campaign. Goal Setting can
end a Campaign based on the number of content items displayed or clicked. See
Section 8.2.2.1, "Setting Goal Definitions" and Section 8.2.2.2, "Adjusting Goal
Definitions" for instructions.

8.2 Building a Campaign
Developers create Campaigns and administrators use those Campaigns as templates to
modify Campaign characteristics and create new Campaigns with similar
characteristics.

Table 8–1 A Campaign Scenario that Targets Females Who Recently Visited the Web
Site

Query/Response Action

Question: Are You a Member of the Female User Segment and Have Not Visited
the Site in the Last 30 Days?

Yes: Your User Profile indicates that you are female and have visited the site
in the last 30 days. If this Campaign is triggered, you are targeted with
any of the actions in this scenario that apply to you.

No: Your User Profile indicates that you are a male. If this Campaign is
triggered, you are not targeted with any of the actions in this scenario.

Building a Campaign

Building a Campaign 8-3

Building a Campaign requires that you plan your Campaign logic for scenarios and
actions, create a Campaign file, add then add the scenarios and actions.

This section contains the following topics:

■ Section 8.2.1, "Planning Your Campaign Logic"

■ Section 8.2.2, "Creating a Campaign File"

■ Section 8.2.3, "Adding a Scenario to a Campaign"

■ Section 8.2.4, "Adding an Action to a Scenario's Rule"

■ Section 8.2.5, "Setting Up Automatic E-Mail Messages"

■ Section 8.2.6, "Targeting a Campaign to Tracked Anonymous Users"

8.2.1 Planning Your Campaign Logic
A Campaign uses units called actions to perform specific Personalization tasks.
Actions are triggered by specific conditions you set, and the actions are grouped into
scenarios.

For example, a Campaign Action can be triggered by the following conditions: When a
user logs in between January 1 and January 31, and that user is a member of the non-manager
User Segment, trigger the Campaign to do something. The action could then do the
following: When the Campaign is triggered, send an automatic e-mail reminding the user to
complete an annual performance review.

A Campaign can contain multiple scenarios, each of which can contain multiple
actions. An action is triggered when all of the following items are true:

■ An event is fired and the Campaign service is listening for it. See Section 9.11.1,
"Registering Events for Campaigns" for more information.

■ The conditions of the action are met, or a user belonging to a specific User
Segment logs in, which triggers a scenario to fire all of its actions.

■ The Campaign is set to active and has not expired (through a date deadline or if its
goals were met).

Table 8–2 shows Campaign Action rules that are created in Oracle Enterprise Pack for
Eclipse.

This rule is evaluated only if an event occurs for which the Campaign service is
listening. (This event does not need to be used directly in the Campaign rule.) For
example, if the Campaign service is configured to listen for the Oracle-provided
UserRegistrationEvent (which it is by default), then when a UserRegistrationEvent
occurs, the event takes a snapshot of the Request object and the Campaign rules are
evaluated.

The following list is the order in which the previous Campaign action rules are
evaluated:

Table 8–2 Campaign Action Rules

Rule Action

When all of the following conditions
apply:

An HTTP request has the following properties:
RequestPropertyOne is equal to success

Any of the following events has occurred: SessionLoginEvent

Do the following: Content Action, E-mail Action, or Discount Action

Building a Campaign

8-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ Is there a request property called RequestPropertyOne with a value of success?

■ Is this a SessionLoginEvent?

■ Are all of these conditions true?

Because a UserRegistrationEvent woke up the Campaign service and took a snapshot
of the request object, the Campaign Action is not triggered, because the rule requires
that all of its conditions evaluate to true. The SessionLoginEvent rule is false
(because it was the UserRegistrationEvent that woke up the Campaign service).

If the rule was defined differently so that any of the conditions evaluating to true
would trigger the action (rather than all conditions), the Campaign action fires if the
request property evaluates to true.

8.2.2 Creating a Campaign File
The steps in this chapter refer to the data\src folder in the Package Explorer View.
Your data and src directories might be named differently.

Perform the following steps to create a Campaign file and set Campaign properties:

1. Start the WebLogic Server in Oracle Enterprise Pack for Eclipse by choosing Run
As > Run on Server. For instructions on configuring the WebLogic Server, see the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. In the Portal Perspective, right-click the <data>\src\campaigns folder in the
Package Explorer View and choose New > Campaign.

3. Enter a name for the Campaign in the File name field, using the .cam file
extension.

4. Click Finish. Select the Campaign in the Campaign Editor when it appears.

5. Select the Properties tab and set the following properties for the General property.
These properties help determine if the Campaign will run. Use the following
description to set each property:

■ Active – Set the value to true if you want the Campaign to be run. Set the
value to false if you do not want the Campaign to run.

■ Description – Enter a detailed description of the Campaign. The description is
appended to the text in the Description window.

■ Is Complete – Read-only value of true or false. If the conditions for the
Campaign are all complete, the Is Complete property is set to true. If the
field is false, you should check each action and scenario to determine which
properties are missing.

■ Name – Read-only. The name of the Campaign (the Campaign filename).

■ Sponsor – Enter the name of the organization or person sponsoring the
Campaign.

6. If you are displaying personalized content in a Campaign, expand the Goals
property in the Properties tab and set the following properties:

■ Description – Enter a description about the goals that will end a Campaign
prior to its stop date. Click OK in the Property Text Editor dialog box when
you are done.

■ Goal Definitions – End a Campaign prior to the Campaign stop date when
specific images are viewed or clicked in a portal. Goal Setting can end a

Building a Campaign

Building a Campaign 8-5

Campaign based on the number of content items displayed or clicked. See
Section 8.2.2.1, "Setting Goal Definitions" for instructions.

7. Expand the Timing property in the Properties tab and set the following
properties:

■ Start Date – Click the ellipsis icon [...] and set the month, day, and time (in
your time zone) you want the Campaign to start. Click OK.

■ Stop Date – Click the ellipsis icon [...] and set the month, day, and time (in
your time zone) you want the Campaign to end. Click OK.

See Figure 8–1.

8. Choose File > Save to save your work.

Figure 8–1 Sample Properties for a New Campaign

8.2.2.1 Setting Goal Definitions
Perform the following steps to define a Campaign goal:

1. In the Portal Perspective, select the Campaign you created in Section 8.2, "Building
a Campaign."

2. In the Properties tab, expand the Goals property.

3. In the Goal Definitions field, click the ellipsis button [...], as shown in Figure 8–2.

Figure 8–2 Click the Ellipsis Button to Get to the Edit Campaign Goals Window

The Edit Campaign Goals window appears.

1. In the Edit Campaign Goals window, click New.

2. In the Campaign Goals section, enter a number in the Count field for the number
of times the content item must be viewed or clicked to meet the goal.

Building a Campaign

8-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

3. Select an item from the drop-down list in the Count Type field that determines
whether the content item must be viewed (Impressions) or clicked
(Click-throughs).

4. Select an item from the drop-down list in the Type field. The type determines if the
content impression or clickthroughs must be on content displayed by this
Campaign (From this Campaign only) or on the content displayed by the
Campaign or outside of the Campaign (From anywhere).

5. Select an item from the Logic field to determine if the count can be reached by
adding the impressions or clickthroughs for all selected content items (Summing
the path counts) or if it can be reached when any one content item in the list
must reach the count number (Against any one path).

6. In the Goal Paths section, add content items to use in the goal. To populate the
Goal Paths list, do one or both of the following:

■ In the Add Path to Goal field, enter the repository path to a content item in
WLP's Virtual Content Repository, and click Add.

■ In the Retrieve Query Paths field, select a content action you have already
defined in your Campaign. The content action has an associated query that
will retrieve specific content items from the Virtual Content Repository. Click
Get to retrieve a list of content items that the query will retrieve. Select the
content items you want and click Add.

7. Create additional goals as required. Each goal you add in the Campaign Goals
section has associated content items in the Goal Paths section. For example, you
can add a goal that states, If a piece of content is viewed (Impressions) three times (the
Count), the goal is met.

8. If you create more than one goal, select the appropriate End the campaign option
below the Campaign Goals section.

9. Click OK in the Edit Campaign Goals window.

10. Save the Campaign by choosing File > Save.

11. After you save the Campaign, you are prompted to reset the Campaign by
selecting options in the Reset Campaign dialog box and clicking OK, as shown in
Figure 8–3.

Note: For a content item to use clickthrough functionality, it must
have one of the following properties set: adTargetUrl,
adTargetContent, or adMapName. The property value for any of
these properties is a URL that, when clicked, takes the user to the
location you want. In a portal, URLs are relative to the portal Web
project root directory. See Section 8.2.2.3, "Creating URLs to Portal
Resources" for more information.

Building a Campaign

Building a Campaign 8-7

Figure 8–3 You Can Reset a Campaign by Selecting the Reset All Options Check Box

8.2.2.2 Adjusting Goal Definitions
The following examples goals show how you can modify Goal Setting and the
consequences:

■ Determine how frequently the Campaign service checks to see if goals have been
met by performing the following steps:

1. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

2. In the Resource Tree, expand the Interaction Management folder and then
select Campaign Service.

3. In the Configure tab, click Configuration Settings for Campaign Service.

4. Set the Goal Check Time to the frequency you want. The default is 300000
milliseconds (five minutes). Less-frequent goal checks improve performance,
but the Campaign service takes longer to determine if goals were met. For
testing, set the value to 0 so that there are no delays in checking for goals.

5. Click Update.

■ Determine how many impressions or clickthroughs occur before that number is
written to the database. In the database, the Campaign service compares the
current count to the impressions or clickthrough goal you set in the Campaign.
Perform the following steps:

1. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

2. In the Resource Tree, expand the Interaction Management folder and then
select Ad Service.

3. In the Configure tab, click Configuration Settings for: Ad Service.

4. Set the Display Flush Size to the number you want. The default is 10. A larger
flush size improves performance, but the Campaign service takes longer to
determine if goals were met. For testing, set the flush size to a small number to
ensure Campaigns end immediately after your goals are met.

5. Click Update.

8.2.2.3 Creating URLs to Portal Resources
WebLogic Portal provides an extensible mechanism to create URLs to your portal
resources in a portal web project that can transfer from domain to domain without
breaking, especially when server names and port numbers change. This URL-creation

Building a Campaign

8-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

mechanism also lets you switch between secure and non-secure URLs (HTTP and
HTTPS).

Use the following two items to create portable URLs:

■ The <render:*Url> JSP tags in the Portal Skeleton Rendering JSP tag library
(see the JSP Design Palette)

■ A portal web project's WEB-INF/beehive-url-template-config.xml file

The beehive-url-template-config.xml file contains multiple URL templates,
each with a unique name. These template URLs contain variables such as
url:domain and url:port that are read from the active server. The
<render:*Url> JSP tags have a template attribute in which you can specify the
name of a URL template in the beehive-url-template-config.xml file.

The following examples show how the JSP tags use the templates to create URLs:

■ A sample URL template exists in the beehive-url-template-config.xml
file:

<pz:contentSelector rule="classic" id="nodes"/>
<utility:notNull item="<%=nodes%>">

<utility:forEachInArray array="<%=nodes%>" id="node"
type="com.bea.content.Node">
<img src="<%=request.getContextPath() + "/ShowProperty" + node.getPath()%>">
</utility:forEachInArray>

</utility:notNull>

You can use any of the URL templates in the beehive-url-template-config.xml
file provided by WebLogic Portal, and you can add as many templates as you want to
the file.

You can use any of the following variables when you build a URL template:

■ The {url:domain} variable – Reads the name of the server from the current
request.

■ The {url:port} variable – Reads the listen port number of the server from the
current request. See Section 8.2.2.3.1, "Troubleshooting the URLs."

■ The {url:securePort} variable – Reads the SSL port number of the server from the
current request. See Section 8.2.2.3.1, "Troubleshooting the URLs."

■ The {url:path} variable – Reads the name of the web application. The URLs to all
resources in a web application are relative to the web application directory.

■ The {url:queryString} variable – Reads a queryString variable for the URL.

8.2.2.3.1 Troubleshooting the URLs If you are using a proxy server or you are switching
between non-secure and secure ports, you may find that URLs do not resolve if you
use the {url:port} or {url:securePort} variables. The URLs do not resolve
because the variables for those values are read from the request. For example, if a user
in a non-secure port (port number 80) clicks a secure HTTPS link that was created with
a URL template that uses the {url:securePort} variable, the port number of the
request (80) is used for the {url:securePort} variable, which creates a secure
request (HTTPS) on an non-secure port. The same result could occur if a user on a
proxy server (port 80) clicks a link to a resource outside the proxy server (port 443).

In both cases, you should hard code port numbers in the URL templates to get URLs to
resolve correctly.

Building a Campaign

Building a Campaign 8-9

The beehive-url-template-config.xml file automatically created in a portal
web project also contains URL templates and variables for Web Service for Remote
Portlets (WSRP). These templates must remain in the file if you plan to be a WSRP
producer. See the Oracle Fusion Middleware Federated Portals Guide for Oracle WebLogic
Portal for more information.

8.2.3 Adding a Scenario to a Campaign
Campaigns contain actions that perform specific Personalization tasks and are
triggered by specific conditions you set. Actions are grouped into scenarios. A
Campaign can contain multiple scenarios; each scenario can contain multiple actions.

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, select the
Campaign you created in Section 8.2, "Building a Campaign."

2. Drag the New Scenario item from the Design Palette tab into the Campaign
Editor. You can use four scenario templates that contain predefined actions and
conditions. If you drag one of these scenarios into the Campaign Designer, see the
Description window for details on each.

3. In the Properties tab, expand the General Property item and set the following
properties:

■ Active – Set the value to true if you want the Campaign to run. Set the value
to false if you do not want the Campaign to run.

■ Description – Click the ellipsis icon [...] and enter a detailed description of the
scenario. Your description is appended to the text in the Description window.

■ Is Complete – This field displays a read-only value of true or false. If the
conditions are all complete (the conditions for the Campaign, each scenario,
and each action), the Is Complete property is set to true. If the field is false,
you should check each action and scenario to determine which properties are
missing.

■ Name – Enter a name for the scenario.

■ Segments – If you want all actions in the scenario to run if the user is a
member of one or more User Segments, click the ellipsis icon [...] and select the
User Segments you want to use. For example, BirdLovers.

Figure 8–4 shows these three fields in a Campaign designed to offer a 25%
discount to users who belong to the BirdLovers User Segment.

Figure 8–4 Campaign Property Editor

6. Add more scenarios as needed. For example, you could include an image of a
parrot.

7. Save the Campaign by choosing File > Save.

Building a Campaign

8-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

8.2.4 Adding an Action to a Scenario's Rule
You can add the following actions to the rule in your scenario:

■ Section 8.2.4.1, "Adding a New Object Instance" – Creates a new instance of an
object and adds it to the object available in the rule set. This new object can then
trigger other rule conditions that match and their actions that will be invoked.

■ Section 8.2.4.2, "Invoking a Static Method" – Calls any static method on any
available class.

■ Section 8.2.4.3, "Invoking an Instance Method" – Calls a method on an available
ruleset's object.

■ Section 8.2.4.4, "Placing Content in a Placeholder" – Retrieves web content from a
content repository and displays the selected content in a predefined placeholder.

■ Section 8.2.4.5, "Sending an E-Mail in a Campaign" – Sends a predefined e-mail to
a user in your Campaign.

You can add multiple actions to each rule in a scenario.

8.2.4.1 Adding a New Object Instance
The Add a new object instance rule action creates a new instance of an object and
adds it to the object available in the rule set. This new object can then trigger other rule
conditions that match and the actions that will be invoked.

Perform the following steps to add a new object instance to your Campaign:

1. In the Portal Perspective, select the Campaign you created in Section 8.2, "Building
a Campaign."

2. From the Design Palette tab, drag the Add a new object instance rule action onto
the appropriate scenario in the Campaign Editor. See Figure 8–5.

Building a Campaign

Building a Campaign 8-11

Figure 8–5 Drag the Action to Your Scenario's Rule

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to
determine which conditions will trigger the action. The any choice means that
only one of the conditions must be true for the action to occur.

5. Click the [event] link to choose an available event that will trigger the action.
Events can include logging in, clicking a graphic, clicking a button, adding an item
to a shopping cart, navigating to another page in a portal, and so on. Some events
are predefined or you can define your own custom events (see Section 9.8,
"Creating Custom Events"). After you select the event, click Add and then click
OK.

6. Click the [java type] link. To see a list of all available Java types, enter **. Use these
guidelines to view the Java types:

■ Enter * for any string and ? for any character. See Figure 8–6.

Building a Campaign

8-12 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 8–6 Enter ** to See all Available Java Types

■ You can also enter TZ, for example, for types containing T and Z as uppercase
letters in camel case notation. An example of this is java.util.TimeZone. You
could enter NuPoEx for types containing Nu, Po, and Ex as parts in camel case
notation (for example, java.lang.NullPointerException). The Matching types
field displays matches for the expression you type in the Select a type field.

After you select the Java type, click OK.

7. Click the [no arguments] link to choose an argument to the method call. Click Add
and choose one of the following: String, Boolean, Integer, Long, Double, Float,
Null Argument, Property Reference, or Variable Reference. Enter the new value
and click OK. After you enter all the arguments, click Finish.

8. In the Available Conditions section in the Design Palette tab, select the conditions
you want to trigger the action. When you select a condition, a corresponding link
appears in the action area. Click the link to define the condition.

9. Save the Campaign file by choosing File > Save.

8.2.4.2 Invoking a Static Method
The Invoke from static method rule action executes any static method from an
available object or class. This action also has the ability to use bound variables from
the Conditions section of the rule set as an argument in the static method, in addition
to property references, standard Java type (String, Boolean, and so on), and other types
available in the project. The ability to call a Java method and have several available
actions makes multiple actions in rules a useful feature.

Tip: After you select a type, the bottom of the dialog box displays the
type's package and JRE type.

Note: Campaigns that invoke static or instance methods cannot be
viewed or edited in the WLP Administration Console. Use Oracle
Enterprise Pack for Eclipse to view or edit these types of Campaigns.

Building a Campaign

Building a Campaign 8-13

The Java class must be application-scoped. See "Configuring Standard Project
Dependencies" in the Oracle Enterprise Pack for Eclipse online help for instructions on
creating an application-scoped Java or utility project.

Perform the following steps to invoke a static method in your Campaign:

1. In the Portal Perspective, select the Campaign you created in Section 8.2, "Building
a Campaign."

2. From the Design Palette tab, drag the Invoke a static method rule action onto the
appropriate scenario in the Campaign Editor.

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to
determine which conditions will trigger the action. The any choice means that
only one of the conditions must be true for the action to occur. See Figure 8–7.

Figure 8–7 Click the All Link to Determine What Will Cause the Action to Occur

5. Click the [event] link to choose an available event that will trigger the action.
Events can include logging in, clicking a graphic, clicking a button, adding an item
to a shopping cart, navigating to another page in a portal, and so on. Some events
are predefined or you can define your own custom events; see Section 9.8,
"Creating Custom Events." After you select the event, click Add and then click
OK.

6. Click the [java type] link. To see a list of all available Java types, enter **. Use these
guidelines to view the Java types:

■ Enter * for any string and ? for any character. See Figure 8–8.

Building a Campaign

8-14 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 8–8 Enter ** to See all Available Java Types

7. You can also enter TZ, for example, for types containing T and Z as uppercase
letters in camel case notation. An example of this is java.util.TimeZone. You could
enter NuPoEx for types containing Nu, Po, and Ex as parts in camel case notation
(for example, java.lang.NullPointerException). The Matching types field displays
matches for the expression you type in the Select a type field.

After you select the Java type, click OK.

8. Click the [method name] link and type the name of the method. For example,
getAlias or getUserName. Do not use special characters; the method name can
contain only letters, numbers, and underscores.

9. Click the [no arguments] link to choose an argument to the method call. Click
Add, and choose one of the following: String, Boolean, Integer, Long, Double,
Float, Null Argument, Property Reference, or Variable Reference. Enter the new
value and click OK. After you enter all the arguments, click Finish.

10. In the Available Conditions section in the Design Palette tab, select the conditions
you want to trigger the action. When you select a condition, a corresponding link
appears in the action area. Click the link to define the condition.

11. Save the Campaign file by choosing File > Save.

8.2.4.3 Invoking an Instance Method
The Invoke an instance method action calls a method from any available type that is
bound to a variable. This variable may come from a condition, or it can be one that you
define yourself in the action. This action also has the ability to use bound variables
from the Conditions section of the rule set as an argument in the instance method, in
addition to property references, standard java types (String, Boolean, and so on), and
other types available in the project.

Tip: After you select a type, the bottom of the dialog box displays the
type's package and JRE type.

Note: Campaigns that invoke static or instance methods cannot be
viewed or edited in the WLP Administration Console. Use Oracle
Enterprise Pack for Eclipse to view or edit these types of Campaigns.

Building a Campaign

Building a Campaign 8-15

The Java class must be application-scoped. See "Configuring Standard Project
Dependencies" in the Oracle Enterprise Pack for Eclipse online help for instructions on
creating an application-scoped Java or utility project.

Perform the following steps to invoke an instance method in your Campaign:

1. In the Portal Perspective, select the Campaign you created in Section 8.2, "Building
a Campaign."

2. From the Design Palette tab, drag the Invoke a static method rule action onto the
appropriate scenario in the Campaign Editor.

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to
determine which conditions will trigger the action. The any choice means that
only one of the conditions must be true for the action to occur.

5. Click the [event] link to choose an available event that will trigger the action.
Events can include logging in, clicking a graphic, clicking a button, adding an item
to a shopping cart, navigating to another page in a portal, and so on. Some events
are predefined or you can define your own custom events; see Section 9.8,
"Creating Custom Events." After you select the event, click Add and then click
OK.

6. Click the [variable name] link and enter a variable name. Click the ellipses button
next to Type, select a matching type, and click OK. Click OK on the Enter Variable
dialog box.

7. Click the [java type] link. To see a list of all available Java types, enter **. Use these
guidelines to view the Java types:

■ Enter * for any string and ? for any character.

■ You can also enter TZ, for example, for types containing T and Z as uppercase
letters in camel case notation. An example of this is java.util.TimeZone. You
could enter NuPoEx for types containing Nu, Po, and Ex as parts in camel case
notation (for example, java.lang.NullPointerException). The Matching types
field displays matches for the expression you type in the Select a type field.

After you select the Java type, click OK.

8. Click the [method name] link and type the name of the method. For example,
getAlias or getUserName. Do not use special characters; the method name can
contain only letters, numbers, and underscores.

9. Click the [no arguments] link to choose an argument to the method call. Click
Add, and choose one of the following: String, Boolean, Integer, Long, Double,
Float, Null Argument, Property Reference, or Variable Reference. Enter the new
value and click OK. After you enter all the arguments, click Finish.

10. In the Available Conditions section in the Design Palette tab, select the conditions
you want to trigger the action. When you select a condition, a corresponding link
appears in the action area. Click the link to define the condition.

11. Save the Campaign file by choosing File > Save.

Tip: After you select a type, the bottom of the dialog box displays the
type's package and JRE type.

Building a Campaign

8-16 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

8.2.4.4 Placing Content in a Placeholder
The Place content in a placeholder action retrieves web content from a content
repository and displays the selected piece of content in a predefined Placeholder on a
JSP.

Perform the following steps to add content to a placeholder in your Campaign:

1. In the Portal Perspective, select the Campaign you created in Section 8.2, "Building
a Campaign."

2. From the Design Palette tab, drag the Place content in a placeholder rule action
onto the appropriate scenario in the Campaign Editor.

3. Select the Properties tab and enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to
determine which conditions will trigger the action. See Figure 8–9.

Figure 8–9 Click the All Link to Determine What Will Cause the Action to Occur

5. Click the [eventl] link to choose an available event that will trigger the action.
Events can include logging in, clicking a graphic, clicking a button, adding an item
to a shopping cart, navigating to another page in a portal, and so on. Some events
are predefined or you can define your own custom events; see Section 9.8,
"Creating Custom Events." After you select the event, click Add and then click
OK.

6. To define the query, click the empty content search link. You can define the query
in Advanced mode using WebLogic Portal's expression syntax (on the Advanced
tab) or in Graphical mode (on the Query tab).

■ Advanced mode – In the Content Search window, select the Advanced tab and
build a query using the instructions in Section 6.2.1.1, "Building a Content
Query with Expressions."

■ Graphical mode – Use the following steps to build a content query by
selecting content properties, comparators, and values to retrieve content items.

a. In the Content Search window, select the Query tab.

b. Click the drop-down list to select a property set and then select a property and
click Add. (The properties you select are content properties (types) rather than
property set properties such as User Profile or session properties.)

c. In the Content Search Values window that appears, select one of the following
tabs:

– Values – To define the query based on a comparison to a value you enter.
For example, the query could be set to retrieve content with an
investorRiskLevel property that is marked as high.

Building a Campaign

Building a Campaign 8-17

– Properties – To define the content query based on the property value that
is dynamically fed in from another type of property, such as a User Profile
property. For example, instead of creating a query based on static content
properties, you can create a query that reads in the value of the current
user's investorRiskLevel to populate the query. The query would be
different for each user.

d. Click Add. The query descriptor is added in the Content Search window, as
shown in Figure 8–10.

Figure 8–10 Base the Content Query on a Comparison to a Value You Enter

7. You can add more value phrases to the query, then set the appropriate option in
the For multiple descriptors section.

8. Click OK in the Content Search window.

9. Click the [placeholder name] link in the action, and select the Placeholders that
will display content when the scenario is triggered.

10. Click Add to move the Placeholders to the Selected Placeholders section, enter text
to describe the Placeholder in the Description field, and click OK.

11. You can preview the content that will be retrieved by the query in the Content
Preview window below the Editor. If you defined the query to use values from a
User Profile property, the retrieved content will be different for each user, so you
must enter the user name of an existing user in the Preview User field to see
which content will be retrieved for that user.

Building a Campaign

8-18 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

You must add the adWeight property to a content type as a single-value Integer.
Content with a higher adWeight number has a higher likelihood of being selected
to display in a Placeholder.

12. If you want the content to stop being displayed prior to the end of the Campaign,
click the campaign ends link to determine when the content will stop being
displayed.

13. To increase the chances that content from the query will be displayed, click the Do
not remove any other content link and determine the existing content that will be
removed from the designated Placeholders when the action runs.

14. To set the priority that the query will be run compared to other queries that may
exist in the Placeholders, click the Normal link and select a priority. Higher
priorities give the query a greater chance of being run.

15. In the Available Conditions section, select the conditions you want to trigger the
action. When you select a condition, a corresponding link appears in the action
area. Click the link to define the condition.

16. Save the Campaign by choosing File > Save.

8.2.4.5 Sending an E-Mail in a Campaign
The Send an email rule action sends a predefined e-mail to a user in your Campaign.
You might use an e-mail to alert users to specials that are customized to a specific User
Segment.

Perform the following steps to add an E-Mail Action to your Campaign:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, select the
Campaign you created in Section 8.2, "Building a Campaign."

2. From the Design Palette tab, drag the Send an email rule action onto the
appropriate scenario in the Campaign Editor.

3. In the Properties tab, enter a name for the action.

4. In the action, click the all link to toggle back and forth between any and all to
determine which conditions will trigger the action. The any choice means that
only one of the conditions must be true for the action to occur.

5. Click the [server url] link to select the e-mail message to send. Choose URL, enter
a Subject, and an optional default e-mail address. Click Preview if you want to
view the e-mail now.

6. Click OK.

7. In the Available Conditions section in the Design Palette tab, select the conditions
you want to trigger the action. When you select a condition, a corresponding link
appears in the action area. Click the link to define the condition.

8. Save the Campaign file by choosing File > Save.

Note: The Content Preview window shows content that the query
will retrieve. However, since a Placeholder can show only one piece of
content at a time, the single piece of content that is displayed varies
depending on which query is run (determined by the priority you set
for a query and the settings for Campaign queries) and the adWeight
property setting on content.

Building a Campaign

Building a Campaign 8-19

8.2.5 Setting Up Automatic E-Mail Messages
Perform the following steps to send automatic e-mails as part of a Campaign:

1. Define an e-mail address property by create a property in a User Profile property
set to store the user e-mail address. For example, the default
CustomerProperties.usr property set contains an Email property that can contain
a single, unrestricted string value for an e-mail address.

2. Set up the Campaign Service. You must tell the Campaign service where to get the
e-mail address when sending automatic e-mails to users.

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Interaction Management folder and select
Campaign Service.

c. Click Configuration Settings for: Campaign Service. Figure 8–11 shows you
where to enter the property set name and the name of the e-mail property you
set up in the previous step.

Figure 8–11 You Can Set Up Where to Get E-Mail Addresses for Automatic E-Mails

■ Goal Check Time – The default is 300,000 milliseconds (five minutes). If you
set the Goal Check Time to 0, there is no time delay in the amount of time the
Campaign service checks to see if goals have been met. See Section 8.2.2.1,
"Setting Goal Definitions" for more information.

■ Base Directory for Email Browsing – The default directory for storing e-mail
files is campaigns/emails. You must also change the <url-pattern> path
in the web.xml file to secure the files in the new directory and redeploy the

Note: If you are using e-mails in your Campaign, you can choose to
send the e-mails in batch mode or real-time (batch mode is the
default). In batch mode, when you run or test your Campaign, e-mails
are not sent. See Section 8.2.5.1, "Setting Up Bulk E-Mail Messages" to
learn how to change the mailing behavior to real-time.

Building a Campaign

8-20 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

application after you make these changes. See Section 8.2.5.5.1, "Storing E-Mail
Files in a Different Directory."

■ Maximum URI Length – The maximum length of a deployable Campaign
Uniform Resource Identifier (URI).

■ Default From Email Address – The default address that receives any replies
from email that the Campaign sends. In a standard mail header, this is the
From address. Each Campaign scenario can specify its own From address that
overrides this default property.

■ Email Address Property Name – The name of the property that contains
customer email addresses.

■ Property Set Name Containing Email Address Property – The name of the
property set that contains customer email properties.

■ Email Opt In Property Name – The name of the property that specifies
whether customers want to receive Campaign-related email. You should
define a User Profile property with the single, restricted values of true and
false.

■ Property Set Name Containing Opt In Property – The name of the property
set that contains the customer's opt-in property. Emails will not be sent to
users who have their property value set to false.

3. Click Update.

4. Set SMTP for outgoing mail by configuring the Simple Mail Transfer Protocol
(SMTP) hostname for the Mail Service. Perform the following steps:

a. In the Resource Tree, select Interaction Management and then Mail Service.

b. Click Configuration Settings for Mail Service and use the SMTP Host Name
field to enter the hostname for your e-mail server's outgoing mail.

c. If you use a Sybase database, select the Enable ORDER BY Workaround for
Clobs check box. This setting enables the Mail Service to work with Sybase
since Sybase does not support using a TEXT data type in an ORDER BY
clause.

5. Create e-mail messages using a predefined e-mail message. E-mail messages can
be in any of the following formats: TXT, HTML, JSP, or XML (with style sheets).
Store the e-mails in the <PortalWebProject>/campaigns/emails directory.
If you want to use a different directory for storing e-mail files, see Section 8.2.5.5.1,
"Storing E-Mail Files in a Different Directory." If you want to send bulk e-mails, see
Section 8.2.5.1, "Setting Up Bulk E-Mail Messages."

6. Set e-mail security. Prevent unauthorized access to e-mail messages by following
the steps in Section 8.2.5.5, "Setting Up E-Mail Security."

8.2.5.1 Setting Up Bulk E-Mail Messages
You must use a command to periodically send the batch e-mails that the JSPs store in
the WebLogic Portal data repository. You can also use the cron command or any other
scheduler that your operating system supports to issue the send-mail command.

For Windows, the send-mail command is located in a .bat file wrapper script. For
UNIX, the send-mail command is located in a .sh file. The following sections refer
to the .bat file. UNIX users should substitute .sh for .bat.

The send-mail wrapper script specifies the name and listen port of the WebLogic
Portal host that processes the send-mail request. By default, the wrapper script

Building a Campaign

Building a Campaign 8-21

specifies localhost:7501 for the hostname and listen port. However,
localhost:7501 is valid only when you run the script while logged in to a
WebLogic Portal host in a single-node environment (and only if you did not modify
the default listen port). If you use the send-mail script from any other configuration,
you must modify the script.

8.2.5.1.1 Modifying the Send-Mail Script to Work from a Remote Host Perform the following
steps to run the send-mail script from a remote host (a computer that is not a
WebLogic Portal host):

1. Open the following file in a text editor:

<WLPORTAL_HOME>\info-mgmt\bin\mailmanager.bat (Windows)

or

<WLPORTAL_HOME>/info-mgmt/bin/mailmanager.sh (UNIX)

2. In the mailmanager script, locate the SET HOST= line. Replace localhost with the
name of a WebLogic Portal host.

3. If the host uses a listen port other than 7501, replace 7501 in the SET PORT= line
with the correct listen port.

4. Save the mailmanager script.

8.2.5.1.2 Modifying the Send-Mail Script to Work in a Clustered Environment If you work in a
clustered environment, you must modify the send-mail wrapper script to specify the
name of a host in the cluster. The default localhost value is not valid for the Mail
Service in a clustered environment.

Perform the following steps on each host to use the send-mail script in a clustered
environment:

1. Open the following file in a text editor:

<WLPORTAL_HOME>\info-mgmt\bin\mailmanager.bat (Windows)

<WLPORTAL_HOME>/info-mgmt/bin/mailmanager.sh (UNIX)

2. In the mailmanager script, replace localhost in the SET HOST= line with the
name of a WebLogic Portal host. Because each host in a cluster can access the data
repository that stores the e-mail messages, you can specify the name of any host in
the cluster.

3. If the host uses a listen port other than 7501, replace 7501 in the SET PORT= line
with the correct listen port.

4. Save the mailmanager script.

8.2.5.1.3 Using the Mailmanager Commands The mailmanager command is a wrapper
script that uses the jav.com.bea.p13n.mail. MailManager class. The
mailmanager commands help you send and manage bulk e-mails.

Use the following command syntax:

mailmanager.bat [appName] [list | send | send-delete | delete]
batch-name] (mailmanager.sh on UNIX)

Note: The following steps must be performed on each host that will
run the script.

Building a Campaign

8-22 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

If you specify only the appName arguments, the mailmanager command prints to
standard output the names all e-mail batches in the application and the number of
e-mails in each batch.

Table 8–3 contains a list of the command arguments.

Table 8–4 contains examples of mailmanager commands.

8.2.5.2 Sending Bulk E-Mail Messages
Perform the following steps to send bulk e-mail from a shell that is logged into a
WebLogic Portal host:

1. Start the WebLogic Server by choosing Run As > Run on Server.

2. To determine the names and contents of the e-mail batches in the data repository,
enter the following command:

mailmanager.bat appName list (Windows)

The appName is the name of the enterprise application that generated the e-mail
batch. The command prints to standard output. You can use shell commands to
direct the output to files.

3. To send a batch and remove it from the data repository, enter the following
command:

Table 8–3 Mailmanager Command Arguments

Command Argument Description

appName The name of the enterprise application that generated the e-mail
batch.

list Prints to standard output the names of all e-mail batches in the data
repository and the number of e-mails in each batch.

list batch-name Prints to standard output the subject and recipients of all e-mails in
the batch that you specify.

send batch-name Sends all e-mails in the batch that you specify.

send-delete batch-name Sends all e-mails in the batch that you specify and then deletes the
batch from the data repository.

delete batch-name Deletes e-mails in the batch that you specify.

batch-name The name of a batch that mailmanager list returns. This
argument does not support wildcards.

Table 8–4 Examples of Mailmanager Commands

Command Example Description

mailmanager.bat list Lists all available batches

mailmanager.bat wlcsApp list
/campaigns/campaign1.cam

Lists the contents of a batch named
/campaigns/campaign1.cam that the
wlcsApp application generated

mailmanager.bat wlcsApp
send-delete
/campaigns/campaign1.cam

Sends the campaign1.cam batch and deletes it
afterwards

mailmanager.bat wlcsApp delete
/campaigns/campaign1.cam

Deletes the campaign1.cam batch

Building a Campaign

Building a Campaign 8-23

mailmanager.bat appName send-delete batch-name

8.2.5.3 Scheduling Bulk E-mail Delivery
You can use a scheduling utility to send the e-mail batches in the data repository.
Because you must specify the name of a batch when you use the mailmanager
command to send mail, you must schedule sending mail for each Campaign scenario
separately. The name of a batch corresponds to the scenario's containerId. The
containerId specifies the ID of the Campaign to which the scenario belongs.

For information in using a scheduling utility, refer to your operating system's
documentation.

8.2.5.4 Deleting E-Mail Batches
You can delete e-mail batches as you send them (See Section 8.2.5.2, "Sending Bulk
E-Mail Messages").

You can also perform the following steps to delete e-mail batches:

1. To determine the names and contents of the e-mail batches in the data repository,
enter the following command:

mailmanager.bat appName list

The appName is the name of the enterprise application that generated the e-mail
batch. The command prints to standard output. You can use shell commands to
direct the output to files.

2. To delete a batch, enter the following command:

mailmanager.bat appName delete batch-name

8.2.5.5 Setting Up E-Mail Security
When a Campaign sends an automatic e-mail, it uses a predefined e-mail message
stored on the file system within your portal web project. By default, WebLogic Portal
prevents unauthorized access to those e-mail files when the files are stored in the
<PortalWebProject>/campaigns/ emails directory.

The following deployment descriptors secure your e-mail files:

■ The <PortalApplication>/wps.jar/META-INF/weblogic-ejb-jar.xml descriptor
file – The following line in this file provides the name of a user who is in the
global PortalSystemAdministrator role:

<run-as-principal-name> username </run-as-principal-name>

Membership in the global PortalSystemAdministrator security role is defined in the
WebLogic Portal Administration Console at the server level. In a portal domain
created with the Configuration Wizard, the Administrators and
PortalSystemAdministrators groups that are provided by default are configured to
be members of the global PortalSystemAdministrator role.

Note: If you are using e-mails in your Campaign, you can choose to
send the e-mails in batch mode or real-time (batch mode is the
default). In batch mode, when you run or test your Campaign, no
e-mails will be sent. See Section 8.2.5.1, "Setting Up Bulk E-Mail
Messages" to learn how to send batch mode emails and how to change
the mailing behavior to real-time.

Building a Campaign

8-24 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ The <PortalWebProject>/WEB-INF/web.xml file – The following line in this file
secures the e-mail files in <PortalWebProject>/campaigns/emails,
allowing only the Campaign service (through the PortalSystemAdministrator user
defined in the previous section) to access and send the e-mails:

<url-pattern>/campaigns/emails/*</url-pattern>

Perform the following steps to use a different user for e-mail security:

1. Back up the wps.jar file.

2. Un-jar the wps.jar file and change the name of the user in the
weblogic-ejb-jar.xml file.

3. Verify that the user exists.

4. Verify that the user is a member of the global PortalSystemAdministrator security
role; and

5. Re-jar and replace the old wps.jar and redeploy the application. If you enter the
name of a user in <run-as-principal-name> that does not exist, or if you
delete the user specified by <run-as-principal-name> without changing the
<run-as-principal-name> entry, you will receive deployment errors on the
wps.jar file.

8.2.5.5.1 Storing E-Mail Files in a Different Directory Perform the following steps if you
need to use a different directory to store e-mail files:

1. Change the <url-pattern> path in the web.xml file to secure the files in the
new directory.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. In the Resource Tree, expand the Interaction Management folder and select
Campaign Service.

4. Click Configuration Settings for Campaign Service and change the directory in
the Base Directory for Email Browsing field. For example,
campaigns/emails/q1, as shown in Figure 8–12.

Building a Campaign

Building a Campaign 8-25

Figure 8–12 Change the E-mail Directory

5. Redeploy the application or restart the server during development in Oracle
Enterprise Pack for Eclipse.

8.2.6 Targeting a Campaign to Tracked Anonymous Users
You can set Campaigns up to work with tracked anonymous users. A Campaign will
not work with completely anonymous users.

Perform the following steps to target a Campaign to tracked anonymous users:

1. Create a Campaign file and add goals, scenarios, and actions to it. Follow the
instructions in Section 8.2.2, "Creating a Campaign File."

2. Locate the web.xml file in the /WEB-INF directory of your portal web project.

3. Double-click the web.xml file so you can edit it in Oracle Enterprise Pack for
Eclipse.

4. To override the settings from the shared library, add the following lines from
Example 8–1 to the web.xml file. Adding this PortalServletFilter
component turns on anonymous user tracking in your Campaign.

Example 8–1 Add this Section to the Web.xml File

<filter>
 <filter-name>PortalServletFilter</filter-name>
 <filter-class>com.bea.p13n.servlets.PortalServletFilter

Note: Using a wildcard character (*) in the URL pattern does not
provide recursive directory protection. The wildcard protects only the
files in the last directory listed. For example, if you want to store
e-mail files in the /campaigns/emails/q1 directory, the url-pattern
information in the /campaigns/emails/* directory does not protect
the e-mail files in the /q1 directory. To protect those e-mail files, the
url-pattern information must be in the /campaigns/emails/q1/*
directory.

Testing a Campaign

8-26 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

 </filter-class>
 <init-param>
 <description>Option to track anonymous users, defaults to false
 if not set. 'createAnonymousProfile' is ignored if this is
 true</description>
 <param-name>enableTrackedAnonymous</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <description>Length in seconds visitor must be on site before we
 start tracking them. Defaults to 60 seconds if not set
 </description>
 <param-name>trackedAnonymousVisitDuration</param-name>
 <param-value>60</param-value>
 </init-param>
</filter>

5. Change the trackedAnonymousVisitDuration parameter value to the
number of seconds before tracking begins. During testing, set the
trackedAnonymousVisitDuration in Example 8–1 to a small number (for
example, 5) so that your sessions quickly switch to tracked sessions.

6. Create an event trigger for the Campaign. For the registered user, a login event
triggers the Campaign. For a tracked anonymous user, you must add code to
generate the event on behalf of the tracked anonymous user. The example below
shows a ClickContentEvent that triggers a Campaign.

try
{
 profile = SessionHelper.getProfile(session);
 if (profile != null && !profile.getType().equals
 (ProfileType.REGISTERED))
 {
 TrackingEventHelper.getEventService().dispatchEvent(new
 ClickContentEvent(session, httpReq, null, null));
 }
}
catch (Exception ex)
{
 //handle any exceptions dipatching the event
}

7. Save the changes to the web.xml file.

8. You can see more detail on the PortalServletFilter setting in Oracle
Enterprise Pack for Eclipse by right-clicking the web.xml file, choosing Compare
With > J2EE Library Version, and double-clicking p13n-web-lib in the Compare
editor. The editor shows the p13n-web-lib version in one of the panes.

8.3 Testing a Campaign
Use the following guidelines to test Campaigns on your development server in your
development environment:

1. Verify that the Campaign is complete. The entire Campaign, each scenario, and
each action have specific conditions for being complete. When you select each, the
Is Complete property in the Property Editor window displays a read-only value of
true or false. If the Is Complete property is false for any part of a Campaign,
select the property in the Property Editor window and read the Description to find
out which properties are required.

Testing a Campaign

Building a Campaign 8-27

2. Verify that the Campaign is active. With the Campaign selected (not a scenario or
action), set the Active property in the Property Editor window to true.

3. If you see the text Campaign is currently stopped just below the Campaign Editor
window, you must change the Start Date or Stop Date properties so that the
current date falls between the two. When the current date is within the Campaign
date range, the Campaign is currently stopped text disappears.

4. If your Campaign uses Goal Setting to end a Campaign based on content
impressions or clickthroughs, perform the following steps to modify the settings:

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Interaction Management folder and select
Campaign Service.

c. Click the Configuration Settings for Campaign Service link and set the Goal
Check Time to 0. This creates no time delay in the amount of time the
Campaign service checks to see if goals have been met. Click Update.

d. In the Resource Tree, select Ad Service and click the Configuration Settings
for: Ad Service link

e. Set the Display Flush Size field to 1, as shown in Figure 8–13.

Figure 8–13 Change the Display Flush Size to 1

This setting writes each impression or clickthrough to the database each time
it occurs and ends the Campaign on the exact number of impression or
clickthrough counts you have established. For example, if you want to end a
Campaign on five impressions, but your Display Flush Size was set to 10,
you would need to see 10 impressions before the that number is written to the
database. At that point, the Campaign service would detect that the five
impressions had already been met, effectively ending the Campaign after 10
impressions rather than five.

You must restart the server for this change to take effect.

5. You can reset many aspects of Campaigns during testing, such as impression and
clickthrough counts that can end a Campaign and scenarios that run only once for

Note: Do not deploy your application into a production environment
with these settings. Performance will be adversely affected.

Testing a Campaign

8-28 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

each user. With a Campaign file open in Oracle Enterprise Pack for Eclipse, choose
Portal > Reset Campaign and reset any aspect of the Campaign.

6. Test run once Content Actions by performing the following steps to test Content
Actions that you want to run only once per user:

a. With the Campaign open in Oracle Enterprise Pack for Eclipse, right-click in
the Campaign Editor.

b. Choose Reset Campaign.

c. In the Reset Campaign dialog box, select the Reset all options check box, and
click OK.

d. View the portal and run the Content Action by starting an event for which the
Campaign service is listening (such as logging in). Verify that the Campaign
content is displayed.

e. Log out or click Back in the browser to return to where you can launch the
event again.

f. Return to the Campaign in Oracle Enterprise Pack for Eclipse and select the
Campaign.

g. Right-click the Campaign Editor space and choose Reset Campaign, as shown
in Figure 8–14.

Figure 8–14 Right-Click in the Campaign Editor to Reset the Campaign

7. Select the Remove previously placed content from rotation check box and click
OK. See Figure 8–15.

Testing a Campaign

Building a Campaign 8-29

Figure 8–15 Reset a Campaign

8. To troubleshoot Campaign content in Placeholders, you should understand how
Placeholders handle default and Campaign queries. For example, default and
Campaign queries have priorities that help determine which query runs. Also, you
can set default queries so that they do not run when Campaign queries are
present. For more information, see Chapter 7.

9. Improve performance by disabling, enabling, and flushing content caches that are
used for web content. With a Campaign open in Oracle Enterprise Pack for
Eclipse, the Edit > Portal Content Caches menu provides those options:

■ Flush Content Caches

■ Disable Content Caches

■ Enable Content Caches

For more information on managing your caches, use the Run > Portal Cache
Manager menu and consult the Oracle Fusion Middleware Portal Development Guide
for Oracle WebLogic Portal for instructions.

The following caches are affected (you can view the caches in the Administration
Console by choosing Configuration & Monitoring > Service Administration and
selecting Personalization and then Cache Manager in the Resource Tree).

■ The adBucketServiceCache – Reserved for future use.

■ The searchCache – Caches the results of content searches for the virtual
content repository.

■ The documentMetadataCache – Caches the results of document searches for
the DocumentManager. This setting is not used by the content repositories.

■ The binaryCache.WLP Repository – Caches binary property values for the
WLP Repository.

■ The documentContentCache – Caches the document bytes for the
DocumentManager. This setting is not used by the content repositories.

■ The nodeCache.WLP Repository – Caches content for the WLP Repository.

■ The documentIdCache – Caches the results of document searches (ids only)
for the DocumentManager. This setting is not used by the content
repositories.

■ The adServiceCache – Used by the ad service to cache the results of searches
for content rendering.

Triggering a Campaign

8-30 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

8.4 Triggering a Campaign
You must use a Regular or Behavior Tracking event to begin your campaign or trigger
a campaign action based on events and their values. A commonly used event is
SessionLoginEvent; see Section 9.3.1, "Using the SessionLoginEvent" for
instructions.

Campaign scenario rules are evaluated only when a single event occurs for which the
Campaign service is listening.

If your Campaign conditions use request, session, or event properties, those properties
are captured when a listened-for event is triggered. The event takes a snapshot of the
current session properties, the single request property (contained in the session), and
the event properties (contained in the request). The snapshot taken by the event is in
the form of a request object, which the event passes to the Campaign service for
evaluation. If the values in that snapshot evaluate to true against any Campaign action
rules, those Campaign actions are triggered.

This section contains the following topic:

■ Section 8.4.1, "Troubleshooting Campaign Actions"

8.4.1 Troubleshooting Campaign Actions
When Campaign Actions are not triggered as expected using Session, Request, and
Event properties, one of the following items might be the problem:

■ The Campaign service was listening for events, but no event occurred

■ The session, request, or event properties contained in the Campaign rule were not
part of the request object snapshot taken when the event occurred

■ In Campaign rules that are defined so that all conditions must apply for the
Campaign action to be triggered, one or more of the conditions evaluated to
false

8.5 Turning Off a Campaign
You can remove the CampaignEventListener in order to turn off all Campaigns so
that they do not fire Campaign events.

Tip: For optimal performance, enable these caches in your
production environment. See Section 8.6.2.1, "Setting Campaign
Content Caches" for instructions.

Note: By default, the only events that cannot be used to trigger
Campaigns are DisplayContentEvent, DisplayProductEvent,
BuyEvent, SessionBeginEvent, and SessionEndEvent, as listed in the
<PortalApplication>/wps.jar/com/bea/campaign/internal/
listeners.properties file.)

Tip: If you trigger a Campaign to test e-mails, the e-mails are not
sent real-time if the batch flag default is still set to true. See
Section 8.2.5.1, "Setting Up Bulk E-Mail Messages" for instructions on
changing the mailing behavior to real-time.

Resetting a Campaign

Building a Campaign 8-31

Perform the following steps to turn off Campaign events:

1. Start the Administration Console and choose Configuration & Monitoring >
Service Administration.

2. In the Resource Tree, expand the Personalization folder and select Event Service.

3. In the Browse tab, select the
com.bea.campaign.internal.CampaignEventListener check box and
click Delete. Campaign events will not longer be fired, but if you set up other
Behavior Tracking or other event listeners, those events will continue to fire.

8.6 Resetting a Campaign
You can reset different parts of your Campaigns. For example, you may want to do one
or all of the following:

■ Clear content from a Placeholder that had been previously put in the Placeholder.
Doing this ensures that the users who were supposed to see personalized content
only once see it only one time.

■ Clear from the database the number of times an image has been viewed or clicked
so that your Campaign does not reach its goals.

■ Give users a second chance on run once Campaign Actions that they have already
triggered.

■ Clear any e-mail messages waiting to be sent.

You can reset Campaigns in the development environment (for testing) or in the
production environment.

This section contains the following topics:

■ Section 8.6.1, "Resetting a Campaign in the Development Environment"

■ Section 8.6.2, "Resetting a Campaign in the Production Environment"

8.6.1 Resetting a Campaign in the Development Environment
Perform the following steps to automatically reset a Campaign in your development
environment after you make changes to it:

1. Open a Campaign file in the Portal Perspective in Oracle Enterprise Pack for
Eclipse.

2. Choose Window > Preferences.

3. In the Preferences window, select WebLogic Portal.

4. Click Campaigns and select the Reset campaign after saving changes check box,
as shown in Figure 8–16.

Tip: The following steps in the Administration Console work for a
portal that is deployed as an exploded EAR file. If your portal is a
compressed EAR file, you will need to do these steps manually and
then re-build and deploy the EAR file.

Note: If you want to turn on the Campaign later, add the
CampaignEventListener as a Synchronous Listener in the Browse tab.

Resetting a Campaign

8-32 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 8–16 You Can Automatically Reset a Campaign After You Edit It

5. Click OK.

For more information on using this feature for testing, see Section 8.3, "Testing a
Campaign."

8.6.2 Resetting a Campaign in the Production Environment
Perform the following steps to reset a Campaign in your production environment:

1. In Oracle Enterprise Pack for Eclipse, start the Administration Console by
choosing Run > Open Administration Console.

2. In the Administration Console, select Interaction > Campaigns.

3. In the Resource Tree, select the Campaign that you want to reset.

4. In the Campaign Details tab, click Reset Campaign.

5. Click OK.

8.6.2.1 Setting Campaign Content Caches
For optimal performance, enable content caches in your production environment.
From Oracle Enterprise Pack for Eclipse, you can disable, enable, and flush caches that
are used for web content.

Perform the following steps to enable content caches:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, open a Campaign.

2. Choose Edit > Portal Content Caches > Flush Content Caches to clear each of the
caches. Select Edit > Portal Content Caches > Disable Content Caches to stop
caching for all caches. Select Edit > Portal Content Caches > Enable Content
Caches to get the best performance for your Campaign. See Section 8.3, "Testing a
Campaign" for a list of content caches.

3. You can view the affected caches in the WebLogic Portal Administration Console
by choosing Configuration & Monitoring > Service Administration.

4. In the Resource Tree, expand the Cache Manager folder.

Resetting a Campaign

Building a Campaign 8-33

5. Click a specific cache name to view its settings. You can click Flush to clear this
cache item.

6. Click Configuration Settings for <cache name> and select the Enabled or
Disabled check box, as shown in Figure 8–17.

Figure 8–17 You Can Enable or Disable a Cache Setting

7. Click Update.

See Section 15.3, "Managing a Campaign for Optimal Performance" for information on
changing Campaigns to improve performance.

Tip: You can adjust your Campaign and caches to run faster in a
production environment.

Resetting a Campaign

8-34 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

9

Setting Up Events and Behavior Tracking 9-1

9Setting Up Events and Behavior Tracking

An Event is generated when a user interacts with a web interface. Events can include
logging in, clicking or viewing a graphic, clicking a button, navigating to another page
in a portal, and so on.

WebLogic Portal provides an events framework that lets you leverage events in many
ways: to trigger Campaigns, persist event data in the database, and provide other
types of functionality when events occur.

The following examples show functionality you can provide with the event
framework:

■ Capture the number of times users access a portal page.

■ Determine how many users have registered in a portal. You could also create a
Campaign Action that automatically sends each user a welcome e-mail when the
registration event occurs.

■ Identify which pieces of content are viewed or clicked.

■ Determine which category of user logs in to your HR Intranet most often.
Categories of users could include managers and regular employees. You could
also create a Campaign Action that displays a specific graphic when managers log
in and displays another graphic when regular employees log in.

This chapter describes the components of the event framework, helps you plan an
event strategy by explaining the purpose and use of each piece of the framework,
describes WebLogic Portal's predefined events, and provides guidance and
instructions on using events in your applications.

This chapter includes the following sections:

■ Section 9.1, "Choosing How to Handle Events"

■ Section 9.2, "Completing Your Behavior Tracking Strategy"

■ Section 9.3, "Using Predefined Events"

■ Section 9.4, "Generating Events for Content Clicks"

■ Section 9.5, "Generating Content Events"

■ Section 9.6, "Providing Event Attribute Values"

Note: Interaction Management events are different than portlet
events, which provide a framework for interportlet communication.
See the Oracle Fusion Middleware Portlet Development Guide for Oracle
WebLogic Portal.

Choosing How to Handle Events

9-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ Section 9.7, "Enabling Behavior Tracking"

■ Section 9.8, "Creating Custom Events"

■ Section 9.9, "Creating Custom Event Listeners"

■ Section 9.10, "Dispatching Events"

■ Section 9.11, "Using Events in Campaigns"

■ Section 9.12, "Debugging the Event Service"

■ Section 9.13, "Tracking Content Changes"

■ Section 9.14, "Disabling Behavior Tracking"

9.1 Choosing How to Handle Events
Each Event is an instance of an Event object that is identified with a unique name, or
type. Each Event type can get and set specific attributes, depending on its function. In
each of the previous examples, the event must capture specific information. For
example, to capture the number of times users access a portal page, a ClickPage event
might get and set the name of the page that was clicked. To identify which pieces of
content are viewed, a DisplayContent event might get and set the ID and type of each
displayed content item.

After events set their attribute values, you can persist those values in any desired way.
WebLogic Portal provides a default mechanism for persisting event attributes in a
database as XML. When event data is stored in the database, you can mine that data to
perform analytics, run reports, or even feed event data back into your applications. For
example, you can create a portlet that runs SQL queries against the database and
returns the number of times each portal page was visited. You can also develop your
own persistence functionality. For example, you can store event data in a file, or you
can write the data to database tables without structuring the data in XML.

Sometimes, events do not require attributes or persistence. Their only purpose could
be to trigger some other type of functionality. For example, if you want to determine
how many times a download link is clicked regardless of who clicked it, a
ClickDownloadLink event (and an accompanying event listener) can increment a
database field value by 1.

You can also make Campaigns more powerful by using events in your Campaign
definitions. For example, you can send a user a predefined e-mail automatically when
the user generates the UserRegistration event by registering in a portal; or display a
personalized piece of content when an event with specific attribute values is
generated.

Figure 9–1 shows the event framework, which gives you the flexibility to handle
events in many ways. Table 9–1 describes the pieces of the framework.

Choosing How to Handle Events

Setting Up Events and Behavior Tracking 9-3

Figure 9–1 The Event Framework

Choosing How to Handle Events

9-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Table 9–1 The Event Framework

Number from
Figure 9–1 Description

1 An event is an object that extends either the Event or TrackingEvent class. The event
identifies itself to the Event service with a unique name, or type, declares the attributes it will
use, and passes the event type and the attributes to the base class constructor.

Events can contain whatever type of attributes you want to capture. For example, you can
capture the name of a page or a portlet that is selected for viewing; you can capture the name
of a JSP in a Page Flow to gauge which JSPs are being visited most often. You can trigger a
Campaign when a specific JSP is viewed; you can capture information about content retrieved
from the virtual content repository, or you can capture product information when a user adds
an item to a shopping cart.

Note: Page flows are a feature of Apache Beehive, which is an optional framework that you
can integrate with WLP. See "Apache Beehive and Apache Struts Supported Configurations" in
the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Behavior Tracking events also declare the XML namespace and schema filename that the Event
Service uses to store event attribute values in the database as XML. For each custom Behavior
Tracking event you create, you should also create an XML schema.

2 Wherever you want to generate the event in your application (whether from a JSP, a Java class,
or a Page Flow), create an instance of the event. In your code, set the attribute values the event
needs, and pass them to the event as arguments in the order the event expects them. The
argument order is defined in the event class. Tell the Event Service to dispatch the event.
Dispatching an event tells all the interested event listeners that the event has occurred, causing
them to perform their actions.

Note: Page flows are a feature of Apache Beehive, which is an optional framework that you
can integrate with WLP. See "Apache Beehive and Apache Struts Supported Configurations" in
the Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Completing Your Behavior Tracking Strategy

Setting Up Events and Behavior Tracking 9-5

9.2 Completing Your Behavior Tracking Strategy
WebLogic Portal's event framework provides many options for generating and
handling events, as described in the previous section. See the guidelines in Section 2.4,
"Planning Your Behavior Tracking Strategy" to determine the pieces of the event
framework you need to implement.

This section contains the following topic:

3 The Behavior Tracking listener listens for all events that extend the TrackingEvent class and
are registered with the Behavior Tracking service.

The Behavior Tracking listener's function is to move the XML document of event attributes,
created by the event and the XML schema, to a buffer. The Behavior Tracking Service then
moves the XML document to the BT_EVENT table in the database in an interval you determine.

You can retrieve Behavior Tracking data from the database for reporting or analytical purposes,
such as determining the amount of traffic a page or portlet receives.

By default, the Behavior Tracking listener is not registered with the Event service. You must
register the Behavior Tracking listener to enable Behavior Tracking, as described in Section 9.7,
"Enabling Behavior Tracking."

4 The Campaign event listener listens for and handles all events, except excluded events listed in
the wps.jar file's listeners.properties file. When an event occurs, the Campaign event
listener calls the Campaign service. The Campaign service takes a snapshot of the current
HTTP request, and evaluates the data in the request against any Campaigns you have created
to see if any Campaign actions need to be executed.

Campaigns are completely dependent on events. If no events occur, the Campaign service is
never called, and no Campaign actions are executed.

In addition to the basic function of calling the Campaign service with an event, you can also
use events within Campaign definitions by executing Campaign actions if a specific event
occurs or if an event has specific properties. For example, you can define a Campaign in the
following ways:

■ If MyEvent occurs, show a specific piece of content.

■ If MyEvent has a published property with a value greater than 2004, show a specific
piece of content.

In order to use events and event properties in Campaign definitions, you must create an event
property set for each event you want to use in Campaigns (stored in your application's
/data/src/events directory in Oracle Enterprise Pack for Eclipse). An event property set
contains the exact names of the attributes you are setting in your event. The Campaign Editor
interface uses the event property set in drop-down fields that you use to create the Campaign
definition.

For information on Campaigns, see Chapter 8.

5 Create a custom event listener only if you want to perform custom functionality when an event
occurs. A custom listener tells the Event service which events to monitor (which events trigger
it to perform its custom functionality). For example, with a custom event listener, you can
implement your own persistence mechanism to store event attributes, or you can respond to an
event in real time by modifying a User Profile or displaying related products when a user
clicks a product image.

The base class you implement, EventListener, provides two methods: getTypes(), which
lets the listener advertise which event types it is interested in, and handleEvent(), which
lets you perform your custom functionality.

A listener can listen for more than one event, whether the event is a custom event or any of
WebLogic Portal's predefined events.

In performing custom event handling, you have access to the event properties with the event's
getAttribute() method.

Table 9–1 (Cont.) The Event Framework

Number from
Figure 9–1 Description

Using Predefined Events

9-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

■ Section 9.2.1, "Planning the Deployment of Custom Events, Listeners, and
Property Sets"

9.2.1 Planning the Deployment of Custom Events, Listeners, and Property Sets
Creating custom events, listeners, and event property sets involves adding files to
your application and updating your application CLASSPATH. If you are adding events
and property sets to an application that is already deployed, these changes require
application redeployment for the events and CLASSPATH updates, and running the
Propagation Utility to update the event properties in the database. For deployment
instructions, see the Oracle Fusion Middleware Production Operations Guide for Oracle
WebLogic Portal.

9.3 Using Predefined Events
WebLogic Portal provides predefined Behavior Tracking events. The events capture
different attributes and use the Behavior Tracking listener and the Behavior Tracking
Service to persist the attributes as XML in the BT_EVENT table when they are
generated, or dispatched. You must enable Behavior Tracking to persist the event
attributes (as described in Section 9.7, "Enabling Behavior Tracking"). You can also use
these events to trigger Campaigns.

If you want to perform custom event handling when any of the predefined events is
dispatched, create a custom event listener, as described in Section 9.9, "Creating
Custom Event Listeners."

This section contains the following topics:

■ Section 9.3.1, "Using the SessionLoginEvent"

■ Section 9.3.2, "Using the SessionBeginEvent and SessionEndEvent"

■ Section 9.3.3, "Using the UserRegistrationEvent"

■ Section 9.3.4, "Using the AddToCartEvent"

■ Section 9.3.5, "Using the RemoveFromCartEvent"

■ Section 9.3.6, "Using the PurchaseCartEvent"

■ Section 9.3.7, "Using the Rule Events"

■ Section 9.3.8, "Using the DisplayCampaignEvent"

■ Section 9.3.9, "Using the CampaignUserActivityEvent"

■ Section 9.3.10, "Using the ClickCampaignEvent"

■ Section 9.3.11, "Using the ClickProductEvent"

■ Section 9.3.12, "Using the ClickContentEvent"

■ Section 9.4.1, "Using the ClickThroughEventFilter"

■ Section 9.5.1, "Using the ContentConfigEvent"

■ Section 9.5.2, "Using the ContentCreateEvent"

■ Section 9.5.3, "Using the ContentDeleteEvent"

■ Section 9.5.4, "Using the ContentUpdateEvent"

Using Predefined Events

Setting Up Events and Behavior Tracking 9-7

9.3.1 Using the SessionLoginEvent
Use the SessionLoginEvent to dispatch an event when a user logs into a portal and
is authenticated.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.3.2 Using the SessionBeginEvent and SessionEndEvent
The SessionBeginEvent and the SessionEndEvent are generated automatically.
A SessionBeginEvent is generated when a user accesses a web site running on
WebLogic Portal. A SessionEndEvent is generated when the session ends, such as
when the user closes the browser or the session times out.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the events are generated and the event is registered with
the Behavior Tracking service as a persisted event, as shown in Figure 9–3.

The SessionBeginEvent and the SessionEndEvent do not have corresponding
property sets in a portal application. By default, the Campaign listener does not listen
for these events, so they cannot be used to trigger Campaigns. For more information
on starting a Campaign, see Section 8.4, "Triggering a Campaign."

9.3.3 Using the UserRegistrationEvent
Use the UserRegistrationEvent to dispatch an event when a user registers in a
portal (when the user is added to the user store programmatically with a registration
portlet, for example).

If Behavior Tracking is enabled, the event property values (in particular the user ID)
are written to the BT_EVENT table in the database when the event is generated and the
event is registered with the Behavior Tracking service as a persisted event, as shown in
Figure 9–3.

9.3.4 Using the AddToCartEvent
Use AddToCartEvent to dispatch an event when a user adds an item to a shopping
cart. This event lets you capture information such as currency type, quantity of the
item being added, unit list price, and SKU. These properties must be represented
somehow in your shopping cart and content type to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

9.3.5 Using the RemoveFromCartEvent
The RemoveFromCartEvent generates an event when a user removes an item from a
shopping cart. This event lets you capture information such as currency type, quantity
of the item being added, unit list price, and SKU. These properties must be represented
somehow in your shopping cart and content type to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

Using Predefined Events

9-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

9.3.6 Using the PurchaseCartEvent
The PurchaseCartEvent dispatches an event when a user makes a purchase. This
event lets you capture information such as currency type, order number, and total
purchase price. These properties must be represented somehow in your shopping cart
to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.3.7 Using the Rule Events
WebLogic Portal provides a Rule Event control that lets you generate a Behavior
Tracking event whenever you fire a rule in a page flow using the Rules Executor
control. The Rule Event control gets all necessary properties, including the names of
the rule set and the rule that was fired.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

The Rule Event does not have a corresponding property set in a portal application.
Rules are often used instead of Campaigns, because they provide more flexibility and
power; so creating a rule event property set to trigger a Campaign when a rule is fired
is not a likely scenario. However, if you want to create a rule property set to trigger a
Campaign when a rule is fired, create an event property set called RuleEvent.evt and
add the following single, unrestricted string properties: ruleset-name and rule-name.
For instructions on creating property sets, see Chapter 4.

For more information on using rules, see Chapter 10.

9.3.8 Using the DisplayCampaignEvent
If Behavior Tracking is enabled, a DisplayCampaignEvent is automatically
generated when a Campaign places a content item in a Placeholder. The event
property values are written to the BT_EVENT table in the database when the event is
generated and the event is registered with the Behavior Tracking service as a persisted
event, as shown in Figure 9–3.

9.3.8.1 Using the Display Content Event Control
Using the Display Content Event control with a
<BehaviorTracking:displayContentEvent/> JSP tag let you generate a
Behavior Tracking event when you display a piece of content in a JSP.

See Table 9–1 for details on how get the document-id and document-type properties.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Using Predefined Events

Setting Up Events and Behavior Tracking 9-9

A Display Content Event does not have a corresponding property set in a portal
application. By default, the Campaign service does not listen for these events, so they
cannot be used to trigger Campaigns. For more information, see Section 8.4,
"Triggering a Campaign."

9.3.8.2 Using the Display Product Events JSP Tag
The <productTracking:displayProductEvent> JSP tag lets you generate a
Behavior Tracking event when you display a product from your catalog.

See Table 9–1 for details on how get the application-name, category-id, document-id,
document-type, and SKU properties.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

A Display Product Event does not have a corresponding property set in a portal
application. By default, the Campaign service does not listen for these events, so they
cannot be used to trigger Campaigns. For more information, see Section 8.4,
"Triggering a Campaign."

9.3.9 Using the CampaignUserActivityEvent
The CampaignUserActivityEvent dispatches an event when a generic Campaign
event occurs. This event creates a new DisplayCampaignEvent and associates users
with specific Campaign and Scenario instances. These properties must be represented
to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.3.10 Using the ClickCampaignEvent
Using the ClickCampaignEvent with the ClickThroughEventFilter generates
an event when a user clicks a content item displayed by a Campaign.

Perform the following steps to enable content clicking:

1. Include the appropriate entries in your portal web project's web.xml and
weblogic.xml files, as described in Section 9.4, "Generating Events for Content
Clicks."

2. Configure your content items with specific properties, as described in Chapter 3.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

9.3.11 Using the ClickProductEvent
Use the ClickProductEvent with the ClickThroughEventFilter to generate an
event when a user clicks a product content item.

The ClickProductEvent lets you capture information such as product category and
SKU. Both of those properties must be represented somehow in your content type to
use this event.

Generating Events for Content Clicks

9-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

To enable content clicking, include the appropriate entries in your portal web project's
web.xml and weblogic.xml files, as described in Section 9.4, "Generating Events for
Content Clicks."

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

9.3.12 Using the ClickContentEvent
Use the ClickContentEvent with the ClickThroughEventFilter to generate an
event when a user clicks any content item that was retrieved from the virtual content
repository, but not as the result of a Campaign.

To enable event generation on content clicking, include the appropriate entries in your
portal web project's web.xml and weblogic.xml files, as described in Section 9.4,
"Generating Events for Content Clicks."

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking service as a persisted event, as shown in Figure 9–3.

9.4 Generating Events for Content Clicks
WebLogic Portal provides predefined events that can be generated when a user clicks a
content item in a portal. In particular, the
<BehaviorTracking:clickContentEvent> and the
<productTracking:clickProductEvent> JSP tags enable content click events.
The ClickCampaignEvent also generates content click events. To enable content to
be clicked so that an event is dispatched to the Event service, use the
ClickThroughEventFilter, add the EventService to the web.xml file and the
weblogic.xml file, and enable Campaign clickthroughs.

This section contains the following topics:

■ Section 9.4.1, "Using the ClickThroughEventFilter"

9.4.1 Using the ClickThroughEventFilter
Use the ClickThroughEventFilter whenever you use /ShowBinary pattern in a
URL. ShowBinary (which is mapped to the ShowPropertyServlet) displays
binary web content, such as graphics. Use /ShowBinary in the content URL in your
JSPs. After you map the ClickThroughEventFilter to the /ShowBinary URL
pattern, use /ShowBinary in your JSP as part of the URL with a click event JSP tag.
Then, when a user clicks the content, a click content event is generated by the
ClickThroughEventFilter.

To enable this capability, add the following filter and filter mapping to your portal web
project's web.xml file:

<filter>
 <filter-name>ClickThroughEventFilter</filter-name>
 <filter-class>
 com.bea.p13n.tracking.clickthrough.ClickThroughEventFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>ClickThroughEventFilter</filter-name>
 <url-pattern>/ShowBinary/*</url-pattern>

Generating Content Events

Setting Up Events and Behavior Tracking 9-11

</filter-mapping>

9.4.1.1 JSP Example
Assuming you have added the filter mapping to your web.xml file, the following JSP
code displays a content item from the virtual content repository (that has already been
retrieved from an iterator, not shown) and provides the mechanism for click content
event generation:

<!-- The JSP tag gets the documentId of a content item, which provides
 the ClickThroughEventFilter with the parameters it needs to
 generate an event. The id attribute stores the data retrieved
 by the tag. This JSP tag alone does not generate the event. -->
<BehaviorTracking:clickContentEvent documentId="<%= node.getName() %>"
id="eventInfo" />
<!-- A URL variable uses /ShowBinary to provide the clickable link,
 which is mapped to the ClickThroughEventFilter. The eventInfo variable
 provides the ClickThroughEventFilter with the required event parameters
 when a user clicks the link. -->
<% String url = request.getContextPath() + "/ShowBinary"+node.getPath() + "?" +
eventInfo;%>
<!-- Now if the user clicks the link, a ClickContentEvent is generated by
 the ClickThroughEventFilter. The ShowBinary servlet displays the
 content from the virtual content repository in its binary form
 (such as a graphic). -->
<a href="<%= url %>"><img src="<%=request.getContextPath() + "/ShowBinary" +
node.getPath()%>" >

9.4.1.2 Enabling Campaign Clickthroughs
To enable Campaign clickthroughs that trigger the predefined ClickCampaign
Event, you must configure your content items with specific properties, as described in
Chapter 3.

9.5 Generating Content Events
Other predefined events track changes made to the virtual content repository or to the
repository configuration. The events capture different attributes and use the Behavior
Tracking listener and the Behavior Tracking Service to persist the attributes as XML in
the BT_EVENT table when they are generated, or dispatched. You must enable
Behavior Tracking to persist the event attributes (as described in Section 9.7, "Enabling
Behavior Tracking").

The following events track repository changes: CampaignUserActivityEvent,
ContentConfigEvent, ContentCreateEvent, ContentDeleteEvent, and
ContentUpdateEvent.

If you want to perform custom event handling when any of the predefined events is
dispatched, create a custom event listener, as described in Section 9.9, "Creating
Custom Event Listeners."

9.5.1 Using the ContentConfigEvent
The ContentConfigEvent dispatches a new event when a user makes a
configuration change to the virtual content repository. This event lets you capture
information, such as the action that was performed on the repository. The properties
must be represented to use this event.

Providing Event Attribute Values

9-12 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.5.2 Using the ContentCreateEvent
The ContentCreateEvent dispatches an event when a user adds content to the
virtual content repository. This event lets you capture information, such as the content
type, the path where the new content was created, the content's status, and so on. The
properties must be represented to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.5.3 Using the ContentDeleteEvent
The ContentDeleteEvent dispatches an event when a user removes content from
the virtual content repository. This event lets you capture information, such as the
content type, the path where the content existed before it was removed, the content's
status, and so on. The properties must be represented to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.5.4 Using the ContentUpdateEvent
The ContentDeleteEvent dispatches an event when a user changes content from
the virtual content repository. This event lets you capture information, such as the
content type, the path where the content existed before it was updated, the content's
status, and so on. The properties must be represented to use this event.

If Behavior Tracking is enabled, the event property values are written to the BT_EVENT
table in the database when the event is generated and the event is registered with the
Behavior Tracking Service as a persisted event, as shown in Figure 9–3.

9.6 Providing Event Attribute Values
WebLogic Portal's predefined events set many of their attribute values automatically.
However, there are attributes that you must set manually in your code. Table 9–2
describes the attributes needed by the predefined events and shows you the methods
you can use to set the attributes in your code. You can also use these methods to set
attributes in your custom events.

You can get some attributes from other generated events. For example, whenever a
Campaign displays a piece of content, a DisplayCampaignEvent is generated. The
DisplayCampaignEvent sets an attribute called placeholder-id. (It also sets other
attributes.) If you want to set the placeholder-id for a custom event, you can get the
attribute from the DisplayCampaignEvent using the getAttribute() method on
that event. For example: DisplayCampaignEvent.getAttribute(
"aPlaceholderId");

Enabling Behavior Tracking

Setting Up Events and Behavior Tracking 9-13

9.7 Enabling Behavior Tracking
The default Derby database in a WebLogic Portal domain (and the SQL scripts used to
build a portal database for other database types) include Behavior Tracking tables that
are ready to use for storing Behavior Tracking data. However, you must manually

Table 9–2 Getting Attributes for Predefined Events

Event Attribute How to Get the Attribute

application-name The name of the enterprise application. All predefined events that use this attribute set it
automatically. To set this attribute manually in a custom event, use the following
method: com.bea.p13n.events.Event.getApplication().

campaign-id The unique ID of a Campaign. All predefined events that use this attribute set it
automatically. To set this attribute manually in a custom event, use the following
method: com.bea.campaign.CampaignInfo.getUniqueId().

category-id The category that an item in the catalog belongs to. You must set this attribute manually.

currency Gets the type of currency on an item.

document-id The unique virtual content repository ID of the retrieved content item. You could also
get the unique document name. The Campaign events set this attribute automatically.
You must set it manually for all other events. Content events that have corresponding
JSP tags provide a tag attribute. After you have retrieved a content item from the virtual
content repository with a Content Selector, a Campaign, a Placeholder, or by any other
means, use one of the following to get the document-id:

com.bea.content.Node.getId() or getName()

or

Use the <cm:getProperty> JSP tag to get the cm_uid or cm_nodeName property.

document-type Type is the name of the virtual content repository type, not the MIME type. The
Campaign events set this attribute automatically. You must set it manually for all other
events. Content events that have corresponding JSP tags provide a tag attribute. After
you have retrieved a content item from the virtual content repository with a Content
Selector, a Campaign, a Placeholder, or by any other means, use
com.bea.content.Node.getType() to retrieve the content's type.

order-id The unique ID of a customer's order.

placeholder-id The unique ID of the content Placeholder displaying the content. The predefined events
that use this attribute set it automatically.

quantity The number of a specific items in a shopping cart.

scenario-id The unique ID of a Campaign scenario that contains the action that was executed. The
predefined events that use this attribute set it automatically. To set it manually in a
custom event, use the following method: com.bea.campaign.action.
Action.getScenarioId().

session-id The unique ID of the current session. This is retrieved automatically by the predefined
events, which extend the TrackingEvent class, which uses
javax.servlet.http.HttpSession.getId() and assigns the return value to the
session-id property.

sku The sku number of the catalog item.

total-price The total price of an order in a shopping cart.

unit-price

unit-list-price

The unit price of an item in a shopping cart.

user-id The ID of the authenticated user. This is retrieved automatically by the predefined
events, which extend the TrackingEvent class, and the return value is assigned to the
user-id property. You can also use the following method to get the user-id from the
request: com.bea.p13n.usermgmt.SessionHelper. getUserId(request).

Enabling Behavior Tracking

9-14 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

activate Behavior Tracking to use Behavior Tracking events. You can use the
Administration Console or Oracle Enterprise Pack for Eclipse to enable Behavior
Tracking. The tool you choose to enable Behavior Tracking depends on how you want
to deploy your application.

Choose one of the following two ways to enable Behavior Tracking:

■ Administration Console – To make changes to your application at run-time,
register the Behavior Tracking Listener in the Administration Console. This
configuration information is written to the plan.xml deployment file. See
Section 9.7.1, "Enabling Behavior Tracking in the Administration Console" for
instructions.

■ Oracle Enterprise Pack for Eclipse – To deploy your application to a new domain,
enable Behavior Tracking by updating the p13n-config.xml file for your
application in Oracle Enterprise Pack for Eclipse and placing it in your
<EAR>/META-INF directory. (Oracle Enterprise Pack for Eclipse does not create a
plan.xml deployment file.) This configuration information is merged and saved
with other configuration files from other library modules when you deploy your
EAR file. See Section 9.7.6, "Enabling Behavior Tracking in Oracle Enterprise Pack
for Eclipse" for instructions.

This section contains the following topics:

■ Section 9.7.1, "Enabling Behavior Tracking in the Administration Console"

■ Section 9.7.2, "Configuring Behavior Tracking"

■ Section 9.7.3, "Adjusting Behavior Tracking for Optimal Performance"

■ Section 9.7.4, "Storing Behavior Tracking Data in Other Ways"

■ Section 9.7.5, "Creating a Separate Database for Behavior Tracking Events"

■ Section 9.7.6, "Enabling Behavior Tracking in Oracle Enterprise Pack for Eclipse"

9.7.1 Enabling Behavior Tracking in the Administration Console
Use the Administration Console to update the plan.xml deployment file for your
application at run-time. See the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal for more information on deployment plans.

If you are using a database other than Derby, see the Oracle Fusion Middleware Database
Administration Guide for Oracle WebLogic Portal for instructions on creating a separate
database for Behavior Tracking events.

Perform the following steps to activate Behavior Tracking by registering the
BehaviorTrackingListener class with the Event service:

1. Start the Administration Console and log in as a system administrator.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. In the Synchronous Listeners section, click Add Synchronous Listener.

5. Enter the following class in the Class Name field:

com.bea.p13n.tracking.listeners.BehaviorTrackingListener

Note: Synchronous listeners receive events immediately.
Asynchronous listeners use a thread scheduler to receive events.

Enabling Behavior Tracking

Setting Up Events and Behavior Tracking 9-15

6. Click Update. The class appears in the Class Name list, and the plan.xml file is
updated. Behavior Tracking is activated, as shown in Figure 9–2. You do not need
to restart the server or redeploy your application.

Figure 9–2 The New Class Appears in the Class Name Field

9.7.2 Configuring Behavior Tracking
By default, Behavior Tracking data is not written to the database immediately when a
Behavior Tracking event occurs. The events are stored in a buffer. You can determine
how often Behavior Tracking data is moved to the database from the buffer.

Perform the following steps to determine how often Behavior Tracking data is moved
to the database:

1. Start the Administration Console and log in as a system administrator.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Behavior
Tracking Service.

4. Click Configuration Settings for: Behavior Tracking Service. Figure 9–3 shows
the Configuration Setting dialog box.

5. Modify the settings, as described in Table 9–1. Leave the default values for Data
Source JNDI Name (the p13n.trackingDataSource) and Custom Persistence
Classname (null). These fields provide the default behavior for moving event data
from the buffer to the BT_EVENT table in the database. For alternative persistence,
see Section 9.7.4, "Storing Behavior Tracking Data in Other Ways." For information
on the Persisted Event Types field, see Section 9.8.1.2, "Creating a Behavior
Tracking Event Class."

Enabling Behavior Tracking

9-16 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 9–3 Configuring Behavior Tracking

6. Click Update.

7. Restart the server for your changes to take effect.

Use Table 9–3 when you set your Behavior Tracking settings.

This section contains the following topics:

■ Section 9.7.3, "Adjusting Behavior Tracking for Optimal Performance"

■ Section 9.7.4, "Storing Behavior Tracking Data in Other Ways"

■ Section 9.7.5, "Creating a Separate Database for Behavior Tracking Events"

■ Section 9.7.6, "Enabling Behavior Tracking in Oracle Enterprise Pack for Eclipse"

9.7.3 Adjusting Behavior Tracking for Optimal Performance
In your development or testing environment, start with a set of baseline values for
Maximum Buffer Size, Buffer Sweep Interval, and Buffer Sweep Maximum. Try
different values while testing peak site usage with your web application until you find

Table 9–3 Behavior Tracking Settings

Setting Description

Maximum Buffer Size Determines the maximum number of events stored in the buffer
before the event data is written to the database. The default value is
100 events.

All events are stored in the buffer, but only the events listed in the
Persisted Event Types field are written to the database. All others
are flushed from the buffer.

Buffer Sweep Interval Determines how often the events buffer is checked to determine
whether the events in the buffer should be persisted to the
database. Two conditions trigger events to be moved from the
buffer to the database: 1) The maximum buffer size has been
reached, or 2) The maximum time allowed in the buffer (Buffer
Sweep Maximum) has been exceeded. The default value is 10
seconds.

Buffer Sweep Maximum
Time

Sets the maximum time in seconds before the events in the buffer
are written to the database (and the non-persisted event types are
flushed from the buffer). The default value is 120 seconds.

Enabling Behavior Tracking

Setting Up Events and Behavior Tracking 9-17

the ideal balance between the number of database operations and the amount of data
being stored.

9.7.4 Storing Behavior Tracking Data in Other Ways
Behavior Tracking event data, by default, is stored in the database in the BT_EVENT
table. If you want to persist your event data in a different place or in a different way,
such as to a different database table or to a file, create a custom event listener that
provides the alternative persistence logic. For information on creating custom
listeners, see Section 9.9, "Creating Custom Event Listeners."

9.7.5 Creating a Separate Database for Behavior Tracking Events
If you are using Behavior Tracking, you can improve performance by storing Behavior
Tracking data in a separate database. The Oracle Fusion Middleware Database
Administration Guide for Oracle WebLogic Portal contains instructions for creating a
separate Behavior Tracking database for each type of database.

9.7.6 Enabling Behavior Tracking in Oracle Enterprise Pack for Eclipse
If you plan to deploy your application to a new domain, you should enable Behavior
Tracking in Oracle Enterprise Pack for Eclipse. This Behavior Tracking configuration
information is merged with other configuration files from other library modules. You
can place the updated p13n-config.xml file in source control to use when you
deploy other applications. See the Oracle Fusion Middleware Production Operations Guide
for Oracle WebLogic Portal for more information on deployment.

For example, you can add event types for the listener to the configuration file, as
shown in Example 9–1. This technique accomplishes the same result as adding the
event types through the Administration Console, as explained in Section 9.13,
"Tracking Content Changes." See also Section 9.5, "Generating Content Events" for
information on the content event types.

Example 9–1 Adding Event Types to a P13N Configuration File

...
<behavior-tracking>
 <persisted-event-type>ClickContentEvent</persisted-event-type>
 <persisted-event-type>DisplayContentEvent</persisted-event-type>
 <data-source-jndi-name>p13n.trackingDataSource</data-source-jndi-name>
</behavior-tracking>
...

Perform the following steps to enable Behavior Tracking when deploying your
application to a new domain:

1. Start Oracle Enterprise Pack for Eclipse and create a p13n-config.xml file in
your <EAR>/META-INF directory or copy an existing file to your project.

2. Enter your configuration details and save the file. Saving the p13n-config.xml
file combines this information with your other library module configuration files.
This appended configuration file can be used when you deploy other applications.

If you want to redeploy to the same application, right-click the server in the
Servers tab and choose Publish.

Tip: If you do not use Behavior Tracking, you should disable Event
services. See Section 9.14, "Disabling Behavior Tracking."

Creating Custom Events

9-18 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

3. Copy the p13n-config.xm.xml file into your source control system.

9.8 Creating Custom Events
If WebLogic Portal's predefined events do not capture the specific combinations of
attributes you need, you can create your own custom events. You can create two types
of custom events: Behavior Tracking events and regular events.

For guidance on custom events and what type to create, see Section 2.4.2,
"Understanding When to Create a Custom Event" and Section 2.4.1, "Understanding
When to Use a Predefined Event." Creating a custom event involves creating the Event
class and creating the XML Schema.

This section contains the following topics:

■ Section 9.8.1, "Creating the Event Class"

■ Section 9.8.2, "Creating an XML Schema for Behavior Tracking"

9.8.1 Creating the Event Class
WebLogic Portal provides the two base event objects that work with the Event Service:
com.bea.p13n.events.Event and
com.bea.p13n.tracking.events.TrackingEvent. These base classes provide
the necessary methods required by the Event Service. You can use either of these
classes as the superclass when creating your event class as described in Step 2.

When you create an event class you extend one of the base classes, declare the event
attributes you want, and pass the event data (such as the event type) to the base class
constructor.

This section provides instructions on creating custom regular events and custom
Behavior Tracking events.

9.8.1.1 Creating a Regular Event Class
Create a custom regular event when none of WebLogic Portal's predefined events
capture the event attributes you want, and you do not want to use the Behavior
Tracking service for persisting event data as XML in the BT_EVENT table. You can
trigger Campaigns with custom regular events and perform your own event handling
if you create a custom event listener.

The steps involve creating am EJB or utility project, which is generally used to develop
general-purpose Java code that is not directly part of special entities.

The steps in this chapter refer to the \src folder in the Package Explorer View. Your
src directory might be named differently.

Perform the following steps to create a custom event class:

1. Create an EJB or utility project in Oracle Enterprise Pack for Eclipse by performing
the following steps:

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the EJB folder and select
WebLogic EJB Project or expand the J2EE folder and select Utility Project.
Click Next.

Tip: If you use Oracle Enterprise Pack for Eclipse to remove an
application from a domain, the deployment plan is also removed.

Creating Custom Events

Setting Up Events and Behavior Tracking 9-19

c. Enter a name for the EJB or utility project and ensure that the Use default
check box is selected. Select the Add project to an EAR check box and click
Next, as shown in Figure 9–4.

Figure 9–4 Enter a Project Name

d. Select the facets (including Portal Application Services) that you want to
enable and click Finish.

Your new EJB or utility project is automatically associated with your EAR
project. For more information on EJB projects, see the Oracle Fusion Middleware
Portal Development Guide for Oracle WebLogic Portal.

2. Make a new Java class by performing the following steps:

a. Select your web project in Package Explorer View and choose File >New >
Other.

b. In the New - Select a Wizard dialog, expand the Java folder, select Class, and
click Next.

c. In the New Java Class - Java Class dialog, enter a Name for the new class and
for the Superclass. Select the Constructors from superclass check box and the
Inherited abstract methods check box and click Finish. See Figure 9–5.

Creating Custom Events

9-20 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 9–5 Enter the Class Name and Superclass

The new class appears in the \src directory of your portal web project.

3. Perform the following steps to declare event attribute names and create the event
object for the new Java class:

a. Declare the event attribute names as keys that are passed back to the Event
constructor. For example:

public static final String FOO_ATTRIBUTE = "fooAttribute";
public static final String SESSION_ID = "session-id";
public static final String USER_ID = "user-id";

b. Create the event object. For example:

public MyEvent(
 String fooAttributeValue,
 String user_id,
 HttpServletRequest request,
 HttpSession session

c. Add a constructor, such as the one below, and pass the event type back to it:

super(TYPE);

d. Declare the event attributes with the following code:

setAttribute(FOO_ATTRIBUTE, fooAttributeValue);
setAttribute(SESSION_ID, session_id);
if(user_id != null)

Note: If you use events to trigger Campaigns, you must have a string
called user-id that contains the User's Profile name. You must also
have a request attribute of type com.bea.p13n.http.Request. The
request attribute, however can be added at runtime with the following
code: event.setAttribute("request", new Request(request, true));

Creating Custom Events

Setting Up Events and Behavior Tracking 9-21

 setAttribute(USER_ID, user_id);
else
 setAttribute(USER_ID, "unknown");

where fooAttributeValue is the variable that stores the value you retrieved in
your code (not shown here).

4. The Java files in the \src folder will be compiled the normal way and deployed as
part of the application. You can dispatch the event from a JSP, Java code, or a Page
Flow, as described in Section 9.10, "Dispatching Events." If you want to use the
event in Campaign definitions, create an event property set for the event, as
described in Section 9.11.1, "Registering Events for Campaigns." If you want to
perform custom functionality when the event is generated, create a custom event
listener that listens for the event, as described in Section 9.9, "Creating Custom
Event Listeners."

9.8.1.2 Creating a Behavior Tracking Event Class
Create a custom Behavior Tracking event if none of WebLogic Portal's predefined
events captures the event attributes you want, and you need to use WebLogic Portal's
Behavior Tracking framework to persist event data as XML in the BT_EVENT table.

You can use these events in Campaigns and create a custom listener that performs
special handling on the event, but unless you want to use the Behavior Tracking
framework to store event data as XML, you do not need to create a custom Behavior
Tracking event. If you do not want to use the Behavior Tracking service, create a
custom regular event as described on Section 9.8.1.1, "Creating a Regular Event Class."

Your Behavior Tracking event works with its own XML schema to store the event data
as XML in the BT_EVENT database table. Information about that schema must be
included in your event class, as described in the following steps.

The steps involve creating a utility project, which is generally used to develop
general-purpose Java code that is not directly part of special entities, such as web
services, controls, or EJBs.

The steps in this chapter refer to the src folder in the Package Explorer View. Your
src directory might be named differently.

Perform the following steps to create a Behavior Tracking event class:

1. Create an EJB project in Oracle Enterprise Pack for Eclipse by performing the
following steps:

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the EJB folder and select
WebLogic EJB Project. Click Next.

c. In the New WebLogic EJB Project dialog, enter a name for the EJB project and
ensure that the Use default check box is selected. Select the Add project to an
EAR check box and click Next.

d. In the New Java Utility Module - Select Project Facets dialog, select the facets
that you want to enable and click Finish.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Creating Custom Events

9-22 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Your new EJB project is automatically associated with your EAR project. For more
information on EJB projects, see the Oracle Fusion Middleware Portal Development
Guide for Oracle WebLogic Portal.

2. Make a new Java class by performing the following steps:

a. Select your web project in Package Explorer View and choose File >New >
Other.

b. In the New - Select a Wizard dialog, expand the Java folder, select Class, and
click Next.

c. In the New Java Class - Java Class dialog, enter a Name for the new class and
for the Superclass. Select the Constructors from superclass check box and the
Inherited abstract methods check box and click Finish. See Figure 9–6.

Figure 9–6 Enter the Class Name and Superclass

The new class appears in the \src directory of your portal web project.

3. Perform the following steps to declare event attribute names and create the event
object for the new Java class:

a. Declare the XML_NAMESPACE key. This is the namespace URL used by your
Behavior Tracking event's XML schema to uniquely identify it. For example:

private static final String XML_NAMESPACE =
"http://www.yourdomain.com/myschemas/tracking/mytrackingschema";

b. Declare the name of the XML schema file. For example:

private static final String XSD_FILE = "mytrackingschema.xsd";

c. Declare the event attribute names as keys that are passed to the
TrackingEvent constructor. For example:

public static final String SESSION_ID = "session-id";
public static final String USER_ID = "user-id";
public static final String PAGE_LABEL = "pageLabel";

Creating Custom Events

Setting Up Events and Behavior Tracking 9-23

d. Declare the XML schema keys as an array. The schema keys are strings that are
passed to the base TrackingEvent constructor. These keys are used to get
the Behavior Tracking data that is put into the database. List the keys as an
array of string objects.

private static final String localSchemaKeys[] =
{
 SESSION_ID, USER_ID, PAGE_LABEL
};

The localSchemaKeys order is important, because it corresponds to the
order in which the XML schema needs the event properties for the XML
output. An XML file will be invalid if elements are out of order.

The SESSION_ID and the USER_ID are data elements in the
localSchemaKeys array that are useful in implementing a tracking event.
The SESSION_ID, which must not be null, is the WebLogic Server session ID
that is created for every session object. The USER_ID is the user name of the
user who triggered the event.

e. Create the event object. For example:

public MyEvent(
 String fooAttributeValue,
 String user_id,
 HttpServletRequest request,
 HttpSession session

f. Call the TrackingEvent constructor and pass the required arguments back
to it in the required order. For example:

{
super(
 TYPE,
 session,
 XML_NAMESPACE,
 XSD_FILE,
 localSchemaKeys,
 request);

g. Declare the event attributes. For example:

setAttribute(PAGE_LABEL, pageLabelValue);
setAttribute(SESSION_ID, session_id);
if(user_id != null)
 setAttribute(USER_ID, user_id);
else
 setAttribute(USER_ID, "unknown");
}

The pageLabelValue is the variable storing the value you retrieved in your
code (not shown here).

Note: If you use events to trigger Campaigns, you must have a string
called user_id that contains the User's Profile name. You must also
have a request attribute of type com.bea.p13n.http.Request. The
request attribute, however can be added at runtime with the following
code: event.setAttribute("request", new Request(request, true));

Creating Custom Events

9-24 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

4. Register the Behavior Tracking event with the Behavior Tracking service in the
WebLogic Portal Administration Console. This event tells the Behavior Tracking
listener to handle this type of event.

a. Start the Administration Console.

b. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

c. In the Resource Tree, expand the Personalization folder and select Behavior
Tracking Service.

d. In the Configure tab click Configure Settings for: Behavior Tracking Service.

e. Enter the name of your Behavior Tracking class in the Custom Persistence
Classname field (such as behtrackingclass).

f. Click Update.

5. Create an XML schema that determines the structure of the XML document
generated by the Behavior Tracking event. See Section 9.8.2, "Creating an XML
Schema for Behavior Tracking." If you want to use the event in Campaign
definitions, create an event property set for the event, as described in
Section 9.11.1, "Registering Events for Campaigns." If you want to perform custom
functionality when the event is generated, create a custom event listener that
listens for the event, as described in Section 9.9, "Creating Custom Event
Listeners."

6. The Java files in the \src folder will be compiled the normal way and deployed as
part of the application. You can dispatch the event from a JSP, Java code, or a Page
Flow, as described in Section 9.10, "Dispatching Events." If you want to use the
Behavior Tracking event in Campaign definitions, create an event property set for
the event, as described in Section 9.11.1, "Registering Events for Campaigns." If
you want to perform custom functionality when the event is generated, create a
custom event listener that listens for the event, as described in Section 9.9,
"Creating Custom Event Listeners."

9.8.1.3 Creating an Event With a Scriptlet
You can create an event without writing an event class by using a scriptlet in a JSP.
This technique is best suited for simple, Non-Behavior Tracking events that are used to
trigger Campaigns. Using this technique for complex events clutters your JSP. You
should use this technique in a JSP that has a form that can supply values to event
properties.

Perform the following steps to create an event with a scriptlet:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, create an event
property set. For instructions, see Section 9.11.1, "Registering Events for
Campaigns."

2. After you have created the event property set, open the JSP in which you want to
create the event.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Creating Custom Events

Setting Up Events and Behavior Tracking 9-25

3. Drag the event property set file into the JSP where you want the event to occur (for
example, after the Submit button on a form). The scriptlet is generated
automatically.

For example, if you create an event property set called MyEvent.evt that contains
a single, unrestricted attribute called fooAttribute, the following scriptlet is
generated when you drag the property set file into a JSP:

<%
// Generate the Event object here.
// If you have a custom Event subclass for your event type,
// change this code to use it instead
com.bea.p13n.events.Event event = new com.bea.p13n.events.Event("MyEvent");
// fooProperty should be a String
event.setAttribute("fooProperty", "");

// These attributes are standard to all Events.
event.setAttribute("request", new com.bea.p13n.http.Request(request, true));
event.setAttribute("user-id",
com.bea.p13n.usermgmt.SessionHelper.getUserId(request));

// Dispatch the Event to the EventService.
com.bea.p13n.tracking.TrackingEventHelper.dispatchEvent(request, event);
%>

The scriptlet automatically gets the request and the user-id, which are required for
triggering Campaigns, and the code for dispatching the event. The dispatch code
uses the Behavior Tracking API, but it also dispatches regular events.

You must supply the value for fooProperty, which could come from the value of a
form field.

4. Save your work by choosing File > Save.

If you want to perform custom functionality when the event is generated, create a
custom event listener that listens for the event, as described in Section 9.9, "Creating
Custom Event Listeners."

9.8.2 Creating an XML Schema for Behavior Tracking
Behavior Tracking events, by default, store their property values in the database as
XML. For each type of Behavior Tracking event, the Event service uses a specific XML
schema to create the XML. When you create a custom Behavior Tracking event, you
must also create an XML schema for the Behavior Tracking service to use.

When creating an XML schema for a custom Behavior Tracking event, consider the
following connection points between the schema and your event class:

■ Filename – The value of the XSD_FILE key in your event class must match the
name of the actual XSD file.

■ Namespace – The value of the XSD_NAMESPACE key in your event class must
match the targetNamespace attribute value in your XSD file.

■ Property Order – The XSD file contains a list of event attributes you want to
capture. The order in which these properties are listed in the XSD must match the
order they are listed in your event class's localSchemaKeys[] array.

For example, if your event class contains this list of schema keys, your XSD file
must list those properties in the same order:

private static final String localSchemaKeys[] =

Creating Custom Event Listeners

9-26 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

{
SESSION_ID, USER_ID, PAGE_LABEL_KEY
};

When you use XSD, you need to change only the targetNamespace and xmlns=
attribute values to your namespace, and add your custom event attributes, in order.

You can view the XSDs for WebLogic Portal's predefined events at the following
location:
<MW_HOME>\user_projects\workspaces\workshop\.metadata\.plugins\
com.bea.workshop.wls.core\libraries\p13n-app-lib_10.3.2_10.3.2\1
\APP-INF\lib\p13n_app.jar.

A user might not be associated with an event. In such a case, use the minOccurs="0"
attribute for the user-id attribute in the XSD file. For example:

<xsd:element ref="user-id" minOccurs="0"/>

9.8.2.1 Packaging the Schema
After you create the schema, add it to your portal application's p13n_app.jar file
using the following steps.

1. Back up your p13n_app.jar file by creating a copy of it and naming it
p13n_ejb.orig, for example.

2. In your application directory, temporarily add the <yourschema>.xsd file to the
lib/schema/ directory.

3. Add the schema to the p13n_app.jar file. In a command window (that has the
JAR utility in the environment), switch to the application directory and run the
following command:

jar uvf p13n_app.jar lib\schema\<yourschema>.xsd

The schema is added to the JAR file.

4. Redeploy the p13n_app.jar file.

9.9 Creating Custom Event Listeners
An event listener serves one purpose: when an event occurs for which the listener is
listening, the listener performs some type of programmatic functionality. WebLogic
Portal provides the following two listeners that handle events in specific ways:

■ CampaignEventListener – Listens for all events (except those it is told to ignore in
the listeners.properties file in the wps.jar file) and calls the Campaign
service to evaluate and trigger Campaign actions.

■ BehaviorTrackingListener – Listens for all events registered with the Behavior
Tracking service and puts data from Behavior Tracking events in a buffer, where it
is later moved into the BT_EVENT database table. (You must manually register this
listener to activate Behavior Tracking, as described in Section 9.7, "Enabling
Behavior Tracking." For example, you could create a custom event listener that
listens for the SessionLoginEvent, SessionBeginEvent, and
SessionEndEvent. You can add the user-id field of these events to a list to keep
track of who has logged in.

If you create and register a custom Behavior Tracking event, that event is handled by
the BehaviorTrackingListener and the CampaignEventListener. If you

Creating Custom Event Listeners

Setting Up Events and Behavior Tracking 9-27

create a custom regular event, that event is handled by the
CampaignEventListener.

However, there may be times when you want to provide more programmatic
functionality when events occur, whether the events are custom events or WebLogic
Portal's predefined events. For example, you may want to persist event data to a file or
another database table, show related products when a user clicks a product image, or
modify a User's Profile when the user submits a form. For these additional types of
functionality, you must create custom event listeners.

WebLogic Portal provides a base event listener object called EventListener. This
base class, which you must implement in your custom listener, provides two methods
for listening for and responding to events:

■ The getTypes() method – Tells the Event service which types of events that
interest the listener.

■ The handleEvent() method – Lets you insert the custom functionality you want
to perform when the listener receives an event that interests it.

The steps to create a custom event listener involve creating a utility project, which is
generally used to develop general-purpose Java code that is not directly part of special
entities, such as web services, controls, or EJBs. Note that you can also use an EJB
project (a new one or an existing one).

The steps in this chapter refer to the \src folder in the Package Explorer View. Your
src directory might be named differently.

Perform the following steps to create a custom event listener for regular events or
Behavior Tracking events:

1. Create a utility project in Oracle Enterprise Pack for Eclipse by performing the
following steps.

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the J2EE folder and
select Utility Project. Click Next.

c. In the New Java Utility Module - Utility Module dialog, enter a name for the
utility project and ensure that the Use default check box is selected. Select the
Add project to an EAR check box and click Next.

d. In the New Java Utility Module - Select Project Facets dialog, select the facets
that you want to enable and click Finish. (If you select the Portal Application
Services and/or Portal Customizations Framework facet, you can skip Step 2
and proceed to Step 3.)

Your new utility project is automatically associated with your EAR project. For
more information on utility projects, see the Oracle Fusion Middleware Portal
Development Guide for Oracle WebLogic Portal.

Note: If you try to access a local EJB with an EventListener, the
attempt will fail in the JNDI lookup. For this scenario, use a Remote
EJB interface instead.

Note: You can also use an EJB project. You can either create a new
EJB project or use an existing one.

Creating Custom Event Listeners

9-28 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

2. To ensure that the project sees the p13n classes as the server will see them, add the
WebLogic Portal Server and the p13n-app-lib library module CLASSPATH
containers to the project. Perform the following steps:

a. In Package Explorer, right-click the portal utility project you created and
choose Properties.

b. In the Properties dialog, select Java Build Path and select the Libraries tab.

c. Click Add Library.

d. In the Add Library dialog, select Oracle WebLogic Portal Server as the library
type and click Next.

e. In the Add Library - Oracle WebLogic Portal Server dialog, configure the
server CLASSPATH entries by selecting All Configured entries and clicking
Finish.

f. In the Properties dialog, click Add Library in the Libraries tab.

g. In the Add Library dialog, select WebLogic Library Module and click Next.

h. In the Add Library - Library Module dialog, click Browse and select
p13n-app-lib and click OK. The Specification Version, and Implementation
Version fields are populated. Select the Allow newer versions check box and
click Finish.

i. In the Properties dialog, click OK.

3. Make a new Java class by performing the following steps:

a. Select your web project in Package Explorer View and choose File >New >
Other.

b. In the New - Select a Wizard dialog, expand the Java folder, select Class, and
click Next.

c. In the New Java Class - Java Class dialog, enter a Name for the new class and
for the Superclass. For example, a class name could be MyEventListener.
Select the Constructors from superclass check box and the Inherited abstract
methods check box and click Finish.

The new class appears in the \src directory of your portal web project.

4. Perform the following steps to define the events for which the listener will listen,
declare event attribute names, and create the event object for the new Java class:

a. Your custom event listener must implement EventListener. For example:

public class MyEventListener
 implements EventListener
{

b. Define the events for which the listener will listen. For example:

private String[] eventTypes = {"MyEvent, ClickContentEvent"};

c. Pass the type of events listened for back to the base constructor. This tells the
Event service which events to send to this listener when the events occur:

Note: It is unnecessary to perform Step 2 if you chose the Portal
Application Services and/or Portal Customizations Framework facet
in Step 1-d.

Dispatching Events

Setting Up Events and Behavior Tracking 9-29

public String[] getTypes()
{
 return eventTypes;
}

d. Override the handleEvent() method to provide the programmatic
functionality you want the listener to perform when the listened-for events
occur:

public void handleEvent(Event ev)
 {
 //Put your custom code here.
 //This code is executed when the events occur.
 }
}

5. The Java files in the \src folder will be compiled the normal way and deployed as
part of the application. You can dispatch the event listener from a JSP, Java code, or
a Page Flow, as described in Section 9.10, "Dispatching Events." If you want to use
the event listener in Campaign definitions, create an event property set for the
event, as described in Section 9.11.1, "Registering Events for Campaigns."

6. Register the listener with the Event service by performing the following steps.

a. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

b. In the Resource Tree, expand the Personalization folder and select Event
Service.

c. In the Browse tab, click Add Synchronous Listener or Add Asynchronous
Listener.

d. Enter the fully qualified class name. For example:

com.bea.p13n.events.custom.listeners.MyEventListener

e. Click Update. The listener is registered with the Event service. You do not
need to restart the server.

9.10 Dispatching Events
With events and listeners in place, you can dispatch those events in your JSPs, Java
code, and Page Flows. Dispatching an event means that the Event service sends an
event object to any listeners interested in the event. Those listeners, in turn, handle the
events in their own ways.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Note: Synchronous listeners receive events immediately.
Asynchronous listeners use a thread scheduler to receive events.

Dispatching Events

9-30 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

For example, a sample event called ResourceDisplayedEventBT, is dispatched
from two portal framework skeleton JSP files: book.jsp and page.jsp. The
book.jsp skeleton is responsible for rendering portal book and page navigation
(such as tabs), and the page.jsp skeleton provides the area for portlets to be
displayed.

The code shown in Example 9–2 is inserted in each of the book.jsp and page.jsp.
files. This example uses code from the page.jsp file. The code dispatches a
ResourceDisplayEventBT event when portlets are viewed on a page.

Example 9–2 Dispatching an Event from a JSP Page

<%@ page import="com.bea.p13n.tracking.TrackingEventHelper,
 examples.events.ResourceDisplayedEventBT" %>
...
ResourceDisplayedEventBT rde;
...
ResourceDisplayedEvent rde = new ResourceDisplayedEvent(
 ppc.getLabel(),
 portletTitle,
 "portlet",
 sessionID,
 userId,
 "true", // portlet is being displayed
 request,
 session);
// New mechanism for dispatching an event in 9.2:
EventService es = TrackingEventHelper.getEventService();
TrackingEventHelper.dispatchEvent(es, rde);
...

The code performs the following actions:

■ The file imports the custom event class and the TrackingEventHelper, which is
used to dispatch the event.

■ The event class is assigned to the rde variable.

■ An instance of the event is created, and the attributes retrieved from the JSP are
passed in as event arguments in the same order that the event expects them. It
does not matter what names are used in the arguments as long as they supply the
type of information the event needs.

■ The event is dispatched to the Event Service with the
TrackingEventHelper.dispatchEvent(rde) method.

The event is then sent to the listeners registered to receive it, and the listeners handle
the event in their own ways. Figure 9–1 illustrates the event life cycle, and in this
example, the skeleton JSP is Item 2 in the diagram.

Section 9.8.1.3, "Creating an Event With a Scriptlet" also describes how to dispatch an
event for which you have created no event class. Dispatching events when content is
clicked requires special instructions, as described in Section 9.4, "Generating Events for

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Using Events in Campaigns

Setting Up Events and Behavior Tracking 9-31

Content Clicks." Some predefined events have their own dispatch methods. See
Section 9.3, "Using Predefined Events."

9.11 Using Events in Campaigns
You can use events to activate the Campaign Service and to make your Campaigns
more powerful by triggering Campaign actions based on events and their attribute
values.

When you use an event in a Campaign, you do not have to explicitly tell the Campaign
service about your events. The Campaign listener listens for all events that are not
explicitly excluded in the listeners.properties file in the wps.jar file.

When an event occurs for which the Campaign listener is listening, the listener calls
the Campaign service. The Campaign service takes a snapshot of the current request
and evaluates the request data against all the Campaign rules you have defined to see
if any actions need to be performed.

In addition, you can use events in Campaigns in another way: as part of a Campaign
action. For example, you can define a Campaign action that displays personalized
content only if the user clicks the Home page in a portal (triggered by some sort of
click page event). To use events as part of a Campaign definition, you must create an
event property set, as described in Section 9.11.1, "Registering Events for Campaigns."

An example of using an event in a Campaign definition is illustrated in Figure 9–7,
where a Campaign scenario is triggered if an event has specific property values
(characteristics). When you add An event has specific characteristics to your Campaign
scenario and click the characteristics link in the Campaign Editor, you can select the
event properties and determine which property values will trigger the Campaign
Action to occur. The event property set you created enabled the property selection.

Using Events in Campaigns

9-32 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 9–7 Using an Event to Trigger a Campaign Scenario

To control your Campaign, especially when you want personalized content to display,
create events that trigger Campaign actions at the key places in your application. For
more information on controlling personalized content, see Section 14.4, "Managing
Placeholders for Optimal Performance." For instructions on creating a Campaign, see
Section 8.2, "Building a Campaign."

This section contains the following topic:

■ Section 9.11.1, "Registering Events for Campaigns"

9.11.1 Registering Events for Campaigns
If you want to use a custom event to trigger a Campaign, you must create an event
property set. The properties you create for the event match the attribute names defined
in your event class.

For example, the sample ResourceDisplayedEvent class uses the following
properties: resourceId, resourceLabel, resourceType, session-id, user-id, and
resourceSelected. In your event property set, you can define properties for any or all
of those attributes, but the property names must exactly match the event attribute
names.

For instructions on creating event property sets, see Section 9.8, "Creating Custom
Events." For instructions on registering event property sets, see Section 9.7, "Enabling
Behavior Tracking."

Tracking Content Changes

Setting Up Events and Behavior Tracking 9-33

9.11.1.1 Changing Event Properties
If you create, modify, or delete event property sets after an application is deployed,
you must update those property set definitions in the database using the Propagation
Utility. For more information, see the Oracle Fusion Middleware Production Operations
Guide for Oracle WebLogic Portal.

9.12 Debugging the Event Service
You can debug the Event service and review the console output.

Perform the following steps to debug the event service:

1. To debug the Event service, create debug.properties in a directory similar to
the following: <MW_HOME>\user_projects\domains\<myDomain>.

2. Add the following to the file and modify the settings accordingly. These settings
provide server console output for you to review:

usePackageNames: on
com.bea.p13n.cache: on
Turns on debug for all classes under events
com.bea.p13n.events: on
com.bea.p13n.events.internal.EventServiceBean: on
Turns on debug for all classes under
com.bea.p13n.tracking: on
com.bea.p13n.tracking.internal persistence: on
Selectively turn on classes
com.bea.p13n.mbeans.BehaviorTrackingListener: on
com.bea.p13n.tracking.listeners.BehaviorTrackingListener: on
com.bea.p13n.tracking.SessionEventListener: on

3. In Oracle Enterprise Pack for Eclipse, double-click the server in the Servers tab and
uncheck the Launch WebLogic server in Eclipse console check box. Close the
Server Overview tab and click Yes to save your changes. Right-click the server
name and choose Restart to start the server and run debugging from a command
prompt.

9.13 Tracking Content Changes
You can use content events to track content changes to your virtual content repository
and modifications to the repository's configuration. Content changes include who
added, updated, or deleted content or content properties and the date and time the
change was made in the repository. You can also track who performed the changes
(including the date and time the changes were made) to the repository's configuration,
its content types, or content workflow. For more information on these events, see
Section 9.5, "Generating Content Events."

You could also configure a content event to watch for content changes and then
perform an action. For example, when a user adds a resume document to the content
repository, an e-mail is sent to the HR Director.

Tip: Events will fire for a content repository that was upgraded to
10.x (unless you turned event tracking turned off at the repository
level). Events can include repository configuration changes, as well as
content updates, additions, and deletions to the repository. See the
Oracle Fusion Middleware Upgrade Guide for Oracle WebLogic Portal for
more information on performing an upgrade.

Tracking Content Changes

9-34 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

These content events are saved in the Behavior Tracking database for historical
tracking. For more information on content management, see the Oracle Fusion
Middleware Content Management Guide for Oracle WebLogic Portal.

Perform the following steps to track content changes:

1. Start the Administration Console.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. Click Add Synchronous Listener.

5. Enter the listener name in the Class Name field. To capture content repository
changes, enter
com.bea.p13n.tracking.listeners.BehaviorTrackingListener. See
Figure 9–8.

Figure 9–8 Identify the Behavior Tracking Listener

6. Click Update.

7. In the Resource Tree, select Behavior Tracking Service.

8. In the Configure tab, click Add Event Type, as shown in Figure 9–9.

Disabling Behavior Tracking

Setting Up Events and Behavior Tracking 9-35

Figure 9–9 Click Add Event Type

9. In the Persisted Event Type field, enter the events for the content change you want
to track. For example, you could add the ContentCreateEvent to determine
new content that was added to the content repository, who added it, and when.

10. Click Update.

11. Refresh the display by clicking Refresh Tree in the Resource Tree.

9.14 Disabling Behavior Tracking
You can disable the persistence of Behavior Tracking events by unregistering the
Behavior Tracking listener or removing individual events.

This section contains the following topics:

■ Section 9.14.1, "Unregistering the Behavior Tracking Listener"

■ Section 9.14.2, "Removing an Individual Event"

Tip: To view the tracked changes to the content repository, you can
create a log file of the repository content changes that are contained in
the Behavior Tracking database tables, or you could enable listeners to
provide specific logged output.

Disabling Behavior Tracking

9-36 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

9.14.1 Unregistering the Behavior Tracking Listener
Perform the following steps to unregister the Behavior Tracking listener:

1. Start the Administration Console.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. In the Configure tab, locate the Behavior Tracking listener and select the Delete
check box next to it.

5. Click Delete.

6. Refresh the display by clicking Refresh Tree in the Resource Tree.

9.14.2 Removing an Individual Event
Perform the following steps to remove default events:

1. Start the Administration Console.

2. In the Administration Console, choose Configuration & Monitoring > Service
Administration.

3. In the Resource Tree, expand the Personalization folder and select Behavior
Tracking Service.

4. In the Configure tab, select the Delete check box for each event in the Persisted
Event Types section that you want to remove, as shown in Figure 9–10.

Figure 9–10 Select the Delete Check Box

5. Click Delete.

6. You must redeploy your application for the changes to take effect.

Note: Events could still be triggered to fire by the application, but
they are not persisted to the database table.

10

Creating Advanced Personalization with Rules 10-1

10Creating Advanced Personalization with
Rules

Developing Personalization using User Segments, Campaigns, Placeholders, and
Content Selectors can be done with JSP tags with very little Java coding. There might
be times, however, when you want more flexibility in your Personalization.You can
achieve this by creating and deploying a rule set, which uses the Rules Controls and
the RulesManager EJB.

This chapter contains the following sections:

■ Section 10.1, "Using Rules in Portal Applications"

■ Section 10.2, "Creating a Rule"

■ Section 10.3, "Rules Control Reference"

The Rules service can help you create advanced Personalization features, which can
help control each user's path through a Page Flow or using runtime information as
dynamic input to conditional logic in your code. You must possess a working
knowledge of XML and schemas (an advanced version of DTDs), as well as an
intermediate understanding of Java development.

10.1 Using Rules in Portal Applications
WebLogic Portal provides a set of tools to personalize the user experience in your
portal applications. You have control over the content each user sees, the automatic
e-mail messages each receives.

To achieve these Personalization results, you create User Segments, Content Selectors,
and Campaigns in Oracle Enterprise Pack for Eclipse. Developing Personalization with
these tools involves very little Java coding because you can use JSP tags. After this
type of Personalization is developed, portal administrators can use the WebLogic
Portal Administration Console to modify the behavior of the Personalization with no
coding at all.

There may be times, however, when you want even more power and flexibility in the
Personalization you develop. For example, you may want to use Personalization to
control each user's path through a Page Flow or use run-time information as dynamic
input to conditional logic in your code.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Using Rules in Portal Applications

10-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

You can access the Rules Service by using the following two types of components:

■ The Rules Controls – The two rules controls (the Rules Executor Control and the
Rules Manager Control) are used in Page Flows or Web services, and provide a
convenient way to add rules functionality to your application without writing
code. For example, using a drag-and-drop interface, you can add a Rules Control
to a Page Flow, select the methods in the control you want to use, and configure
the control in the Oracle Enterprise Pack for Eclipse Property Editor. For more
information, see the Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Portal.

■ The RulesManager EJB – The Rules Controls, which delegate calls to the
underlying RulesManager EJB, are the preferred way to interact with the Rules
Service. However, if you want to use the Rules Service somewhere besides a Page
Flow or Web service, you can use the RulesManager EJB directly in your code to
access the Rules Service.

This overview section includes the following topics:

■ Section 10.1.1, "Choosing Personalization Components"

■ Section 10.1.2, "Understanding the Rules Service"

10.1.1 Choosing Personalization Components
Table 10–1 describes the personalization tools provided by WebLogic Portal. User
Segments, Campaigns, Content Selectors, and Personalization JSP tags are described
only to highlight the increased programmatic power you have by directly accessing
the Rules Service.

The Input Objects and Action columns in Table 10–1 show the flexibility and power
you have with the rules controls and the RulesManager EJB.

Using Rules in Portal Applications

Creating Advanced Personalization with Rules 10-3

Table 10–1 WebLogic Portal Personalization Components

Component Description Input Objects
Action (if the input objects
match the rules criteria)

User Segments Dynamically assign users to a
grouping, or segment, when the
users meet specific conditions.

Segment rules are created in
Oracle Enterprise Pack for Eclipse
with the User Segment Editor.
You can modify rules in the
WebLogic Portal Administration
Console.

Segment rules can be
defined with User Profile
properties, HTTP session
or request properties, and
date or time values and
ranges.

One action: If all conditions
evaluate to true, the user is
considered a member of the
segment. Segments can be
used in Campaigns, Content
Selectors, and in the
<pz:div> JSP tag.

Campaigns Trigger personalized actions to
occur for users who meet specific
conditions or perform specific
actions.

Campaign rules are created in
Oracle Enterprise Pack for
Eclipsewith the Campaign Editor.
Rules are modifiable in the
WebLogic Portal Administration
Console.

Campaign rules can be
defined with User
Segments, User Profile
properties, HTTP session
or request properties,
event characteristics, date
or time values and ranges,
and random sampling.

Up to three types of actions:
Show a single personalized
content item, automatically
send a predefined e-mail,
provide a discount.

Content Selectors Show specific content items to
users who meet specific
conditions.

Content Selector rules are created
in Oracle Enterprise Pack for
Eclipse with the Content Selector
Editor. You can modify rules in
the Administration Console.

Content Selector rules can
be defined with User
Segments, User Profile
properties, HTTP session
or request properties, and
date or time values and
ranges.

One action: Show one or
more personalized content
items.

Using Rules in Portal Applications

10-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

10.1.2 Understanding the Rules Service
The Rules Service reads objects you have put into working memory and evaluating
those objects against a set of rules you have predefined in an XML file. (Working
memory is the place where objects are temporarily stored as the Rules Service is
processing the rules.) If the objects in memory match the conditions defined in the rule
set (which can be made up of multiple rules), the corresponding rule set actions are
triggered. For example, if you put a user's credit score into working memory (from the
User Profile, from the return of a Web service calculation, or any other way), a rule in
the rule set can be defined in XML to perform the following action: If the user has a
credit score equal to or greater than 10, classify that user as a 'gold customer'.

You can use the results of this rule processing in your applications any way you
choose. For example, if you are developing a Page Flow, you can send a "gold
customer" to the gold.jsp and send all other customers to another JSP.

■ Rules Controls – WebLogic Portal provides two rules controls that you can use to
invoke the Rules Service from a Page Flow or Web service. The Rules Executor
control lets you evaluate objects in working memory against a rule or set of rules,
filter the results, and perform actions if the rules evaluate to true. The Rules
Manager control provides methods for getting rule set information.

Personalization
(Interaction
Management) JSP
tags

Some of these tags are used to
render the results of segment,
Campaign, and Content Selector
rules.

Displayed content is
based on User Segment,
Campaign, or Content
Selector rules.

One action: Show
personalized content items.

Rules Controls The Rules Executor control lets
you evaluate any input objects
(such as a user's profile
properties) against a predefined
set of rules (rule set). If the rules
evaluate to "true" based on the
input objects, any predefined
action(s) can be triggered (such as
assigning the user to a certain
classification). The Rules
Manager control lets you look up
information about rule sets. The
rules controls serve as an
interface to the RulesManager
EJB.

You add and configure rules
controls in your Page Flows or
Web services with a graphical
user interface in Oracle Enterprise
Pack for Eclipse. You create rules
manually in XML.

Unlimited types of input
objects: You can use the
rules you create in XML to
evaluate any object put
into working memory
(See Section 10.2.4,
"Invoking the Rules
Service to Evaluate
Objects").

Unlimited types of actions:
Can filter objects in working
memory (see Section 10.2.5,
"Filtering the Results") and
perform any action defined
in the rule set XML.

RulesManager EJB Provides the same capabilities as
the rules controls in areas of your
application other than Page Flows
and Web services. Using the
RulesManager EJB to access the
Rules Service involves Java
coding.

Unlimited types of input
objects: You can use the
rules you create in XML to
evaluate any object put
into working memory
(See Section 10.2.4,
"Invoking the Rules
Service to Evaluate
Objects").

Unlimited types of actions:
Can filter objects in working
memory (see Section 10.2.5,
"Filtering the Results") and
perform any action defined
in the rule set XML.

Table 10–1 (Cont.) WebLogic Portal Personalization Components

Component Description Input Objects
Action (if the input objects
match the rules criteria)

Using Rules in Portal Applications

Creating Advanced Personalization with Rules 10-5

■ RulesManager EJB – The RulesManager EJB is the interface into the Rules
Service. The rules controls delegate calls to the RulesManager EJB. Use the
RulesManager EJB if you want to use the Rules Service in code outside of a Page
Flow or Web service.

10.1.2.1 Using the Rules Service
The Rules Service is based on the Rete algorithm, which is optimized for forward
chaining reasoning. In the rule evaluation process outlined in the following steps, the
Rules Executor control is used as an example:

1. The Portal Rules Service is initialized, creating its working memory.

2. The Rules Executor control will identify which rule set to use, which rules to
evaluate (the default is all), and optionally, whether to filter the results. These are
all parameters that can be configured on the control.

3. The developer creates and adds objects to working memory. Example objects
could include the User's Profile, the Request, and so on. These parameters are
passed in as an argument to the rule control's evaluate*() method.

4. The Rules Service is invoked by the Rules Executor control and uses the following
algorithm:

a. Match – Evaluates the left hand side (LHS) of the rules to determine which are
satisfied given the current contents of working memory.

b. Conflict resolution – Selects one rule with a satisfied LHS. If no rules satisfied
the LHS, the interpreter is stopped.

c. Act – Performs the actions in the right hand side (RHS) of the selected rule.

d. Repeat the process – Go to Step a.

5. The Rules Service fires repeatedly, executing rules according to the state of the
input objects and rule conditions. Only one rule can be fired at a time. As
conditions are met and rules are fired, more objects may be added to working
memory for evaluation.

6. After the Rules Service has reached a state where no more rules will fire, it stops.
In addition to the original input objects, new objects created as a result of the rule
evaluation may also be in working memory.

7. Because the input objects are part of the results, you may choose to filter the
results based on a class. For example, you can specify that only results of Java class
com.bea.p13n.usermgmt.profile.ProfileWrapper are returned.

8. The objects are returned to the caller, who then decides what to do with the
returned data. For example, the user may be directed to a new page, or the User's
Profile might have its properties updated.

Figure 10–1 provides a basic illustration of the rule evaluation process with the Rules
Executor control used in a Page Flow. The returned results from the Rules Service
process are used to determine the user's path through the Page Flow. In the figure,
natural language is used instead of code for illustration purposes. (To see the actual
parameterization and invocation of the control in a Page Flow, see Section 10.2.4.3,
"Using the Control to Determine the User's Path in the Page Flow.")

Note: The Rules Manager control is most useful as a rules
development debugging tool.

Creating a Rule

10-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Figure 10–1 Using Rules to Control a Page Flow

10.1.2.2 Understanding the Advantages of Using the Rules Service
The Rules Service is more dynamic than a simple conditional in your code. After a
Web application or some other application component has been hard-coded with
condition statements (if/then), there is no way to change that without recompiling the
code and re-deploying the application. In comparison, rules can be changed and
loaded as the Portal server is running. This means the administrator may get the
business logic from domain experts, formulate a rule to reflect that logic, and load the
rule into the application without ever having to stop the server.

10.2 Creating a Rule
This section shows you how to develop personalization using the rules controls and
RulesManager EJB. The following steps are involved and are described in this section:

■ Section 10.2.1, "Creating a Rule Set"

■ Section 10.2.2, "Deploying a Rule Set"

■ Section 10.2.3, "Adding Objects to Working Memory"

■ Section 10.2.4, "Invoking the Rules Service to Evaluate Objects"

■ Section 10.2.5, "Filtering the Results"

■ Section 10.2.6, "Using the Results in Your Application"

10.2.1 Creating a Rule Set
Rule sets are sets of instructions written in XML that the Rules Service uses to evaluate
objects in working memory. A rule set determines if something in working memory
meets certain conditions and performs an action.

There are two methods you can use to create a rule set:

■ Create a rule set in Oracle Enterprise Pack for Eclipse

■ Create a rule set manually

Creating a Rule Set in Oracle Enterprise Pack for Eclipse

You can use Oracle Enterprise Pack for Eclipse to create and manage a .rls file that
contains rules, conditions, and actions.

Creating a Rule

Creating Advanced Personalization with Rules 10-7

Perform the following steps to create a rule set in Oracle Enterprise Pack for Eclipse:

1. Start the WebLogic Server in Oracle Enterprise Pack for Eclipse by choosing Run
As > Run on Server. For instructions on configuring the WebLogic Server, see the
Oracle Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

2. In the Portal Perspective, right-click the <data>\src folder in the Package Explorer
View and choose New > Rule Set.

3. Select the folder for the rule set and enter a name for the rule set in the File name
field, using the .rls file extension. A rule set can exist anywhere in your data
directory.

4. Click Finish. The rule set appears in the folder you selected.

5. Select the rule set in the Rule Set Editor.

6. Select the Properties tab and enter a description for the rule set.

7. From the Design Palette tab, drag a rule action onto the Rule Set Editor. See
Section 8.2.4, "Adding an Action to a Scenario's Rule" for more detail on each
action.

8. In the action, click the all link to toggle back and forth between any and all to
determine which conditions will trigger this action. The any choice means that
only one of the conditions must be true for the action to occur. Rules can have
more than one action.

9. Click other applicable links and define them.

10. In the Available Conditions section in the Design Palette tab, select the condition
under which the rule set will run and drag the condition to the action. Click the
condition's link to define the condition and determine what will trigger the action.
See Table 4–1 for more information on conditions. See Figure 10–2 for an example
rule set.

Figure 10–2 A Rule Set that Uses The Visitor is a Member of a Predefined User Segment
Condition

11. Save the file by choosing File > Save.

10.2.1.1 Creating a Rule Set Manually
You can create a rule set manually. Rule sets must conform to particular schema. (The
rule set schemas are located in the p13n_app.jar file. You can find this file in
<WLPORTAL_HOME>\p13n\lib\j2ee-modules\p13n-app-lib.ear.) The
language of the rules is actually a usage of the WebLogic Portal expressions package,

Creating a Rule

10-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

extended to meet additional requirements for the Rules Service. See the
com.bea.p13n.expression.operator.* packages in Oracle Fusion Middleware
Java API Reference for Oracle WebLogic Portal for descriptions of the expressions you can
use.

Rule set XML files, which must end in .rls, all contain the following required
elements:

■ The <rule-set> – Includes all references to schema used in the rule set.

■ The <rule> – Contains the definition of the rule, which consists of at least one
condition and at least action. A rule set can have more than one <rule>.

■ The <conditions> and <actions> – Each <rule> contains its own if/then clauses
that consist of at least one <condition> (if) and one or more <action> (then).
The Rules Service evaluates the objects in working memory against the conditions.
If an object meets a condition, the related actions are executed.

Example 10–1 contains a simple rule set example that says, If the string 'Make an Integer
10' is in working memory, add an Integer object '10' to working memory.

Example 10–1 Rule Set that Adds an Object to Working Memory

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Your Name (Your
Company) -->
<rule-set xmlns="http://www.bea.com/servers/p13n/xsd/rules/core/2.1.1"
xmlns:exp="http://www.bea.com/servers/p13n/xsd/expression/expressions/2.1.1"
xmlns:literal="http://www.bea.com/servers/p13n/xsd/expression/literal/1.0.1"
xmlns:string="http://www.bea.com/servers/p13n/xsd/expression/string/1.0.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/p13n/xsd/rules/core/2.1.1
rules-core-2_1_1.xsd" is-complete="true">
 <rule is-complete="true">
 <name>Add Integer</name>
 <description>Test Rule</description>
 <conditions>
 <exp:equal-to>
 <exp:variable>
 <exp:type-alias>java.lang.String</exp:type-alias>
 </exp:variable>
 <literal:string>Make an Integer 10</literal:string>
 </exp:equal-to>
 </conditions>
 <actions>
 <add-object>
 <exp:type-alias>java.lang.Integer</exp:type-alias>
 <exp:arguments>
 <literal:string>10</literal:string>
 </exp:arguments>
 </add-object>
 </actions>
 </rule>
</rule-set>

Unless you are adept at reading schemas and manually constructing valid XML
according to the schema's rules, use an XML editor such as XMLSpy (which can be
installed from the WebLogic Platform product CD). An XML editor reads a schema, as
well as all the schemas the schema imports, and shows you elements and attributes
that can be added to an XML document at any location, showing you available
elements and attributes and helping you create a valid XML rule set.

Creating a Rule

Creating Advanced Personalization with Rules 10-9

Before you begin to create the rule set in XML, write out the rule in natural language to
understand all its pieces (conditions and actions) and types of data. What is being put
into working memory? What conditions do you want the objects to meet, and what
should happen (actions) when objects in working memory meet the conditions?

Use the following guidelines to create a rule set (or modify an existing rule set) with an
XML editor:

1. Extract the following schemas from the p13n_app.jar file in the
<WLPORTAL_HOME>\p13n\lib\j2ee-modules\p13n-app-lib.ear file
into the same directory where you will create your rule set:

lib/schema/expression*.xsd

lib/schema/rules*.xsd

2. Start a new document (or open an existing document) in your XML editor and
associate the document with the rules-core-2_1_1.xsd schema. This schema
also includes imports of other schemas, especially expression schemas, that are
helpful in building rule sets.

In a new XML document, your XML editor should automatically insert the XML
header, automatically import any schemas listed for import, and insert required
base elements, such as <rule-set>, <rule>, <name>, <conditions>, and
<actions>.

3. Select the <conditions> and <rules> elements and begin building (or
modifying) the conditions and rules.

Figure 10–3 shows a rule set being built in XMLSpy. With the
<exp:greater-than-or-equal-to> element selected, the Elements section
shows which elements can be added as children. The Attributes section shows the
attributes that can be set on the element.

Figure 10–3 Building a Rule with an XML Editor

4. After you finish building the rule set, use the XML editor's features to check them
for being well-formed. Then validate the rule set against the schema. (In XMLSpy,
press F7 and F8 to perform these steps.) See Section 10.2.1.3, "Working with Invalid
Rule Sets" for instructions on fixing invalid rule sets.

Creating a Rule

10-10 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

5. Save the rule set. (XMLSpy prompts you if you are trying to save an invalid rule
set, but you can still save it.)

6. Copy the rule set to your portal application's datasync project directory, or to one
of its subdirectories. For example, create a
myDatasyncProject/src/rulesets directory and save the rule set there.

10.2.1.2 Using a Method in a Rule
Example 10–2 and Example 10–3 show how an XML rule set uses a method to retrieve
a User Profile property value so it can be evaluated by the Rules Service.

Example 10–2 Condition

<exp:greater-than-or-equal-to>
 <literal:integer>10</literal:integer>
 <exp:instance-method>
 <exp:variable>
 <exp:type-alias>User</exp:type-alias>
 </exp:variable>
 <exp:name>getProperty</exp:name>
 <exp:arguments>
 <literal:string>CreditPropertySet</literal:string>
 <literal:string>CreditScore</literal:string>
 </exp:arguments>
 </exp:instance-method>
</exp:greater-than-or-equal-to>

Example 10–3 Method To Which the Condition Maps

ProfileWrapper pw = SessionHelper.getProfile(request);
Object value = pw.getProperty("CreditPropertySet", "CreditScore");

Use the following information when working on the mapping between the XML and
the method:

■ The <exp:type-alias> identifies the type of object the method will work on.
For a list of object type mappings defined in the
parser-mapping-type.properties file in p13n_app.jar, see
Section 10.2.3.3, "Using Type Mappings."

■ The <exp:instance-method> indicates a method, and the <exp:name>
provides the name of the method.

■ The <exp:argument> includes two <literal:string> elements that provide
the String arguments to the method.

■ The <literal:integer> identifies a value that the Rules Service uses. The
evaluation of the object in working memory (in this case the User Profile
CreditScore value) determines if the rule's action is fired.

■ The result is that the rule's condition (in XML) retrieves the value of the user's
CreditScore. If the value is greater than or equal to 10, in this example, the
associated actions are fired.

Note: To invoke methods from a rule, the appropriate classes must
be imported in the calling code.

Creating a Rule

Creating Advanced Personalization with Rules 10-11

10.2.1.3 Working with Invalid Rule Sets
If a rule set does not validate, you can see the invalid area. Perform the following steps
to fix the invalid rule set:

■ Verify that you imported all schemas referenced in the .rls file. Those schemas
are listed at the top of the *.rls file. The schemas must be in the same directory
as the .rls file.

■ Ensure that the XML sections defined in your .rls file are valid according to the
schema. You can open the schema in XMLSpy to check your .rls against the
schema definitions. In XMLSpy, you can view the schema in Design view for a
graphical representation of the schema. You can view the .rls in Text view and
Enhanced Grid view.

10.2.2 Deploying a Rule Set
This section explains how to deploy a rule set in development (Oracle Enterprise Pack
for Eclipse) and in Staging or Production environments.

This section contains the following topics:

■ Section 10.2.2.1, "Deploying a Rule Set in Oracle Enterprise Pack for Eclipse"

■ Section 10.2.2.2, "Deploying a Rule Set in a Staging or Production Environment"

10.2.2.1 Deploying a Rule Set in Oracle Enterprise Pack for Eclipse
After you create a rule set and store it in your application's datasync project directory
(or in a subdirectory you create, such as the myDatasyncProject/src/rulesets
directory), the rule set is automatically deployed if the server is running. If the server
is not running, the rule set is automatically deployed at server startup. (The datasync
project directory also contains the User Segments, Content Selectors, Campaigns, and
other application metadata you have created.) Rule sets must be deployed to the
datasync project directory, and rule set file names must have an .rls extension to be
used by the Rules Service.

When you modify a rule set in the datasync project directory, the rule set is
automatically refreshed on the running server.

10.2.2.2 Deploying a Rule Set in a Staging or Production Environment
Perform the following steps to add, modify, or remove a rule set that exists in a
deployed application:

1. Modify the rule set in the Development environment and replace it in the
deployed application. If the application is in a compressed EAR file, you must
recreate the EAR file to include the updated rule set and then replace the EAR file
on the server. When you replace the EAR file on the server, you do not need to
redeploy the application.

2. Update the rule set with the Propagation Utility. See the Oracle Fusion Middleware
Production Operations Guide for Oracle WebLogic Portal for instructions.

Note: There is no guarantee that a rule set validated in an XML
editor will be validated in the Rules Service.

Creating a Rule

10-12 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

10.2.3 Adding Objects to Working Memory
Rule sets must have objects in working memory to evaluate. For example, a rule set
might contain a rule that has the following condition: "If the user's credit score is
greater than 10." This implies there is either the credit score input, or there is a way to
get at the credit score. We could add a credit score to working memory in one of two
ways:

■ Adding the credit score to memory from an integer

■ Adding the credit score to memory from a User Profile

10.2.3.1 Adding a Credit Score to Working Memory from an Integer
You could provide a credit score value in your code in the following ways:

■ Directly – For example, Integer value = new Integer(10);

■ Indirectly – For example, through a form input value:

Object [] inputObjects = { value }; (This is a required argument to the
evaluate*() methods.)

You could then create a rule condition that evaluates the value Integer.

10.2.3.2 Adding a Credit Score to Working Memory from a User Profile
Retrieving a credit score from a User Profile is more flexible and dynamic. First, you
would use code to retrieve the User Profile and put it into working memory:

ProfileWrapper pw = SessionHelper.getProfile(request);
Object [] inputObjects = { pw }; (This is a required argument to the evaluate*()
methods.)

In your rule set, you would then create a condition that uses a method
(getProperty) that retrieves a specific property (CreditScore) from a specific
property set (CreditPropertySet). See the example in Example 10–2 and
Example 10–3. The condition in the code example checks to see if the retrieved
CreditScore is greater than or equal to the <literal:integer> value of 10.

10.2.3.3 Using Type Mappings
The following object type mappings are from the
parser-mapping-type.properties file in the p13n_app.jar file:

10.2.3.3.1 Using Mappings for <type-alias> Tags Example 10–4 shows mappings for
<type-alias> tags.

Example 10–4 Mappings for <type-alias> Tags

User=com.bea.p13n.usermgmt.profile.ProfileWrapper
Classifier=com.bea.p13n.user.Classification
Capability=com.bea.p13n.entitlements.common.Capability
Role=com.bea.p13n.entitlements.common.Role
Context=com.bea.p13n.rules.internal.engine.Context

Note: The User type is actually an alias for an object of class
ProfileWrapper. This mapping of User to ProfileWrapper, along with
the mappings of other well-known types, are defined in the
parser-mapping-type.properties file in the p13n_app.jar file, shown in
Section 10.2.3.3, "Using Type Mappings."

Creating a Rule

Creating Advanced Personalization with Rules 10-13

Email=com.bea.campaign.rules.MailActionDef
Placeholders=com.bea.campaign.rules.AddAdToPlaceholderActionDef
EndScenario=com.bea.campaign.rules.EndScenarioActionDef
ContentQueryAdvice=com.bea.p13n.content.advislets.ContentQueryAdvice

The code examples in Example 10–1 and Table 10–1 show the <type-alias> element
with a User type.

10.2.3.3.2 Mappings for <variable> Tags Example 10–5 shows mappings for <variable>
tags.

Example 10–5 Mappings for <variable> Tags

user=com.bea.p13n.usermgmt.profile.ProfileWrapper
request=com.bea.p13n.http.Request
session=com.bea.p13n.http.Session
event=com.bea.p13n.events.Event
randomNumber=java.lang.Number
classification=com.bea.p13n.user.Classification
date=com.bea.p13n.xml.schema.Date
time=com.bea.p13n.xml.schema.Time
timeInstant=com.bea.p13n.xml.schema.TimeInstant
role=com.bea.p13n.entitlements.common.Role
resource=java.lang.String

10.2.4 Invoking the Rules Service to Evaluate Objects
After you have created a rule set and you have objects in working memory, you can
invoke the Rules Service to evaluate the objects in working memory with the rules you
created. This section provides an example to show you how to invoke the Rules
Service with the Rules Executor control in a Page Flow.

10.2.4.1 Using an Existing Rule Set
The example used throughout the Section 10.2.4, "Invoking the Rules Service to
Evaluate Objects" section assumes that a rule set already exists in the
/data/rulesets directory that classifies users as "GoldCardMembers" or
"SilverCardMembers" by reading a User's Profile (similar to the example used in
Section 10.2.3.2, "Adding a Credit Score to Working Memory from a User Profile"). The
Page Flow example in this section shows the User Profile being added to working
memory. Since the User's Profile is needed in this example, you should assume the
Profile Control was added to an existing Page Flow to enable the getting and setting of
User Profile properties.

This sample also uses the User Login Control for authentication so that the Page Flow
knows which User Profile to retrieve.

For instructions on creating a Page Flow and adding a Portal Control to the Page Flow,
see the Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

10.2.4.2 Inserting the Control in the Page Flow
When you insert a control in a Page Flow (a .jpf file in Oracle Enterprise Pack for
Eclipse), all the Actions that are part of that control are available to use.

Creating a Rule

10-14 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

The Rules Executor Control contains two actions:

■ The evaluateRule Action – Lets you evaluate the objects in working memory
against a single rule in a rule set.

■ The evaluateRuleSet Action – Lets you evaluate the objects in working memory
against all rules in a rule set.

When you are looking at a Page Flow in Action View, you can select a control you have
inserted (by selecting the control's border) and set properties on that control. The
Property Editor is a convenient way to send arguments to the RulesManager EJB
(which interfaces directly with the Rules Service) without writing Java code.

For example, Table 10–2 shows how the Rules Executor Control properties shown in
Figure 10–1 map to method and constructor arguments in the RulesManager EJB.

The RulesManager EJB has the same Actions contained in the Rules Executor
Control: evaluateRule() and evaluateRuleSet(). The difference is that the
Rules Executor Control Actions take only one argument—for example,
evaluateRuleSet(Object[] inputObjects)—and provide the rule and filter
arguments through the control properties.

If you set the filterResults property to true on the Rules Executor Control, the
EJB method with the filter argument is used and the filtering properties you enter
are automatically sent to that argument.

The filterClassName and filterClassNames properties are different options for
populating the filter argument (with one or more types of filters). Set either
filterClassName or filterClassNames on the control, but do not set both.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Table 10–2 How Control Properties Map to Method and Constructor Arguments

Rules Executor Control
properties Methods and Constructors

rulesetUri

ruleName

filterResults

filterClassName

filterClassNames

■ evaluateRule(String ruleSetUri, String ruleName, Object[]
inputObjects)

■ evaluateRule(String ruleSetUri, String ruleName, Object[]
inputObjects, ObjectFilter filter)

■ evaluateRuleSet(String ruleSetUri, Object[] inputObjects)

■ evaluateRuleSet(String ruleSetUri, Object[] inputObjects,
ObjectFilter filter)

For details on these RulesManager EJB methods, see com.bea.p13n.rules.manager in
the Oracle Fusion Middleware Java API Reference for Oracle WebLogic Portal.

filterRuleName ■ RuleResultClassFilter(String ruleName, Class targetClass)

■ RuleResultClassFilter(String ruleName, Class[]
targetClassArray)

For details on these filter constructors, see
com.bea.p13n.rules.manager.RuleResultClassFilter in the Oracle Fusion Middleware
Java API Reference for Oracle WebLogic Portal.

Creating a Rule

Creating Advanced Personalization with Rules 10-15

Use the filterRuleName property to filter on the results of a specific rule in a rule set
that has fired. If you use this property, the RuleResultClassFilter constructor is
called. Notice that the constructor is overloaded to use either a single class filter (that
you entered in the filterClassName) property or multiple class filters (that you
entered in the filterClassNames) property. The result of using the
filterRuleName property is that you not only filter the results of a specific rule that
has fired, you can also filter on specific data types.

Following are more detailed definitions of the control properties:

■ The rulesetUri (required) URI of the rule set to use – This URI is relative to the
application's datasync project directory. For example, if you created a rule set
called myruleset.rls and stored it in a myDatasyncProject/rulesets
directory, the URI would be /rulesets/myruleset.rls. Use the Rules Manger
Control to list rule sets and rules.

■ The ruleName (optional) Name of the rule to use –The rule must be contained in
the rule set specified in the rulesetUri property. If not specified, all the rules in the
rule set are evaluated. The default is null.

■ The filterResults (optional) – This property determines whether to filter the
results after the rules have been evaluated. If the value is false, all objects
remaining in working memory are returned. The default is false. For
information on filtering, see Section 10.2.5, "Filtering the Results."

■ The filterClassName (optional) – Enter the class name (for example,
java.lang.String) of the type of results to return. If this is left empty, results
are not filtered. Specify this or the filterClassNames, but not both.

■ The filterClassNames (optional) – Enter a comma-separated list of class names of
the types of results to return (for example,
java.lang.String,java.lang.Integer). If this is left empty, results are not
filtered. Specify this or the filterClassName, but not both.

■ The filterRuleName (optional) – Filter the results of a specific rule that was fired.
If this is left empty, results from all rules will be returned. Otherwise, results from
only this rule are returned. This filter is applied with the Class filters, if those are
specified.

10.2.4.2.1 Understanding the Benefits of Using the Control Understanding how properties
map to methods and constructors can help you understand the benefits of using the
Rules Executor control. Filling in property values provides the following benefits:

■ You do not have to write Java code

■ If you are filtering the results, the filter is constructed automatically for you

For more information on the Rules Executor Control, see the Oracle Fusion Middleware
Java API Reference for Oracle WebLogic Portal.

10.2.4.3 Using the Control to Determine the User's Path in the Page Flow
After you add the Rules Executor Control to the Page Flow, set the properties on the
control, and select one of the control's execute* actions to use, you should verify that
all other prerequisite details are in place (see Section 10.2.4.1, "Using an Existing Rule
Set"). Then you can add code to the Page Flow that sends users to a different page
depending on the classification they receive from the rule evaluation process.

The sample Page Flow code in Example 10–6 shows how a user is directed to a
particular page based on the results from the Rules Service.

Creating a Rule

10-16 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Example 10–6 Sample Code to Direct a User to a Page, Based on the Results of the
Rules Service

public class Controller extends PageFlowController
{
 /**
 * @common:control
 */
 private com.bea.p13n.controls.login.UserLoginControl userLoginControl;
 /**
 * @common:control
 */
 private com.bea.p13n.controls.profile.ProfileControl myProfileControl;
// The Rules Executor control is added. Properties are configured
// in the Property Editor.
// This is all done in the Page Flow's Action View.
 /**
 * @common:control
 * @jc:rules-executor filterClassName="com.bea.p13n.user.Classification"
filterResults="true" rulesetUri="/rulesets/myruleset.rls"
 */
 private com.bea.p13n.controls.rules.RulesExecutorControl
 myRulesExecutorControl;
 /**
 * @jpf:action
 * @jpf:forward name="default" path="default.jsp"
 * @jpf:forward name="goldCard" path="goldCard.jsp"
 * @jpf:forward name="silverCard" path="silverCard.jsp"
 * @jpf:catch type="com.bea.p13n.controls.exceptions.P13nControlException"
path="error.jsp"
 * @jpf:forward name="error" path="error.jsp"
 */
 protected Forward evaulateRuleSetAction(EvaluateRuleSetActionForm form)
 throws P13nControlException
 {
// Start with an empty list into which we add objects to populate
// the working memory of the Rules Service
 List wmObjects = new ArrayList();
 ProfileWrapper pw =
myProfileControl.getProfileFromRequest(this.getRequest());
 if (pw == null)
 {
 throw new P13nControlException("Undable to retrieve profile from
 request. " + "Make sure PortalServletFilter is configured
 in web.xml for an anonymous user, " + "or that a user
 has logged in.");
 }
// This one will be the condition that fires the rule
 Integer value = new Integer(6);
 myProfileControl.setProperty(pw, "FooPropertySet", "CreditScore", value);
 wmObjects.add(pw);
// Evaulate all rules in the rule set. Parameters have been declared on the
// control in the Page Flow Property Editor (in Action View).
 Iterator iter =
myRulesExecutorControl.evaluateRuleSet(wmObjects.toArray());
 List results = new ArrayList();
// Let's say we're looking for GoldCardMembers
 Classification goldCardMembers = new Classification("GoldCardMembers");
 Classification silverCardMembers = new
Classification("SilverCardMembers");
// And we'll direct them to a certain page depending

Creating a Rule

Creating Advanced Personalization with Rules 10-17

// on how the rule evaluates
 Classification classification = (Classification)iter.next();
// Now you would do something with that,
// like show them a different page
 if (classification.equals(goldCardMembers))
 {
// Direct them to high-price stuff
 return new Forward("goldCard");
 }
 else if (classification.equals(silverCardMembers))
 {
// Direct them to lower-price stuff
 return new Forward("silverCard");
 }
// Otherwise, it defaults. Something went wrong.
// Check the rule conditions or turn off filtering on the control
// to see what's in working memory
 }
 }
 return new Forward("default");
}

If you want to use only a specific type of object in working memory after the Rules
Service has stopped, you can filter the objects in working memory. Filtering is set
using Java types. On the Rules Executor Control, you can set the filter type in the
Property Editor.

Get more information on the following subjects:

■ Filter Type – See Section 10.2.5, "Filtering the Results"

■ The Rules Executor Control – See the Oracle Fusion Middleware Java API Reference
for Oracle WebLogic Portal.

■ The RulesManager EJB – See the Oracle Fusion Middleware Java API Reference for
Oracle WebLogic Portal.

10.2.5 Filtering the Results
When you execute the Rules Service to evaluate objects in working memory, as
described in Section 10.2.4, "Invoking the Rules Service to Evaluate Objects," you can
filter the objects in working memory when the Rules Service has stopped running to
return only the objects of a specific type.

Objects exist in working memory as a result of one of the following actions:

■ The caller puts them there (in the inputObjects array)

■ A new object is instantiated in one of the rules' actions

When the Rules Service has stopped, several objects might remain in working memory,
including those the user initially added. For example, your rule may instantiate a new
Classification object into working memory if the rule evaluates to true. Another
example is that a rule action might have updated the User's Profile, so you need to
retrieve the profile from working memory.

When the Rules Service's API executes a rule, it returns an Iterator over the entire
contents of working memory unless you filter the results. If you are looking only for
Classification objects, then you can specify a filter that returns only Classification
objects. You can design this filter based on a single class name, multiple class names,
or a given rule, as described in Section 10.2.4.2, "Inserting the Control in the Page
Flow."

Creating a Rule

10-18 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

When you implement the Rules Executor Control, the control takes care of
constructing the filter automatically. You need to specify whether to filter and the filter
class names as control properties. The filter is applied for you automatically by the
control, if you specify this.

10.2.5.1 Filtering with the RulesManager EJB
Filtering with the RulesManager EJB is a more cumbersome than filtering with the
Rules Service, because you must design the filter yourself with the RulesManager
EJB. Example 10–7 shows how to design a filter.

Example 10–7 Design a Filter with the RulesManager EJB

String filterRuleName = null;
Class filterClass = com.bea.p13n.user.Classification.class;
ObjectFilter filter = new RuleResultClassFilter(filterRuleName, filterClass);
Class [] filterClasses = { java.lang.String.class,
com.bea.p13n.usermgmt.profile.ProfileWrapper.class};
ObjectFilter filter = new RuleResultClassFilter(filterRuleName, filterClasses);

The filter can then be used as part of the RulesManager EJB, as shown in the
following example:

public Iterator evaluateRule(String ruleSetUri, String ruleName, Object[]
inputObjects, ObjectFilter filter)

If you filtered the results, the Iterator should only contain results of the class types you
specified. The code sample in Example 10–8 shows a Classification object of
SilverCardMembers.

Example 10–8 Sample Code that Retrieves Silver Card Members

while (iter.hasNext())
{
Classification c = (Classification)iter.next();
 if (c.equals(silverCardMembers))
 {
 // do something
 }
}

10.2.6 Using the Results in Your Application
The Rules Service makes decisions for you at run-time. The rules framework is more
flexible than hard-coding logic (if/then) into your components, because you can
modify rules without modifying your code.

Following are some examples of using rules and rule results:

■ If the time is between 8-5, direct users to pages that relate to brokerage services. If
the time is outside the range, direct users to pages related to investment research.

■ If the user lives in Boulder and is female, show her an advertisement for the
Boulder Rock Club.

■ If the user's credit score is > 10, the User Profile (sets a property) to classify the
user as a Gold Member.

■ If the date is between December 1 and December 31, send the user to the New
Year's promotional JSP.

Rules Control Reference

Creating Advanced Personalization with Rules 10-19

10.3 Rules Control Reference
You can use the Rules Control elements to provide Personalization in your portal
application. Table 10–3 lists the control names and all possible values you can use to
create rules.

Table 10–3 Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

rule-set The root element that contains
all of the rules.

rule

rule The definition of a rule using
conditions and actions, along
with an optional description.

name, description, conditions, actions

name The name of the rule. Any text

description Optional text describing the
rule.

Any text

conditions Expressions that the Rules
Service evaluates using the
objects in working memory.

variable, literal, branch, operator, method

variable Indicates the type of the object
being compared in an
expression.

N/A

Rules Control Reference

10-20 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

type-alias A string specifying the kind of
a an object or variable

For variables, the value can be any type, such as
java.lang.String, or an alias to a variable type from the list
below:

user=com.bea.p13n.usermgmt.profile.ProfileWrapper

request=com.bea.p13n.http.Request

session=com.bea.p13n.http.Session

event=com.bea.p13n.events.Event

randomNumber=java.lang.Number

classification=com.bea.p13n.user.Classification

date=com.bea.p13n.xml.schema.Date

time=com.bea.p13n.xml.schema.Time

timeInstant=com.bea.p13n.xml.schema.TimeInstant

role=com.bea.p13n.entitlements.common.

Roleresource=java.lang.String

For objects, the value can be any type, such as java.lang.String,
or an alias to an object type from the list below:

User=com.bea.p13n.usermgmt.profile.ProfileWrapper

Classifier=com.bea.p13n.user.Classification

Capability=com.bea.p13n.entitlements.common.

Capability

Role=com.bea.p13n.entitlements.common.Role

Context=com.bea.p13n.rules.internal.engine.Context

Email=com.bea.campaign.rules.MailActionDef

Placeholders=com.bea.campaign.rules.

AddAdToPlaceholderActionDef

EndScenario=com.bea.campaign.rules.

EndScenarioActionDef

ContentQueryAdvice=com.bea.p13n.content.advislets.

ContentQueryAdvice

literal Used to specify a particular,
unchanging value

boolean, character, decimal, double, float, integer, long, string

branch Controls the execution path
within a rule.

if

if Evaluates expressions to
control execution path within a
rule.

Any two or three other expressions that evaluate to true or false.

operator Indicates what sort of
comparison will be made in the
expression.

and, equal-to, greater-than, greater-than-or-equal-to, less-than,

less-than-or-equal-to, multi-and, multi-or, not, not-equal-to, or

and To evaluate to true, both
expressions must evaluate to
true.

N/A

equal-to Evaluates to true when both
expressions are equivalent.

N/A

Table 10–3 (Cont.) Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

Rules Control Reference

Creating Advanced Personalization with Rules 10-21

greater-than Evaluates to true when the first
expression is more than the
second expression.

N/A

greater-than-

or-equal-to

Evaluates to true when the first
expression is more than or the
same as the second expression.

N/A

less-than Evaluates to true when the first
expression is less than the
second expression.

N/A

less-than-or-

equal-to

Evaluates to true when the first
expression is less than or the
same as the second expression.

N/A

multi-and Evaluates to true when all of
the supplied expressions
evaluate to true.

N/A

multi-or Evaluates to true when any of
the supplied expressions
evaluate to true.

N/A

not Negates the logical value of
one expression.

N/A

not-equal-to Evaluates to true when both
expressions are not equivalent.

N/A

or Evaluates to true when either
expression evaluates to true.

N/A

method An abstract, complex type. static-method, instance-method, new-instance, contains,
contains-all, abs, acos, add, asin, atan, atan2, ceil, cos, divide,
exp. floor, ieee-remainder, log, maximum, minimum, multiply,
pow, rint, round, sin, sqrt, subtract, tan, to-degrees, to-radians,
char-at, compare-to-ignore-case, concat, ends-with,
equals-ignore-case, length, like, replace, starts-with, substring,
to-lower-case, to-upper-case, trim

static-method Invokes the named method on
an object in working memory
of the type specified by the
type-alias, passing any
provided arguments to the
method.

type-alias, name, arguments

instance-

method

Invokes the named method on
an object in working memory
of the type specified by the
variable type-alias, passing any
provided arguments to the
method.

variable, name, arguments

new-instance Instantiates an object of the
type specified in the type-alias.
Arguments are supplied as
expressions, and the type of
each argument is specified in
the type-alias list in the
arguments- signature.

type-alias, arguments-signature, arguments

Table 10–3 (Cont.) Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

Rules Control Reference

10-22 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

contains Returns a boolean indicating if
the first Collection object
contains the second object.

N/A

contains-all Returns a boolean indicating if
the first Collection object
contains the entire second
Collection object.

N/A

abs Absolute value operator,
accepting a number and
returning a number.

N/A

acos Arc cosine operator, accepting
a number and returning a
number.

N/A

add Addition operator, accepting
two numbers and returning
their sum.

N/A

asin Arc sine operator, accepting a
number and returning a
number.

N/A

atan Arc tangent operator, accepting
a number and returning a
number.

N/A

atan2 Cartesian to polar coordinates
operator, accepting two
numbers and returning a
number.

N/A

ceil Ceiling operator, accepting a
number and returning a
number.

N/A

cos Cosine operator, accepting a
number and returning a
number.

N/A

divide Division operator, accepting
two numbers and returning a
number.

N/A

exp Exponential operator,
accepting a number and
returning a number.

N/A

floor Floor operator, accepting a
number and returning a
number.

N/A

ieee-

remainder

IEEE 754 remainder operator,
accepting two numbers and
returning a number.

N/A

log Natural logarithm operator,
accepting a number and
returning a number.

N/A

maximum Maximum operator, accepting
two numbers and returning a
number.

N/A

Table 10–3 (Cont.) Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

Rules Control Reference

Creating Advanced Personalization with Rules 10-23

minimum Minimum operator, accepting
two numbers and returning a
number.

N/A

multiply Multiplication operator,
accepting two numbers and
returning a number.

N/A

pow Power of operator, accepting
two numbers and returning a
number.

N/A

random-

number

Random number operator,
optionally accepts a lower and
upper bound and returns a
random number.

N/A

rint Round to next integer operator,
accepting a number and
returning a number.

N/A

round Round operator, accepting a
number and returning a
number.

N/A

sin Sine operator, accepting a
number and returning a
number.

N/A

sqrt Square root operator, accepting
a number and returning a
number.

N/A

subtract Subtraction operator, accepting
two numbers and returning a
number.

N/A

tan Arc tangent operator, accepting
a number and returning a
number.

N/A

to-degrees Radians to degrees operator,
accepting a number and
returning a number.

N/A

to-radians Degrees to radians operator,
accepting a number and
returning a number.

N/A

char-at Returns the character at the
given position within the
string, accepting a string and a
number then returning a
character.

N/A

compare-to-

ignore-case

String comparison operator
that ignores case, accepting
two strings and returning an
integer.

N/A

concat String concatenation operator,
accepting two strings and
returning a string.

N/A

Table 10–3 (Cont.) Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

Rules Control Reference

10-24 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

ends-with Returns a boolean indicating if
the first string ends with the
second string.

N/A

equals-ignore-c
ase

Returns a boolean indicating if
the first string is the same as
the second string, ignoring
case.

N/A

length Accepts a string and returns an
integer representing the
number of characters in the
string.

N/A

like Returns a boolean indicating if
the second string is contained
in the first string, ignoring
case.

N/A

replace Accepts a string and two
characters, returning a string
that has the first character
replaced by the second.

N/A

starts-with Returns a boolean indicating if
the first string starts with the
second string.

N/A

substring Accepts a string and two
numbers, returning a string of
the characters that fall within
that number range from inside
the given string.

N/A

to-lower-case Accepts a string, returning that
same string converted to lower
case.

N/A

to-upper-case Accepts a string, returning that
same string converted to upper
case.

N/A

trim Accepts a string, returning that
same string but with any
leading or trailing whitespace
removed.

N/A

Table 10–3 (Cont.) Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

Rules Control Reference

Creating Advanced Personalization with Rules 10-25

actions Instructions that are executed if
the conditions are met. A
group of zero or more action
tags.

action

action One instruction that is
executed if the conditions are
met.

action (nested), method (defined above), add-object

add-object Adds an object of the type
specified in the type-alias to
working memory. Arguments
are supplied as expressions,
and the type of each argument
is specified in the type-alias list
in the arguments- signature.
This is same functional
definition as add instance
above.

type-alias, arguments-signature, arguments

Table 10–3 (Cont.) Rules Control Elements for the Rules Engine

Rules Control
Name Description All Possible Values

Rules Control Reference

10-26 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Part III
Part III Staging

During the Staging phase, you test and modify the Property Sets, Content Selectors,
User Segments, Placeholders, and Campaigns that you created in the Development
phase. This staging environment simulates a production environment.

Consider setting up a common development environment for the Development phase
and the Staging phase. You might move iteratively between these two phases,
developing and then testing what you created.

For a detailed description of the staging phase of the portal life cycle, see the Oracle
Fusion Middleware Overview for Oracle WebLogic Portal.

Part III contains these chapters:

■ Chapter 11, "Modifying Property Set Values"

■ Chapter 12, "Modifying a User Segment"

■ Chapter 13, "Modifying a Content Selector"

■ Chapter 14, "Modifying a Placeholder"

■ Chapter 15, "Managing a Campaign"

11

Modifying Property Set Values 11-1

11Modifying Property Set Values

Developing user interaction that uses Personalization and Campaigns can involve
setting up properties (such as User Profile or Session properties) that are used to
define the conditions under which users will be targeted with personalized content.

User Profile property sets contain conditions that identify users. For example, you
could classify all users who ordered more than five on-demand movies in the last 30
days. If visitors match the defined characteristics, they automatically become members
of that User Segment and are shown specific web content with Content Selectors or
they are targeted with Campaign actions.

This chapter describes how to change the values in your User Profile property sets.
The properties are used in the conditions you define for your Personalization logic.
Each user is dynamically served personalized web content or automatic e-mails based
on the logic conditions.

Developers used Oracle Enterprise Pack for Eclipse when they created property sets
and properties (see Chapter 4 for instructions on creating property sets and
properties). Portal administrators can use the WebLogic Portal Administration Console
to update property values.

This chapter includes the following sections:

■ Section 11.1, "Editing a Property Value"

■ Section 11.2, "Deleting a Property Value"

For information on setting up and managing users that will experience Interaction
Management features, see the Oracle Fusion Middleware User Management Guide for
Oracle WebLogic Portal.

11.1 Editing a Property Value
Developers can edit property sets, properties, and conditions in Oracle Enterprise Pack
for Eclipse. You can edit the property values in the WebLogic Portal Administration
Console.

11.1.1 Editing Properties in Oracle Enterprise Pack for Eclipse
Developers can use Oracle Enterprise Pack for Eclipse to modify properties or
conditions and their values for User Profiles, User Segments, HTTP session or request
data, date and time conditions, or events. For instructions, see Section 4.3, "Modifying
Properties and Conditions."

When an attribute's value is requested for a particular user or group, and an attribute
has not explicitly been assigned, then any default value assigned when the property

Editing a Property Value

11-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

set attribute was created is returned. Editing a value using the Administration Console
or tags overrides that default value, allowing personalization for that user or group.

Developers can use the <profile:setProperty> JSP tag in JSPs or the Property
control in a Page Flow to modify existing property values for users.

11.1.2 Editing Property Values in WebLogic Portal Administration Console
Perform the following steps to modify a property's value:

1. Start the Administration Console.

2. Choose Users, Groups, & Roles > User Management.

3. Select a user store from the drop-down list above the Resource Tree.

4. Select the user in the Resource Tree.

5. Select the User Profile tab and use the drop-down list in the Profile Values for
Property Set field to select the property set containing the value you want to edit.

6. In the Property Name field, locate the property value you want to change and
click the Edit icon as shown in Figure 11–1.

Figure 11–1 Click Edit to Change the Property Value

7. Enter a new value in the Update Saved Value field and click Update. You can
delete the value that is currently saved by clicking the Delete Saved Value check
box. If you delete the saved value, a successor value is returned if one is defined. If
a successor was not defined, the default value is returned. If there is no defined
successor value or a default value, the property value is null.

Note: Page flows are a feature of Apache Beehive, which is an
optional framework that you can integrate with WLP. See "Apache
Beehive and Apache Struts Supported Configurations" in the Oracle
Fusion Middleware Portal Development Guide for Oracle WebLogic Portal.

Deleting a Property Value

Modifying Property Set Values 11-3

11.2 Deleting a Property Value
You can use Oracle Enterprise Pack for Eclipse to delete individual properties from a
property set, and you can delete an entire property set. See Section 4.4, "Deleting a
Property or a Property Set" for instructions.

Perform the following steps to remove a property's value in the WebLogic Portal
Administration Console:

1. Start the Administration Console.

2. Choose Users, Groups, & Roles > User Management.

3. Select a user store from the drop-down list above the Resource Tree.

4. Select the user in the Resource Tree.

5. Select the User Profile tab and use the drop-down list to select the property set
that contains the value you want to remove.

6. In the Property Name field, locate the property value you want to remove and
click Edit.

7. In the Edit Profile dialog box, select the Delete Saved Value check box to remove
the value that is currently saved. (If you do not delete the saved value, a successor
value is returned if one is defined. If a successor was not defined, the default value
is returned. If there is no defined successor value or a default value, the property
value is null.)

8. Click Update to save the property set file.

Deleting a Property Value

11-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

12

Modifying a User Segment 12-1

12Modifying a User Segment

User Segments let you dynamically group users based on conditions you define. You
can modify User Segments that you created in Chapter 5 by editing the segment's
characteristics, such as gender, browser type, date or time, and so on. If a user matches
the characteristics of a bookfan, for example, the user automatically and dynamically
becomes a member of the bookfan User Segment. You can then target this User Segment
group with web content and automatic e-mails based on the User Segment.

Developers use Oracle Enterprise Pack for Eclipse to create User Segments. Portal
administrators can use the Administration Console to change the User Segment
properties (conditions) to dynamically group users. Developer time is not required to
update User Segment properties.

This chapter includes the following sections:

■ Section 12.1, "Modifying a User Segment"

■ Section 12.2, "Modifying a User Segment's Properties"

■ Section 12.3, "Copying a User Segment"

■ Section 12.4, "Removing a User Segment"

12.1 Modifying a User Segment
Developers can use Oracle Enterprise Pack for Eclipse to change the conditions and
characteristics that determine how users are categorized with User Segments. Portal
administrators use the WebLogic Portal Administration Console to edit the properties
for the User Segment.

Perform the following steps to edit a User Segment file in Oracle Enterprise Pack for
Eclipse:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, double-click the
User Segment .seg file in the \<data>\src folder in the Package Explorer View.

2. Enter the changes in the User Segment Editor.

3. Save the file by choosing File > Save.

The changes will appear in the Administration Console.

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Modifying a User Segment's Properties

12-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

12.2 Modifying a User Segment's Properties
Portal administrators can edit individual properties in a User Segment with the
Administration Console.

Perform the following steps to edit a User Segment's properties in the Administration
Console:

1. Start the Administration Console.

2. Choose Interaction > Segments.

3. In the Resource Tree, select the User Segment you want to edit.

4. In the Segment Details tab, locate the segment property you want to change and
click Edit the edit icon, as shown in Figure 12–1.

Figure 12–1 Click Edit to Change the User Segment Property

5. Enter your changes and click Save.

12.3 Copying a User Segment
Portal Administrators can save time and avoid errors by making a copy of a User
Segment and then editing the properties in the new User Segment.

Perform the following steps in the Administration Console to duplicate a User
Segment:

1. Start the WebLogic Portal Administration Console.

2. Choose Interaction > Segments.

3. Right-click a User Segment in the Resource Tree and choose Copy.

4. Enter a name and description for the new User Segment, and click OK.

The new User Segment now appears in the User Segments Resource tree. You can now
modify the User Segment's properties; see Section 12.1, "Modifying a User Segment."

Tip: You can also duplicate a User Segment in Oracle Enterprise Pack
for Eclipse.

Removing a User Segment

Modifying a User Segment 12-3

12.4 Removing a User Segment
Deleting a User Segment removes it from Oracle Enterprise Pack for Eclipse and from
the Administration Console.

Perform the following steps to remove a User Segment:

1. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, select the User
Segment .seg file in the \<data>\src folder in the Package Explorer View.

2. Right-click the segment and choose Delete.

3. Click Yes in the Confirmation dialog box.

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Removing a User Segment

12-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

13

Modifying a Content Selector 13-1

13Modifying a Content Selector

Developers can use Oracle Enterprise Pack for Eclipse to create Content Selectors and
place them in a JSP. Portal administrators use the WebLogic Portal Administration
Console to make changes to the Content Selectors that display content in the portal.
Developer time is not required to update Content Selectors.

This chapter includes the following sections:

■ Section 13.1, "Modifying a Content Selector"

■ Section 13.2, "Deleting a Content Selector and Query"

13.1 Modifying a Content Selector
Content Selectors allow you to define the content you want a particular type of visitor
to see. Modifying a Content Selector property allows you to change the content that is
displayed.

Perform the following steps to modify a Content Selector property:

1. Start the Administration Console.

2. Choose Interaction > Content Selectors.

3. In the Resource Tree, select the Content Selector you want to edit.

4. Select the Content Selector property and click the Edit icon, as shown in
Figure 13–1.

Figure 13–1 Edit a Content Selector Property

Deleting a Content Selector and Query

13-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Depending on how the Content Selector was defined in Oracle Enterprise Pack for
Eclipse, you can edit the following properties:

■ Whether any or all conditions apply

■ If the visitor belongs to specific User Segments

■ If the visitor has certain characteristics

■ The visitor's HTTP session

■ The visitor's HTTP request

■ The current date

■ The current date is after a particular date

■ The current date and time is after a particular date and time

■ The current time is between two particular times

■ The current date is between two particular dates

■ The current date and time is between two particular dates and times

■ The result of the content search

5. Enter your change and click Save, as shown in Figure 13–2.

Figure 13–2 Change a Content Selector Property

6. To view your selections, click Show Previews.

13.2 Deleting a Content Selector and Query
Deleting a Content Selector or a Content Selector query removes the Content Selector
or the query from Oracle Enterprise Pack for Eclipse and the Administration Console.
See Section 6.4, "Deleting a Content Selector Query" and Section 6.5, "Deleting a
Content Selector" for instructions.

Tip: The Content Selector gets results from the Search cache, which
might contain outdated Search results. Refreshing your browser does
not clear the Search cache. You can flush the Search cache in the
Administration Console by choosing Configuration & Monitoring >
Service Administration. In the Resource Tree, expand Cache
Manager. Select searchCache (you might need to click Next to see all
the caches) and click Flush.

Tip: You should also delete any <pz:contentSelector> tags in your
JSPs that reference the Content Selector you deleted.

14

Modifying a Placeholder 14-1

14Modifying a Placeholder

Placeholders display a single content item on a JSP. The content item is dynamically
retrieved from the WLP Virtual Content Repository. A Placeholder retrieves content
using predefined queries that are put in the Placeholder. Placeholders do not use
conditions. Each query has a priority, or weight.

A Placeholder stores queries, runs one query at a time, and displays one of the content
items retrieved by the query. A Placeholder is made up of two parts: a Placeholder file
you create in Oracle Enterprise Pack for Eclipse and a companion JSP tag that
performs the processing.

Developers can use Oracle Enterprise Pack for Eclipse to create Placeholders and place
them in a JSP. Portal administrators use the WebLogic Portal Administration Console
to manage the content that populates Placeholders by modifying the default
Placeholder query or modifying a Campaign. Developer time is not required to update
Placeholders.

This chapter includes the following sections:

■ Section 14.1, "Changing Content for a Placeholder"

■ Section 14.2, "Modifying a Placeholder"

■ Section 14.3, "Deleting a Query or a Placeholder"

■ Section 14.4, "Managing Placeholders for Optimal Performance"

14.1 Changing Content for a Placeholder
When a content query in a Placeholder (a default Placeholder query or a query put in
the Placeholder by a Campaign) returns multiple possible content items to a
Placeholder, the Placeholder determines which content item to display.

For more information on changing the content a Placeholder displays, see Chapter 3
and the Oracle Fusion Middleware Content Management Guide for Oracle WebLogic Portal.

Tip: During the development phase of your project when you are
updating content frequently, consider disabling or flushing the portal
caches. To do this, use the Portal Cache Manager tool. To start this
tool, select Run > Portal Cache Manager in Oracle Enterprise Pack for
Eclipse.

Modifying a Placeholder

14-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

14.2 Modifying a Placeholder
Placeholders allow you to target content to a desired user (also called a visitor). You
use the tools provided in the Administration Console to modify a Placeholder by
editing the queries that determine the content displayed in a Placeholder on a JSP.

Perform the following steps to modify a Placeholder:

1. Start the Administration Console.

2. Choose Interaction > Placeholders and select the Placeholder and content search
item in the Resource Tree, as shown in Figure 14–1.

Figure 14–1 Select the Placeholder and Content Item

3. In the Query Details tab, change the descriptor in the Content Query Properties
section by clicking the bracketed text, as shown in Figure 14–2.

Figure 14–2 Change a Content Query

Managing Placeholders for Optimal Performance

Modifying a Placeholder 14-3

4. In the pop-up window, select a new value for the descriptor and click Save. This
descriptor governs what content is selected for display in the Placeholder. The
value is based on a property set definition; typically it is a User Profile property
set.

5. To preview the modified content search for the Placeholder, click Show Previews.

The content search for the Placeholder has been modified.

14.3 Deleting a Query or a Placeholder
Removing a Query or a Placeholder removes it from Oracle Enterprise Pack for Eclipse
and from the WebLogic Portal Administration Console.

Perform the following steps to delete a query in a Placeholder:

1. In the Portal Perspective, double-click the Placeholder file in the
<data>\src\placeholders folder in the Package Explorer View.

2. Select the query in the Editor window.

3. In the Content Search window, select the query and click Remove.

4. Click OK.

Perform the following steps to delete a Placeholder:

1. In the Portal Perspective, select the Placeholder file in the
<data>\src\placeholders folder in the Package Explorer View.

2. Right-click the Placeholder file and choose Delete.

3. Click Yes to confirm the Placeholder deletion.

14.4 Managing Placeholders for Optimal Performance
Placeholders can become crowded with many queries, especially if more than one
Campaign uses a Placeholder to display content. Campaign queries can remain in
Placeholders indefinitely unless something specific occurs to remove them.

Perform the following steps to remove unwanted queries and control the content that
is displayed in a Placeholder:

1. When you create default queries in a Placeholder, you can designate that default
queries do not run when a Placeholder contains Campaign queries:

Note: Developers might choose to modify a Placeholder in Oracle
Enterprise Pack for Eclipse. Open the Placeholder file by
double-clicking it in the Design Palette, and select and modify the
appropriate query.

Note: The steps in this chapter refer to the data\src folder in the
Package Explorer View. Your data and src directories might be named
differently.

Tip: You should also delete any <ph:placeholder> tags in your JSPs
for the deleted Placeholder.

Managing Placeholders for Optimal Performance

14-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

a. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, open a
Placeholder file and select the default query.

b. In the Properties tab, set the Mix Globals property to false. This setting
suppresses default queries when Campaign queries are present.

2. When you create a Content Action in a Campaign in Oracle Enterprise Pack for
Eclipse, use the Remove (all) existing content option to minimize the number of
queries held in a Placeholder at a given time.

3. For Campaign content actions, set the Time to Live (duration) field to an
appropriate time so that the content action stops putting queries in the Placeholder
when you want it to stop. Locate the Time to Live field in the Administration
Console by choosing Configuration & Monitoring > Service Administration.
Then select Personalization in the Resource Tree and click Cache Manager in the
Service List tab. Click a specific cache name to edit the Time to Live field.

4. To control the Campaign content that is displayed in a Placeholder, create a
content action for each event that occurs. Use the previous recommendations to
display a fresh rotation of content in the Placeholder.

5. To stop events from firing and placing content in a Placeholder, reset the existing
content as described in Section 8.5, "Turning Off a Campaign."

15

Managing a Campaign 15-1

15Managing a Campaign

Developers can use Oracle Enterprise Pack for Eclipse to create a Campaign and
display it in a JSP. Portal administrators use the WebLogic Portal Administration
Console to make changes to the Campaign, including the rules, start or stop date, the
sponsor, and so on.

Developer time is not required to modify a Campaign. A Portal administrator can also
duplicate an existing Campaign and then modify the new Campaign.

This chapter contains the following sections:

■ Section 15.1, "Modifying a Campaign"

■ Section 15.2, "Modifying a Rule"

■ Section 15.3, "Managing a Campaign for Optimal Performance"

15.1 Modifying a Campaign
Portal administrators can avoid creating new Campaigns by modifying existing
Campaigns in the following ways:

■ Section 15.1.1, "Changing a Campaign's Description or Sponsor"

■ Section 15.1.2, "Changing a Campaign Start or Stop Date"

■ Section 15.1.3, "Activating and Deactivating a Campaign"

■ Section 15.1.4, "Turning Off a Campaign"

■ Section 15.1.5, "Resetting Campaign Settings"

■ Section 15.1.6, "Duplicating a Campaign"

15.1.1 Changing a Campaign's Description or Sponsor
You can change the text describing a Campaign; however, you cannot change the
Campaign's name. You can also edit the Sponsor field, which describes the purpose of
the Campaign or who it affects.

Perform the following steps to update a Campaign's description or sponsor:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign whose description or sponsor you want
to modify.

4. In the Campaign Details tab, click Name & Description.

Modifying a Campaign

15-2 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

5. Enter the new Description or Sponsor. The Sponsor field describe the purpose of
the Campaign or who it affects.

6. Click Save.

15.1.2 Changing a Campaign Start or Stop Date
Perform the following steps to change a Campaign start or stop date:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign you want to modify.

4. In the Campaign Details tab, click Campaign Properties, as shown in Figure 15–1.

Figure 15–1 Change a Campaign Property

8. Click the calendar icon next to the Start Date or Stop Date fields. Use the
month and year drop-down menus to select the month and year. You can also
use the left and right arrows at the top of the Calendar window to select the
month and year. Select a number in the Date section to select a day. Use the up
and down arrows in the Time section to select a specific time of day. You must
click each field in the Time section before you can modify it and click Done.

9. Click Save in the Edit Campaign Properties dialog to save the Campaign's
new start or stop dates.

10. Click Reset Campaign for the new dates to take effect.

15.1.3 Activating and Deactivating a Campaign
Perform the following steps to start a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign you want to activate.

Modifying a Campaign

Managing a Campaign 15-3

4. In the Campaign Details tab, click Campaign Properties.

5. In the Edit Campaign Properties window, click the Status drop-down list, select
Active, and click Save, as shown in Figure 15–2.

Figure 15–2 Select Active to Start a Campaign

6. In the Campaign Details tab, click Reset Campaign for the new dates to take
effect.

The Campaign is now active.

Perform the following steps to stop a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns

3. In the Resource Tree, select the Campaign you want to deactivate.

4. In the Campaign Details tab, click Campaign Properties.

5. In the Edit Campaign Properties dialog, click the Status drop-down list, select Not
Active, and click Save.

6. In the Campaign Details tab, click Reset Campaign for the new dates to take
effect.

The Campaign is no longer active. The targeted user will see default content rather
than specific Campaign content in the Campaign's Placeholder.

15.1.4 Turning Off a Campaign
To turn off a Campaign so that is does not fire Campaign events, you can remove the
CampaignEventListener.

Perform the following steps to turn off a Campaign:

1. Start the Administration Console.

2. Choose Configuration & Monitoring > Service Administration.

3. In the Resource Tree, expand the Personalization folder and select Event Service.

4. In the Browse tab, select the Delete check box next to the
com.bea.campaign.internal.CampaignEventListener class and click
Delete. Campaign events will no longer be fired, but if you set up other Behavior
Tracking or other event listeners, those events will continue to fire.

Tip: The following steps in the WebLogic Portal Administration
Console work for a portal that is deployed as an exploded EAR file. If
your portal is a compressed EAR file, you will need to do these steps
manually and then re-build and deploy the EAR file.

Modifying a Rule

15-4 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

15.1.5 Resetting Campaign Settings
You can reset specific Campaign components.

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign you want to reset.

4. In the Campaign Details tab, click Reset Campaign.

5. In the dialog, click Reset Campaign to reset all of the Campaign components.

15.1.6 Duplicating a Campaign
You can save time and reduce errors by creating a copy of a Campaign and then
making changes to it.

Perform the following steps to duplicate a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns

3. In the Resource Tree, select the Campaign you want to copy.

4. Right-click the Campaign, and choose Copy.

5. In the Copy Campaign dialog, enter the name and a description for the new
Campaign and click OK.

The new Campaign appears in the Resource Tree.

15.2 Modifying a Rule
As an administrator, you can modify a content action within a Campaign to change the
content query, change the Placeholder, change the conditions, and so on.

Campaigns can include the following actions:

■ Section 15.2.1, "Modifying a Content Action"

■ Section 15.2.2, "Modifying an E-Mail Action"

■ Section 15.2.3, "Previewing a Modified Campaign Action"

15.2.1 Modifying a Content Action
Perform the following steps to modify a Content Action in a Campaign:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, the scenario, and the rule you want to
modify.

4. In the Rule Details tab, click the Edit icon next to the condition you want to
change, as shown in Figure 15–3.

Note: If you want to activate the Campaign later, add the
CampaignEventListener as a Synchronous Listener in the Browse tab.

Modifying a Rule

Managing a Campaign 15-5

Figure 15–3 Click Edit to Change a Content Action

For example, you can change the following items:

■ Bind a variable

■ Invoke an instance method

■ If the visitor has specific characteristics

■ If the visitor is a member of a predefined User Segment

■ The visitor's HTTP session has specific properties

■ The visitor's HTTP request has specific properties

■ An application property has specific values

■ An event has specific characteristics

■ An event has occurred

■ The event characteristics

■ The current date

■ The current date is after a particular date

■ The current date and time is after a given date and time

■ The current time is between two particular times

■ The current date is between two particular dates

■ The current date and time are between two particular dates and times

■ A random number between one and 100 that falls between one and 100 (this
defines 100 percent of the qualifying visitors)

5. Make the changes and click Save.

6. After you modify the Content Action characteristics, you can modify the Content
Action further by specifying the specific content to retrieve for the visitor and the
specific Placeholder for it. To modify the retrieved content, click Edit next to the
property in the Action Properties section in the Rule Details tab.

7. Make the changes and click Save.

Managing a Campaign for Optimal Performance

15-6 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

15.2.2 Modifying an E-Mail Action
As an administrator, you can modify an E-mail Action within a Campaign to change
the action conditions, descriptions, User Segments, and so on.

Perform the following steps to modify an e-mail action:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, scenario, and e-mail action rule you
want to modify.

4. In the Rule Details tab, click ANY or ALL to determine if any or all conditions
apply.

5. Click Edit next to a condition.

6. Make the changes and click Save.

7. Specify the e-mail action to perform by clicking Edit next to the action.

8. You can change the e-mail location, title, and sent by address and click Save.

15.2.3 Previewing a Modified Campaign Action
Portal administrators can use the Administration Console to preview a modified
Content Action, E-mail Action, or Discount Action in a Campaign.

You can modify any of these actions in the Administration Console by changing the
conditions or content queries of these actions. After changing an action, you can
preview it to verify the change is correct.

Perform the following steps to preview a modified Campaign Action:

1. Start the Administration Console.

2. Choose Interaction > Campaigns.

3. In the Resource Tree, select the Campaign, scenario and action rule that you want
to modify.

4. Modify the conditions and actions for the Discount, E-mail, or Content Action and
save your changes.

5. In the Resource Tree, select the modified rule to display in the Rule Details tab.

6. Click Show Previews. The modified content does not show in the preview until
you refresh the tree.

7. Close the Resource Tree and then expand it to refresh it.

8. In the Resource Tree, select the Campaign and subsequent action you want to
preview.

9. Click Show Previews to see the modified content.

15.3 Managing a Campaign for Optimal Performance
Placeholders can become crowded with many queries, especially if more than one
Campaign uses a Placeholder to display content. Campaign queries can remain in
Placeholders indefinitely unless something specific occurs to remove them.

Perform the following steps to remove unwanted queries and control the content that
is displayed in a Placeholder:

Managing a Campaign for Optimal Performance

Managing a Campaign 15-7

1. When you create default queries in a Placeholder, perform the following steps to
designate that default queries do not run when a Placeholder contains Campaign
queries:

a. In the Portal Perspective in Oracle Enterprise Pack for Eclipse, open the
Placeholder file in the \<data>\src\placeholders folder in the Package
Explorer View.

b. Select the default query by selecting the Placeholder Editor tab.

c. In the Properties tab, set the Mix Globals property to false. This setting
suppresses default queries when Campaign queries are present.

2. When you create a Content Action in a Campaign in Oracle Enterprise Pack for
Eclipse, use the Remove (all) existing content option to minimize the number of
queries held in a Placeholder at a given time.

3. For Campaign content actions, set the Time to Live (duration) field to an
appropriate time so that the content action stops putting queries in the Placeholder
when you want it to stop. Locate the Time to Live field in the Administration
Console by choosing Configuration & Monitoring > Service Administration.
Select Cache Manager in the Resource Tree and click a specific cache name to edit
the Time to Live field.

4. To control the Campaign content that is displayed in a Placeholder, create a
Content Action for each event that occurs. Use the previous recommendations to
display a fresh rotation of content in the Placeholder.

5. To clear any content that has been put in a Placeholder, reset the previously placed
content using the reset feature as described in Section 15.1.5, "Resetting Campaign
Settings."

6. Enable Campaign content caches by following the steps in Section 8.6.2.1, "Setting
Campaign Content Caches."

Managing a Campaign for Optimal Performance

15-8 Oracle Fusion Middleware Interaction Management Guide for Oracle WebLogic Portal

Part IV
Part IV Production

The Production phase allows you to update and change Personalization in your
production environment.

Some of the Interaction Management tasks you can perform in the Production phase
could include the following:

■ Change a Campaign to revise its end date – See Section 15.1, "Modifying a
Campaign".

■ Edit a Placeholder or Content Selector to change the content they display – See
Section 7.3, "Modifying a Placeholder" or Section 6.4, "Deleting a Content Selector
Query".

■ Update property set properties to change your audience – See Section 4.3,
"Modifying Properties and Conditions".

■ Fine tune Content Selectors to change how often content is refreshed – See
Section 13.1, "Modifying a Content Selector".

■ Enable an audit trail of content changes to the virtual content repository – See
Section 9.13, "Tracking Content Changes".

■ Add custom events, listeners, and property sets to a deployed application – These
changes require application redeployment for the events and CLASSPATH
updates, and you must run the Propagation Utility to update the event properties
in the database. See the Oracle Fusion Middleware Production Operations Guide for
Oracle WebLogic Portal.

If you change Personalization features in your portal application in the Production
phase, you should return to the Staging phase to test the functionality. This staging
environment should simulate a Production environment. The one exception to this
process is using the rules files. During development, the rules files reload when they
change (just like JSPs), so you can quickly develop with Content Selectors. However,
when the server is in production mode, Content Selectors are loaded into the database
(from the file-based definitions in the application) where they can be modified in the
WebLogic Portal Administration Portal without redeploying the application or
restarting the server.

The Production phase can be ongoing; you can move iteratively between the Staging
phase and the Production phase.

You might also modify other features, such as Delegated Administration and Visitor
Entitlement roles and assignments, in the Production phase. See the Security Guide for
more information.

For a detailed description of the production phase of the portal life cycle, see the Oracle
Fusion Middleware Overview for Oracle WebLogic Portal.

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Architecture
	1 Introduction
	1.1 Introducing Personalization
	1.1.1 Using Interaction Management Tools
	1.1.2 Understanding the Features

	1.2 Interaction Management in the Portal Life Cycle
	1.2.1 Architecture
	1.2.2 Development
	1.2.3 Staging
	1.2.4 Production

	1.3 Getting Started

	2 Planning an Interaction Strategy
	2.1 Choosing the Type of Interaction Management to Develop
	2.1.1 Understanding Conditions

	2.2 Checklist for Planning Your User Interaction Strategy
	2.3 Checklist for Planning Your Campaign Strategy
	2.4 Planning Your Behavior Tracking Strategy
	2.4.1 Understanding When to Use a Predefined Event
	2.4.2 Understanding When to Create a Custom Event
	2.4.2.1 Planning Behavior Tracking Events
	2.4.2.2 Planning Regular Events

	2.4.3 Understanding When to Create a Custom Event Listener

	2.5 Updating Interaction Management Features
	2.6 Upgrading Interaction Features from Portal 8.1

	3 Setting up Content
	3.1 Adding Content
	3.2 Determining Content Priority

	Part II Development
	4 Creating a Property Set
	4.1 Setting up a Property Set
	4.1.1 Creating a User Profile Property Set
	4.1.2 Creating a User Segment Property Set
	4.1.2.1 Setting Dates and Times

	4.1.3 Creating a Session Property Set
	4.1.4 Creating a Request Property Set
	4.1.5 Creating a Community or Remote Portlet Property Set
	4.1.6 Creating an Event Property Set

	4.2 Adding Properties or Conditions to a Property Set
	4.3 Modifying Properties and Conditions
	4.3.1 Editing Properties
	4.3.2 Editing Property Values
	4.3.3 Retrieving Properties from External Data Stores

	4.4 Deleting a Property or a Property Set

	5 Creating a User Segment
	5.1 Creating a User Segment
	5.1.1 Setting Dates and Times

	5.2 Modifying a User Segment

	6 Creating a Content Selector
	6.1 Setting Up Content to Display
	6.2 Creating a Content Selector
	6.2.1 Creating the Content Selector File
	6.2.1.1 Building a Content Query with Expressions
	6.2.1.1.1 Using Rules to Build a Query
	6.2.1.1.2 Selecting Properties
	6.2.1.1.3 Using Comparators
	6.2.1.1.4 Supplying Values
	6.2.1.1.5 Creating Complex Queries
	6.2.1.1.6 Using Sample Queries

	6.2.2 Using a JSP Tag to Display a Content Selector File
	6.2.2.1 Adding a Content Selector to a JSP
	6.2.2.1.1 Dragging a Content Selector to a Portal File
	6.2.2.1.2 Using More than One Content Selector

	6.3 Using the <pz:div> Tag Instead of a Content Selector
	6.4 Deleting a Content Selector Query
	6.5 Deleting a Content Selector
	6.6 Modifying a Content Selector

	7 Creating a Placeholder
	7.1 Selecting Content for a Placeholder
	7.1.1 Displaying Additional MIME Types in a Placeholder
	7.1.1.1 Creating and Compiling a Java Class to Generate HTML
	7.1.1.2 Registering the New Class
	7.1.1.2.1 Method 1
	7.1.1.2.2 Method 2

	7.1.2 Adding Content to a Placeholder

	7.2 Creating a Placeholder
	7.2.1 Creating a Placeholder File
	7.2.1.1 Choosing the Type of Placeholder Query to Run

	7.2.2 Building a Content Query
	7.2.2.1 Using Expressions
	7.2.2.2 Using Comparators
	7.2.2.3 Using Values
	7.2.2.4 Following Guidelines for Complex Queries

	7.2.3 Determining Which Query and Content to Display
	7.2.3.1 Choosing a Query to Run
	7.2.3.2 Choosing Which Content Item to Display

	7.2.4 Adding a Placeholder to a JSP

	7.3 Modifying a Placeholder
	7.4 Using the <ad:adTarget> Tag Instead of a Placeholder

	8 Building a Campaign
	8.1 Performing the Prerequisite Tasks
	8.2 Building a Campaign
	8.2.1 Planning Your Campaign Logic
	8.2.2 Creating a Campaign File
	8.2.2.1 Setting Goal Definitions
	8.2.2.2 Adjusting Goal Definitions
	8.2.2.3 Creating URLs to Portal Resources
	8.2.2.3.1 Troubleshooting the URLs

	8.2.3 Adding a Scenario to a Campaign
	8.2.4 Adding an Action to a Scenario's Rule
	8.2.4.1 Adding a New Object Instance
	8.2.4.2 Invoking a Static Method
	8.2.4.3 Invoking an Instance Method
	8.2.4.4 Placing Content in a Placeholder
	8.2.4.5 Sending an E-Mail in a Campaign

	8.2.5 Setting Up Automatic E-Mail Messages
	8.2.5.1 Setting Up Bulk E-Mail Messages
	8.2.5.1.1 Modifying the Send-Mail Script to Work from a Remote Host
	8.2.5.1.2 Modifying the Send-Mail Script to Work in a Clustered Environment
	8.2.5.1.3 Using the Mailmanager Commands

	8.2.5.2 Sending Bulk E-Mail Messages
	8.2.5.3 Scheduling Bulk E-mail Delivery
	8.2.5.4 Deleting E-Mail Batches
	8.2.5.5 Setting Up E-Mail Security
	8.2.5.5.1 Storing E-Mail Files in a Different Directory

	8.2.6 Targeting a Campaign to Tracked Anonymous Users

	8.3 Testing a Campaign
	8.4 Triggering a Campaign
	8.4.1 Troubleshooting Campaign Actions

	8.5 Turning Off a Campaign
	8.6 Resetting a Campaign
	8.6.1 Resetting a Campaign in the Development Environment
	8.6.2 Resetting a Campaign in the Production Environment
	8.6.2.1 Setting Campaign Content Caches

	9 Setting Up Events and Behavior Tracking
	9.1 Choosing How to Handle Events
	9.2 Completing Your Behavior Tracking Strategy
	9.2.1 Planning the Deployment of Custom Events, Listeners, and Property Sets

	9.3 Using Predefined Events
	9.3.1 Using the SessionLoginEvent
	9.3.2 Using the SessionBeginEvent and SessionEndEvent
	9.3.3 Using the UserRegistrationEvent
	9.3.4 Using the AddToCartEvent
	9.3.5 Using the RemoveFromCartEvent
	9.3.6 Using the PurchaseCartEvent
	9.3.7 Using the Rule Events
	9.3.8 Using the DisplayCampaignEvent
	9.3.8.1 Using the Display Content Event Control
	9.3.8.2 Using the Display Product Events JSP Tag

	9.3.9 Using the CampaignUserActivityEvent
	9.3.10 Using the ClickCampaignEvent
	9.3.11 Using the ClickProductEvent
	9.3.12 Using the ClickContentEvent

	9.4 Generating Events for Content Clicks
	9.4.1 Using the ClickThroughEventFilter
	9.4.1.1 JSP Example
	9.4.1.2 Enabling Campaign Clickthroughs

	9.5 Generating Content Events
	9.5.1 Using the ContentConfigEvent
	9.5.2 Using the ContentCreateEvent
	9.5.3 Using the ContentDeleteEvent
	9.5.4 Using the ContentUpdateEvent

	9.6 Providing Event Attribute Values
	9.7 Enabling Behavior Tracking
	9.7.1 Enabling Behavior Tracking in the Administration Console
	9.7.2 Configuring Behavior Tracking
	9.7.3 Adjusting Behavior Tracking for Optimal Performance
	9.7.4 Storing Behavior Tracking Data in Other Ways
	9.7.5 Creating a Separate Database for Behavior Tracking Events
	9.7.6 Enabling Behavior Tracking in Oracle Enterprise Pack for Eclipse

	9.8 Creating Custom Events
	9.8.1 Creating the Event Class
	9.8.1.1 Creating a Regular Event Class
	9.8.1.2 Creating a Behavior Tracking Event Class
	9.8.1.3 Creating an Event With a Scriptlet

	9.8.2 Creating an XML Schema for Behavior Tracking
	9.8.2.1 Packaging the Schema

	9.9 Creating Custom Event Listeners
	9.10 Dispatching Events
	9.11 Using Events in Campaigns
	9.11.1 Registering Events for Campaigns
	9.11.1.1 Changing Event Properties

	9.12 Debugging the Event Service
	9.13 Tracking Content Changes
	9.14 Disabling Behavior Tracking
	9.14.1 Unregistering the Behavior Tracking Listener
	9.14.2 Removing an Individual Event

	10 Creating Advanced Personalization with Rules
	10.1 Using Rules in Portal Applications
	10.1.1 Choosing Personalization Components
	10.1.2 Understanding the Rules Service
	10.1.2.1 Using the Rules Service
	10.1.2.2 Understanding the Advantages of Using the Rules Service

	10.2 Creating a Rule
	10.2.1 Creating a Rule Set
	10.2.1.1 Creating a Rule Set Manually
	10.2.1.2 Using a Method in a Rule
	10.2.1.3 Working with Invalid Rule Sets

	10.2.2 Deploying a Rule Set
	10.2.2.1 Deploying a Rule Set in Oracle Enterprise Pack for Eclipse
	10.2.2.2 Deploying a Rule Set in a Staging or Production Environment

	10.2.3 Adding Objects to Working Memory
	10.2.3.1 Adding a Credit Score to Working Memory from an Integer
	10.2.3.2 Adding a Credit Score to Working Memory from a User Profile
	10.2.3.3 Using Type Mappings
	10.2.3.3.1 Using Mappings for <type-alias> Tags
	10.2.3.3.2 Mappings for <variable> Tags

	10.2.4 Invoking the Rules Service to Evaluate Objects
	10.2.4.1 Using an Existing Rule Set
	10.2.4.2 Inserting the Control in the Page Flow
	10.2.4.2.1 Understanding the Benefits of Using the Control

	10.2.4.3 Using the Control to Determine the User's Path in the Page Flow

	10.2.5 Filtering the Results
	10.2.5.1 Filtering with the RulesManager EJB

	10.2.6 Using the Results in Your Application

	10.3 Rules Control Reference

	Part III Staging
	11 Modifying Property Set Values
	11.1 Editing a Property Value
	11.1.1 Editing Properties in Oracle Enterprise Pack for Eclipse
	11.1.2 Editing Property Values in WebLogic Portal Administration Console

	11.2 Deleting a Property Value

	12 Modifying a User Segment
	12.1 Modifying a User Segment
	12.2 Modifying a User Segment's Properties
	12.3 Copying a User Segment
	12.4 Removing a User Segment

	13 Modifying a Content Selector
	13.1 Modifying a Content Selector
	13.2 Deleting a Content Selector and Query

	14 Modifying a Placeholder
	14.1 Changing Content for a Placeholder
	14.2 Modifying a Placeholder
	14.3 Deleting a Query or a Placeholder
	14.4 Managing Placeholders for Optimal Performance

	15 Managing a Campaign
	15.1 Modifying a Campaign
	15.1.1 Changing a Campaign's Description or Sponsor
	15.1.2 Changing a Campaign Start or Stop Date
	15.1.3 Activating and Deactivating a Campaign
	15.1.4 Turning Off a Campaign
	15.1.5 Resetting Campaign Settings
	15.1.6 Duplicating a Campaign

	15.2 Modifying a Rule
	15.2.1 Modifying a Content Action
	15.2.2 Modifying an E-Mail Action
	15.2.3 Previewing a Modified Campaign Action

	15.3 Managing a Campaign for Optimal Performance

	Part IV Production

