
Oracle Knowledge Intelligent Search
Application Development Guide
A Guide to Customizing and Extending Oracle Knowledge

Oracle Knowledge Version 8.4.2.2

Document Number IS84-API-22

November 4, 2011

Oracle, Inc.

COPYRIGHT INFORMATION

Copyright © 2002, 2011, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us
in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:
U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial computer
software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. Other names may be trademarks of their respective owners.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services.

Contents
Preface About This Guide . 1

In This Guide . 1
Screen and Text Representations . 2
References to World Wide Web Resources . 2

Chapter 1 The Oracle Knowledge User Interface . 3

The Personalized Response User Interface . 3
User Interface Processing . 3

Application Response Format . 4
The Parameters Section . 4
The Answers Section . 4
The Query Section . 5

Chapter 2 User Interface Components . 6

The Main Template . 6
Main Template File Example . 7

The Global Layout Style Templates . 8
Basic Search Layout Display Example . 9

Request and Response Element Templates . 10
Global Configuration Parameters Template . 10
Sample Configuration Parameters File . 10
Request Element Templates . 11
Request Area Example . 11
Dialog Request Area Example . 13
Response Element Templates . 13

Global Elements and Utilities . 14
Intelligent Search Language Tuning Guide iii

Contents
Chapter 3 User Interface Elements . 15

Request Elements . 15
Response Elements . 15
Answer Display Features . 16
Answer Purposes . 17

Default Answer Purposes . 18
Answer Portlets . 18

Default Answer Portlets . 19
Promotions Portlet Example . 20
Act Now Portlet Example . 20
Learn More Portlet Example . 21
Definition Portlet Example . 21
Feature Content Portlet Example . 22

Chapter 4 Customizing the User Interface . 24

Specifying the User Interface Layout . 24
Integrating the User Interface . 25
Customizing Style Elements . 25

Customizing General Style Elements . 25
Customizing Question Area Definitions . 26
Customizing Answer Area Definitions . 28
Customizing Sidebar Area Definitions . 29

Customizing Request Elements . 31
Customizing the Request Heading . 32
Customizing the Example Question . 32
Customizing the Question Box . 33
Customizing the Tips Link . 33
Customizing the Submit Button . 33

Customizing Response Elements . 33
Customizing the Question Echo . 34
Customizing the Answer Introduction . 35
Customizing Answer Headings . 35
Customizing the Answer Body Text . 35
Customizing the Answer Document Link . 35

Configuring Answer Purposes . 36
Adding Answer Purposes to the Application . 37
Customizing Answer Portlets . 40
Specifying Portlet Display Position . 40
Customizing Portlet Headings . 40
Customizing Portlet Answer Headings . 40
Customizing Portlet Answer Text . 41
Customizing Portlet Document Links . 41
iv Intelligent Search Language Tuning Guide

Contents
Chapter 5 Implementing Optional Features. .42

The Process Wizard User Interface . 42
The Process Wizard Answer . 43
The Step Display Area . 43
Modifying the Process Wizard User Interface . 44

Activating the Personalized Navigation User Interface Layout 45
The Personalized Navigation User Interface Elements 45
Personalized Navigation XSL Style Sheet Elements 46
Personalized Navigation CSS Style Sheet Elements 46
Personalized Navigation-Related XML Elements . 46

Implementing Direct Page Display . 47
Direct Page Display Example . 48

Implementing a Virtual Representative . 49
Implementing User Feedback Collection . 49

The User Feedback Portlet . 50
The User Feedback Comment Form . 51
The User Feedback Process . 52
Customizing the User Feedback Area Heading . 53
Customizing the User Feedback Rating Labels . 54
Customizing the User Feedback Comment Form . 55
Disabling the User Feedback Feature . 55

Implementing Click-Through Logging . 56
Highlighting Answers Within Documents . 57

Enabling Highlighting within Answer Documents 58
Specifying HTML Highlighting Style Attributes . 58

Managing Multiple Languages in the User Interface . 61

Chapter 6 Creating a Custom Content Crawler .62

Example: Creating a Database Web Crawler . 62
Example: Configuring the Database Web Crawler . 66
Configuring a Custom Crawler . 67

Example Crawler Settings . 68

Chapter 7 Creating a Custom Document Preprocessor .69

Example: Creating a Document Preprocessor . 69
Configuring a Custom Document Preprocessor . 73

Supporting Multiple Naviagtion Applications . 74

Chapter 8 Creating a Custom Task. .75

Example: Creating a Simple Custom Task . 76
Example: Handling Argument Parsing . 78
Example: Handling Document Count and Progress Updates 82
Intelligent Search Language Tuning Guide v

Contents
Example: Handling User Task Interruptions . 85
Configuring a Custom Task . 86

Chapter 9 Creating a Custom Authentication Interface . 89

Example: Creating a Simple Custom Authenticator . 90
Example: Simple Unit Testing of a Custom Authenticator 92
Example: Configuration-based Test for IAuthenticator Objects 94
Configuring a Custom Authenticator . 94

Chapter 10 Integrating an External Authentication Application 96

Example: Integrating a Delegation Authenticator . 97
Example: Integrating a Delegation Detector . 99
Configuring a Delegation Authenticator or Detector . 100

Chapter 11 Creating an Action Plugin . 102

Example: Creating an Action Plugin . 102
Configuring an Action Plugin . 104

Chapter 12 Creating a Custom Preference Handler . 105

Example: Creating a Preference Handler . 105
Configuring a Preference Handler . 106

Chapter 13 Rendering Web Pages Using a Custom Agent. 107

Example: Rendering a Web Page Using a Custom Agent 107
vi Intelligent Search Language Tuning Guide

PREFACE

About This Guide

This guide provides information about integrating and customizing the Oracle Knowledge
Personalized Response User Interface. It describes the components and elements that make up the
User Interface, and includes guidelines for:

 Incorporating the User Interface into your web architecture

 Customizing User Interface appearance and functionality

 Implementing special features

This guide also provides information for application developers who want to customize or extend
Oracle Knowledge through its API. For information on configuration-based changes or changes to
Oracle Knowledge that are not accomplished through its API, refer to the Intelligent Search
Optimization Guide.

For a full discussion of the Oracle Knowledge architecture, components, and instances refer to the
Intelligent Search Administration Guide. For information about setting up the development
environment and deploying customizations and code changes to the production environment also
refer to the Intelligent Search Administration Guide.

This preface includes information on:

 In This Guide - The general organization of this guide

 Screen and Text Representations

 References to World Wide Web Resources

In This Guide
The Intelligent Search Application Developer's Guide is divided into the following sections:

 Chapter 1, The Oracle
Knowledge User
Interface

This section describes the basic functions of the User Interface and input
format of the application responses.

Chapter 2, User Interface
Components

This section describes the templates that define the User Interface func-
tionality and presentation.

Chapter 3, User Interface
Elements

This section describes the various request and response elements within
the User Interface.

Chapter 4, Customizing
the User Interface

This section describes the process of specifying User Interface layout, indi-
vidual element styles, and implementing Personalized Response features.

Chapter 5, Implementing
Optional Features

This section describes optional User Interface features that you can use
within your application.
INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

2
Screen and Text Representations
The product screens, screen text, and file contents depicted in the documentation are examples. We attempt
to convey the product's appearance and functionality as accurately as possible; however, the actual product
contents and displays may differ from the published examples.

References to World Wide Web Resources
For your convenience, we refer to Uniform Resource Locators (URLs) for resources published on the World
Wide Web when appropriate. We attempt to provide accurate information; however, these resources are
controlled by their respective owners and are therefore subject to change at any time.

Chapter 6, Creating a
Custom Content Crawler

This section shows you how to implement a custom DB Web crawler.

Chapter 7, Creating a
Custom Document
Preprocessor

This section discusses common preprocessing tasks and provides an
example based on which you can develop your own preprocessing rou-
tines.

Chapter 8, Creating a
Custom Task

This section shows you how to create a custom task.

Chapter 9, Creating a
Custom Authentication
Interface

This section shows you how to create a custom authentication interface.

Chapter 10, Integrating
an External
Authentication
Application

This section shows you how to integrate Oracle Knowledge's authentica-
tion with an external application.

Chapter 11, Creating an
Action Plugin

This section shows you how to create and integrate an action plugin that
executes when a rule is invoked.

 Chapter 12, Creating a
Custom Preference
Handler

This section provides a template for developing preference handlers.

 Chapter 13, Rendering
Web Pages Using a
Custom Agent

This section provides an example of how to integrate a custom agent
bypassing the web page rendering functionality built into Oracle Knowl-
edge.
INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 1

The Oracle Knowledge User
Interface

The Oracle Knowledge Personalized Response User Interface is a full-featured graphical user
interface designed to integrate easily with your existing production web site. The User Interface
provides the elements required for processing requests and presenting responses, and supports
additional optional features that you can implement as desired.

To use the User Interface in a production web environment, you must:

 Integrate it into your web site's navigation and presentation scheme

 Customize it to conform to your organization's functional and presentation requirements

 Implement any desired optional features as described in Chapter 5, Implementing Optional
Features

The User Interface is installed as part of the standard product installation.

NOTE: The User Interface is available only as an HTML-based user interface for use with a
configured Oracle Knowledge web application. For information about implementing
Oracle Knowledge using other technologies, contact your Oracle account representative.

The Personalized Response User Interface
The Oracle Knowledge User Interface incorporates Oracle Knowledge's Personalized Response
concept, which presents direct answers to user requests in its main answer area, and categorized
related information in that you configure within the Dictionary.

The Personalized Response User Interface organizes various types of related responses into
separate graphical areas, or portals, enabling you to establish consistent, focused, and targeted
presentation for various types of application content, such as general site information, online
glossaries, promotional material, and site features, such as calculators and other tools.

User Interface Processing
The User Interface contains all of the elements required to solicit user questions and present
categorized application responses. During request processing, the User Interface:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

4 USER INTERFACE PROCESSING
 Passes user input to the application for processing. See Chapter 1, Dictionary Manager
Advanced Features in the Intelligent Search Optimization Guide for an overview of
application request and response processing.

 Receives formatted responses from the application. See Application Response Format on
page 4 for information about the response format.

 performs final formatting and displays responses to the end user, as specified by the
configured presentation elements as described in Chapter 4, Customizing the User Interface.

Application Response Format
The application passes responses to the User Interface as a file that conforms to an internal
Extensible Markup Language (XML) document type definition (DTD). The User Interface
templates are stylesheets that transform the XML into formatted HTML for presentation within a
browser.

The response file is divided into sections:

 The Parameters Section on page 4

 The Answers Section on page 4

 The Query Section on page 5

The Parameters Section
The parameters section provides meta-information about the response, such as context
information and other configuration parameters. The User Interface uses this information to
retrieve page parameters, server URLs, and other required information.

The following example is an excerpt from a typical parameters section.

<params>
<param name="type">AnswerQuestion</param>
<param name="Question">how much can I contribute to a Roth ira in?
<param name="baseURL">http://lcdemo2:8222/htmlagent/ui.jsp</param>
</params>

The Answers Section
The answers section contains the various content responses (answers) to the request (question).
Factors that determine the number of answers passed to the User Interface include:

 The number of content matches (answers) located in the application content

 The scores associated with the located answers

The results file groups answers according to answer purposes, which are specified in the
Dictionary. The User Interface displays answers associated with each purpose in a specific
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

5 USER INTERFACE PROCESSING
section, or portlet of the response page. The maximum number of answers within each portlet is
determined by display thresholds. See Configuring Answer Purposes on page 36 for more
information about answer purposes and how they are displayed by the User Interface.

The following example includes a general answer and an answer assigned to the purpose link
to category.

<answer score="1.0">
 <answer type="unstructured" score="0.6691748880962431"
 <section>
 <title idx="0"
 <snippet lvl="0">Financial
 </title>
 <text idx="1"
 <snippet lvl="1">Only married couples with
 <snippet lvl="3"> $ 150 </snippet>
 <snippet lvl="1"> , 000 or less and singles
 .
 .
 .
 </text>
 </section>
 <highlighted_link
 <similar_response_link
 </answer>
</answer>
<link_to_category score="1.0">
<answer type="custom" score="1.0">
 <sentence type="code"><a
 <title type="code">Roth IRA</title>
</answer>

The Query Section
The query section contains history information associated with the session, such as previously
asked questions. The User Interface uses this information to present session information with
results.

The following example is an excerpt from a typical query section.

<query>
<question transactionId="1">
<original>how much can I contribute to a Roth ira in
<paraphrase>how much can I contribute to a Roth ira in
</question>
</query>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 2

User Interface Components

The User Interface consists of a set of templates that use Extensible Stylesheet Language
Transformation (XSLT) and HTML Cascading Style Sheets (CSS) to define presentation
characteristics.

The set of templates includes the main template, called main.xsl, and subordinate templates that
contain the elements required for User Interface implementation.

The templates contain presentation and navigation design elements, such as:

 Page layouts

 Functional elements, such as user input elements and response presentation elements

 Global elements, such as color schemes and font families

The templates are pre-configured with default values for required elements.

In addition to the required User Interface elements, the templates contain elements that support
optional features, such as Personalized Navigation, direct page display, and dialog-style user
interaction.

See Chapter 3, User Interface Elements for more information about the elements of the User
Interface.

The Main Template
The main template specifies the set of subordinate templates that determine the layout, functional
elements, and style of the User Interface. The main template also specifies additional utilities and
directories that provide basic functional or graphical elements.

You need to modify the main template to integrate the User Interface with your site's navigation
structure. The main template is located in:

<InQuira_home>/inquira/int/xsl/search

The main template specifies subordinate templates as include statements. Main Template File
Example on page 7 contains a sample section of the main template showing its structure.

See Chapter 4, Customizing the User Interface for more information on using the main template.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

7 THE MAIN TEMPLATE
Main Template File Example
<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<!-- General -->
<xsl:import href="config.xsl"/>
<xsl:import href="globals.xsl"/>
<xsl:import href="includes.xsl"/>
<xsl:import href="../common/util.xsl"/>
<!-- Options for Search UI Main Screens -->
<xsl:import href="ui_search_basic.xsl"/>
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<!--xsl:import href="ui_search_vrep.xsl"/-->
<!-- Other search UI pages -->
<xsl:import href="instant_answer_page.xsl"/>
<xsl:import href="user_comments_page.xsl"/>
<!-- Search UI Main Areas -->
<xsl:import href="results.xsl"/>
<xsl:import href="sidebar.xsl"/>
<xsl:import href="structured_details.xsl"/>
<xsl:import href="tips.xsl"/>
<xsl:import href="error.xsl"/>
<!-- End of Imports -->
<xsl:output method="html" indent="yes"/>
<xsl:strip-space elements="*" />

<!-- Override the default, empty resource file with our own for the search UI -->
<xsl:variable name="resource-file" select="document('resource.xml')" />

<xsl:template match="/">
 <xsl:choose>
 <xsl:when test="$error-message">
 <xsl:call-template name="error-page" />
 </xsl:when>
 <xsl:when test="$show-user-comments-page">

 <xsl:call-template name="user-comments-page" />
 </xsl:when>
 <xsl:when test="$show-instant-answer-frame">
 <xsl:call-template name="instant-answer-frame" />
 </xsl:when>
 <xsl:when test="$instant-answer and not($no-jump or $show-definition-detail-page or $show-
structured-detail-page)">
 <xsl:call-template name="instant-answer-page" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:call-template name="question-and-results-page" />
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

8 THE GLOBAL LAYOUT STYLE TEMPLATES
The Global Layout Style Templates
The layout style templates determine the basic format of the User Interface request and response
pages. You specify the following layout templates using an include statement in the main
template file.

 The standard response page format (ui_search_basic.xsl)

 The Personalized Navigation layout (ui_search_and_browse.xsl)

 The Virtual Representative layout for (ui_search_vrep.xsl)

The standard response page template is enabled by default, as shown in the following example:

<!-- Options for Search UI Main Screens -->
<xsl:import href="ui_search_basic.xsl"/>
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<!--xsl:import href="ui_search_vrep.xsl"/-->

See Chapter 5, Implementing Optional Features for more information on enabling the alternate
global layout styles.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

9 THE GLOBAL LAYOUT STYLE TEMPLATES
Basic Search Layout Display Example
The basic search layout provides a large left-column answer area, and the question input area and
related information portlets arrayed in the right column. Answer Display Features on page 16
describes features of the answer displays.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

10 REQUEST AND RESPONSE ELEMENT
Request and Response Element Templates
The request and response element templates determine the basic format and content of the request
and response elements within the specified layout.

 Sample Configuration Parameters File on page 10

 Request Element Templates on page 11

 Response Element Templates on page 13

Global Configuration Parameters Template
The configuration parameters template specifies global settings for both request and response
elements. The config.xsl template contains User Interface configuration parameters, such as
section headers and feature switches. Sample Configuration Parameters File on page 10
provides a sample of the file contents.

Sample Configuration Parameters File
The following is a sample of the configuration parameters file, config.xsl.

<?xml version="1.0" ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<!--
 - Configurable variables
 -->

<!--
 - Score Thresholds
 -
 - best-answers-min-score: Minimum score required to be considered one of the best answers
 - best-answers-min-diff: Minimum difference between scores required before being cut off from the best
answers
 - best-answers-max-display: Maximum # of best answers to display
 -->
<xsl:variable name="best-answers-min-score" select="0.90" />
<xsl:variable name="best-answers-min-diff" select="0.01" />
<xsl:variable name="best-answers-max-display" select="3" />

<!--
 - The spellchecker returns suggestions with scores between 0 and 100.
 - This sets the minimum score required before a suggestion is made to the user.
 -->

<xsl:variable name="spellcheck-min-suggest-score" select="90" />
<!--
 - User Interface Options
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

11 REQUEST AND RESPONSE ELEMENT
 -->
<xsl:variable name="default-charset" select="'UTF-8'" /> 
<xsl:variable name="get-user-feedback" select="true()" />
<xsl:variable name="show-search-running-indicator" select="true()" />
<xsl:variable name="debug-full-excerpt" select="false()" />

</xsl:stylesheet>

Request Element Templates
The request element templates determine the basic format and contents of the request elements
within a specified layout.

Request elements

question.xsl

This template specifies standard question interaction using the question boxes, example
questions, and other user input elements. You must specify this template or the alternative dialog-
style elements. This template is the default. Request Area Example on page 12 provides a sample
request area display.

Dialog-style elements

question_vrep.xsl

This template specifies dialog-style question interaction for use with virtual representatives
(VREPs) or similar implementations, as described in Implementing a Virtual
Representative.Dialog Request Area Example on page 13 provides a sample dialog-style request
area display.

Request Area Example
The default request area provides the functional and presentation elements required for
integrating a request area into pages within your web site. The request area elements are described
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

12 REQUEST AND RESPONSE ELEMENT
in more detail in Request Elements on page 15.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

13 REQUEST AND RESPONSE ELEMENT
Dialog Request Area Example
The dialog-style request area provides the functional and presentation elements required for
integrating a dialog-style request area into pages within your web site. The request area elements
are described in more detail in Request Elements on page 15. See Implementing a Virtual
Representative for more information about using the dialog style template to support user
interaction with a virtual representative.

Response Element Templates
The response element templates determine the basic form and content of the response elements.

Standard answer elements

results.xsl

This template contains elements for presenting standard answers, and also contains the basic
building blocks for answers used by all answer purposes.

Portlet answer elements

sidebar.xsl
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

14 GLOBAL ELEMENTS AND UTILITIES
This template contains elements that generate the portlet display area of the response page. The
portlet display area displays all answer purposes except standard, dialog, and direct page display.

See Default Answer Purposes on page 18 for information on default answer purpose
presentation.

User Interface error messages

error.xsl

This template specifies the format for displaying error messages. This template is required.

Global Elements and Utilities
The global element templates specify basic colors, fonts, and section headings and other variables
used throughout the User Interface. The utilities files include graphics directories and basic
usability functions. You can specify elements within these templates for either the two- or three-
column layout style.

Common elements

includes.xsl

This template contains the elements that support inclusion of basic style sheets and utilities, such as
CSS and JavaScript.

Global Javascript file

qna_common.js

This is the main JavaScript file, located in <InQuira_home>/inquira/int/js. It contains
basic JavaScript functions used on the request and response pages.

Common element style sheet

qna_style.css

This is the style sheet, located in <InQuira_home>/inquira/int/js, that defines the basic
common elements, such as fonts and colors, for the request and response page elements. See
Customizing General Style Elements on page 25 for more information on the style elements.

Common image directory

images/*.gif

This directory contains various images used throughout the User Interface. It also stores custom
images, such as character images for dialog-style interaction, as described in Implementing a
Virtual Representative.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 3

User Interface Elements

The various templates and style sheets within the User Interface define the elements that process
user requests and display application responses. Request elements and response elements include
both functional elements, such as the question input box, and presentation elements, such as color
schemes and heading text, that organize the application functions into a meaningful visual
display.

Request Elements
The functional and presentation elements of the user request area appear on the initial request
page and on the response page. Request elements include the question box for user input and other
functional and graphic elements.

Response Elements
The User Interface displays answers and related information on the response page. The response
page is divided into several functional areas:

 The request area, which provides the means for users to ask additional questions

 The answer area, which presents the application responses that directly the user's question

 The related information area, which presents related responses, grouped into separate portlets
by answer purpose

Element Description
Request Area Defines the request area elements.

Request Heading Specifies the text that appears at the top of the request area. See Customiz-
ing the Request Heading on page 32.

Example Question Specifies the example question text that appears below the request heading.
See Customizing the Example Question on page 32.

Question Box Defines the text input box. See Customizing the Question Box on page 33.

Tips Link Specifies the link to the User Interface help page. See Customizing the Tips
Link on page 33.

Submit Button Specifies the request submittal mechanism. See Customizing the Submit
Button on page 33.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

16 ANSWER DISPLAY FEATURES
NOTE: You can also use the direct page display feature to display the document that contains the
answer to a specified request directly on the response page. Direct page displays supersede
the standard answers. See Implementing Direct Page Display for more information on
configuring the direct page display feature.

Response elements include answers, which are composed of various configurable sub-elements,
and other functional and graphic elements.

Answer Display Features
The User Interface contains features that display a variety of visual cues that accompany answers.
These features include:

Answer source icons

Answer source icons indicate the type of document or information source in which the answer is
located. They are passed in the XML response format in a standard attribute called docType. The
User Interface displays icons for the following answer sources:

 Answers from structured information (database) sources:

 Answers from HTML, newsgroups, Microsoft PowerPoint, and ASCII text documents:

 Answers from PDF documents:

 Answers from Microsoft Word documents:

 Answers from Microsoft Excel documents:

 Images:

Element Description
Answer Area Defines the answer display area on the response page. See Customizing

Response Elements on page 33.

Question Echo Specifies the display of the user's question on the response page. See Cus-
tomizing the Question Echo on page 34.

Answer Introduction Specifies text that introduces the answer. See Customizing the Answer
Introduction on page 35.

Answer Heading Specifies the format of the document titles displayed as answer headings.
See Customizing Answer Headings on page 35.

Answer Body Text Specifies the display font for answers on the response page. See Customiz-
ing the Answer Body Text on page 35.

Answer Document Link Specifies the format of the link text within answers. See Customizing the
Answer Document Link on page 35.

Related Information Specifies the format of the elements that make up the answer portlets. See
Customizing Response Elements on page 33.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

17 ANSWER PURPOSES
Answer highlighting and question-word emphasis

The stylesheet qna_style.css contains settings to emphasize words and phrases in the answer
excerpt. Various levels of emphasis are defined in the User Interface, and these levels correspond
to values defined for primary and secondary word-matching and proximity to words occurring in
the user's question. Matching words are determined by the language analysis process, which takes
into account word-form va. The default setting applies a bold style (bold) and a blue background
to matching words.

Similar answer link

The similar answer link provides access to answers derived from other pages on the site having
similar content that were found in the search. This feature enables the User Interface to
consolidate duplicate pages, or pages that re-use a substantial amount of content, in the initial
response. Users can click on the link to display the full answer page including the similar
answers.riations, synonyms, and other semantic relationships, as described in the Intelligent
Search Language Tuning Guide.

Answer Purposes
Answer purposes are categories to which you assign answer actions within Dictionary rules.
Answer purposes correspond to display characteristics defined in the User Interface, enabling you
to establish consistent, focused, and targeted presentation for various types of application content,
such as general site information, online glossaries, promotional material, and site features, such as
calculators and other tools.

Oracle Knowledge is installed and configured with a standard set of answer purposes, described
in Default Answer Purposes on page 18, which are designed for use with the Personalized
Response User Interface. The default answer purposes associate each purpose with a defined
response category area, or portlet, of the answer page.

You use answer purposes by:

 Assigning answer purposes to actions within Rules, as described in Rules in the Intelligent
Search Language Tuning Guide.

 Configuring presentation characteristics for User Interface portlets, as described in
Configuring Answer Purposes on page 36.

NOTE: In contrast with answer purposes, answer methods correspond to type of data or method
used to supply the answer. Examples of answer methods include querying structured data,
searching the indexed unstructured content, and displaying custom content. See Answer
Action Methods for Rules in the Intelligent Search Optimization Guide for more
information on answer methods.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

18 ANSWER PORTLETS
Default Answer Purposes
The standard set of answer purposes described below are designed for use with the Personalized
Response User Interface.

Answer Portlets
User Interface portlets are defined regions of the answer page. Portlets enable you to categorize
responses displayed on the answer page according to purpose; some desirable responses are direct
answers to user questions, while others might be information about related promotions, services,
tools, and terms.

The User Interface is installed with a set of default portlets that correspond to the purposes that
you can specify specific responses within the application Dictionary.

Purpose Description Default
Response
Template

Default
Presentation

Answer Displays responses that
directly address the user’s
question.

Answer Template In the Answer area of the
response page

Act Displays links that provide
actions that the user can take
on the web site.

Act Template In the Act Now portlet

Promote Displays cross-sell or up-sell
advertisements for products
related to the intent of the
question.

Promote Template In the Promotion port-
let

Related Topic Displays links to major topic
categories defined for the web
site.

Link To Category Tem-
plate

In the Related Topics
portlet

Define Displays links to terms used in
the question as well as similar
content.

n/a In the Definition portlet

Jump to Page Displays content configured in
the Dictionary for use with the
direct page display feature.

n/a See Implementing Direct
Page Display on
page 47.

Converse Displays conversational
response intended for use
with a virtual representative
on the response page.

Converse Template See Implementing a Vir-
tual Representative on
page 49.

Feature Content Displays specific featured
content from the web site that
supplements the answers.

Feature Content Tem-
plate

In the Featured Con-
tent area of the
response page

Contact For use with the Contact
Deflection feature.

n/a See the section on Imple-
menting Contact Deflec-
tion for Web-based
Email.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

19 ANSWER PORTLETS
In general, the User Interface portlets are designed to accept and present information associated
with any type of answer action that can be specified within a Rule; however, this section does
describe limitations and suggested applications where appropriate.

See the Intelligent Search Language Tuning Guide and Intelligent Search Optimization Guide
for more information on the Dictionary, Rules, actions and answer purposes and methods.

Default Answer Portlets
The User Interface is installed with several pre-defined portlets. Each portlet is designed to
present answers with a specific purpose, as described in Answer Purposes on page 17

The following table describes the available default portlets. The default answer page displays the
portlets in a single column to the right of the answer area. The portlets are listed here in the order
in which they are displayed in the default User Interface.

Portlet Usage
Promotions Use this portlet to display promotional information, such as cross-sell or up-sell

advertisements for products related to the intent of the question. You can configure
responses to include graphics as links to pages that contain more detailed informa-
tion. See Promotions Portlet Example on page 20 for more information.

Act Now Use this portlet to display information about relevant activities that users can perform
immediately on the site. This portlet favors concise, imperative messages that com-
pel users to access beneficial features. See e Act Now Portlet Example on page 20
for more information.

Learn More Use this portlet to display brief summaries of content areas that are relevant to the
user's question, such as tools and calculators. See Learn More Portlet Example on
page 21 for more information.

Definition Use this portlet to display definitions of terms related to the user's question. This por-
tal is ideal for displaying existing glossary information adapted from various formats.
See Definition Portlet Example on page 21 for more information.

Feature Content Use this portlet to display more detailed information about relevant content areas
and site features, such as tools and calculators. The Feature Content portlet dis-
plays responses in the lower portion of the answer area and not in a segregated box,
which provides space for more detailed information, such as graphical tools. See
Feature Content Portlet Example on page 22 for more information.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

20 ANSWER PORTLETS
Promotions Portlet Example
The Promotions portlet is intended to display relevant promotions and special offers. The
Promotions portlet provides an opportunity to create effective context-sensitive marketing by
configuring Promotional responses based on products or services mentioned the user's question.

The Promotions portlet can display responses generated by any of the available answer methods;
however, it is well-suited to present custom content answers. You can configure a custom content
response to include a graphic as in the following example:

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language Tuning
Guide for more information on configuring custom content responses.

Act Now Portlet Example
The Act Now portlet is intended to provide quick access to relevant activities that users can
perform on your site. Opening an account, registering for a service, and checking the status of an
order are examples of actions that you can configure as Act Now responses.

The Act Now portlet can display responses generated by any of the available answer methods;
however, it is well-suited to present custom content answers that specify a title as a link to the
desired location, as in the following example:

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language Tuning
Guide for more information on configuring custom content responses.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

21 ANSWER PORTLETS
Learn More Portlet Example
The Learn More portlet is intended to provide access to related topic areas and site features. You
can use the Learn More portlet to direct users to FAQ pages, process overview pages, tools and
calculators, and other site resources.

The Learn More portlet can display responses generated by any of the available answer methods.
It is well-suited to present:

 Custom content answers that specify a title as a link to the desired location

 Custom content responses that include additional descriptive text, as in the following
example:

See Intents, Intent Hierarchies, Intent Responses in the Intelligent Search Language Tuning
Guide for more information on configuring custom content responses.

Definition Portlet Example
The Definitions portlet is intended to present glossary information that may or may not be
accessible on the site. Oracle Knowledge uses a special Dictionary component called an alias list
to store glossary information for use by the application. The application then generates a
Definitions response whenever a configured glossary term occurs in a question.

The default Definitions portlet displays the glossary term as a link that users can click to display
the associated definition on a separate answer page.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

22 ANSWER PORTLETS
The Definitions portlet is recommended for use with the Glossary answer purpose as in the
following example:

See Glossary Answer Action Method in the Intelligent Search Optimization Guide for more
information on accessing glossary information.

Feature Content Portlet Example
The Feature Content portlet is intended to direct users to site features and resources. The Feature
Content portlet is similar in intent to the Learn More portlet; however, the default User Interface
displays Feature Content responses inline with the standard answers, enabling more information
to be displayed for each response.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

23 ANSWER PORTLETS
The Feature Content portlet can display responses generated by any of the available answer
methods; however, it is well-suited to present custom content answers that include HTML-based
functionality, as in the following example:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 4

Customizing the User Interface

The basic customization tasks for integrating the User Interface include:

 Specifying the layout style within the main template

 Customizing common elements, such as fonts, background colors, and graphic images, as
described in Customizing Style Elements on page 25

 Customizing request and response elements, as described in Customizing Request Elements
on page 31 and Customizing Response Elements on page 33

 Implementing optional features, as described in Implementing Optional Features on page 42.

Specifying the User Interface Layout
You specify the layout of the User Interface by specifying one of the global templates available in
the extensible style language (xsl) file main.xsl, located in:

int/xsl/search/main.xsl

The main.xsl file contains include statements for the basic search layout and the additional
personalized navigation and virtual representative features. Each include statement refers to one
of the available global templates:

IMPORTANT: You can enable only one of the include statements for your application.

The following example shows the default implementation, which enables the basic search layout,
ui_search_basic.xsl:

<!-- Options for Search UI Main Screens -->
<xsl:import href="ui_search_basic.xsl"/>
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<!--xsl:import href="ui_search_vrep.xsl"/-->

Layout Style Description
ui_search_basic.xsl Specifies the basic User Interface layout. This statement is enabled by

default.

ui_search_and_browse.xsl Specifies to display the Personalized Navigation user interface elements
as described in Activating the Personalized Navigation User Interface
Layout on page 45.

ui_search_vrep.xsl Specifies to display the virtual representative user interface elements as
described in Implementing a Virtual Representative on page 49.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

25 INTEGRATING THE USER INTERFACE
Integrating the User Interface
To integrate the Oracle Knowledge User Interface with your web site, you need to

 Integrate standard elements from your site, such as navigation and graphics, into the selected
layout template

 Reference the URL of the installed and customized User Interface layout template from the
appropriate locations within your site pages, such as search boxes and relevant navigation
links

Customizing Style Elements
You can customize style elements of the User Interface, such as fonts, background colors, and
margins, by modifying the values contained in the User Interface stylesheet, qna_style.css.
The stylesheet defines presentation for general elements used in multiple locations, and sets of
related elements, as described in:

 Customizing General Style Elements on page 25

 Customizing Question Area Definitions on page 26

 Customizing Answer Area Definitions on page 28

 Customizing Sidebar Area Definitions on page 29

Customizing General Style Elements
The general style elements determine style and formatting of various elements used throughout
the user interface.

Element Name Description
qna-page-body This element defines the properties for the HTML <body> element of the

page. It establishes general settings for relative font size, font type, page
color, and page margins by default.

qna-normal-text This element defines generic properties for a variety of text on the page. It
establishes font type and relative font size.

qna-small-text This element defines generic properties for a variety of text on the page, sim-
ilar to <qna-normal-text>. It establishes font type and relative font
size for text elements intended to be a little smaller than normal, such as the
text just above the question box.

qna-input-textarea This element defines properties for the HTML <textarea> object used
for the question box. It establishes font type, relative font size, and scrolling
properties.

qna-input-button This element defines properties for HTML form buttons on the page. By
default, it sets the font type, size and color as well as the button color.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

26 CUSTOMIZING STYLE ELEMENTS
Customizing Question Area Definitions
The question area elements determine style and formatting of various elements used within the
User Interface question area.

qna-header This element defines properties for the question box and top ten questions
header bars on the main search page. It sets the font type, weight, and color,
as well as the background color of the header bar.

qna-header-side This element defines properties for headers in the left sidebar when using the
question_and_results_side.xsl template, similar to the

<qna-header> element.

qna-field-label This element defines properties for the label next to the question box. By
default, it sets the alignment to the top-right of its table cell.

qna-help-link This element defines properties for the link to the help (Tips) page located
near the question box. It sets the font type, size, color and alignment within
its area.

qna-radio-link This element defines properties for the links around the user feedback
options. It sets the font type and color, alignment within its area, and under-
line properties to distinguish the options from hyperlinks.

qna-similar-link This element defines properties for the link text to similar answers. It sets the
font type and color by default.

qna-link This element defines properties for general purpose link objects such as the
paging links. It sets the font type, color, and alignment.

qna-area-separator This element defines properties for any lines used to separate major sections
of the User Interface. By default, it is used to draw the line between the
results and the site navigation. It is primarily used in the main User Interface
integration files such as question_and_results.xsl and only
defines a background color by default.

qna-area-separator-dark Same as <qna-area-separator>, but used for a second level of
separation in some cases, such as between results and the sidebar.

qna-header-separator This element defines properties for the lines around header bars such as the
question box on the main search page. It only defines the color of those lines
by default.

qna-footer-separator This element defines properties for the separator line at the bottom of a
results page. It only defines the color of that line by default.

Element Name Description
qna-question-header This element defines properties for the question box header bar that is used

when shown at the top of the results list. It sets the font type, relative size
and color.

qna-question-sidebar-
header

This element defines properties for the question box header bar that is used
when shown in the left sidebar. Similar to <qna-question-header>.

qna-question-label This element defines properties for the label next to the repeated question
on the page. It specifies the font type, weight, relative size, color and align-
ment. The default label text is: You Asked.

qna-question-text This element defines properties for the repeated question on the page. It
sets the font type, weight, relative size and color.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

27 CUSTOMIZING STYLE ELEMENTS
qna-question-sidebar-
label

This element defines properties for the label next to the repeated question
when shown in the left sidebar (using
question_and_results_side.xsl). Similar to <qna-ques-
tion-label>.

qna-question-sidebar-
text

This element defines properties for the repeated question when shown in
the left sidebar area (using question_and_results_side.xsl).

Same as <qna-question-text>.

qna-question-sidebar-
block

This element defines properties for the area where the question is repeated
when using the three column layout
(question_and_results_side.xsl). By default, it sets the
background color for the area.

qna-dialog-text-question-
label

This element defines properties for the label identifying the user’s question
when using the virtual representative interaction. By default, it sets the font
family, size, weight, alignment and color for the label.

qna-dialog-text-question This element defines properties for the user’s question when using the vir-
tual representative interaction. By default, it sets the font family, size, align-
ment and color for the text.

qna-dialog-text-answer-
label

This element defines properties for the label identifying a virtual representa-
tive’s response to the user. By default, it sets the font family, size, and
weight.

qna-dialog-text-answer This element defines properties for a virtual representative’s response to the
user. By default, it sets the font family, size, alignment and color for the text.

qna-dialog-sidebar-
answer-label

This element defines properties for the label identifying a virtual representa-
tive’s response to the user for answer labels displayed in the sidebar when
using the three-column layout. Similar to <qna-dialog-text-
answer-label>.

qna-dialog-sidebar-
answer-text

This element defines properties for a virtual representative’s response to the
user for answers displayed in the sidebar area when using the three-column
layout. Similar to <qna-dialog-text-answer>.

qna-dialog-image-border This element defines properties for the border around a virtual representa-
tive’s image on the screen. By default, it defines the color of the border.

qna-dialog-border This element defines properties for the border around the text dialog
between the virtual representative and the user on the screen. By default, it
defines the color of the border.

qna-dialog-block This element defines properties for the area containing the text dialog
between the virtual representative and the user on the screen. By default, it
defines the background color and padding for the area.

qna-example-label This element defines properties for the label next to the question example
text. By default, it defines the font family, size, color and alignment.

qna-example-label-above This element defines properties for the label next to the question example
text when it appears above the example text. By default, it defines the font
family, size, color and alignment.

qna-example-text This element defines properties for the question example text. By default, it
defines the font family, size, and color.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

28 CUSTOMIZING STYLE ELEMENTS
Customizing Answer Area Definitions
The answer area elements determine style and formatting of various elements used within the
User Interface answer area.

Element Name Description
qna-result-section-
header

This element defines properties for the header of each section of results
(best answers, possible answers, featured content). By default, it defines
the font family, weight, size, color, and alignment.

qna-result-text This element defines high level properties for “best” answers. By default, it
defines the font family, size, and alignment.

qna-result-text-small This element defines high level properties for regular answers. By default, it
defines the font family, size, and alignment.

qna-result-bar This element defines properties for the area of the results list containing
general headers and other controls. By default, it defines the font family,
weight, size, and alignment.

qna-result-bar-disabled This element defines properties for the area of the results list containing dis-
abled controls. By default, it defines the font color.

qna-result-marker This element defines properties for the marker identifying the beginning of
an answer. By default, the marker is a document icon, but the style defines
the font type, weight, size and alignment in case text elements are to be
used.

qna-more-result-marker This element defines properties for the marker identifying the more results
link when shown between best and possible answers. By default, it defines
the font type, weight, size, color and alignment.

qna-standard-subject This element defines properties for the answer title. By default, it defines the
font type, weight and color.

qna-standard-more-link This element defines properties for the more link to the answer (if used in
the design). By default, it defines the font type, weight, size, and color.

qna-standard-excerpt-
block

This element defines general properties for the answer excerpt. By default,
it defines the font type, size, and color, as well as spacing for the block.

qna-snippet-sentence-
text

This element defines properties for the sentence in the answer excerpt that
matched the user’s question. By default, it defines the font size, weight,
color, and background color.

qna-secondary-snippet-
text

This element defines properties for the secondary word matches in the
answer excerpt. By default, it defines the font size, weight, color, and back-
ground color.

qna-snippet-text This element defines properties for the primary word matches in the answer
excerpt. By default, it defines the font size, weight, color, and background
color.

qna-standard-table-block This element defines properties for the structured table display area. By
default, it defines the font type, size, and color, as well as margins for the
area.

qna-standard-source-
block

This element is intended to define properties for text displaying the source
URL of the answer. By default, the source is not shown. This definition sets
a font type, size, style, and color as well as margins for the display block.

qna-standard-link-block This element is used to define properties for useful links following the
answer excerpt such as “similar answers”. By default, the source is not
shown. This definition sets a font type, size, and color as well as margins for
the block.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

29 CUSTOMIZING STYLE ELEMENTS

Customizing Sidebar Area Definitions
The answer area elements determine style and formatting of various elements used within the
User Interface answer area.

qna-standard-sentence-
block

This element defines properties for simple sentence answers such as man-
aged answers that display custom content. By default, it defines the font
type, size, and color, as well as margins for the block.

qna-exact-excerpt-block This element defines properties for specially identified “exact” excerpts. In a
default implementation, this is only applicable to exact answer definitions.
By default, it defines the font type, size, and color as well as margins, pad-
ding and borders for the block.

qna-result-table This element defines properties for the main table definition of a structured
answer. By default, it defines the border style and color.

qna-result-table-header This element defines properties for the column headers of a structured
answer. By default, it defines the font type, weight, size, and color in addi-
tion to the border style and color.

qna-result-table-text This element defines properties for a data cell of a structured answer table.
By default, it defines the font type, weight, size, and color in addition to the
border style and color.

qna-result-table-more This element defines properties for the link to the entire table of a structured
answer when displaying as a summary (usually in an answer list). By
default, it defines the font type, weight, size, alignment, and color in addition
to the border style and color.

Element Name Description
qna-sidebar-block This element defines general properties for the area of the screen where the

sidebar is to be displayed. By default, it defines the background color.

 qna-sidebar-section-
border

This element defines properties for the border around the sidebar area and/
or individual components. By default, it defines the background color.

qna-sidebar-section-title This element defines properties for the title area of a sidebar component. By
default, it defines the font type, weight, size, and color as well as the back-
ground color for the title area.

qna-sidebar-section This element generally defines properties for the content area of a sidebar
component. By default, it defines the font type, size, alignment and color as
well as the background color for the area.

qna-sidebar-section-
center

This element defines properties for the content area of a sidebar compo-
nent, similar to <qna-sidebar-section>, except that the content
area is centered. By default, this is only used by the user feedback module.

qna-sidebar-subject This element defines properties for answer titles within a sidebar compo-
nent. By default, it defines the font type, weight and color. Similar to <qna-
standard-subject>.

qna-sidebar-more-link This element defines properties for the more link to the answer in a regular
sidebar component (if used in the design). By default, it defines the font
type, weight, size, and color. Similar to <qna-standard-more-
link>.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

30 CUSTOMIZING STYLE ELEMENTS
qna-sidebar-excerpt-
block

This element defines general properties for answer excerpts displayed in a
regular sidebar component. By default, it defines the font type, size, and
color, as well as spacing for the block. Similar to <qna-standard-
excerpt-block>.

qna-sidebar-table-block This element defines properties for structured table display areas within
sidebar components. By default, it defines the font type, size, and color, as
well as margins for the area. Similar to <qna-standard-table-
block>.

qna-sidebar-source-
block

This element is defines properties for text displaying the source URL of
answers within sidebar components. By default, the source is not shown.
This definition sets a font type, size, style, and color, as well as margins for
the display block. Similar to <qna-standard-source-block>.

qna-sidebar-sentence-
block

This element defines properties for simple sentence answers, such as man-
aged answers that display custom content, within sidebar component. By
default, it defines the font type, size, and color, as well as margins for the
block. Similar to <qna-standard-sentence-block>.

qna-strong-sidebar-
section-border

This element defines properties for a highlighted border around the sidebar
area and/or individual components. Similar to <qna-sidebar-sec-
tion-border>.

qna-strong-sidebar-
section-title

This element defines properties for a highlighted title area of a sidebar com-
ponent. Similar to <qna-sidebar-section-title>.

qna-strong-sidebar-
section

This element defines properties for a highlighted content area of a sidebar
component. Similar to <qna-sidebar-section>.

 qna-strong-sidebar-
section-center

This element defines properties for a highlighted content area of a sidebar
component, similar to <qna-sidebar-section>, except that the
content area is centered.

qna-strong-sidebar-
subject

This element defines properties for highlighted answer titles within a sidebar
component. Similar to <qna-sidebar-subject>.

qna-strong-sidebar-
more-link

This element defines properties for a highlighted more link within a sidebar

component. Similar to <qna-sidebar-more-link>.

qna-strong-sidebar-
excerpt-block

This element defines general properties for highlighted answer excerpts dis-
played in a sidebar component.Similar to <qna-sidebar-excerpt-
block>.

qna-strong-sidebar-
table-block

This element defines properties for highlighted structured table display
areas within sidebar components. Similar to <qna-sidebar-table-
block>.

qna-strong-sidebar-
source-block

This element is defines properties for text displaying highlighted answer
source URLs within sidebar components. Similar to <qna-sidebar-
source-block>.

qna-strong-sidebar-
sentence-block

This element defines properties for highlighted simple sentence answers,
such as managed answers that display custom content, within sidebar com-
ponents. Similar to <qna-sidebar-sentence-block>.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

31 CUSTOMIZING REQUEST ELEMENTS
Customizing Request Elements
The User Interface request area contains the following elements, each of which has one or more
configurable properties, as described in the following sections:

 Customizing the Request Heading on page 32

 Customizing the Question Box on page 33

 Customizing the Tips Link on page 33

 Customizing the Submit Button on page 33
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

32 CUSTOMIZING REQUEST ELEMENTS
Customizing the Request Heading
The request heading contains the following configurable properties:

Customizing the Example Question
The example question contains the following configurable properties:

Property Template Element Name Default Value
question area header config.xsl question-area-label

question-sidebar-area-
header

Ask a Question

Ask Another Question

text to display above
the question box

config.xsl question-box-header Have a question?
Type it below to find an
answer now.

font characteristics qna_style.css qna-question-* See Customizing Question
Area Definitions on page 26

Property Template Element Name Default Value
text to display below
the request heading

config.xsl question-example "Does Product X have Feature
Y?"

font characteristics qna_style.css qna-question-* See Customizing Question
Area Definitions on page 26
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

33 CUSTOMIZING RESPONSE ELEMENTS
Customizing the Question Box
The question box has the following configurable properties:

Customizing the Tips Link
The Tips link has the following configurable properties:

Customizing the Submit Button
The Submit button has the following configurable properties:

Customizing Response Elements
The User Interface response page contains the answer area and the related information (portlet)
area. The answer area contains the following elements, each of which has one or more
configurable properties, as described in the following sections:

 Customizing the Question Echo on page 34

Property Template Element Name
box size question.xsl

question_side.xsl

question-top

question-side

question-sidebar

boundary characteristics question.xsl

question_side.xsl

question-top

question-side

question-sidebar

Property Template Element Name Default Value
text to display question.xsl tips-link Tips

font characteristics qna_style.css qna-help-link See Customizing Question
Area Definitions on page 26

Property Template
Location

Element Name Default Value

text to display question.xsl

question_side.
xsl

question-top

question-side

question-sidebar

Ask

font characteristics qna_style.css qna-input-button See Customizing Ques-
tion Area Definitions on
page 26
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

34 CUSTOMIZING RESPONSE ELEMENTS
 Customizing the Answer Introduction on page 35

 Customizing Answer Headings on page 35

 Customizing the Answer Body Text on page 35

 Customizing the Answer Document Link on page 35

See for information on customizing elements in the related information area.

Customizing the Question Echo
The question echo contains the following configurable properties:

Property Template Element Name Default Value
echo prefix config.xsl question-paraphrase-label You Asked:

font characteristics qna_style.css qna-question-label

qna-question-text

See Customizing Ques-
tion Area Definitions on
page 26
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

35 CUSTOMIZING RESPONSE ELEMENTS
Customizing the Answer Introduction
The answer introduction contains the following configurable properties:

Customizing Answer Headings
The headings or titles for standard answer displays contain the following configurable properties:

Customizing the Answer Body Text
The text of standard answer displays contain the following configurable properties:

Customizing the Answer Document Link
The link to the document that contains the answer for standard answers has the following
configurable properties:

Property Template Element Name Default Value
text to display as head-
ing for highest scoring
answers

config.xsl best-answers-header Best Answers

text to display as head-
ing for additional good
answers

config.xsl good-answers-header Answers

font characteristics qna-style.css qna-result-section-header See Customizing Ques-
tion Area Definitions on
page 26

Property Template Element Name Default Value
font characteristics qna_style.css qna-result-section-header See Customizing Ques-

tion Area Definitions on
page 26

Property Template Element Name Default Value
font characteristics qna_style.css qna-result-text See Customizing Ques-

tion Area Definitions on
page 26

Property Template Element Name Default Value
document icon results.xsl answer-marker document type-depen-

dent, as described in
Answer Display Features
on page 16

display or not results.xsl answer-block Display
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

36 CONFIGURING ANSWER PURPOSES
Configuring Answer Purposes
The Oracle Knowledge Personalized Response User Interface is installed with a defined set of
answer purposes, which are mapped to a default set of portlets, as described in Default Answer
Purposes on page 18. You can also add custom answer purposes to meet specific implementation
requirements.

You configure answer purposes by:

 Customizing portlet presentation, as described in Customizing Answer Portlets on page 40

 (Optional) Adding answer purposes to the application, as described in Adding Answer
Purposes to the Application on page 37

NOTE: Your application may include additional industry- or domain-specific answer purposes.
For more information about domain-specific answer purposes, contact your Oracle
account representative.

display text results.xsl answer-block more

font characteristics qna_style.css qna-*-more-link See Customizing Ques-
tion Area Definitions on
page 26
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

37 CONFIGURING ANSWER PURPOSES
Adding Answer Purposes to the Application
You can add and modify answer purposes in the application configuration on the Dictionary
Service page of the Instances section of the Advanced Configuration Facility.

When you configure a new answer purpose, the new purpose is available to Dictionary Manager
users in the Purpose drop-down menu of the Rule window.

To define or modify an answer purpose:

1. Select Dictionary from the Advanced Configuration Facility main menu.

The Answer Purpose section of the Dictionary Service page displays the currently defined
answer purposes:

2. Click Edit.

3. Click Add New Item below the Answer Purpose list.

The Answer Purpose selection list displays.

4. Select Edit List
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

38 CONFIGURING ANSWER PURPOSES
The Answer Purpose list displays.

5. Click an existing purpose to edit properties, or click Add New Item below the Answer Purpose
list to create a new purpose.

The Answer Purpose page displays. The following example shows the default settings for the
Answer purpose:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

39 CONFIGURING ANSWER PURPOSES
6. Specify the following answer purpose parameters:

7. Click OK to save the new or modified answer purpose.

Parameter Description

Description Specify the name of the answer purpose. The name can be any alphanumeric
string. Spaces and punctuation are not allowed. When the purpose is defined
and enabled, this name displays in the Purpose drop-down menu of the Rule
window.

Label Specify the text to display as the portlet heading in the User Interface.

Enabled Select On to enable this purpose. Only enabled purposes is available in the
Dictionary Manager and processed by the Rules Engine and User Interface
components. The default value is On.

NOTE: Existing rules that specify purposes that are not
enabled are processed using the Answer purpose.

Maximum Answers Specify the maximum number of answers having this purpose to display on
the response page for a given question.

Page Size Specify the maximum number of answers having this purpose to display on
the initial response page.

Minimum Score Specify the minimum score that answers having this purpose must obtain to

display on the response page for a given question. See the *Intelligent
Search Language Developers' Guide for more information on
response scoring.

Ignore Navigation
Candidates

Specify whether answers having this purpose contribute to the answer totals
maintained by the Personalized Navigation feature.

display-area Specify the area of the page where the response should appear.

display-position Specify the display position within the area. Enter a numeric value of 1-10.

Answer Template Select an answer template from the drop-down menu to use when creating a
new response.

matched-channel Optionally, specify a channel to associate with this purpose.

Overriden By Specify any answer purposes such that answers returned for the specified
purposes are not repeated in the display for this purpose.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

40 CONFIGURING ANSWER PURPOSES
Customizing Answer Portlets
Each answer purpose that you define for your application is displayed in a separate portlet that has
the following configurable elements:

 Portlet display position as described in Specifying Portlet Display Position on page 40.

 Portlet headings as described in Customizing Portlet Headings on page 40

 portlet answers as described in Customizing Portlet Answer Text on page 41

 portlet document links as described in Customizing Portlet Document Links on page 41

Specifying Portlet Display Position
To specify the order in which the portlets appear on the response page, arrange the order of the
portlet definition sections in the sidebar.xsl template. Each definition section corresponds to a
defined portlet. Portlets that are disabled, or for which there are no defined Rules in the
Dictionary, do not display on the response page.

Sample Portlet Display Area Template provides a sample of the contents of the portlet definitions.

Customizing Portlet Headings
The answer portlet headings have the following configurable properties:

Customizing Portlet Answer Headings
The answer headings within portlets contain the following configurable properties:

Property Template Element Name Default Value
heading text config.xsl *-answers-header See Default Answer Pur-

poses on page 18

font characteristics qna_style.css qna-(strong-)sidebar-* See Customizing Sidebar
Area Definitions on
page 29

background color qna_style.css qna-(strong-)sidebar-* See Customizing Sidebar
Area Definitions on
page 29

Property Template Element Name Default Value
font characteristics qna_style.css qna-(strong-)sidebar-* See Customizing Sidebar

Area Definitions on
page 29
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

41 CONFIGURING ANSWER PURPOSES
Customizing Portlet Answer Text
The answer text within portlets contain the following configurable properties:

Customizing Portlet Document Links
The link to the document that contains the answer for portlet answers has the following
configurable properties:

Property Template Element Name Default Value
font characteristics qna_style.css qna-(strong-)sidebar-

excerpt-block
See Customizing Sidebar
Area Definitions on
page 29

Property Template Element Name Default Value
display or not results.xsl answer-block Display

display text results.xsl answer-block More

font characteristics qna_style.css qna-*-more-link See Customizing Sidebar
Area Definitions on
page 29
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 5

Implementing Optional Features

The User Interface default configuration implements the standard request and response features.
You can configure the User Interface to implement the following optional features:

 Process Wizards as described in The Process Wizard User Interface on page 42

 Personalized Navigation as described in Activating the Personalized Navigation User
Interface Layout on page 45

 Direct page display for specified answers as described in Implementing Direct Page Display
on page 47

 Virtual representative (VREP) dialog support as described Implementing a Virtual
Representative on page 49

 Answer quality user feedback collection as described in Implementing User Feedback
Collection on page 49

 Click-through logging as described in Implementing Click-Through Logging on page 56

 Answer highlighting within answer documents as described in Highlighting Answers Within
Documents on page 57

 Non-English text elements as described in Managing Multiple Languages in the User
Interface on page 61

NOTE: You can also configure the User Interface to display answers from configured Siebel 7
applications. For more information on integrating Siebel 7 applications with Oracle
Knowledge, see the *Intelligent Search Siebel Integration Guide, or contact your Oracle
account representative.

The Process Wizard User Interface
The Process Wizard User Interface is a set of specific pages designed for use with Process
Wizards. When users select an Process Wizard answer from the standard answer page, the User
Interface invokes the Process Wizard User Interface pages to display the selected Process Wizard.

NOTE: The Process Wizard User Interface is automatically configured for use within the standard
User Interface.

The Process Wizard User Interface consists of the following major elements:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

43 THE PROCESS WIZARD USER INTERFACE
 The Process Wizard answer, which displays on the answer page as described in The Process
Wizard Answer on page 43

 The step display area, which contains the steps defined for the process, as well as the
navigation buttons (Back, Next, Finish) as described in The Step Display Area on page 43

 The process summary column, which displays information about the previous steps that the
user has taken to progress through the wizard as described in The Step Display Area on
page 43

The Process Wizard Answer
When an end-user submits a request to the application that matches a process wizard rule, the
User Interface displays a special Process Wizard answer in the standard answer area, for example:

If users select the link in the process wizard answer, the User Interface displays the initial step of
the process wizard.

The Step Display Area
When users select a Process Wizard answer, the application displays the initial step in the Process
Wizard User Interface step display area.

The Process Wizard User Interface displays a summary of the user's previous responses to the left
of the step display area. The summary displays below the heading Your Responses.

Each response is displayed as a link that navigates back to the process step.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

44 THE PROCESS WIZARD USER INTERFACE
Modifying the Process Wizard User Interface
You can modify Process Wizard User Interface elements to suit the needs of your application by
editing the Process Wizard User Interface files, located in one of the following locations:

<InQuira_root>/inquira/int/<subdirectory>

where:

NOTE: The file int/xsl/process_wizard/step.xsl is used only for previewing steps in
the Process Wizard Editor, and is not used in the Process Wizard User Interface.

<subdirectory> is one of the following:

 css

 js

 xsl/search

CSS Files Description

qna_wizard_style
.css

This is the style sheet that specifies the style and formatting for the elements
that are specific to the Process Wizard User Interface and are not part of the
standard search.

Java Script Files Description

qna_wizard.js This is a JavaScript library that contains Process Wizard
User Interface-specific functionality.

XSL Files Description

wizard.xsl This is the main Process Wizard User Interface file that contains the basic
page definition (similar to the ui_search*.xsl files) and utilities for the
wizard pages.

wizard_fields.xsl This file contains all of the templates used to render any defined wizard fields
such as radio buttons, text boxes, select boxes, HTML areas, etc. on the UI.

wizard_history
.xsl

This file contains the templates for displaying the user's choice history as well
as the support templates for any actions generated by the history information
such as links back to previous pages.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

45 ACTIVATING THE PERSONALIZED NAVIGATION
Activating the Personalized Navigation User Interface Layout
To implement the Personalized Navigation User Interface elements, you activate the Personalized
Navigation User Interface layout, ui_search_and_browse.xsl, located in:

int/xsl/search/main.xsl

The main.xsl file contains an include statement for the Personalized Navigation User Interface
layout.

The following is an example of the include statements within the main.xsl file, showing the
Personalized Navigation layout enabled:

<!-- Options for Search UI Main Screens -->
<!--xsl:import href="ui_search_basic.xsl"/-->
<xsl:import href="ui_search_and_browse.xsl"/>
<!--xsl:import href="ui_search_vrep.xsl"/-->

IMPORTANT: You can enable only one of the include statements for your application.

The Personalized Navigation User Interface Elements
The User Interface uses various elements to display Personalized Navigation content categories:

 Style elements, as described in Personalized Navigation XSL Style Sheet Elements on
page 46 and Personalized Navigation CSS Style Sheet Elements on page 46

 Resource elements as described in Personalized Navigation-Related XML Elements on
page 46.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

46 ACTIVATING THE PERSONALIZED NAVIGATION
Personalized Navigation XSL Style Sheet Elements
The User Interface XSL style sheets are located in:

<InQuira_home>/int/xsl/search

Personalized Navigation CSS Style Sheet Elements
The User Interface CSS style sheet is located in:

<InQuira_home>/int/css

Personalized Navigation-Related XML Elements
The User Interface-related XML resources are located in:

<InQuira_home>/int/search

XSL Style Sheet Description
ui_search_and_
browse.xsl

This file is one of the main templates that determine the layout of the User
Interface elements, including the question box, browse bar, answers, and
sidebar. It is one of three main templates that you choose among as part of
the basic User Interface implementation process as described in Specify-
ing the User Interface Layout on page 24.

browse_bar.xsl This file contains the templates that render the contents of the facet navi-
gation browse bar.

facet_table.xsl This file contains the templates for displaying an entire table of values in
response to selecting the More... link in the browse bar for categories that
contain a large number of items. The More link displays a page containing
all of the items.

question_browse
.xsl

This file contains the definition for the question-top template used with Per-
sonalized Navigation, which differs from the standard User Interface ques-
tion area.

results.xsl This file contains updates to the standard answer block template to support
facet label display within the answer section.

CSS Style Sheet Description
qna_style.css This is the standard CSS for the User Interface. It contains

new elements to support Personalized Navigation,
primarily in the section labeled Browse Area
Definitions. Additional Personalized Navigation-
related definitions can be found by searching for facet
in this file.

XML File Description
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

47 IMPLEMENTING DIRECT PAGE DISPLAY
Implementing Direct Page Display
The direct page display feature specifies direct display of the document that contains the best
answer within a modified version of the response page.

The direct page display template defines an alternate response page that displays the relevant
document contents in the area that the answer section would normally occupy.

The components of direct page display include:

 The Jump to Page answer purpose

 The direct page display template

You implement the direct page display feature by assigning the Jump to Page answer purpose to
the appropriate Rule in the Dictionary as described in Rules in the Intelligent Search Language
Tuning Guide.

resource.xml This is the standard XML resource file, which contains new text elements
and definitions. Personalized Navigation-related definitions begin with the
term facet-.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

48 IMPLEMENTING DIRECT PAGE DISPLAY
Direct Page Display Example
The direct page display layout provides direct access to the best answer for a specified question in
lieu of the standard answer display. The following example shows direct page display within a
three-column layout style.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

49 IMPLEMENTING A VIRTUAL REPRESENTATIVE
Implementing a Virtual Representative
You can configure Oracle Knowledge for virtual representative (VREP) applications. To
configure an Oracle Knowledge application for use with a VREP, you need to:

 Make an image library for your VREP available to the application

 Create appropriate Dictionary rules using the Dialog answer purpose, as described in the
Rules in the Intelligent Search Language Tuning Guide.

 Associate appropriate images from the library with the configured Dialog answers

 Enable the virtual representative user interface layout

The User Interface contains a dialog-style layout template, ui_search_vrep.xsl, located in:

inquira/int/xsl/search/

The main.xsl file contains an include statement for the virtual representative user interface
layout. To enable the virtual representative user interface layout, activate the xsl import statement.
The following is an example of the layout include statements showing the virtual representative
layout enabled:

<!-- Options for Search UI Main Screens -->
<!--xsl:import href="ui_search_basic.xsl"/-->
<!--xsl:import href="ui_search_and_browse.xsl"/-->
<xsl:import href="ui_search_vrep.xsl"/>

IMPORTANT: You can enable only one of the include statements for your application.

Implementing User Feedback Collection
You can collect information from customers about their satisfaction with the answers provided by
the application through the user feedback feature of the response page. The user feedback
mechanism consists of two components:

 The user feedback portlet as described in The User Feedback Portlet on page 50

 The user feedback comment page as described in The User Feedback Comment Form on
page 51

The user feedback feature is configured by default to display in the related information area of the
response page. You can disable the user feedback mechanism as described in Disabling the User
Feedback Feature on page 55.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

50 IMPLEMENTING USER FEEDBACK COLLECTION
The User Feedback Portlet
The user feedback portlet displays by default in the related information area of the response page.

It contains the following elements that you can customize for your application:

 The user feedback heading, as described in Customizing the User Feedback Area Heading
on page 53

 The rating labels, as described in Customizing the User Feedback Rating Labels on page 54
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

51 IMPLEMENTING USER FEEDBACK COLLECTION
The User Feedback Comment Form
The user feedback comment form displays by default in when users submit feedback to the
application.

The comment form provides space for users to enter additional comments. User-supplied
comments are maintained in the application logs, and are available to the optional Oracle
Knowledge Analytics application's User Feedback report.

See Analytics Administration Guide for more information on the User Feedback report.

IMPORTANT: The default user feedback form contains sample content that is intended to be
customized for your application.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

52 IMPLEMENTING USER FEEDBACK COLLECTION
The User Feedback Process
The user feedback process begins on the standard results page. The user feedback portlet solicits
optional input from users. Users enter feedback by selecting from a list of radio buttons that
correspond to the rating levels described in Customizing the User Feedback Rating Labels on
page 54.

When users submit the rating selection, the application displays the user feedback form, which
must be customized for your application as described in Customizing the User Feedback
Comment Form on page 55. Users can enter additional feedback as text, or choose to close the
feedback form.

The application logs both the rating level and any optional text as a message having the identifier
ANALYTICS_USER_FEEDBACK. The optional Oracle Knowledge Analytics application uses these
messages to populate the User Feedback report.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

53 IMPLEMENTING USER FEEDBACK COLLECTION
Customizing the User Feedback Area Heading
You can customize the user feedback heading by editing the value specified in the User Interface
resource file, <InQuira_home>/inquira/int/xsl/search/resource.xml.

The resource.xml file is divided into sections that correspond to functional areas within the
User Interface.

To modify the user feedback heading:

 Locate the user feedback section, which is indicated by the label:

User feedback modules / screens

 Locate the parameter user-feedback-header

<term id="user-feedback-header">
 <entry lang="en">Are we answering your questions?</entry>
 <entry lang="de">Beantworten wir Ihre Fragen?</entry>
 <entry lang="es">?stamos contestando a sus preguntas?</entry>
 <entry lang="fr">Repondons-nous a vos questions?</entry>
 <entry lang="it">Trovi le nostre risposte soddisfacenti?</entry>
 <entry lang="ja"><see original file for correct characters></entry>
 </term>

 Edit the appropriate entry for the language of your application. For example, the default entry
for English applications is:

<entry lang="en">Are we answering your questions?</entry>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

54 IMPLEMENTING USER FEEDBACK COLLECTION
Customizing the User Feedback Rating Labels
You can customize the text associated with the user feedback rating levels by by editing the value
specified in the User Interface resource file, <InQuira_home>/inquira/int/xsl/search/
resource.xml.

To modify the user feedback labels:

 Locate the user feedback section, which is indicated by the label:

User feedback modules / screens

 Locate the parameter user-feedback-rating-n

where:

n is the feedback rating level. For example:

</term>
 <term id="user-feedback-rating-5">
 <entry lang="en">Absolutely!</entry>
 <entry lang="de">Absolut!</entry>
 <entry lang="es">?bsolutamente!</entry>
 <entry lang="fr">Absolument!</entry>
 <entry lang="it">Si, assolutamente</entry>
 <entry lang="ja"><see original file for correct characters</entry>
 </term>

 Edit the appropriate entry for the language of your application. For example, the default
English rating labels are:

Rating Level Default Value

5 Absolutely!

4 Usually

3 Sure

2 Hardly

1 Not even close!
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

55 IMPLEMENTING USER FEEDBACK COLLECTION
Customizing the User Feedback Comment Form
You customize the user feedback comment form by editing the elements that control the layout
and contents of the form in the user comments form style sheet, <InQuira_home>/inquira/
int/xsl/search/user_comments_page.xsl.

The user comments form style sheet is divided into sections that correspond to supported
languages. For example, the section in English contains the following:

Thanks for your feedback



 To date, we have added 100 new pages of content based on feedback like yours.



 We are currently working on providing more content in the following areas:

 
 Area 1 
 Area 2 
 Area 3 
 Area 4 
 


 If you would like to send us more detailed comments, please type them in below:

To modify the content and layout of the user feedback comment form:

 Locate the appropriate section for your language

 Edit the layout and content to suit the needs of your application

Disabling the User Feedback Feature
You can disable the user feedback feature by editing the User Interface configuration file,
<InQuira_home>/inquira/int/xsl/search/config.xsl

To disable the user feedback feature:

 Locate the following statement in the config.xsl file:

<xsl:variable name="get-user-feedback"...select="true()" />

 Change the value of the select parameter to false:

<xsl:variable name="get-user-feedback"...select="false()" />
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

56 IMPLEMENTING CLICK-THROUGH LOGGING
Implementing Click-Through Logging
You can configure the User Interface to log information about the answer links selected by Oracle
Knowledge users. Answer links are links to the page or document from which the application
derived the answer.

When click-through logging is on, Oracle Knowledge logs a message with the identifier
ANALYTICS_CLICK_THROUGH.

To specify click-through logging:

 Select Click-through from the System section of the Advanced Configuration Facility

The Click-through page displays:

 Select the On radio button in the Perform Click-through Tracking field

 Select OK to save your configuration
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

57 HIGHLIGHTING ANSWERS WITHIN DOCUMENTS
Highlighting Answers Within Documents
The User Interface displays links within answers that users can select to display the actual answer
documents. You can configure the application to highlight the answer text within HTML and PDF
documents.

You can implement document highlighting by:

 Enabling the highlighting feature

 Optionally specifying style attributes for highlighted titles and sentences within HTML
documents

 Optionally specifying text string matching processes for HTML documents

IMPORTANT: The text matching algorithm and highlighting display for PDF documents is
determined by the Adobe API, and is not configurable in Oracle Knowledge.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

58 HIGHLIGHTING ANSWERS WITHIN DOCUMENTS
Enabling Highlighting within Answer Documents
To enable highlighting for HTML and PDF documents:

 Select Click-through from the System section of the Advanced Configuration Facility:

The Click-through page displays:

 Select the On radio button in the Perform HTML Highlighting field

 Select the On radio button in the Perform PDF Highlighting field

 Select OK to save your configuration

Specifying HTML Highlighting Style Attributes
You can specify HTML highlighting style attributes to apply to relevant titles and text within
answer documents. You can specify any HTML statements that are valid within tags.

To specify highlighting attributes:

 Select Click-through from the System section of the Advanced Configuration Facility
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

59 HIGHLIGHTING ANSWERS WITHIN DOCUMENTS
The Click-through page displays:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

60 HIGHLIGHTING ANSWERS WITHIN DOCUMENTS
 Enter valid style attributes in the desired fields:

Field Description
Highlight Title Style Specifies the style for titles within the document that match the answer text. The

default style is color:#000000; background:#E8F5FF, which dis-
plays in standard browsers as black text on a light blue background.

Highlight Sentence Style Specifies the style for text within the document that matches the answer text. The
default style is color:#000000; background:#00FF00, which dis-
plays in standard browsers as black text on a bright green background.

Honor Document Anchor Specifies that the application use existing anchors within documents to determine
highlighted regions when opening the answer document in response to click-
through.

Check for Location
Replace

Specify this setting to check for this parameter, and display the re-directed location
without performing highlighting if it is present in the answer URL. Location replace
is a JavaScript mechanism used to redirect users from one page to another; how-
ever, the HTML highlighting feature cannot process the JavaScript properly.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

61 MANAGING MULTIPLE LANGUAGES IN THE USER
Managing Multiple Languages in the User Interface
The User Interface is installed and configured with multi-lingual text that is stored in a resource
file (int/common/resource.xml). The User Interface uses the language parameter to
determine the appropriate text to display.

Since the default language parameter setting for the Oracle Knowledge application is English, the
User Interface displays English text by default; however, setting the language parameter to
another language automatically overrides the User Interface language setting.

For example, if the web server configuration or a selection mechanism on the question input page
sets the language parameter to FR (French), then the User Interface displays the User Interface
text element in French.

The following larger User Interface content components are also automatically translated based
on the value of the language parameter

There is no additional configuration required to implement the multi-lingual User Interface
features; however, you can tailor the User Interface elements and other content to the needs of
your organization by editing the referenced User Interface files.

Page Location
Tips int/xsl/tips.xsl

User Comments int/xsl/core/user_feedback.xsl (locate “template
name="user-comments-page"”)

Contact deflection Thank
You

int/xsl/contact/thank_you.xsl
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 6

Creating a Custom Content Crawler

Oracle Knowledge includes a content acquisition framework containing base classes that support
the creation of custom crawlers. The framework includes three classes: CustomCrawlerConfig,
CustomCrawlerConfigController, and CustomCrawlerState that set up and instantiate a
custom crawler.

Using the framework you can create custom content crawlers to access data from non-standard
data sources and integrate it with Oracle Knowledge. The example on Example: Creating a
Database Web Crawler on page 62, shows you how to crawl a database that tracks content on a
website not otherwise crawled and consequently not available in the Content Store.

The example includes two classes: DBWebCrawler and DBWebCrawlerConfig. The
DBWebCrawler class extends Crawler, the standard Oracle Knowledge class used or extended
by all crawlers that do content acquisition within the content service framework. The second
class, DBWebCrawlerConfig, shown in Example: Configuring the Database Web Crawler on
page 66, sets up objects used by DBWebCrawler and extends CustomCrawlerConfig.

After developing your custom crawler, continue by configuring it within the Oracle Knowledge
environment as explained in the section, Configuring a Custom Crawler on page 67.

Example: Creating a Database Web Crawler
The example below can be found in the file DBWebCrawler.java

package samples.content.dbwebcrawler;
 
import java.io.*;
import java.util.*;
import java.sql.*;
import java.net.*;
 
import com.inquira.infra.*;
import com.inquira.content.*;
import com.inquira.content.custom.*;
import com.inquira.scheduler.job.*;
import com.inquira.util.sql.*;
 
/* The DBWebCrawler class implements a custom crawler that accesses 
 * a database containing URLs of documents to crawl
 */
public class DBWebCrawler
 extends Crawler
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

63 EXAMPLE: CREATING A DATABASE WEB
{
 protected Connection conn;
 protected Statement st;
 protected ResultSet rs;
 
 /* Called by the content acquisition framework prior to
 * call starting the crawl
 */
 public void connect(CrawlerConfig configuration)
 throws CrawlerException
 {
 DBWebCrawlerConfig rcc = (DBWebCrawlerConfig)configuration;
 
 try {
 conn = Datasource.forName(rcc.getDatasourceName()).getConnection();CrawlerException
 st = conn.createStatement();
 rs = st.executeQuery(rcc.getQuery());
 
 } catch(Throwable t) {
 throw new CrawlerException(t);
 }
 }
 
 /* Called by the content acquisition framework after 
 * the crawl is completed 
 */
 public void rundown()
 throws CrawlerException
 {
 try {
 if(rs != null) {
 rs.close();
 }
 if(st != null) {
 st.close();
 }
 if(conn != null) {
 conn.close();
 }
 } catch(Throwable t) {
 throw new CrawlerException(t);
 }
 }
 
 /* Called by the content acquisition framework prior to call starting 
 * the crawl after calling connect
 */
 public void start()
 {
 }
 
 /* Indicates that a single call to the findContent method discovers
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

64 EXAMPLE: CREATING A DATABASE WEB
 * a current document
 */
 public boolean findComplete()
 {
 return true;
 }
 
 /* Indicates that this is a custom crawler */
 public ContentSourceType getType()
 {
 return ContentSourceType.HTTP;
 }
 
 /* Returns all currently known document objects that are found
 * in the data source 
 */
 public Collection findContent(Collection priorContent,
 CrawlerConfig conf,
 CrawlerState state,
 TaskStatus status)
 throws CrawlerException
 {
 
 Collection rc = new ArrayList();
 
 try {
 String temp = null;
 
 while(rs.next()) {
 String url = rs.getString(1);
 
 if(!rs.wasNull() && !url.equals(temp)) {
 System.out.println("Getting URL: " + url);
 Timestamp time = rs.getTimestamp(2);
 
 Document d = new Document();
 
 d.setCollection(conf.getCollection());
 d.setFetchURL(url);
 d.setDisplayURL(url);
 
 d.setCSType(ContentSourceType.CUSTOM);
 d.setLastModificationTime(time);
 d.setIndexingAllowed(true);
 d.setStatusCode(Document.STATUS_OK);
 
 rc.add(d);
 
 temp = url;
 } else {
 System.out.println("NULL or Dupe!");
 }
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

65 EXAMPLE: CREATING A DATABASE WEB
 }
 } catch(Throwable t) {
 throw new CrawlerException(t);
 }
 
 return rc;
 }
 
 /* Returns the raw content for the given document */
 public byte[] getContent(CrawlerConfig conf, Document doc)
 throws
 CrawlerException
 {
 byte[] rc = null;
 
 URL url = null;
 URLConnection urlconn = null;
 InputStream is = null;
 ByteArrayOutputStream baos = null;
 
 try {
 url= new URL(doc.getFetchURL());
 System.out.println("In getContent, getting URL: " + url);
 urlconn = url.openConnection();
 is = new BufferedInputStream(urlconn.getInputStream());
 baos = new ByteArrayOutputStream();
 
 byte[] buf = new byte[8192];
 int count = 0;
 while((count = is.read(buf, 0, buf.length)) > 0) {
 baos.write(buf, 0, count);
 }
 rc = baos.toByteArray();
 
 doc.setContent(DataComponent.RAW, rc);
 doc.setDocSize(rc.length);
 
 } catch(ContentStoreException t) {
 throw new CrawlerException(t);
 } catch(IOException t) {
 throw new CrawlerException(t);
 } finally {
 if(is != null) {
 try {
 is.close();
 } catch(IOException ex) {
 // ignore on close
 }
 }
 }
 
 return rc;
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

66 EXAMPLE: CONFIGURING THE DATABASE WEB
 }
}

Example: Configuring the Database Web Crawler
This supporting class, containing configuration objects for the DBWebCrawler example, can be
found in the file DBWebCrawlerConfig.java

package samples.content.dbwebcrawler;
 
import java.util.*;
 
import com.inquira.content.*;
import com.inquira.content.custom.*;
 
/* The CustomCrawlerConfig class implements a custom crawler configuration
 * object that knows about two non-standard configuration items:
 *
 * datasourceName - defines the name of the data source that
 * contains the document information
 * query - defines the query string used to find the document information
 */
public class DBWebCrawlerConfig
 extends CustomCrawlerConfig
{
 private static final String __ident = "$Revision: 1.1.2.2 $";
 
 /* Compares the last modification dates of the two documents passed,
 * to determine if the document has changed
 */
 public boolean isModifiedDocument(Document currentDocument, Document newDocument)
 {
 return newDocument.getLastModificationTime().after(currentDocument.getLastModificationTime()
);
 }
 
 /* Returns the data source name */
 public String getDatasourceName()
 throws CrawlerException
 {
 String dataSourceName = configValues.getProperty("datasourceName");
 if(dataSourceName == null || dataSourceName.length() == 0) {
 throw new CrawlerException("CUSTOM_DBWEB_CRAWLER_NO_DATASOURCE", new
Object[]{ getCollectionName() });
 }
 
 return dataSourceName;
 }
 
 /* Returns the query string */
 public String getQuery()
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

67 CONFIGURING A CUSTOM CRAWLER
 throws CrawlerException
 {
 String query = configValues.getProperty("query");
 if(query == null || query.length() == 0) {
 throw new CrawlerException("CUSTOM_DBWEB_CRAWLER_NO_QUERY", new Object[]{
getCollectionName() });
 }
 
 return query;
 }
 
 /* Returns a new DBWebCrawler object */
 public Crawler getCrawler()
 throws CrawlerException
 {
 return new DBWebCrawler();
 }
 
 /* Indicates that this crawler compares existing documents in the
 * content store with documents it discovers to identify content changes
 */
 public boolean fetchExistingContent()
 {
 return true;
 }
}

Configuring a Custom Crawler
The custom crawler in this example assumes that the customer has developed an in-house content
publishing system that uses a database table called "content" containing a record for every
document that has been published to their website. This table contains two columns:

Configuration for custom crawlers is done through the Advanced Config settings in the System
Manager. In the example below, you can see that the url and modtime fields appear as part of
the query defined in the Configuration settings in the System Manager.

To configure the custom crawler:

 Open the System Manager and choose Advanced Config from the Tools menu.

 Select Crawler Settings and choose Edit.

Column
Name

Description

url This column contains the URL at which the document can be accessed
on the website

modtime This column contains the last date and time the document was published
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

68 CONFIGURING A CUSTOM CRAWLER
 Under Custom Crawlers, select Add New Item.

 Enter the Item Name, Class Name, and add the Configuration fields for the data source and
query following the example below.

Example Crawler Settings
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 7

Creating a Custom Document
Preprocessor

This section shows how you can customize the way in which raw document content is processed
for both text and binary files. In the example, we extend the ProcessingFilterAdapter class which
implements the PreprocessingFilter interface.

The PreprocessingFilter interface defines the preprocessDocument method (text files)
and postprocessDocument methods (text and binary files) called by Preprocessor when it
processes content. By extending the ProcessingFilterAdapter class, which implements the
PreprocessingFilter interface, we can introduce our own preprocessing and post-
processing routines as part of Oracle Knowledge's standard processing of text and binary files.

In the example, described in Example: Creating a Document Preprocessor on page 69, we
include two common preprocessing and post-processing customizations: removing footers from
HTML files, and removing the table of contents from PDF files.

After developing your custom document preprocessor, continue by configuring it within the
Oracle Knowledge environment as explained in the section, Configuring a Custom Document
Preprocessor on page 73.

Example: Creating a Document Preprocessor
The example below can be found in the file SamplePreprocessingFilter.java

First, we import the referenced packages.

package samples.prep;
 
import java.io.*;
import java.util.*;
import java.util.regex.*;
 
import com.inquira.content.*;
import com.inquira.prep.*;
import com.inquira.util.xml.*;

Next, we set up a new custom preprocessor class by extending PreprocessingFilterAdapter, a class
that implements the PreprocessingFilter interface. The PreprocessingFilterAdapter class adds the
getStringContent method, which we use to get the document content for HTML files.

/* Implements a pre- and post-processing filter used during document conversion */
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

70 EXAMPLE: CREATING A DOCUMENT
public class SamplePreprocessingFilter
 extends PreprocessingFilterAdapter
{
 /* Defines the regular expression that marks a table of contents page */
 protected Pattern tocPattern;

 /* Defines the maximum number of pages to check for table of contents */
 protected int endPage;

 /* Defines the regular expression that marks an HTML footer */
 protected Pattern footerPattern;

 /* Creates a new PreprocessingFilter instance, while configuration
 * parameters are passed in to configProperties
 */
 public SamplePreprocessingFilter(Map configProperties) 
 {
 /* Assuming the configuration looks like this:
 * <preprocessingFilter name="sample">
 * <class>samples.prep.SamplePreprocessingFilter</class>
 * <config>
 * <values name="hello">def</values>
 * <values name="xyz">zyx</values>
 * </config>
 * </preprocessingFilter>
 *
 * The Map contains entries for keys "hello" and "xyz",
 * with values "def" and "zyx" respectively.
 */
 tocPattern = Pattern.compile("(?i)Table of Contents", Pattern.MULTILINE);
 endPage = 10;
 footerPattern = Pattern.compile("(?i)((\u00A9|©|©)[]*)?Copyright [0-9]+ Acme, Inc.",
Pattern.MULTILINE);
 }

We first check to see if it's an HTML file, and if it is, we grab the raw file contents. We then
search the contents for footerPattern to see if it contains footers, and if it does, we strip them
out and save the contents using setContent.

 /* Removes footer from HTML documents based on a regular expression */
 public void preprocessDocument(Document document, CollectionConfig collection)
 throws PreprocessingException
 {
 System.out.println("preprocessDocument called for " + document.getFetchURL());
 
 if(document.getDocType().equals(DocumentType.HTML) == true) {
 try {
 StringBuffer rawContent = getStringContent(document);
 
 Matcher m = footerPattern.matcher(rawContent);
 if(m.find() == true) {
 String newContent = m.replaceAll("");
 document.setContent(DataComponent.RAW, newContent);
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

71 EXAMPLE: CREATING A DOCUMENT
 }
 } catch(ContentStoreException ex) {
 throw new PreprocessingException("CUSTOM_PREP_PRE_FILTER_FAILER", 
 new Object[]{ document.getFetchURL(), new Integer(document.getDocId()) },
ex);
 }
 }
 }

For the TOC, we first check to see if it's a PDF file, and if it is, we grab the contents. We then
search the contents for tocPattern to see if it contains a TOC while the page number is less
than endPage. If we find a TOC, we strip it out and return the updated string representation of the
iqxmlNode.

 /* Remove Table of Contents pages from PDF documents */
 public String postprocessDocument(Document document, CollectionConfig collection, Node
iqxmlNode)
 throws PreprocessingException
 {
 String rc = null;
 
 System.out.println("postprocessDocument called for " + document.getFetchURL());
 
 if(document.getDocType().equals(DocumentType.PDF) == true) {
 // Since we are modifying the XML Node that represents the
 // IQXML, we need to be careful not to modify the original Node
 // unless we intentionally want to modify the XML. To signal
 // that a modification was made we need to return the string
 // representation of the new XML node that represents the IQXML
 // after post processing.
 if(removeTOC(iqxmlNode, endPage) == true) {
 rc = iqxmlNode.toString();
 }
 }
 
 return rc;
 }
 
 protected boolean removeTOC(Node n, int lastPage) 
 {
 return removeTOC(n, new HashSet(), lastPage);
 }
 
 protected boolean removeTOC(Node n, HashSet skipPages, int lastPage) 
 {
 boolean rc = false;
 boolean afterTOC = false;
 
 List children = n.getChildren();
 if(children != null) {
 ListIterator it = children.listIterator();
 while(it.hasNext()) {
 Object o = it.next();
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

72 EXAMPLE: CREATING A DOCUMENT
 if(o instanceof Node) {
 Node cn = (Node)o;
 
 String text = cn.getText();
 if(text != null && text.length() > 0) {
 int pageNumber = getPageNumber(cn);
 if(pageNumber >= 0) {
 if(pageNumber >= lastPage) {
 afterTOC = true;
 break;
 }
 Integer nPageNumber = new Integer(pageNumber);
 if(skipPages.contains(nPageNumber) == true) {
 rc = true;
 it.remove();
 } else {
 if(tocPattern.matcher(text).find() == true) {
 rc = true;
 it.remove();
 skipPages.add(nPageNumber);
 }
 }
 }
 } else if(afterTOC == false) {
 rc |= removeTOC(cn, skipPages, lastPage);
 }
 }
 }
 }
 
 return rc;
 }

We use the getPageNumber method in the postprocessDocument method to check where we
are in the document.

 protected int getPageNumber(Node n)
 {
 int rc = -1;
 String auxAttr = n.getAttribute("aux");
 if(auxAttr != null) {
 int start = auxAttr.indexOf(" pg=");
 if(start >= 0) {
 start += 4;
 int end = auxAttr.indexOf(" ", start);
 if(end > 0) {
 rc = Integer.parseInt(auxAttr.substring(start, end));
 }
 }
 }
 
 return rc;
 }
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

73 CONFIGURING A CUSTOM DOCUMENT
}

Configuring a Custom Document Preprocessor
You can define configuration information for your custom document preprocessor by adding the
name of the class and configuration information to the ICE custom.xml file as shown below.
Note that you don't need to do his unless you need to pass parameters to your custom preprocessor
class.

 Locate the custom.xml configuration file in the instance folder:

<IS installation folder>\instances\<instance name>\custom.xml

 Add a preprocessor node to the file as shown below substituting the class name for
samples.prep.SamplePreprocessingFilter, and adding key value pairs as
appropriate in the <config> section.

<preprocessor>
 <preprocessingFilter>
 <class>samples.prep.SamplePreprocessingFilter</class>
 <config>
 <values name="hello">def</values>
 <values name="xyz">zyx</values>
 </config>
 </preprocessingFilter>
</preprocessing>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

74 CONFIGURING A CUSTOM DOCUMENT
Supporting Multiple Naviagtion Applications
To support multiple naviagtion applications, an entry similar to the following needs to be added to
the custom.xml file:

<task-definition index="16">
<name>Classification</name>
<shortName>Navigation</shortName>
<description>Classifies the navigation facets </description>
<taskClass>com.inquira.navigate.ClassifyTask</taskClass>
<parameters index="0">-p</parameters> <!-- enable progress tracking -->
<parameters index="1">-f</parameters> <!-- applitcaion 1 name follows -->
<parameters index="2">Default</parameters> <!-- applitcaion 1 name -->
<parameters index="3">-f</parameters> <!-- applitcaion 2 name follows -->
<parameters index="4">Maven</parameters> <!-- applitcaion 2 name -->
<parameters index="5">-f</parameters> <!-- applitcaion 3 name follows -->
<parameters index="6">Quantum</parameters> <!-- applitcaion 3 name -->
<distribute>false</distribute>
<needsCollection>false</needsCollection>
<subcollection>false</subcollection>
</task-definition>

This overrides the default entry for the Classification task, adding the additional applications
‘Maven’ and ‘Quantum.’
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 8

Creating a Custom Task

This section shows you how to implement custom tasks to work within Oracle Knowledge's
system framework. The examples included here show you how to set up a simple custom task,
how to handle parameters, how to display document count and progress information on the
System Manager status screen, and how to set up a task so that users can interrupt it, if necessary,
from the job status screen.

The following examples are provided:

 Example: Creating a Simple Custom Task on page 76
This example provides the basic template for crating a custom task.

 Example: Handling Argument Parsing on page 78
This example provides a basic template, but adds the ability to handle arguments as
parameters.

 Example: Handling Document Count and Progress Updates on page 82
This example shows you how to update the document count and progress bar as documents
are processed by the task.

 Example: Handling User Task Interruptions on page 85
This example shows you how to test for a request from the user to interrupt processing. Note
that although we provide an example, we do not encourage you to use it unless you really need
to and are able to support the consequences of interrupting a task.

After creating your custom task, continue by configuring it within the Oracle Knowledge
environment as explained in the section, Configuring a Custom Task on page 86.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

76 EXAMPLE: CREATING A SIMPLE CUSTOM TASK
Example: Creating a Simple Custom Task
The example below can be found in the file CustomTaskTemplate.java.

First, we import the referenced packages.

package com.inquira.scheduler.job;
 
import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;
 
import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {
 
 
 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;
 
 try {

Add the code for whatever task it is that you need to set up here

 /*
 * Do the actual custom task work here 
 */
 
 
 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task defaults to
setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

77 EXAMPLE: CREATING A SIMPLE CUSTOM TASK
 else {
 status.setFailed();
 }
 }
 }
 
 public Options getTaskOptions()
 {
 Options options;
 
 options = new Options();
 
 return options;
 
 }
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

78 EXAMPLE: HANDLING ARGUMENT PARSING
Example: Handling Argument Parsing
The example below can be found in the file CustomTaskTemplate_Args.java.

In the first part of this custom task example, we import the referenced packages.

/*
 * In this custom task example, we modify it to take arguments as 
 * parameters. We use the getTaskOptions() method inherited from the
 * ITaskRunner interface to handle argument parsing.
 */
 
package com.inquira.scheduler.job;
 
import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;
 
import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {
 
 /* Example local variables set by argument parsing */

boolean fOption = false;
boolean pOption = false;
boolean rOption = false;
String collectionName = null;

Here we process the args array and define task processing accordingly. Substitute your own
switch values and parameters and processing options for ones appropriate to your task. Refer to
Configuring a Custom Task on page 86 for a discussion of how to handle arguments as
parameters.

 /*
 * Use a method like the one below to process the arguments
 * and set the local variables
 */
 private boolean processArgs(String[] args) {
 CommandLineParser parser;
 CommandLine commandLine;
 Options optionDefinitions;
 Option[] options;
 boolean success = true;
 
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

79 EXAMPLE: HANDLING ARGUMENT PARSING
 parser = new BasicParser();
 try {
 optionDefinitions = getTaskOptions();
 commandLine = parser.parse(optionDefinitions, args);
 options = commandLine.getOptions();
 
 for(int i = 0; i < options.length; i++) {
 List values;
 String mode;
 
 mode = options[i].getOpt();
 
 if(mode.equals("f") || mode.equals("fexample")) {
 values = options[i].getValuesList();
 fOption = Boolean.valueOf((String)values.get(0)).booleanValue();
 }
 else if(mode.equals("p") || mode.equals("pexample")) {
 values = options[i].getValuesList();
 pOption = Boolean.valueOf((String)values.get(0)).booleanValue();
 }
 else if(mode.equals("r") || mode.equals("rexample")) {
 rOption = true;
 }
 else if(mode.equals("c") || mode.equals("collection")) {
 values = options[i].getValuesList();
 collectionName = (String)values.get(0);
 }
 }
 }
 catch(Exception ex) {
 //Do any appropriate logging
 Execution.context().log().event(ERROR_MSG, "CUSTOM_TASK_ERROR", ex);
 
 success = false;
 }
 
 return success;
 }
 
 
 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;
 
 try {
 

if(processArguments(args) == false) {
success = false;
return;

}
 
 
 /*
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

80 EXAMPLE: HANDLING ARGUMENT PARSING
 * Do the actual custom task work here 
 */
 
 
 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task defaults to
setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }

In this section we look at how to define the parameters used when the task is run.

/* The getTaskOptions example below shows how to define argument
 * parsing for "-p true -f false -r -c <collectionname>" 
 *
 * This example uses the Apache CLI interface. Their documentation 
 * can be found on their website by searching for org.apache.commons.cli 
 * for their Javadoc.
 */
 public Options getTaskOptions()
 {
 Options options;
 Option collectionOption;
 Option pOption;
 Option fOption;
 Option rOption;
 
 options = new Options();
 
 pOption = new Option("p", "pexample", true, "Example for an option called 'p'");
 pOption.setArgName("true | false ");
 pOption.setOptionalArg(false);
 pOption.setRequired(false);
 pOption.setArgs(1);
 
 fOption = new Option("f", "fexample", true, "Example for an option called 'f'");
 fOption.setArgName("true | false");
 fOption.setOptionalArg(false);
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

81 EXAMPLE: HANDLING ARGUMENT PARSING
 fOption.setRequired(false);
 fOption.setArgs(1);
 
 rOption = new Option("r", "rexample", true, "Example for an option called 'r'");
 rOption.setOptionalArg(true);
 rOption.setRequired(false);
 rOption.setArgs(0);
 
 collectionOption = new Option("c", "collection", true, "Option for the collection name.");
 collectionOption.setArgName("collection name");
 collectionOption.setOptionalArg(false);
 collectionOption.setRequired(true);
 collectionOption.setArgs(1);
 
 options.addOption(pOption);
 options.addOption(fOption);
 options.addOption(rOption);
 options.addOption(collectionOption);
 
 return options;
 
 }
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

82 EXAMPLE: HANDLING DOCUMENT COUNT AND
Example: Handling Document Count and Progress Updates
The example below can be found in the file CustomTaskTemplate_Prog.java.

In the first part of this example, we import the referenced packages.

/*
 * This custom task template provides examples for
 * updating progress bar and document count information.
 */
 
 
package com.inquira.scheduler.job;
 
import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;
 
import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {
 
 
 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;
 
 try {

Add the code for your task here calling the appropriate method to update the document count and
progress bar as indicated in the comments below. Note that the method should only be called by
tasks that use a looping structure to process data so that a counter or progress indicator can be
updated for each iteration of the loop.

 /*
 * Do the actual custom task work here. 
 */

 /*
 * The examples below show how to handle progress bar updates 
 * and document count updates for the task status screens in 
 * System Manager. They should be called from within tasks 
 * that use a looping structure, updating the doc count or 
 * progress bar as a loop iteration is completed.
 *
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

83 EXAMPLE: HANDLING DOCUMENT COUNT AND
 * Option 1 for updating progress
 * status.setProgress(value);
 * This can be called periodically if
 * a value of 1 - 100 is known and it
 * makes sense to update progress with
 * a specific value
 *
 * Option 2 for updating progress
 * status.incrementProgress(incrementalvalue);
 * This can be called periodically
 * to increment the progress
 * by some incremental value. If the
 * progress was 35 and the value passed
 * to this method is 4, the new progress
 * will be 39.
 *
 * Option 3 for updating progress and doc count
 * (used only if the task iterates over
 * a set of documents once). This option can also only 
 * be used if the total number of documents to be processed
 * is known at the beginning of the task.
 *
 * status.setTotalDocCount(total);
 * This should be called at the beginning
 * of the task, not inside the loop
 *
 * status.incrementDocProgress();
 * This should be called from inside the loop, once
 * for each document that was processed. Internally
 * it will increment the counter for how many documents
 * were processed, and also calculate the progress 
 * percentage based on the processed documents divided
 * by the totalDocCount() value.
 *
 * Option 4 for updating doc count but not progress
 * status.incrementDocCount();
 * Increments the current doc count processed by 1,
 * it starts at 0 at the beginning of every task.
 */
 
 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task defaults to
setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

84 EXAMPLE: HANDLING DOCUMENT COUNT AND
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }
 
 public Options getTaskOptions()
 {
 Options options;
 
 options = new Options();
 
 return options;
 
 }
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

85 EXAMPLE: HANDLING USER TASK
Example: Handling User Task Interruptions
The example below can be found in the file CustomTaskTemplate_Prog.java.

In the first part of this example, we import the referenced packages.

/*
 * In this custom task example we add a method you can call from 
 * within a task loop to periodically check if a user has used the
 * job-status screen to request that the current task stop 
 * processing and exit.
 *
 * It is up to the custom task code to do any necessary data 
 * cleanup. If it cannot do this properly, it should not attempt to
 * support task interruption.
 */
 
package com.inquira.scheduler.job;
 
import org.apache.commons.cli.BasicParser;
import org.apache.commons.cli.CommandLine;
import org.apache.commons.cli.CommandLineParser;
import org.apache.commons.cli.Option;
import org.apache.commons.cli.Options;
import org.apache.commons.cli.PatternOptionBuilder;
 
import org.apache.commons.cli.*;
import com.inquira.scheduler.*;
import com.inquira.scheduler.*;
import com.inquira.infra.*;
import com.inquira.log.*;

Next, we set up the new custom task class by extending ITaskRunner and ILogConstants.

public class CustomTaskTemplate
 implements ITaskRunner, ILogConstants {
 
 
 public void run(TaskStatus status, String[] args) throws Exception {
 boolean success = true;
 
 try {

Add the code for your task here calling the isInterrupted method from within a loop to check
whether the user has requested that the task be interrupted. Note that for the isInterrupted
method to be useful it must be called from inside a loop as documents or other data are processed,
so that it can poll for a change in status at each loop iteration.

 /*
 * Do the actual custom task work here 
 */
 
 /*
 * Handling user-interrupted task requests is only viable if
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

86 CONFIGURING A CUSTOM TASK
 * the task is structured in some form of loop where it can
 * periodically check if there is an outstanding request for
 * the task to interrupt itself. This should only
 * be done if if the custom task code can cleanly
 * interrupt its work without corrupting any data.
 */
 status.isInterrupted();
 //Check this method periodically in a loop. If it returns
 //true, then a user has used the job-status screen to request
 //that the current job/tasks stop processing and exit.
 
 //An interrupted task should be treated as a failed
 // task, so be sure to set success to false or
 // otherwise ensure that status.setFailed() is called
 }
 catch(Exception ex) {
 //Do any appropriate logging and exception handling
 success = false;
 }

Be sure to set status here to setSuccess if the task completes successfully, or the task defaults to
setFailed.

 finally {
 //Set the status at the end of the task.
 //If the status is not set, it defaults to setFailed()
 //causing the task and any dependent tasks to fail
 if(success) {
 status.setSuccess();
 }
 else {
 status.setFailed();
 }
 }
 }
 
 public Options getTaskOptions()
 {
 Options options;
 
 options = new Options();
 
 return options;
 
 }
 
}

Configuring a Custom Task
To configure a custom task:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

87 CONFIGURING A CUSTOM TASK
 Use one of the example templates to develop your custom task class.

 Save the file and class using the appropriate local naming conventions.

 Configure the placeholders for custom tasks in the <number>.xml file. You'll need to do this
by hand as they cannot be configured through the System Manager. The supported
placeholders can be found by searching for "PlaceholderTask" in <number>.xml, based on
your particular task. The list of supported custom task placeholders include:

- Pre content update

- Pre document conversion

- Pre indexing

- Pre propagation

- Pre synchronization

- Post propagation/synchronization

- Pre log loading

- Post analytics processing (both Search and IM)

 Select the correct placeholder task and replace the taskClass configuration node (which is
set by default to "com.inquira.scheduler.job.PlaceholderTask") with the name of the newly
defined class. An example is shown below:

<task-definition index="4">
<name>Pre-Document Conversion</name>
<description>Custom task to be run before document conversion.</description>
<taskClass>com.customer.services.custom.NewTask</taskClass>
<distribute>false</distribute>
<needsCollection>false</needsCollection>
<subcollection>false</subcollection>
</task-definition>

Other than taskClass, no other configuration nodes should be modified unless parameters are
required.

 Compile the custom class and store it in the appropriate services.jar file so that ICE can
add it to the classpath. This ensures that when the scheduler runs the task, the custom code
is invoked rather than the PlaceholderTask class.

 To add parameters to the task definition, add parameter nodes as shown in the example below.
For example, to add "-p true", "-f false", and "-r" as parameters you would add the
following parameter nodes:

<parameters index="0">-p</parameters>
<parameters index="1">true</parameters>
<parameters index="2">-f</parameters>
<parameters index="3">false</parameters>
<parameters index="4">-r</parameters>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

88 CONFIGURING A CUSTOM TASK
 If the collection name is a required parameter, set the <needsCollection> node to "true"
and the last parameter specified to "-c". If you follow this convention the scheduler
automatically adds the collection name to the arguments passed into the task. A sample result
is shown below. Note that -c is the last parameter and that needsCollection is set to true.
The args[] array would include the following data based on the task definition below when
the task is run:

args[0] = "-p"
args[1] = "true"
args[2] = "-f"
args[3] = "false"
args[4] = "-r"
args[5] = "-c"
args[6] = "<collectionname>"
 
<task-definition index="4">
<name>Pre-Document Conversion</name>
<description>Custom task to be run before document conversion.</description>
<taskClass>com.customer.services.custom.NewTask</taskClass>
<parameters index="0">-p</parameters>
<parameters index="1">true</parameters>
<parameters index="2">-f</parameters>
<parameters index="3">false</parameters>
<parameters index="4">-r</parameters>
<parameters index="5">-c</parameters>
<distribute>false</distribute>
<needsCollection>true</needsCollection>
<subcollection>false</subcollection>
</task-definition>

NOTE: When you set <needsCollection>true</needsCollection> thereby requiring a
collection, it also dictates that the task runs once for each collection defined in the job
definition. Therefore, the last parameter is a new collection name each time the task is
run.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 9

Creating a Custom Authentication
Interface

The default Oracle Knowledge authentication interface uses Lightweight Directory Access
Protocol (LDAP) to verify user access to Oracle Knowledge modules. In some cases, you may
want to bypass the default authentication implementation to, for example, access user information
stored in a database.

The following examples provide instructions for:

 Example: Creating a Simple Custom Authenticator on page 90

Creating a basic custom authenticator built on the IAuthenticator interface.

 Example: Simple Unit Testing of a Custom Authenticator on page 92

Unit-testing a custom authenticator.

 Example: Configuration-based Test for IAuthenticator Objects on page 94

Testing the configured security service (IAAS).

For the code to compile, you need to download both the file for the specific authenticator and the
file TestBase.java, which contains some of the classes called by the authenticators.

After creating your custom authenticator, continue by configuring it within the Oracle Knowledge
environment as explained in the section, Configuring a Custom Authenticator on page 94.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

90 EXAMPLE: CREATING A SIMPLE CUSTOM
Example: Creating a Simple Custom Authenticator
The example below can be found in the file TestAuthenticator.java, and the shared
authenticator classes can be found in TestBase.java.

We import the referenced packages, including TestBase.java, which contains the shared
classes referenced by the authenticator examples.

package samples.security.authentication;
 
import java.util.*;
import java.security.*;
 
import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.util.security.*;

We implement TestAuthenticator and get the user ID and password

/* This is a sample implementation of an authenticator */
public class TestAuthenticator
 extends TestBase
 implements IAuthenticator
{
 private static final String __ident = "$Revision: 1.1.2.1 $";
 
 protected String domain = "Test";
 
 protected Field[] authenticationFields = new Field[] {InputField
 new InputField(IFieldNames.FIELD_USER_ID),
 new InputField(IFieldNames.FIELD_PASSWORD, true) };
 
 public IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap, long timestamp)
 throws InquiraAuthenticationException
 {
 IUser rc = null;
 
 System.out.println("TestAuthenticator.authenticate: called");
 
 String userId = getFieldValue(IFieldNames.FIELD_USER_ID, userInfo);
 
 System.out.println("TestAuthenticator.authenticate: userId: " + userId);
 
 if(userId != null) {
 String password = getFieldValue(IFieldNames.FIELD_PASSWORD, userInfo);
 
 System.out.println("TestAuthenticator.authenticate: password: " + password);

If the password is correct, we set up the user permissions to return using buildUser (defined in
TestBase.java), and print them for test purposes. If the password is incorrect or null, we
handle the exception by calling InquiraAuthenticationException.

 if(password != null && password.equals(userId) == true) {
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

91 EXAMPLE: CREATING A SIMPLE CUSTOM
 rc = buildUser(userId, domain, userInfo, roles2PermissionsMap, timestamp);
 }
 }
 
 if(rc == null) {
 throw new InquiraAuthenticationException("LOGIN_FAILED", new Object[]{ getDomain(), userId
});
 }
 
 System.out.println("TestAuthenticator.authenticate: returns: " + rc);
 
 return rc;
 }

Get and return the domain (should return "Test" for the example)

 public String getDomain()
 {
 return domain;
 }
 
 public Field[] getAuthenticationFields()
 throws InquiraAuthenticationException
 {
 return authenticationFields;
 }

We get and print the values of authenticator, get the user's ID and password, and authenticate the
user based on the ID and password. We then print out the user permissions.

 public static void main(String[] args) 
 throws Exception
 {
 IAuthenticator authenticator = new TestAuthenticator();
 
 System.out.println(authenticator);
 
 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID, args[0]),
 new FieldValue(IFieldNames.FIELD_PASSWORD, args[1]) };
 
 
 IUser user = (IUser)authenticator.authenticate(userInfo, getRole2PermissionsMap(),
System.currentTimeMillis());
 user.dump();
 System.out.println("security keys: " + user.getSecurityKeys());
 for(int i = 2; i < args.length; i++) {
 System.out.println("has access to " + args[i] + ": " + user.hasAccess(new
com.inquira.infra.security.ContentPermission(args[i])));
 }
 }
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

92 EXAMPLE: SIMPLE UNIT TESTING OF A CUSTOM
Example: Simple Unit Testing of a Custom Authenticator
The example below can be found in the file AuthenticatorTest.java, and the shared
authenticator classes can be found in TestBase.java

We import the referenced packages, including TestBase.java, which contains the shared
classes referenced by the authenticator examples.

package samples.security.authentication;
 
import java.util.*;
import java.security.Permission;
 
import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.config.*;
 
public class AuthenticatorTest
{
 private static final String __ident = "$Revision: 1.1.2.1 $";
 
 public static final String ROLE_LANG_DEV = "LanguageDevelopment";
 public static final String ROLE_LANG_ADMIN = "LanguageAdministrator";
 public static final String ROLE_ANALYTICS_ADMIN = "AnalyticsAdministrator";
 public static final String ROLE_ADMIN = "Administrator";
 
 protected static final Set USABLE_PERMISSIONS;
 public static final Map DEFAULT_ROLE_PERMISSIONS;
 static {
 HashSet tmp = new HashSet();
 String[] allPermissions = InquiraPermissions.PERMISSIONS;
 for(int i = 0; i < allPermissions.length; i++) {
 Permission p = new StandardPermission(allPermissions[i]);
 if(p.equals(new StandardPermission(InquiraPermissions.USERS)) == false) {
 tmp.add(p);
 }
 }
 
 USABLE_PERMISSIONS = Collections.unmodifiableSet(tmp);
 
 DEFAULT_ROLE_PERMISSIONS = new HashMap();
 HashSet langDevPerm = new HashSet();
 langDevPerm.add(new StandardPermission(InquiraPermissions.DICTIONARY));
 langDevPerm.add(new StandardPermission(InquiraPermissions.TESTING));
 langDevPerm.add(new StandardPermission(InquiraPermissions.QUALITY_MONITOR));
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_LANG_DEV, langDevPerm);
 
 HashSet langAdminPerm = new HashSet(langDevPerm);
 langAdminPerm.add(new StandardPermission(InquiraPermissions.TOP_LAYERS));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.DOMAIN_GROUPS));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.DOMAINS));
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

93 EXAMPLE: SIMPLE UNIT TESTING OF A CUSTOM
 langAdminPerm.add(new StandardPermission(InquiraPermissions.ONT_BUILDER));
 langAdminPerm.add(new StandardPermission(InquiraPermissions.NAVIGATION_SETUP));
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_LANG_ADMIN, langAdminPerm);
 
 HashSet analyticsAdminPerm = new HashSet();
 analyticsAdminPerm.add(new StandardPermission(InquiraPermissions.ANALYTICS_ADMIN));
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_ANALYTICS_ADMIN, analyticsAdminPerm);
 
 DEFAULT_ROLE_PERMISSIONS.put(ROLE_ADMIN, USABLE_PERMISSIONS);
 }
 
 public static void main(String[] args) 
 throws Exception
 {
 ArrayList l = new ArrayList();
 IAuthenticator auth = (IAuthenticator)Execution.context().config().get(new Key(args[0]));
 System.out.println(auth);
 l.add(auth);
 
 IAAS aas = new AASImpl(l, DEFAULT_ROLE_PERMISSIONS);
 System.out.println(aas);
 
 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID, args[1]),
 new FieldValue(IFieldNames.FIELD_PASSWORD, args[2]),
 new FieldValue(IFieldNames.FIELD_DOMAIN, args[3]) };
 
 RoleBasedUser user = (RoleBasedUser) aas.login(userInfo);
 user.dump();
 }
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

94 EXAMPLE: CONFIGURATION-BASED TEST FOR
Example: Configuration-based Test for IAuthenticator Objects
The example below can be found in the file AASTest.java, and the shared authenticator
classes can be found in TestBase.java.

We import the referenced packages, including TestBase.java, which contains the shared
classes referenced by the authenticator examples.

package samples.security.authentication;
 
import java.util.*;
import java.security.Permission;
 
import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
 
/* Tests the currently configured AAS */
public class AASTest
{
 private static final String __ident = "$Revision: 1.1.2.1 $";
 
 public static void main(String[] args) 
 throws Exception
 {
 IAAS aas = (IAAS)Execution.context().aas();
 System.out.println(aas);
 
 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID, args[0]),
 new FieldValue(IFieldNames.FIELD_PASSWORD, args[1]),
 new FieldValue(IFieldNames.FIELD_DOMAIN, args[2]) };
 
 IUser user = (IUser) aas.login(userInfo);
 user.dump();
 
 if(args.length > 3) {
 System.out.println(aas.getPermission(args[3]));
 }
 }
}

Configuring a Custom Authenticator
After creating your custom authenticator, add the name of the class to the Oracle Knowledge
configuration file as shown below:

 Locate the latest <number>.xml configuration file in the configuration folder:

%APROOT%\development\content\data\config\default\<number>.xml

 Open the file and search for "<choices>".
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

95 CONFIGURING A CUSTOM AUTHENTICATOR
 Add the customAuthenticator element under <choices> as shown in the example. For
the <class> element, replace "customAuthenticator" with the name of your custom class and
add an index element that identifies the specific version.

<choices> 
<customAuthenticator index="0">
<class>com.inquira.infra.security.impl.TestAuthenticator</class>
</customAuthenticator>

 Next, define the customAuthenticator as the configured securityService by specifying the
keyref as shown below. Replace "choices.customAuthenticator[0]" with the name of your
custom class and index.

<securityService>
<authenticator index="1" keyref="choices.customAuthenticator[0]" />
</securityService>

 Your edited file should look similar to the one shown below:

<serviceConfiguration name="default">
<securityService>
<authenticator index="1" keyref="choices.customAuthenticator[0]" />
</securityService>
<choices>
<customAuthenticator index="0">
<class>com.inquira.infra.security.impl.TestAuthenticator</class>
</customAuthenticator>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 10

Integrating an External
Authentication Application

If you're using a single-sign-on application you may want to bypass the default Oracle Knowledge
authentication interface to intercept the qualified user data it passes, and use that to set up user
access to Oracle Knowledge.

Use the examples provided in:

 Example: Integrating a Delegation Authenticator on page 97

This example shows you how to integrate an external authentication application using the
IDelegationAuthenticator interface, which extends regular authenticating modules that
integrate with single-sign-on solutions.

 Example: Integrating a Delegation Detector on page 99

This example shows you how to integrate an external authentication application using the
IDelegationDetector interface. The IDelegationDetector interface, in turn, is
used by the request processor to extract the user information from single-sign-on solutions.

NOTE: For the code to compile, download both the file for the specific authenticator and the file
TestBase.java, which contains some of the classes called by the examples.

After creating your custom delegation authenticator or delegation detector, continue by
configuring it within the Oracle Knowledge environment as explained in the section, Configuring
a Delegation Authenticator or Detector on page 100.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

97 EXAMPLE: INTEGRATING A DELEGATION
Example: Integrating a Delegation Authenticator
The example below can be found in the file DelegationAuthenticator.java

package samples.security.delegation;
 
import java.util.*;
import java.security.*;
 
import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.infra.security.impl.*;
import com.inquira.request.*;
 
import samples.security.authentication.*;
 
/* This class supports simple delegation authorization functionality */
public class TestDelegationAuthenticator
 extends TestBase
 implements IDelegationAuthenticator
{
 private static final String __ident = "$Revision: 1.1.2.2 $";
 
 protected String domain = "Delegation";
 protected Field[] authenticationFields = new Field[0];
 //Indicates that it cannot be used to display a login screen
 
 public IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap, long timestamp)
 throws InquiraAuthenticationException
 {
 // Since we only want to test delegation, we provide 
 // no mechanism to authenticate a user
 // through a login screen.
 return null;
 }
 
 public IUser delegate(FieldValue[] userInfo, Principal principal, Map roles2PermissionsMap, long
timestamp)
 throws InquiraAuthenticationException
 {
 IUser rc = null;
 
 System.out.println("TestDelegationAuthenticator.delegate: called");
 
 String userId = getFieldValue(IFieldNames.FIELD_USER_ID, userInfo);
 System.out.println("TestDelegationAuthenticator.delegate: userId: " + userId);
 
 if(userId != null) {
 rc = buildUser(userId, domain, userInfo, roles2PermissionsMap, timestamp);
 }
 
 System.out.println("TestDelegationAuthenticator.delegate: returns: " + rc);
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

98 EXAMPLE: INTEGRATING A DELEGATION
 
 return rc;
 }
 
 public String getDomain()
 {
 return domain;
 }
 
 public Field[] getAuthenticationFields()
 throws InquiraAuthenticationException
 {
 return authenticationFields;
 }
 
 public static void main(String[] args) 
 throws Exception
 {
 IDelegationAuthenticator authenticator = new TestDelegationAuthenticator();
 
 System.out.println(authenticator);
 
 FieldValue[] userInfo = new FieldValue[]{ new FieldValue(IFieldNames.FIELD_USER_ID, args[0]),
 new FieldValue(IFieldNames.FIELD_DOMAIN, authenticator.getDomain(
)) };
 
 
 IUser user = (IUser)authenticator.delegate(userInfo, null, getRole2PermissionsMap(),
System.currentTimeMillis());
 if(user != null) {
 user.dump();
 } else {
 System.out.println("Delegation for " + args[0] + " failed");
 }
 }
}
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

99 EXAMPLE: INTEGRATING A DELEGATION
Example: Integrating a Delegation Detector
The example below can be found in the file DelegationDetector.java

package com.inquira.infra.security.impl;
 
import com.inquira.infra.*;
import com.inquira.infra.security.*;
import com.inquira.request.*;
 
/* This class implements a simple delegation detector */
public class TestDelegationDetector
 implements IDelegationDetector
{
 private static final String __ident = "$Revision: 1.4.4.1 $";
 
 protected String domain;
 
 public TestDelegationDetector()
 {
 }
 public FieldValue[] detectDelegation(Request request)
 {
 return new FieldValue[]{ 
 new FieldValue(IFieldNames.FIELD_USER_ID,
System.getProperty("user.name")),
 new FieldValue(IFieldNames.FIELD_DOMAIN, "INQUIRA") };
 }
 
 public FieldValue[] detectDelegation(Request request)
 {
 FieldValue[] rc = null;
 String userId = null;
 
 System.out.println(
"TestDelegationAuthenticator.detectDelegation: called");
 
 try {
 userId = request.getUserName();
 } catch(Exception ex) {
 //ignore since we don't have a valid user then
 }
 
 System.out.println(
"TestDelegationAuthenticator.detectDelegation: userId: " + userId);
 
 if(userId != null && (userId = userId.trim()).length() >
0) {
 rc = new FieldValue[] {
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

100 CONFIGURING A DELEGATION AUTHENTICATOR
 new FieldValue(IFieldNames.FIELD_USER_ID,
userId),
 new FieldValue(IFieldNames.FIELD_DOMAIN, domain
) };
 }
 
 
 System.out.println(
"TestDelegationAuthenticator.detectDelegation: returns: " + rc);
 
 return rc;
 }
 
 public static void main(String[] args) 
 throws Exception
 {
 IDelegationAuthenticator authenticator = new
TestDelegationAuthenticator();
 TestDelegationDetector detector = new TestDelegationDetector(
);
 detector.domain = authenticator.getDomain();
 
 System.out.println(detector);
 System.out.println(authenticator);
 
 Request request = new Request();
 request.setUserName(args[0]);
 
 FieldValue[] userInfo = detector.detectDelegation(request);
 
 IUser user = (IUser)authenticator.delegate(userInfo, null,
TestDelegationAuthenticator.getRole2PermissionsMap(),
System.currentTimeMillis());
 if(user != null) {
 user.dump();
 } else {
 System.out.println("delegation for " + args[0] + " failed"
);
 }
 }
}

Configuring a Delegation Authenticator or Detector
After creating your new delegation detector, add the name of the class to the Oracle Knowledge
configuration file as shown below:

 Locate the latest <number>.xml configuration file in the configuration folder:
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

101 CONFIGURING A DELEGATION AUTHENTICATOR
%APROOT%\development\content\data\config\default\<number>.xml

 Open the file and search for "<choices>".

 Add the <delegationDetector> element under <choices> as shown below. Replace
"TestDelegationDetector" with the name of your custom class and add a name element that
identifies the specific version.

<choices>
<delegationDetector name="test">
<class>com.inquira.infra.security.impl.TestDelegationDetector</class>
</delegationDetector>

 Define the delegationDetector in as the configured securityService by specifying the keyref
as shown below. Replace "delegationDetector[test]" with the name of your custom class and
version name.

<securityService>
<delegationDetector keyref="choices.delegationDetector[test]" />
</securityService>

 Your edited file should look similar to the one below:

<serviceConfiguration name="default"> 
<securityService>
<delegationDetector keyref="choices.delegationDetector[test]" />
</securityService>
<choices>
<delegationDetector name="test">
<class>com.inquira.infra.security.impl.TestDelegationDetector</class>
</delegationDetector>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 11

Creating an Action Plugin

This section deals with how to create a plugin for use within dictionary rules. The example,
Example: Creating an Action Plugin on page 102, implements a class that can be used to trigger
an action in a rule that calls the plugin. You can have the rule be called for every question, and
then implement your own custom condition.

After creating your custom plugin, continue by configuring it within the Oracle Knowledge
environment as explained in the section, Configuring an Action Plugin on page 104.

Example: Creating an Action Plugin
The example below can be found in the file ActionGeneratorPlugin.java.

In the first part of this example, we import the referenced packages and display the copyright
notices.

package com.CLIENT_NAME.inquira.action;
 
import com.inquira.dictionary.rules.userdata.AnswerPart
import com.inquira.dictionary.DictionaryObjectTypes;
import com.inquira.dictionary.answerlayout.AnswerPart;
import com.inquira.dictionary.answerlayout.FacetRestriction;
import com.inquira.dictionary.dictobjs.ActionRule;
import com.inquira.evaluator.Action;
import com.inquira.evaluator.ActionGenerator;
import com.inquira.evaluator.SetFacetRestrictionAction;
import com.inquira.infra.Execution;
import com.inquira.infra.InquiraException;
import com.inquira.intents.*;
import com.inquira.match.Matcher;
import com.inquira.match.SentenceMatcher;
import com.inquira.match.VariableInstantiation;
import com.inquira.match.expression.IMLExpression;
import com.inquira.nlp.Sentence;
import com.inquira.request.RequestContext;
 
/*
 * This class can be used to trigger an action in a rule that calls
 * this plugin. You can have the rule be called for every question, and
 * then implement your own custom condition below.
 */

Next, we implement the action plugin based on the ActionGenerator interface.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

103 EXAMPLE: CREATING AN ACTION PLUGIN
public class MyPluginActionGenerator
 implements ActionGenerator {
 
 /* This method is triggered when the plugin fires based on rules */
 public Action[] generate(RequestContext requestContext, AnswerPart answerPart,
 Sentence sentence,
 VariableInstantiation variableInstantiation, Map map) throws
 InquiraException {
 
 IntentService is = Execution.context().intents();
 Action[] actions = new Action[0];
 
 //Test for condition to trigger the action you want
 
 actions = new Action[1];

In this example, we set up a facet restriction as our rule-based action. By setting up and defining
your own action as actions[0] below, you can use this example to trigger other actions.

 /* Example
 * FacetRestriction fr = new FacetRestriction("\"CRID." +
 * contentRecordID.toUpperCase() + "\"", true);
 * actions[0] = new PluginExactSearchAction(answerPart, fr, "FACET" +
 * facetIML);
 */
 
 return actions;
 }
}

ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

104 CONFIGURING AN ACTION PLUGIN
Configuring an Action Plugin
After creating your action plugin, add the name of the class to the Oracle Knowledge
configuration file as shown below:

 Locate the latest <number>.xml configuration file in the configuration folder:

%APROOT%\development\content\data\config\default\<number>.xml

 Open the file and search for "<PluggableConsequences>".

 Under <PluggableConsequences> add a new section like the one shown below:

<Consequence name="Followup">
 <description>Module for recreating followup questions</description>
 <class> com.inquira.analysis.followup.FollowupActionGenerator </class>
 <parameter index="0"> type </parameter>
</Consequence>

 Enter the plugin name, description, class name, and parameter for the new plugin.The
parameter ("type" in this case), appears as text in a text box in the Workbench when you
choose the plugin.

 Once the plugin has been added to the configuration file, it appears as a selection in the Plugin
drop-down list when you set up a rule in the Dictionary Manager. For information on how to
set up plugins as answer actions for rules, refer to Advanced Features of Rules in the
Intelligent Search Optimization Guide.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 12

Creating a Custom Preference
Handler

This section describes how to set up a custom preference handler by creating a new Java class that
extends NamedHandler (see the example in Example: Creating a Preference Handler on
page 105).

After creating your custom preference handler, continue by configuring it within the Oracle
Knowledge environment as explained in the section, Configuring a Preference Handler on
page 106.

Example: Creating a Preference Handler
The example below can be found in the file PreferenceHandler.java

In the first part of this example, we import the referenced packages.

package samples.preferencehandler;
 
import com.inquira.request.*;
import com.inquira.infra.Execution;
import com.inquira.preference.*;
 
import java.util.regex.*;
import java.util.*;

Next, we set up the custom preference handler class by implementing the NamedHandler
interface.

public class SamplePreferenceHandler implements NamedHandler
{
 
 public RequestContext handle(RequestContext rc) throws HandlerException 
 {
 // Get parameters
 Properties prop = rc.getUserAgentRequestParameters();
 
 try {
 PreferenceService prefs = Execution.context().preferences();
 System.out.println("*** Got Preference ***");
 
 //Loop through the property names
 Enumeration e = prop.propertyNames();
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

106 CONFIGURING A PREFERENCE HANDLER
 while (e.hasMoreElements()) {
 String propName = (String)e.nextElement();
 System.out.println("*** Got prop: " + propName);
 System.out.println("*** " + propName + " has a value of: " + prop.getProperty(propName));
 
 //Assign a property value referenced by a context variable of the property name
 PreferenceValue pv = prefs.setPreferenceValue(propName, prop.getProperty(propName));
 }
 }
 catch(Exception ex) {
 System.err.println("!!! Error getting preferences! " + ex);
 }
 
 return rc;
 }
 
 public String getHandlerName()
 {
 return "Sample Preference";
 }
}

Configuring a Preference Handler
After creating the custom preference handler, add the name of the class to the Oracle Knowledge
configuration file as shown below:

 Locate the latest <number.xml> configuration file in the configuration folder:

%APROOT%\development\content\data\config\default\<number>.xml

 Open the file and search for <requests name="AnswerQuestion">.

 In the list of classes named <handlers>, add your preference handler class as index=1
renaming all the subsequent ones.
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

CHAPTER 13

Rendering Web Pages Using a
Custom Agent

This section presents an example of how to render web pages using a custom transformation tool.
The example is generic, in that it does not assume anything about the type of output you may want
to produce. It simply sets up the gateway, retrieves the data, and does a standard XSL
transformation.

In the example (Example: Rendering a Web Page Using a Custom Agent on page 107), we set
up a client (IClient) and initialize a connection through a SOAP gateway with the Oracle
Knowledge backend. Using a subclass (XMLAgent) of the class (Agent) used by Oracle
Knowledge, the example gets the request parameter that defines how the retrieved data is
presented in the Oracle Knowledge user interface, and continues by retrieving the data. Since
XMLAgent does not carry out the transformation included in Agent, the example continues by
transforming the returned XML (GIML) using the standard XSL transformation.

Prior to doing the transformation, the example sets up access to a DOM node. Using the DOM
node to access the returned XML data, you can substitute your own rendering algorithms to
produce output other than the standard HTML produced by Oracle Knowledge.

Example: Rendering a Web Page Using a Custom Agent
The source for the example below can be found in the file xmlui.jsp

In the first part of the example server page we set up error handling, display the copyright notice,
and import the referenced packages.

<%@ page errorPage="error.jsp" %>
<%--
/*
 * I n Q u i r a Copyright (c) 2002 - 2006 Inquira, Inc. All rights
 * reserved. Use or distribution without the express written consent of
 * Inquira, Inc. is not permitted and is prohibited by law.
 */
--%>
<%@ page import="java.io.*,java.util.*" %>
<%@ page
import="javax.xml.transform.*,javax.xml.transform.stream.*,javax.xml.transform.dom.*,org.w3c.dom.*"
%>
<%@ page import="com.inquira.infra.gateway.html13.*,com.inquira.infra.client.*" %>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

108 EXAMPLE: RENDERING A WEB PAGE USING A
Next, we set up a client object using the IClient interface and initialize a connection through a
SOAP gateway.

<%!
 
 private static IClient client;
 private static Object lockObject = new Object();
 
 static {
 client = null;
 }
 
%>
<% //Create an IClient object to communicate with the search back end
 synchronized (lockObject) {
 if (client == null) {
 System.out.println("Initializing Connection with InQuira Gateway");
 IClient configuredClient = null;
 Properties props = new Properties();
 
 // Modify the values below to adjust for your environment
 String soapurl = "http://hostname:port/inquiragw/servlet/rpcrouter;
 String soapurn = "urn:inquira";
 String timeout = null;
 
 // Create, configure, and connect the SOAP client
 configuredClient = new Client(); 
 props.setProperty(Client.URN, soapurn);
 props.setProperty(Client.URL, soapurl);
 if(timeout != null) {
 props.setProperty(Client.TIMEOUT, timeout);
 }
 
 try {
 configuredClient.setConnectionProperties(props);
 configuredClient.connect();
 } 
 catch(ClientException ex) {
 ex.printStackTrace();
 RuntimeException rex = new RuntimeException("Unable to connect to client.\nReason: " +
ex.toString());
 throw rex;
 }
 }
 
 client = configuredClient;
 }
 }
%>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

109 EXAMPLE: RENDERING A WEB PAGE USING A
Using the XMLAgent subclass of Agent, we get the request parameter that defines how the
retrieved data is presented in the user interface, and retrieve the data. Refer to the comments for
the switches below to find out what each parameter does.


<%
 // Create the XMLAgent that takes the HTTP request parameters
 // and headers and create an Inquira request, call the
 // IClient.process method, and return the Inquira
 // response in a DOM node.
 Agent agent = new XMLAgent(client, request, response, config, request.getSession(true));
 
 // Get the mode we are in from the HTTP request parameter
 // called "ui_mode"
 String mode = request.getParameter(Agent.HTTP_PARAM_MODE);
 Object node = null;
 if(mode == null || (mode = mode.trim()).length() == 0 || mode.equals(
Agent.HTTP_PARAM_MODE_INITIAL_SCREEN)) {
 // If there was no mode set or it was set to "initial_screen",
 // then we want to display the entry point
 // to the search application
 node = agent.processInitialScreen();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_QUESTION)) {
 // If mode is set to "question", then we are answering a
 // user's question
 node = agent.processQuestionMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_NAVIGATE)) {
 // If mode is set to "navigate", then we are processing a
 // user changing navigation parameters -
 // by clicking on the facet links
 node = agent.processNavigateMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_ANSWER)) {
 // If mode is set to "answer", then we are processing an
 // answer-based request, such as highlighting
 // or click-through tracking
 node = agent.processAnswerMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_FEEDBACK)) {
 // If mode is set to "feedback", then we are handling the
 // user rating the answers
 node = agent.processFeedbackMode();
 response.setStatus(204); // No Content response
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_PAGING)) {
 // If mode is set to "paging", then we are displaying the
 // prior, current, or next page of answers 
 // depending on the direction
 node = agent.processPagingMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_GETPAGE)) {
 // If mode is set to "get_page", then we get a static
 // page such as the search tips
 node = agent.processGetPage();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_LOGIN)) {
 // If mode is set to "login", then we process a login request
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

110 EXAMPLE: RENDERING A WEB PAGE USING A
 node = agent.processLoginMode();
 } else if(mode.equals(Agent.HTTP_PARAM_MODE_SEARCH_WITHIN)) {
 // If mode is set to "search_within", then we process a
 // search within a given document
 node = agent.processSearchWithin();
 } else {
 // We encountered an unsupported mode
 node = agent.processInvalidMode(mode);
 }

If we managed to retrieve some data, we continue by setting up a DOM node and doing the
standard transformation normally done in Oracle Knowledge. Use the DOM node to access the
returned XML and substitute your own transformation algorithms to generate output other than
HTML.

 
 if(node != null) {
 // If we got a response, we try to apply the standard XSL 
 // transformation to generate HTML
 DOMSource xslIn = new DOMSource((Node)node);
 StreamResult xslOut = new StreamResult(out);
 agent.assureTemplates();
 Transformer transformer = agent.getTemplate("QUESTION_ANSWER").newTransformer();
 transformer.setOutputProperty(OutputKeys.ENCODING, "UTF-8");
 transformer.transform(xslIn, xslOut);
 }
%>
ORACLE KNOWLEDGE INTELLIGENT SEARCH APPLICATION DEVELOPMENT GUIDE

	Preface
	About This Guide
	In This Guide
	Screen and Text Representations
	References to World Wide Web Resources

	Chapter 1
	The Oracle Knowledge User Interface
	The Personalized Response User Interface
	User Interface Processing
	Application Response Format
	The Parameters Section
	The Answers Section
	The Query Section

	Chapter 2
	User Interface Components
	The Main Template
	Main Template File Example

	The Global Layout Style Templates
	Basic Search Layout Display Example

	Request and Response Element Templates
	Global Configuration Parameters Template
	Sample Configuration Parameters File
	Request Element Templates
	Request Area Example
	Dialog Request Area Example
	Response Element Templates

	Global Elements and Utilities

	Chapter 3
	User Interface Elements
	Request Elements
	Response Elements
	Answer Display Features
	Answer Purposes
	Default Answer Purposes

	Answer Portlets
	Default Answer Portlets
	Promotions Portlet Example
	Act Now Portlet Example
	Learn More Portlet Example
	Definition Portlet Example
	Feature Content Portlet Example

	Chapter 4
	Customizing the User Interface
	Specifying the User Interface Layout
	Integrating the User Interface
	Customizing Style Elements
	Customizing General Style Elements
	Customizing Question Area Definitions
	Customizing Answer Area Definitions
	Customizing Sidebar Area Definitions

	Customizing Request Elements
	Customizing the Request Heading
	Customizing the Example Question
	Customizing the Question Box
	Customizing the Tips Link
	Customizing the Submit Button

	Customizing Response Elements
	Customizing the Question Echo
	Customizing the Answer Introduction
	Customizing Answer Headings
	Customizing the Answer Body Text
	Customizing the Answer Document Link

	Configuring Answer Purposes
	Adding Answer Purposes to the Application
	Customizing Answer Portlets
	Specifying Portlet Display Position
	Customizing Portlet Headings
	Customizing Portlet Answer Headings
	Customizing Portlet Answer Text
	Customizing Portlet Document Links

	Chapter 5
	Implementing Optional Features
	The Process Wizard User Interface
	The Process Wizard Answer
	The Step Display Area
	Modifying the Process Wizard User Interface

	Activating the Personalized Navigation User Interface Layout
	The Personalized Navigation User Interface Elements
	Personalized Navigation XSL Style Sheet Elements
	Personalized Navigation CSS Style Sheet Elements
	Personalized Navigation-Related XML Elements

	Implementing Direct Page Display
	Direct Page Display Example

	Implementing a Virtual Representative
	Implementing User Feedback Collection
	The User Feedback Portlet
	The User Feedback Comment Form
	The User Feedback Process
	Customizing the User Feedback Area Heading
	Customizing the User Feedback Rating Labels
	Customizing the User Feedback Comment Form
	Disabling the User Feedback Feature

	Implementing Click-Through Logging
	Highlighting Answers Within Documents
	Enabling Highlighting within Answer Documents
	Specifying HTML Highlighting Style Attributes

	Managing Multiple Languages in the User Interface

	Chapter 6
	Creating a Custom Content Crawler
	Example: Creating a Database Web Crawler
	Example: Configuring the Database Web Crawler
	Configuring a Custom Crawler
	Example Crawler Settings

	Chapter 7
	Creating a Custom Document Preprocessor
	Example: Creating a Document Preprocessor
	Configuring a Custom Document Preprocessor
	Supporting Multiple Naviagtion Applications

	Chapter 8
	Creating a Custom Task
	Example: Creating a Simple Custom Task
	Example: Handling Argument Parsing
	Example: Handling Document Count and Progress Updates
	Example: Handling User Task Interruptions
	Configuring a Custom Task

	Chapter 9
	Creating a Custom Authentication Interface
	Example: Creating a Simple Custom Authenticator
	Example: Simple Unit Testing of a Custom Authenticator
	Example: Configuration-based Test for IAuthenticator Objects
	Configuring a Custom Authenticator

	Chapter 10
	Integrating an External Authentication Application
	Example: Integrating a Delegation Authenticator
	Example: Integrating a Delegation Detector
	Configuring a Delegation Authenticator or Detector

	Chapter 11
	Creating an Action Plugin
	Example: Creating an Action Plugin
	Configuring an Action Plugin

	Chapter 12
	Creating a Custom Preference Handler
	Example: Creating a Preference Handler
	Configuring a Preference Handler

	Chapter 13
	Rendering Web Pages Using a Custom Agent
	Example: Rendering a Web Page Using a Custom Agent

