Contents

Preface .. vii

Audience .. vii
Documentation Accessibility .. vii
Related Documents ... vii
Finding Information and Patches on My Oracle Support ... viii
Finding Oracle Documentation ... ix
Conventions .. x

1 **Developing Oracle Healthcare Master Person Indexes**

 Understanding the Master Person Index Development Process .. 1-1
 Learning About the Master Person Index Framework and Runtime Environment 1-2
 Analyzing Your Business Requirements Before Developing a Master Person Index 1-3
 Preliminary Data Analysis for a Master Person Index .. 1-3
 Planning a Master Person Index Project ... 1-4
 Master Person Index Project Initiation Checklist .. 1-4

2 **Master Person Index and IHE Profile Project Creation**

 Setting Your System for Languages Other Than English to Display Properly 2-1
 Setting the Language and Region if Different Than English and United States 2-1
 To Change Regional and Language Options Using Microsoft Windows 2-1
 Setting the UTF-8 Encoding for Simplified Chinese or Languages with Accents in NetBeans IDE 2-2
 Creating a Master Person Index or IHE Profile Application ... 2-2
 Step 1: Choose Project ... 2-3
 To Choose a Project ... 2-3
 Step 2: Name and Location .. 2-3
 To Set the Name and Location .. 2-3
 Step 3: Name Application ... 2-4
 To Name the Master Person Index Application .. 2-4
 Step 4: Define Source Systems .. 2-4
 To Define Source Systems ... 2-5
 Step 5: Define Deployment Environment .. 2-5
 To Define the Deployment Environment .. 2-5
 Step 6: Define Enterprise Object .. 2-6
 Creating User-defined Objects .. 2-6
3 Oracle Healthcare Master Person Index Databases

Understanding Oracle Healthcare Master Person Index Database Scripts and Design 3-1
Oracle Healthcare Master Person Index Database Scripts 3-2
Oracle Healthcare Master Person Index Database Requirements 3-2
Database Platform Requirements 3-2
Securing Your Application Requirements 3-2
Creating an Oracle Healthcare Master Person Index Database .. 3-6
Step 1: Analyze the OHMPI Database Requirements ... 3-7
Step 2: Create a Master Person Index Database and User .. 3-7
Step 3: Define Master Person Index Database Indexes ... 3-8
 To Define an Index .. 3-8
Step 4: Define Master Person Index External Systems ... 3-9
 To Define an External System ... 3-9
Oracle Healthcare Master Person Index Database Table Description for sbyn_systems 3-9
Step 5: Define Master Person Index Code Lists .. 3-11
 To Customize Common Table Data for MySQL .. 3-11
 To Customize Common Table Data for Oracle .. 3-12
 To Customize Common Table Data for SQL Server .. 3-13
Step 6: Define Master Person Index User Code Lists ... 3-14
 To Define a User Code List ... 3-14
Oracle Healthcare Master Person Index Database Table Description for sbyn_user_code 3-14
Step 7: Create Custom Master Person Index Database Scripts .. 3-15
 To Create a Custom Script .. 3-15
Step 8: Create the Master Person Index Database Structure .. 3-15
 To Create the Database Structure .. 3-15
Step 9: Specify a Starting EUID for a Master Person Index .. 3-16

4 Database Connection Pools, Data Resources, and Deleting Tables

Defining the Database Connection Pools and Data Resources .. 4-1
 To Create JDBC Connection Pools and Data Resources .. 4-1
 Creating JDBC Connection Pools and Setting Data Resources (GlassFish) 4-2
 Creating JDBC Connection Pools and Setting Data Resources (WebLogic) 4-4
Dropping Oracle Healthcare Master Person Index Database Tables ... 4-7
 To Delete Database Tables ... 4-7

5 Setting Up Application Servers to Use with Web Service

 Setting Up Servers with Users for the MPI Web Service ... 5-1
Creating User Accounts for Web Service on GlassFish... 5-1
Creating User Accounts for Web Service on WebLogic.. 5-1

6 Master Index Data Manager Login

Setting Up Servers to Log in to and Run the MIDM... 6-1
Creating Master Index Data Manager User Accounts for GlassFish... 6-1
Setting Up the User for MIDM Access Using WebLogic.. 6-2
Preface

This document introduces users to the Oracle Healthcare Master Person Index (OHMPI), providing conceptual information on the OHMPI development process, the runtime environment, and how to analyze business requirements prior to creating a master person index. It also provides instructions on how to create an OHMPI application and database.

Audience

This document is intended for anyone that is going to use the Oracle Healthcare Master Person Index.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information and instructions for implementing and using a master person index application, see the following documents in the Oracle Healthcare Master Person Index Release 2.0 documentation set:

- Oracle Healthcare Master Person Index Installation Guide
- Oracle Healthcare Master Person Index Release Notes
- Oracle Healthcare Master Person Index Working With IHE Profiles User’s Guide
- Oracle Healthcare Master Person Index Message Processing Reference
- Oracle Healthcare Master Person Index Configuration Guide
- Oracle Healthcare Master Person Index Configuration Reference
- Oracle Healthcare Master Person Index Data Manager User’s Guide
- Oracle Healthcare Master Person Index Match Engine Reference
Finding Information and Patches on My Oracle Support

Your source for the latest information about Oracle Healthcare Master Person Index is Oracle Support’s self-service Web site My Oracle Support (formerly MetaLink).

Before you install and use Oracle Healthcare Master Person Index, always visit the My Oracle Support Web site for the latest information, including alerts, White Papers, installation verification (smoke) tests, bulletins, and patches.

Creating a My Oracle Support Account

You must register at My Oracle Support to obtain a user name and password account before you can enter the Web site.

To register for My Oracle Support:

1. Open a Web browser to https://support.oracle.com.
2. Click the Register here link to create a My Oracle Support account. The registration page opens.
3. Follow the instructions on the registration page.

Signing In to My Oracle Support

To sign in to My Oracle Support:

1. Open a Web browser to https://support.oracle.com.
2. Click Sign In.
3. Enter your user name and password.
4. Click Go to open the My Oracle Support home page.

Finding Information on My Oracle Support

There are many ways to find information on My Oracle Support.

Searching by Article ID

The fastest way to search for information, including alerts, White Papers, installation verification (smoke) tests, and bulletins is by the article ID number, if you know it.
To search by article ID:

2. Locate the Search box in the upper right corner of the My Oracle Support page.
3. Click the sources icon to the left of the search box, and then select Article ID from the list.
4. Enter the article ID number in the text box.
5. Click the magnifying glass icon to the right of the search box (or press the Enter key) to execute your search.

The Knowledge page displays the results of your search. If the article is found, click the link to view the abstract, text, attachments, and related products.

Searching by Product and Topic
You can use the following My Oracle Support tools to browse and search the knowledge base:

- Product Focus — On the Knowledge page under Select Product, type part of the product name and the system immediately filters the product list by the letters you have typed. (You do not need to type "Oracle.") Select the product you want from the filtered list and then use other search or browse tools to find the information you need.

- Advanced Search — You can specify one or more search criteria, such as source, exact phrase, and related product, to find information. This option is available from the Advanced link on almost all pages.

Finding Patches on My Oracle Support
Be sure to check My Oracle Support for the latest patches, if any, for your product. You can search for patches by patch ID or number, or by product or family.

To locate and download a patch:

2. Click the Patches & Updates tab. The Patches & Updates page opens and displays the Patch Search region. You have the following options:
 - In the Patch ID or Number is field, enter the number of the patch you want. (This number is the same as the primary bug number fixed by the patch.) This option is useful if you already know the patch number.
 - To find a patch by product name, release, and platform, click the Product or Family link to enter one or more search criteria.
3. Click Search to execute your query. The Patch Search Results page opens.
4. Click the patch ID number. The system displays details about the patch. In addition, you can view the Read Me file before downloading the patch.
5. Click Download. Follow the instructions on the screen to download, save, and install the patch files.

Finding Oracle Documentation
The Oracle Web site contains links to all Oracle user and reference documentation. You can view or download a single document or an entire product library.
Finding Oracle Health Sciences Documentation
To get user documentation for Oracle Health Sciences applications, go to the Oracle Health Sciences documentation page at:

http://www.oracle.com/technetwork/documentation/hsgbu-154445.html

Note: Always check the Oracle Health Sciences Documentation page to ensure you have the latest updates to the documentation.

Finding Other Oracle Documentation
To get user documentation for other Oracle products:

1. Go to the following Web page:
 http://www.oracle.com/technology/documentation/index.html
 Alternatively, you can go to http://www.oracle.com, point to the Support tab, and then click Documentation.

2. Scroll to the product you need and click the link.

3. Click the link for the documentation you need.

Conventions
The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Developing Oracle Healthcare Master Person Indexes

This chapter introduces you to the Oracle Healthcare Master Person Index (OHMPI), and provides an introduction to the development process. It also introduces you to the Master Index Data Manager (MIDM) object profiles, and provides information you should consider before developing a master person index, including a checklist.

This chapter includes the following sections:

- "Understanding the Master Person Index Development Process"
- "Learning About the Master Person Index Framework and Runtime Environment"
- "Analyzing Your Business Requirements Before Developing a Master Person Index"

Understanding the Master Person Index Development Process

This document provides instructions for creating a master person index application using Oracle Healthcare Master Person Index. It includes creating the master person index application framework, creating custom Java code, generating the application files, and creating the database. It also includes performing a data analysis using the framework created for the master person index application.

The following steps outline and link to the procedures you need to follow to develop a master person index application. Not all tasks are covered in this document, and when they are covered elsewhere that guide is named.

1. Perform a preliminary analysis of the data you plan to store in the master person index application.
2. Create a new project and a new Oracle Healthcare Master Person Index application within that project (described in "Creating a Master Person Index or IHE Profile Application" on page 2-2).
3. Define the object structure, operating environment, and certain runtime characteristics using the wizard (described in "Creating a Master Person Index or IHE Profile Application" on page 2-2).
4. Define and build custom plug-ins, and specify the plug-ins in the appropriate configuration file (described in "Implementing OHMPI Custom Plug-ins" on page 2-20).
5. Customize the configuration files (instructions for this step are provided in a separate document, Oracle Healthcare Master Person Index Configuration Guide (Part Number E25247-01).
6. Generate the master person index application (described in "Generating Master Person Index" on page 2-21).

7. Create the database (described in "Creating an Oracle Healthcare Master Person Index Database" on page 3-6).
 - Customize the database scripts by defining system information, processing codes, and drop-down menu values.
 - Create the database structure and any necessary indexes.
 - Define database connectivity in the application server.

8. Analyze and cleanse existing data that will be pre-loaded into the master person index database (instructions for this step are provided in a separate document, Oracle Healthcare Master Person Index Analyzing and Cleansing Data User’s Guide (Part Number E25245-01).

9. Build and deploy the project.

10. Define security for the Master Index Data Manager (MIDM) described in "Data Manager Security" in Oracle Healthcare Master Person Index Data Manager User’s Guide (Part Number E25246-01).

11. Load the initial data set into the master person index database (this is described in a separate document, Oracle Healthcare Master Person Index Loading the Initial Data Set (Part Number E25252-01).

Learning About the Master Person Index Framework and Runtime Environment

The values you enter in the wizard, Configuration Editor, or directly in the XML files define how other components of the master person index application are generated, such as the database scripts, the Master Index Data Manager (MIDM), and the dynamic Java API. This section provides an overview of how the values you enter correspond to the runtime environment.

From XML to the Database

The master person index database is created using a standard MySQL, Oracle or SQL Server database and a database script generated directly from object.xml. Additional scripts are created based on any user codes or menu lists you defined for the fields in the object structure. Running the database scripts against the database creates the tables necessary for your master person index application and also creates startup data, such as external system information or processing code.

From XML to the Master Index Data Manager

Based on information you specify in the wizard or Configuration Editor, midm.xml is generated to define the appearance of the Master Index Data Manager. This file defines the fields and appearance of the MIDM and also specifies the searches used by the MIDM. The available search types are defined in query.xml. You can customize many features of the MIDM, including the following:

- The fields that appear on the MIDM pages
- The field attributes, such as a display name, order of appearance, length, type, and data format
- The types of searches that can be performed and the fields available for each type
- The appearance of search results lists
The location of the fields on all windows

From XML to the EJB

When you generate the master person index application, two additional projects are created, an EJB project and a web application project. The EJB project includes several Java classes that are common to all master person index applications as well as a set of custom classes that are specific to the type of object you are indexing. These are based on object.xml. You can use these methods to specify how data is processed into the database. You can also call these methods from Business Processes.

From XML to the Runtime Environment

The information you specify in the master person index configuration files is read at runtime when the domain is started. The only exception is object.xml, which is stored only as a record of the object structure. You can modify the configuration files after moving to production; however, for the changes to take effect, you must regenerate the application and then rebuild and redeploy the project to apply the changes to the server.

Caution: Use caution when modifying these files; changing these files after moving to production might result in loss of data integrity or unexpected weighting and matching results.

Analyzing Your Business Requirements Before Developing a Master Person Index

Creating a master person index application requires in-depth analyses of your business requirements, legacy data, and data processing requirements. After the initial analysis, you can plan and design how you will create the master person index application framework and how you will customize that configuration after creating the framework.

The following sections provide information about what you need to know and do before you begin to create a master person index application.

- "Preliminary Data Analysis for a Master Person Index" on page 1-3
- "Planning a Master Person Index Project" on page 1-4
- "Master Person Index Project Initiation Checklist" on page 1-4

Preliminary Data Analysis for a Master Person Index

Before creating the master person index application, perform a preliminary analysis against the data that will be stored in the index database to determine the structure of the records. Analyzing your data requires reviewing the message structure of each legacy system that will share data with the master person index application. The master person index application does not need to store every field from every system, so you can narrow the master person index application object structure to just the pertinent fields from each system. However, the master person index application stores the same fields for each system. A more in-depth analysis of the field values in the legacy data occurs after the initial master person index application framework is created.
Planning a Master Person Index Project

Before you create the Oracle Healthcare Master Person Index project, analyze the business requirements and determine which project components will help you meet those requirements. Planning the project includes defining how each external system will share information with the master person index application and how the master person index application will share information with those external systems. In addition, you can incorporate master person index Java methods that define how the master person index application processes incoming data. Master person index methods can also be used to transform the data sent from external systems into a format that can be read by the master person index application.

An additional consideration is whether to integrate the master person index methods into a Business Process.

Master Person Index Project Initiation Checklist

Before you begin developing your master person index application, make sure you have obtained the following information:

- The primary object to be indexed, such as a person, customer, or business
- Any secondary objects, such as telephone numbers and addresses
- All fields to be stored in the index for both the primary and secondary objects
- The name of each field as it appears on the MIDM and whether the field will be a standard text field or will be populated from a menu list (if a field will be populated from a menu list, you should also define an eight-character name for the list)
- The fields that are required in order to add a record or that are required for queries
- The fields that will appear on reports
- The fields that must be unique to an enterprise record (in other words, they uniquely identify a child object within an enterprise record)
- The fields that will be used for matching
- The fields that will need to be parsed or normalized prior to matching
- Any special formatting requirements, such as character types, the data type, minimum and maximum values, and field size
- The fields that will appear on MIDM search and search results windows
- The processing codes for the source systems being integrated into the index
This chapter provides information and a procedure for creating an Oracle Healthcare Master Person Index application. It also provides information about master person index wizard field properties and name restrictions, and custom plug-ins, including how to implement custom plug-ins, and generate a master person index.

This chapter includes the following sections:

- "Setting Your System for Languages Other Than English to Display Properly"
- "Creating a Master Person Index or IHE Profile Application"
- "Understanding OHMPI Wizard Name Restrictions and Field Properties"
- "Using Custom Plug-ins for Custom Transaction Processing"
- "Learning About Custom Plug-Ins for OHMPI Custom Components"
- "Implementing OHMPI Custom Plug-ins"
- "Generating Master Person Index"

Setting Your System for Languages Other Than English to Display Properly

This section provides information for setting your system to display languages other than English properly.

- "Setting the Language and Region if Different Than English and United States"
- "Setting the UTF-8 Encoding for Simplified Chinese or Languages with Accents in NetBeans IDE"

Setting the Language and Region if Different Than English and United States

If you plan to use a language other than United States English, set your computer to the desired language and country, for example if you are using the Spanish language in Mexico select Mexico, if you are using Simplified Chinese in the People’s Republic of China select China.

To Change Regional and Language Options Using Microsoft Windows

Note: If using an operating system other than Windows, see your computer system’s manual.
1. Click **Start**, select **Control Panel**, and then double-click **Regional and Language Options**.

 The Regional and Language Options window appears. In our example, we presume you want to use Simplified Chinese.

2. With the **Regional Options** tab selected, under Location, choose **Spanish** from the drop-down list.

3. Click **OK**.

 When your computer system is set to Spanish and you create an OHMPI project, a copy of `midm_person_spanish.xml` will be created in the `project_dir/src/Configuration` folder.

Note: This file (`midm_person_spanish.xml`) is based upon the Person template and is translated into Spanish. For projects created with the Person template, you can replace the `midm.xml` with this file.

Setting the UTF-8 Encoding for Simplified Chinese or Languages with Accents in NetBeans IDE

For Simplified Chinese characters, or languages with accents, such as Spanish, to display properly in NetBeans you need to add `-Dfile.encoding=UTF-8` to the end of "netbeans_default_options" in `OracleHealthcareMPIv2_0\netbeans\etc\netbeans.conf`, as shown in the example:

```shell
netbeans_default_options="-Dnetbeans.derby.system.home="C:\OracleHealthcareMPIv2_0\glassfish\databases" -Dcom.sun.aas.installRoot="C:\OracleHealthcareMPIv2_0\glassfish" -Dnb.registration.enabled=false -J-Xms512m -J-Xss2m -J-XX:PermSize=32m -J-XX:MaxPermSize=200m -J-Dapple.laf.useScreenMenuBar=true -J-Dapple.awt.graphics.UseQuartz=true -J-Dsun.java2d.noddraw=true -J-Dfile.encoding=UTF-8"
```

You need to set this option prior to using NetBeans.

Known NetBeans IDE/GlassFish Issues

It is a known NetBeans issue that the GlassFish log file does not display properly under the Chinese locale with UTF-8 encoding turned on. The GlassFish log file is readable from outside of NetBeans using other editors to view `server.log` (for example, `glassfish\domains\domain1\logs`).

Also note, that if you use GlassFish to create a master person index project in NetBeans IDE that the MPI project:

- Does not support Chinese characters in its primary object name
- Does not support Chinese characters in its child object name
- Cannot contain Chinese characters in the project name

Creating a Master Person Index or IHE Profile Application

The wizard provides a simple method for you to create the object definition and the runtime configuration files for your master person index application. This section provides instructions for creating a new project and using the wizard to create the configuration files for the master person index application. To create the initial master person index framework, follow these steps:
Step 1: Choose Project

When you create a new Oracle Healthcare Master Person Index project in NetBeans, the wizard for creating a master person index application automatically appears.

To Choose a Project

1. On the NetBeans toolbar, click **New Project**.

 The New Project wizard appears, and opens on the Choose Project window.
2. Under Categories, select **OHMPI**.
3. Under Projects, select **Master Person Index Application** or **IHE Profile Application** and then click **Next**.

 Note: In our example, we selected Master Person Index Application.

 The Name and Location window appears with default project name and directory paths.
4. Continue to "Step 2: Name and Location".

Step 2: Name and Location

When you create a new Oracle Healthcare Master Person Index project in NetBeans, the wizard for creating a master person index application automatically appears.

To Set the Name and Location

1. Enter the NetBeans project name and the path where you want to store the project files in the upper portion of the window or accept the defaults.
2. Select the application server you are using from the drop down list.
 a. If no application servers appear in the list, click **Manage**.

 The Servers window appears.
 b. Click **Add Server**.

 The Add Servers Instance window appears.
 c. Choose a server (OHMPI only supports GlassFish v2.x and Oracle WebLogic Server), and click **Next**.
 d. Under Server Location, accept the defaults and click **Finish**.
You are returned to the Servers window with the application server you selected listed under Servers in the left pane.

e. Click Close.

The Name and Location window reappears.

3. For IHE Profile only: Select a Database from the drop-down list (Oracle and MySQL are your only options).

4. The following has automatically been done for you:
 - For the Master Person Index application, the J2EE field has been populated; if you want to use another version, make your selection from the drop-down list.
 - For IHE Profile application, the HL7 V2 Service Port has been populated (the default is 4447. If desired, change the port number.

5. The Set as Main Project is selected for the Master Person Index application but not for the IHE Profile Application. If you do not want this Master Person Index application to be the main project, deselect the option, and if you want the IHE Profile application to be the main project, select this option.

6. Click Next.
 - For an IHE Profile application, this is the final step that you need to perform.
 - For a Master Person Index application, continue to "Step 3: Name Application”.

Step 3: Name Application

Before you can configure the new master person index application, it is a good practice to give each master person index application a unique name because certain components within the application server are based on this application name. Dependent components include the data source for the JDBC connection and the outbound Topic (if one is used).

To Name the Master Person Index Application

1. Complete “Step 2: Name and Location”.
2. In the Application field of the Name Application window, enter a name for the new master person index application, and then click Next.

 Note: Give the application the same name you will give to the parent object when you define the object structure.

The Define Source Systems window appears.

3. Continue to "Step 4: Define Source Systems”.

Step 4: Define Source Systems

After you specify a name for the new master person index application, you need to specify the processing codes for the source systems that will be integrated into the master person index system.

The source system is the key to your network. If it a hospital (for example, Glendale Memorial Hospital or Medical Center of Tarzana, the system might be “GMH” or
"MCT"), all of its patient records would be sent into the master person index with a system code/LID of GMH/120210210 or MCT/48481234.

The LIDs are specific to the patients. When you get to the stage of creating data from the Master Index Data Manager (MIDM), every record you enter will need a System/LID. You will go to the System Record tab of the MIDM (see Oracle Healthcare Master Person Index Data Manager User’s Guide, Part Number E25246-01, for details), then to the Add tab and a pulldown menu will have all of the hospital codes you entered, and at that point you would supply the LID for the patient you are entering. If the data were coming from the back end, it would have both the System and LID as part of the data.

To Define Source Systems

1. Complete "Step 3: Name Application".

2. In the Name field of the Define Source Systems window, enter the processing code of one of the source systems that will share data in the master person index system (for example, "GNH" or "MCT"), and then click Add.

 You can enter any of the following characters:
 - ! _ ~ () {} + \ Q $ % & : ; - /
 - a-z
 - A-Z
 - 0-9
 - þ ÿ ð ‘ ò ö ø ã Ò Œ Ý

 The value you entered appears in the Systems box.

 Note: Be sure to enter the processing code of the system and not the name. This value is entered in update.xml for defining survivor strategies for the single best record (SBR).

3. Do any of the following:
 - To define additional systems, repeat the above step for each source system that will share information with the master person index application.
 - To remove a system from the list, highlight the name of that system in the Systems box, and then click Remove.
 - To remove all systems from the list, click Remove All.

4. When you have defined all required source systems, click Next.

 The Define Deployment Environment window appears.

5. Continue to "Step 5: Define Deployment Environment".

Step 5: Define Deployment Environment

Once you define the source systems, you must specify information about the deployment environment, including the database and match engine vendors.

To Define the Deployment Environment

1. Complete "Step 4: Define Source Systems".
2. On the Define Deployment Environment window, enter the following information:

- **Database** - The type of database being used for the master person index application. You can select MySQL, Oracle, or SQL Server.

 Note: The IHE Profiles do not support SQL Server.

- **Match Engine** - The type of match engine to use for the implementation. Currently, the only option is OHMPI Match Engine.

- **Date Format** - The date format for the master person index system. This defines how dates should be entered and how they appear on the MIDM. You can select MM/dd/yyyy, dd/MM/yyyy, or yyyy/MM/dd.

- **Transaction Mode** - An indicator of whether transactions are distributed. Select one of the following options:
 - XA (across applications), if the transactions will be distributed across multiple applications.
 - XA (within application only), if the transactions will be distributed just across the master person index application.
 - Local, if the transactions will not be distributed.

3. When you have defined the deployment environment fields, click **Next**.

4. Continue to "Step 6: Define Enterprise Object". The name for the OHMPI application in step 3 appears in the tree.

Step 6: Define Enterprise Object

After you define the deployment environment for the master person index application, you can begin to define the structure of the object you want to index. The primary object will be the parent object for any other objects defined. Child objects are not required if all information is stored under the parent object.

You can create new user-defined objects, create objects using predefined templates, or use a combination of both methods to create the objects in your enterprise object. Perform any of the following actions to define the objects in the enterprise object.

- "Creating User-defined Objects"
- "Creating Objects from a Template"
- "Deleting an Object from the Structure"

Complete "Step 5: Define Deployment Environment" before performing these procedures.

Note: The names of database constraints are created based on the parent and child object names. Due to database naming restrictions, the length of the parent object name plus the length of any of the child object names must be 21 characters or less. Give the parent object the same name you gave the application earlier in the wizard.

Creating User-defined Objects

When you create user-defined objects, you create an empty object with no predefined fields or child objects.
1. On the Define Enterprise Object window, click the **Add Primary Object** icon.

The initial node appears on the tree. By default, the name of the parent object is the same as the name of the application you defined in “Step 3: Name Application”.

2. Accept the default name by pressing **Enter**, or type a new name and press **Enter**.

 Note: It is highly recommended that when you define the object structure that the name of the parent object be the same as the application name you created in step 3.

3. To create a new child object, select the primary object created above and then click the **Add Sub Object** icon.

The new child node appears on the tree.

4. Highlight the new sub-object and type a user-defined name for it and press **Enter**.

5. Repeat the previous two steps for each child object.

6. Continue to "Defining the Fields for Each Object".

Defining the Fields for Each Object

After you define all the parent and child objects for your enterprise object, you need to define the fields in each object. Every field has a set of properties that must be configured before creating the master person index configuration files. If you chose a predefined template to create your objects, be sure to check the properties for all predefined fields to be sure they are configured correctly for your implementation.

Note: If you decide that you would like to use a template as opposed to creating everything from scratch, highlight your primary object and click the **X** in the tool bar. This deletes the primary object you are working on. You can now select the **Add Template** icon and choose the **Add Company** or the **Add Person** template. You can also select the **Add Solution** icon, highlight **Provider** and choose **Organization** or **Individual**, or highlight **Patient** and choose **USPatient**, **UKPatient**, or **AUPatient**. See "Creating Objects from a Template" for additional information.

Caution: Delete primary objects, sub-objects, and fields carefully, for once deleted you cannot retrieve them.

After you define the parent and child objects, you can perform any of the following actions to define the fields for those objects.

Adding a Field

After you define all the parent and child objects for your enterprise object, you need to define the fields in each object. Every field has a set of properties that must be configured before creating the master person index configuration files. If you chose a predefined template to create your objects, be sure to check the properties for all predefined fields to be sure they are configured correctly for your implementation.

After you define the parent and child objects, you can perform any of the following actions to define the fields for those objects.
1. Complete "Creating User-defined Objects".

2. In the object tree panel of the Define Enterprise Object window, do one of the following:
 - To add the field to the end of the object’s field list, select the name of the object to which you want to add a new field and then click Add Field.
 - To add the field immediately following an existing field, select the field after which you want to add the new field and then click Add Field.
 The tree expands and a new field is inserted.

3. Do one of the following:
 - To accept the default name, press Enter.
 - To change the name, type the new name and then press Enter.
 For information about field name restrictions, see "OHMPI Wizard Field Name Restrictions".

4. Continue to "Configuring Field Properties".

Configuring Field Properties

When you create a field, a set of default properties is defined for that field. You can modify the property configuration for each field to suit your data processing, storage, and display requirements. After you modify a property value, press Enter to apply the change.

Note: If you do not press Enter, you will lose the name you typed.

1. Complete the steps under "Adding a Field".

2. In the object tree panel of the Define Enterprise Object window, select the field you want to configure.

3. On the Properties panel in the right side of the window, modify the value of any of the properties listed in Master Person Index Wizard General Field Properties.

4. On the right side of the window, click the MIDM tab, and then modify the value of any of the properties listed in Master Person Index Wizard MIDM Field Properties.

5. When you have created and configured all of the necessary fields for each object, click Next.

6. Continue to "Step 7: Generate the Project Files".

Creating Objects from a Template

When you create objects from a template, secondary objects and fields are predefined. You can modify the objects, fields, and field properties in a template to suit your processing needs.

1. To create a complete object structure from a template, do one of the following:
 - Click the Add Template icon on the Define Enterprise Object toolbar, and select the Add Company or the Add Person template.
 The objects and fields from the template appear in the tree-view panel in the center of the window, and are available for you to edit and configure.
Click the Add Solution icon on the Define Enterprise Object toolbar, and select the **Provider** or the **Patient** template. While highlighting the **Provider** template, choose **Organization** or **Individual**, or while highlighting the **Patient** template, choose **USPatient**, **UKPatient**, or **AUPatient**. For more details about the Provider and the Patient template solutions, see the following guides: Oracle Healthcare Master Person Index Provider Index User’s Guide (Part Number E25035-01), Oracle Healthcare Master Person Index United States Patient Solution User’s Guide (Part Number E24709-01), Oracle Healthcare Master Person Index United Kingdom Patient Solution User’s Guide (Part Number E24710-01), or the Oracle Healthcare Master Person Index Australia Patient Solution User’s Guide (Part Number E24708-01).

The Provider and the Patient template solutions are pre-set and you cannot edit or configure them until after you have generated the application file.

2. To create a child object from a template after creating the parent object, right-click the parent object, point to **Add Template**, and then select the name of the template you want to use.

 The new object and any defined fields appear in the object tree.

3. If necessary, change the name of the new object by doing the following:
 a. Click twice on the name.
 b. Type the new name.
 c. Press Enter.

 Note: This step is only available if you are using the Company or Person templates; it is not available with the Provider or Patient Solution templates.

4. Repeat steps 2 and 3 for each child object template you want to create.

5. Continue to "Defining the Fields for Each Object".

Deleting an Object from the Structure

If you add an object in error, or do not want to use one of the objects in a predefined template, you can delete the object from the structure.

1. On the Define Enterprise Object window, select the object you want to remove.

2. Do any of the following:
 - Right-click in the object tree panel, and then select **Delete**.
 - Press the **Delete** key.
 - In the wizard toolbar, click **Delete**.

 The object and any fields associated with that object are deleted. If you remove the parent object, all child objects are deleted.

 Note: Once you delete an object, it is gone and you cannot retrieve them.
Step 7: Generate the Project Files

Once you have named the application and configured the source systems, deployment environment, objects, and fields for the master person index application, you need to generate the configuration files and database scripts. Review the configuration files to be sure the application is set up correctly for your data processing environment.

Note: Modifying the configuration files is not covered in this document. For instructions on configuring a master person index application, see Oracle Healthcare Master Person Index Configuration Guide (Part Number E25247-01).

To Generate the Configuration Files
1. Complete "Step 6: Define Enterprise Object".
2. On the Generate Project Files window, verify that all of the information you have entered is complete and correct.
3. If desired, generate the remaining Master Person Index application files by selecting the appropriate box, and then click Finish.

Note: Although you can generate the remaining Master Person Index application files at this time, it is not necessary to do this now as you can also generate them when your project appears in NetBeans. Waiting may be the better option, for then you can configure your files in NetBeans before generating them. If you generate them at this time, you will have to generate them a second time after you complete the configuration process.

The configuration files are generated, and are stored in the project configuration folder.
4. Continue to "Step 8: Review the Configuration Files".

Step 8: Review the Configuration Files

After the wizard is complete, several nodes representing the master person index configuration files are placed in the project for the master person index application. Verify that the configuration files are customized correctly for your implementation. If you need to modify the configuration files, see Oracle Healthcare Master Person Index Configuration Guide (Part Number E25247-01) for information about configuration tasks. For information about the configuration files and configurable options, see Oracle Healthcare Master Person Index Configuration Reference (Part Number E25249-01).

Understanding OHMPI Wizard Name Restrictions and Field Properties

When you create fields in the object structure of the master person index application, you can specify several properties for each field, such as whether the field is required, whether the field will appear as a drop-down menu on the MIDM, or whether the field will be used in a blocking query. There are also some restrictions for how fields can be named and how the properties are defined.

The following sections provide information about the naming restrictions and field properties of the wizard.
OHMPI Wizard Field Name Restrictions

When you name the fields in your object structure, be sure to keep the following guidelines in mind to avoid errors when compiling or running the master person index application.

- Oracle Healthcare Master Person Index automatically creates a field for each object named objectIId, where object is the name of an object or sub-object. You cannot create fields with those names. For example, you cannot create a field named "AddressId" if there is an Address object in the object structure.

- If you enter a field name longer than 20 characters, a warning dialog box appears. While most databases can handle names up to at least 30 characters, Oracle Healthcare Master Person Index appends text to the end of fields defined for phonetic encoding or standardization. For fields that will be parsed, normalized, or phonetically encoded, make sure the name of the original field does not exceed 20 characters. Any other field can have a name up to 30 characters long.

- In field names, do not use characters or names restricted by Java, XML, or the database platform being used.

OHMPI Wizard General Field Properties

The following table lists and describes the properties you can define on the General Properties page of the wizard.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>The master person index data type of the field. The following data types are supported:</td>
</tr>
<tr>
<td></td>
<td>- string - Contains a string of characters.</td>
</tr>
<tr>
<td></td>
<td>- date - Contains a date value.</td>
</tr>
<tr>
<td></td>
<td>- float - Contains a floating point integer.</td>
</tr>
<tr>
<td></td>
<td>- int - Contains an integer.</td>
</tr>
<tr>
<td></td>
<td>- char(^1) - Contains a single character.</td>
</tr>
<tr>
<td></td>
<td>- boolean(^2) - Contains either true or false.</td>
</tr>
<tr>
<td></td>
<td>- blob(^3) - Contains binary data.</td>
</tr>
<tr>
<td>Match Type</td>
<td>The type of matching to be performed against the field, if the field is to be used for match weight generation. You must define at least one field for matching or no weights will be generated.</td>
</tr>
<tr>
<td></td>
<td>The match types you specify here define the structure of mefa.xml, including the match string. The match types in mefa.xml might differ from the wizard match types. See Oracle Healthcare Master Person Index Configuration Reference (Part Number E25249-01) for information about the available options for this field and how the wizard match types correlate to mefa.xml types.</td>
</tr>
<tr>
<td>Blocking</td>
<td>An indicator of whether the field will be used in the blocking query. Specify true to add the field to the blocking query; specify false to omit it from the blocking query.</td>
</tr>
</tbody>
</table>
Key Type
An indicator of whether the field is used to identify unique objects. For example, a business index might store several addresses for each business. Each address is assigned an address type and each business can only have one address of each type. Specify `true` if the field is a unique record identifier, or `false` if it is not.

Key type fields should also be required fields (see below), unless a combination of fields are specified as key types for an object.

Note: It is recommended that each child object contain a key type field, but this is not required. If child objects do not contain one or more key type fields, each enterprise object might accumulate a very large number of child objects depending on the survivor strategy used.

Updateable
An indicator of whether the field can be updated from the MIDM and external system messages. Specify `true` if the field can be updated or `false` if it cannot.

Required
An indicator of whether the field is required in order to save an enterprise object to the database. Specify `true` if the field is required or `false` if it is not. If only one key type field is defined for an object, that field should be required.

Field Size
The number of characters allowed in each field. This determines the number of characters allowed in the database columns and defines the maximum number of characters that can be entered into each field on the MIDM.

Labeled "Field Size" in the MIDM, it is `<size>` in the XML files.

Pattern
The required data pattern for the field. For more information about possible values and using Java patterns, see "Patterns" in the class list for `java.util.regex` in the Javadocs provided with Java. You might want to define patterns for date, telephone, or SSN fields. Note that for the MIDM, the pattern is further restricted by the value entered for the input mask described in the following table. If no input mask is specified, all regular expression patterns are supported.

Code Module
The identification code for the drop-down list that appears for this field in the MIDM.

Note: This value must match an entry in the code column of the `sbyn_common_header` database table and, by default, an entry for the code you enter is created in the Code List database script. You can further customize code lists in the script after completing the wizard.

User Code
The processing code for the drop-down list that appears for the fields defined by the Constrained By property. For more information, see the description of the Constrained By property below.

Note: This must match an entry in the `code_list` column of the `sbyn_user_code` database table.

Constrained By
The name of the field that contains the corresponding User Code value (described above). The User Code and Constrained By properties are used in conjunction to fulfill two purposes. The first purpose is to define a drop-down list for the field that contains the User Code value. The second purpose is to validate the field that contains the Constrained By value against definitions for the field with the User Code value.

For example, if you store non-unique IDs such as credit card numbers or insurance policy numbers, you could create a field named ID Type that has a User Code value of CREDCARD, which is also defined as a code in the `sbyn_user_code` table. This gives the ID Type field a drop-down list based on the definitions for CREDCARD in the `sbyn_user_code` table. You could then create a field named ID that would be constrained by the formats defined for the ID Type field. Any IDs you enter would be validated against the value of the ID Type field.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Type</td>
<td>An indicator of whether the field is used to identify unique objects. For example, a business index might store several addresses for each business. Each address is assigned an address type and each business can only have one address of each type. Specify <code>true</code> if the field is a unique record identifier, or <code>false</code> if it is not. Key type fields should also be required fields (see below), unless a combination of fields are specified as key types for an object. Note: It is recommended that each child object contain a key type field, but this is not required. If child objects do not contain one or more key type fields, each enterprise object might accumulate a very large number of child objects depending on the survivor strategy used.</td>
</tr>
<tr>
<td>Updateable</td>
<td>An indicator of whether the field can be updated from the MIDM and external system messages. Specify <code>true</code> if the field can be updated or <code>false</code> if it cannot.</td>
</tr>
<tr>
<td>Required</td>
<td>An indicator of whether the field is required in order to save an enterprise object to the database. Specify <code>true</code> if the field is required or <code>false</code> if it is not. If only one key type field is defined for an object, that field should be required.</td>
</tr>
<tr>
<td>Field Size</td>
<td>The number of characters allowed in each field. This determines the number of characters allowed in the database columns and defines the maximum number of characters that can be entered into each field on the MIDM. Labeled "Field Size" in the MIDM, it is <code><size></code> in the XML files.</td>
</tr>
<tr>
<td>Pattern</td>
<td>The required data pattern for the field. For more information about possible values and using Java patterns, see "Patterns" in the class list for <code>java.util.regex</code> in the Javadocs provided with Java. You might want to define patterns for date, telephone, or SSN fields. Note that for the MIDM, the pattern is further restricted by the value entered for the input mask described in the following table. If no input mask is specified, all regular expression patterns are supported.</td>
</tr>
<tr>
<td>Code Module</td>
<td>The identification code for the drop-down list that appears for this field in the MIDM. Note: This value must match an entry in the code column of the <code>sbyn_common_header</code> database table and, by default, an entry for the code you enter is created in the Code List database script. You can further customize code lists in the script after completing the wizard.</td>
</tr>
<tr>
<td>User Code</td>
<td>The processing code for the drop-down list that appears for the fields defined by the Constrained By property. For more information, see the description of the Constrained By property below. Note: This must match an entry in the <code>code_list</code> column of the <code>sbyn_user_code</code> database table.</td>
</tr>
<tr>
<td>Constrained By</td>
<td>The name of the field that contains the corresponding User Code value (described above). The User Code and Constrained By properties are used in conjunction to fulfill two purposes. The first purpose is to define a drop-down list for the field that contains the User Code value. The second purpose is to validate the field that contains the Constrained By value against definitions for the field with the User Code value. For example, if you store non-unique IDs such as credit card numbers or insurance policy numbers, you could create a field named ID Type that has a User Code value of CREDCARD, which is also defined as a code in the <code>sbyn_user_code</code> table. This gives the ID Type field a drop-down list based on the definitions for CREDCARD in the <code>sbyn_user_code</code> table. You could then create a field named ID that would be constrained by the formats defined for the ID Type field. Any IDs you enter would be validated against the value of the ID Type field.</td>
</tr>
</tbody>
</table>
Understanding OHMPI Wizard Name Restrictions and Field Properties

Master Person Index Wizard MIDM Field Properties

The following table lists and describes the field properties you can define on the MIDM Field Properties page of the wizard.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display Name</td>
<td>The name of the field as it will appear on the MIDM.</td>
</tr>
</tbody>
</table>

Input Mask

A mask used by the GUI to add punctuation to a field. For example, if users enter the date in the format MMDDYYYY, you can add an input mask to display the dates as MM/DD/YYYY. Use the value mask (described below) to strip the punctuation from the value before storing it in the database.

To define an input mask, enter a character type for each character in the field and place any necessary punctuation between the character types. For example, the input mask for the above date format is DD/DD/DDDD.

- D - indicates a numeric character.
- L - indicates an alphabetic character.
- A - indicates an alphanumeric character.

Note that the value you enter can further restrict the data pattern for the field (this is the Pattern field property described in "OHMPI Wizard General Field Properties").

Value Mask

A mask used by the index to strip any extra characters that were added by the input mask (see above). This mask ensures that data is stored in the database in the correct format.

To specify a value mask, type the same value as is entered for the input mask, but type an “x” in place of each punctuation mark. For example, if an SSN field has an input mask of DDD-DD-DDDD, specify a value mask of DDDxDDxDDDDD to strip the dashes before storing the SSN. A value mask is not required for date fields.

Search Screen

An indicator of whether the field appears on the search windows of the MIDM. Specify true to display the field or false to hide it.

Required

An indicator of whether the field must be populated on the search windows of the MIDM when performing a search. This property can only be modified if the Search Screen property is set to true (see above). Specify true to make the field required or specify false to make it optional. You can also specify oneof to create a group of fields of which at least one must be populated to perform a search. (Be sure to specify oneof for each field in the group.)

Tip: If a field is required for a search, the field should also be required for creating a record (by specifying true for the Required property on the Properties page). Otherwise, searches performed from the MIDM could result in no matches even though possible matches exist.

Search Result

An indicator of whether the field appears on the search results windows of the MIDM. Specify true to display the field, or false to hide it.
You can add custom processing to the master person index application by adding your own code to new Java classes in the EJB project for the master person index application. These classes are called custom plug-ins. This ability allows you to tailor how messages are processed by the master person index application. Plug-ins can be used to customize field validations, update policies, match processing logic, and record retrieval, and to create custom components for the master person index application, such as custom phonetic encoders, block pickers, or query builders. You can create as many classes as you need to carry out the custom processes.

The following sections describe custom plug-ins that define custom processing. These are explained more fully in Oracle Healthcare Master Person Index Configuration Reference (Part Number E25249-01).

- "OHMPI Update Policy Plug-ins" define custom processing logic to perform against the resulting record of a transaction before it is stored in the database.
- "OHMPI Field Validation Plug-ins" define validations to perform against specific fields, such as checking the local ID length and format.
- "OHMPI Field Masking Plug-ins" define how the values for sensitive fields are hidden on the MIDM from users who do not have permission to view them.
- "OHMPI Processing Logic Plug-ins" define custom logic based on predefined decision points for how records are matched during a transaction.
- "OHMPI Custom Plug-in Exception Processing" define how exceptions are handled by the custom plug-ins you create.

OHMPI Update Policy Plug-ins

For the primary transactions performed by the master person index application, you can define additional custom processing to perform against the record that results from a transaction. The policies you define are invoked by the Update Manager and are applied to the resulting records after they are processed by the survivor calculator. The modifications made to a record by an update policy determine how the record is stored in the database. By creating custom plug-ins, you can create additional Java classes to support the update policies you define.

Update policies are specified in the `UpdatePolicy` section of `update.xml`, and there are several different types. Each policy modifies an enterprise object (class `com.sun.mdm.index.objects.EnterpriseObject`) and must implement `com.sun.mdm.index.update.UpdatePolicy`, which contains one method, `applyUpdatePolicy`. The syntax is as follows:

```java
public EnterpriseObject applyUpdatePolicy(EnterpriseObject before, EnterpriseObject after)
```

This method throws two exceptions:

- `com.sun.mdm.index.master.UserException`
- `com.sun.mdm.index.objects.exception.ObjectException`
Enterprise Merge Policy
The enterprise merge policy defines additional processing to perform after two enterprise objects are merged. The processing defined in this policy acts against the surviving record of the merge. In the EnterpriseMergePolicy element in update.xml, enter the fully qualified name of this custom plug-in.

Enterprise Unmerge Policy
The enterprise unmerge policy defines additional processing to perform after an unmerge transaction occurs. The processing defined in this policy acts against the surviving record of the merge transaction that was unmerged. In the EnterpriseUnmergePolicy element of update.xml, enter the fully qualified name of this custom plug-in.

Enterprise Update Policy
The enterprise update policy defines additional processing to perform after a record is updated. In the EnterpriseUpdatePolicy element of update.xml, enter the fully qualified name of this custom plug-in.

Enterprise Create Policy
The enterprise create policy defines additional processing to perform after a new record is inserted into the master person index database. In the EnterpriseCreatePolicy element of update.xml, enter the fully qualified name of this custom plug-in.

System Merge Policy
The system merge policy defines additional processing to perform after two system objects are merged. The processing defined in this file acts against the surviving enterprise record of the merge (and not the system record). In the SystemMergePolicy element of update.xml, enter the fully qualified name of this custom plug-in.

System Unmerge Policy
The system unmerge policy defines additional processing to perform after system objects are unmerged. The processing defined in this file acts against the surviving enterprise record of the system merge transaction that was unmerged. In the SystemUnmergePolicy element in update.xml, enter the fully qualified name of this custom plug-in.

Undo Assumed Match Policy
The undo assumed match policy defines additional processing to perform after an assumed match transaction is reversed. In the UndoAssumeMatchPolicy element in update.xml, enter the fully qualified name of this custom plug-in.

OHMPI Field Validation Plug-ins
You can define validations to be performed against certain fields before information is entered into the master person index database. Once you create the custom plug-ins containing the validation logic, enter the name of the plug-in in validation.xml.

Follow these guidelines when implementing custom field validators.

- The custom validation classes must implement
 com.sun.mdm.index.objects.validation.ObjectValidator.
The exception thrown is
com.sun.mdm.index.objects.validation.exception.ValidationException.

One default field validator, validate-local-id, is provided to validate system and local ID fields before processing data into the database. This is described in Oracle Healthcare Master Person Index Configuration Reference (E18592-01).

OHMPI Field Masking Plug-ins

There might be instances where you want to mask certain data in records from general users of the Master Index Data Manager and only allow access by administrators. To do this, you can create a custom plug-in that displays asterisks (or other symbols) in place of the field values on the MIDM. Once you define the custom plug-in, specify the name of the custom plug-in Java class in the object-sensitive-plug-in-class element of midm.xml).

OHMPI Processing Logic Plug-ins

You can implement custom plug-ins that customize the way the execute match methods process data into the master person index application. When a record is entered into the master index system, match processing is performed by calling one of the following "execute match" functions from the MasterController class.

- executeMatch
- executeMatchUpdate
- executeMatchDupRecalc
- executeMatchUpdateDupRecalc
- executeMatchGui (this method is only called by the MIDM)

These methods contain standard logic for processing records through the master person index database, weighting incoming records against existing records, and then using those weights to determine whether to insert a new record or update an existing record. In addition to configuring the match processing logic in master.xml, you can customize certain aspects of the processing logic using custom plug-ins that contain functions found in the ExecuteMatchLogics class.

Custom Match Processing Logic Methods

There are five decision branches where custom logic can be inserted. At specific points in match processing, the execute match methods look for the value of the methods listed below. For more information about the methods, see the Javadocs for the master person index. These methods are contained in the ExecuteMatchLogics class in the package com.sun.mdm.index.master. For information about where the decision points are reached in the processing logic and how to change the logic, see the Oracle Healthcare Master Person Index Message Processing Reference (Part No. E25319-01). The following methods specify the custom logic.

- bypassMatching - Indicates whether to perform the match process on incoming records or to bypass the match process.
- disallowAdd - Indicates whether an incoming message can be inserted as a new record.
- disallowUpdate - Indicates whether an incoming record can update an existing record.
■ **rejectAssumedMatch** - Indicates whether to accept or reject an assumed match of two records.

■ **rejectUpdate** - Indicates whether to accept or reject an update to an existing record.

Custom Match Processing Logic Plug-in Requirements

The custom plug-ins you create to define custom execute match logic must extend the `ExecuteMatchLogics` class. In addition, the following classes must be imported into the custom plug-in:

- `com.sun.mdm.index.objects.SystemObject`
- `com.sun.mdm.index.objects.EnterpriseObject`
- `com.sun.mdm.index.objects.exception.ObjectException`
- `com.sun.mdm.index.master.ExecuteMatchLogics`
- `com.sun.mdm.index.master.CustomizationException`

Custom Match Processing Configuration

If you create a custom plug-in that defines custom processing logic for the execute match methods, you must specify those custom plug-ins in `master.xml` in the master index project. If you create a plug-in for customizing logic in the execute match methods used by the back-end, specify the name of that class in the `logic-class` element. If you create a plug-in for the MIDM, specify the name of that class in the `logic-class-gui` element. For example:

```xml
<logic-class>com.sun.mdm.index.user.CustomCollaboration</logic-class>
<logic-class-gui>com.sun.mdm.index.user.CustomMIDM</logic-class-gui>
```

For more information about `master.xml`, see the Oracle Healthcare Master Person Index Configuration Reference (Part Number E25249-01).

OHMPI Custom Plug-in Exception Processing

If a custom plug-in throws an exception of the class `ObjectException` or `SystemObjectException`, multiple stack traces are logged in the server log file, which can make operational management tasks more difficult. For cases where you do not want stack traces to be logged, configure your custom plug-ins to throw exceptions of the class `UserException` or one of its derived classes (`DataModifiedException` or `ValidationException`). This is useful for user errors on the Master Index Data Manager (MIDM). When one of these exceptions is thrown, no stack trace is entered in the log file but an error message still appears on the MIDM.

For more information about these exception classes, see the Javadocs for Oracle Healthcare Master Person Index.

Learning About Custom Plug-Ins for OHMPI Custom Components

Oracle Healthcare Master Person Index provides a flexible framework, allowing you to create custom Java classes to plug in to most master person index application components. The following sections provide descriptions of some components for which you can create custom classes to use in your master person index application.

■ **"OHMPI Survivor Calculator Plug-ins"** define how the single best record (SBR) is generated.
Learning About Custom Plug-Ins for OHMPI Custom Components

- "OHMPI Query Builder Plug-ins" define how queries are performed against the master person index database.
- "OHMPI Block Picker Plug-ins" define how the blocks of fields in a blocking query are selected during a query.
- "OHMPI Pass Controller Plug-ins" define how the master person index application determines whether to perform additional match passes against a record.
- "Match Engine Plug-ins" define logic that connects to a match engine other than the OHMPI Match Engine.
- "Standardization Engine Plug-ins" define logic that connects to a standardization engine other than that provided by the Master Person Index Standardization Engine.
- "Phonetic Encoders Plug-ins for an OHMPI" define logic that connects to phonetic encoders other than those provided.

OHMPI Survivor Calculator Plug-ins

The survivor calculator determines which field values from the various system records will populate the SBR for the enterprise record. You can create a custom survivor calculator class that selects the surviving field values. Your custom class must implement the survivor calculator interface. Call `selectField` in `com.sun.mdm.index.survivor.SurvivorStrategyInterface` to return the SBR value for each field. For more information about the classes and methods to use, see the Javadocs for Oracle Healthcare Master Person Index. The primary classes are contained in the `com.sun.mdm.index.survivor` package. Enter the fully qualified class path for the custom survivor calculator in `update.xml`.

OHMPI Query Builder Plug-ins

The query builder defines the different types of queries that can be used in the master person index application. You can implement custom queries using custom plug-ins. To create a new query builder, you must define a class that extends the base abstract `com.sun.mdm.index.querybuilder.QueryBuilder` and then specify that class in a query-builder element in `query.xml`. The exception thrown is `com.sun.mdm.index.querybuilder.QueryBuilderException`. The following methods must be implemented.

- `init` - This method receives the XML elements after the config element of `query.xml` so the query builder can read its custom configuration.
- `getApplicableQueryIds` - This method returns an array of string IDs indicating the query objects that can be generated given the available criteria. For example, in the blocking configuration, the unique ID of each block definition is the string that is returned by `getApplicableQueryIds`.
- `buildQueryObject` - This method constructs the query object based on one of the applicable query IDs provided as an input argument.

For more information about query-related Java classes, see the OHMPI Javadocs.

OHMPI Block Picker Plug-ins

The block picker chooses which block definition in the blocking query to use for the next matching pass. You can create a custom block picker class to select query blocks in a customized manner. If you create a custom block picker, specify the fully qualified
name of this custom plug-in for the block-picker element of mefa.xml. Follow these guidelines when implementing a custom block picker.

- Implement the com.sun.mdm.index.matching.BlockPicker interface to select the blocks in the desired order.
- If none of the remaining blocks should be executed, throw a NoBlockApplicableException from the pickBlock method.

OHMPI Pass Controller Plug-ins

The matching process can be executed in multiple stages. After a block is evaluated, the pass controller determines whether the results found are sufficient or if matching should continue by performing another match pass. If you create a custom pass controller, specify the name of the custom Pass Controller in the pass-controller element of mefa.xml. Follow these guidelines when implementing a custom pass controller.

- Implement the com.sun.mdm.index.matching.PassController interface to evaluate whether to do another pass or not.
- Return true from evalAnotherPass to specify that an additional pass be performed; return false to specify that no additional passes should be performed.

Match Engine Plug-ins

You can define classes to connect to a custom match engine instead of the OHMPI Match Engine. Specify the names of the custom classes you create in the matcher-api and matcher-config elements of mefa.xml. Follow these guidelines when implementing custom match engine classes.

- Implement the com.sun.mdm.index.matching.MatcherAPI interface to communicate with the match engine.
- Implement the com.sun.mdm.index.matching.MatchEngineConfiguration interface to retrieve any configuration values the match engine requires for initialization.

You can also define custom comparison functions to plug in to the OHMPI Match Engine. For more information, see Oracle Healthcare Master Person Index Match Engine Reference (E).

Standardization Engine Plug-ins

You can define classes to connect to a custom standardization engine instead of the OHMPI Standardization Engine. Specify the names of the custom classes you create in the standardizer-api and standardizer-config elements of mefa.xml. Follow these guidelines when implementing custom standardization engine classes.

- Implement the com.sun.mdm.index.matching.StandardizerAPI interface to communicate with the standardization engine.
- Implement the com.sun.mdm.index.matching.StandardizerEngineConfiguration interface to retrieve any configuration values the standardization engine requires for initialization.

You can also define custom standardization rules to plug in to the OHMPI Standardization Engine. For more information, see Oracle Healthcare Master Person Index Standardization Engine Reference (E).
Phonetic Encoders Plug-ins for an OHMPI

The master person index application supports several phonetic encoders, and you can define custom classes to implement additional phonetic encoders if needed. Specify the names of the custom classes you create in the `encoder-implementation-class` element of `mefa.xml`. When creating a custom phonetic encoder class, implement the `com.sun.mdm.index.phonetic.PhoneticEncoder` interface.

Implementing OHMPI Custom Plug-ins

Custom plug-ins allow you to incorporate custom code into your master person index application. When you create a custom plug-in for a master person index application, you define the package and class names. To incorporate the plug-ins into the master index application, you then specify the fully qualified class name of the class in the appropriate configuration file. For example, if you create a custom plug-in named `MergePolicy` in the package `com.sun.mdm.index.update`, the value to enter for the class in `update.xml` is `com.sun.mdm.index.update.MergePolicy`.

Note: You can create custom plug-ins that define custom processing or that define custom components. For additional information about how to implement specific custom plug-ins, see "Using Custom Plug-ins for Custom Transaction Processing" and "Learning About Custom Plug-Ins for OHMPI Custom Components".

You create a custom plug-in by composing Java code in a source file using the NetBeans editor. Create the file in the Source Package folder of the EJB project associated with the master person index application. Before you begin, determine the name of the package and class for the plug-in.

To Create Custom Plug-ins

1. In the NetBeans Projects window, expand `project_name-ejb` (where `project_name` is the name of the main Master Person Index Application or the IHE Profile Application project).
2. To create a new package for the custom plug-in files, do the following:
 a. Right-click Source Packages, point to New, and then click Java Package.
 b. Enter the package name and location, and then click Finish.
3. To create the plug-in, do the following for each source file:
 a. Under Source Packages, right-click the name of the package to which the new class will belong.
 b. Point to New, and then click Java Class.
 c. Enter the class name, verify the remaining fields, and then click Finish.
 d. Create the custom processing rules using Java code.
 e. When you are finished coding, save and close the file.
 f. In the Projects window, right-click the file and then click Compile Package.

The output and status of the compiling process appears in the bottom panel.
4. Specify the name of the custom plug-in in the appropriate master person index configuration file.

Note: If you modify a custom plug-in, be sure to recompile the file and regenerate the application to incorporate the changes. If the project has already been built, rebuild the project to add the custom plug-in to the EJB JAR file.

Generating Master Person Index

Before you generate your Master Person Index project, review the configuration files and make any necessary modifications. See Oracle Healthcare Master Person Index Configuration Guide (E25247-01) for more information. Once all modifications to the configuration files are complete and any custom plug-ins are built, generate your Master Person Index or IHE Profile project to create or update the project components. If you modify any of the configuration files, match and standardization engine files, or custom plug-ins after you generate the project, you need to regenerate the project to update the custom components.

Note: If any errors occur while compiling the project, they appear in the output panel in the bottom of the window. This window also displays the status of the generate process.

To Generate the Project for the First Time

1. Save any configuration changes to the Master Person Index or the IHE Profile project.

Note: While you can perform many configuration changes on a Master Person Index project, you are limited with the number of changes you can perform on an IHE Profile project.

2. Right-click the Master Person Index or the IHE Profile project in the Projects pane and then select Clean and Build.

 The project files are cleaned and built. This might take a few minutes.

3. Right-click the Master Person Index or the IHE Profile project in the Projects pane and then select Generate Master Index Files.

 The project components are generated. This might take a few minutes.

Note: NetBeans automatically saves your project at the completion a successful build.
To Regenerate the Project

1. Save any configuration changes to the Master Person Index or the IHE Profile project.

2. If you are using the command-line reports, back them up to a different directory. Generating the application overwrites the existing report client.

3. Right-click the Master Person Index or the IHE Profile project in the Projects pane and then select Clean and Build.

 The project files are cleaned and built. This might take a few minutes.

4. Right-click the Master Person Index or the IHE Profile project in the Projects pane and then select Generate Master Index Files.

 The application components are regenerated. This might take a few minutes. The output panel displays the status and any errors that occur.

 Note: NetBeans automatically saves your project at the completion a successful build.
This chapter presents general information that will help you analyze your database requirements and what you should consider before you design an Oracle Healthcare Master Person Index database. It then provides a procedure that leads you through the process of creating an OHMPI database.

Note: This chapter is intended for users who need to set up a database for a project created using Oracle Healthcare Master Person Index.

This chapter includes the following sections:

- "Understanding Oracle Healthcare Master Person Index Database Scripts and Design"
- "Creating an Oracle Healthcare Master Person Index Database"

Understanding Oracle Healthcare Master Person Index Database Scripts and Design

Before you create an OHMPI database, familiarize yourself with the database scripts and the database structure. Analyze your database requirements, including hardware considerations, startup data, indexing needs, and performance.

The following sections provide information to help you in your analysis:

- "Oracle Healthcare Master Person Index Database Scripts"
- "Oracle Healthcare Master Person Index Database Requirements"
- "Oracle Healthcare Master Person Index Database Structure"
- "Designing the Oracle Healthcare Master Person Index Database"
- "Oracle Healthcare Master Person Index Database Table Description for sbyn_systems"
- "Oracle Healthcare Master Person Index Database Table Description for sbyn_user_code"
Oracle Healthcare Master Person Index Database Scripts

The wizard creates SQL scripts based on information you specified about code lists and external systems that you can use to define startup data for the Master Person Index application. When you generate the application, additional scripts are generated for creating or dropping database tables. These scripts appear under the Database Script node of the Master Person Index project, and are named `create.sql`, `systems.sql`, `codelist.sql`, and `drop.sql`. You can modify these scripts as needed to customize the tables, indexes, startup data, and database distribution. You can also create new database scripts if needed.

Oracle Healthcare Master Person Index Database Requirements

When configuring the master person index database, there are several factors to consider, including basic software requirements, operating systems, and disk space. This section provides a summary of requirements for the database. For more detailed information about designing and implementing the database, refer to the appropriate database platform documentation. The person responsible for the database configuration should be a database administrator familiar with the OHMPI database and with your data processing requirements.

Database Platform Requirements

The OHMPI database can be run on Oracle 11gR2 or Oracle 10gR2, on MySQL Community Server 5.1.51, or on Microsoft SQL Server 2005SP3 or 2008SP1. You must have this software installed before beginning the database installation. Make sure you also install the latest patches for the version you are using.

Note: The IHE Profile Application does not support Microsoft SQL Servers.

Securing Your Application Requirements

The OHMPI application can be secured via Application Server provided SSL. The OHMPI application runs as an EJB application and as a WSDL-based web service. Please refer to the GlassFish/WebLogic security guides on how to configure applications using SSL.

Operating System Requirements

The database can be installed on any operating system supported by the database platform you are using. See the documentation that came with your database server for more information.

Hardware Requirements

This section describes the minimum recommended hardware configuration for a database installation. These requirements are based on the minimum requirements recommended by database vendors for a typical installation. Depending on the size of the database and expected volume, you should increase these recommendations as needed. See the documentation for your database for more information and for supported operating systems.

MySQL Database

For information and tips about installing a MySQL database for Oracle Healthcare Master Person Index, see Chapter 2 of the *MySQL 5.1 Reference Manual*.
For a Windows database server, the following configuration is recommended as a minimal installation:
- Windows 2008, 7, Vista SP1+, XP SP2+, 2003 R2 SP2, 2008 R2 on 64 bits
- Pentium 266 or later
- 1 GB RAM (increase this based on the number of users, connections to the database, and volume)
- Virtual memory should be double the amount of RAM
- 3 GB disk space plus an additional 2 KB for each system record to be stored in the database (note that this is a conservative estimate per system record, assuming that most records do not contain complete data). This depends on the Oracle environment you install. Enterprise Edition can take up to 5 GB.
- 256-color video

For a UNIX database server, the following configuration is recommended as a minimal installation:
- 256 MB RAM (increase this based on the number of users and connections to the database)
- Swap space should be a minimum of twice the amount of RAM
- 2 GB disk space plus an additional 2 KB for each system record to be stored in the database (note that this is a conservative estimate per system record, assuming that most records do not contain complete data).

Note: Although we have not made any disk space recommendations for MySQL, if we had they would not have taken into account the volume and processing requirements or the number of users. The recommendations we made for the other databases were based upon minimal requirements to install a generic database. At a minimum, the empty database and the database software will require 2.5 GB of disk space.

Note: Disk space recommendations do not take into account the volume and processing requirements or the number of users. These are minimal requirements to install a generic database. At a minimum, the empty database and the database software will require 2.5 GB of disk space.

Microsoft SQL Server

The following configuration is recommended as a minimal installation for a SQL Server database.
- Pentium III-compatible processor or higher
- 512 MB RAM as a minimum; at least 1 GB is recommended (increase this based on the number of users, connections to the database, and volume)
- 3 GB disk space plus an additional 2 KB for each system record to be stored in the database (note that this is a conservative estimate per system record, assuming
that most records do not contain complete data). This depends on the SQL Server environment you install.

- VGA or higher resolution

Note: Disk space recommendations do not take into account the volume and processing requirements or the number of users. These are minimal requirements to install a generic database. At a minimum, the empty database and the database software will require 1.6 GB of disk space.

Oracle Healthcare Master Person Index Database Structure

The OHMPI database contains some common tables that are created for all implementations and some that are customized for each implementation. The common tables include standard database system tables and supporting tables, such as `sbyn_seq_table`, `sbyn_common_header`, and `sbyn_common_detail`. These tables do not store information about the enterprise object structure you defined. The names of the tables that store information about the enterprise object are customized based on the object structure.

Two tables store information about the primary, or parent, object you defined: `sbyn_parent_object` and `sbyn_parent_objectsbr`, where `parent_object` is the name you specified for the parent object in the object structure. The `sbyn_parent_object` table stores parent object data from each local system and the `sbyn_parent_objectsbr` table stores the parent object data contained in the SBRs. Similar tables are created for each child object you defined in the object structure.

For a complete description of the database tables, see *Oracle Healthcare Master Person Index Message Processing Reference* (Part Number E25319-01).

Designing the Oracle Healthcare Master Person Index Database

In designing the database, there are several factors to consider, such as the volume of data stored in the database and the number of transactions processed by the database daily. The OHMPI database should be created in its own tablespaces. The following sections describe some of the analyses to perform along with considerations to take into account when designing a database.

Designing for Performance Optimization

The MySQL, Oracle and SQL Server installation guides provide detailed information about installing the database software for optimal performance. The three database platforms include guides containing information about monitoring and fine-tuning your database, including tuning memory, swap space, I/O, CPU usage, block and file size. You should be familiar with these concepts prior to creating a database.

Data Structure Analysis

Before defining the object structure, analyze the structure of the legacy data to help you define the object structure and the attributes of each field. You can use this data analysis to determine the amount of data that will be stored in the database, which will help you size the OHMPI database and decide how to best distribute the database. Knowing the volume of existing data plus the expected daily transaction volume will help you plan the requirements of the database server, such as networking needs, disk space, memory, and swap space.
Understanding Oracle Healthcare Master Person Index Database Scripts and Design

The data structure analysis also helps you determine the processing codes and descriptions to enter in the common tables (described below), and should help you determine any default values that have been entered into certain fields that could skew the matching probability weights.

Common Table Data

Common table data analysis involves gathering information about the abbreviations used for specific data elements in each sending system, such as system codes and codes for certain attributes of the objects in your database. For example, if you are indexing person objects, there might be processing codes for genders, such as F for female or M for male. The processing codes and their descriptions are stored in a set of database tables known as common maintenance tables. The wizard creates a script to help you load the processing codes into the database.

When an enterprise object appears on the MIDM, the master person index application translates the processing codes defined in the common tables into their descriptions so the user is not required to decipher each code. The data elements stored in the common maintenance tables are also used to populate the drop-down lists that appear for certain fields in the MIDM. Users can select from these options to populate the associated fields.

User Code Data

User code data analysis involves gathering information about the abbreviations used for specific data elements in each sending system for a field whose format or possible values are constrained by a separate field. For example, if you store credit card information, you might have a drop-down list in the Credit Card field for each credit card type. The format of the field that stores the credit card number is dependent on the type of credit card you select. You could also use user code data to validate cities with postal codes. The abbreviations and related constraint information are stored in the sbyn_user_code table.

Database Considerations

When you create the master person index database, you need to consider several factors, such as sizing, distribution, indexes, and extents. By default, all of the OHMPI database tables for an Oracle database are installed in the system tablespace. You should install the OHMPI tables in different tablespaces, depending on the original size and expected volume of the database. For SQL Server, the OHMPI tables belong to "dbo" by default.

Database Sizing

To begin the database installation, you first create a database instance using the provided configuration tools or command line functions. Use the tools provided by the database vendor to define the tablespace and extent sizing for the database.

Database Distribution

When you create the database instance, you can define the distribution of your system tables, data tables, rollback logs, dump files, and control files. Use internal policies regarding relational database distribution to determine how to best distribute your OHMPI database.

Database Indexes

By default, indexes are defined for the following tables: sbyn_appl, sbyn_common_header, sbyn_common_detail, sbyn_enterprise, sbyn_transaction, sbyn_
assumedmatch, sbyn_potentialduplicates, sbyn_audit, and sbyn_merge. You can create additional indexes against the database to optimize the searching and matching processes. At a minimum, it is recommended that all combinations of fields used for blocking or matching be indexed. For each query block defined in the blocking query, create an index containing the fields in that block.

The following indexes are automatically created to improve performance when running large reports from the command line or MIDM.

```
CREATE INDEX SBYN_POTENTIALDUPLICATES3 ON SBYN_POTENTIALDUPLICATES (TRANSACTIONNUMBER ASC);
CREATE INDEX SBYN_ASSUMEDMATCH2 ON SBYN_ASSUMEDMATCH (TRANSACTIONNUMBER ASC);
CREATE INDEX SBYN_TRANSACTION4 on SBYN_TRANSACTION (EUID2 ASC, TIMESTAMP ASC);
CREATE INDEX SBYN_TRANSACTION3 on SBYN_TRANSACTION (TIMESTAMP ASC, TRANSACTIONNUMBER ASC);
```

Note: To improve performance, these four indexes should be dropped prior to performing an initial load or batch load of data. They can be recreated once the load is complete if you are running the provided reports.

Creating an Oracle Healthcare Master Person Index Database

Once you have customized the configuration files and generated the Master Person Index application, you can create the OHMPI database. Before you begin, make sure you have MySQL, Oracle, or SQL Server installed on the database server.

During this process you can define custom startup data, such as code lists and source systems. The wizard defines SQL statements in the Code List and Systems SQL files (codelist.sql and system.sql) to insert startup data into the database based on information you specify, and you can customize the statements to insert the data relevant to your object structure. The code lists you define are used to translate processing codes from incoming messages into descriptions for the MIDM fields and to create drop-down lists for MIDM fields. System information is required in order to add records to the OHMPI application.

Follow these steps to create the database:

- "Step 1: Analyze the OHMPI Database Requirements"
- "Step 2: Create a Master Person Index Database and User"
- "Step 3: Define Master Person Index Database Indexes"
- "Step 4: Define Master Person Index External Systems"
- "Step 5: Define Master Person Index Code Lists"
- "Step 6: Define Master Person Index User Code Lists"
- "Step 7: Create Custom Master Person Index Database Scripts"
- "Step 8: Create the Master Person Index Database Structure"
- "Step 9: Specify a Starting EUID for a Master Person Index"
You can also delete the database for testing purposes using the supplied script. See "Dropping Oracle Healthcare Master Person Index Database Tables" on page 4-7 for more information.

Step 1: Analyze the OHMPI Database Requirements

Before you begin to create the master person index database, perform an analysis of the structure of the legacy data to be stored in the database and determine the amount of data that will be processed daily. During the analysis, be sure to define the processing codes that need to be stored in the common maintenance tables and the systems that will share data with the master person index application. You should also know the length and format of the local IDs assigned by each system.

A database administrator who is familiar with your data and processing requirements should perform this task. After this task is complete, continue to "Step 2: Create a Master Person Index Database and User".

For additional information and guidelines about how to set up your database, see "Understanding Oracle Healthcare Master Person Index Database Scripts and Design".

Step 2: Create a Master Person Index Database and User

Before beginning this step, complete "Step 1: Analyze the OHMPI Database Requirements". After you create the database instance and user, continue to "Step 3: Define Master Person Index Database Indexes" if you want to define additional database indexes; otherwise skip to "Step 4: Define Master Person Index External Systems".

For this step you need to create a database in which the master person index database instance will be created. Use the tools provided by your database vendor to create the database. Using these tools, you define tablespaces, including their sizes and locations; extents; and dump file, log file, and rollback file sizes and locations. Make sure these issues have been thoroughly analyzed and designed before creating the database.

Note: For SQL Server databases, make sure to activate remote authentication.

Once you create the database, you can use standard SQL to create the master person index application user for the database. The user you create in this step will be used to create the database structure and to connect to the database through the application server.

For Oracle, assign the user to the "connect" and "resource" roles for the master person index tablespaces. For example:

```sql
create user username identified by password;
grant connect, resource to username;
commit;
```

where username is the login ID of the administrator user and password is the login password of the administrator user.

For SQL Server, assign this user to the "db_owner" role. You need to create the server login, create the user, and then assign the user to the role. For example:

```sql
CREATE LOGIN loginname WITH PASSWORD = 'password', DEFAULT_DATABASE = database;
CREATE USER username FOR LOGIN loginname; USE database;
EXECUTE sp_addrolemember 'db_owner', 'username' GO
```
where loginname is the login ID for the administrator user, password is the login password, database is the database name, and username is the owner of the database tables created in the master person index database.

Note: SQL Server allows Windows Authentication, where only a user name is required. Oracle Healthcare Master Person Index requires full SQL Server authentication, including both a user name and password. You need to create a database user specifically for the master person index application.

For MySQL, you can grant the user access to all permissions, or you can assign the individual permissions listed below. For example:

```sql
CREATE USER 'username'@'server_name' IDENTIFIED BY 'password';
GRANT ALL ON database TO 'username'@'server_name';
GRANT SELECT, INSERT ON database TO 'username'@'server_name';
```

where **username** is the login ID for the user, **server_name** is the name of the database server, **password** is the login password, and **database** is the database name.

If you prefer to assign individual permissions to the user instead of roles, the following permissions are needed.

<table>
<thead>
<tr>
<th>Permission</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>alter any index</td>
<td>delete any table</td>
</tr>
<tr>
<td>alter any procedure</td>
<td>drop any index</td>
</tr>
<tr>
<td>alter any table</td>
<td>drop any procedure</td>
</tr>
<tr>
<td>alter any trigger</td>
<td>drop any table</td>
</tr>
<tr>
<td>create any index</td>
<td>drop any trigger</td>
</tr>
<tr>
<td>create procedure</td>
<td>drop any view</td>
</tr>
<tr>
<td>create session</td>
<td>insert any table</td>
</tr>
<tr>
<td>create table</td>
<td>select any table</td>
</tr>
<tr>
<td>create trigger</td>
<td>update any table</td>
</tr>
<tr>
<td>create view</td>
<td></td>
</tr>
</tbody>
</table>

Step 3: Define Master Person Index Database Indexes

To optimize data processing in the master person index application, you can define additional indexes for the database tables that store object data. Best practice is to define indexes for each field used for searching, blocking, or matching. You can define these indexes in `create.sql` or create a new script. Before you begin this step, complete "Step 2: Create a Master Person Index Database and User".

To Define an Index

1. Do one of the following:
 - Under the master person index project in the Projects window, expand Database Script and then open `create.sql` in the text editor.
 - On your computer, navigate to `project_home/src/DatabaseScript`, where **project_home** is the location of the master person index project files. Open `create.sql` in a text editor.
2. Do any of the following:
 ■ Remove an existing index definition (not recommended).
 ■ Create new index definitions for the required fields.
 ■ Modify an existing index definition.
3. Save and close the file.
4. Continue to "Step 4: Define Master Person Index External Systems".

Step 4: Define Master Person Index External Systems

A SQL script is automatically created to insert the systems you specified in the wizard. These statements are provided in `systems.sql` in the master person index project. Before you begin this step, complete "Step 2: Create a Master Person Index Database and User" and, optionally, "Step 3: Define Master Person Index Database Indexes".

To Define an External System

1. Do one of the following:
 ■ Under the master person index project in the Projects window, expand Database Script and then open `systems.sql` in the text editor.
 ■ On your computer, navigate to `project_home/src/DatabaseScript`, where `project_home` is the location of the master person index project files. Open `systems.sql` in a text editor.
2. For each system, create an INSERT statement using the column descriptions in Master Person Index Database Table Description for `sbyn_systems` to define the VALUES clause.
 For example:
   ```sql
   INSERT INTO sbyn_systems (systemcode, description, status, id_length, format, input_mask, value_mask, create_date, create_userid) VALUES ('ARS', 'Automated Registration System', 'A', 8, '[0-9]{8}', 'DD-DDD-DDD', 'DD^DDD^DDD', sysdate, 'admin');
   ```
3. Delete any default INSERT statements you do not need.
4. Save and close the file.
5. Continue to "Step 5: Define Master Person Index Code Lists".

Oracle Healthcare Master Person Index Database Table Description for sbyn_systems

The following table lists and describes the columns in the `sbyn_systems` database table so you can create SQL statements to insert source system information into the master person index database.
Column	**Description**
systemcode | The unique processing code of the system. This field accepts any of the following characters:
 - ! _ - () | @ \ # $ % ; : - /
 - a-z
 - A-Z
 - 0-9
 - þ ÿ Þ ß ’ à-ö ø-ý À-Ö Ø-Ý
description | A brief description of the system, or the system name.
status | The status of the system in the master person index system. Specify A for active or D for deactivated.
id_length | The length of the local identifiers assigned by the system. This length does not include any additional characters added by the input mask (see below).
Note: The default maximum length of the LID database columns is 25. If the system generates longer local IDs, be sure to increase the length of all LID columns in the database.
format | The required data pattern for the local IDs assigned by the system. For more information about possible values and using Java patterns, see "Patterns" in the class list for java.util.regex in the Javadocs provided with Java. Note that the pattern specified here might be further restricted by the input mask described below.
input_mask | A mask used by the MIMID to add punctuation to the local ID. For example, you can add an input mask to display the local IDs with hyphens or constant characters. To define an input mask, enter a character type for each character in the field and place any necessary punctuation between the types. For example, to insert a hyphen after the second and fifth characters in an 8-digit ID, the input mask would be DD-DDD-DDD. The following character types can be used; any other characters are treated as constants:
 - D - indicates a numeric character.
 - L - indicates an alphabetic character.
 - A - indicates an alphanumeric character.
If you use an input mask, you should also define a value mask to remove the punctuation from the stored value.
value_mask | A mask used to strip any extra characters that were added by the input mask. This mask ensures that data is stored in the database in the correct format and matches the regex format for validation.
To specify a value mask, type the same value entered for the input mask, but type an "x" in place of each punctuation mark. Using the 8-digit input mask described above, you would specify a value mask of DDxDDDxDDD. This strips the hyphens before storing the ID in the database.
create_date | The date system information has inserted into the database. You can specify "sysdate" for this column, or use the variables defined in of the sample script.
create_userid | The logon ID of the user who inserted the system information into the database. You can enter the logon ID or use the variables defined in of the sample script.
Step 5: Define Master Person Index Code Lists

You only need to perform this step if you defined any fields in the object structure to have a code module. The SQL script for entering processing codes and descriptions into the database is written in PL/SQL. The wizard creates a stanza in codelist.sql (located under the Database Script node of the project) for each code list you specified in the field properties. You need to customize the file by defining the entries for each code list. This script inserts data into two tables: sbyn_common_header, which lists the types of common table data, and sbyn_common_detail, which lists each common table data element. Before you begin this step, complete "Step 4: Define Master Person Index External Systems".

Note: The codes you specify in this file can be no longer than eight characters (the codes are the second value in the value list for each common table data type and data element).

The syntax is different for each database type. To see the differences, see the following sections:

- "To Customize Common Table Data for MySQL"
- "To Customize Common Table Data for Oracle"
- "To Customize Common Table Data for SQL Server"

To Customize Common Table Data for MySQL

1. Do one of the following:
 - Under the master person index project in the Projects pane, expand Database Scripts and then open codelist.sql in the text editor.
 - On your computer, navigate to project_home/src/DatabaseScript, where project_home is the location of the master person index project files. Open codelist.sql in a text editor.

2. Scroll to the first line that begins with "- **** ".
 The statements following this line must be customized.

3. In the first code list stanza, change "module description" in the first line to a brief description of the code type.
 For example:
   ```sql
   -- ****         PHONTYPE   ****
   insert into tCodeList values('L', 'PHONTYPE', 'TELEPHONE TYPE');
   ```

4. Create the entries for that module using the following syntax:
   ```sql
   insert into tCodeList values('V', 'code', 'code description');
   ```
 where "code" is the processing code of the data element and "code description" is the description of the element as you want it to appear on the Master Person Index Data Manager windows. For example:
   ```sql
   -- ****         PHONTYPE   ****
   insert into tCodeList values('L', 'PHONTYPE', 'TELEPHONE TYPE');
   insert into tCodeList values('V', 'H', 'HOME');
   insert into tCodeList values('V', 'C', 'CELL');
   insert into tCodeList values('V', 'F', 'FAX');
   insert into tCodeList values('V', 'O', 'OFFICE');
   ```
insert into tCodeList values('V', 'HB', 'HOME BUSINESS');

5. Repeat the previous two steps for each code list type defined in the file.

6. If you specified additional code list fields in object.xml and midm.xml after the database scripts were generated, add a new stanza for each new code type.

7. Save and close the file.

8. Do one of the following:
 - If you need to define user code lists, continue to "Step 6: Define Master Person Index User Code Lists".
 - If you need to create a custom database script, skip to "Step 7: Create Custom Master Person Index Database Scripts".
 - If you are ready to create the master person index database structure, skip to "Step 8: Create the Master Person Index Database Structure".

To Customize Common Table Data for Oracle

1. Do one of the following:
 - Under the master person index project in the Projects pane, expand Database Scripts and then open codelist.sql in the text editor.
 - On your computer, navigate to project_home/src/DatabaseScript, where project_home is the location of the master person index project files. Open codelist.sql in a text editor.

2. Scroll to the following line.

 codes tCodeList := tCodeList(

 The statements following this line must be customized.

3. In the first code list stanza, change "module description" in the first line to a brief description of the code type.

 For example:

 -- **** PHONETYPE ****
 tCode('L', 'PHONETYPE', 'TELEPHONE TYPE'),

4. Create the entries for the module using the following syntax:

 tCode('V', 'code', 'code description'),

 where "code" is the processing code of the data element and "code description" is the description of the element as you want it to appear on the Master Index Data Manager windows. For example:

 -- **** PHONETYPE ****
 tCode('L', 'PHONETYPE', 'TELEPHONE TYPE'),
 tCode('V', 'H', 'HOME'),
 tCode('V', 'C', 'CELL'),
 tCode('V', 'F', 'FAX'),
 tCode('V', 'O', 'OFFICE'),
 tCode('V', 'HB', 'HOME BUSINESS'),

5. Repeat the previous two steps for each code list type defined in the file.

6. If you specified additional code list fields in object.xml and midm.xml after the database scripts were generated, add a new stanza for each new code type.
7. In the last code module stanza, make sure each line except the last contains a comma at the end.
 For example:
   ```sql
   -- **** ADDRTYPE ****
tCode('L', 'ADDRTYPE', 'ADDRESS TYPE'),
tCode('V', 'H', 'HOME'),
tCode('V', 'B', 'BUSINESS'),
tCode('V', 'M', 'MAILING')
   ```

8. Save and close the file.

9. Do one of the following:
 - If you need to define user code lists, continue to "Step 6: Define Master Person Index User Code Lists".
 - If you need to create a custom database script, skip to "Step 7: Create Custom Master Person Index Database Scripts".
 - If you are ready to create the master person index database structure, skip to "Step 8: Create the Master Person Index Database Structure".

To Customize Common Table Data for SQL Server

1. Do one of the following:
 - Under the master person index project in the Projects window, expand Database Scripts and then open `codelist.sql` in the text editor.
 - On your computer, navigate to `project_home/src/DatabaseScript`, where `project_home` is the location of the master person index project files. Open `codelist.sql` in a text editor.

2. Scroll to the following line.
   ```sql
   begin
   ```

 The statements following this line must be customized.

3. In the first code list stanza, change "module description" in the first line to a brief description of the code type.
 For example:
   ```sql
   -- **** PHONETYPE ****
   insert into @codelist values('L', 'PHONETYPE', 'TELEPHONE TYPE')
   ```

4. Create the entries for the module using the following syntax:
   ```sql
   insert into @codelist values('V', 'code', 'code description')
   ```
 where "code" is the processing code of the data element and "code description" is the description of the element as you want it to appear on the Master Index Data Manager windows. For example:
   ```sql
   -- **** PHONETYPE ****
   insert into @codelist values('L', 'PHONETYPE', 'TELEPHONE TYPE')
   insert into @codelist values('V', 'H', 'HOME')
   insert into @codelist values('V', 'C', 'CELL')
   insert into @codelist values('V', 'F', 'FAX')
   insert into @codelist values('V', 'O', 'OFFICE')
   insert into @codelist values('V', 'HB', 'HOME BUSINESS')
   ```
5. Repeat the previous two steps for each code list type defined in the file.

6. If you specified additional code list fields in object.xml and midm.xml, add a new stanza for each new code type.

7. Save and close the file.

8. Do one of the following:
 - To define user code lists, continue to "Step 6: Define Master Person Index User Code Lists".
 - To create a custom database script, skip to "Step 7: Create Custom Master Person Index Database Scripts".
 - To create the master person index database structure, skip to "Step 8: Create the Master Person Index Database Structure".

Step 6: Define Master Person Index User Code Lists

If you specified a value for the Constrained By and User Code properties of a field, you must define the user code values for those fields. Below is a sample insert statement for the sbyn_user_code table.

```
insert into sbyn_user_code (code_list, code, descr, format, input_mask, value_mask) values ('AUXIDDEF', 'CC', 'CREDIT CARD', '[0-9]{16}', 'DDDD-DDDD-DDDD-DDDD', 'DDDD^DDDD^DDDD^DDDD');
```

To learn more about the sbyn_user_code table, see "Oracle Healthcare Master Person Index Database Table Description for sbyn_user_code". Complete "Step 5: Define Master Person Index Code Lists" before beginning this step.

To Define a User Code List

1. Create a new SQL file to contain the user code SQL statements.
2. Use the above sample to define a value for the user code drop-down list and the required format for the dependent fields.
3. Repeat the above step for each drop-down list value and type (for example you might have one list for credit cards and another for postal codes and their corresponding cities).
4. Save and close the file.
5. Continue to "Step 7: Create Custom Master Person Index Database Scripts" or to "Step 8: Create the Master Person Index Database Structure" if you do not need to create any custom database scripts.

Oracle Healthcare Master Person Index Database Table Description for sbyn_user_code

The following table lists and describes the columns in the sbyn_user_code database table so you can create SQL statements to insert user code data into the master person index database.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>code_list</td>
<td>The code list name of the user code type (using the credit card example above, this might be similar to "CREDCARD"). This column links the values for each list.</td>
</tr>
<tr>
<td>code</td>
<td>The processing code of each user code element.</td>
</tr>
</tbody>
</table>
Creating an Oracle Healthcare Master Person Index Database

Step 7: Create Custom Master Person Index Database Scripts

You can insert additional information into the database by creating a custom script. For information about the structure of the OHMPI database, see Oracle Healthcare Master Person Index Message Processing Reference (Part Number E25319-01).

To Create a Custom Script

1. Create a new text file to contain the SQL statements.
2. In the text editor, create the SQL script to insert the custom data.
3. Save and close the file.
4. Continue to "Step 8: Create the Master Person Index Database Structure".

Step 8: Create the Master Person Index Database Structure

After you create the database instance and customize the database scripts, you can create the master person index tables and insert the custom data.

To Create the Database Structure

1. Open a standard SQL editor or SQL command line and connect to the master person index database using the user you created in "Step 2: Create a Master Person Index Database and User". For MySQL, you can run the files from the mysql prompt.
2. Do one of the following:
 - Open create.sql in the NetBeans editor, copy and paste the entire text of the file into the SQL editor, and run the script against the database.
 - From the SQL editor or command line, run create.sql directly. The file is located at project_home/src/DatabaseScript.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>A brief description or name for the user code element. This is the value that appears in the drop-down list.</td>
</tr>
<tr>
<td>format</td>
<td>The required data pattern for the field that is constrained by the user code. For more information about possible values and using Java patterns, see "Patterns" in the class list for java.util.regex in the Javadocs provided with Java. Note that the pattern might be further restricted by the value of the input mask described below.</td>
</tr>
<tr>
<td>input-mask</td>
<td>A mask used by the MIDM to add punctuation to the constrained field. For example, the input mask DD-DDD-DDD inserts a hyphen after the second and fifth characters in an 8-digit ID. If you use an input mask, you should also use a value mask to strip the punctuation for database storage (see below). The following character types can be used.</td>
</tr>
<tr>
<td></td>
<td>■ D - Numeric character</td>
</tr>
<tr>
<td></td>
<td>■ L - Alphabetic character</td>
</tr>
<tr>
<td></td>
<td>■ A - Alphanumeric character</td>
</tr>
<tr>
<td>value-mask</td>
<td>A mask used to strip any extra characters that were added by the input mask for database storage. The value mask is the same as the input mask, but with an "x" in place of each punctuation mark. Using the input mask described above, the value mask is DDxDDDxDDD. This strips the hyphens before storing the ID.</td>
</tr>
</tbody>
</table>
Tip: To run this script for Oracle or SQL Server, the command is @create.sql. For MySQL, the command is source create.sql.

3. Repeat the previous two steps for systems.sql, codelist.sql, and any custom scripts you created.

Step 9: Specify a Starting EUID for a Master Person Index

By default, the EUIDs assigned by the master person index application start with "0", with padded zeroes added to the left to make the EUID number the correct length. For more information, see Oracle Healthcare Master Person Index Configuration Reference (Part Number E25249-01). You can modify this numbering format by changing the value of the seq_name column of the sbyn_seq_table database table where the sequence name is "EUID". For example:

```
update sbyn_seq_table set seq_count=1000000001 where seq_name='EUID';
```
Defining the Database Connection Pools and Data Resources

Each master person index application requires two database connection pools; one for the master controller and one for the sequence manager. To set up the connection pools, you need to create the connection pools and then define a JDBC resource for each. This section provides general instructions for setting up the connection pools. For more information about the procedures in this section, see the online help provided with your server’s Admin Console.

Note: In the past if you used a MySQL or Oracle database, you needed to manually install or copy the database driver to your application server environment. This is no longer the case as the drivers are now included with the OHMPI installation.

To Create JDBC Connection Pools and Data Resources

The JDBC connection pools provide connections to the master person index database. You need to create two connection pools that are configured in the same way.

A JDBC resource (also known as a data source) gives the master person index application the ability to connect to the database. Two JDBC resources are required.

Before proceeding, make sure you have the relevant information about the master person index database (such as the database name, URL, and administrator login credentials).

Perform the following steps to define database connectivity through the GlassFish or WebLogic application servers:

- "Creating JDBC Connection Pools and Setting Data Resources (GlassFish)"
- "Creating JDBC Connection Pools and Setting Data Resources (WebLogic)"

This chapter provides procedures on how to define database connection pools and data resources, which each master person index application requires, and deleting database tables that are no longer needed.

This chapter includes the following sections:

- "Defining the Database Connection Pools and Data Resources"
- "Dropping Oracle Healthcare Master Person Index Database Tables"
Creating JDBC Connection Pools and Setting Data Resources (GlassFish)

1. Log in to the GlassFish Admin Console.
 a. In the NetBeans IDE, select the Services tab.
 b. Right-click GlassFish v2.x, and select View Admin Console.
 The Oracle GlassFish Enterprise Server Admin Console opens.

2. Use the Sun GlassFish Enterprise Server Admin Console to define the following:
 a. Create two Connection Pools
 - In the left pane choose Resources->JDBC->Connection Pools.
 - In the Connection Pools pane, click New.
 - In New JDBC Connection Pool (Step 1 of 2), set the name for your connection pool using your database name. For example, cpmysqlDS with cp representing connection pool, mysql representing the database name and DS representing the data source.
 - In the Resource Type field you must select one of the selections from the drop-down list.
 - In the Database Vendor field select a vendor from the drop-down list.
 - Click Next.
 - In New JDBC Connection Pool (Step 2 of 2), you need to select and define four properties.
 For MySQL:
 * Database Name: The name you gave the database.
 * Password: The password for the database.
 * URL (do not select “url” in lower case): This must be jdbc:database://host name:port number/database name where database is your database (for example, Oracle or MySQL), host name is the name of your host (for example, localhost), port number is generated, and database name is the name you gave your database when you created it.
 * User: The name you assigned to the User.
 For Oracle:
 * URL - The URL that points to the database. The syntax of the URL is jdbc:oracle:thin:@host:port:database_name. If you are using a third-party

Note: All three of the Resource Type options are valid.

- javax.sql.DataSource - Use this class if the master person index application is using local transactions only.
- javax.sql.XADataSource - Use this class if the master person index application transactions are distributed, either within the application or across applications.
- javax.sql.ConnectionPoolDataSource - Use this class if the master person index application is using local transactions only. This class provides possible performance improvements.

- In the Database Vendor field select a vendor from the drop-down list.
- Click Next.
- In New JDBC Connection Pool (Step 2 of 2), you need to select and define four properties.

For MySQL:
* Database Name: The name you gave the database.
* Password: The password for the database.
* URL (do not select “url” in lower case): This must be jdbc:database://host name:port number/database name where database is your database (for example, Oracle or MySQL), host name is the name of your host (for example, localhost), port number is generated, and database name is the name you gave your database when you created it.
* User: The name you assigned to the User.

For Oracle:
* URL - The URL that points to the database. The syntax of the URL is jdbc:oracle:thin:@host:port:database_name. If you are using a third-party
Defining the Database Connection Pools and Data Resources

JDBC driver, refer to the documentation for that driver for information about the URL.

* **user** - The login ID for the user you created in "Step 2: Create a Master Person Index Database and User" on page 3-7.

 * **password** - The password for the above user.

 * **ImplicitCachingEnabled** - An indicator of whether implicit statement caching is enabled. Set this property to **true**.

 * **MaxStatements** - The maximum number of statements in the cache. Set this property to **1000**.

For Microsoft SQL Server:

 * **URL** - `jdbc:microsoft:sqlserver://host:port;databaseName=name`

 * **databaseName** - The name of the database.

 * **portNumber** - The port number for the database.

 * **serverName** - The name of the server that is hosting the database.

 * **user** - The login ID for the user you created in Step 2: Create a Master Person Index Database and User.

 * **password** - The password for the above user.

 * **SendStringParametersAsUnicode** - An indicator of whether string parameters are sent to the database in Unicode or in the default character encoding of the database. Set this property to **false**.

 * **MaxPooledStatements** - The maximum number of prepared statements in the cache. Set this property to **1000**.

- When finished defining the MySQL or Oracle properties, click **Finish**.

b. Repeat all of step a, only this time set the Sequence Data Source using your application name. For example, `cpPatientSDS` with `cp` representing connection pool, `Patient` representing the application name and `SDS` representing the sequence data source.

c. Create two JDBC Resources

 - In the left pane choose **Resources->JDBC Resources**.

 - In the JDBC Resources pane, click **New**.

 - In New JDBC Resource, set the JNDI Name as `jdbc/object nameDataSource` (for example, `jdbc/PatientDataSource`).

 Note: The object name must match the application name you set in NetBeans for both the data source and the sequence data source.

 - In New JDBC Resource, set the Pool Name from the drop-down list. It should be the JDBC Data Source that you just created and click **OK**.

 - In the JDBC Resources pane, click **New**.

 - In New JDBC Resource, set the JNDI Name as `jdbc/object nameSequenceDataSource` (for example, `jdbc/PatientSequenceDataSource`).

 - In New JDBC Resource, set the Pool Name from the drop-down list. It should be the JDBC Sequence Data Source that you just created and click **OK**.
For MySQL only: After creating your DataSource and your SequenceDataSource, you need to set the Associate with Thread connection setting to Enabled. To do this:

a. With GlassFish running in NetBeans, right-click GlassFish in the left pane and select View Admin Console.

The GlassFish Admin Console opens.

b. In the left pane, choose Resources->JDBC->JDBC Resources->Connection Pools, and then select your DataSource or SequenceDataSource.

c. In the right pane, click the Advanced tab.

d. Under Connection Settings, set Associate with Thread to Enabled.

e. Click the Save button.

f. Repeat step 3 for each DataSource and SequenceDataSource.

You are now ready to deploy your application.

Creating JDBC Connection Pools and Setting Data Resources (WebLogic)

To Create JDBC Connection Pools and Data Resources for an MPI Application Project for MySQL

This section provides instructions for creating the JDBC data resources and defining the JDBC connections for an MPI Application Project.

2. Launch the Oracle WebLogic Server Administration Console.

3. Log in using the default user Name (weblogic) and Password (welcome1).

The Oracle WebLogic Administration Console appears.

4. On the left panel, under Domain Structure, expand Services, click JDBC, and then choose Data Sources.

A Summary of JDBC Data Sources appears in the right panel.

5. To create a new JDBC Data Source click New at the bottom of the right panel.

Settings for a new JDBC Data Source appears in the right panel of the page. It is here that you will create a new JDBC Data Source.

6. In the Name field, type object_nameDataSource.

The name you enter here will propagate elsewhere, but it must be the object name that you have already created (for example, PersonDataSource).

7. In the JNDI Name field, type jdbc/object_nameDataSource.

Use the name you entered in step 6 here (for example, jdbc/PersonDataSource).

8. Click Save.

A new page appears in the right panel which is for setting the Database Type.

9. In the Database Type drop-down list, choose the appropriate type (for example: MySQL).
10. In the Database Driver drop-down list, choose the appropriate driver; for example: MySQL's Driver (Type 4) Versions: using com.mysql.jdbc.Driver.

11. Make sure that your data source supports Global Transactions.

12. Click Next.

 Connection Properties appears on the Create a New JDBC Data Source panel. Use it to define the connection properties.

13. In the Database Name field, type a name for the database to which you want to connect (for example: mysql).

14. In the Host Name field, type the name or the IP address of the database server (for example: localhost).

15. In the Port field, type the port on the database server that is used to connect to the database (for example: 3306, the default for MySQL).

16. In the Database User Name field, type the database account user name you want to use to create database connections (for example: root).

17. In the Password field, type a password for your database account to use to create database connections.

18. In the Confirm Password field, re-type the password to confirm it.

19. Click Next.

 The Settings for PersonDataSource page appears in the right panel.

20. Click the Connection Pool tab, click Test Configuration, and then click Next.

 Select Targets appears on the Create a New JDBC Data Source page in the right panel. Here you select one or more targets to deploy the new JDBC data source.

21. In the Servers check list, select one or more target servers and click Finish.

 Note: If you do not select a target, the data source will be created but not deployed. You will need to deploy the data source at a later time.

22. Repeat the above steps to create jdbc/object_nameSequenceDataSource.

To Create JDBC Connection Pools and Data Resources for an MPI Application Project for Oracle

2. Launch the Oracle WebLogic Server Administration Console.

3. Log in using the default user Name (weblogic) and Password (welcome1).

 The Oracle WebLogic Administration Console appears.

4. On the left panel, under Domain Structure, expand Services, click JDBC, and then choose Data Sources.

 A Summary of JDBC Data Sources appears in the right panel.

5. To create a new JDBC Data Source click New at the bottom of the right panel.

 Settings for a new JDBC Data Source appears in the right panel of the page. It is here that you will create a new JDBC Data Source.
6. In the Name field, type `object_nameDataSource`.
 The name you enter here will propagate elsewhere, and it must be the object name that you have already created (for example, PersonDataSource).

7. In the JNDI Name field, type `jdbc/object_nameDataSource`.
 Use the name you entered in step 6 here (for example, `jdbc/PersonDataSource`).

8. Click **Save**.
 A new page appears in the right panel which is for setting the Database Type.

9. In the Database Type drop-down list, choose the appropriate type (for example: Oracle).

10. In the Database Driver drop-down list, choose the appropriate driver; for example: Oracle's Driver (Thin XA) for Instance Connections; Versions: 9.0.1; 9.2.0; 10, 11.

11. Click **Next**.

12. Click **Next**.
 Connection Properties appears on the Create a New JDBC Data Source panel. Use it to define the connection properties.

13. In the Database Name field, type a name for the database to which you want to connect (for example: Person).

14. In the Host Name field, type the name or the IP address of the database server (for example: localhost).

15. In the Port field, type the port on the database server that is used to connect to the database (for example: 1521, the default for Oracle).

16. In the Database User Name field, type the database account user name you want to use to create database connections (for example: root).

17. In the Password field, type a password for your database account to use to create database connections.

18. In the Confirm Password field, re-type the password to confirm it.

19. Click **Next**.
 The Settings for `object_nameDataSource` page appears in the right panel.

20. Click the **Connection Pool** tab, click Test Configuration, and then click **Next**.
 Select Targets appears on the Create a New JDBC Data Source page in the right panel. Here you select one or more targets to deploy the new JDBC data source.

21. In the Servers check list, select one or more target servers and click **Finish**.

 Note: If you do not select a target, the data source will be created but not deployed. You will need to deploy the data source at a later time.

22. Repeat the above steps to create `jdbc/object_nameSequenceDataSource`.
 You are now ready to deploy your application.
Dropping Oracle Healthcare Master Person Index Database Tables

Scripts are provided to drop the default database tables and indexes created in "Step 8: Create the Master Person Index Database Structure" on page 3-15. This is useful while testing the master index application implementation.

To Delete Database Tables

1. Open a standard SQL editor and connect to the master person index database using the user you created in “Step 2: Create a Master Person Index Database and User” on page 3-7.

2. Open drop.sql in the NetBeans editor.

3. Copy and paste the entire text of drop.sql into the SQL editor.

4. Run the script against the database.

5. If the database is running on the Oracle 10g platform, open a SQL prompt and run the following command.

 PURGE RECYCLEBIN;
This chapter provides information you need to set in order to run a Master Person Index (MPI) web service on a GlassFish or WebLogic server.

This chapter includes the following sections:

- “Setting Up Servers with Users for the MPI Web Service”

Setting Up Servers with Users for the MPI Web Service

The Master Person Index Application runs on two servers, GlassFish and WebLogic. The following sections provide the information you need to set up the server for Web Service.

- "Creating User Accounts for Web Service on GlassFish"
- "Creating User Accounts for Web Service on WebLogic"

Creating User Accounts for Web Service on GlassFish

With the GlassFish Admin Console open, set the User ID, Group List, and Password:

1. In the left pane choose Configuration->Security->Realms->file.
2. In the Edit Realm pane, click Manage Users.
3. In the File Users pane, click New.
4. In the New File Realm User, set the following.
 - User ID
 MasterIndex.WSUser
 - Group List
 Add the super group MasterIndex.Admin, which has all privileges.
 - Password
 The password is of your choosing, for example, test123.
5. When ready, click OK.

Creating User Accounts for Web Service on WebLogic

In the following steps you create the MasterIndex.Admin group, and then create a new user.
1. On the left panel, under Domain Structure, expand Services, and then choose Security Realms.

2. In the table on the Summary of Security Realms panel, click myrealm, which is the name of the realm.
 The Settings for myrealm panel appears.

3. Select the Users and Groups tab and then click Groups.

4. In the Groups table, click New.

5. In the Name field, type MasterIndex.Admin (if it does not exist) and click OK.

6. On the Settings for myrealm panel, select Users and Groups and then Users.

7. In the Users table, click New.

8. Type MasterIndex.WSUer and a password of your choosing for the new user you are creating and click OK.

10. To add the user you created, drag MasterIndex.Admin from the Available list to the Chosen list.
Master Index Data Manager Login

This chapter provides information you need to set in order to log in to and run Master Index Data Manager (MIDM) on a GlassFish or WebLogic server.

This chapter includes the following sections:
- "Setting Up Servers to Log in to and Run the MIDM"

Setting Up Servers to Log in to and Run the MIDM

The Master Index Data Manager runs on two servers, GlassFish and WebLogic. The following sections provide the information you need to set up the server for MIDM to run on it.
- "Creating Master Index Data Manager User Accounts for GlassFish"
- "Setting Up the User for MIDM Access Using WebLogic"

Creating Master Index Data Manager User Accounts for GlassFish

Before you begin, make sure you have created all the user roles and, optionally, EJB user roles that need to be assigned to the user account.

With the GlassFish Admin Console open, set the User ID, Group List, and Password:

1. In the left pane choose Configuration->Security->Realms->file.
2. In the Edit Realm pane, click Manage Users.
3. In the File Users pane, click New.
4. In the New File Realm User, set the following.
 - User ID
 Select a user name that is meaningful to you, for example person.
 - Group List
 Add the super group MasterIndex/Administrator, which has all privileges.
 - Password
 The password is of your choosing, for example person.
5. When ready, click OK.
Setting Up the User for MIDM Access Using WebLogic

In the following steps you create the Master Index Admin and Administrator groups, and then create a new user within the two groups. Use the user you create for MIDM access using the WebLogic Admin Console.

1. On the left panel, under Domain Structure, expand Services, and then choose Security Realms.

2. In the table on the Summary of Security Realms panel, click myrealm, which is the name of the realm.
 The Settings for myrealm panel appears.

3. Select the Users and Groups tab and then click Groups.

4. In the Groups table, click New.

5. In the Name field, type MasterIndex.Admin and click OK.

6. In the Groups table, click New.

7. In the Name field, type Administrator and click OK.

8. On the Settings for myrealm panel, select Users and Groups and then Users.

9. In the Users table, click New.

10. Type a name and a password for the new user you are creating and click OK.

12. To add the two groups you created to the user you created, from the Available list, drag MasterIndex.Admin to the Chosen list, and then drag Administrator to the Chosen list.