ORACLE

Oracle® Fusion Middleware

Developer’s Guide for Oracle Access Management
11g Release 2 (11.1.2)

E27134-03

November 2012

This guide explains how to write custom applications and
plug-ins to programmatically extend access management
functionality using the SDKs and APIs available with Oracle
Access Management.

Oracle Fusion Middleware Developer's Guide for Oracle Access Management, 11g Release 2 (11.1.2)
E27134-03

Copyright © 2000, 2012 Oracle and/or its affiliates. All rights reserved.

Primary Author: Trish Fuzesy

Contributing Author: Kevin Kessler, Michael Teger

Contributor: Toby Close, Vadim Lander, Peter Povinec, Umesh Waghode, Jeremy Banford, Sreehari
Narasimhaiah

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PPEIACE ...ttt
What’s New in Oracle Access Management?..................ccoocooninrneieeens
Partl Introduction

1 Developing with Oracle Access Management Components

1.1 About Oracle Access Managementccccueioiiiiiiiiiiciceccce s
1.2 ADbout ACCESS MANAGETocvviiiiiiiiiiirr s
1.3 About Mobile and Social........c.cccccciiiiiiic e
1.4 About Identity Federation ...
1.5 About Security TOKEN SEIVICEccciuiiiiiiiiiiiiiiiiiicres s
1.6 System Requirements and Certificationccccceevvvrrnnnnnnnrrnrre e

Partll Developing with Access Manager

2 Developing Access Clients

2.1 About Developing Access CHENtS ..ot
211 About the Access SDK and APIS ...
2.1.2 About Installing Access SDKcccccciuiiiiiiiiiiiics s
2.1.3 About Custom Access CLENtS.........coiviiiiiiiiiiiiiccc e
2.1.3.1 When to Create a Custom Access Client...........ccccoeviiiiiiiiiiiiiiiiiiccns
2.1.3.2 Access Client ATChiteCtUIe ..o
2.1.4 About Access Client Request Processingcocceueieuriiiiiinicieiiccecee
2.2 Developing Access CLENLS ..o
221 Structure of an AcCesSs CLENTc.ccovviueirinirieiiicecect et
2.2.2 Typical Access Client Execution FIOW ...,
2.2.3 Sample Code: Simple Access Client...........c.oooeruiieiiiiiieiiiicc
224 Annotated Sample Code: Simple Access Client.........cccccovvvivivirivininnnnniniinne,
2.2.5 Sample Code: Java Login Servilet..........ccoooiiiiiiiii
2.2.6 Annotated Sample Code: Java Login Servlet..........coooooiiiiiiii
227 Sample Code: Additional Methods...........c.cccccoeiiiiiiiiiiiiccce
2.2.8 Annotated Sample Code: Additional Methods...........ccccoooeeiiiiiiiiiiiiii,
229 Sample Code: Certificate-Based Authentication in Java.........ccooeeoiiiinnn
2.3 Messages, Exceptions, and LOZEINg.........cccooveueiiiimiieiiiiiecc s

XXiii

2.3.1
2.3.2
2.3.3
2.4
2.41
242
2.5
2.5.1
252
2.5.3
254
2541
2.5.4.2
2.6
2.6.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2
2.7.21
2.7.3
2.7.3.1
2732
2.8
2.8.1
2.8.1.1
2.8.2
2.8.3
2.8.3.1
2.8.3.2
2.8.3.3
284

IMESSAZESovvviiiiiieitt s 2-30
EXCOPHONS ..ottt 2-30
LOGZING ..o s 2-31
Building an Access Client Program............coccceuoiiiiieiiiiciccec s 2-32
Setting the Development Environment ..o 2-33
Compiling a New Access Client Programc.ccccccccceiiiiiiciceecceeccenenens 2-33
Configuring and Deploying Access CLents..........coccueiieieiiiieiiniccec 2-33
Task Overview: Configuring and Deploying an Custom Access Client................... 2-34
Configuration REGUITEMENTSccccceueuiiiiiiiiiiiiiiiiccccececeeeeeeee s 2-34
Generating the Required Configuration Files ..o 2-35
SSL Certificate and Key Filescoooiimiiiiiii 2-36
Simple Transport Security Modeccccociiiiiiiiiiieiceeceeceeeeeeeeeees 2-36

Cert Transport Security Modeccoeuiiiiiiiiiii e, 2-36
Compatibility: 11g versus 10g Access SDK and APIs...........ccooooiiiiiiiiiiiiccee 2-38
Compeatibility of the 11g Access SDKcccceeiiiiiiniiiieeceeeeeeeeeeeeeeeeeeees 2-38
Compatibility of 10¢ JNI ASDK and 11g Access SDK ..., 2-39
Deprecated: 10g JNIT ASDKccoooiiiiiie s 2-39
Migrating Earlier Applications or Converting Your Code........ccccccceeuvvviiiinnnnnnennne. 2-39
Modifying Your Development and Runtime Environmentcccoocueviineinnnnn. 2-40
Migrating Your Application.........ccooocioiiiiii e 2-40
Configuration Specific to Migrationcccococeceeeninnieicrnneerereeecececeaes 2-40
Converting Your Code ... 2-42
Understanding Differences Between 10¢ JNI ASDK and 11g Access SDK....... 2-42
Converting Code.......c.coiiiiiieceee e 2-43

Best PTactiCescoovvviiciiitctc e 2-46
Avoiding Problems with Access CLients ... 2-46
Thread Safe Code.........coviiiiiiiiiii 2-46
Identifying and Resolving Access Client Problems.............cccooooiiiiiiiiiiiiicne 2-47
Resolving Environment Problems...............cooiii 2-47
Java EE CONEAINETSeeveeeieiieeieieeeetesceiesteee st se st steesee e eeessesseessessnessesssessesnsens 2-47

Oracle WebLOGIC SEIVETc.coviuiiiiiiiicici e 2-48

Other Application SEIVETS.........ccccciiiiiiiiiiiiiiiic s 2-48

Tuning for High Load Environment.............cccccccceiiiiiiiiiniccceceeeeeeeeeeees 2-49

3 Developing Custom Authentication Plug-ins

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.4.1
3.2.4.2
3.2.4.3
3.2.4.4

Introduction to Authentication PIUG-INScccoiiiiiiiiiiiiicccceeeeeceeeneeeeeeeenas 3-1
About the Custom Plug-in Life Cycle.........ooviiiiiii 3-3
About Planning, the Authentication Model, and Plug-ins............ccccoovevnivirininnnnnn. 3-4

Introduction to Multi-Step Authentication Framework...........cccocoevvvininnnnnnnnnene. 3-6
About the Multi-Step Framework ... 3-6
Process Overview: Multi-Step Authentication.............ccooeeeiiiiinie, 3-7
About the PAUSE State.........cccocoiiiiiiiiiiiiics s 3-8
About Information Collected ... 3-8

UserContextDatacoviiriiiiiiiiiiiieeeee s 3-8
UserActionConteXt........ooiiviiiiiiiii s 3-9
USEIACHON ...ttt 3-9
UserActionMetaDatacccocoiviiiiiniiiniiniiccce e 3-9

3.3 Introduction to Plug-in Interfacesccoeevviiiiiiiiiiic 3-10

3.3.1 About the Plug-in Interfacesooooeeiiiiiiiiii 3-10
3.3.1.1 GenericPIUGINSEIVICEc.cuiuiiiiiiiciiccc s 3-10
3.3.1.2 AUthnPluginService ...t 3-10
3.3.2 About Plug-in Hierarchies...........cccooioiioiiiiic e 3-11
3.4 Sample Code: Custom Database User Authentication Plug-incccccccceevvivncnnene. 3-13
3.4.1 Sample Code: Database User Authentication Plug-in...........cccooeueiiiiiicnnn 3-13
3.4.2 Sample Plug-in Configuration Metadata Requirements............c.ccoooeeiiiiiiiiinnnn 3-16
3.4.3 Sample Manifest File for the PIUg-incccccccccoiiiiiiiiiiicirrccceecnreecnes 3-18
3.4.4 Plug-in JAR File Structure ... 3-19
3.5 Developing an Authentication Plug-in.........cccooiiiiiiic 3-19
3.5.1 About Writing a Custom Authentication Plug-inccccocoevvinvniinniiiine 3-19
3.5.2 Writing a Custom Authentication Plug-in..........oooooeioiiiie 3-20
3.5.3 Error Codes in an Authentication Plug-Incoooiii 3-21
3.5.4 JAR Files Required for Compiling a Custom Authentication Plug-in...................... 3-21

Developing Custom Pages

4.1 Introduction to CUStOM Pagesccococuiuiiiiiiiiiciccccceee et 4-1
4.1.1 About Developing Custom Pagescccoovrieiiiiiciniiciccc s 4-1
4.1.2 About Authentication and Custom Pagescccoiiiiiiiiiii, 4-2
4.2 Developing Custom LOgin Pagesccccccvuerruiiiiiiririiiiereecrreee e 4-3
4.21 Creating a Form-Based Login Page...........cccooooiiiiiiiiiii 4-3
42141 Returning OAM_REQ TOKEN.........cccouiiiiiiiiiiiiiieiiinetcie e 4-4
4212 Returning the End Point........ccccccciiiiiiiiiiicececree e 4-4
4.2.2 Page Redirection Process ...t 4-4
4.3 Developing Custom Error Pages ..o 4-5
4.3.1 Process Overview: Creating a Custom Error Pagecccoviiiiiiiiinniiinninnn, 4-5
4.3.2 Standard Error Codes...........ouiiiiiiiiiiic s 4-5
4.3.3 Default Page LoCationscoccueieioiiicieiiccie e 4-6
4.3.4 Security Level Configurationccccccccuciuiiiiiciiiniiicieeeceeeeeeeeeeeeeees e 4-7
4.3.5 Password Policy Validation Error Codes..........oooemiiiiiiiiiiiiciiicicce 4-8
4.3.6 Secondary Error Message Propagationccccccociiiiiiiiiiiiiccccecceens 4-9
4.3.7 Retrieving Error Codes ...t 4-10
4.3.71 Code SAMPIES ...t 4-10
4.3.7.2 Retrieving Password Policy Error Codes.........ccccoeviiiiinniniiiiciniciniiiccccne, 4-11
4.3.7.3 Password Policy RUIES........c.cciuiiiiiiiiiiiciccccccccccceee s 4-11
4.3.8 Error Data Sources SUMMATYcccooirieiiiiiiieieicicie e 4-12
4.4 Developing Using the Detached Credential Collectorococoeiiviiiiniiiiiiice 4-12
441 Detached Credential Collector Considerations.............cocouvviviiiereiniinniicceeinens 4-13
4.4.2 Process Overview: Creating a Form-Based Login Page Using DCC......................... 4-13
4.5 Deploying the Custom Login Page ... 4-14
4.6 Programmatic AUthentiCation...........c.cociiiiiiiiiiiiiiceeecceee s 4-14
4.6.1 Using mod_0SS0 AGENL........cccoeuiiiiiiiiiiiiiiiiiicc s 4-14
4.6.11 OSSO T0G weneevmiriiicieirirttice ettt 4-14
4.6.1.2 11 OAM SEIVET ...ttt 4-14
4.6.1.3 Process Overview: Developing Programmatic Clients...........cccccoooirieieiinnnnn. 4-15
4.6.2 Using Unsolicited POSt..........cccccciiiiiiiiiiiiiiiiccicccssn s 4-15

4.7 Setting Custom OSSO Cookies After Authentication............cooeeueveiiiciiiiiiii

5 Managing Policy Objects

5.1 Introduction to Policy Administration APL..........ccoouoiiiiiiiiiic e
5.1.1 Access Manager Policy Model ..o
5.1.2 SECUTILY MO L ...
5.1.3 ReSOUICE URLSuouiiieieiiietetcc ettt
5.14 URL Resources and Supported HTTP Methods ..o,
5.1.5 Error Handlingccooeiiriicrereeeeene et
5.2 ComMPatibIlitycueviieeceei e
5.3 Managing Policy ODJects........cooiiuiiiiiiciiec e
5.3.1 HTTP MethOdS ..o
5.3.2 Media TYPEScvviieiiii e
5.3.3 Resources SUMMATYccccooeieiiiiiiiiii s
5.4 EXQIMIPIES ...ttt
5.4.1 Retrieve Application DOmains. ...
5.4.2 Create a New Application DOmain.........cccooooiriiieiiiiiciiiiiceece s
5.4.3 Get All Authentication Schemes...........ccooviiiiiiiiiiii s
54.4 Create a New Authentication Scheme...........c.ccccooeiiiiiiiiiii
5.4.5 Get a Particular Authentication Scheme ...
5.4.6 Get All Resources in an Application Domain..........cccccoeeeciceicccceeeceeeceenenens
5.4.7 Create a Resource in an Application Domain ...,
5.4.8 Get All Policies in an Application Domain...........ccoceeeiiiiiicicece
5.5 CHENE TOOINE ...ttt ees

6 Developing an Application to Manage Impersonation

6.1 About IMPersonation ...
6.1.1 Impersonation Concepts and Terminologycccceeuiieieiniicieieiicieeeec e
6.1.2 Impersonation Grant SYNtaX ...
6.1.3 Impersonation Trigger Invocation Using the SSO Servicecccoeeueuvicicvvicnnnnnne
6.1.4 Triggering Impersonation Without API Abstractionccccoeeiieeiniicieiinninne,
6.1.5 Impersonator Identity Communication During Impersonation Sessions...................
6.2 Configuring Impersonation SUPPOTTccccccueuriiiiiiieiririiierceceecrreee e
6.2.1 Configuring Impersonation Using oam-config.xmlc...ccoooeeiiiiiiiiiii,
6.2.2 Configuring Impersonation Using idmConfigTool............cccccoeiiiiiiiiiiiiiiienns
6.2.3 Configuring the Authentication Scheme............ccccccoiiiiiiiiiiiicceceeee
6.3 Testing SSO Login and Impersonation..............coceeicieciicieeeccee s

Part Il Developing with Mobile and Social

7 Developing Applications Using the Mobile and Social Client SDKs

7.1 Before you Begin ...
7.2 Introduction to Developing Mobile Services Applicationscccocoeueveivicereiniceeneienen.
7.2.1 Building Applications With User Profile SEIrvicesccccocovvvrrnrennnnnnencenerecnee
7.3 Introduction to Developing Internet Identity Services Applications...........ccccceeveviiiviiennns

vi

8 Developing Mobile Services Applications with the Java Client SDK

8.1 OVEIVIEW ..ottt
8.2 Invoking Authentication Services With the Java Client SDK...........cccccceeviiinnnnnnnene.
8.2.1 Getting Started ...
8.2.2 Create a Client TOKENcccociiiiiiiiiiiiiiiic s
8.2.3 Create a User TOKEN ..o s
8.2.4 Create an Access TOKEN ..o
8.2.5 Validate a Client TOKeN..........ccccoiiiiiiiiiiiiiiii s
8.2.6 Validate a User TOKEeNccooeviiiiiiiiiiiii s
8.2.7 Perform a User Lookup Using the User Token............ccooeueiiiiiiiiiiiiciiice
8.2.8 Delete the Client TOKEN..........cccccoiiiiiiiiiiiiiiii s
8.3 Invoking User Profile Services with the Java Client SDKcccccooivvviinnnnnrncenes
8.3.1 Working with Peoplecooiiiii
8.3.1.1 Getting St UP ..o
8.3.1.2 Creating @ USeTccoviiiiiiiiiiiii s
8.3.1.3 Reading @ USETcoccueiiieiiiiiici e
8.3.14 Updating @ USer.......ccuiiiiriiec i
8.3.1.5 Deleting @ USET ..ottt
8.3.1.6 Searching for @ USeTcccuovriiiiiiiiiiicicc s
8.3.1.7 Retrieving User Attributes and Validating the Resultsccccoooiiiin,
8.3.2 Working With GIOUPS ..ot aeees
8.3.2.1 GettiNg SEt UP ..vcvviiieiiec
8.3.2.2 Creating @ GIOUPcccviieicieicicicicicc s
8.3.2.3 Reading @ GIOUPccceueueiiiiiiiiiiciciccieceecee e
8.3.2.4 Updating @ GIOUPcceveveveiiiiiiieicicieeeec s
8.3.2.5 Deleting @ GIOUPccocueueiiiieiieiecice e
8.3.2.6 S€arching @ GIOUPccccocueuiuiiuiuiiiiceeieieeice et aeees
8.3.2.7 Searching Groups With Paging Support........cccoriiiiiiice,
8.3.2.8 Adding a User t0 @ GIOUPccoveurueiiiicieieiice e
8.3.2.9 Getting Group Membership INfo ...
8.3.2.10 Searching for a Member Within a Group........ccoouoieeiiiiiniiincc,
8.3.2.11 Removing a Member From a Group........ccccccccveueeieciiiiiniiiniicnicnccesceeeeenes
8.3.2.12 Assigning Group OWNETShip........cccccciciiiiiiiiiineceeeeceeeeeeeeeeeeeeeeees
8.3.2.13 Getting Group Ownership INfo.........cocoviiiiiiiiii,
8.3.2.14 Searching for the Owner of @ GIOUP........cccceiiiiiiiiiiiiiiicccs
8.3.2.15 Removing a Group OWNETcccoviviiiiiiiiniiiiiccc s
8.3.2.16 Adding a Group (or a User) to a Group Using addMemberOf
8.3.2.17 Getting the Membership of a Group Using getMemberOfc.ccccccueuneeee
8.3.2.18 Searching a Group Using searchMemberOf...............cccccceiiiiinniinniiiienes
8.3.2.19 Removing a Group (or a User) from a Group Using deleteMemberOf.............
8.3.2.20 Assigning Group Ownership Using addOwnerOf ...
8.3.2.21 Getting Group Ownership Info Using getOwnerOf ...
8.3.2.22 Searching for the Owner of a Group Using searchOwnerOf..............cccceueneee.
8.3.2.23 Removing a Group (or a User) from a Group Using deleteOwnerOf
8.3.3 Working With Organizations.............oeiiiiiiiciiiiceeeeeee e
8.3.3.1 Getting Set UP «.vvevieieciieecec
8.3.3.2 Creating Helper UtIItIEscccccoiiiiiiiiiiiiiiccccecces

vii

8.3.3.3 Verifying @ Managercoccueiiiuiieieiiice et 8-17

8.3.3.4 Verifying Direct RePOIts........coooieiiiiiiiiiicec 8-17
8.3.3.5 Retrieve All Reports Using Scope=All Feature............ccccccoeeuiiiccciccccccnenne. 8-18
8.3.3.6 Retrieve the Manager Chain Using Scope=toTop Feature.............ccccccceuvvvvninnnnn 8-18
8.3.3.7 Retrieve Report Details Using Pre-Fetch Featurecccooooiii, 8-19
8.3.3.8 Retrieve Manager Data using the Pre-Fetch featurecccoooviiiiinne. 8-19
8.3.3.9 Deleting a Report From the Managerccoooviiiiiicicieicccee, 8-20
8.3.4 Searching With Paging SUppOrtccoouiiiiiiiii 8-20
8.4 Invoking Authorization Services With the Java Client SDK ... 8-21

9 Developing Mobile Services Applications with the iOS Client SDK

10

viii

9.1 Getting Started With the iOS Client SDK..........cccccoiiiiiiiiiiiiiiecceeeeeceeeeeeeeeennes 9-1
9.1.1 Getting Started Using the iOS Client SDK With XCode ..o 9-2
9.2 Invoking Authentication Services With the iOS Client SDKccccccoeviiiinninnninine. 9-2
9.3 Invoking HTTP Basic Authentication With the iOS Client SDKccccocovvvvvvninenence. 9-5
9.4 Invoking User Profile Services With the iOS Client SDKc.cccooooiiiiiiiiie 9-6
9.4.1 Working With People..........ccccoiiiiiiiiiiiiiiiiiiis 9-6
942 Working With GIOUPS ...t 9-7
9.4.3 Working With Organizations............cccoerieiiiiiiic e, 9-7
9.5 Using the Credential Store Service (KeyChain)..........cccooooiiiiiiiiiiice 9-8
9.6 Invoking the Mobile Single Sign-on Agent APPc.cccovvvevrrrernnninrrrereses e 9-9
9.6.1 Invoking the Mobile Single Sign-on Agent App From a Web Browser 9-9
9.7 Invoking Webgate Protected ReSOUICEScc.cvoviiuiiiiiiiiic 9-10
9.7.1 Understanding the OMRESTRequest API FIOWcccccococcuiiiiiiicccccccicccnnee 9-11
9.8 Using the iOS SDK to Create a Custom Mobile Single Sign-on Agent App.................... 9-12

Developing Applications Using the Internet Identity Services Client SDK

10.1 Before you Begin ... 10-1
10.2 Introduction to Developing Internet Identity Services Applications.........c.ccccccoeeueinnee. 10-1
10.2.1 About the Internet Identity Services Client SDKcccccccoeieiiiiiiicciciceene 10-2
10.3 Getting the List of Identity Providers for an Application..........c.cccoooeueveiiiicieiiiinieinne. 10-2
10.4 Integrating Internet Identity Services With a Web Application Running on a Server.. 10-6
10.4.1 Defining the Web Application on the Mobile and Social Servercccccccccueueeeee. 10-7
10.4.2 Integrating the Internet Identity Services Login Page With the Web Application. 10-7
10.4.2.1 Adding the Pre-built Internet Identity Services Login Page...........ccccceceueurnnennn 10-7
10.4.2.2 Building a Custom Login Page..........cccccoovvuviiiriirnniiiiiircccrreeeeeeeeeeeeeas 10-9
10.4.3 Handling User Registrationcoocouoiirieieiiiiiiicce e 10-10
10.4.3.1 Using a Custom User Registration Pagecccccoceovvvviniiininiiniiiiccnns 10-11
10.4.3.2 Using the Mobile and Social Built-in User Registration Page............ccccccccec..e. 10-12
10.4.4 Handling the Final Return ReSponse..........ccoccueviiieieiiicieiiiccec e 10-13
10.4.4.1 Secured Attribute Exchange (SAE) Token Response Attributes 10-14
10.5 Integrating With an Access Manager Protected Web Application..........c.ccccccucucuennnnne 10-15
10.6 Integrating Internet Identity Services With a Mobile Application............cccceveiruneeee. 10-15
10.6.1 Defining the Mobile Application on the Mobile and Social Server......................... 10-15

11 Extending the Capabilities of the Mobile and Social Server

11.1 Create a new Authentication Services Provider for Mobile Services..........c.cccovrurunnnne. 11-1
11.1.1 Developing the Custom Authentication Service Providerccccccocvciiiicnnnne 11-1
11.1.1.1 Implementing the TokenService Interface ..o, 11-1
11.1.1.2 Extending the MobileCompositeTokenServiceProvidercccoooeeiennnen. 11-2
11.1.2 Building the Custom Authentication Service Provider...........cccccccevevvinnvncrnenenes 11-2
11.1.2.1 To Build the Custom Authentication Service Providerccccoevvviiinnnnnnnn. 11-2
11.1.3 Deploying the Custom Authentication Service Provider ..o, 11-3
11.1.3.1 To Deploy the Custom Authentication Service Provider-..........ccccccccccciennnne 11-3
11.2 Create a new Identity Service Provider for Internet Identity Servicesc.ccccoeeunee.. 11-3
11.2.1 Developing the Custom Identity Service Provider..........ccocooeieiiiiriiiiiniciciice 11-4
11.2.2 Building the Custom Identity Service Providercccocoviivnnininnnincnes 11-4
11.2.21 To Build the Custom Identity Service Provider...........cccccooiriiiiiniciiicne, 11-4
11.2.3 Deploying the Custom Identity Service Provider..........cccocoooiiiiiiiiiiniiic 11-4
11.2.3.1 To Deploy the Custom Identity Service Provider.........ccccoceevvveinnnvecnnennes 11-4

12 Sending Mobile and Social REST Calls With cURL

Request and Response Header Attribute Name Reference.........ccccccceuveiviiicniiccnnnne. 12-2
X-IDAAS-REST-VERSION ..ottt 12-3
Where to use This Attribute..........cccoociiiiiiiiniii 12-3
ATIbULE TYPe .. 12-3
Sample CURL Commandccceueiiiieieiiiie e 12-3
COMIMENES ...t 12-3
X-IDAAS-SERVICEDOMAIN........ccouriiiiiiniiiiniinii s ssscnns 12-4
Where to use This Attribute.........ccocooiiiiiiiii 12-4
ATIDULE TYP@ e 12-4
Sample CURL Commandccccceueueeeuiiiuiiniririeieieeeeeceieeeeeeeeeeeeeeeeeeseeee e 12-4
COMMENES......coiiiiiiiiiiii s 12-4
X-IDAAS-REST-AUTHORIZATIONcounimiiniiiiiiiiisncsssnns 12-5
Where to use This Attribute ... 12-5
ATIDULE TYPE...viiiiiiiiiiciic s 12-5
Sample CURL Commandsccceeveviiiiniiiiiniiiniiiciceeeesese s 12-5
COMIMENES ...t 12-5
AUTHORIZATION ..ottt 12-6
Where to use This Attribute..........cccoociiviiiiiiiiii 12-6
ATIbULE TYPe .. 12-6
Sample CURL Commandcccccoeueuviiiiininininiiiiiiiiiiineceeseeeeeeeseesees 12-6
COMIMENES ...t 12-6
X-Idaas-Rest-SUbJect-TYPe......ccccvuvuriririririiicrecceeeeeee s 12-7
Where to use This AtribULe........cccoveiiniiiiiicccccc e 12-7
ATIDULE TYP@ v 12-7
Sample CURL Commandccccceueueuriiiiuiininiiiiiieeeeieeeeeeeeceeeeeeeeeeeeeeeeeee e 12-7
COMUMENES ...ttt 12-7

X-Idaas-Rest-Subject-Valueccccovvviiiiiiiiiiniiiiiiiiiiicccs 12-8

Where to use This Attribute........cccooviviiiiiiiii, 12-8
ATIDULE TYPE..oiviiiiiiiiiii s 12-8
Sample CURL Commandccccooeveveiiiniiiiiiiiiiiiiccieeeeeesseeseeens 12-8
X-Idaas-Rest-SUDJECtcccuiuimiiiiiiiiicccccece s 12-9
Where to use This Attribute.........cccccooeiiiiiiiiii 12-9
AHTIDULE TYP@ et 12-9
Sample CURL Commandccccceueueueiiieiiieiniieicieireeeeeeeeieeeeeeeeeeeneeeeeeeeeeeeeeeees 12-9
X-Idaas-Rest-Subject-Username ..o 12-10
Where to use This Attribute.........ccccooviiiiiie 12-10
Aribute TYPe ..o 12-10
Sample CURL Commandccccouoiiiiiieiiiiicieiecciec et 12-10
X-Idaas-Rest-Subject-Passwordc.cccoeeviiiniiiiiiiiiiiis 12-11
Where to use This Attribute.........cccooovviiiiiiiies 12-11
ATIDULE TYPE vt 12-11
Sample cURL Commandccoouvvviiiinininininiiiiiiiicccccccscscncnsene 12-11
X-Idaas-Rest-New-Token-Type-To-Createcccviviiiiiiiniciiiiccccecenenes 12-12
Where to use This Attribute.........cccccooeviiiiiiiii 12-12
ATIDULE TYP@ v 12-12
Sample CURL Commandcocoouverrerininininininiiiiccccc e 12-12
COMIMENTS ...ttt 12-12
X-Idaas-Rest-Application-Contextc.coovuviviiiiiiiniiiiiiccccccines 12-13
Where to use This Attribute.........cccoooviviiiiiiiiies 12-13
ATIDULE TYPE e 12-13
Sample cURL Commandccccouvvviviiininiiiniiiiiiiiiccccciccs e 12-13
X-Idaas-Rest-Application-RESOUICEccoviiiiuieiiiiiiicccccccccccc e 12-14
Where to use This Attribute........ccccoovviiiiiiiii 12-14
ATIDULE TYPO vt 12-14
Sample CURL CommMandcocvuvirrerinininininiiiiiccccccccccecsceceeecsesenenes 12-14
X-Idaas-Rest-User-Principal.........cccccoviviiiiiiiiiiiiiiiiicccccccccceines 12-15
Where to use This Attribute.........ccccooviiiii 12-15
Atribute TYPe ..o 12-15
Sample CURL Commandcccovuvivininininininiiiiiicicccccccncccscssnnes 12-15
X-Idaas-Rest-Provider-Type........c.cccoriioiiiiiiiiiiiicic e 12-16
Where to use This Attribute.........cccooooviiiiiiiiies 12-16
ATIDULE TYPE..oviiiiiiiiiiicicic s 12-16
Sample cURL Commandccovvviriininininininiiiiiicccs e 12-16
Mobile and Social REST Security Filter Reference..........cccccococvcuieciceicicieiccnccnenn 12-17
Authorize With UIDPASSWORDcccoiiiiiniirireeiseeceeeenie e 12-18
CURL Commandccoouvivieiiiiiniiiiiiiiiii s 12-18
Expected OULPUL.....c.ovoviiiii e 12-18

COMUMEIIES ..ttt ettt e e e ettt e e e s e s eaaaeeeeeseabaseeessensaseeessessanteessesnnnaeeeessns 12-18

Authorize With HTTP BaSiC....cocouiiiouiiiciiieeeieeeeeeeeeeeee ettt eeae e senaessenaee e 12-19

CURL COMMAN ..ttt ettt ettt ettt et e steneas 12-19
Expected OUtPUL......ccovvviviviiiiiiiii e 12-19
COMIMEIES ...ttt ettt b bbbt et e et et e bt ebeebeebeeaes 12-19
Authorize With an Access Manager TOKeNccccovvvviiinnnnnnnncceeecne 12-20
CURL COMMANA ...ttt sttt ettt eee s 12-20
Expected OUtPUL......coveviiiiiiiii 12-20
COMIMENES ...ttt ettt bbbt sttt et ettt e bt ebesaeseeaes 12-20
Mobile Services REST Reference: Authentication and Authorizationc..c.cocccneee. 12-21
Authentication for a Client TOKeN.........ccooeiiiiiiiiinieeeee e 12-22
CURL COMIMAN ..ttt ettt ettt sttt ettt ne st e 12-22
Expected OUtPUL.......cuoiiii 12-22
COMIMEIES ...ttt ettt b bbb bbb e et e et e bt ebe s b sbenes 12-22
Authentication for a UsSer TOKENccvueiriiirieirieirereeie et 12-23
CURL COMMANA ...utiiiiieiiiiitieiete ettt ettt et e eee e 12-23
Expected OUtPUL.......coveviiiiiiiiii 12-23
COMIMENES ...ttt ettt ettt b bbbttt ettt et ebeebe s bt seenen 12-23
Authentication for an AcceSs TOKENcccceciririiiiriirieieseetee ettt 12-24
CURL COMMANA ...ttt ettt sttt et 12-24
Expected OULPUL ..o 12-24
COMMUIMEINES ..ttt sttt b ettt et b et s bt et sbeebe s bt e besbeeaenbeens 12-24

Get or Validate a (Client) TOKENcccoeieiiiriniieneseeeeeteeee e 12-25
CURL COMMAN ..ttt ettt ettt ettt et e sseneas 12-25
Expected OUtPUL ..o 12-25
COMIMEINES ...ttt ettt b bbbt e st et e et et e bt ebe s b sbetes 12-25
AUTNOTIZATION 1.ttt sttt sttt ettt st be e ebens 12-26
CURL COMMANA ...ttt sttt et eeas 12-26
Expected OUtPUL.......coviiiiiiiiii e 12-26
COMIMEINES ...ttt ettt ettt ettt b et b et sttt et eae e bt ebe s b seeten 12-26
Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens........ 12-27
Create a Client Registration Handle for a Mobile Single Sign-on Agent App 12-28
CURL COMMANG ..ttt ettt ettt st sttt sttt nestenea 12-28
Expected OUPUL.......coviviiiiiiiii e 12-28
COMIMEIES ...ttt ettt b bbbt ettt et et e bt ebe s b sbeten 12-28

Create a Client Registration Handle for a Mobile Single Sign-on Client App (User
Name Scenario) 12-29

CURL COMIMANA ...ttt et ee e e et e e s aaeeseaaeeesaeessaaneesnaeens 12-29
Expected OUtPUL.......coveviiiiiiiii 12-29
(@) 51005 0 1<) o1 = J TR 12-29

Create a Client Registration Handle for a Mobile Single Sign-on Client App (User To-
ken Scenario) 12-30

161 8] 20 @5 415 4 = 1 4 Vo AN 12-30

xi

Xii

Expected OUtPUL......ouoviii 12-30

COMMENES.....ooveviiiieiee e 12-30
Create a Request for a User TOKeNcccooooiiiiiiiiiiiicccc 12-31
CURL Commandccccouvuvirininiiiiiiiiiiincs s 12-31
Expected OUtpUL.......cccoiiiiiiiiiiii e 12-31
COMIMENTS ..ottt 12-31
Create a Request for an Access TOKeN ..o 12-32
CURL CommanNc.cuouimiiiiiiiiiiiiiicicsc s 12-32
Expected OUtPUL......ouiiii e 12-32
COMIMENES....oviiiiiiici e 12-32
The Single Sign-on Agent Request to Create an Access Token for its own use 12-34
CURL Commandcccovuiviiiiiiiiiiiiiiiiisccssssssscesssssssnnes 12-34
Expected OUtPUL.......covviiiiiiiiiiii 12-34
COMMENES.....ooveveiiiieiec e 12-34
Verify a Client Reg Handlecooooiii e, 12-36
CURL Commandccccouvuviriniiniiiiiiiiiics e 12-36
Expected OULPUL.....cccveviiii e 12-36
COMIMENTS ...ttt er s 12-36
Mobile Services REST Reference: Commands for User Profile Services............ccceuu..e. 12-37
Basic User Operations...........ccueeiiiiiniiiiiiiiiniiiiinncs s 12-38
Create @ USET ..o 12-38
Read @ USET......cuoviiiiiiiiciciiic 12-38
UpPdate @ USET......c.cucuiuiuiiiciiiciciieiceieeieeeieieeeeee e 12-38
Delete @ USET ... 12-39
Basic Group Operations...........cccceueveviiiniiiiiniiiniii e 12-40
Create @ GIOUP ... 12-40
Read @ GIOUP «evvieceieiieci e 12-40
Update @ GIOUP ..o 12-40
Delete @ GIOUPovoveveeeireicicircr st 12-41
"memberOf" Relationship Operations............ccccoeiiiiiiiiiiiiiiiiicccceeens 12-42
Create a "memberOf" Relationship ..o, 12-42
Read a "memberOf" Relationship.........ccccccceurviiiiiinniiiiiccnnreccerecne 12-42
Delete a "memberOf" Relationshipccccccevviiiniinnniiiiiiccccces 12-43
"members” Relationship Operations...........ccccovviiiiiiiiiiiiiiecceeeens 12-44
Create a "members" Relationship........cccccoceevviiiinnniircnccceccee 12-44
Read a "members" Relationshipcccocovvvniininnniniiiiccccces 12-44
Delete a "members" Relationshipcccoeeeiiiiiiiiiiiii 12-45
"manager” Relationship Operations...........cccccoceiiiiiiiiicieeeceeceeeeeeenas 12-46
Create a "manager” Relationship.........cccccccovvviiiininniiiiccccas 12-46
Read a "manager” Relationshipcccccooeveiiiiiiiiiiic 12-46
Delete a "manager" Relationshipcccooevvviinnnnninnccccccccenes 12-46
"reports” Relationship Operations.............cccccoiiiiiiiiiiiiiiiccieeeeens 12-48

Create a "reports” Relationship.........ccccoevviiiiiiinin 12-48

Read a "reports” Relationshipcccoovveeiirieiririniiiirrccnreecre e 12-48
Delete a "reports" Relationship..........cccceueiiiiioiiiic, 12-48
"ownerOf" Relationship Operations ..o 12-50
Create an "OwnerOf" Relationshipccccccceueviiiiiiniiiirccccrereeeeeeee 12-50
Read an "OwnerOf" Relationship...........ccoovoiiiioiiiii, 12-50
Delete an "OwnerOf" Relationshipcccccoveiiiiiiiiiniiiinn 12-50
"personOwner" Relationship Operations............ccccccoiiiciiiiiecceecceeeeeenenes 12-52
Create a "personOwner" Relationship..........cccooiiiiiiiii, 12-52
Read a "personOwner" Relationship ... 12-52
Delete a "personOwner" Relationshipcccoeevevirinininininiicnciiicccccccenenes 12-52
"groupOwner" Relationship Operations ..o 12-54
Create a "groupOwner" Relationshipcccccovvviiiiiinini 12-54
Read a "groupOwner" Relationship.........ccccccevuvviirnnininnnnccrcneceeeae 12-54
Delete a "groupOwner" Relationshipccoceveioiiiieiiiiiieiccce, 12-54
"groupOwnerOf" Relationship Operations...........cccccovviiiiiiiiiiiicciceceeenns 12-56
Create a "groupOwnerOf" Relationship........cccccccecueriiinnnnninnrcrreeees 12-56
Read a "groupOwnerOf" Relationshipccoooiiiiii, 12-56
Delete a "groupOwnerOf" Relationshipccccceeeeiiiiiiiiiiiii 12-56
"groupMemberOf" Relationship Operations...........cccccccoeecueiiececcccceeicenenes 12-58
Create a "groupMemberOf" Relationshipcccccoeeieiiiiiiiiiiicce, 12-58
Read a "groupMemberOf" Relationship..........cccoovvvviiiiiiiinniiiinns 12-58
Delete a "groupMemberOf" Relationshipcccoevevvvirnnnnnnnccceee 12-58
"groupMembers" Relationship Operations..........cccooeoeueieiiicieiiiicccc 12-60
Create a "groupMembers" Relationship.........ccccccovvvnninnnns 12-60
Read a "groupMembers" Relationshipcccccceeuieeninnnnninieeeecees 12-60
Delete a "groupMembers" Relationshipc.ccooereioiiiiiiiiiiice, 12-60
Search User Operations..........c.ccceeiiiiiininiiiiiiiicc s 12-62
SEATCH USETS ...ttt 12-62
Search Users With PageSize and PagePos ..., 12-63
Search Users With a Search Parameter and Without a Search Filter 12-63
Search Users With a Search Filter ..o, 12-63
S€ATrCh GIOUPS ...ovviiiiiiiciii s 12-64
Search RelationShips ... 12-64
The "attrsToFetch" Query Parameter Feature............ccccccevuvivivrnnnnnnncececees 12-66
Read a User With attrsToFetch..........cccccooviiiiiiiniinnccae 12-66
Search Groups With attrsToFetch ..o 12-66
Search a Relationship With attrsToFetch ... 12-67
The "prefetch” Query Parameter Feature..............ccccocooeiiiiiiininnniiiinnn 12-69
Read a User With prefetch ... 12-69
The "scope" Query Parameter Feature............ccccccovuviviiinininninnnncnnccccceeees 12-71

xiii

Search a Relationship With scopeccccoviiiiiiiiiiciiic 12-71

Practical EXamPLescccoiiiiiiiiiiicrere e 12-74
Mobile SSO Agent Requests Client Registration Handle (Client Token)............... 12-75
Mobile SSO Agent Requests Client Registration Handle on Behalf of Business App.......
12-76
A User ToKen REQUESL.......c.couvuiiiiiiiiririirreecr et 12-77
An Access Token Request............c.ooeiiiiiiiiiiiicc e 12-78
Access Manager Master Token Authentication ... 12-79
Device Registration Request with KBA ReSponse.........cccccevvvevevnirnnncnnrcnecccnes 12-80

Part IV Developing with Identity Federation

13 Developing a Custom User Provisioning Plug-in

13.1 Introduction to User Provisioning PIUg-INS........cccccovirvnniininniiicccccccccccccnee 13-1
13.2 Introduction to Plug-in INterfaces ..., 13-2
13.3 Sample Code: Custom User Provisioning PIug-in.........ccccooooeiieiiiiiiiiicce 13-2
13.4 Developing a User Provisioning PIUZ-IN...........cooeiiiiiiiiiiiicicceececeeeeeeeeeens 13-7
13.4.1 Process Overview: Developing a Custom Plug-in.........ccccooiiiiiiiiiiiie 13-7
13.4.2 Files Required for Compiling a PIug-in.........ccccooeiiiiiiiiiccc 13-7

Part V Developing with Security Token Service

14 Developing a Custom Token Module

14.1 Introduction to Oracle Security Token Service Custom Token Module Classes............ 14-1
14.2 Writing a TokenValidatorModule Class............coveririnininininiiciiiccccrccceeeeeenee 14-1
14.2.1 About Writing a TokenValidatorModule Classccccouoiiniiiniiiciccee 14-2
14.2.2 Writing a TokenValidatorModule Classcooceueiiiieiiiiiicieccce e 14-4
14.3 Writing a TokenIssuanceModule Class ... 14-5
14.3.1 About Writing a TokenIssuanceModule Class..........ccccovirueiiiiinieiniiciccce 14-5
14.3.2 Writing a TokenIssuanceModule Class..........c.cccoceiiriiiiiiiiiniiiiiiiinicicincenes 14-8

Part VI Appendices

A

Xiv

Creating Deployment-Specific Pages

AA How the Single Sign-On Server Uses Deployment-Specific Pages........cc.cccocovveuerniinnnnnne. A-1
Al Change Password Page Behavior..........ccccoccciiiiiiiiniicccceeceeeeeeeeeees A-2
At111 Password Has EXpired.........cccoovviiiiiiiiiiiiiiiicccccs A-2
Al11.2 Password Is About to EXPIreccccccceuiiiiiiiiiiniiiiiiiiiiiccccncccecces A-2
A1.1.3 Grace Login Is in FOICec.ooiviviiiiiiiniiiiiicc s A-2
Al1.14 Force Change Password ... A-2
A2 How to Write Deployment-Specific Pages..........cccccccocvuriiiiiniiiiiiiiinncnnnnncne A-2
A2A1 Login Page Parameters ..o A-2
A22 Change Password Page Parameters............ccccceueiiiiiiiiiiciciciccce A-3
A3 Page Error COescooiiiiiiiiiiciciiiciic s A-5
A.3.1 OSSO 10g Login Page Error Codes ... A-5

A4 Adding Globalization SUPPOItcccevvviiiiiiiiiiiiicic s A-6

A4 Deciding What Language to Display the Page In...........ccccoooiiiii A-6
Ad1A1 Use the Accept-Language Header to Determine the Pagec.cccccocoeecccnnnne A-6
A41.2 Use Page Logic to Determine the Language..........cccoocuevoiiiiiiicieiice, A-7
A42 Rendering the Page..........ccoouiiiiiiiiic s A-7
A5 Guidelines for Deployment-Specific Pages.........c.cccoceueuiiiuiiiiiiiiiiciiceeccecreeeeeeeeeaes A-7
A6 Examples of Deployment-Specific Pages ..o A-8
A.6.1 Using Custom Classes.........cccueiirueieiiicieieccie e A-8
A7 Adding an External Application.........ccccoceiieeuiicieiiiceeeceeeieee e A-8

XV

List of Examples

XVi

21
2-2
2-3
3-1
3-2
3-3
4-1
4-2
61
6-2
6-3
6-4
6-5
6-6
13-1
13-2
13-3
141
14-2

JACCESSCHENEJAVA ... 2-10
Java Login Servlet EXample.........c.cccccoiiiiiiiniiiiiiniiiiiins 2-15
ACCESS_tEST_JAVAJAVA .veviriiictieiicietcecec s 2-21
XML Metadata: Database User Authentication Plug-in..........cccooooiiiiiiiiiiic 3-17
Sample Manifest File ... 3-18
Error Code in a Custom Authentication PIug-in...........cccooouiiiiiiiiiiiiic, 3-21
Resource BUNAIe COdeoueiiiiiiiiieiiie ettt sttt et eae s 4-10
Error Code Page ... s 4-10
Required Method to Abstract Triggering Mechanism Using SsoService API 6-4
Abbreviated SsoService API Triggering Example ..o 6-4
jps-config.xml With Changes For imp.begin.url and imp.end.url ..., 6-5
Triggering Impersonation Without API Abstraction ..o, 6-6
Restore Original Impersonator's SESSIoN...........ccccuiiiiiiiiiiiiiiiiiiiiiiis 6-6
Enabling Impersonation Feature in oam-config.xml...........cccoooiiiiiiii 6-7
Sample UserProvisioningjavac.coccceieiieieiniiiciecciec s 13-2
Sample UserPIugin.Xml..........ccccccoiiiiiiiiiiiiiiii s 13-6
Sample MANIFEST.MF........cccoooiiiiiiiiiiiiiiiicini e 13-6
EmailTokenValidatorModuleImpljava........cccooiieiiioiiiiiiicc i 14-2
EmailTokenlssuanceModule java..........ccccoiiiiiiiiiiiiiiiiiiccnes 14-5

xvii

List of Tables

xviii

11g Access SDK Featuresooocueiiiiiiiiici e 2-3
Access Client Variations ... 2-5
Comparison: 11g versus 10g Access API Classes...........coeeurueiiiieieiiiinieeice e, 2-38
Package Differences: com.oblix.access and oracle.security.am.asdkcccccournnnne. 2-42
Plug-in Life Cycle Statescoooueiiiiieiiie 3-4
Request Approach COmpPariSOn.........ccouiiviiiiiiiiiiiieieieiciiee s 3-6
Required Plug-in Methods ... 3-19
Types of Error INformation.............ceiiii e, 4-6
Standard Error Codes and MeSSage..........ccceueveiirurieiimiicieiiicie e 4-6
Error Condition Mapping by Security Level ... 4-7
Password Validation Error Codes ... 4-8
Authentication Plug-In Error Data SOUTCeSccovueueiiicieieiiicec 4-12
POLiCY ObJECES.....oviiieieiitci e 5-2
ReSOUICE URLSooviiiiiiiiciii e 5-5
Error Conditions and HTTP Return Codes..........ccouoiiiiiiiiiicieiiccee, 5-5
Methods For Managing Policy Objects.........c.cooiiiiiiiiii e, 5-6
Access Manager Policy Resources SUMMATy........ccccouiirieiiiiiicieieicceee e 5-7
Impersonation Terminology........ccoeuiieiiiiiiicieii 6-1
Headers For Identity INformation ..o 6-6
Features and Capabilities of the Java and iOS Mobile Services Client SDKs 7-2
Configuration Properties Required by the RPClient Class...........cccoovrieiiiirieiinninicinne. 10-3
Secured Attribute Exchange (SAE) Token Response Attributes............ccccooeeviviiinninnnes 10-14
Login Page Parameters Submitted to the Page by the Single Sign-On Server................. A-2
Login Page Parameters Submitted by the Page to the Single Sign-On Server................. A-3
Change Password Parameters Submitted to the Page..........c.coooeeiiiiiiinciiie A-3
Change Password Page Parameters Submitted by the Page............cccooeeiniiiiinnan. A-4
Login Page Error Codes ..o e A-5
External Application LOZIN ..o A-9
Authentication Method ... A-9
Additional Fields..........ooiiuiieiiiiiiiicc e A-9

List of Figures

2—1
2-2
2-3
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
4—1
5-1
5-2
10-1
10-2
10-3

Architectural Detail of an Access CLentooooeeieiiiiiinicc 2-6
Process Overview: Handling a Resource Requestcccooooiiiiici 2-7
Process Flow for Form-based Applicationsccccevoiiiieiiiicicieiccccecce e 2-9
Custom Plug-in Deployment WOrkflowcoooiioiiiiiiic 3-2
Authentication Model and PIug-ins............ccoeuoiiiiiiiiiiic e 3-5
Plug-in Package Hierarchy ... 3-11
Plug-in Class HIeTarcChycccouoiiuiiiiiiciic s 3-12
Plug-in Interface Hierarchy ... 3-12
Plug-in Annotation Type Hierarchy ... 3-13
Plug-in Enum Hierarchyoooooiioiiiiii i 3-13
Database User Authentication Plug-in Part 1.......c.ccocooiiiiiiii 3-14
Database User Authentication Plug-in Part 2.........c.cccocooeiiiiiiiiicc 3-15
Database User Authentication Plug-in Part 3........c.cccoooiiiiiic 3-16
XSD Configuration Data: Database User Authentication Plug-in ..o 3-17
Authentication Request FIOWcoociiiiiii e 4-2
POLCY MO L ..ot 5-2
POLicy CONEENES.......oeieieiiiece e 5-3
Pre-built Login Screen With Local Login SUpport..........ccoceiiiiiiiic 10-8
Pre-built Login Screen Without Local Login Support............cccocoeiiieiiicceeicce 10-9
The Mobile and Social Built-In User Registration Pagecccoooevevviriiiiniiiiciinna 10-13

Xix

XX

Audience

Preface

This guide explains how to write custom applications and plug-ins to
programmatically extend access management functionality using the SDKs and APIs
provided with Oracle Access Management.

This Preface covers the following topics:
= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This document is intended for developers who are familiar with Oracle Access
Management.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Fusion Middleware
11g Release 2 (11.1.2) documentation set:

» Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management

» Oracle Fusion Middleware Java API Reference for Oracle Access Management Security
Token Service

» Oracle Fusion Middleware Access SDK Java API Reference for Oracle Access
Management Access Manager

XXi

» Oracle Fusion Middleware Extensibility Java API Reference for Oracle Access
Management Access Manager

» Oracle Fusion Middleware User Provisioning Plug-in Java API Reference for Oracle
Access Management Identity Federation

» Oracle Fusion Middleware Java API Reference for Oracle Access Management Mobile and
Social

» Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXii

What’s New in Oracle Access Management?

This section describes new features available in Oracle Access Management 11g.

The following sections describe the new features and changes:

Guide Changes: 11g Release 2 (11.1.2) November 2012 Library Refresh
New Features in 11g Release 2 (11.1.2)
New Features in 11g Release 1 (11.1.1)

Product and Component Name Changes

Guide Changes: 11g Release 2 (11.1.2) November 2012 Library Refresh

This guide (Part no. E27134-03) has been updated in several ways. Following are the
sections that have been added or changed.

Revised information about multi-step authentication plug-in development and
added code examples. See Chapter 3.

New Features in 11g Release 2 (11.1.2)

Oracle Access Management 11g Release 2 (11.1.2) includes the following components.
The new features discussed in this guide are described in the following sections.

Oracle Access Management Access Manager
Oracle Access Management Mobile and Social
Oracle Access Management Identity Federation

Oracle Access Management Security Token Service

Oracle Access Management Access Manager

This release adds the following functionality to the Access Manager Access software
development kit (SDK):

Support for 11g cookies

Access Clients developed with the SDK can use the 11g agent profile, enabling the
OAM Server to encrypt tokens using a secret key generated specifically for this
Access Client. For more information, see Chapter 2.

API based initialization

xXiii

Access Clients developed with the SDK can initialize by providing boot strap
configuration from its own configuration store or mechanism. For more
information, see Chapter 2.

s Interfaces for developing Web SSO agents

Provides simple interfaces to enable WebSSO agents to work with Access
Manager. For more information, see Chapter 2.

The following Access Manager APIs have been added:
= Policy Administration API

The Oracle Policy Administration API supports representational state transfer
(REST) interfaces for administering OAM policy objects as RESTful resources. The
Policy Administration API enables Create, Read, Update, and Delete (CRUD)
operations on policy objects. For more information, see Chapter 5.

Oracle Access Management Mobile and Social

Mobile and Social is a new Oracle Access Management service that acts as an
intermediary between a user seeking to access protected resources, and the backend
Access Management and Identity Management services that protect the resources.
Mobile and Social provides simplified client libraries that allow developers to quickly
add feature-rich authentication, authorization, and identity capabilities to registered
applications. On the backend, the Mobile and Social server’s pluggable architecture
lets system administrators add, modify, and remove Identity and Access Management
services without having to update user installed software. Mobile and Social features
individual SDKs for iOS devices and Java. If you are developing an application on a
platform or device that cannot use the iOS or Java SDKs, you can write code to directly
send Mobile and Social REST calls to the Mobile and Social server. For more
information about Mobile and Social, see Oracle Fusion Middleware Administrator’s
Guide for Oracle Access Management. For information about developing applications
using Mobile and Social SDKs, see Part III, "Developing with Mobile and Social".

Oracle Access Management Identity Federation

This release adds the User Provisioning API to Security Token Service. Use this API to
develop a custom user provisioning plug-in. For more information, see Chapter 13.

Oracle Access Management Security Token Service
There are no changes to Security Token Service APIs in this release.

New Features in 11g Release 1 (11.1.1)

11g Release 1 provides a pure Java software developer kit (SDK) for the creation of
custom Access Clients and extensions of authentication and authorization
functionality. This release also provides compatibility with the Oracle Access Manager
10g JNI SDK, which can be migrated to use the Oracle Access Manager 11¢ release.

Product and Component Name Changes

XXiv

Many Oracle Access Manager component names remain the same. However, there are
several important changes. For more information, see "What’s New in Oracle Access
Management" in Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

Part |

Introduction

This part introduces the Oracle Access Management components and provides
information about developing with the SDKs and APIs.

Part I contains the following chapters:

s Chapter 1, "Developing with Oracle Access Management Components"

1

Developing with Oracle Access
Management Components

This chapter introduces the Oracle Access Management components and developing
with the software development kits (SDKs) and application programming interfaces
(APIs). This chapter provides the following sections:

= Section 1.1, "About Oracle Access Management"
= Section 1.2, "About Access Manager"

s Section 1.3, "About Mobile and Social"

= Section 1.4, "About Identity Federation"

= Section 1.5, "About Security Token Service"

= Section 1.6, "System Requirements and Certification"

1.1 About Oracle Access Management

Oracle Access Management release 11.1.2 provides converged multi-services with
several integrated components:

= Authentication and SSO, provided by Oracle Access Management Access Manager
(Access Manager)

» Federated SSO, provided by Oracle Access Management Identity Federation
(Identity Federation)

= Mobile security and social identity, provided by Oracle Access Management
Mobile and Social (Mobile and Social)

» Security Token Service, provided by Oracle Access Management Security Token
Service (Security Token Service)

You can developing applications to customize your environment or otherwise extend
functionality using the Oracle Access Management component supplied SDKs and
APIs, related Javadocs, and this guide.

1.2 About Access Manager

Access Manager is an enterprise level solution that centralizes critical access control
services to provide an integrated solution that delivers authentication, authorization,
web single sign-on, policy administration, enforcement agent management, session
control, systems monitoring, reporting, logging and auditing.

Developing with Oracle Access Management Components 1-1

About Mobile and Social

In this release, you can develop your own Access Clients, custom authentication
plug-ins, custom login and error pages, administer Access Manager policies
programmatically, as well as enable the impersonation feature and develop a custom
user interface for managing, using the provided Java Access SDK and Access Manager
APIs.

For more information about Access Manager, see Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

For information about developing applications using Access Manager SDKs and APIs,
see Part II, "Developing with Access Manager".

1.3 About Mobile and Social

Mobile and Social acts as an intermediary between a user seeking to access protected
resources, and the backend Access Management and Identity Management services
that protect the resources. Mobile and Social provides simplified client libraries that
allow developers to quickly add feature-rich authentication, authorization, and
Identity capabilities to registered applications. On the backend, the Mobile and Social
server’s pluggable architecture lets system administrators add, modify, and remove
Identity and Access Management services without having to update user installed
software. Mobile and Social features individual SDKs for iOS devices and Java. If you
are developing an application on a platform or device that cannot use the iOS or Java
SDKSs, you can write code to directly send Mobile and Social REST calls to the Mobile
and Social server.

For more information about Mobile and Social in Oracle Access Management, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

For information about developing applications using Mobile and Social SDKs, see
Part I1I, "Developing with Mobile and Social"

1.4 About Identity Federation

Identity Federation enables organizations to securely link accounts and identities
across security boundaries without a central user repository or the need to
synchronize data stores. It provides an interoperable way to implement cross domain
single sign-on without the overhead of managing, maintaining, and administering
their identities and credentials. As a result of cloud, Web Services, and
business-to-business transactions, federated authentication is now a core element of
any Web access management solution. Beginning with this release, SAML-based
federation services are not being converged directly into a single access management
server. In this initial release, convergence is limited to Service Provider functionality.
In this initial release any Identity Provider functionality still requires a Oracle Identity
Federation 11gR1 installation. However, the linking of Oracle Access Management
11gR2 and Oracle Identity Federation 11gR1 is very simple and well integrated.

For more information about Identity Federation in Oracle Access Management, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

In this release, you can develop a custom user provisioning plug-in if the
out-of-the-box solution does not meet your needs. For more information about
developing applications with Identity Federation APIs, see Part IV, "Developing with
Identity Federation".

1-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

System Requirements and Certification

1.5 About Security Token Service

Security Token Service is a standards-based security solution that issues, validates, or
exchanges security tokens and acts as a trusted authority that an enterprise web
services infrastructure may use to enforce appropriate security token policies across
web services providers and consumers. It also provides a means for propagating
identity and security information across infrastructure tiers.

For more information about Security Token Service in Oracle Access Management, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

In this release, when Security Token Service does not support the token that you want
to validate and is not provided out-of-the-box, you can write your own validation and
issuance module classes. For more information about developing tokens with Security
Token Service, see Part V, "Developing with Security Token Service".

1.6 System Requirements and Certification

Refer to the system requirements and certification documentation for information
about hardware and software requirements, platforms, databases, and other
information. Both of these documents are available on Oracle Technology Network
(O1IN).

The system requirements document covers information such as hardware and
software requirements, minimum disk space and memory requirements, and required
system libraries, packages, or patches:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusio
n-requirements-100147.html

The certification document covers supported installation types, platforms, operating
systems, databases, JDKs, and third-party products:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusio
n-certification-100350.html

Developing with Oracle Access Management Components 1-3

System Requirements and Certification

1-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Part li

Developing with Access Manager

This part discusses developing applications using the Oracle Access Management
Access Manager SDK and APIs.

Part II contains the following chapters:

s Chapter 2, "Developing Access Clients"

» Chapter 3, "Developing Custom Authentication Plug-ins"
» Chapter 4, "Developing Custom Pages"

s Chapter 5, "Managing Policy Objects"

» Chapter 6, "Developing an Application to Manage Impersonation"

2

Developing Access Clients

Oracle Access Management Access Manager (Access Manager) provides a pure Java
software developer kit (SDK) and application programming interfaces (APIs) for
creating custom Access Clients. This chapter discusses how to develop a custom
Access Client and provides the following sections:

= Section 2.1, "About Developing Access Clients"

» Section 2.2, "Developing Access Clients"

= Section 2.3, "Messages, Exceptions, and Logging"

= Section 2.4, "Building an Access Client Program"

» Section 2.5, "Configuring and Deploying Access Clients"

= Section 2.6, "Compatibility: 11g versus 10g Access SDK and APIs"

= Section 2.7, "Migrating Earlier Applications or Converting Your Code"

m Section 2.8, "Best Practices"

2.1 About Developing Access Clients

A Webgate is a Web server plug-in that intercepts HTTP requests for resources and
forwards them to the OAM Server for authentication and authorization. A Webgate is
a Web server agent that acts as the actual enforcement point for access requests.
Several Webgates are provided out-of-the-box and are ready for installation on an
Oracle HTTP Server, where it intercepts access requests.

An Access Client is a custom Webgate that has been developed using the 11g Access
SDK and APIs. When a standard Webgate is not suitable, a custom Access Client can
be written and deployed for processing requests from users or application for either
Web or non-Web resources (non-HTTP).

This section provides the following topics:
= About the Access SDK and APIs

= About Installing Access SDK

s About Custom Access Clients

= About Access Client Request Processing

2.1.1 About the Access SDK and APIs

The 11g Access SDK and APIs are intended for Java application developers for the
development of tightly coupled, performant integrations. In addition to this guide, for

Developing Access Clients 2-1

About Developing Access Clients

more information see Oracle Fusion Middleware Access SDK Java API Reference for Oracle
Access Management Access Manager.

The Access SDK is a platform independent package that Oracle has certified on a
variety of enterprise platforms (using both 32-bit and 64-bit modes) and hardware
combinations. It is provided on JDK versions that are supported across Oracle Fusion
Middleware applications.

The oracle.security.am.asdk package provides the 11¢ Java APIs. The 11g
version is very similar to the 10g JNI APIs, with enhancements for use with the 11g
OAM Server. The 11g Access SDK provides backwards compatibility by supporting
10g based com.oblix.access interfaces. From a functional perspective, the 11g
Access SDK maintains parity with the 10g (10.1.4.3) Access SDK to ensure that you can
re-write existing custom code using the 11g API layer.

Note: The 10g (10.1.4.3) com.oblix.access package and classes
are deprecated. A deprecated API is not recommended for use,
generally due to improvements, and a replacement API is usually
given. Deprecated APIs may be removed in future implementations.

Oracle strongly recommends that developers use the 11g Access SDK
for all new development.

Once the Access SDK is installed, do not change the relative locations of the
subdirectories and files. Doing so may prevent an accurate build and proper operation
of the API. The following Access SDK packages are included:

= oracle.security.am.asdk: An authentication and authorization API that provides
enhancements to take advantage of 11g OAM Server functionality. The 11g Access
SDK API can be used with either Oracle Access Manager 10gR3 (10.1.4.3) or Oracle
Access Manager 11gR1 (11.1.1.5+) version of the server.

= com.oblix.access: This is the 10g version of the authentication and authorization
API with some enhancements for the 11g release. It is available for backward
compatibility with programs written with the 10g JNI ASDK.

The 11g Access SDK includes authentication and authorization functionality.
However, it does not include Administrative APIs (for instance, there is no 11g Policy
Manager API).

The most common use of the Access SDK is to enable the development of a custom
integration between Access Manager and other applications (Oracle or third party).
Usage examples include:

= Developing a custom Access Client for a Web server or an application server for
which Oracle does not provide an out-of-the-box integration.

= Accessing session information that may be stored as part of the Access Manager
authentication process.

s Verifying the validity of the Access Manager session cookie rather than trusting an
HTTP header for the user principal.

Table 2-1 describes the primary features of the 11¢ Access SDK.

2-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

About Developing Access Clients

Table 2-1 11g Access SDK Features

Feature Description

Installation Client Package: Is comprised of a single zip file that contains oamasdk-api.jar, as well as other
JPS jar files needed for 11g agent operations. Supporting files (for signing and TLS negotiations)
are not included and should be generated separately.

Server Related Code: Is included as part of the core Access Manager server installation.

Note: Access Clients and plug-ins developed with Oracle Access Manager 10g (10.1.4.3) can be
used with 11g release. Oracle Access Manager 10g (10.1.4.3) bundle patches are used to distribute
Java SDK code enhancements for use with 11g environments.

Built In Versioning Enables you to:
" Determine the Access SDK version that is installed.

= Validate compatible versions it can operate with (Oracle Access Manager 10g (10.1.4.3) and
11g).
If there is a mismatch, Access SDK functions halt and an informative message is logged and
presented.

Logging The Access SDK logging mechanism enables you to specify the level (informational, warning,
and error level) of detail you want to see in a local file. Messages provide enough detail for you
to resolve an issue. For example, if an incompatible Access SDK package is used, the log message
includes details about a version mismatch and what version criteria should be followed.

If the SDK generates large amounts of logs within a given period of time, you can configure a
rollover of the logs based on a file limit or a time period. For example, if a file limit has been
reached (or a certain amount of time has passed), the log file is copied to an archive directory and
anew log file is started.

2.1.2 About Installing Access SDK

To install the Java Access SDK Client for Access Manager 11g, perform the following
steps:

1. Download the oam-java-asdk. jar file from Oracle Technology Network.
2. Extract the contents of the file oam-java-asdk. zip to a local directory.

3. Add oamasdk-api.jar to your CLASSPATH. Choose from the following
depending upon your needs:

s If you are using a non-JRF environment, add the following jar files to your
CLASSPATH:

identitystore.jar
jps-api.jar
jps-common. jar
jps-internal.jar
jps-unsupported-api.jar
oraclepki.jar
osdt_cert.jar
osdt_core.jar
osdt_xmlsec.jar

= If you are configuring an Access Client in 10g mode, add the following jar files
to your CLASSPATH:

jps-api.jar
s If you are configuring an Access Client in 11¢g mode, add the following jar files
to your CLASSPATH:

jps-api.jar

jps-common. jar
jps-internal.jar
jps-unsupported-api.jar

Developing Access Clients 2-3

About Developing Access Clients

oraclepki.jar
osdt_cert.jar
osdt_core.jar
osdt_xmlsec.jar

4. If you are using a JRF environment, add the follow to system-jazn-data.xml in
order to run in OAM_11G mode:

<grant>

<grantee>

<codesource>
<url>... ...</url>

</codesource>

</grantee>

<permissions>
<permission>

<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
<name>context=SYSTEM, mapName=0AMAgent , keyName=*</name>
<actions>read</actions>
</permission>
<permissions>
<grant>

2.1.3 About Custom Access Clients

The Access SDK enables development of custom integrations with Access Manager for
controlling access to protected resources such as authentication, authorization, and
auditing. This access control is generally accomplished by developing and deploying
custom Access Clients, which are applications or plug-ins that invoke the Access
Client API to interface with the Access SDK runtime.

Access Client-side caching is used internally within the Access SDK runtime to further
minimize the processing overhead. The Access SDK runtime, together with the OAM
Server, transparently performs dynamic configuration management, whereby any
Access Client configuration changes made using the administration console are
automatically reflected in the affected Access SDK runtimes.

You can develop different types of custom Access Clients, depending on their desired
function, by utilizing all, or a subset of, the Access Client API. The APl is generally
agnostic about the type of protected resources and network protocols used to
communicate with the users. For example, the specifics of HTTP protocol and any use
of HTTP cookies are outside of the scope of Access SDK. You can develop Access
Clients to protect non-HTTP resources as easily as agents protecting HTTP resources.

The typical functions that a custom Access Client can perform, individually or in
combination with other Access Clients, are as follows:

= Authenticate users by validating their credentials against Access Manager and its
configured user repositories.

» Authenticate users and check for authorization to access a resource.

= Authenticate users and create unique Access Manager sessions represented by
session tokens.

= Validate session tokens presented by users, and authorize their access to protected
resources.

s Terminate Access Manager sessions given a session token or a named session
identifier.

2-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

About Developing Access Clients

s Enumerate Access Manager sessions of a given user by specifying named user
identifier.

= Save or retrieve custom Access Manager session attributes.

Some Access Client operations are restricted for use by the designated Access Client
instances. For example, see OperationNotPermitted in Oracle Fusion Middleware
Access SDK Java API Reference for Oracle Access Management Access Manager.

Access Clients process user requests for access to resources within the LDAP domain
protected by the OAM Server. Typically, you embed custom Access Client code in a
servlet (plug-in) or a standalone application that receives resource requests. This code
uses Access Manager API libraries to perform authentication and authorization
services on the OAM Server.

If a resource is not protected, the Access Client grants the user free access to the
requested resource. If the resource is protected and the user is authorized to provide
certain credentials to gain access, the Access Client attempts to retrieve those user
credentials so that the OAM Server can validate them. If authentication of the user and
authorization for the resource succeeds, the Access Client makes the resource available
to the user.

Access Clients can differ according to a variety of factors, as described in Table 2-2.

Table 2-2 Access Client Variations

Variation Description
Type of application Standalone application versus server plug-ins.
Development Language Each development language provides a choice of interfaces to

the underlying functionality of the APL

For 11g, Java is the only development language for custom
Access Clients.

Resource Type Protect both HTTP and non-HTTP resources.

Credential Retrieval Enable HTTP FORM-based input, the use of session tokens,
and command-line input, among other methods.

After it has been written and deployed, a custom Access Client is managed by an
Oracle Access Management administrator the same as a standard Webgate. For
information about managing a custom Access Client using the administration console,
see Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

2.1.3.1 When to Create a Custom Access Client

Typically, you deploy a custom Access Client instead of a standard Webgate when
you need to control access to a resource for which Oracle Access Manager does not
already supply an out-of-the-box solution. This might include:

s Protection for non-HTTP resources.

= Protection for a custom web server developed to implement a special feature (for
example, a reverse proxy).

= Implementation of single sign-on (S50) to protect a combination of HTTP and
non-HTTP resources.

For example, you can create an Access Client that facilitates SSO within an
enterprise environment that includes an Oracle WebLogic Server cluster as well as
non-Oracle WebLogic Server resources.

Developing Access Clients 2-5

About Developing Access Clients

2.1.3.2 Access Client Architecture
Each Access Client is built from the following three types of resources:

1. Custom Access Client code.

Built into a servlet or standalone application. For the 11g release, you write Access
Client code using the Java language platform.

2. Configuration information.

s OBAccessClient.xml file: Primary configuration file, which contains
configuration information that constitutes an Access Client profile.

= cwallet.sso and jps-config.xml files: For an 11¢ agent only.

» If the transportation security mode is Simple or Cert, then the following files
are required.

— oamclient-truststore.jks — JKS format trust store file which should contain
CA certificate of the certificate issuing authority.

- oamclient-keystore.jks — JKS format key store file which should contain
certificate and private key issued for the Access Client.

- password.xml — An XML file that holds the value of global pass phrase.
Same password is also used to unprotect private key file.

3. Access Manager API libraries.
Facilitates interaction between the Access Client and OAM Server.

Figure 2-1 shows the relationship between the Access Client components installed on
a host server.

Figure 2—1 Architectural Detail of an Access Client

Host Server

Serviet or Stand-Alone
Application Receiving
Resource Requests

Custom Access Client

Embedded Access Configuration info
Client Code R s D AR QObAccessClient.xml

2.1.4 About Access Client Request Processing

Regardless of the variability introduced by the types of resources discussed in
Section 2.1.3.2, "Access Client Architecture", most Access Clients follow the same basic
steps to process user requests.

When a user or application submits a resource request to a servlet or application
running on the server where the Access Client is installed, the Access Client code
embedded in that servlet or application initiates the basic process shown in Figure 2-2.

Figure 2-2 illustrates the process of handling a resource request.

2-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

About Developing Access Clients

Figure 2-2 Process Overview: Handling a Resource Request

User or Server OAM Server
Application (manages:
—{(1 | Serviet or Application authentication,
(3| authorization
(6 Access 3 < and auditing)
Client :
Code l do>
Y
—@n — @
by) a—
Access
SDK API
«{d4a— Unprotected Resources
{10 Protected Resources

Process Overview: Handling a Resource Request

1.

The application or servlet containing the Access Client code receives a user request
for a resource.

The Access Client constructs a ResourceRequest structure, which the Access
Client code uses when it asks the OAM Server whether the requested resource is
protected.

The OAM Server responds.
Depending upon the situation, one of the following occurs:

» If the resource is not protected, the Access Client grants or denies access to the
resource depending on the value of the DenyOnNotProtected flag. Default
value is true.

For Access Manager 11g agent, DenyOnNotProtected flag in always true
and cannot be changed.

» If the resource is protected, the Access Client constructs an
AuthenticationScheme structure, which it uses to ask the OAM Server
what credentials the user needs to supply. This step is only necessary if the
Access Client supports the use of different authentication schemes for
different resources.

The OAM Server responds.

The application uses a form or some other means to ask for user credentials. In
some cases, the user credentials may already have been submitted as part of:

= A valid session token.
= Input from a web browser.

= Arguments to the command-line script or keyboard input that launched the
Access Client application.

The user responds to the application.

The Access Client constructs an UserSession structure, which presents the user
credentials to the OAM Server, which maps them to a user profile in the Oracle
Access Manager user directory.

If the credentials prove valid, the Access Client creates a session token for the user,
then it sends a request for authorization to the OAM Server. This request contains
the user identity, the name of the target resource, and the requested operation.

For an Access Client developed using the Access SDK, a SSO token is issued as a
string type with no name. Use getSessionToken () on an existing

Developing Access Clients 2-7

Developing Access Clients

10.

UserSession object to return that session’s token. If you have an existing token,
it can be used to construct a user session object. The token is encrypted and
opaque to a user, but internally, can be either in 10g or 11g format.

The Access Client grants the user access to the resource, providing that the user is
authorized for the requested operation on the particular resource.

The flow illustrated in Figure 2-2 represents only the main path of the authorization
process. Typically, additional code sections within the servlet or application handle
branch situations where:

The requested resource is not protected.

The authentication challenge method associated with the protected resource is not
supported by the application.

The user fails to supply valid credentials under the specified conditions.
Some other error condition arises.

The developer has built additional custom code into the Access Client to handle
special situations or functionality.

When writing a custom Access Client, it is possible to authenticate users over the
backchannel.

2.2 Developing Access Clients

The following topics are discussed in this section:

Structure of an Access Client

Typical Access Client Execution Flow

Sample Code: Simple Access Client
Annotated Sample Code: Simple Access Client
Sample Code: Java Login Servlet

Annotated Sample Code: Java Login Servlet
Sample Code: Additional Methods

Annotated Sample Code: Additional Methods

Sample Code: Certificate-Based Authentication in Java

2.2.1 Structure of an Access Client

The structure of a typical Access Client application roughly mirrors the sequence of
events required to set up an Access Client session.

Access Client Application Structure Overview

1.

2
3
4.
5
6

Include or import requisite libraries.

Get resource.

Get authentication scheme.

Gather user credentials required by authentication scheme.
Create user session.

Check user authorization for resource.

2-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

7. Clean up (Java uses automatic garbage collection).

8. Shut down.

2.2.2 Typical Access Client Execution Flow

All HTTP FORM-based Access Client applications and plug-ins follow the same basic
pattern, as illustrated Figure 2-3.

Figure 2-3 shows a process flow for form-based applications:

Figure 2-3 Process Flow for Form-based Applications

| Import Libraries Create an Authentication Creats structure for
¥ Scheme object userid and password Is the
| Initialize Access SDK v v user
Create User authorized to
¥ Session object gess the \;‘es
Create Resource s 7 reqbuestgd
j object?
Haguest object authentication Yjs !
¥ scheme HTTP
FORM based?
Mo
Is the user ‘339
s the Yes authenticated?
requested resource - No
protected?
Mo
¥
No
Deny access;
Shutdown AP, Report reason
End Program
+
Grant access to

requested resource

Process Overview: Access Client Execution for Form-based Applications
1. Import libraries.

2. Initialize the SDK.
3. Create ResourceRequest object.
4. Determine if the requested resource is protected.

Resource Not Protected: If the resource is not protected, the Access Client grants
or denies access to the resource depending on the value of the
DenyOnNotProtected flag. Default value is true. For Access Manager 11g
agent, DenyOnNotProtected flag in always true and cannot be changed.

5. Requested Resource is Protected: Create an AuthenticationScheme object.

6. Authentication Scheme HTTP FORM-based: Create a structure for user ID and
password, create UserSession object, determine if the user is authenticated.

7. Authentication Scheme Not HTTP FORM-based: Deny access and report reason,
shut down the API and end program.

8. User is Authenticated: Determine if the user is authorized (Step 10).

9. User is Not Authenticated: Deny access and report reason, shut down the API
and end program.

10. User is Authorized: Grant access, shut down the API, and end program.

Developing Access Clients 2-9

Developing Access Clients

11. User Not Authorized: Deny access and report reason, shut down the API and end
program.

Note: To run this test application, or any of the other examples, you
must make sure that your Access System is installed and set up
correctly. Specifically, check that it has been configured to protect
resources that match exactly the URLs and authentication schemes
expected by the sample programs. For details on creating application
domains and protecting resources with application domains, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

2.2.3 Sample Code: Simple Access Client

This example is a simple Access Client program. It illustrates how to implement the
bare minimum tasks required for a working Access Client:

s Connect to the OAM Server

» Log in using an authentication scheme employing the HTTP FORM challenge
method

» Check authorization for a certain resource using an HTTP GET request
» Catch and report Access SDK API exceptions

Typically, this calling sequence is quite similar among Access Clients using the FORM
challenge method. FORM-method Access Clients differ principally in the credentials
they require for authentication and the type of resources they protect.

A complete listing for JAccessClient. java appears in Example 2-1. You can copy
this code verbatim into the text file JAccessClient . java and execute it on the
computer where your Access Manager SDK is installed.

See Section 2.2.4, "Annotated Sample Code: Simple Access Client" for an annotated
version of this example to help you become familiar with 11¢ Java Access Manager
API calls.

Example 2-1 JAccessClient.java

import java.util.Hashtable;
import oracle.security.am.asdk.*;

public class JAccessClient {
public static final String ms_resource = "//Example.com:80/secrets/
index.html";
public static final String ms_protocol = "http";
public static final String ms_method = "GET";

public static final String ms_login = "jsmith";
public static final String ms_passwd = "jb5mlth";
public static final String m_configLocation = "/myfolder";
public static void main(String argv[]) {
AccessClient ac = null;
try {

ac = AccessClient.createDefaultInstance (m_configLocation,
AccessClient.CompatibilityMode.OAM 10G) ;

ResourceRequest rrg = new ResourceRequest (ms_protocol, ms_resource,

ms_method) ;
if (rrg.isProtected()) {

2-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

System.out.println("Resource is protected.");
AuthenticationScheme authnScheme = new AuthenticationScheme (rrq);
if (authnScheme.isForm()) {
System.out.println("Form Authentication Scheme.");
Hashtable creds = new Hashtable();
creds.put ("userid", ms_login);
creds.put ("password", ms_passwd) ;
UserSession session = new UserSession(rrqg, creds);
if (session.getStatus() == UserSession.LOGGEDIN) {
if (session.isAuthorized(rrqg)) {
System.out.println("User is logged in and authorized for the"
+"request at level " + session.getLevel());
} else {
System.out.println("User is logged in but NOT authorized");
}
//user can be loggedout by calling logoff method on the session object
} else {
System.out.println("User is NOT logged in");
}
} else {
System.out.println("non-Form Authentication Scheme.");
}
} else {
System.out.println("Resource is NOT protected.");

}
catch (AccessException ae) {
System.out.println("Access Exception: " + ae.getMessage());

}

ac.shutdown () ;

2.2.4 Annotated Sample Code: Simple Access Client
Import standard Java library class Hashtable to hold credentials.

import java.io.Hashtable;

Import the library containing the Java implementation of the Access SDK API classes.

import oracle.security.am.asdk.*;

This application is named JAccessClient.

public class JAccessClient {

Since this is the simplest of example applications, we are declaring global constants to
represent the parameters associated with a user request for access to a resource.

Typically, a real-world application receives this set of parameters as an array of strings
passed from a requesting application, HTTP FORM-based input, or command-line
input. For example:

public static final String ms_resource = "//Example.com:80/secrets/index.html";
public static final String ms_protocol = "http";
public static final String ms_method = "GET";
public static final String ms_login = "jsmith";
public static final String ms_passwd = "jbmlth";

Developing Access Clients 2-11

Developing Access Clients

Launch the main method on the Java interpreter. An array of strings named argv is
passed to the main method. In this particular case, the user jsmith, whose password
is j5m1th, has requested the HTTP resource
//Example.com:80/secrets/index.html. GET is the specific HI'TP operation
that will be performed against the requested resource. For details about supported
HTTP operations and protecting resources with application domains, see Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management.

public static void main(String argv[]) {

Place all relevant program statements in the main method within a large try block so
that any exceptions are caught by the catch block at the end of the program.

AccessClient ac = null;
try {

To initialize the Access SDK, create an AccessClient instance by providing the
directory location of configuration file ObAccessClient.xml. There are multiple ways to
provide configuration location to initialize the Access SDK. For more information refer
to Oracle Fusion Middleware Access SDK Java API Reference for Oracle Access Management
Access Manager.

You only need to create an instance of AccessClient and it initializes Access SDK
API. AccessClient.CompatibilityMode.OAM_10G indicates that Access SDK
will be initialized to work in an older 10g agent mode that is compatible with both the
10g and 11g servers. By default, if this compatibility mode is not provided, then
default 0AM_11G is used, and the agent will be operating in 11¢ agent mode and can
only talk with 11¢ OAM Servers.

ac = AccessClient.createDefaultInstance(m_configLocation ,
AccessClient.CompatibilityMode.OAM_10G) ;

Create a new resource request object named rrq using the ResourceRequest
constructor with the following three parameters:

= ms_protocol, which represents the type of resource being requested. When left
unspecified, the default value is HTTP. E]B is another possible value, although this
particular example does not cover such a case. You can also create custom types,
as described in the Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

= ms_resource, which is the name of the resource. Since the requested resource type
for this particular example is HTTP, it is legal to prepend a host name and port
number to the resource name, as in the following:

//Example.com:80/secrets/index.html

= ms_method, which is the type of operation to be performed against the resource.
When the resource type is HI'TP, the possible operations are GET and POST. For
EJB-type resources, the operation must be EXECUTE. For custom resource types,
you define the permitted operations when you set up the resource type. For more
information on defining resource types and protecting resources with application
domains, see the Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

ResourceRequest rrg = new ResourceRequest (ms_protocol,
ms_resource, ms_method);

2-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

Determine whether the requested resource rrq is protected by an authentication
scheme.

if (rrqg.isProtected()) {

If the resource is protected, report that fact.

System.out.println("Resource is protected.");

Use the AuthenticationScheme constructor to create an authorization scheme
object named authnScheme. Specify the resource request rrq so that
AuthenticationScheme checks for the specific authorization scheme associated
with that particular resource.

AuthenticationScheme authnScheme =new AuthenticationScheme (rrq);

Determine if the authorization scheme is FORM-based.

if (authnScheme.isForm()) {

If the authorization scheme does use HTTP FORM as the challenge method, report
that fact, then create a hashtable named creds to hold the name : value pairs
representing the user name (userid) and the user password (password). Read the
values for ms_login and ms_passwd into the hashtable.

System.out.println("Form Authentication Scheme.");
Hashtable creds = new Hashtable();

creds.put ("userid", ms_login);

creds.put ("password", ms_passwd) ;

Using the UserSession constructor, create a user session object named session.
Specify the resource request as rrq and the authentication scheme as creds so that
UserSession can return the new structure with state information as to whether the
authentication attempt has succeeded.

UserSession session = new UserSession(rrg, creds);

Invoke the getStatus method on the UserSession state information to determine
if the user is now successfully logged in (authenticated).

if (session.getStatus() == UserSession.LOGGEDIN) ({

If the user is authenticated, determine if the user is authorized to access the resource
specified through the resource request structure rrq.

if (session.isAuthorized(rrq)) {
System.out.println(
"User is logged in " +
"and authorized for the request " +

Determine the authorization level returned by the getLevel method for the user
session named session.

"at level " + session.getLevel());
If the user is not authorized for the resource specified in rrq, then report that the user

is authenticated but not authorized to access the requested resource.

} else {
System.out.println("User is logged in but NOT authorized");

Developing Access Clients 2-13

Developing Access Clients

If the user is not authenticated, report that fact. (A real world application might give
the user additional chances to authenticate).

} else {
System.out.println("User is NOT logged in");

If the authentication scheme does not use an HTTP FORM-based challenge method,
report that fact. At this point, a real-world application might branch to facilitate
whatever other challenge method the authorization scheme specifies, such as basic
(which requires only userid and password), certificate (SSL or TLS over
HTTPS), or secure (HTTPS through a redirection URL). For more information about
challenge Methods and configuring user authentication, see the Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management.

} else {
System.out.println("non-Form Authentication Scheme.");

}

If the resource is not protected, report that fact. (By implication, the user gains access
to the requested resource, because the Access Client makes no further attempt to
protect the resource).

} else {

System.out.println("Resource is NOT protected.");
}
}

If an error occurs anywhere within the preceding try block, get the associated text
message from object ae and report it.

catch (AccessException ae) {
System.out.println(
"Access Exception: " + ae.getMessage());

}

If the application needs to logout user, then it can invoke logoff method on the object
of UserSession class.

Now that the program is finished calling the OAM Server, shut down the API, thus
releasing any memory the API might have maintained between calls.

ac.shutdown () ;
}
}

Exit the program. You don't have to deallocate the memory used by the structures
created by this application because Java Garbage Collection automatically cleans up
unused structures when it determines that they are no longer needed.

2.2.5 Sample Code: Java Login Servlet

This example follows the basic pattern of API calls that define an Access Client, as
described in Section 2.2.3, "Sample Code: Simple Access Client". However, this
example is implemented as a Java servlet running within a Web server, or even an
application server. In this environment, the Access Client servlet has an opportunity to
play an even more important role for the user of a Web application. By storing a
session token in the user's HTTP session, the servlet can facilitate single sign-on for the
user. In other words, the authenticated OAM Server session information that the first
request establishes is not discarded after one authorization check. Instead, the stored
session token is made available to server-side application components such as beans

2-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

and other servlets, so that they do not need to interrupt the user again and again to
request the same credentials. For a detailed discussion of session tokens,
ObsSsOCookies, and configuring single sign-on, see the Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

This example Java servlet does not provide SSO to resources protected by mod_osso,
Access Manager Webgates, or OpenSSO Policy Agents.

This sample login servlet accepts userid /password parameters from a form on a
custom login page, and attempts to log the user in to Access Manager. On successful
login, the servlet stores a session token in the UserSession object. This enables
subsequent requests in the same HT'TP session to bypass the authentication step
(providing the subsequent requests use the same authentication scheme as the original
request), thereby achieving single sign-on.

A complete listing for the Java login servlet is shown in Example 2-2. This code can
provide the basis for a plug-in to a web server or application server. Section 2.2.6,
"Annotated Sample Code: Java Login Servlet" provides an annotated version of this
code.

Example 2-2 Java Login Serviet Example

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;
import java.util.*;

import oracle.security.am.asdk.*;

public class LoginServlet extends HttpServlet {

public void init(ServletConfig config) throws ServletException {
try {

AccessClient ac = AccessClient.createDefaultInstance("/myfolder"
AccessClient.CompatibilityMode.OAM 10G) ;
} catch (AccessException ae) {
ae.printStackTrace() ;

public void service (HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

AuthenticationScheme authnScheme = null;

UserSession user = null;

ResourceRequest resource = null;

response.setContentType ("text/html") ;

PrintWriter out = response.getWriter();

out.println("<HTML>") ;

out.println("<HEAD><TITLE>LoginServlet: Error Page</TITLE></HEAD>");

out.println("<BODY>");

HttpSession session = request.getSession(false);

String requestedPage = request.getParameter ("request");

String regMethod = request.getMethod() ;

Hashtable cred = new Hashtable();

try {

if (requestedPage == null || requestedPage.length()==0) {

out.println("<p>REQUESTED PAGE NOT SPECIFIED\n");
out.println("</BODY></HTML>") ;
return;

Developing Access Clients 2-15

Developing Access Clients

resource = new ResourceRequest ("http", requestedPage, "GET");
if (resource.isProtected()) {
authnScheme = new AuthenticationScheme (resource);
if (authnScheme.isBasic()) {
if (session == null) {
String sUserName = request.getParameter ("userid");
String sPassword = request.getParameter ("password") ;
if (sUserName != null) {
cred.put ("userid", sUserName) ;
cred.put ("password", sPassword);
user = new UserSession(resource, cred);
if (user.getStatus() == UserSession.LOGGEDIN) {
if (user.isAuthorized(resource)) {
session = request.getSession(true);
session.putValue("user", user);
response.sendRedirect (requestedPage) ;
} else {
out.println("<p>User " + sUserName + " not" +
" authorized for " + requestedPage + "\n");
}
} else {
out.println("<p>User" + sUserName + "NOT LOGGED IN\n");
}
} else {
out.println("<p>USERNAME PARAM REQUIRED\n");

}

} else {
user = (UserSession)session.getValue("user");
if (user.getStatus() == UserSession.LOGGEDIN) {

out.println("<p>User " + user.getUserIdentity() + " already"+
"LOGGEDIN\n") ;

}

}

} else {

out.println("<p>Resource Page" + requestedPage + " is not"+
" protected with BASIC\n");

}
} else {
out.println("<p>Page " + requestedPage + " is not protected\n");

}
} catch (AccessException ex) {
out.println(ex);

}
out.println("</BODY></HTML>") ;

}

2.2.6 Annotated Sample Code: Java Login Servlet

Import standard Java packages to support input, output, and basic functionality.

import java.io.*;
import java.util.*;

Import two packages of Java extensions to provide servlet-related functionality.

import javax.servlet.*;
import javax.servlet.http.*;

2-16 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

Import the package oracle.security.am.asdk. jar, which is the Java
implementation of the Access SDK APL

import oracle.security.am.asdk.*;

This servlet, which builds on the functionality of the generic Ht tpServlet supported
by the Java Enterprise Edition, is named LoginServlet.

public class LoginServlet extends HttpServlet {

The init method is called once by the servlet engine to initialize the Access Client. In
init method, Access SDK can be initialized by instantiating AccessClient by passing
the location of the configuration file ObAccessClient.xml file. For more information for
creating Access Client, refer to Oracle Fusion Middleware Access SDK Java API Reference
for Oracle Access Management Access Manager. The OAM_10G compatibility flag
initializes Access SDK in a mode such that it is compatible with both 10g and 11g
servers The OAM_10G compatibility flag initializes Access SDK in an old 10g agent
mode that is compatible with both 10g and 11g servers. By default, if this compatibility
mode is not provided, then default 0AM_11G flag is used and the agent will operate in
11g agent mode and can only talk with 11g OAM Server.

In the case of initialization failure, report that fact, along with the appropriate error
message.

public void init() {

AccessClient ac =
AccessClient.createDefaultInstance("/myfolder" ,
AccessClient.CompatibilityMode.OAM _10G) ;

} catch (AccessException ae) {
ae.printStackTrace();
}
}

Invoke the javax.servlet.service method to process the user's resource request.

public void service(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

Initialize members as null. These will store the Access structures used to process the
resource request, then set the response type used by this application to text /html.

AuthenticationScheme authnScheme = null;
UserSession user = null;

ResourceRequest resource = null;
response.setContentType ("text/html") ;

Open an output stream titled LoginServlet: Error Page and direct it to the
user's browser.

PrintWriter out = response.getWriter();

out.println("<HTML>") ;

out.println("<HEAD><TITLE>LoginServlet: Error Page</TITLE></HEAD>");
out.println("<BODY>");

Determine if a session already exists for this user. Invoke the getSession method
with false as a parameter, so the value of the existing servlet session (and not the
UserSession) will be returned if it is present; otherwise, NULL will be returned.

HttpSession session = request.getSession(false);

Developing Access Clients 2-17

Developing Access Clients

Retrieve the name of the target resource, assign it to the variable requestedPage,
then retrieve the name of the HTTP method (such as GET, POST, or PUT) with which
the request was made and assign it to the variable regMethod.

String requestedPage = request.getParameter (Constants.REQUEST) ;
String regMethod = request.getMethod();

Create a hashtable named cred to hold the user's credentials.

Hashtable cred = new Hashtable();

If the variable requestedPage is returned empty, report that the name of the target
resource has not been properly specified, then terminate the servlet.

try {

if (requestedPage == null) {
out.println("<p>REQUESTED PAGE NOT SPECIFIED\n");
out.println("</BODY></HTML>") ;
return;

}

If the name of the requested page is returned, create a ResourceRequest structure
and set the following:
s The resource type is HTTP
s The HTTP method is GET
» resource is the value stored by the variable requestedPage

resource = new ResourceRequest ("http", requestedPage, "GET");
If the target resource is protected, create an AuthenticationScheme structure for
the resource request and name it authnScheme.

if (resource.isProtected()) {
authnScheme = new AuthenticationScheme (resource);

If the authentication scheme associated with the target resource is HTTP basic and
no user session currently exists, invoke
javax.servlet.servletrequest.getParameter to return the user's
credentials (user name and password) and assign them to the variables sUserName
and sPassword, respectively.

For the authnScheme. isBasic call in the following statement to work properly, the
user name and password must be included in the query string of the user's HTTP
request, as in the following:

http://host.example.com/resource?username=bob&userpassword=bobsp
assword

where resource is the resource being requested, bob is the user making the request,
and bobspassword is the user's password.

Additional Code for authnScheme.isForm

Note: If you substitute authnScheme. isForm for
authnScheme. isBasic, you need to write additional code to
implement the following steps.

1. Process the original request and determine that form-based login is required.

2-18 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

2. Send a 302 redirect response for the login form and also save the original resource
information in the HTTP session.

3. Authenticate the user by processing the posted form data with the user's name
and password.

4. Retrieve the original resource from the HTTP resource and sends a 302 redirect
response for the original resource.

5. Process the original request once again, this time using the UserSession stored
in the HTTP session.

if (authnScheme.isBasic()) {
if (session == null) {
String sUserName = request.getParameter (Constants.USERNAME) ;
String sPassword = request.getParameter (Constants.PASSWORD) ;

If the user name exists, read it, along with the associated password, into the hashtable
named cred.

if (sUserName != null) {
cred.put ("userid", sUserName) ;
cred.put ("password", sPassword) ;

Create a user session based on the information in the ResourceRequest structure
named resource and the hashtable cred.

user = new UserSession(resource, cred);
If the status code for the user returns as LOGGEDIN, that user has authenticated
successfully.

if (user.getStatus() == UserSession.LOGGEDIN) {

Determine if the user is authorized to access the target resource.

if (user.isAuthorized(resource)) {
Create a servlet user session (which is not to be confused with an UserSession) and
add the name of the user to it.

session = request.getSession(true);
session.putValue("user", user);

Redirect the user's browser to the target page.

response.sendRedirect (requestedPage) ;

If the user is not authorized to access the target resource, report that fact.

} else {
out.println("<p>User " + sUserName + " not authorized
for " + requestedPage + "\n");

If the user is not properly authenticated, report that fact.

} else {
out.println("<p>User" + sUserName + "NOT LOGGED IN\n");
}

If the user name has not been supplied, report that fact.

} else {

Developing Access Clients 2-19

Developing Access Clients

out.println("<p>USERNAME PARAM REQUIRED\n");

}

If a session already exists, retrieve USER and assign it to the session variable user.
} else {

user = (UserSession)session.getValue("user");

If the user is logged in, which is to say, the user has authenticated successfully, report
that fact along with the user's name.

if (user.getStatus() == UserSession.LOGGEDIN) {
out.println("<p>User " + user.getUserIdentity() + " already
LOGGEDIN\n") ;

}
}

If the target resource is not protected by a basic authentication scheme, report that
fact.

} else {
out.println("<p>Resource Page" + requestedPage + " is not protected
with BASIC\n");
}

If the target resource is not protected by any authentication scheme, report that fact.

} else {
out.println("<p>Page " + requestedPage + " is not protected\n");

}

If an error occurs, report the backtrace.

} catch (AccessException ex) {
oe.println(ex);

}

Complete the output stream to the user's browser.

out.println("</BODY></HTML>") ;
}
}

2.2.7 Sample Code: Additional Methods

Building on the basic pattern established in the sample application
JAccessClient. java, discussed in Section 2.2.3, "Sample Code: Simple Access
Client", the following sample program invokes several additional OAM Server
methods. For instance, it inspects the session object to determine which actions, also
named responses, are currently configured in the policy rules associated with the
current authentication scheme.

For this demonstration to take place, you must configure some actions through the
OAM Server prior to running the application. For details about authentication action
and configuring user authentication, see Oracle Fusion Middleware Administrator’s Guide
for Oracle Access Management. The complete listing for this sample application appears
in Example 2-3. An annotated version of the code is provided in Section 2.2.8,
"Annotated Sample Code: Additional Methods".

2-20 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

Example 2-3 access_test _java.java

import java.util.*;
import oracle.security.am.asdk.*;

public class access_test_java {

public static void main(String[] arg) {
String userid, password, method, url, configDir, type,
location;
ResourceRequest res;
Hashtable parameters = null;
Hashtable cred = new Hashtable();
AccessClient ac = null;
if (arg.length < 5) {
System.out.println("Usage: EXPECTED: userid password Type
HTTP-method"
+" URL [Installdir [authz-parameters] [location]]]");

return;

} else {
userid = argl0];
password = arg[l];
type = arg[2];
method = argl[3];
url = argl[4];

}
if (arg.length >= 6) {
configDir = arg[5];
} else {
configDir = null;
}
if (arg.length >= 7 && arg[6] != null) ({
parameters = new Hashtable();
StringTokenizer tokl = new StringTokenizer (arg[6], "&");
while (tokl.hasMoreTokens()) {
String nameValue = tokl.nextToken();
StringTokenizer tok2 = new StringTokenizer (nameValue,
=)
String name = tok2.nextToken();
String value = tok2.hasMoreTokens () ? tok2.nextToken /()

wn,
’

parameters.put (name, value);

}
location = arg.length >= 8 ? arg[7] : null;
try {
ac = AccessClient.createDefaultInstance(configDir ,
AccessClient.CompatibilityMode.OAM _10G) ;

} catch (AccessException ae) {

System.out.println("OAM Server SDK Initialization
failed");

ae.printStackTrace();
return;

}

cred.put ("userid", userid);

cred.put ("password", password) ;

try {
res = new ResourceRequest (type, url, method);
if (res.isProtected()) {
System.out.println("Resource " + type + ":" + url + "

Developing Access Clients

2-21

Developing Access Clients

protected") ;
} else {
System.out.println("Resource " + type + ":" + url + "
unprotected") ;
}
} catch (Throwable t) {
t.printStackTrace();
System.out.println("Failed to created new resource
request") ;
return;
}
UserSession user = null;
try {
user = new UserSession(res, cred);
} catch (Throwable t) {
t.printStackTrace();
System.out.println("Failed to create new user session");

return;
}
try {
if (user.getStatus() == UserSession.LOGGEDIN) {
if (location != null) user.setLocation(location);

System.out.println("user status is " + user.getStatus());

if (parameters != null ? user.isAuthorized(res,
parameters)
user.isAuthorized(res)) {
System.out.println("Permission GRANTED");

System.out.println("User Session Token =" +
user.getSessionToken()) ;
if (location != null) {
System.out.println("Location = " +
user.getLocation());
}
} else {
System.out.println("Permission DENIED");
if (user.getError() == UserSession.ERR_NEED MORE_DATA)

int nParams =
res.getNumberOfAuthorizationParameters () ;
System.out.print ("Required Authorization Parameters
(" +
nParams + ") :");
Enumeration e =
res.getAuthorizationParameters () .keys();
while (e.hasMoreElements()) {
String name = (String) e.nextElement();
System.out.print (" " + name);
}
System.out.println();

)

else

{
System.out.println("user status is " + user.getStatus());

}

} catch (AccessException ae)

{

System.out.println("Failed to get user authorization");

2-22 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

}

String[] actionTypes = user.getActionTypes();

for(int i =0; i < actionTypes.length; i++)

{

Hashtable actions = user.getActions(actionTypes([i]);

Enumeration e = actions.keys();

int item = 0;

System.out.println("Printing Actions for type " +
actionTypes[i]);

while (e.hasMoreElements())

{

String name = (String)e.nextElement();
System.out.println("Actions[" + item +"]: Name " + name + "
value " + actions.get(name));
item++;
}
}
AuthenticationScheme auths;
try
{
auths = new AuthenticationScheme(res);
if (auths.isBasic())
{
System.out.println("Auth scheme is Basic");
}
else
{
System.out.println("Auth scheme is NOT Basic");
}
}
catch (AccessException ase)
{
ase.printStackTrace() ;
return;
}
try
{
ResourceRequest resNew = (ResourceRequest) res.clone();
System.out.println("Clone resource Name: " +
resNew.getResource()) ;
}

catch (Exception e)

{

e.printStackTrace() ;
}

res = null;

auths = null;
ac.shutdown () ;

}

}

2.2.8 Annotated Sample Code: Additional Methods

Import standard Java libraries to provide basic utilities, enumeration, and token
processing capabilities.

import java.util.*;

Import the Access SDK API libraries.

Developing Access Clients 2-23

Developing Access Clients

import oracle.security.am.asdk.*;

This class is named access_test_java.
public class access_test_java {
Declare seven variable strings to store the values passed through the array named
arg.
public static void main(String[] arg) {
String userid, password, method, url, configDir, type, location;
Set the current ResourceRequest to res.

ResourceRequest res;

Initialize the hashtable parameters to null, just in case they were not already empty.

Hashtable parameters = null;

Create a new hashtable named cred.

Hashtable cred = new Hashtable();

Initialize AccessClient reference to null.

AccessClient ac = null;

If the array named arg contains less than five strings, report the expected syntax and
content for command-line input, which is five mandatory arguments in the specified
order, as well as the optional variables configDir, authz-parameters, and
location.

if (arg.length < 5) {
System.out.println("Usage: EXPECTED: userid password type
HTTP-method URL [configDir [authz-parameters] [location]]]");

Since fewer than five arguments were received the first time around, break out of the
main method, effectively terminating program execution.

return;
} else {

If the array named arg contains five or more strings, assign the first five arguments
(arg[0] through arg[4]) to the variables userid, password, type, method, and url,
respectively.

userid = arg([0];
password = argl[l];
type = argl[2];
method = argl[3];
url = argl[4];

}

If arg contains six or more arguments, assign the sixth string in the array to the
variable configDir.
if (arg.length >= 6)

configDir = arg[5];

If arg does not contain six or more arguments (in other words, we know it contains
exactly five arguments, because we have already determined it does not contain fewer
than five) then set configDir to NULL.

2-24 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

else
configDir = null;

If arg contains at least seven strings, and arg[6] (which has been implicitly assigned to
the variable authz-parameters) is not empty, create a new hashtable named
parameters. The syntax for the string authz-parameters is: pl=v1&p2=v2&...

if (arg.length >= 7 && arg[6] != null) {

parameters = new Hashtable();

Create a string tokenizer named tok1 and parse arg[6], using the ampersand character
(&) as the delimiter. This breaks arg[6] into an array of tokens in the form pn=vn,
where n is the sequential number of the token.

StringTokenizer tokl = new StringTokenizer(argl[6], "&");
For all the items in tok1, return the next token as the variable namevValue. In this

manner, nameValue is assigned the string pn=vn, where n is the sequential number of
the token.

while (tokl.hasMoreTokens()) {
String nameValue = tokl.nextToken();
Create a string tokenizer named tok2 and parse nameValue using the equal character

(=) as the delimiter. In this manner, pn=vn breaks down into the tokens pn and vn.

StringTokenizer tok2 = new StringTokenizer (nameValue, "=");

Assign the first token to the variable name.

String name = tok2.nextToken();
Assign the second token to value. If additional tokens remain in tok2, return the
next token and assign it to value; otherwise, assign an empty string to value.

String value = tok2.hasMoreTokens() ? tok2.nextToken() : "";

Insert name and value into the hashtable parameters.

parameters.put (name, value);
}
}

If there are eight or more arguments in arg, assign arg[7] to the variable location;
otherwise make location empty.

location = arg.length >= 8 ? arg([7] : null;

Create AccessClient instance using configDir, in case if its null provide
configuration file location using other options. For more information for creating
Access Client, see Oracle Fusion Middleware Access SDK Java API Reference for Oracle
Access Management Access Manager.

try {

ac = AccessClient.createDefaultInstance(configDir |,
AccessClient.CompatibilityMode.OAM_10G) ;

}

If the initialization attempt produces an error, report the appropriate error message
(ae) to the standard error stream along with the backtrace.

catch (AccessException ae) {
System.out.println("

Developing Access Clients 2-25

Developing Access Clients

OAM Server SDK Initialize failed");
ae.printStackTrace() ;

Break out of the main method, effectively terminating the program.

return;

}

Read the variables, user ID, and password into the hashtable named cred.

cred.put ("userid", userid);
cred.put ("password", password) ;

Create a ResourceRequest object named res, which returns values for the variables
type, url and method from the OAM Server.

try {
res = new ResourceRequest (type, url, method);

Determine whether the requested resource res is protected and display the
appropriate message.

if (res.isProtected())

System.out.println("Resource " + type ":" + url + " protected");
else
System.out.println("Resource " + type + ":" + url + " unprotected");

If the attempt to create the ResourceRequest structure does not succeed, report the
failure along with the error message t.

catch (Throwable t)
t.printStackTrace

{
()
System.out.println(

"Failed to create new resource request");
Break out of the main method, effectively terminating the program.

return;

Set the UserSession parameter user to empty.
UserSession user = null;
Create a UserSession structure named user so that it returns values for the
ResourceRequest structure res and the AuthenticationScheme structure cred.
try

user = new UserSession(res, cred);
If the attempt to create the UserSession structure does not succeed, then report the
failure along with the error message t.

catch (Throwable t)
t.printStackTrace

{
()
System.out.println(

"Failed to create new user session");
Break out of the main method, effectively terminating the program.

return;

}

2-26 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

Determine if the user is currently logged in, which is to say, authentication for this
user has succeeded.

try
{
if (user.getStatus() == UserSession.LOGGEDIN) {

If the user is logged in, determine whether the variable 1ocation is not empty. If
location is not empty, set the location parameter for AccessClient to the value
of the variable 1ocation, then report that the user is logged in along with the status
code returned by the OAM Server.

if (location != null) user.setLocation(location);

System.out.println("user status is " + user.getStatus());

Check authorization. To accomplish this, determine whether parameters exists. If it
does, determine whether the user is authorized with respect to the target resource
when the parameters stored in parameters are attached. If parameters does not
exist, simply determine whether the user is authorized for the target resource.

try {
if (parameters != null ? user.isAuthorized(res, parameters)
user.isAuthorized(res)) {

If the user is authorized to access the resource when all the appropriate parameters
have been specified, report that permission has been granted.

System.out.println("Permission GRANTED");

Display also a serialized representation of the user session token.

System.out.println("User Session Token =" + user.getSessionToken());

If the variable location is not empty, report the location.

if (location != null) {
System.out.println("Location = " + user.getLocation());

If the user is not authorized to access the resource, report that permission has been
denied.

} else {
System.out.println("Permission DENIED");

If UserSession returns ERR_NEED_MORE_DATA, set the variable nParams to the
number of parameters required for authorization, then report that number to the user.

if (user.getError() == UserSession.ERR_NEED_MORE_DATA) {
int nParams = res.getNumberOfAuthorizationParameters();
System.out.print ("Required Authorization Parameters (" +
nParams + ") :");

Set e to the value of the keys parameter in the hashtable returned by the
getAuthorizationParameters method for the ResourceRequest object named

" "

res.

Enumeration e = res.getAuthorizationParameters() .keys();

Report the names of all the elements contained in e.

while (e.hasMoreElements()) {
String name = (String) e.nextElement();

Developing Access Clients 2-27

Developing Access Clients

System.out.print (" " + name);
}
System.out.println();

}

Otherwise, simply proceed to the next statement.

else

If the user is not logged in, report the current user status.

else
System.out.println("user status is " + user.getStatus());

In the case of an error, report that the authorization attempt failed.

catch (AccessException ae)
System.out.println("Failed to get user authorization");

Now report all the actions currently set for the current user session. Do this by creating
an array named actionTypes from the strings returned by the getActionTypes
method. Next, read each string in actionTypes into a hashtable named actions.
Report the name and value of each of the keys contained in actions.

String[] actionTypes = user.getActionTypes();
for(int i =0; actionTypes([i] !'= null; i++){
Hashtable actions = user.getActions(actionTypes[i]);
Enumeration e = actions.keys();
int item = 0;
System.out.println("Printing Actions for type " + actionTypes([i]);

while(e.hasMoreElements()) {

String name = (String)e.nextElement () ;

System.out.println("Actions[" + item +"]: Name " + name + " value " +
actions.get (name)) ;

item++;

}

Attempt to create an AuthenticationScheme object named auths for the
ResourceRequest object res.

AuthenticationScheme auths;
try
auths = new AuthenticationScheme (res);

If the AuthenticationScheme creation attempt is unsuccessful, report the failure
along with the error message ase.

catch (AccessException ase) {
ase.printStackTrace();

Break out of the main method, effectively terminating the program.

return;

Determine if the authorization scheme is basic.

try
{

2-28 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Access Clients

if (auths.isBasic())

If it is, report the fact.

System.out.println("Auth scheme is Basic");

If it is not basic, report the fact.

else
System.out.println("Auth scheme is NOT Basic");

Use the copy constructor to create a new ResourceRequest object named resNEW
from the original object res.

ResourceRequest resNew = (ResourceRequest) res.clone();

Report the name of the newly cloned object.

System.out.println("Clone resource Name: " + resNew.getResource());

If the ResourceRequest object cannot be cloned for any reason, report the failure
along with the associated backtrace.

}
catch (Exception e) {
e.printStackTrace() ;

}

Set the ResourceRequest object res and the AuthenticationScheme object
auths to NULL, then disconnect the Access SDK APIL.

res = null;
auths = null;
ac.shutdown () ;

2.2.9 Sample Code: Certificate-Based Authentication in Java

The following is a code snippet that demonstrates implementing an Access Client in
Java that processes an X.509 certificate. This snippet is appropriate when an
administrator configures certificate-based authentication in the Access System.

Note that the certificate must be Base 64-encoded. The OAM Server uses this certificate
only to identify the user. It does not perform validation such as the validity period, if
the root certification is trusted or not, and so on.

File oCertFile = new File("sample_cert.pem");
FileInputStream inStream = new FileInputStream(oCertFile);
CertificateFactory cf =
CertificateFactory.getInstance("X.509");

// cert must point to a valid java.security.cert.X509Certificate instance.
X509Certificate cert = (X509Certificate)

cf.generateCertificate(inStream) ;

// Convert the certificate into a byte array
byte[] encodecCert = cert.getEncoded();

// Encode the byte array using Base 64-encoding and convert it into a string
String base64EncodedCert = new String(Base64.encodeBase64 (encodedCert));

Developing Access Clients 2-29

Messages, Exceptions, and Logging

// Create hashtable to hold credentials
Hashtable creds = new Hashtable();

// Store the Base 64-encoded under the key "certificate"
cred.put ("certificate", base64EncodedCert) ;

// Create ResourceResource request object including all information about the //
// resource being accessed

ResourceRequest resourceRequest = new ResourceRequest (resourceType,
resourceUrl, operation);

// Create a UserSession with the requestRequest and the cred hashtable
UserSession userSession = new UserSession(resourceRequest, creds);

// The above statement will throw an exception if the certificate cannot be mapped
// to a valid user by the OAM Server.
The following import statements are associated with the snippet:

import java.security.cert.CertificateFactory;
import java.security.cert.X509Certificate;
import java.io.FileInputStream;
import oracle.security.am.common.nap.util.Base64;

2.3 Messages, Exceptions, and Logging

This section describes the messages and exceptions used by the Access SDK to indicate
status or errors.

The execution log generated by the Access SDK is also described. The execution log
provides information about operations performed. For example, operation status, any
errors or exceptions that occur, and any general information that is helpful for
troubleshooting.

The following topics are discussed in this section:
= Messages

= Exceptions

= Logging

2.3.1 Messages

The Access SDK provides support for localized messages that indicate status or error
conditions. Error messages, which are provided to the application as exceptions, are
also localized. These localized error messages are logged in the Access SDK log file.

2.3.2 Exceptions
The following types of exceptions are used to indicate error conditions to an
application:
s OperationNotPermittedException

The Access SDK provides a set of session management APIs. Only privileged
Access Clients can perform these session management operations.
AllowManagementOperations flag must be set for the specified agent profile to
initialize Access SDK.

2-30 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Messages, Exceptions, and Logging

If the Access Client is not allowed to perform these operations, the 11¢ OAM
Server returns an error. When the server returns an error, the Access SDK will
throw this exception.

= AccessException

The Access SDK API throws an AccessException whenever an unexpected,
unrecoverable error occurs during the performance of any operation.

2.3.3 Logging

The Access SDK uses Java logging APIs for producing logs. Specifically, the
oracle.security.am.asdk package contains the AccessLogger class, which
produces the Access SDK log.

To generate the Access SDK log, you must provide a logging configuration file when
you start the application. Provide this log configuration file as a Java property while
running the application, where the Java property
-Djava.util.logging.config. file is the path to logging.properties.

For example:

java -Djava.util.logging.config.file=JRE_DIRECTORY/lib/logging.properties

The logging.properties file defines the number of Loggers, Handlers, Formatters,
and Filters that are constructed and ready to go shortly after the VM has loaded.
Depending on the situation, you can also configure the necessary logging level.

You must provide the log file path against the
java.util.logging.FileHandler.pattern property in the
logging.properties file. If you provide only the file name, the file will be created
under the current directory.

The following is an example logging.properties file:

"handlers" specifies a comma separated list of log Handler

classes. These handlers will be installed during VM startup.

Note that these classes must be on the system classpath.

By default we only configure a ConsoleHandler, which will only

show messages at the INFO and above levels.

Add handlers to the root logger.

These are inherited by all other loggers.

handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Set the logging level of the root logger.

Levels from lowest to highest are

FINEST, FINER, FINE, CONFIG, INFO, WARNING and SEVERE.
The default level for all loggers and handlers is INFO.
.level= ALL

Configure the ConsoleHandler.

ConsoleHandler uses java.util.logging.SimpleFormatter by default.

Even though the root logger has the same level as this,

the next line is still needed because we're configuring a handler,

not a logger, and handlers don't inherit properties from the root logger.
java.util.logging.ConsoleHandler.level =INFO
java.util.logging.ConsoleHandler.formatter=java.util.logging.SimpleFormatter

The following special tokens can be used in the pattern property
which specifies the location and name of the log file.

/ - standard path separator

%t - system temporary directory

Developing Access Clients 2-31

Building an Access Client Program

%h - value of the user.home system property

%g - generation number for rotating logs

%u - unique number to avoid conflicts

FileHandler writes to %$h/demo0.log by default.
java.util.logging.FileHandler.pattern=%h/asdk%u.log

Configure the FileHandler.

FileHandler uses java.util.logging.XMLFormatter by default.
#java.util.logging.FileHandler.limit = 50000
#java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormatter
java.util.logging.FileHandler.level=ALL

The following is a sample of the log output:

Apr 19, 2011 5:20:39 AM AccessClient createClient
FINER: ENTRY

Apr 19, 2011 5:20:39 AM ObAAAServiceClient setHostPort
FINER: ENTRY

Apr 19, 2011 5:20:39
FINER: RETURN

Apr 19, 2011 5:20:39
FINER: ENTRY

Apr 19, 2011 5:20:39
FINER: RETURN

Apr 19, 2011 5:20:39
FINER: RETURN

Apr 19, 2011 5:20:39 AccessClient initialize

FINER: read config from server, re-init if needed

Apr 19, 2011 5:20:39 AM AccessClient updateConfig

FINER: ENTRY

Apr 19, 2011 5:20:39 AM AccessClient readConfigFromServer

FINER: ENTRY

Apr 19, 2011 5:20:39 AM ObAAAServiceClient getClientConfigInfo

FINER: ENTRY

Apr 19, 2011 5:20:39 AM ObAAAServiceClient sendMessage

FINER: ENTRY

Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.NAPLogger log

FINER: Getting object using poolid primary_object_pool_factory

Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.pool.PoolLogger
logEntry

FINER: PoolLogger : main entered: KeyBasedObjectPool.acquireObject

Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.NAPLogger log

FINEST: Creating pool with id = primary_object_pool_factory

Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.pool.PoolLogger log
FINER: PoolLogger:main : Maximum Objects = 1Minimum Objectsl

Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.util.pool.PoolLogger
logEntry

FINER: PoolLogger : main entered: constructObject

Apr 19, 2011 5:20:39 AM oracle.security.am.common.nap.ObMessageChannelImpl <init>

ObAAAServiceClient setHostPort

ObAAAServiceClient setHostPort

ObAAAServiceClient setHostPort

AccessClient createClient

E B B E E

2.4 Building an Access Client Program
The following topics are discussed in this section:
= Setting the Development Environment

s Compiling a New Access Client Program

2-32 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Configuring and Deploying Access Clients

2.4.1 Setting the Development Environment
The required environment is as follows:
= Install JDK 1.6.0 or higher.
s Install 11g Access SDK.

s Define a JAVA_HOME environment variable to point to JDK installation
directory. For example, on UNIX-like operating systems, execute the following
command:

setenv JAVA_HOME <JDK install dir>/bin
= Modify the PATH environment variable to the same location where JAVA_

HOME /bin points. For example, on UNIX-like operating systems, execute the
following command:

setenv PATH $JAVA_HOME/bin:$PATH
= Modify the CLASSPATH environment variable to point to JDK and Access SDK

jar files. For example, on UNIX-like operating systems, execute the following
command:

setenv CLASSPATH $JAVA_HOME/lib/tools.jar:S$SACCESSSDK_INSTALL_
DIR/ocamasdk-api.jar:SCLASSPATH

For a list of all jar files required in the CLASSPATH variable, see Section 2.1.2,
"About Installing Access SDK".

2.4.2 Compiling a New Access Client Program

After the development environment is configured (see Section 2.4.1, "Setting the
Development Environment"), you can compile your Access Client program using a
command similar to the following:

Javac -cp <location of Access SDK jar> SampleProgram.java

Modify details such as CLASSPATH and Access Client program name as needed. For
more information about the jar files to add to CLASSPATH, see Section 2.1.2, "About
Installing Access SDK".

2.5 Configuring and Deploying Access Clients

After development, the Access Client must be deployed in a live Access Manager 11¢
environment before you can test and use it. This section describes the configuration
steps required before deploying an Access Client developed using the Access SDK.
The Access Client deployment process is similar to that of other Access Manager
agents.

This section provides the following topics:

s Task Overview: Configuring and Deploying an Custom Access Client
= Configuration Requirements

= Generating the Required Configuration Files

» SSL Certificate and Key Files

Developing Access Clients 2-33

Configuring and Deploying Access Clients

2.5.1 Task Overview: Configuring and Deploying an Custom Access Client

The following overview outlines the tasks that must be performed by a user with
Oracle Access Management administrator credentials. It is assumed that the Access
Client program is already developed and compiled.

1.

Retrieve the Access SDK jar file and copy this to the computer you will use to
build the Access Client. For more information, see Section 2.1.2, "About Installing
Access SDK".

Copy the Access Client to the computer hosting the application to be protected.
Configure the Access Client.
Verify you have the required Java environment available.

If your Access Client is in a standalone environment, you can use Java
Development Kit (JDK) or Java Runtime Environment (JRE). If your Access Client
is a servlet application, you can use Java EE or the Java environment available
with your Java EE container.

Verify that the Access SDK jar file is in the CLASSPATH. If in a non-JRF
environment (standalone application), verify that the necessary JPS jar files are in
the CLASSPATH. For more information, see Section 2.1.2, "About Installing Access
SDK".

To deploy the Access Client, see "Registering Agents and Applications by Using
the Console" in Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

2.5.2 Configuration Requirements

An Access SDK configuration consists of the following files:

ObAccessClient.xml

This configuration file (ObAccessClient.xml) holds various details, such as Access
Manager server host, port, and other configuration items, that decide behavior of
the Access Client. For example, idle session time.

An alternative to using ObAccessClient.xml is to initialize the 11.1.2 Access SDK
by providing a bootstrap configuration. An access client or application can use a
bootstrap configuration from its own configuration store or other method.
Configuration details such as host and port number of the OAM Server can be
invoked using AccessClient.createDefaultInstance. For more
information about programmatic initialization, see Oracle Fusion Middleware Access
SDK Java API Reference for Oracle Access Management Access Manager.

cwallet.sso

This Oracle wallet file is an artifact created when an 11g agent is registered with
Access Manager. The cwallet.sso file contains the secret key that is used by OAM
Server when encrypting a token issued for the agent.

The cwallet.sso file can be stored in the same location as other files, or elsewhere.
The path must be declared in jps-config.xml and is relative to the jps-config.xml
location.

jps-config.xml

This file is required by the libraries used to read the cwallet.sso file. It must reside
in the Access SDK configuration directory. It can reside in either of the following
locations:

2-34 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Configuring and Deploying Access Clients

— default under <current working dir>/config/jps-config.xml (template is
extracted from unzipping the client install zip file), where <current working
dir> is the directory where the client install zip file was unzipped. Or,

- can be specified through
-Doracle.security.jps.config=jps-config.xml file location.
You must pass the location as a property in the Java command.

A sample jps-config.xml file is included in the client install package zip file.
= JKS Keystores for SSL

This file is required only if the transport security mode is Simple or Cert. Both the
10g OAM Server and 11g OAM Server supports transport security modes Open,
Simple and Cert to communicate with agents. Credentials are passed using the
Oracle Access Protocol (OAP). When OAP is used in Open mode the
communication is vulnerable to eavesdropping, so Open mode is discouraged in
production environments. Open mode is recommended in testing environments
only.

An Access Client developed using Access SDK is called an agent. Depending on
the mode in which OAM Server is configured, an Access Client will have to be
configured to communicate in the same mode.

Each 11g agent has its own agent key, unlike the 10g agent that shares the same
global key across all 10g agents. The 11g agent key is stored in cwallet.sso. This
key is used to encrypt the 11g format SSO token, the accessClientPasswd, and
the global passphrase (stored in password.xml) used in Simple or Cert transport
security mode. The SSO token issued for one agent cannot be used directly for
another agent, unless you obtain a scoped session token from a master token. For
more information, see Oracle Fusion Middleware Administrator’s Guide for Oracle
Access Management.

For Simple or Cert transport security mode, the following is required:
— oamclient-truststore.jks

- oamclient-keystore.jks

- password.xml

For more information, see Section 2.1.3.2, "Access Client Architecture" and
Section 2.5.3, "Generating the Required Configuration Files".

= password.xml

This file is required only if the transport security mode is Simple or Cert. This file
contains a password in encrypted form. This password is the one using which SSL
key file is protected.

For more information, see Section 2.5.3, "Generating the Required Configuration
Files".

s Log Configuration

Is required in order to generate a log file. For more information, see Section 2.3.3,
"Logging".

2.5.3 Generating the Required Configuration Files

The ObAccessClient.xml configuration file can be obtained by registering an Access
Client as either an 10g or 11g agent with the OAM 11g Server, using the administration
console or a remote registration tool. When registering 11¢ agents the cwallet.sso file is

Developing Access Clients 2-35

Configuring and Deploying Access Clients

also created. For more information, see Oracle Fusion Middleware Administrator’s Guide
for Oracle Access Management.

The administration console will also create a password.xml file.

An Access Client application developed with the oracle.security.am.asdk API
can specify the location to obtain the configuration file and other required files. This is
done by initializing the Access SDK and providing the directory location where the
configuration files exist.

For information about options available to specify location of the configuration files to
the Access SDK, see Oracle Fusion Middleware Access SDK Java API Reference for Oracle
Access Management Access Manager.

2.5.4 SSL Certificate and Key Files

The 11g Access SDK uses SSL certificates and key files from a database commonly
known as trust stores or key stores. It requires these stores to be in JKS (Java Key
Standard) format.

2.5.4.1 Simple Transport Security Mode

In Simple transport mode, the JKS keystores are auto-generated by the OAM Server.
The generated keystores are located in WLS_OAM_DOMAIN_
HOME /output/webgate-ssl/.

2.5.4.2 Cert Transport Security Mode

In Cert transport security mode, the certificates for the server and agent should be
requested from a certifying authority. Optionally, the Simple mode self-signed
certificates can also be used as a certifying authority, for purposes of issuing Cert
mode certificates.

Follow these steps to prepare for Cert mode:

1. Import a CA certificate of the certifying authority using the certificate and key pair
issued for Access Client and OAM Server. Follow the steps in Section 2.5.4.2.1,
"Importing the CA Certificate". Instead of cacert.pem or cacert.der, substitute the
CA certificate file of the issuing authority.

2. If 10g JNI ASDK install is available, it provides a way to generate certificate and
key file for the Access Client. These certificates will be in PEM format.

For more information about how to generate a certificate using an imported CA
certificate, see Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

To import this certificate, key pair in the oamclient-keystore.jks in PEM format,
follow instructions in Section 2.5.4.2.2, "Setting Up The Keystore".

25.4.2.1 Importing the CA Certificate

This step is not required when using the 11g Java Access SDK.

The CA certificate must be imported to the trust store when using the 10g JNI SDK.
The 10g Access SDK provides a self-signed CA certificate that can be used in Simple
mode, and is used for issuing certificates to the Access Client. 11g OAM Server
provides a self-signed CA certificate.

= 10g Access SDK: The CA certificate (cacert.pem) is located in ASDK_INSTALL_
DIR/oblix/tools/openssl/simpleCA.

2-36 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Configuring and Deploying Access Clients

OAM 11g Server: The CA certificate (cacert.der) is located in SMIDDLEWARE_
HOME /user_projects/domains/base_domain/config/fmwconfig.

Execute the following command to import the PEM or DER format CA certificate into
trust store:

1.

Edit cacert.pem or cacert.der using a text editor to remove all data except what is
contained within the CERTIFICATE blocks, and save the file. For example:

Execute the following command, modifying as needed for your environment:

keytool -importcert -file <ca cert file cacert.pem or
cacert.der> -trustcacerts -keystore oamclient-truststore.jks
-storetype JKS

Enter keystore password when prompted. This must be same as the global pass
phrase used in the OAM Server.

25422 Setting Up The Keystore The Access Client’s SSL certificate and private key file
must be added to the keystore. The SSL certificate and private key file must be
generated in Simple mode so the Access Client can communicate with OAM Server.

10g Access SDK: provides for generating a certificate and key file for the Access
Client. These certificates are in PEM format.

11g OAM Server: Use the tool Remote Registration and administration console for
generating a certificate file (aaa_cert.pem) and key file (aaa_key.pem) in PEM
format for the Access Client.

Execute the following commands in order to import the certificate and key file into
keystore oamclient-keystore.jks.

1.

Edit aaa_cert.pem using any text editor to remove all data except that which is
contained within the CERTIFICATE blocks, and save the file. For example:

Execute the following command, modifying as needed for your environment:

openssl pkcs8 -topk8 -nocrypt -in aaa_key.pem -inform PEM
-out aaa_key.der -outform DER

This command will prompt for a password. The password must be the global pass
phrase.

Execute the following command, modifying as needed for your environment:

openssl x509 -inaaa_cert.pem-inform PEM -out aaa_cert.der
-outform DER

Execute the following command, modifying as needed for your environment:

java -cp importcert.jar

oracle.security.am.common. tools.importcerts.CertificateImport
-keystore oamclient-keystore.jks -privatekeyfile aaa_key.der
-signedcertfile aaa_cert.der -storetype jks -genkeystore yes

In this command, aaa_key.der and aaa_cert.der are the private key and
certificate pair in DER format.

Developing Access Clients 2-37

Compatibility: 11g versus 10g Access SDK and APIs

5. Enter the keystore password when prompted. This must be same as global pass
phrase.

2.6 Compatibility: 11g versus 10g Access SDK and APIs
The following topics are discussed in this section:
» Compatibility of the 11g Access SDK
s Compeatibility of 10g JNI ASDK and 11g Access SDK
s Deprecated: 10g JNI ASDK

The 11g Access Manager API enables developers to write custom Access Client code in
Java, which is functionally equivalent to the 10g (10.1.4.3) Java Access Client. With
Access Manager 11g, your Java code will interact with underlying Java binaries in the
APIL

The automatic built-in Java garbage collector deallocates the memory for unused
objects when it (the garbage collector) deems appropriate. Garbage collectors do not
guarantee when an object will be cleaned up, but do ensure that all objects are
destroyed when they are no longer referenced, and no memory leak occurs.

10g and 11¢ Access Manager API functionality has been organized into seven basic
classes. Table 2-3 lists the corresponding class names for the Java language platform.

Table 2-3 Comparison: 11g versus 10g Access API Classes

Purpose of the Class 11g Java Class 10g Java Class

Creates and manipulates structures that ~ AuthenticationScheme class from ObAuthenticationScheme implements
handle user authentication oracle.security.am.asdk ObAuthenticationSchemelnterface
Creates and manipulates structures that ~ ResourceRequest class from ObResourceRequest implements
handle user requests for resources oracle.security.am.asdk ObResourceRequestInterface

Creates and manipulates structures that ~ UserSession class from ObUserSession implements

handle user sessions, which begin when oracle.security.am.asdk ObUserSessionInterface

the user authenticates and end when the
user logs off or the session times out.

Creates and manipulates structure that

handles a unified session for the user, PseudoUserSession class from ObPseudoUserSession
which begins when user is authenticated ~ oracle.security.am.asdk

for the first time and ends when the user

logs off or the session times out.

Retrieves and modifies Access Client AccessClient class from ObConfig
configuration information oracle.security.am.asdk

Handles errors thrown by the Access AccessException, ObAccessException
Manager API OperationNotPermittedException from

oracle.security.am.asdk

Notifies the change in configuration to ConfigUpdateCallback class from
the calling application. oracle.security.am.asdk

2.6.1 Compatibility of the 11g Access SDK

The 11g Access SDK implements the same functionality that is supported by the 10g
JNI ASDK. This functionality is implemented so that you can use it to develop custom
Access Clients that work seamlessly with both the 10g and 11g OAM Server.

The Access SDK also implements some new and modified functionality that can only
be used with an 11g OAM Server. Consequently, the Access SDK can gracefully detect
whether the application is trying to use this functionality with 10g OAM Server.

2-38 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Migrating Earlier Applications or Converting Your Code

The new functionality in the 11g Access SDK (oracle.security.am.asdk)is as
follows:

= Enumerating sessions for the given user

s Terminating the given session

= Setting attributes in the given user session

= Retrieving attributes set in the given session

= Validating user credentials without establishing a session

= Validating user credentials without establishing a session and performing
authorization in the same request

Note: The last two functions are also provided with the
com.oblix.access package in the Access Manager 11¢ Access SDK.

Additionally, the Access SDK provides a modified implementation of the user logout
functionality for removing the server side session. This functionality is not supported
with 10g OAM Server.

2.6.2 Compatibility of 10g JNI ASDK and 11g Access SDK

There is a one-to-one mapping between the 10g JNI ASDK and the 11g Access SDK
version of the com. oblix.access package.

Custom Access Clients developed using 10g JNI ASDK can continue to work with 11¢
Access SDK without any code changes.

The following classes have been added to the 11g Access SDK com.oblix.access
package:

= ObPseudoUserSession: This class provides the following functionality that can be
used only with 11g OAM Server:

- Validating user credentials without establishing a session.

- Validating user credentials without establishing a session and performing
authorization in the same request.

= ObAccessRuntimeException: This class indicates a runtime error while
performing operations that use ObAuthenticationScheme and
ObResourceRequest classes.

2.6.3 Deprecated: 10g JNI ASDK

The 11g Access SDK provides support for interfaces in the 10g JNI ASDK
com.oblix.access package. However, all APIs in com.oblix.access are marked
as deprecated. These APIs will not be enhanced or supported in future Access
Manager 11g Access SDK releases.

Oracle strongly recommends that developers use the 11g Access SDK for all new
development.

2.7 Migrating Earlier Applications or Converting Your Code

This section describes the migration processes to follow if you want to use the 11g
Access SDK. Migrating to the Access SDK can be necessary for the following reasons:

Developing Access Clients 2-39

Migrating Earlier Applications or Converting Your Code

= Migrate applications to replace the com.oblix.access API of 10g JNI ASDK
with the corresponding APl in 11¢ Access SDK without changing how those
applications use Access SDK.

= Migrate application code to use oracle.security.am.asdk APl instead of
com.oblix.access, which is supported in 11g Access SDK for backward
compatibility.

This section contains the following topics:
» Modifying Your Development and Runtime Environment
= Migrating Your Application

s Converting Your Code

2.7.1 Modifying Your Development and Runtime Environment

Before migrating an application, ensure that your development environment is
configured. Also ensure that the 11g Access SDK is configured correctly. For more
information, see Section 2.5, "Configuring and Deploying Access Clients".

2.7.2 Migrating Your Application

You can migrate Access Clients and plug-ins developed with the 10g
com.oblix.access package to operate with the 11¢ OAM Server. This section
describes how programs written with the 10¢g JNI ASDK can be used with 11¢ OAM
Server.

Note: For information about the similarities and differences between
the com.oblix.access APIs in 10g JNI ASDK and in 11g Access
SDK, see Section 2.6.2, "Compatibility of 10g JNI ASDK and 11g
Access SDK".

Support for the classes and interfaces provided in 10g JNI ASDK and in 11g Access
SDK is identical.

In general, you are not required to change or recompile any application code when
migrating applications to use com.oblix.access classes from 11g Access SDK.

A new runtime exception, ObAccessRuntimeException, was introduced in the
com.oblix.access package. This exception is thrown when performing operations
of AuthenticationScheme and ResourceRequest classes.

Oracle recommends that you perform proper exception handling in the application
code. If this is done, the application should be recompiled with the 11g Access SDK jar
file.

2.7.2.1 Configuration Specific to Migration

This discussion assumes that 10g ASDK component is installed and configured with
the OAM Server. This scenario uses existing Access Client applications developed
using the 10g JNI ASDK. The following assumptions are made:

= The configuration items listed in Section 2.5.2, "Configuration Requirements" are
referenced from the 10g ASDK installation directory (ASDK_INSTALL_DIR).

s ObAccessClient.xml is read from ASDK_INSTALL_DIR/access/oblix/lib.

2-40 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Migrating Earlier Applications or Converting Your Code

s password.xml is read from ASDK_INSTALL_DIR/access/oblix/config if the
transport security mode is Simple or Cert.

Simple Mode

To configure the 10g ASDK component in Simple mode, see the Oracle Access Manager
Administration Guide for the 10g release.

Perform the following steps:
1. Import the aaa_cert.pem and aaa_key.pem files into oamclient-keystore.jks.

The aaa_cert.pem and aaa_key.pem files are located in ASDK_INSTALL_
DIR/access/oblix/config/simple.

2. Located the self-signed CA certificate used for issuing Simple mode certificates in
ASDK_INSTALL_DIR/access/oblix/tools/openssl/simpleCA.

3. Import the self-signed CA certificate into oamclient-truststore.jks.

4. Import the certificate and key files into the JKS store by following the steps in
Section 2.5.4, "SSL Certificate and Key Files".

5. Copy the JKS stores to ASDK_INSTALL_DIR/access/oblix/config/simple.

Cert Mode

To configure the 10g ASDK component in Cert mode, see the Oracle Access Manager
Administration Guide for the 10g release.

Perform the following steps:

1. Import the aaa_cert.pem and aaa_key.pem files into oamclient-keystore.jks.
Import the aaa_chain.pem into oamclient-truststore.jks.

The aaa_cert.pem, aaa_key.pemand aa_chain.pem files are located in ASDK_
INSTALL_DIR/access/oblix/config.

2. Import the certificate and key files into the JKS store by following the steps in
Section 2.5.4, "SSL Certificate and Key Files".

3. Copy the JKS stores to ASDK_INSTALL_DIR/access/oblix/config/simple.

Configuration File Location

An Access Client application migrated to use the com.oblix.access APl can
specify the 10g JNI ASDK configuration file locations as follows:

s Either specify the direction location where the 10g ASDK is installed while
initializing ASDK, or

= Set an environment variable OBACCESS_INSTALL_DIR, which points to the
directory location where the 10g JNI ASDK is installed.

The 11g Access SDK then determines the path of the required files based on the
location passed to it.

Environment

To set your environment, follow the instructions in Section 2.4.1, "Setting the
Development Environment". The 10¢ JNI ASDK is named jobaccess.jar. If jobaccess.jar
is in your CLASSPATH, it must be removed.

Developing Access Clients 2-41

Migrating Earlier Applications or Converting Your Code

2.7.3 Converting Your Code

This section describes how to use programs written with the 10¢ JNI ASDK with
Access Manager 11g.

The 11g Java Access SDK supports the functionality of 10g JNI ASDK APIs in the
com.oblix.access package. Implementing the same functionality in the 11g Access
SDK enables backward compatibility with the 10g JNI ASDK. However, all of the APIs
in com.oblix.access are deprecated. These APIs will not be enhanced or
supported in future 11¢ Access SDK releases.

The oracle.security.am.asdk package contains a new authentication and
authorization APL In addition to functionality supplied by the com.oblix.access
package, the oracle.security.am.asdk package also contains enhancements that
take advantage of 11¢ OAM Server functionality.

2.7.3.1 Understanding Differences Between 10g JNI ASDK and 11g Access SDK

The following table compares the APIs from the 10g JNISDK com.oblix.access
package with the APIs from the 11¢ Access SDK oracle.security.am.asdk
package. Where applicable, this table also maps the classes between 10g JNI ASDK and
11g Access SDK.

Table 2-4 Package Differences: com.oblix.access and oracle.security.am.asdk

Access SDK oracle.security.am.asdk

JNI ASDK com.oblix.access Package Package
Interface Summary: Interface Summary:
» ObAuthenticationSchemelnterface None

= ObResourceRequestInterface

s ObUserSessionInterface

Class Summary: Class Summary:

= ObAuthenticationScheme = AuthenticationScheme

= ObConfig s AccessClient

= ObDiagnostic = Supported through AccessClient
= ObResourceRequest = ResourceRequest

= ObUserSession » UserSession

s PseudoUserSession

s BaseUserSession

Exception Summary: Exception Summary:
ObAccessException = AccessException

= OperationNotPermittedException

Enumeration Summary: Enumeration Summary:
None AccessClient.CompatibilityMode. OAM_10G
AccessClient.CompatibilityMode. OAM_11G

Note that the 11g Access SDK contains a new set of APIs that are functionally similar
to the Oracle Access Manager 10g JNI SDK APIs, but with new interfaces.

2-42 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Migrating Earlier Applications or Converting Your Code

2.7.3.2 Converting Code

You can migrate application code that was implemented using 10g JNI ASDK to
achieve the same functionality in 11g Access SDK. This section explains how to modify
existing application code to use the new API in 11g Access SDK.

2.7.3.2.1 Initializing and Uninitializing Access SDK

In the 10g JNI SDK, the com.oblix.access.ObConfig class provides a function to
perform ASDK initialization and uninitialization. In 11g Access SDK, the
oracle.security.am.asdk.AccessClient provides this function.

As with 10g JNI SDK, the Access Client application instance can work with a given
configuration.

Depending on the requirement, you can use the AccessClient class in two different
ways:

= You can use the createDefaultInstance static function to create a single
instance of the AccessClient class. Only a single default instance of this class is
permitted. Invoking this method multiple times within a single instance of the
Access Client application causes an exception.

If you use the createDefaultInstance method, you must use the
AccessClient class instance obtained using this method when instantiating any
of AuthenticationScheme, ResourceRequest, or UserSession classes.

If no AccessClient instance is specified when instantiating these classes, then
the default instance is used.

You can pass either AccessClient.CompatibilityMode.OAM_10G or
AccessClient.CompatibilityMode.OAM_11G when initializing
AccessClient objects. If not specified, then default 0AM_11G would be used, in
which case make sure the 11g agent is registered and the necessary 11g agent
configuration files are set up properly.

= You can use the createInstance static function to create a new AccessClient
class instance initialized with a given configuration. This class is required when it
is within the same running instance of an Access Client application, and the
application must work with different Access Manager systems or different
configurations. Each AccessClient class instance can log its messages to
different log files by passing in an appropriate logger name while constructing the
Access Client instances.

You can pass either AccessClient.CompatibilityMode.OAM_10G or
AccessClient.CompatibilityMode.OAM_11G when initializing
AccessClient objects. If not specified, then default 0AM_11G would be used, in
which case make sure the 11g agent is registered and the necessary 11g agent
configuration files are set up properly.

If you use the createInstance method, you must use the AccessClient class
instance obtained using this method when instantiating the
AuthenticationScheme, ResourceRequest, or UserSession classes.
Otherwise, if no AccessClient instance is specified when instantiating these
classes, then the default instance is used.

While the application is shutting down, it should invoke the AccessClient class
shutdown method to perform uninitialization as shown in the following examples:

= For 10g JNI ASDK

Public static void main (String args[]) {
try {

Developing Access Clients 2-43

Migrating Earlier Applications or Converting Your Code

ObConfig.Initialize (); // Configuration is read from the location pointed
by OBACCESS_INSTALL_DIR
// environment variable

OR

ObConfig.Initialize (configLocation); //Configuration is read from the
location provided

}
ObConfig.shutdown () ;
}//main ends here

s For 11g Access SDK

import java.io.*;
import java.util.*;
import oracle.security.am.asdk.*; //Import classes from OAM1lg Access ASDK

try {
ac = AccessClient.createDefaultInstance (“",
AccessClient.CompatibilityMode.O0AM_10G); // Refer to Oracle Fusion Middleware
Access SDK Java API Reference for Oracle Access Management Access Manager

OR

AccessClient.createInstance(“”,AccessClient.CompatibilityMode.OAM 10G); //
Refer to Oracle Fusion Middleware Access SDK Java API Reference for Oracle
Access Management Access Manager

}
ac.shutdown () ;
}//main ends here

2.7.3.2.2 Performing Access Operations

As shown in Table 2—4, there is a one-to-one mapping between the classes that are
used to perform access operations. The classes in oracle.security.am.asdk are
AuthenticationScheme, ResourceRequest, and UserSession.

Depending how the AccessClient class is instantiated, use the corresponding
constructor of these classes.

Similar to 10g JNI ASDK, any error that occurs during initialization or while
performing access operations, is reported as an exception. AccessException is the
exception class used in 11g Access SDK as seen in the following examples:

s For 10g JNI ASDK

Public static void main (String args([]) {
try {
ObConfig.Initialize (); // Configuration is read from the location pointed

by OBACCESS_INSTALL_DIR
// environment variable
ObResourceRequest rrg = new ObResourceRequest (ms_protocol, ms_resource,ms_
method) ;
if (rrqg.isProtected()) {
System.out.println("Resource is protected.");
ObAuthenticationScheme authnScheme = new ObAuthenticationScheme (rrq);

2-44 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Migrating Earlier Applications or Converting Your Code

if (authnScheme.isForm()) {
System.out.println("Form Authentication Scheme.");
Hashtable creds = new Hashtable();
creds.put ("userid", ms_login);
creds.put ("password", ms_passwd) ;
ObUserSession session = new ObUserSession(rrqg, creds);
if (session.getStatus() == ObUserSession.LOGGEDIN) {
if (session.isAuthorized(rrqg)) {
System.out.println("User is logged in and authorized for the
request at level " + session.getLevel());
} else {
System.out.println("User is logged in but NOT authorized");
}
} else {
System.out.println("User is NOT logged in");
}
} else {
System.out.println("non-Form Authentication Scheme.");

}

} else {
System.out.println("Resource is NOT protected.");
}
}catch (ObAccessException oe) {
System.out.println("Access Exception: " + oe.getMessage());
}

ObConfig.shutdown () ;
}//main ends here

For 11g Access SDK

import java.io.*;
import java.util.*;
import oracle.security.am.asdk.*; //Import classes from OAM1lg Access ASDK

Public static void main (String args([]) {
AccessClient ac;
try {

ac = AccessClient.createDefaultInstance(“”,
AccessClient.CompatibilityMode.OAM_10G) ;

ResourceRequest rrg = new ResourceRequest (ms_protocol,ms_resource, ms_
method) ;

if (rrg.isProtected()) {
System.out.println("Resource is protected.");
AuthenticationScheme authnScheme =new AuthenticationScheme (rrq) ;
if (authnScheme.isForm()) {
System.out.println("Form Authentication Scheme.");
Hashtable creds = new Hashtable();
creds.put ("userid", ms_login);
creds.put ("password", ms_passwd) ;
creds.put ("ip", ms_ip);
creds.put ("operation", ms_method);
creds.put ("resource", ms_resource);
creds.put (“targethost”, ms_targethost);

UserSession session = new UserSession(rrqg, creds);
if (session.getStatus() == UserSession.LOGGEDIN) {
if (session.isAuthorized(rrqg)) {
System.out.println("User is logged in " +
"and authorized for the request " +"at level " +

Developing Access Clients 2-45

Best Practices

session.getLevel());
} else {
System.out.println("User is logged in but NOT authorized");
}
} else {
System.out.println("User is NOT logged in");
}
}
}catch (AccessException oe) {
System.out.println("Access Exception: " + oe.getMessage());
}
ac.shutdown () ;
} //main ends here

2.8 Best Practices

This section presents a number of ways to avoid problems and to resolve the most
common problems that occur during development. The following topics are discussed
in this section:

Avoiding Problems with Access Clients
Identifying and Resolving Access Client Problems
Resolving Environment Problems

Tuning for High Load Environment

2.8.1 Avoiding Problems with Access Clients

Here are some suggestions for avoiding problems with the Access Clients you create:

Make sure that your Access Client attempts to connect to the correct OAM Server.

Make sure the configuration information on your OAM Server matches the
configuration information on your Access Client. You can check the Access Client
configuration information on your OAM Server, using the administration console.
For details, see "Registering Agents and Applications" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

To ensure clean connect and disconnect from the OAM Server, use the
initialize and shutdown methods in the AccessClient class.

The environment variable, OBACCESS_INSTALL_DIR, must be set on your
Windows or UNIX-like host computer so that you can compile and link your
Access Client. In general, you also want the variable to be set whenever your
Access Client is running.

Use the exception handling features (try, throw, and catch) of the language used to
write your custom Access Client code to trap and report problems during
development.

2.8.1.1 Thread Safe Code

Your Access Client represents just one thread in your entire, multi threaded
application.

To ensure safe operation within such an environment, Oracle recommends that
developers observe the following practices:

2-46 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Best Practices

= Use a thread safe function instead of its single thread counterpart. For instance,
use localtime_r instead of localtime.

» Specify the appropriate build environment and compiler flags to support
multithreading. For instance, use -D_REENTRANT. Also, use -mt for UNIX-like
platforms and /MD for Windows platforms.

m Take care to use in thread-safe fashion shared local variables such as FILE
pointers.

2.8.2 ldentifying and Resolving Access Client Problems

Here are some things to look at if your Access Client fails to perform:

= Make sure that your OAM Server is running. On Windows systems, you can check
this by navigating to Computer Management, then to Services, then to
AccessServer, where AccessServer is the name of the OAM Server to which you want
to connect your Access Client.

= Make sure that Access Client performs user logout to ensure that OAM
Server-side sessions are deleted. An accumulation of user sessions can prevent
successful user authentication.

s Check that the domain policies your code assumes are in place and enabled.
= Read the Release Notes.

s Check that your Access Client is not being answered by a lower-level Access
System policy which overrides the one you think you are testing.

s The 11g Access Tester enables you to check which policy applies to a particular
resource. For details about using the Access Tester and protecting resources with
application domains, see the Oracle Fusion Middleware Administrator’s Guide for
Oracle Access Management.

2.8.3 Resolving Environment Problems

This section provides information about resolving environment conflicts that can
develop when using the 11¢ Java Access SDK.

2.8.3.1 Java EE Containers

Use this procedure to resolve Java class version conflicts when a web application using
the 11g Access SDK.

A conflict can occur when a version of the library different from the one used by the
Access SDK is loaded by another application hosted on the same Java EE container.
The following is a sample error message that may display:

oracle/security/am/common/aaaclient/ObAAAServiceClient.<init> (Ljava/lang
/String; [CILjava/lang/String;Ljava/lang/String; [C[CZIJJLjava/lang/Integer;Ljava/u
til/List;Ljava/util/List;)V

at oracle.security.am.asdk.AccessClient.createClient (AccessClient.java:798)

at oracle.security.am.asdk.AccessClient.initialize (AccessClient.java:610)

at oracle.security.am.asdk.AccessClient.<init> (AccessClient.java:527)

at

oracle.security.am.asdk.AccessClient.createDefaultInstance (AccessClient.java:234)
at
com.newco.authenticateIdentity.AuthenticateIdentityAccessClient.authenticateUser (
AuthenticateIdentityAccessClient.java:52)

Developing Access Clients 2-47

Best Practices

This issue is related to how classes are loaded into the Java EE container. For more
information, see your container’s documentation discussing class loading.

To solve this problem, configure class loader filtering for the web application that
needs a specific library version. For more information and steps, see the
documentation for your application server.

2.8.3.2 Oracle WebLogic Server

Use WebLogic Server FilteringClassLoader to specify packages that are always
loaded from the application, rather than loaded using the system class loader.

To resolve this issue, perform these steps:

1. Verify the weblogic-application.xml file exists in the META-INF folder of your
application. If it does not, create this file and add the following contents:

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-application xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application/1.0/we
blogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<prefer-application-packages>

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/ns/weblogic/weblogic-application/1.0/we
blogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

<prefer-application-packages>
<package-name>Package to be loaded</package-name>
<package-name>Package to be loaded</package-name>
</prefer-application-packages>
</weblogic-application>

where Package to be loadedis the corresponding package from the log file.
For example, assume the problem is ObAAAServiceClient, then the
corresponding package name is oracle.security.am.common.aaaclient.
Add as follows:

<package-name>oracle.security.am.common.aaaclient. *<package-name>

All classes associated with this package will be loaded by the application loader,
even if identical classes having a different version are specified in the
CLASSPATH of the System class loader.

Stop the application.
Delete the previously deployed version of the application.

Install the application.

a & 0N

Access the resource.

The error should be gone and the application is running smoothly.

2.8.3.3 Other Application Servers

All application servers have a configuration file where class loading related options
are configured. In general, the key is to identify the configuration file and tags that are
required to enable a specific class loader to load a set of classes.

2-48 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Best Practices

Locate the configuration file for the application server.

Use the application class loader to prevent classes from being loaded by the parent
class loader, even if they are specified in the CLASSPATH.

Change the default class loading behavior so the parent class loader is called only
if the current class loader fails to load the class.

Alternately, as in WebLogic Server, there may be a method that enables loading of
classes using the designated class loader.

In some application servers, you may need to define a separate domain for your
application, for a parent domain, and set class loading behavior to load the parent
last.

2.8.4 Tuning for High Load Environment

In a high load, high stress environment, the 11g Access SDK configuration must be
tuned as follows:

Configure poolTimeout as a user defined parameter. You must increase the
number of clients for poolTimeout.

Tune the maximum (max) number of connections. For high performance, the max
number of connections of primary server should be in the agent profile.

Developing Access Clients 2-49

Best Practices

2-50 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

3

Developing Custom Authentication Plug-ins

The OAM Server uses both authentication and authorization controls to limit access to
the resources that it protects. Authentication is governed by specific authenticating
schemes, which rely on one or more plug-ins that test the credentials provided by a
user when he or she tries to access a resource. The plug-ins can be taken from a
standard set provided with OAM Server installation, or the custom plug-ins created
by your own Java developers. This chapter provides the following sections:

Section 3.1, "Introduction to Authentication Plug-ins"

Section 3.2, "Introduction to Multi-Step Authentication Framework"
Section 3.3, "Introduction to Plug-in Interfaces"

Section 3.4, "Sample Code: Custom Database User Authentication Plug-in"

Section 3.5, "Developing an Authentication Plug-in"

See Also: For information about deploying and managing
authentication plug-ins using the Oracle Access Management
administration console, see Oracle Fusion Middleware Administrator’s
Guide for Oracle Access Management.

3.1 Introduction to Authentication Plug-ins

The 11g release provides authentication modules for immediate use out-of-the-box, as
well as the following:

Authentication plug-in interfaces and SDK tooling to build customized
authentication modules (plug-ins) to bridge the out-of-the-box features with
individual requirements. The new interfaces and SDK tooling:

- Provide backward compatibility to support custom Oracle Access Manager
10g plug-ins.

- Include a deterministic method to orchestrate custom plug-ins within an
authentication module.

A mechanism that enables quick deployment of customized authentication
plug-ins.

A mechanism to maintain the complete plug-in State lifecycle.

The development of custom plug-ins for credential collection is supported for
authentication (steps you can orchestrate).

See Also: Section 3.3.1, "About the Plug-in Interfaces".

Developing Custom Authentication Plug-ins 3-1

Introduction to Authentication Plug-ins

Figure 3-1 provides an overview of the tasks involved in custom plug-in deployment.

Figure 3—-1 Custom Plug-in Deployment Workflow

17 Provide feedback for plug-in updated requiremenlﬁ—|

&

8 &
“ £ {ay
;h Requirements —————» Jbi.— Plug-in Deliverables —:n'-ﬂ ‘._'1_,* -
Security / System Developer Development =
Architect —" Team ‘I_r
Meat with Develop Deploy and DAM Server 1
Customer Manitor
l Plug-in
Business . Developst OAM Admin | . i
Requirements | Architecture JDevelopar Sandbox Console 'II
——— OAM Server2
Flug-in
Deploy and

activate/update ws
plug-ins with

proper viarsion -
& downtime [
DAM Servar M

Plug-in

The following overview identifies the tasks involved in custom plug-in deployment.

Task overview: Deploying a Custom Plug-in

1. Planning: Identify the business requirements for this plug-in and consider the
authentication flow when a user requests a resource, as described in Section 3.1.2,
"About Planning, the Authentication Model, and Plug-ins".

The security architect knows how Access Manager 11¢ is used and knows the
customer's user base. System architects can identify points of improvement in a
customer's implementation.

2. Development:

The developer translates what a security architect has designed into the actual
plug-in using common libraries to interface custom authentication modules.

a. Write the plug-in.
b. Write the metadata XML for the custom module.
c. Prepare the manifest file.

d. Add the following jar files to the CLASSPATH: felix jar, identitystore jar,
oam-plugin jar, utilities.jar.

3. Deployment:

3-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Authentication Plug-ins

Oracle Access Management administrators deploy and orchestrate multiple
plug-ins to work together in an authentication module and also tests and monitors
plug-ins. Common deployment tasks include the following:

a.

Adding custom plug-ins, which includes configuring the plug-in data source
or domain, distributing, and activating the plug-in.

Creating a custom Authentication Module for custom plug-ins, which
includes adding and orchestrating steps and outcomes OnSuccess, OnFailure,
and OnkError.

Creating Authentication Schemes with custom Authentication Modules.
Configuring logging for custom plug-ins.

Testing the plug-in using the Access Tester as described in Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management

Monitoring the plug-in and provide feedback to the security or system
architects to allow for any revisions to the business requirements and
architecture.

For information about deploying authentication plug-ins using the Oracle Access
Management administration console, see Oracle Fusion Middleware Administrator’s
Guide for Oracle Access Management.

3.1.1 About the Custom Plug-in Life Cycle

The life cycle of a plug-in centers around the ability to add plug-ins to the OAM Server
and use the plug-in to create more features. This allows users to build features and
work flows based on the standard (out-of-the-box) plug-ins and user-added plug-ins
that act as extension features to the server.

The typical plug-in life cycle is as follows:

Planning

Plug-in development time, includes generating the plug-in metadata artifact

Load and lifecycle of the plug-in

Import: Upload the plug-in into Access Manager and use it without restarting
servers

Distribute: Propagate the plug-in jar file from one local OAM Server file
system to all manage servers in a cluster, without server downtime

Activate: Load the plug-in implementation at run time when this plug-in is
used in any Authentication Module flow

Use the start-up parameters or configuration for the plug-in
Push and pull plug-in configuration data into oam-config.xml

Maintain complete State life-cycle of OAM Server

State of the deployed plug-in

Monitoring and auditing the plug-in

Collect the matrix data of time taken to execute a plug-in and the number of
times the plug-in is executed

Collect the matrix data of plug-in input and output

Collect the matrix data of plug-in execution start time and end time

Developing Custom Authentication Plug-ins 3-3

Introduction to Authentication Plug-ins

- Audit the plug-in life-cycle methods code

When a new plug-in JAR file is available, the deployer can import it to a Weblogic
Server DOMAIN_HOME/oam/plugins from the administration console’s Import
action.

Table 3-1 describes the states of a plug-in life cycle that are controlled by Oracle Access
Management administrators. For more information, see Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

Table 3-1 Plug-in Life Cycle States

State Description

Import Adds the plug-in JAR file to an Weblogic Server DOMAIN_HOME/oam/plugins and
begins plug-in validation.

Distribute Propagates the plug-in to all registered OAM Servers.

Activate After successful distribution the plug-in can be activated on all registered OAM Servers.

Deactivate Deactivation checks the plug-in entry flag in oam-config.xml.
If any OAM Server fails during the de-activation process, the "De-activation failed"
message is propagated.

Remove Removes the given plug-in (JAR) from DOMAIN_

HOME/ config/fmwconfig/oam/plugins directory on Weblogic Server, which notifies all
OAM Servers.

3.1.2 About Planning, the Authentication Model, and Plug-ins

Plug-ins on the OAM Server are part of a custom authentication scheme. Different
types of plug-ins can be used for:

= User Identity Mapping

Plug-ins can add functionality to handle with forms of user input not in the form
of a log-in username. Fingerprints, a series of security questions, and other
methods can be used. The plug-in translates these inputs and checks them against
the database.

» User Authentication

Responses (not provided out-of-the-box) might be needed when authenticating the
user. Custom plug-ins can fulfill this need.

s Custom Responses

Custom plug-ins can be used for responses and how these responses interact with
the rest of the system.

» Other types of plug-ins are also supported.

Figure 3-2 illustrates the authentication flow when a user requests a protected
resource. Remember that authentication is a process and not a protocol. The green
dotted line arrows are custom responses generated by plug-ins that are deployed on
the OAM Server.

3-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Authentication Plug-ins

User

Figure 3-2 Authentication Model and Plug-ins

Resource request (send 10,

— location, authentication credentials) —s — If successful, get resource —- Web Server
Agent e {Contains resources
Resource or alternate response - ' - m Resource -—------——- o be accessed)

P

A
Check
ser !
credentials - Response
OAM Server

Plug-in EF‘Iug-in EF‘Iug-in
1

Before designing and developing custom authentication plug-ins, Oracle recommends
that developers analyze the Access Manager authentication decision process closely to
determine how a user should be authenticated.

When a certain request comes in, there are two possible ways to handle it. One is to
have specific schemes run depending on the attributes of the request, using a decision
engine to run one or multiple schemes to properly authenticate the user. This requires
less code within each scheme and allows for more modularity. The second option is to
have every scheme be hard-coded to handle the various attributes of requests for
specific purposes, not using a decision engine to piece together which schemes need to
be run (only one scheme is run).

Example: Decision Engine versus Hard-Coded Authentication

Suppose a user wants to log in to his online bank account using his home computer, at
midnight. Following overviews outline the processing differences between the
decision engine approach and the hard-coded approach. Developers must decide with
what approach best meets their requirements.

The differences between the two approaches are simple but important.

Process overview: Decision Engine Approach

1. The request comes from the user with a certain IP address at midnight.

2. The decision engine determines it has previously handled this IP address. It also
determines that a user trying to authenticate at midnight is suspicious and

requires the user to answer a security question, in addition to a username and
password.

3. The security question scheme is run for the specified user, and is successful. This is
the first of two authentication schemes selected by the decision engine.

4. The user-password scheme is run, and the user authenticates successfully. This is
the second authentication scheme selected by the decision engine.

Process overview: Hard-Coded Approach
1. The request comes from the user with a certain IP address at midnight.

2. The online bank account access scheme is chosen from among other authentication
schemes (credit card access scheme, new account creation and verification, and so
on).

Developing Custom Authentication Plug-ins 3-5

Introduction to Multi-Step Authentication Framework

3. The scheme first checks the IP address to determine if the user has previously
made attempts to connect from the computer. It determines the user has.

4. The scheme checks the time. It requires a security question to be answered, which
is answered successfully.

5. The scheme requires the user to enter his login credentials, and he authenticates
successfully.

Each request approach has its own advantages and disadvantages. For the
decision-engine model, code re-use is the primary advantage, while the hard-coded
approach may result in more security. Developers will need to decide with what
approach to use.

Table 3-2 Request Approach Comparison

Approach Description

Decision Engine Divides authentication schemes into smaller sequential
modules that can orchestrated to work together as needed.

Advantages:
s Code re-use is the primary advantage.

= Mirroring the approach of Oracle Adaptive Access
Manager is a secondary advantage.

Hard-coded Leaves nothing to be decided; resembles a complete set of
If-Else statements that the user must pass to authenticate.

Advantages: Could result in greater security.

3.2 Introduction to Multi-Step Authentication Framework

This section provides the following topics:

= About the Multi-Step Framework

m Process Overview: Multi-Step Authentication
= About the PAUSE State

s About Information Collected

3.2.1 About the Multi-Step Framework

The Multi-Step Authentication Framework requires a custom authentication plug-in to
transmit information to the backend authentication scheme several times during the
login process. All information collected by the plug-in and saved in the context will be
available to the plug-in through the authentication process. Context data also can be
used to set cookies or headers in the login page.

Events are the building blocks of the authentication flow. Events are created using
exposed methods of the authentication module plug-in implementation. These events
can be combined with the rules to build a deterministic workflow for the
authentication. The Workflow controller is the module responsible for orchestrating
the authentication workflow. Workflow configuration is defined in the Workflow
definition language.

Multi-Factor Authentication is a business term that refers to the collection of multiple
credentials necessary to authenticate a user. The Multi-Step Authentication
Framework can implement Multi-Factor Authentication requirements. It can also
implement Single Factor Authentication requirements using multiple steps as

3-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Multi-Step Authentication Framework

necessary. For example, the username and password can be collected on separate
pages.
Multi-step authentication relies on:

Webgate using a credential collector (DCC or ECC) for dynamic credential
collection with multi-step authentication flows. This enables greater flexibility for
interactions with users or programmatic entities when collecting
authentication-related information that involves several methods to establish the
identity of the user.

Authentication module chaining, where modules of a similar challenge
mechanism are grouped and the credentials are collected in one pass, then
validated against each module. You can chain multiple authentication modules in
a new authentication scheme, and define a new scheme plug-in containing the
flows.

The challenge mechanism defines how to collect the credentials. The following
mechanisms are available: FORM, BASIC, X509, WNA, OAM10G, TAP, and
NONE. The challenge mechanism controls the way in which the required
credentials are collected. Currently, this is tied to the authentication scheme.

See Also: "Configuring 11¢ Webgate for Detached Credential
Collection" in Oracle Fusion Middleware Administrator's Guide for Oracle
Access Management

3.2.2 Process Overview: Multi-Step Authentication

1.

Process Request: The Master Controller processes the authentication request and
passes it to the plug-in.

Process Event: The authentication scheme is executed and the plug-in determines
whether any input is needed to continue the authentication. If input is required,
the plug-in returns an execution status of PAUSE which suspends the event flow.

PAUSE indicates that the authentication processing cannot proceed until additional
information is obtained from user. As such, redirection is allowed. When the
requested information is supplied, processing continues from the point it was
paused. The request is updated with details of the associated ACTION that must be
performed. The ActionContext has all the information to execute the ACTION.

For example, if PAUSE is associated with CREDCOLLECT_ACTION, the Master
Controller saves the plug-in execution state and begins executing events
corresponding to the ACTION by mapping this CREDCOLLECT_ACTION to the
CRED_COLLECT event and proceeding with collection as specified by the plug-in's
CredentialParameter object.

The saved plug-in state is revived and plug-in execution resumes until either a
state of SUCESS or FAILURE is reached. FAILURE indicates that the authentication
attempt has failed. If so, OAM Server will take attempt to reauthenticate the user
once again. For example, the user is presented with a login form.

» If a valid subject is available, a session is created for the user, which is used to
save the execution state. Otherwise, the execution state is stored in the request
object. This session has the lowest Authentication Level (configured through
global (Common) System Configuration).

Developing Custom Authentication Plug-ins 3-7

Introduction to Multi-Step Authentication Framework

= When user authentication is finished, the session is updated to a fully valid
session with the authentication level defined in the authentication scheme and
the session timeout configured for the OAM Server.

4. When the events in the dynamic flow controller finish executing, control is merged
back to the parent controller and the execution state is updated.

5. When authentication completes, access is granted to the requested resource.

3.2.3 About the PAUSE State

In multi-step authentication mode, the plug-in can either collect the credentials from
start or use the credentials obtained from the default login page and collect extra
credentials if required. If the challenge parameter initial_command=NONE is set in
the authentication scheme, control comes to the plug-in directly and the plug-in
controls the credentials to be collected.

The plug-in can employ the PAUSE status to pass the UserAction parameter for user
interaction to collect credentials. All the credentials required by the module can be
collected in one or more passes to the client. During a PAUSE execution, the plug-in
execution state and the context data will be saved. Once control returns back to the
plug-in, the paused execution resumes and all the collected data is available to the
plug-in.

When the plug-in is set to a PAUSE state, the plug-in can:
= Specify the data to be collected

s Specify the URL to redirect or forward to

= Specify the query string, if any

3.2.4 About Information Collected

The following types of information can be conveyed to the credential collector page:
s UserContextData

s UserActionContext

s UserAction

s UserActionMetaData

3.2.4.1 UserContextData

s UserContextData specifies metadata: name, display name and type of
parameter to be collected by the login page. For example, to collect a user name
from the login application:

final UserContextData userNameContext = new UserContextData (form username,
form_username, new CredentialMetaData (PluginConstants.TEXT));

where name of the attribute is form_username.

= UserContextData specifies the login page URL to direct a user to for collecting
credentials. CredentialMetaData with URL type specifies the login page URL.
For example:

final UserContextData urlContext = new UserContextData (loginPageURL, new
CredentialMetaData ("URL"))

where 1oginPageURL specifies the URL to be directed to.

3-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Multi-Step Authentication Framework

s UserContextData is used to pass query parameters to the login page URL.
CredentialMetaData with QUERY_STRING type specifies the query parameters
to be sent with the 1oginPageURL. This can be processed by the login page. For
example:

String queryString = "queryParaml=testParameter";
final UserContextData queryStringContext =new UserContextData
(queryString, new CredentialMetaData ("QUERY_STRING"));

3.2.4.2 UserActionContext

UserActionContext holds the UserContextData metadata collected from the
login page.

3.2.4.3 UserAction

UserAction class is used to collect the credentials. The action forwards or redirects
(based on the UserActionMetaData parameter) to the login page to collect more
credentials.

The following example shows how the classes can be used to specify information to
the login page:

//create a user name context data.
UserContextData userNameContext =
new UserContextData ("form username", "form_username",
new CredentialMetaData (PluginConstants.TEXT)) ;
//create a password context data
// Any form parameter containing the words "password", "passcode" and "_pin"
will be treated as sensitive values for debug logging

UserContextData passwordContext =
new UserContextData ("form_password", "form_password",
new CredentialMetaData (PluginConstants.PASSWORD)) ;

// create URLl context data for login page
UserContextData urlContext = new UserContextData (loginPageURL,
new CredentialMetaData ("URL"));

UserActionContext actionContext = new UserActionContext ();

//add the UserContextData to the CredentialActionContext
actionContext.getContextData () .add (userNameContext) ;
actionContext.getContextData () .add (passwordContext) ;
actionContext.getContextData () .add(urlContext) ;

//specify if we FORWARD or REDIRECT with a GET/POST to the login page
UserActionMetaData userAction = UserActionMetaData. FORWARD;

// create a UserAction object and set it to the authentication context.
UserAction action = new UserAction (actionContext, userAction);
authContext.setAction(action) ;

3.2.4.4 UserActionMetaData

UserActionMetaData specifies the action type to be used with UserAction. The
UserAction performs a forward or a redirect (with a GET or POST) to the login page
based on the UserActionMetaData value. Possible values for
UserActionMetaData are: FORWARD, REDIRECT_GET, and REDIRECT_POST.

Developing Custom Authentication Plug-ins 3-9

Introduction to Plug-in Interfaces

3.3 Introduction to Plug-in Interfaces
This section provides the following topics:
= About the Plug-in Interfaces
= About Plug-in Hierarchies

3.3.1 About the Plug-in Interfaces

This topic introduces the hierarchy for packages, classes, interfaces, and annotations.

Custom plug-in implementation includes writing plug-in implementation class
artifacts. The plug-in implementation class must extend the
AbstractAuthenticationPlugIn class and implement initialize and
process methods. Custom plug-in implementers must implement actual custom
authentication processing logic in this method and return the final authentication
execution status.

A plug-in's configuration requirements must be given in XML format. This
configuration data (metadata) includes plug-in name, author, creation date, version,
interface class, implementation class, and configuration data in the form of Attribute /
Value pairs. The new plug-in name must be included in the manifest file. A period (.)
is not a valid character in the plug-in name.

The 11g release provides a generic plug-in interface and a more specific authentication
interface as described in the following topics:

= GenericPluginService

= AuthnPluginService

3.3.1.1 GenericPluginService
oracle.security.am.plugin

The public interface, oracle.security.am.plugin, is a generic plug-in interface
that provides methods to get plug-in name, plug-in implementation class name,
plug-in version, plug-in execution status, plug-in monitoring data, plug-in
configuration data, and start and stop the plug-in.

AbstractAMPlugin

The public abstract class oracle.security.am.plugin.AbstractAMPlugin
extends java.lang.Object implements GenericPluginService,
org.osgi.framework.BundleActivator.

oracle.security.am.plugin.AbstractAMPlugin

This is a Abstract plug-in class that needs to be extended by all Access Manager
plug-ins. This provides base implementations for plug-ins start and stop methods

See Also: Oracle Fusion Middleware Access SDK Java API Reference for
Oracle Access Management Access Manager

3.3.1.2 AuthnPluginService

oracle.security.am.plugin.authn.AuthnPluginService

The public interface
oracle.security.am.plugin.authn.AuthnPluginService extends
GenericPluginService.

3-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Plug-in Interfaces

This is a authentication plug-in interface that provides an additional authentication
specific method to access and process all the data available in the

AuthenticationContext object and return the process execution status. Plug-in
can then set response that will be added to SESSION, request and redirect contexts.

AbstractAuthenticationPlugIn

The public abstract class
oracle.security.am.plugin.authn.AbstractAuthenticationPlugIn
extends AbstractAMPlugin implements AuthnPluginService.

oracle.security.am.plugin.authn.AbstractAuthenticationPlugIn

This is an authentication Abstract plug-in class that will be exposed to the plug-in
developers. All the custom plug-in implementations should extend this
AbstractPlugInService class. Plug-ins that needs to handle the resource cleanup
should override shutdown (Map < String, Object >
OAMEnvironmentContext) method. This will also provide an instance of
java.util.Logger to plug-ins.

3.3.2 About Plug-in Hierarchies

This topic provides a look at the hierarchies:

= Figure 3-3, "Plug-in Package Hierarchy"

= Figure 34, "Plug-in Class Hierarchy"

= Figure 3-5, "Plug-in Interface Hierarchy"

= Figure 3-6, "Plug-in Annotation Type Hierarchy"
= Figure 3-7, "Plug-in Enum Hierarchy"

See Also: Oracle Fusion Middleware Access SDK Java API Reference for
Oracle Access Management Access Manager

Figure 3-3 Plug-in Package Hierarchy

Hierarchy For All Packages

Package Hierarchies:
oracle. security am commeon policy. apl, oracle security. am commeon uhilities constant, oracle security. am identity. api,
oracle. security. amn identity. provider exception, oracle. security. am pbl transport, oracle security. am plugin, oracle. securtty. am plugm. authn,

oracle secunty. am plugin example, oracle secunty. am plugin mnternal

Developing Custom Authentication Plug-ins 3-11

Introduction to Plug-in Interfaces

Figure 3—-4 Plug-in Class Hierarchy

Class Hierarchy

o javalang Object
o oracle security. am. plugin AbstractANFlugin {implements org osgl framework, Bundle Activator,

oracle. security. am. plugin. GenencPluginService)

o oracle. security. am. plugin. authn. AbstractAuthenticationPlugln (implements oracle secunty. am plugin. authn, Authn Plugin Service)

o oracle. security. am. plugin exarnple. LDAPAuthnFlugin

o oracle security. am plugin AbstractPlugmFE xecutionStrategy {(implements oracle security am plugin PlugmExecutionStrategy)
oracle. security. am. plugin internal ANV PlugmTLocator
oracle. security. am. plugin. authn Authentication Constants

oracle. security. am. plugin. ChentProfile

oracle. secutity. am. commorn utilities. constant. CommonAttiibute (implements oracle. security. am. plugin PluginCommendttribute)
oracle. security. am. plugin. authn. Cre dential

oracle security. am. plugin authn. CredentialParam

oracle security. am. plugin internal GenericPluginFactory
oracle security. am.identity. apt IdinPropertySet

oracle security. am.identity. apt IdmUser

oracle. security. am. identity. api IdStoreProperty

oracle. security. am. plugin MonitoringData

oracle security. am. plugin PlugmResponse

o javalang Throwable (implements javaio. Seralizable)

o javalang Exception

o 0 Q0 0O 0 O O 0 Q0 O 0 0

o oracle. security. am identity. provider. exception IdentitvProviderException
o java.lang RuntimeException
o oracle security. am. plugin. authn AuthenticationException

s}

oracle. security. am. pbl transport. TranspoertTolcen

Figure 3-5 Plug-in Interface Hierarchy

Interface Hierarchy

oracle security. am.identity. api AlvTdentivStoreHandle
oracle security. am. plugin internal ANV PlngmFactorvService
oracle security. am. plugin AVIS ession

oracle security. am. plugin AMSubject
oracle security. am identity. api AlIUserProfile
oracle security. am. commor utilities. constant. FirorCode

Lo v o o T e s |

oracle security. am.plugin. GenericPluginService
o oracle. security. am. plugin. authn. AuthnPluginService
o oracle. security. am. plugin. PluginFxe cutionStrate gy

oracle. security. am.identity. api IdentityStore Context
oracle security. am. plugin Module Advice
oracle security. am. plugin PlugmC omanonAttitbute
oracle securty. am plugin PlnemConfie
oracle security. am. plugin PlugmContext
o oracle. security. am. plugin. authn, AuthenticationContext
o oracle security. am. plugin PluemTransportontext
o oracle security am commot policy. api PolievResource
o java.io. Serializable
© oracle. securnty. am. common. policy. apt AuthenticationScheimne
o oracle security. arn. common policy. apt PolicvRuntime Ohbject
o oracle. security. am. cotmmeon, policy. apt. AuthenticationS cheine
oracle security. am.pbl transport. Transport Context
oracle security. am. pbl transport. TransportHandler
oracle security. am. pbl transport. TransportStore

o o o o o

o o o

3-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Sample Code: Custom Database User Authentication Plug-in

Figure 3—-6 Plug-in Annotation Type Hierarchy

Annotation Type Hierarchy

o oracle security_.am phigin internal InitParamter (implements java lang annotation Annotation)

Figure 3—7 Plug-in Enum Hierarchy

Enum Hierarchy

o javalang Object
o javalang Emmm<E> (implements javalang Comparable<T>, java.io.Serializable)
oracle security.am pligin Plugin AttributeContextTvpe
oracle security.am pligin Advice
oracle securitv.am pligin Protocel
oracle security.am pligin ExecutionStatus
oracle.security.am plugin authn AuthenticationErrorCode
oracle secutity.am common policy.api AuthenticationScheme.ChallengeMechanism

[s]

[= I o T = B o T |

3.4 Sample Code: Custom Database User Authentication Plug-in

This section provides snapshots of a sample implementation for a database user
authentication plug-in to illustrate developer tasks. The following topics are provided:

Sample Code: Database User Authentication Plug-in
Sample Plug-in Configuration Metadata Requirements
Sample Manifest File for the Plug-in

Plug-in JAR File Structure

3.4.1 Sample Code: Database User Authentication Plug-in

Following figures illustrate a sample implementation for a Database user
authentication plug-in, which is presented in three parts:

Figure 3-8, "Database User Authentication Plug-in Part 1"
Figure 3-9, "Database User Authentication Plug-in Part 2"
Figure 3-10, "Database User Authentication Plug-in Part 3"

See Also: Oracle Fusion Middleware Oracle Access Manager Java API
Reference

Developing Custom Authentication Plug-ins

3-13

Sample Code: Custom Database User Authentication Plug-in

Figure 3-8 Database User Authentication Plug-in Part 1

Bublic class DBUserduthentication extends AbstracttuthenticationPlugln {

private static final String CLASS_MAME = "UserduthenticationPlugln'';
private static final String INVALIDUSERMAMEE = "invalid uzemame/pazswaord'’;
private static final Stnng USER_LOCKED_Ex ="The account iz locked';

private Sting uzertdamelDM
private Sting dzRef = "dbc/CISCO";
private Sting passward;

kM ap< String, Object: module = null;

public ExecutionStatus initialize(PluginConfig config) §
guper.initializelconfig);
A Set the pluglnConfig
Hthiz.pluglnConfig = pluglnConfig;

it [LOGGER. isLoggable(Level FINE]) |
LOGGER. logp(Level FINE, CLASS_MNAME, "initialize,
"Enterning''];

Object trp = config. getParameterlPluginConstantz. KEY_USERMARME];
if [trp 1= mll] §
uzert amelM = [String]tmp;

trp = config.getParameter''DataSource');
if [trnp = rall] §
dzRef = [Sting]tmp;

tmp = config.getParameterPlugnConstants KEY_PASSWIORD):
if [trnp 1= Al §
pazsword = [Sting)tmp;

if [LOGGER.isLoggablelLevel FINE]) §
LOGGER. logp(Level FIME, CLASS _MAME, “initialize'',
"Domain Mame Ref iz " + dzRef);

i
if [LOGGER. izLoggablelLevel FINE]) |
LOGGER. logp[Level FIME, CLASS_MAME. “initialize'",
"Exiting""];

1
return ExecutionStatus, SUCCESS
I

public ExecutionStatus shutdownPluglnlt ap< Sting, Ohbject: DAME nviranmentContest] throws AuthenticationE scephion |
returt full;

public ExecutionStatus reLoadPluglnit ap<Sting, Object: OAME nvironmentContest] throws AuthenticationE sception §
return nll;

H

public: String getPluglaty'ersion|] §
return rll;

Continued ..

3-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Sample Code: Custom Database User Authentication Plug-in

Figure 3-9 Database User Authentication Plug-in Part 2

public ExecutionStatus processiAuthenticationContest contexst] throws AuthemticationE sception {
ErecutionStatus status = ExecutionStatus SUCCESS;
iF [LOGGER.isLoggablelLewel FIME]) §
LOGGER logplLewel FIME, CLASS_MAME, "initislize",
"Entering'");

'
CredentialParam tmp = context. getCredential() getParam[PluginConstants KEY_USERMAME];
if [trop 1= rul && tp. getvalue(] 1= aull] {

uzerMameDM = [String)tmp. getv aluel);

trmp = contest getCredentiall). getParam("'D ataS ource");
if [trp 1= rll) §
dsRef = [Sting)tmp.getvalue();

tmp = context. getCredential(). getParam{PluginConstants KEY_PASSWORD]:
if (trop 1= rul && tp. getvaluel] 1= null] {
pazzword = [Sting|tmp. gety alue():

if LOGGER.isLoggableLewvel FINED {
: LOGGER.logpiLevel FIME, CLASS_MAME, "process", "got user name dn and password and identity store = "+uzeMameDMN+", "+pazzward+", ""+dsRef];

boolean uzer = false;
String userMare = null;
boalean authenticated = false;
Stringl] retdttes = null;
trd
it [LOGGER.izLoggablelLewel FINE]] 4
LOGGER. logp(Lewel FIME, CLASS_MAME, "initialize",
“duthenticating the user"+userM ameDM]);

H
InitialContext intialContest = (InitialContext]contest. getObjectéttibute[PluginConstants JMDI_IMITIAL_COMTE=T];
ugerMame = DEUNL authenticatel seruserN ameDN. password, dsRef.initialContext);
if LOGGER.isLoggable{Level FINE]) {
LOGGER. logp(Lewvel FIME, CLASS_MAME. "initialize",
) “tuthenticated the user"+usert ame);

if] uzeMame 1= rull){

user = brue;
authenticated = tue;

eatch(E xoeption e)f
if [LOGGER.izLoggablelLewel FINERTH
LOGGER.finer"E xception occurred when authenticating the uzer against UserldentituStare - "' + e.getMessage(]):

t
checkandT hrowduthenticationE seeptione];

}oatch(E woeption e){
if LOGGER.izLoggable(Level FINER)
LOGGER. finer"E xception occuned when authenticating the user against User dentityStore - " + e, getMessage(]):

1

checkandT hrowduthenticationE xception(e);
ifilauthenticated)

contest. zetSubjectnull);

statuz = ExecutionStatus FAILURE
teke{

Continued...

Developing Custom Authentication Plug-ins 3-15

Sample Code: Custom Database User Authentication Plug-in

Figure 3—-10 Database User Authentication Plug-in Part 3

Subject subject = new Subject(];
subject. getPrincipalz). add{new DAM U zerPrincipaliuzert ame]);
subject getPrincipalz(). add{new D&k U zerDMPrincipalluse ame]);
if [user ame 1= null) §
\ sul:ui{eu:t.getF‘rincipaIs[].add[new DAMGUIDPrincipalluzert ame]);
elze
A zetting uzemame az default falue indicating no GUID exist.
zubject. getPrincipalz(]. add(new DAMGUIDPrincipalluzet ame]);

/fzubject getPrincipals(]. addallprincipals);

Aif LOGGER.isLoggable(Level FINER)

} LOGGER. finer["Authenticated Subject iz - "' + subject);
i

CredentialParam param = new CredentialParam();

param. zeth ame[FluginConstantz KEY _USERMAME_DM]:
param. zet T ypel 'ztring');

pararm. ety alueluzer];

context. getCredential(] addCredentialParam(PluginConstants KEY_USERMAME _DM, pararm);
context zetSubject[zubject];

IJzerProfile uzerProfile = news DBEU zerProfile(user ame];
PluginRezponze rp = new PluginF ezponse]);

rap. zett ame(PluginConstantz EY_USER_PROFILE];
rzp. zetType[PlugindttibuteContext T ype. LITERAL):

rzp. zefyf alue[userProfile);

contest. addR esponze(rzp);

rzp = hew PluginBesponzel);

rzp. zetM ame[PluginConstants. KEY_RETURM_ATTRIEUTE];
rep. zet T upelPlugindttibuteContextTwpe LITERAL);

rap. zefy alueretdtrs];

context. addR esponze(rzp);

rzp = new FluginF esponze();

rzp. zetM ame(PluginConstants KEY_IDEMTITY_STORE_REF]:

rzp. zet T ype(FPluginéttributeContext Type. LITERAL);

rzp.zety alue[dzRef];

context, addR esponze(rzp);
rap = hew PluginBezponsze();
rzp. setM ame[PluginConstants KEY_AUTHEMTICATED _IUSER_MAME];
rzp. zet T upelPlugindttributeContextTwpe LITERAL);
Sets DAk zerPrincipal> uzerM amePrincipal = contest. getSubject(). getPrincipalz[0AMU zerPrincipal. clazs);
rap. zeftfalue[uzerd amePrincipal. iteratar]. newt(]. geth amel);
context. addR ezponzelrzp);

1
if [LOGGER.isLoggable|Level FINE]) §
LOGGER. logp(Level FIME, CLASS_MAME, "process", "Final return statuz from authnPlugin = M+statug);

return status;

i
@0vemde

public String taStringf] |
return Authenticate Plugin: DB Stare ref name = "+dzRef:

3.4.2 Sample Plug-in Configuration Metadata Requirements

The plug-in's configuration requirements must be given in XML format.

3-16 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Sample Code: Custom Database User Authentication Plug-in

This configuration data (metadata) includes plug-in name, plug-in author, creation
date, plug-in version, plug-in interface class, plug-in implementation class, and
plug-in configuration data in the form of Attribute / Value pairs.

Figure 3-11 shows the XML Schema Definition (XSD) file containing metadata for the
sample: Database User Authentication Plug-in implementation.

Figure 3—-11 XSD Configuration Data: Database User Authentication Plug-in

<?xml wersion="1.0" encoding="utf-g"2?>
<xz:schema targetNamespace="htop:// vy,
xtl: lang="en">

wi.org/ XML/ 1998/ namespace” xmlns:xs="http://vuw.wd,org/ 2001/ L3 chena"

<xg:element name="Plugin'>
<xg:complexTypes
<¥3iIequenees

<xarelement medata:Ordinal="0" minOcours="0" name="author" type="ws:string™ />
<xzrelement medata:Ordinal="1" minOccurs="0" name="ewail™ type="xs:string"™ />
<xzrelement medata:Ordinal="2" minOccurs="0" name="creationDate™ type="xs:string" />
<xaielement medata:Ordinal="3" minOccurs="0" name="version" type="xs:string" />
<xaielement mwedata:Ordinal="4" minOcours="0" name="description" type="xs:string™ />
<xgielement msdata:Ordinal="5" minOccurs="0" name="interface” type="xs:string" />
<xgielement msdata:Ordinal="6" minOccurs="0" name="implementation” type="xs:string™ />
<¥gielement wsdata:Ordinal="7" minOccurs="0" name="configuration™:

<x3:complexTypes

<¥SISEqUENCEX

<¥g:element mindccurs="0" maxCccurs="unbounded"
<x3:complexTypes

<¥513eqUENCE:
<¥g:element

minCoccurs="0"

name="AttributeValuePair">

name="mandatory" type="xs:string™ /»

<xzrelempent minQocurs="0" name="instanceCverride™ type="xs:string™ /»

<xzrelepent minQocurs="0" name="globallUllverride" type="xs:string" />

<xzrelepent minQocurs="0" name="wvalue" type="ws:string™ /»

<¥3ielement mindccurs="0" maxOccurs="unbounded” name="Attribute” nillable="trues™>

<usroomplexTypes
<xs:simpleContent msdata:ColumnName="Attribute Text” msdata:Ordinal="z">
<xg:extension base="xs:istring">
<xZiattribute nawe="type" types"xs:string™ />
<x3:attribute nawe="length" type="xs:string™ /r
</¥ziextension>
</ %3:3impleContent>
</xzicomplexType>
</usielement>
</ ng:3equUENCE
</®sicomplexType s>
<f¥3ielement>
</ x313equences
</®gicomplexTyper
<fx3ielement>
</ ¥3:sequence>
<xs:attribute name="name" type="us:string" /r
<¥3rattribute name="type" type="ws:string™ /r
<fuaicomplexTypes
</x3ielement>
</ %3 schema>

Example 3-1 shows the XML metadata for the sample: Database User Authentication
Plug-in.

Example 3-1 XML Metadata: Database User Authentication Plug-in

<Plugin type="Authentication">
<author>uid=Userl</author>
<email>Userl@mycompany.com</email>

Developing Custom Authentication Plug-ins 3-17

Sample Code: Custom Database User Authentication Plug-in

<creationDate>09:32:20, 2010-12-02</creationDate>
<description>Custom User Authentication Plugin Validation Against Domain
Name</description>

<configuration>

<AttributeValuePair>

<Attribute type="string" length="20">DataSource</Attribute>
<mandatory>true</mandatory>
<instanceOverride>false</instanceOverride>
<globalUIOverride>true</globalUIOverride>
<value>jdbc/CISCO</value>

</AttributeValuePair>

</configuration>

</Plugin>

3.4.3 Sample Manifest File for the Plug-in

Beginning with the 11.1.2 release, the plug-in manifest file contains the following
information:

s The plug-in version is taken from the Bundle-Version field. This field must be
an integer

s The name=attribute parameter, which used to be read from the XML file in
earlier releases, is now read from the Bundle-SymbolicName or the
Bundle-Name field. This parameter does not need to be in the XML file.

s The implementation parameter, which used to be read from the XML file in
earlier releases, is now read from the Bundle-Activator field. This parameter
does not need to be in the XML file.

» The following can be removed from the XML file:
<interface>oracle.security.am.plugin.authn.AbstractAuthentica
tionPlugIn</interface>.

Example 3-2 Sample Manifest File

Manifest-Version: 1.0

Bundle-Version: 10-->Note this to be an integer.

Bundle-Name: MFASamplePlugin

Bundle-Activator: mfasampleplugin.MFASamplePlugin

Bundle-ManifestVersion: 2

Import-Package:
org.osgi.framework;version="1.3.0",oracle.security.am.plugin,oracle.security.a
m.plugin.authn, oracle.security.am.plugin.impl, oracle.security.am.plugin.api,or
acle.security.am.common.utilities.principal, oracle.security.idm, javax.security
.auth

Bundle-SymbolicName: MFASamplePlugin

A corresponding sample modified XML file is

<Plugin type="Authentication">

<author>uid=User2</author>
<email>User2@mycompany.com</email>

<creationDate>09:32:20 2010-12-02</creationDate>
<description>Custom MFA Sample Auth Plugin</description>
<configuration>

<!-- Attribute "actiontype" indicates if the plugin wants to REDIRECT or
FORWARD to the login page to collect credentials-->
<AttributeValuePair>

<Attribute type="string" length="20">actiontype</Attribute>
<mandatory>false</mandatory>
<instanceOverride>false</instanceOverride>

3-18 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing an Authentication Plug-in

<globalUIOverride>true</globalUIOverride>
<value>FORWARD</value>
</AttributeValuePair>

</configuration>

</Plugin>

3.4.4 Plug-in JAR File Structure

The JAR file structure for the sample (Database User Authentication Plug-in) is listed
here:

s <plugin>.xml

s <plugin>.class (per the package structure, as shown in Section 3.3, "Introduction to
Plug-in Interfaces")

= META-INF (MANIFEST.MF)

3.5 Developing an Authentication Plug-in

The developer translates what a security architect has designed into the actual plug-in
using common libraries to interface custom authentication modules.

This section guides as you develop an authentication plug-in for use with Access
Manager 11g authentication schemes. The following topics are discussed:

= About Writing a Custom Authentication Plug-in
= Writing a Custom Authentication Plug-in
s Error Codes in an Authentication Plug-In

= JAR Files Required for Compiling a Custom Authentication Plug-in

3.5.1 About Writing a Custom Authentication Plug-in

Writing the custom plug-in implementation includes writing the plug-in
implementation class to:

s Extend AbstractAuthenticationPluglIn class (see Section 3.3.1, "About the
Plug-in Interfaces")

s Implement initialize method
= Implement process method

Table 3-3 describes the methods required for the plug-in’s functionality.

Table 3-3 Required Plug-in Methods
Required Method Description

initialize Gives a handle to the PluginConfig object.

The PluginConfig object can be exercised to get plug-in specific
system configuration data that is entered when the plug-in is uploaded.
This data is required for the plug-in's own functionality.

Developing Custom Authentication Plug-ins 3-19

Developing an Authentication Plug-in

Table 3-3 (Cont.) Required Plug-in Methods

Required Method

Description

process

Gives a handle to the AuthenticationContext object, which can be
exercised to get plug-in specific run time configuration data that is:

= either updated at plug-in instance level
= or updated during plug-in orchestration steps

The AuthenticationContext object extends PluginContext object
which gives different methods to get the:

= plug-in configuration data
= exception data
= plug-in environment data

In addition, the AuthenticationContext object provides methods to
get the:

s Authentication scheme
= Authenticated Subject
= Credential object

= Run time policy resource

Note: Custom plug-in developers must implement actual custom
authentication processing logic in this method and return the final
authentication execution status.

3.5.2 Writing a Custom Authentication Plug-in

This section provides steps to write a custom authentication plug-in.

The following overview describes the actions a developer must take after the system
architect identifies the business requirements for this plug-in and considers the
authentication flow when a user requests a resource. For more information, see
Section 3.1.2, "About Planning, the Authentication Model, and Plug-ins".

Prerequisites

Introduction to Authentication Plug-ins

Sample Code: Custom Database User Authentication Plug-in

Task overview: Developers write a custom authentication plug-in

1. Extend AbstractAuthenticationPlugIn class and implement the following
methods (see also Section 3.5.1, "About Writing a Custom Authentication

Plug-in"):

s Implement initialize method

= Implement process method

2. Develop plug-in code using appropriate Access Manager 11¢ interfaces and

packages. See:

= Section 3.1, "Introduction to Authentication Plug-ins"

= Section 3.4, "Sample Code: Custom Database User Authentication Plug-in"

3. Prepare Metadata for the Custom Plug-in. See:

3-20 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing an Authentication Plug-in

= Section 3.4.2, "Sample Plug-in Configuration Metadata Requirements"

4. Prepare the Plug-in Jar file and manifest and turn these over to your deployment
team. See:

= Section 3.4.3, "Sample Manifest File for the Plug-in"
= Section 3.4.4, "Plug-in JAR File Structure"
5. Proceed to:

= Section 3.5.4, "JAR Files Required for Compiling a Custom Authentication
Plug-in"

s For information about deploying and managing custom authentication
plug-ins, see Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

3.5.3 Error Codes in an Authentication Plug-In

In the case where a plug-in needs to exchange data to the login page, error page, or
client application pages, this data can be sent as PluginResponses. The response is
in the format as a Name=Value pair that provides details about the data. The OAM
Server sends these responses to the custom page as HI'TP request parameters. The
following response types facilitate the exchange:

= CLIENT: Enables the plug-in to communicate data about the authentication
process or about the user to the client application. The request parameter is
PLUGIN_CLIENT_RESPONSE

= ERROR: Enables a plug-in to communicate any error about the authentication
process. The request parameter is PLUGIN_ERROR_RESPONSE.

Example 3-3 Error Code in a Custom Authentication Plug-in

//Setting responses

PluginResponse rsp = new PluginResponse() ;

rsp = new PluginResponse();

rsp.setName ("PluginClientCode") ;

rsp.setType (PluginAttributeContextType.CLIENT) ;
rsp.setValue("Err-100");
context.addResponse (rsp) ;

rsp = new PluginResponse();

rsp.setName ("PluginErrorCode") ;

rsp.setType (PluginAttributeContextType.ERROR) ;
rsp.setValue("Card Expired");
context.addResponse (rsp) ;

String errorResponse = request.getParameter (GenericConstants.PLUGIN_ERROR_
RESPONSE) ;

String clientResponse = request.getParameter (GenericConstants.PLUGIN_CLIENT
RESPONSE) ;

3.5.4 JAR Files Required for Compiling a Custom Authentication Plug-in

Several JAR files are required to compile a custom authentication plug-in:
» felixjar
= oam-plugin jar

= utilities jar

Developing Custom Authentication Plug-ins 3-21

Developing an Authentication Plug-in

= identity-providerjar
These JAR files are located in the following path:

DOMAIN_HOME/servers/MANAGED INSTANCE_NAME/tmp/_WL_user/oam_server/RANDOM_STRING
/APP-INF/1ib

3-22 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

4

Developing Custom Pages

The OAM Server provides default login, logout, and error pages. You can also create
custom login and error pages tailored for your company look and feel to use with
Access Manager. This chapter explains how to develop custom pages and how to
deploy them in your environment. This chapter provides the following sections:

» Section 4.1, "Introduction to Custom Pages"

= Section 4.2, "Developing Custom Login Pages"

= Section 4.3, "Developing Custom Error Pages"

= Section 4.4, "Developing Using the Detached Credential Collector"
= Section 4.5, "Deploying the Custom Login Page"

= Section 4.6, "Programmatic Authentication”

» Section 4.7, "Setting Custom OSSO Cookies After Authentication”

4.1 Introduction to Custom Pages

This section contains the following topics:
= About Developing Custom Pages

= About Authentication and Custom Pages

4.1.1 About Developing Custom Pages

Access Manager provides an extensible framework for creating customized user login
experience. You can create custom interactive pages for authentication during login,
logout, and error conditioning processing. In its simplest form, Access Manager
provides a set of static HTML pages that are displayed to the user. However, the user
interface is generally dynamic, which requires that it be implemented as a script or an
application that can perform the required logic.

Access Manager provides a set of default dynamic pages for user interaction. These
default pages may be customized for your company look and feel, or replaced entirely
with custom pages. For example, you can design, implement, and deploy a custom
dynamic page that displays a different version of the login form depending on
whether the user is accessing via a mobile browser or a desktop browser.

A custom page can be developed to use in combination with existing Access Manager
authentication modules or in combination with a custom authentication plug-in. This
chapter provides information about developing custom pages for login, logout, and
errors. For more information about developing a custom authentication plug-in, see
Chapter 3, "Developing Custom Authentication Plug-ins".

Developing Custom Pages 4-1

Introduction to Custom Pages

The following two OAM Server credential collection components can be alternatively
enabled to serve as the communication endpoint and facilitate interaction with the
customized user interface:

s The Embedded Credential Collector (ECC) can be used with no additional
installation and setup steps.

s The Detached Credential Collector (DCC) is recommended for greater scalability
and security isolation in production deployments.

For more information about the OAM Server credential collectors, see "Configuring
11g Webgate for Dynamic Credential Collection" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

Regardless which credential collection component is enabled for communicating with
users, the design and implementation of custom pages in your environment is almost
identical. For information about development differences between the two credential
collection options, see Section 4.4, "Developing Using the Detached Credential
Collector".

4.1.2 About Authentication and Custom Pages

The authentication process involves determining what credentials a user must supply
when requesting access to a resource, gathering the credentials over HTTP, and
returning an HTTP response that is based on the results of credential validation.

Figure 4-1 shows the end-to-end request flow for authenticating a user accessing an
OAM protected resource that results in an error page.

Figure 4-1 Authentication Request Flow

OAM Server
, AuthN Identity Store ___
Application —({—> . ——2— APl 33—

Error/Login AuthN «—(4 ovD

E—
page e Plugin
34i\ j
_An

Password f
page
Process Overview: Authentication Request Flow
1. A user requests a protected resource. An authentication flow is triggered and the
login page is displayed. The required credentials are submitted to the
authentication engine.

| Pwd Plugin <4

2. The resource is protected by a specific authentication scheme, which uses the
authentication (AuthN) plug-in. The AuthN plug-in uses the Identity Store APIs to
authenticate the credentials. The AuthN plug-in can also call a third-party API
(not shown).

3. The Identity Store API establishes a connection to the backend store to complete
authentication. AD and OVD are shown as example identity stores.

4. The results, including any authentication error codes, are returned by the Identity
Store layer and sent to the plug-in and the authentication engine layer. The
authentication layer maps the error codes from the backend to the corresponding

4-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Custom Login Pages

OAM Server error codes. For more information about the standard error codes, see
Table 4-2.

The results include native error codes acquired from the identity stores, and
returning those error codes to the login page as unmapped secondary error codes
(o_sec_error_msg). For more information about secondary error codes, see
Section 4.3.6, "Secondary Error Message Propagation”.

5. The error codes are returned as query parameters to the error or login page. Error
codes are transmitted as HTTP Request parameters to the error page. The query
parameter is named p_error_code.

6. The primary error code message is a localized string containing the detailed text
for the error code. This can be obtained from the appropriate resource bundle file
using the error code.

4.2 Developing Custom Login Pages
This section contains the following topics:
» Creating a Form-Based Login Page

= Page Redirection Process

4.2.1 Creating a Form-Based Login Page

Form-based authentication enables the development of customized Web forms that
process login credentials using Access Manager’s authentication mechanisms. These
forms are HTML pages that enable you to present login information in different
languages, to display user interface elements that comply with your company's
presentation standards, and to add functions required for password management.

The form or login application can be written using your preferred technology to
process the redirect from the user and render the HTML. A custom login page can be
written as a JSP page, or using ASP.net, Perl, PHP, and so on. One advantage is you
can customize the look and feel of the page so it matches company standards. Another
advantage is it enables pre-processing of the user’s submission (POST) before their
credentials are sent to the OAM Server, if this is desired.

When writing a custom login page for authentication by Access Manager, a common
method is to redirect a user to a login page that is hosted outside of the OAM Server.
The user is redirected to the custom login page or application you have written. For
more information, see Section 4.2.2, "Page Redirection Process".

Three modes of request cache are supported: basic, cookie, and form. When working
in basic mode, the request_id is a mandatory parameter and should be sent back. In
form mode, the OAM_REQ token is mandatory and should be sent back if available. In
cookie mode, OAM_REQ is set as a cookie.

A custom login form page has the following requirements:
» The page must be built to support the desired authentication module.

» The page must support retrieval of the OAM_REQ token. See Section 4.2.1.1,
"Returning OAM_REQ Token".

s The page must retrieve the end point. See Section 4.2.1.2, "Returning the End
Point".

Developing Custom Pages 4-3

Developing Custom Login Pages

4.2.1.1 Returning OAM_REQ Token

OAM_REQ is a transient cookie that is set or cleared by the OAM Server if the
authentication request context cookie is enabled. This cookie is protected with keys
known to the OAM Server only. For more information, see "Introduction to SSO
Cookies" in Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

OAM_REQ must be retrieved from the query string and sent back as a hidden form
variable.

When a resource is requested, the OAM Server redirects or forwards to the credential
collector page to collect credentials. The OAM Server also send an OAM_REQ token to
the login page. In the case of a customized login application, the login application
should ensure that the OAM_REQ token is retrieved from the request and posted back
to the OAM Server along with the credentials. OAM_REQ must be retrieved from the
query string and sent back as a hidden form variable. For example:

String regToken = request.getParameter (GenericConstants.AM REQUEST_TOKEN_
IDENTIFIER) ;

<%

if (reqToken != null && reqToken.length() > 0) { %>

<input type="hidden" name="<%=GenericConstants.AM REQUEST TOKEN_IDENTIFIER%>"
value="<%=regToken%>">

[
<%

o0
\%

4.2.1.2 Returning the End Point

The end point, /oam/server/auth_cred_submit, must be returned to the OAM Server.
For example:

<form action="/oam/server/auth_cred
_submit"> or "http://oamserverhost:port/oam/server/auth
_cred_submit".

4.2.2 Page Redirection Process

When a form-based authentication scheme has been created with an external challenge
type, the OAM agent redirects the user first to the obrareq. cgi URL, which in turn
redirects the user to the login page specified as the Challenge URL for the
authentication scheme. The Challenge Redirect URL declares the DCC or ECC
endpoint. The Challenge URL is the URL associated with the Challenge method such
as FORM.

On the redirect page, request_id and redirect_url are added to the query string. For
example:

?request_id=5092769420627701289&redirect_
url=http%$3A%2F%2Fmycompany.com%3A7777%2Fscripta%2Fprintenv

When using the x509 authentication scheme there is no separate page for login
credentials as authentication occurs transparently. However, page redirection also
applies to non-form based authentication methods. For example, when using an x509
Authentication Scheme, you can direct users to a confidentiality disclaimer statement,
or similar, before a protected resource is displayed. In this case, enter the path to the

4-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Custom Error Pages

disclaimer page and have that page redirect to the /oam/CredCollectServlet /X509
page. Be sure to present the original query scheme.

4.3 Developing Custom Error Pages
This section discusses the following topics:
s Process Overview: Creating a Custom Error Page
= Standard Error Codes
s Default Page Locations
= Security Level Configuration
= Password Policy Validation Error Codes
» Secondary Error Message Propagation
= Retrieving Error Codes

m Error Data Sources Summary

See Also: Section 3.5.3, "Error Codes in an Authentication Plug-In"

4.3.1 Process Overview: Creating a Custom Error Page

The custom error page is packaged as part of the custom login application. Under
authentication policy, set the failure redirect URL to be the absolute URL to the page.

An out-of-the-box custom UI Web application archive (WAR) file is provided that can
be used as a starting point to develop customized login and password pages. This
WAR file is located in MW_
HOME/OAM1/oam/server/tools/custompages/oamcustompages.war.

To create a custom error page, follow these steps:

1. Create the HTML page required to display the error message. For more
information, see Section 4.2, "Developing Custom Login Pages".

2. Consider how error code query parameters p_error_code and p_sec_error_msg
will map to the custom error codes in your environment. For more information,
see Section 4.3.7, "Retrieving Error Codes".

4.3.2 Standard Error Codes

Access Manager provides standard error codes that indicate the reason for failure.
Common reasons for failure include providing an invalid username and password
combination, a user account is locked or disabled, or an internal processing error
occurred. The reason for the authentication error is received from the backed identity
store, which is then mapped to a specific error code maintained in the OAM Server.
This error code is then propagated to the login or error page. For more information
about the authorization request flow, see Section 4.1, "Introduction to Custom Pages".

Table 4-1 summarizes the standard error information that available in login and error

pages.

Developing Custom Pages 4-5

Developing Custom Error Pages

Table 4-1 Types of Error Information

Message Type Description

Error code A string containing a specific number. The error codes are
managed solely by Access Manager. Query string parameter is
named p_error_code.

Primary error message A localized string containing the detailed text for the error code.
Is based on the client locale, namely, the user’s browser
language setting.

Secondary error message A non localized string containing the real cause for the failure.
Secondary error message can be provided by a custom
authentication plug-in or be returned by an identity store. Query
string parameter is named p_sec_error_msg.

Table 4-2 lists all the error message codes sent by the OAM Server and the
corresponding primary error message. If a primary error message has been
customized for an application, the application must map this custom message to the
corresponding standard error message maintained by OAM Server. There is no
difference between OAM-1 and OAM-2 error codes.

Table 4-2 Standard Error Codes and Message

Error Code Primary Error Message

OAM-1 An incorrect Username or Password was specified.

OAM-2 An incorrect Username or Password was specified.

OAM-3 Unexpected Error occurred while processing credentials. Please
retry your action again!

OAM-4 System error. Please contact the System Administrator.

OAM-5 The user account is locked or disabled. Please contact the System
Administrator.

OAM-6 The user has already reached the maximum allowed number of

sessions. Please close one of the existing sessions before trying to
login again.

OAM-7 System error. Please re-try your action. If you continue to get
this error, please contact the Administrator.

OAM-8 Authentication failed.

OAM-9 System error. Please re-try your action. If you continue to get
this error, please contact the Administrator.

OAM-10 The password has expired. Please contact the System
Administrator.

4.3.3 Default Page Locations

In the case where the Embedded Credential Collector (ECC) is used, the default pages
are accessed as follows:

= Login page: http(s):/ /host:port/oam/pages/login.jsp
» Error page: http(s):/ /host:port /oam / pages /servererror.jsp

In the case where the Detached Credential Collector (DCC) is used, the default pages
are accessed as follows:

s Login page: /oamsso-bin/login.pl

4-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Custom Error Pages

s Login action URL: /oam/server/auth_cred_submit. This is the default action URL
if no action is configured in the authentication scheme parameters. No
corresponding physical page is located with the default URL. A physical page is
needed at the URL location only when an action has been configured in the
authentication scheme and a runtime action type results in a pass through on the
action URL.

s Error page: /oberr.cgi. This is a URL pattern recognized by DCC and is not a
physical location.

4.3.4 Security Level Configuration

An error code’s security level determines the error code that is returned by OAM
Server. The security level is configured by an administrator using the Access Manager
Configuration panel in the administration console. The following security level
settings are available when configuring error codes for custom login pages:

s SECURE: Most secure level. Provides a generic primary error message that gives
little information about the internal reason for the error.

s EXTERNAL: The recommended level and is the default.

s INTERNAL: The least secure level. Enables propagation of error code to login or
error page.

Table 4-3 lists the standard error codes (see Table 4-2) that are propagated to the login
or error page according to security level.

Table 4-3 Error Condition Mapping by Security Level

Error Condition Internal Mode External Mode Secure Mode
Invalid login attempt. OAM-1 OAM-2 OAM-8
Processing submitted credentials OAM-3 OAM-3 OAM-8

failed for a reason. For example, in
WNA mode the spnego token is not

received.

An authentication exception is OAM-4 OAM-4 OAM-9

raised for a reason.

User account is locked due to OAM-5 OAM-5 OAM-8, or
certain conditions. For example, the OAM-9 if OIM
invalid attempt limit is exceeded. is integrated
User account is disabled. OAM-5 OAM-5 OAM-9

User exceeded the maximum OAM-6 OAM-6 OAM-9

number of allowed sessions.

This is a configurable attribute.

Can be due to multiple reasons. The OAM-7 OAM-7 OAM-9
exact reason is not propagated to
the user level for security reasons.

Is the default error message
displayed when no specific error
messages are propagated up.

When an error condition occurs, the OAM Server will forward to the default error
page, unless the default page has been overridden as a failure-redirect-url in the
authentication policy. When using a custom error page, the absolute error page URL
must be set as the failure_redirect_url in the authentication policy so that the

Developing Custom Pages 4-7

Developing Custom Error Pages

server will redirect to the custom page. The custom login page typically has the logic
to serve as the error page.

In the case of error conditions OAM-1 and OAM-8, which enable the credentials to be
collected again, the user is returned to the login page.

4.3.5 Password Policy Validation Error Codes

The password plug-in redirects to the password pages and the corresponding message
is received from the password policy. These error codes are sent to the password
policy pages as HI'TP Request parameter named ruleDes.

Table 44 lists the available error codes, message key, and the corresponding message
that can be returned during password validation.

Table 4-4 Password Validation Error Codes

Message

Key in URL

Message Key for Resource
Bundle

Message Text

PSWD-1

passwordPolicy. message.min
Length

Password must be at least {0} characters long

PSWD-2

passwordPolicy.message.max
Length

Password must not be longer than {0}
characters

PSWD-3

passwordPolicy. message.min
Alpha

Password must contain at least {0} alphabetic
characters

PSWD-4

passwordPolicy.message.min
Number

Password must contain at least {0} numeric
characters

PSWD-5

passwordPolicy. message.min
AlphaNumeric

Password must contain at least {0}
alphanumeric characters

PSWD-6

passwordPolicy.message.min
SpecialChars

Password must contain at least {0} special
characters

PSWD-7

passwordPolicy. message.max
SpecialChars

Password must not contain more than {0}
special characters

PSWD-8

passwordPolicy.message.max
Repeated

Any particular character in the password must
not be repeated more than {0} times

PSWD-9

passwordPolicy. message.min
Unique

Password must contain at least {0} unique
characters

PSWD-10

passwordPolicy.message.min
UpperCase

Password must contain at least {0} uppercase
letters

PSWD-11

passwordPolicy.message.min
LowerCase

Password must contain at least {0} lowercase
letters

PSWD-12

passwordPolicy.message.max
Age

Password will expire {0} days after the last
password change

PSWD-13

passwordPolicy. message.war
nAfter

Password change reminder will be sent {0}
days after the last password change

PSWD-14

passwordPolicy.message.reqd
Chars

Password must contain the following
characters: {0}

PSWD-15

passwordPolicy. message.inva
lidChars

Password must not contain the following
characters: {0}

PSWD-16

passwordPolicy.message.vali
dChars

Password can contain the following characters:

{0}

PSWD-17

passwordPolicy. message.inva
lidStrings

Password must not contain the following
strings: {0}

4-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Custom Error Pages

Table 4-4 (Cont.) Password Validation Error Codes

Message

Key in URL

Message Key for Resource
Bundle

Message Text

PSWD-18

passwordPolicy. message.start
sWithChar

Password must start with an alphabetic
character

PSWD-19

passwordPolicy.message.disA
llowUserld

Password must not match or contain user ID

PSWD-20

passwordPolicy.message.disA
llowFirstName

Password must not match or contain first name

PSWD-21

passwordPolicy.message.disA
llowLastName

Password must not match or contain last name

PSWD-22

passwordPolicy. message.dict
Message

Password must not be a dictionary word

PSWD-23

passwordPolicy.message.enfo
rceHistory

Password must not be one of {0} previous
passwords

PSWD-24

passwordPolicy. message.min
Age

Password cannot be changed for {0} days after
the last password change

PSWD-25

passwordPolicy.message.min
Unicode

Password must contain at least {0} Unicode
characters

PSWD-26

passwordPolicy. message.max
Unicode

Password must not contain more than {0}
Unicode characters

4.3.6 Secondary Error Message Propagation

The authentication engine layer maps exceptions from the backend identity store to
error codes specific to OAM Server. These codes are then propagated. Plug-ins can
retrieve the secondary error code and then propagate so that appropriate action can be

taken.

Note:

The primary error codes are propagated to the error or login
page in all modes. The secondary error message is propagated only
when the security level is configured to be INTERNAL. For more
information, see Section 4.3.4, "Security Level Configuration".

Secondary error messages are sent as HTTP Request parameters to the error page. The
query parameter is named p_sec_error_msg. This message is a concatenated string of
code and message text from the backend and is not translated.

For example, in the case where OVD is the backend and invalid credentials are
entered, authentication fails and the cause is returned from the backend as LDAP: error
code 49-Invalid Credentials and the OAM Server error code is returned as OAM-1.
In this case the following data will appear in the log in page:

Entity

Description

Error Code

Primary Message
(retrieved from the

code)

Secondary Error

Code

OAM-1

An incorrect
Username or
Password was
specified

LDAP:error code 49-
Invalid Credentials

Developing Custom Pages 4-9

Developing Custom Error Pages

4.3.7 Retrieving Error Codes

An error code is sent as HTTP Request parameters to the error page. The query
parameter is named p_error_code. This parameter value will contain error code
values, such as OAM-1, that is returned by the OAM Server. See Table 4-2 for standard
Access Manager error codes and corresponding message. These error codes do not
have supplementary information.

A custom login page can be associated with a custom resource bundle to transform the
error codes to be meaningful messages that are displayed to the end user. However, if
the custom login page does not require meaningful error messages or translations,
then the custom resource bundle is not required.

4.3.7.1 Code Samples

A local resource bundle file must be created with and the error condition mapped to
Access Manager error codes as summarized in Table 4-3. The file can be consumed in
the login or error page.

Example 4-1 provides a resource bundle code sample and Example 4-2 provides an
error code page sample.

Example 4-1 Resource Bundle Code

package mytest.error;
Import java.util.ListResourceBundle;
public class ExampleErrorMsg extends ListResourceBundle {
/* (non-Javadoc)
* @see java.util.ListResourceBundlef#getContents ()
*/
public Object[][] getContents()
{
return m_contents;
}

/** The Constant m_contents. */

private static final Object[][] m_contents =
{
{"OAM-1", " An incorrect Username or Password was
specified "},
{"OAM-2", " An incorrect Username or Password was
specified "},
{"OAM-3", "Unexpected Error occurred while processing

credentials. Please retry your action again!"},
", e Y

Example 4-2 Error Code Page

<%@page import="mytest.error.ExampleErrorMsg"%>
//initializing the messageBundle first
String defaultResourceBundle = "mytest.error.ExampleErrorMsg";
java.util.Locale myLocale = request.getLocale();
ResourceBundle msgBundle=
ResourceBundle.getBundle (defaul tResourceBundle, myLocale) ;
String errCode = request.getParameter ("p_error_code");
String secondaryErrMessage = request.getParameter ("p_sec_error_msg");
<%
if (errCode != null && errCode.length() > 0) {
try {

4-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Custom Error Pages

simpleMessage = msgBundle.getString(errCode);
} catch(Exception e) {

//get the default authn failed message

simpleMessage = msgBundle.getString ("OAM-8");

%>
<div class="message-row">

<p class="loginFailed"> <%=simpleMessage%> </p>
</div>

4.3.7.2 Retrieving Password Policy Error Codes

A user-facing page has access to the password policy result context and has the ability
to obtain applicable messages. Each message may include supplementary information,
depending on the message. The following code snippet shows how a page can obtain
the message and supplementary information from the password policy result context:

String simpleMessage = "";
String result = request.getParameter ("rejectedRuleDesc");
if (result.indexOf ('~') != -1) {
String[] results = result.split("~
for(String eachResult : results) ({
if (eachResult.indexOf (":") != -1) {
String messageKey = eachResult.substring(0, eachResult.indexOf(":"));
String resourceBundleKey =
UrlSubstitutionMessages.ERRORCODEMAP.get (messageKey) ;
String placeHolderValue = eachResult.substring(eachResult.indexOf(":") +
1, eachResult.length());
String displayValue = Localizer.localize(resourceBundleKey,
placeHolderValue, myLocale);
simpleMessage += displayValue + "
";
}
else {
String resourceBundleKey =
UrlSubstitutionMessages.ERRORCODEMAP.get (eachResult) ;
String displayValue = Localizer.localize(resourceBundleKey, null,
myLocale) ;
simpleMessage += displayValue + "
";

")

}
}
For example, if the password doesn’t have enough characters, the following will be the

result in context:

m PasswordRuleDescription.getResourceBundleKey () returns
"passwordPolicy.error.minLength"

m PasswordRuleDescription.getPlaceHolderValue () returns minimum number of
characters

m PassswordRuleDescription.eachDesc.getDisplayValue () returns fully
translated message

4.3.7.3 Password Policy Rules

A user-facing page has access to the password policy rules applicable for the user.
Each message may include supplementary information, depending on the message.
The following code snippet shows how a page can obtain the rules and supplementary
information from the password policy result context:

Developing Custom Pages 4-11

Developing Using the Detached Credential Collector

String simpleMessage = "";

String result = request.getParameter ("ruleDesc");

if (result.indexOf('~"') != -1) {

String[] results = result.split("~");

for(String eachResult : results) ({

if (eachResult.indexOf (":") != -1) {

String messageKey = eachResult.substring(0, eachResult.indexOf(":"));

String resourceBundleKey = UrlSubstitutionMessages.ERRORCODEMAP.get (messageKey) ;
String placeHolderValue = eachResult.substring(eachResult.indexOf(":") + 1,
eachResult.length());

String displayValue = Localizer.localize(resourceBundleKey, placeHolderValue,
myLocale) ;

simpleMessage += displayValue + "
";

}

else {

String resourceBundleKey = UrlSubstitutionMessages.ERRORCODEMAP.get (eachResult);
String displayValue = Localizer.localize(resourceBundleKey, null, myLocale);
simpleMessage += displayValue + "
";

}

}

}

For example, if the password does not have enough characters, the following will be
the result in context:

m PasswordRuleDescription.getResourceBundleKey () returns
"passwordPolicy.error.minLength"

m PasswordRuleDescription.getPlaceHolderValue () returns minimum number of
characters

m PassswordRuleDescription.eachDesc.getDisplayValue () returns fully
translated message

4.3.8 Error Data Sources Summary

Table 4-5 summarizes the error data sources available to an authentication plug-in.

Table 4-5 Authentication Plug-In Error Data Sources

Source Parameter

Error code HTTP Request parameter: p_error_code

Primary error message Is obtained from the resource bundle, using the error code
Secondary Error Message HTTP Request parameter: p_sec_error_msg

(sent only in INTERNAL

error mode)

Concatenated list of server ~ HTTP Request parameter: p_error_codes_list
error codes

Password Plugin error HTTP Request parameter: ruleDesc

message

Plugin client responses HTTP Request parameter: PLUGIN_CLIENT_RESPONSE
Plugin error responses HTTP Request parameter: PLUGIN_ERROR_RESPONSE

4.4 Developing Using the Detached Credential Collector

This section contains the following topics:

4-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing Using the Detached Credential Collector

Detached Credential Collector Considerations

Process Overview: Creating a Form-Based Login Page Using DCC

4.4.1 Detached Credential Collector Considerations

The primary differences when developing a custom page that uses the Detached
Credential Collector (DCC) are as follows:

DCC is installed with default pages implemented as Perl scripts using HTML
templates located in the following Webgate Oracle Home (WebgateOH) directories:

- WebgateOH/webgate/ohs/oamsso
- WebgateOH /webgate /ohs/oamsso-bin

In addition to login pages for supported authentication mechanisms, the default
error page and default logout pages can be customized.

The default error page is triggered when an error condition occurs outside of the
authentication flow, or if the failure redirect URL is not specified in the
authentication scheme. The default error page template and associated error
messages are located in a language and locale specific subdirectory within the
Webgate Oracle Home. For example, for en-us the exact location is:

WebgateOH /webgate/ohs/lang/en-us/WebGate.xml.

The default logout page is located in
WebgateOH /webgate/ohs/oamsso-bin/logout.pl.

DCC by itself does not constrain the choice of the language to develop the custom
pages in. The pages can be either deployed on the Oracle HTTP Server hosting the
DCC, or in the case of JSP or Servlets, they need to be deployed on a web container
that is fronted by it.

HTML forms used to post collected data to the DCC can do it by using a
configurable URL. The action challenge parameter in the authentication scheme
specifies the URL where the credentials are expected.

requestid query parameter handling is not required.

4.4.2 Process Overview: Creating a Form-Based Login Page Using DCC

1.

N o a &

Create an HTML form where the user’s credentials, such as user name and
password, can be submitted. For more information, see Section 4.2.1, "Creating a
Form-Based Login Page".

Place the form in an unprotected directory, or in a directory protected by an
Anonymous authentication scheme, on your Web server with DCC.

Create a form-based authentication scheme and specify the path to the login form
as the Challenge URL. For more information, see Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

Call the form action using HTTP GET or POST.
Protect the target URL in the action of the login form with a policy.
Configure the challenge parameters in the authentication scheme.

Specify the authentication module to use to process the credentials.

Developing Custom Pages 4-13

Deploying the Custom Login Page

4.5 Deploying the Custom Login Page

The custom login page can be created as a WAR file and packaged with the necessary
resource bundle files. The WAR file can then be deployed on an application behind a
DCC, or if DCC is not used, the page can be deployed on the same server where ECC
is running. When using ECC, the following settings must be specified for the
Authentication scheme using the custom WAR file:

s Context Type = CustomWar
= Challenge URL = Relative path for the URL of the login page inside the WAR file

= Context Value = Custom WAR'’s root path. If a customized error page is included
as part of the Custom WAR file, you must specify the absolute URL in the
authentication policy-failure redirect URI. For example:
http://host:port/SampleLoginWar/pages/MFAError. jsp.

For more information about authentication schemes and managing them, see "About
the Authentication Schemes Page" in Oracle Fusion Middleware Administrator’s Guide for
Oracle Access Management.

4.6 Programmatic Authentication
This section contains the following topics:
= Using mod_osso Agent

= Using Unsolicited Post

4.6.1 Using mod_osso Agent

Programmatic authentication using HTTP client APIs is supported for both OSSO 10g
and 11g OAM Server.

4.6.1.1 0SSO 10g

An OSSO0 10g programmatic client typically looks for URL redirects to identify the
authentication flow. The default authentication schemes are configured to use
embedded login pages. OAM Server will forward to the login page instead of using
redirection. For OSSO 10g style programmatic clients to work, the credential collector
must be configured in external mode.

In cases of upgrade from 10g release, configure the authentication scheme
SSOCoexistMigrateScheme to use the new custom login page. In cases of new 11g
release installation, edit the scheme used for authenticating a resource, namely
LDAPScheme.

Set the challenge URL to point to a fully qualified custom URL. For example,
http://host:port/sample-web/login.jsp. Also set the context type to external. For
more information, see "Managing Authentication Schemes" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

4.6.1.2 11g OAM Server

In 11g release, the OAM Server uses javascript to transmit the login form for credential
input to the client. In the case where the client or device cannot understand a
script-based redirect, the user-agent the client uses must be configured as a
programmatic client. OAM Server is then recognized the client as a programmatic one
and not as a browser based one. In this case, OAM Server will not use javascript based
redirect.

4-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Programmatic Authentication

The following is an example of the configuration setting in oam-config.xml. Multiple
entries can be added under the userAgentType setting.

<Setting Name="userAgentType" Type="htf:map">

<Setting Name="Mozilla/4.0 (compatible; Windows NT 5.1)
OracleEMAgentURLTiming/3.0" Type="xsd:string">PROGRAMATIC</Setting>
</Setting>

4.6.1.3 Process Overview: Developing Programmatic Clients

Use the following process when developing both OSSO 10g and Access Manager 11¢
programmatic clients.

1.

The application invokes a protected resource via HTTP channel using the client
APL

The mod_osso partner protecting the accessed resource generates the
site2pstoretoken and redirects to OAM Server for authentication.

OAM Server redirects to the login page with the request parameters:
site2pstoretoken and p_submit_url.

p_submit_url contains the programmatic authentication endpoint. For example:
http(s) ://host:port/sso/auth. The default browser action URL creates a session
on the server side and is not present in the programmatic authentication endpoint.
The programmatic authentication endpoint will not create a session for every
authentication, rather it will use a global session for a user. This session will be the
same for all authentication performed programmatically for a specific user.

Programmatic clients are expected to submit credentials to the programmatic
endpoint.

Clients must submit the following information to p_submit_url: ssousername,
password, s2pstoretoken (obtained in Step 3).

OAM Server validates credentials, and if valid, redirects the request to the initial
protected application.

In case of credential validation error, p_error_code is returned.

4.6.2 Using Unsolicited Post

In 11g release, use the following process for programmatic authentication using
unsolicited POST.

1.

Enable Direct Authentication.

In oam-config.xml, ensure that ServiceStatus under
DirectAuthenticationServiceDescriptor is set to true.
(DirectAuthenticationServiceDescriptor is under OAMServicesDescriptor).

Submit the following information to the endpoint https://oam_host:oam_
port/oam/server/authentication:

= username
= password

= successurl, for example,
http://machinename.mycompany.com:7778/sample-web/headers. jsp.

Once the credentials are validated, OAM Server redirects to the success URL after
setting OAM_ID cookie as part of HTTP redirect (HTTP response code 302).

Developing Custom Pages 4-15

Setting Custom OSSO Cookies After Authentication

To allow direct authentication only for POST, or vice-versa:

1.

Login to Oracle Access Management administration console and navigate to
Policy Configuration, then Application Domains.

Select edit IAMSuite. Navigate to Resources, then search and edit resource
/oamDirectAuthentication.

Under Operations, de-select all operations that are not to be supported, except
POST. For example, GET, DELETE.

To change how username and password credentials are authenticated for different
success URLs:

1.

During the direct authentication request, along with username, password and
successurl, pass another parameter type with a value specifying the
authentication mechanism.

Go to IAMSuite application domain. Create a new resource with the resource
URL /oamDirectAuthentication, and query string with name type and value
specified in Step 1.

Associate this resource to the authentication scheme that supports the type
selected.

Create multiple resources with the URL /oamDirectAuthentication and different
values for the query string type (for example, type=FORM, type=CREDS) and
associate it to corresponding authentication schemes.

4.7 Setting Custom OSSO Cookies After Authentication

For mod_osso agents, 11¢ release supports setting custom cookies. For 10g and 11g
Webgates, this is achieved through an authentication and authorization response type
cookie.

To configure OSSO custom cookies:

1.

2
3
4.
5

Login to Oracle Access Management administration console.
Navigate to the application domain for the OSSO agent.
Select the protected resource policy for authentication.

Click Responses tab.

Add the cookie responses. The cookies for your deployment should be created
with a Name and Value that follow Access Manager 11¢ authentication response
format. For example:

= Name: ORASSO_AUTH_HINT, Type: Cookie, Value:
v1.0~${session.expiration}

= Name: ORASSO_UCM_COOKIE]1, Type: Cookie, Value:
v2.0~${user.attr.displayname}~${user.attr.given}

= Name: ORASSO_UCM_COOKIE2, Type: Cookie, Value:
v3.0~${user.attr.uid}~${user.attr.mail}

Save the changes.

Access the mod_osso protected application to verify that the cookies are being
created after authentication.

The OSSO cookies are set by default on .example.com domain and the cookies are set to
expire after one year. The settings can be changed using the WLST commands:

4-16 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Setting Custom OSSO Cookies After Authentication

s updateOSSOResponseCookieConfig
s deleteOSSOResponseCookieConfig
For example, using update0SSOResponseCookieConfig:

help ('update0SSOResponseCookieConfig!')
Description:

Updates 0SSO Proxy response cookie settings in system configuration.
Syntax:

updateO0SSOResponseCookieConfig(cookieName = "<cookieName>", cookieMaxAge =
"<cookie age in minutes>", isSecureCookie = "true | false", cookieDomain="<domain
of the cookie>", domainHome = "<wls_domain_home_path>")

cookieName = Name of the cookie for which settings are updated. This is optional
parameter. If parameter is not specified global setting is updated.

cookieMaxAge = Max age of cookie in minutes. A negative value will set a session
cookie.

isSecureCookie = Boolean flag specifies if cookie should be secure which wouldbe
sent only in SSL channel.

cookieDomain = The domain of the cookie.

domainHome = location of domain home <mandatory for offline commands,not required
for online>

Example:

update0SSOResponseCookieConfig (cookieName = "ORASSO_AUTH _HINT", cookieMaxAge =
"525600", isSecureCookie = "false", cookieDomain=".example.com",domainHome =
"<wls_domain_home_path>")

For example, using delete0SSOResponseCookieConfig:

help('delete0SSOResponseCookieConfig")
Description:

Deletes 0SSO Proxy response cookie settings in system configuration.
Syntax:

delete0SSOResponseCookieConfig(cookieName = "<cookieName>",domainHome = "<wls_
domain_home_path>")

cookieName = Name of the cookie for which settings are updated. This is
mandatoryparameter. The global cookie setting cannot be deleted.

domainHome = location of domain home <mandatory for offline commands,not required
for online>

Example:
delete0OSSOResponseCookieConfig(cookieName = "ORASSO_AUTH_HINT",domainHome =
"<wls_domain_home_path>")

In the update command, if cookie name is not specified, global settings for all the
cookies are updated. If cookie name is specified, the parameters are overridden for the
specific cookie. For example:

updateO0SSOResponseCookieConfig (cookieMaxAge = "525600", isSecureCookie = "false",

Developing Custom Pages 4-17

Setting Custom OSSO Cookies After Authentication

cookieDomain=".mycompany.com")

updateOSSOResponseCookieConfig (cookieName="0RASSO_AUTH_HINT", cookieMaxAge = "-1",
isSecureCookie = "false", cookieDomain=".mycompany.com")

updateO0SSOResponseCookieConfig (cookieName="0RASSO_UCM_COOKIE2", isSecureCookie =
"true", cookieDomain=".us.mycompany.com")

deleteO0SSOResponseCookieConfig(cookieName = "ORASSO_UCM_COOKIE2")

4-18 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

O

Managing Policy Objects

Access Manager provides a Policy Administration API that enables Create, Read,
Update, and Delete (CRUD) operations on its policy objects. This chapter describes the
API and provides examples for using a RESTful Web service for Access Manager
policy administration. This chapter provides the following sections:

» Section 5.1, "Introduction to Policy Administration API"
» Section 5.2, "Compatibility"”

= Section 5.3, "Managing Policy Objects"

= Section 5.4, "Examples"

= Section 5.5, "Client Tooling"

5.1 Introduction to Policy Administration API

The Oracle Policy Administration API supports representational state transfer (REST)
interfaces for administering Access Manager policy objects as RESTful resources. The
API conforms to the Java Specification Request (JSR) 311: JAX-RS 1.1 specifications:
Java API for RESTful Web Services 1.1. For more information, see:
http://download.oracle.com/otndocs/jcp/jaxrs-1.1-mrel-eval-oth-JSpec/.

This section provides the following topics:

» Access Manager Policy Model

= Security Model

= Resource URLs

s URL Resources and Supported HTTP Methods
s Error Handling

5.1.1 Access Manager Policy Model

The Policy Administration API exposes Access Manager policy model objects (also
known as artifacts) to RESTful clients, modeling operations on these objects to HTTP
requests containing specific URLs and operations. Operations are subject to Access
Manager policy administration rules that enforce policy validation and consistency.

Figure 5-1 shows the policy model and the relationship of the policy objects that can
be managed.

Managing Policy Objects 5-1

Introduction to Policy Administration API

Figure 5-1 Policy Model

A

Authentication

Schemes

Modules

Authentication

Policies Resources
................................... - Legend

OAM
A A
Application Resource ‘ Host

D - Types Identifiers

A

| v /+\ Relationship: One-to-Many
Authentication Authorization Token Issuance A/
Policies Policies Policies * Relationship: Many-to-Many
R Lmem e P i External Dependencies
S f A T Relationship: Containment
Identities | Contextual Data

Table 5-1 provides details about the policy objects that can be managed using the
RESTful interfaces. Each policy object is represented as an HTTP resource that is
accessible through an HTTP uniform resource locator (URL).

Table 5-1 Policy Objects

Object Name

Description

Application Domain

The top-level construct of the 11¢ policy model. Each application
domain provides a logical container for resources, and the
associated authentication and authorization policies that dictate
who can access these.

Host Identifier A host can be known by multiple names. To ensure that Access
Manager recognizes the URL for a resource, Access Manager
must know the various ways used to refer to that resource's host
computer.

Resource Resources represent a document, or entity, or pieces of content

stored on a server and available for access by a large audience.
Clients communicate with the server and request the resource
(using HTTP methods) that is defined by an existing Resource

Type.

Resource Type

A resource type describes the kind of resource to be protected.

Authentication Policy

Authentication policies specify the authentication methodology
to be used for authenticating the user. Policies define the way in
which the resource access is to be protected.

Authorization Policy

Authorization policies specify the conditions under which a
subject or identity has access to a resource.

Token Issuance Policy

A Token Issuance Policy defines the rules under which a token
can be issued for a resource (Relying Party Partner) based on the
client's identity, with the client either being a Requester Partner
or an end user.

Authentication Scheme

A named component that defines the challenge mechanism,
level of trust, and the underlying authentication module
required to authenticate a user.

Figure 5-2 shows the contents of the Access Manager policies.

5-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Policy Administration API

Figure 5-2 Policy Contents

Authentication Policies Authorization Policies Token Issuance Policies
Resources Resources Resources
Auth@mhanonahrn]r I Conditions -t{ Rules l Conditions 41 Rules

| Responses | Responses | Responses

You can access the OAM Server RESTful interfaces through client applications such as:
= Web browsers

= cURL

. GNU Wget

5.1.2 Security Model

The Policy Administration REST API is protected by administrative roles. The REST
services are protected by the container security that enforces the required roles. The
enforcement policy configuration for the API is similar to the policy enforcement for
Policy Administration actions performed in the administration console. For example,
client invocations are expected to supply credentials in the Authorization Header of
the HTTP request, ensuring that the client invocations remain stateless as seen in the
following sample request:

ks 1

Request URL: hitp: /i adminserver :adminoort foamizervicesresti 1.1 1 6.0/ saipolicyadmin/appdomain
Request Method: GET
Status Code: HTTPA .1 200 0K

Request Headers 14:04:04.528
Accept: testtiml applicationdxbtmbeoml applicationtml g=0 8 4 g=0 &
Accept-Charset: |30-53359-1 Ltf-5,0=0.7 *g=0.7
Accept-Encoding: gzip, deflate
Accept-l en-us,en;g=0.5
| Authorization: Basic d2vibGInalWMEd2y sV 2HITE=
Connection: keep-alive

Host: adminserver :adminoor
User-Agent: Mozila/s.0 fWindoves NT 5.1; rv8.0.1) Gecka/201001071 Firetox/S.01

The following is an example of the response content returned from the sample HTTP
request, which contains a list of application domains:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><ApplicationDomains>
<ApplicationDomain>

<name>Demo Application Domain</name>

<description>Policy objects enabling OAM Agent to protect deployed Demo
applications</description>
</ApplicationDomain>

<ApplicationDomain>
<name>Clear Vision Domain</name>
<description>Policy objects enabling OAM Agents to protect Clear Vision
applications</description>
</ApplicationDomain>
</ApplicationDomains>

The authentication provider for user authentication is based on Access Manager
application configuration. When the REST service is protected by a Webgate, the
Webgate decides about the access request based on the Authentication Scheme
associated with the URL. These URLs have Cookieless Basic as the authentication

Managing Policy Objects 5-3

Introduction to Policy Administration API

method. The Cookieless Basic scheme should not be changed, instead have it protected
with more than one scheme. In such a case, the Webgate treats an access request to
these resources as pass-through, preserving the Authorization headers of the request.
Access Manager process the request based on the Authorization header provided.

5.1.3 Resource URLs

Resource URLs are structured to include the Access Manager product version, the
component exposed by the REST service, and the resources being invoked. The basic
structure of a resource URL is as follows:

http(s)://host:port/oam/services/rest/path

where:

host
The host where the OAM Server is running

port
The HTTP or HTTPS port

path
The relative path that identifies a particular resource, and path is constructed as
follows: /version /component /service/

where:

m version - is the Access Manager product version, such as 11.1.2.0.0

= component - component exposed by the RESTful service, such as ssa or sso
= service - is the root resource for that given API, such as hostidentifier

An example of a path value is:
/oam/services/rest/11.1.2.0.0/ssa/policyadmin/hostidentifier/host_identifier_
name.

The Policy Administration REST Web Application Description Language (WADL) file
lists the supported policy resources and methods. The Policy Administration REST
WADL document is available at
http://adminserver.mycompany.comadminport/oam/services/rest/11.1.2.0.0/ssa
/policyadmin/application.wadl.

Additional parameters are required to process the request query parameters. All
resource URLs support the OPTIONS method.

Policy objects can be identified by name or id. If both are provided, the id is used.

Table 5-2 summarizes the resource URLs that are exposed to enable administration of
the policy objects shown in Figure 5-1. In the following table:

s IDENTIFER refers to the name or id of the object the request refers to.

= APPDOM_IDENTIFER uniquely identifies an existing Application Domain type
object by appid or appname.

5-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Policy Administration API

Table 5-2 Resource URLs

Artifact Mandatory

Policy Object URL Parameter
Application Domain /oam/services/rest/11.1. .0/ssa/policyadmin/appdomain IDENTIFIER
Host Identifier /oam/services/rest/11.1. .0/ssa/policyadmin/hostident IDENTIFIER
ifier
Resource Type /oam/services/rest/11.1. .0/ssa/policyadmin/resourcet IDENTIFIER
ype
Resource /oam/services/rest/11.1. .0/ssa/policyadmin/resource IDENTIFIER,
APPDOM_
IDENTIFIER
Authentication Policy /oam/services/rest/11.1. .0/ssa/policyadmin/authnpoli IDENTIFIER,
cy APPDOM_
IDENTIFIER
Authorization Policy =~ /oam/services/rest/11.1. .0/ssa/policyadmin/authzpoli IDENTIFIER,
cy APPDOM_
IDENTIFIER
Token Issuance Policy /oam/services/rest/11.1. .0/ssa/policyadmin/tokenpoli IDENTIFIER,
cy APPDOM_
IDENTIFIER

5.1.4 URL Resources and Supported HTTP Methods

Access Manager policy objects are mapped to URL resources. Each resource is
referenced by a global identifier (URI).

Access to URL resources is based on user role. The RESTful service expects user
credentials to be present in the Authentication header of the HTTP request in BASIC
mode. If the authenticated user has the policy administration role, the requested policy
administration action is performed.

5.1.5 Error Handling

A service request can result in various error conditions ranging from invalid service
invocation to server side failures. Failures and error code conditions are reported back
to the clients as HTTP return codes with an explanatory message.

Table 5-3 contains the mapping between HTTP return codes and message.

Table 5-3 Error Conditions and HTTP Return Codes
HTTP Return Code

Error Condition Content

Unable to parse input, or input 400 Bad request

does not match required entities.

Service not located 404 Not found

Not found <additional
information indicating the
not found object)

Requested object not found 404

User not authorized to execute 401 Unauthorized
service

Requested method not 405 Method not allowed
supported

Managing Policy Objects 5-5

Compatibility

Table 5-3 (Cont.) Error Conditions and HTTP Return Codes

Error Condition HTTP Return Code Content

Client does not accept produced 406 Not acceptable

content type

Request parameters semantics 422 Unprocessable entity
incorrect <additional information on

nature of error>

Client media type unsupported 415 Unsupported media type.

Note: The supported media
types are text/xml (or
application/xml) and

application/json.

Failed dependency 424 Failed dependency
<additional information on
failed dependency>

Generic server failure 500 Internal server error

5.2 Compatibility

The release version number is embedded as part of the REST service URLs exposed by
OAM Server. There is no support for forward compatibility. Clients of newer versions
cannot expect to send a request to an older version of OAM Server and receive back
newer versions of objects. There is backward compatibility support for older clients.

5.3 Managing Policy Objects
This section provides the following topics:
s HTTP Methods
= Media Types

= Resources Summary

5.3.1 HTTP Methods

Table 54 describes the supported HTTP methods. A successful HTTP method acts
upon a representation of the policy object (resource), which is an xml file. A JavaScript
Object Notation (JSON) object is returned.

Table 5-4 Methods For Managing Policy Objects

Method Action

GET Retrieves the policy objects.
POST Creates the policy object.
PUT Modify a policy object.
DELETE Delete a policy object.

5.3.2 Media Types

The supported media types are:
= application/xml

= application/json

5-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Managing Policy Objects

s text/xml

5.3.3 Resources Summary

Table 5-5 provides detail about each policy resource, the supported HITTP methods,
and the results of each action.

Table 5-5 Access Manager Policy Resources Summary

Resource Method

Description

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/appdomain

All matching Application Domain resources are returned. If no
query parameter is provided, all Application Domain
resources are returned. If an ID or NAME query parameter is
specified, all matching Application Domain resources are
returned.

POST

The Application Domain object is created by this method. The
request body must contain an Application Domain. An
Application Domain object matching the request is created.

All the policy child objects are also created.

PUT

An Application Domain object is modified by this method.
The request body must contain the Application Domain
resource that represents the object.

The Application Domain resource matching the specified ID or
NAME query parameter is modified.

If query parameters are not matched, the Application Domain
object matching ID or NAME query parameters will be
modified. If both ID and NAME are present, the ID value will
be used.

DELETE

An Application Domain object is deleted by this method. The
Application Domain matching NAME or ID query parameter
is deleted.

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/tokenissu
ancepolicy

A Token Issuance Policy object is retrieved by this method.
The resource that represents the Token Issuance Policy object
is returned. This representation contains the matching Token
Issuance Policy resource attributes and their values.

Valid query parameters are ID or NAME, and
APPDOMAINID or APPDOMAIN. If an APPDOMAINID or
APPDOMAIN parameter is not specified, a status code 424 is
returned with the appropriate message. If an ID or NAME
query parameter is not specified, all Token Issuance Policy
resources in the Application Domain are returned.

If the ID or NAME parameter matches, all Token Issuance
Policy resources in that Application Domain are returned. In
all cases, if both ID and NAME are present, ID will be used.

POST

A Token Issuance Policy object is created by this method. The
request is performed on the resource that is the parent of the
object. The request body must contain a Token Issuance Policy
resource that represents the object. A Token Issuance Policy
object matching the request is created in the corresponding
Application Domain.

Managing Policy Objects 5-7

Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method

Description

PUT

A Token Issuance Policy object is modified by this method.
The request body must contain the Token Issuance Policy
resource that represents the object.

The Token Issuance Policy resource matching the ID or NAME
query parameters is modified.

The Token Issuance Policy object should belong to an
Application Domain matching the APPDOMAINID or
APPDOMAIN query parameter.

If query parameters are not specified, the Token Issuance
Policy matching the ID or NAME parameter will be modified.

The Token Issuance Policy should belong to the Application
Domain specified in the Application Domain Name attribute.
If both ID and NAME are present, ID value will be used.

DELETE

A Token Issuance Policy object is deleted by this method. The
Token Issuance Policy matching the ID or NAME query
parameter, in the Application Domain specified in the
APPDOMAINID or APPDOMAIN query parameter, is
deleted.

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/resource

A Resource object is retrieved by this method. The resources
that represents the Resource object is returned. This
representation contains the matching Resource resource
attributes and their values.

Valid query parameters ID or NAME, and APPDOMAINID or
APPDOMAIN. If an APPDOMAINID or APPDOMAIN
parameter is not specified, a status code 424 is returned with
the appropriate message.

If an ID or NAME query parameter is not specified, all
Resource resources in that Application Domain are returned. If
the ID or NAME parameter matches, the matching Resource
resource in the Application Domain is returned. In all cases, if
both ID and NAME are present, ID will be used.

POST

A Resource object is created by this method. The request is
performed on the resource that is a parent of the object. A
Resource object matching the request is created in the
corresponding Application Domain.

PUT

A Resource object is modified by this method. The request
body must contain the Resource resource that represents the
object.

The Resource matching ID or NAME query parameters is
modified. The Resource should belong to an Application
Domain matching the APPDOMAINID or APPDOMAIN
query parameter.

If query parameters are not specified, the Resource object
matching the ID or NAME specified will be modified.

The Resource should belong to the Application Domain
specified in the Application Domain Name attribute.

If both ID and NAME are present, the ID value will be used.

DELETE

A Resource object is deleted by this method. The Resource
object matching the ID or NAME query parameters, in the
Application Domain in the APPDOMAINID or APPDOMAIN
query parameters, is deleted.

5-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method

Description

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/authzpoli
cy

An Authorization Policy object is retrieved by this method.
The resource that represents the Authorization Policy object is
returned. This representation contains the matching
Authorization Policy resource attributes and their values.

Valid query parameters are ID or NAME, and
APPDOMAINID or "appdomain". If an appdomainid or
APPDOMAIN parameter is not specified, a status code 424 is
returned with the appropriate message.

If an ID or NAME parameter is not specified, all
Authorization Policy resources in that Application Domain are
returned.

If the ID or NAME parameter matches, the matching
Authorization Policy resource in the Application Domain is
returned. In all cases, if both ID and NAME are present, ID
will be used.

POST

An Authorization Policy object is created by this method. The
request is performed on the resource that is the parent of the
object. An Authorization Policy object matching the request is
created in the corresponding Application Domain.

PUT

An Authorization Policy object is modified by this method.
The request body must contain the Authorization Policy
resource that represents the object.

The Authorization Policy resources that matching the ID or
NAME query parameter is modified.

The Authorization Policy should belong to an Application
Domain matching the APPDOMAINID or APPDOMAIN
query parameter.

If query parameters are not specified, the Authorization Policy
matching the ID or NAME parameter will be modified. The
Authorization Policy should belong to the Application
Domain specified in the Application Domain Name attribute.

If both ID and NAME are present, ID value will be used.

DELETE

An Authorization Policy object is deleted by this method. The
Authorization Policy matching the ID or NAME query
parameters, in the Application Domain specified in
APPDOMAINID or APPDOMAIN query parameters, is
deleted.

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/hostident
ifier

A Host Identifier object is retrieved by this method. The
resource that represents the Host Identifier object is returned.
This representation contains the matching Host Id en tier
resource attributes and their values.

Valid query parameters are ID or NAME. If a query parameter
is not specified, all the Host Identifier resources are returned.
If the ID or NAME parameter matches, the matching Host
Identifier resource is returned.

POST

A Host Identifier object is created by this method. The request
is performed on the resource that is the parent of the object. A
Host Identifier object matching the request is created.

Managing Policy Objects 5-9

Managing Policy Objects

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method

Description

PUT

A Host Identifier object is modified by this method. The
request body must contain the Host Identifier resource that
represents the object.

The Host Identifier resource matching the ID or NAME query
parameters is modified. If query parameters are not specified,
the Host Identifier matching the ID or NAME parameter will
be modified. If both ID and NAME are present, ID value will
be used.

DELETE

A Host Identifier object is deleted by this method. The Host
Identifier matching the ID or NAME query parameter is
deleted.

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/resourcet
ype

A Resource Type object is retrieved by this method. The
resource that represents the Resource Types object is returned.
This representation contains the matching Resource Type
resource attributes and their values.

Valid query parameters ID or NAME. If a query parameter is
not provided, all Resource Type resources are returned. If the
query parameter id or name matches, the matching Resource
Type is returned.

POST

A Resource Type object is created by this method. The request
body is performed on the parent of the object. A Resource
Type object matching this request is created.

PUT

A Resource Type object is modified by this REST method. The
request body must contain the Resource Type resource that
represents the object.

The Resource Type resource matching ID or NAME query
parameter is modified. If query parameters are not specified,
the Resource Type matching the ID or NAME parameter will
be modified. If both ID and NAME are present, ID value will
be used.

DELETE

A Resource Type object is deleted by this method. The
Resource Type matching the NAME or ID query parameter is
deleted.

oam/services/rest/11.1.2.0. GET
0/ssa/policyadmin/authnsche
me

An Authentication Scheme object is retrieved by this method.
The resource that represents the Authentication Schemes
object is returned. This representation contains the matching
Authentication Scheme resource attributes and their values.

Valid query parameters are ID or NAME. If a query parameter
is not specified, all Authentication Scheme resources are
returned. If the query parameter ID or NAME matches, the
matching Authentication Scheme is returned.

POST

An Authentication Scheme object is created by this method.
The request is performed on the resource that is the parent of
the object. An Authentication Scheme object matching the
request is created.

5-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Examples

Table 5-5 (Cont.) Access Manager Policy Resources Summary

Resource Method Description

PUT An Authentication Scheme object is modified by this method.
The request body must contain the Authentication Scheme
resource that represents the object.

The Authentication Scheme resource matching the ID or
NAME query parameter is modified. If query parameters are
not specified, the Authentication Scheme matching ID or
NAME parameter will be modified. If both ID and NAME are
present, ID value will be used.

DELETE An Authentication Scheme object is deleted by this method.
The Authentication Scheme matching the NAME or ID query
parameter is deleted.

/oam/services/rest/11.1.2.0 GET Web Application Definition Document is generated. It
.0/ssa/policyadmin/applicat describes the REST services provided. The document contains
ion.wadl a stylesheet reference that renders HTML content.

5.4 Examples
This section provides the following examples:
= Retrieve Application Domains
» Create a New Application Domain
= Get All Authentication Schemes
s Create a New Authentication Scheme
= Get a Particular Authentication Scheme
= Get All Resources in an Application Domain
= Create a Resource in an Application Domain

= Get All Policies in an Application Domain

5.4.1 Retrieve Application Domains

cURL Command

$ curl -u USER:PASSWORD
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/appdomain

Sample Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><ApplicationDomains>
<ApplicationDomain>

<1d>759463e3-2b63-4e38-893¢c-00d45dad79719</1id>

<name>IAM Suite</name>

<description>Policy objects enabling OAM Agent to protect deployed IAM Suite
applications</description>
</ApplicationDomain>

<ApplicationDomain>

<id>69f6be9b-£000-48db-9b6d-df4724cc0bd9</id>

<name>Fusion Apps Integration</name>

<description>Policy objects enabling integration with Oracle Fusion
Applications</description>
</ApplicationDomain>

Managing Policy Objects 5-11

Examples

5.4.2 Create a New Application Domain

cURL Command

curl -u weblogic:welcomel -H "Content-Type: application/xml" --request POST --data
"@/tmp/cr.appdomain.xml"
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/appdomain

Sample Input File

<ApplicationDomain>

<name>Appdomainl</name>

<description>test application domain</description>
</ApplicationDomain>

Sample Output

http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/appdomain?id=f
a60e312-fe65-4aa8-aace-1735a39c4058

5.4.3 Get All Authentication Schemes

cURL Command

curl -u USER:PASSWORD
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/authnscheme

Sample Output

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<AuthenticationSchemes>
<AuthenticationScheme>
<id>aa84b589-7f16-4b3a-942c-ba51b3abbde5</1id>
<name>KerberosScheme</name>
<description>Kerberos Scheme</description>
<authnModuleName>Kerberos</authnModuleName>
<authnSchemeLevel>2</authnSchemeLevel>
<challengeMechanism>WNA</challengeMechanism>
<ChallengeParameters>
<challengeParameter>
<key>spnegotoken</key>
<value>string</value>
</challengeParameter>
<challengeParameter>
<key>challenge_url</key>
<value>/oam/CredCollectServlet/WNA</value>
</challengeParameter>
</ChallengeParameters>
<challengeRedirectURL>/oam/server/</challengeRedirectURL>
</AuthenticationScheme>
</AuthenticationSchemes>

5.4.4 Create a New Authentication Scheme

cURL Command

curl -u weblogic:welcomel -H "Content-Type: application/xml" --request POST --data

5-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Examples

"@/tmp/cr.authnscheme.xml"
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/authnscheme

Sample Input File

<AuthenticationScheme>
<name>TestAuthnScheme</name>
<description>test authn scheme</description>
<authnModuleName>TestModulel</authnModuleName>
<authnSchemeLevel>2</authnSchemeLevel>
<challengeMechanism>WNA</challengeMechanism>
<ChallengeParameters>
<challengeParameter>
<key>spnegotoken</key>
<value>string</value>
</challengeParameter>
<challengeParameter>
<key>challenge_url</key>
<value>/oam/CredCollectServlet /WNA</value>
</challengeParameter>
</ChallengeParameters>
<challengeRedirectURL>/oam/server/</challengeRedirectURL>
</AuthenticationScheme>

Sample Output

http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/authnscheme?id
=acblfa95-£780-4091-be88-2e96cf5bbd4 9

5.4.5 Get a Particular Authentication Scheme

cURL Command

curl -u USER:PASSWORD
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/authnscheme?na
me=KerberosScheme

Sample Output

<AuthenticationScheme>
<id>aa84b589-7f16-4b3a-942c-bablb3ab6de5</id>
<name>KerberosScheme</name>
<description>Kerberos Scheme</description>
<authnModuleName>Kerberos</authnModuleName>
<authnSchemeLevel>2</authnSchemeLevel>
<challengeMechanism>WNA</challengeMechanism>
<ChallengeParameters>
<challengeParameter>
<key>spnegotoken</key>
<value>string</value>
</challengeParameter>
<challengeParameter>
<key>challenge_url</key>
<value>/oam/CredCollectServlet/WNA</value>
</challengeParameter>
</ChallengeParameters>
<challengeRedirectURL>/oam/server/</challengeRedirectURL>
</AuthenticationScheme>

Managing Policy Objects 5-13

Client Tooling

5.4.6 Get All Resources in an Application Domain

cURL Command

curl -u USER:PASSWORD
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/resource?appdo
main="IAM Suite"

5.4.7 Create a Resource in an Application Domain

cURL Command

curl -u weblogic:welcomel -H "Content-Type: application/xml" --request POST --data
"@/tmp/cr.resource.xml"
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/resource?appdo
main="AppDomainl"

5.4.8 Get All Policies in an Application Domain

cURL Command

curl -u USER:PASSWORD
http://<SERVER>:<PORT>/oam/services/rest/11.1.2.0.0/ssa/policyadmin/authnpolicy?ap
pdomain="IAM Suite"

5.5 Client Tooling

Two XML schemas are available for generating client side POJOs, which represent the
RESTful service resources:

= For the policyadmin service, the schema is oam-policyadmin-11.1.2.0.0.xsd.
s For the token service, the schema is oam-token-11.1.2.0.0.xsd.

To generate the client side object, run the JAXB command xjc (part of the JDK) as
follows:

xjc [-p package-name] oam-policyadmin-11.1.2.0.0.xsd

This command generates the Java POJO objects for the RESTful resources, which can
be used in the client side Java code. These objects can be converted back to XML using
JAXB and can then be sent to the REST server over HTTP.

For more information about JAXB, see http://jaxb.java.net/. For more information
about building clients for Jersey-based REST server, see http://jersey.java.net/.

5-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

6

Developing an Application to Manage
Impersonation

Access Manager impersonation support enables a user to designate other users to act
on their behalf within a constrained time frame. While impersonation grants are
natively supported by Access Manager, you will need to develop a custom user
interface or modify an existing interface in order to manage impersonation grants.
This chapter provides information about enabling impersonation and developing a
custom user interface. It includes the following sections:

= Section 6.1, "About Impersonation”
= Section 6.2, "Configuring Impersonation Support"

= Section 6.3, "Testing SSO Login and Impersonation”

See Also: "Integrating Oracle ADF Application with Oracle Access
Manager 11¢ SSO" in Oracle Fusion Middleware Administrator’s Guide for
Oracle Access Management.

6.1 About Impersonation

Access Manager user impersonation feature enables one user to perform operations
and access resources on the behalf of another. Impersonation grants, specified with a
user identifier and start and end time, are required for a user to be able to impersonate
another.

The following topics are discussed:
s Impersonation Concepts and Terminology
s Impersonation Grant Syntax

s Impersonation Trigger Invocation Using the SSO Service

6.1.1 Impersonation Concepts and Terminology

Table 6-1 introduces common Access Manager impersonation concepts and terms.

Table 6—-1 Impersonation Terminology

Term Definition
Impersonator A user who acts on another user’s behalf.
Impersonatee The user who is being impersonated by another.

Developing an Application to Manage Impersonation 6-1

About Impersonation

Table 6-1 (Cont.) Impersonation Terminology

Term Definition

Impersonation grant Security metadata created by the impersonatee to designate a
particular impersonator to impersonate her within a specified
time window.

Impersonation trigger An act of an impersonator choosing to initiate an impersonation
session on behalf of another user.

Access Manager A distinct type of Access Manager session that can be

impersonation session distinguished from regular user session by the target
application.

Impersonation consent A consent given by the impersonator to acknowledge the
awareness that Access Manager impersonation session is in
effect.

Access Manager user impersonation support allows an end user (the impersonatee) to
designate one or more other users (impersonators) to act on her behalf within a
constrained window of time. This information is collected using a custom user
interface you develop, and persisted as a set of impersonation grants in the user
directory.

The impersonator, while holding an authenticated session and interacting with a
custom user interface, may choose to initiate an impersonation session on behalf of
another named user. Access Manager performs required authorization checks to
ascertain that the impersonator is allowed to impersonate the impersonatee. If
allowed, the impersonation session is created.

The Access Manager-protected application behaves as if the impersonated user was
accessing it. The application can determine whether the user is the impersonator or the
impersonatee.

The impersonation session terminates when the impersonator chooses to do so
through the application user interface. The impersonator will return to their regular
user session and be able to access the application as himself once again. The
impersonator is not allowed to switch the impersonatee user during his impersonation
session (that is, nested or recursive impersonation is not allowed).

Access Manager provides the runtime enforcement of the impersonation semantics as
described above, while all of the user interface aspects and associated metadata
(impersonation grant) lifecycle are provided by your custom interface. The integration
between Access Manager and a custom user interface can be codified in terms of the
following three interfaces (touch points):

» Impersonation grant syntax, persistence, and lifecycle
= Impersonation trigger invocation

= Impersonator identity communication during Access Manager impersonation
session

6.1.2 Impersonation Grant Syntax

The following two impersonation grants are part of the orc1IDXPerson object class:

» orclImpersonationGrantee: If this attribute contains grants for a user, then that
user can impersonate the current user. This is the attribute checked by OAM
Server during an impersonation request.

6-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

About Impersonation

s orclImpersonationGranter: If this attribute contains grants for a user, then that
user can be impersonated by the current user. This attribute is not used to enforce
impersonation, it is used to start the impersonation session from the application.

Impersonation grants of an impersonatee are persisted in the user's record in the
LDAP directory as a multi-valued attribute. Each of the values represents a specific
grant to a named impersonator and a specified time window. Each value of the
multi-valued attribute is a composite string, with individual fields delineated by a
separator character. For this release, Oracle Identity Directory is supported when
using impersonation feature.

You can create or modify a custom user interface to enable users to create, view,
update, or delete impersonation grants within their user profile. The user interface
must be constructed to persist impersonation grants in the designated LDAP directory
in the multi-valued attribute named orclImpersonationGrantee. The format of
individual values is <Impersonator orclGUID> | <begin LDAP timestamp> | <end
LDAP timestamp>.For example:

orclImpersonationGrantee: xyz123abcd|201006042245177]201006042345177;
k1mn980nopr |201006042245172|201006042345177

In the following example, assume:
= Impersonator: jdoe
= Impersonatee: Ismith

jdoe is trying to impersonate Ismith. The following command can be used to obtain the
OrclGuid of the impersonator (jdoe):

ldapsearch -h <hostname> -w <password> -p <port> -D"cn=orcladmin"
-b"dc=us, dc=mycompany, dc=com" "cn=jdoe" orclguid

For example, LDAP search for orclguid:

ldapsearch -h myhostl.us.mycompany.com -w welcomel -p 16890
-b"dc=us, dc=mycompany, dc=com" -D"cn=orcladmin" "cn=jdoe" orclguid
version: 1

where:

s dn: cn=jdoe, cn=Users, dc=us, dc=mycompany, dc=com

m orclguid: A14BEB42E822D605E040E50AB29327E7

For example, LDAP search for orclImpersonationGrantee:

ldapsearch -h hostl.us.mycompany.com -w welcomel -p 16890
-b"dc=us, dc=mycompany, dc=com" -D"cn=orcladmin" "cn=lsmith"
orclImpersonationGrantee

version: 1

where:

s dn: cn=lsmith, cn=Users, dc=us, dc=mycompany, dc=com

m orclImpersonationGrantee:
A14BEB42E822D605E04OE50AB29327E7|20100324l63000Z|2012052417ZOOOZ

Add this value to the orclImpersonationGrantee entry to impersonatee user in OID
as follows:

A14BEB42E822D605E040E50AB29327E7(20100324163000Z|2012
05241720002

Developing an Application to Manage Impersonation 6-3

About Impersonation

Note: No spaces are permitted in the list of individual values.

Object class and attribute definition for this attribute must be bootstrapped in the
LDAP server's schema. OID 11.1.1.3 and later contains the necessary object class.

Access Manager retrieves impersonation grants of a given impersonatee when an
impersonator attempts to create an impersonation session. However, if the grant
doesn't exist for the given impersonator or if the current time is not within the time
window of any such grants, impersonation session creation fails. Access Manager does
not otherwise read or modify the grants within user profiles.

Subsequent revocation of the impersonation grant (for example, by modifying the
orclImpersonationGrantee attribute) that authorized the impersonation session will
not affect the impersonation sessions still in progress.

6.1.3 Impersonation Trigger Invocation Using the SSO Service

An authenticated user can select to impersonate another user. The user interface to
select which user to impersonate is provided by an application. After the information
has been collected, the application invokes the impersonation trigger. This can be done
by invoking one of the methods in the SSO Service as shown in Example 6-1 or
directly by redirecting the user's browser to Access Manager trigger URLs.

For more information about the SSO Service, see "Configuring the Identity Provider,
Property Sets, and SSO" in Oracle Fusion Middleware Application Security Guide.

Example 6-1 illustrates the methods required to use the SSO Service to abstract the
specifics of the triggering mechanism (preferred).

Example 6-1 Required Method to Abstract Triggering Mechanism Using SsoService API

void beginImpersonation (HttpServletRequest request, HttpServletResponse response,
Map<String, ?> props) throws SsoServiceException

void endImpersonation (HttpServletRequest request, HttpServletResponse response,
Map<String, ?> props) throws SsoServiceException

In this example props contains IMP_USER_ID of the impersonatee, SUCCESS_URL,
FAILURE_URL, and TARGET_URL similar to login/logout/auto-login API of the
SSOService. Example 6-2 shows an abbreviated example.

Example 6—2 Abbreviated SsoService API Triggering Example

import oracle.security.jps.JpsException;

import oracle.security.jps.service.JpsServiceLocator;
import oracle.security.jps.service.ServiceLocator;
import oracle.security.jps.service.sso.SsoService;

public void doGet (HttpServletRequest reqg, HttpServletResponse res)
throws ServletException, IOException

try {
ServiceLocator serviceLocator = JpsServiceLocator.getServiceLocator();
SsoService sso = (SsoService)serviceLocator.lookup (SsoService.class);

Map m = new HashMap () ;

6-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

About Impersonation

m.put (SsoService.SUCCESS_URL, "https://login0l.mycompany.com:7777/appl2.html");
m.put (SsoService.FAILURE_URL, "https://login0l.mycompany.com:7777/fail.html");
m.put (SsoService.IMP_USER_ID, "mcooper");

sso.beginImpersonation(req, res, m);

m.put (SsoService.TARGET_URL, "https://login02.mycompany.com:8080/
normalSession.html");
sso.endImpersonation(req, res, m);

} catch(JpsException jpse) {
jpse.printStackTrace() ;

Example 6-3 provides a snippet from jps-config.xml showing the configuration
changes needed (imp.begin.url and imp.end.url properties):

Example 6-3 jps-config.xml With Changes For imp.begin.url and imp.end.ur|

<?xml version="1.0" encoding="UTF-8" standalone="vyes"?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1
1.xsd">
<property value="off" name="oracle.security.jps.jaas.mode"/>
<propertySets>
<propertySet name="saml.trusted.issuers.l">
<property value="www.oracle.com" name="name"/>
</propertySet>

<propertySet name="props.auth.uri.0">
<property value="/oamsso/logout.html" name="logout.url"/>
<property
value="https://login0l.mycompany.com:7777/oam/server/impersonate/end
name="imp.end.url"/>
<property
value="https://login0l.mycompany.com:7777/oam/server/impersonate/start
name="imp.begin.url"/>
<property value="/${app.context}/adfAuthentication" name="login.url
.BASIC" />
<property value="/${app.context}/adfAuthentication" name="login.
url.ANONYMOUS" />
<property value="/${app.context}/adfAuthentication" name="login.
url.FORM" />
</propertySet>
<propertySet name="props.auth.level.0">
<property value="0" name="type-level:ANONYMOUS" />
<property value="1" name="type-level :BASIC"/>
<property value="2" name="type-level:FORM"/>
</propertySet>
</propertySets>

Developing an Application to Manage Impersonation 6-5

Configuring Impersonation Support

6.1.4 Triggering Impersonation Without APl Abstraction

To invoke the Access Manager impersonation triggers directly, without the use of an
API abstraction, the redirection to Access Manager maintained trigger end point has to
contain a specification of query parameters for userid, success_url, and failure_
url. The userid field carries the Impersonatee’s userid, the success_url/failure_url is
where the impersonator's browser should be pointed to after the impersonation
session has been created or failed to be created, respectively. The URLs provided must
include protocol and host:port information, as shown in Example 6—4.

Example 6-4 Triggering Impersonation Without APl Abstraction

https://login.mycompany.com/oam/server/impersonate/start?userid=impersonatee
userid&success_url=SuccessRedirect URL&failure_url=FailureRedirect URL

To terminate the impersonation session and restore the original impersonator's Access
Manager session, the user interface must force a browser redirect to an Access
Manager maintained end point, and provides the target URL for the impersonator to
come back to shown in Example 6-5. Use of failure_url is optional.

Example 6-5 Restore Original Impersonator's Session

https://login.mycompany.com/oam/server/impersonate/end?end_url=TargetRedirect
URL&failure_url=FailureRedirect URL

6.1.5 Impersonator Identity Communication During Impersonation Sessions

Table 6-2 provides the header names for communicating the identity of the
impersonator to the downstream application. The WebGate uses an additional HTTP
header injected into the request. The interested application may detect that the Access
Manager impersonation session is in progress by inspecting the HTTP headers of
inbound requests.

Table 6-2 Headers For Identity Information

Header Name Description

OAM_IMPERSONATOR_ The header name that carries the impersonator userID.
USER

OAM_REMOTE_USER The header that carries the end userID, which is the same as

with a standard Access Manager user session.

6.2 Configuring Impersonation Support

The impersonation feature is not enabled by default. You enable the impersonation
feature by either configuring oam-config.xml or by using the idmConfigTool
command.

This section contains the following topics:
s Configuring Impersonation Using oam-config.xml
s Configuring Impersonation Using idmConfigTool

s Configuring the Authentication Scheme

6-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Configuring Impersonation Support

6.2.1 Configuring Impersonation Using oam-config.xml

The impersonation feature for the OAM Server is enabled by configuring the
oam-config.xml file as shown in Example 6-6.

This example shows the relevant section of the file and the parameters that can be set.
EnableImpersonation must be set to ‘true’ to enable impersonation. The default
setting is "false’.

Example 6-6 Enabling Impersonation Feature in oam-config.xml

<Setting Name="ImpersonationConfig" Type="htf:map">
<Setting Name="EnableImpersonation" Type="xsd:boolean">true</Setting>
<Setting Name="UserAttributeName"
Type="xsd:string">orclImpersonationGrantee</Setting>
<Setting Name="ErrorPage" Type="xsd:string">/pages/servererror.jsp</Setting>
</Setting>

6.2.2 Configuring Impersonation Using idmConfigTool

For more information about the idmConfigTool command, see "Using the
idmConfigTool Command" in Oracle Fusion Middleware Integration Guide for Oracle
Identity Management Suite.

To configure the impersonation feature using idmConfigTool:

1. Use idmConfigTool with the -prepareStoreID command to seed the Identity Store
with the users required by Access Manager. The command syntax is
./idmConfigTool.sh -prepareIDStore mode=0AM input_file=input_parameters.

2. Configure the impersonation feature using idmConfigTool with the configOAM
command with the parameter OAM11G_IMPERSONATION_FLAG: true. The command
syntax is ./idmConfigTool.sh -configOAM input_file=input_parameters.

3. Define the impersonator grant permissions by providing the session timestamps
for the impersonation session duration. The format of individual values is
<Impersonator orclGUID> | <begin LDAP timestamp> | <end LDAP
timestamp>. No spaces are permitted.

For example, in OID add similar timestamp values to orclImpersonationGrantee
entry as shown in the following;:

83295E092B2F9FDAEO40E50AEBB91998(201006042245172]20110604224517Z; 90FESC8083CEBC
1FE040E50AEBB9176A[201007042245172|20110604224517Z

where:

» The first block is the GUID of the impersonator. As shown here,
83295E092B2F9FDAE040E50AEBBI1998 is the GUID of the impersonator.

= The second block is the timestamp start date.
s The third block is the timestamp end date.
4. Submit the data to the LDAP server.

6.2.3 Configuring the Authentication Scheme

For impersonation support the authentication scheme for the protected application
must be set to LDAPScheme. This must be done before initiating an impersonation
session. For more information about the LDAPScheme, see "Managing Authentication

Developing an Application to Manage Impersonation 6-7

Testing SSO Login and Impersonation

Schemes" in Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management.

To set the authentication scheme to LDAPScheme:

1. Inthe Oracle Access Management administration console, go to the Policy
Configuration tab, App Domain, Authentication Policies, Protected Resource
Policy.

2. From the Authentication Scheme list, select LDAPScheme.

6.3 Testing SSO Login and Impersonation

The steps to test impersonation set up will vary according to your environment and
your custom user interface. The following general advise is provided as an example of
the steps to take, adjust as needed for your environment.

To test SSO login and impersonation
1. Log in to Oracle Access Management using your own userID and credentials.

2. Access a resource for which you have authorization to verify that Access Manager
is working with your credentials as expected.

3. Start your impersonation session.

4. In the impersonation confirmation form that appears, enter your own (that is,
impersonator’s) password and click Submit to provide impersonation consent.

5. In the same browser, access a resource for which the impersonated user has
authorization.

6. Confirm the Impersonating column in the Access Manager Session Management
Page displays true.

For more information, see "About the Session Management Page" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management.

7. Confirm that HTTP header variables (OAM_REMOTE_USER and OAM_
IMPERSONATOR_USER) are set in the impersonation session by using a script or
Perl program that will print header variable.

For more information, see Section 6.1.5, "Impersonator Identity Communication
During Impersonation Sessions".

8. Terminate your impersonation session.

9. Confirm that OAM_REMOTE_USER is set to user before impersonation trigger,
and OAM_IMPERSONATOR_USER HTTP header variable is empty or blank, by
using a script or Perl program that will print header var.

6-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Part lli

Developing with Mobile and Social

This part discusses developing applications using the Oracle Access Management
Mobile and Social SDK and APIs.

Part III contains the following chapters:

» Chapter 7, "Developing Applications Using the Mobile and Social Client SDKs"

» Chapter 8, "Developing Mobile Services Applications with the Java Client SDK"
» Chapter 9, "Developing Mobile Services Applications with the iOS Client SDK"

» Chapter 10, "Developing Applications Using the Internet Identity Services Client
SDK"

» Chapter 11, "Extending the Capabilities of the Mobile and Social Server"
» Chapter 12, "Sending Mobile and Social REST Calls With cURL"

7

Developing Applications Using the
Mobile and Social Client SDKs

This chapter briefly introduces the Mobile and Social client SDKs. This chapter
includes the following topics:

= Section 7.1, "Before you Begin"
= Section 7.2, "Introduction to Developing Mobile Services Applications"

= Section 7.3, "Introduction to Developing Internet Identity Services Applications"

7.1 Before you Begin

Before you start work on an application that will use the Oracle Access Management
Mobile and Social service, you should read the "Understanding Mobile and Social"
chapter in Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.
This Developer’s Guide assumes that you understand Mobile and Social terminology
and concepts.

In this guide the Mobile and Social client program (or client app) is the portion of code
that you build into an application to utilize authentication, authorization, and user
profile services on a remote server. Your application can be any application that uses
HTTP. It does not have to be a mobile application.

7.2 Introduction to Developing Mobile Services Applications

Two Client SDKs—iOS and Java—are provided for building Identity security features
into your applications and enabling you to use your existing Identity infrastructure for
authentication, authorization, and directory-access services. The easiest way to get
your app to interact with Mobile Services is to use one of the offered client SDKs.

Note: If you are developing an application on a platform or device
that cannot use the iOS or Java SDKs, you can write code to directly
send Mobile and Social REST calls to the Mobile and Social server.

See Chapter 12, "Sending Mobile and Social REST Calls With cURL",
which documents the Mobile and Social REST API.

If you use a Mobile Services SDK, you do not need to know the REST call syntax that
the Mobile Services client uses to communicate with the Mobile and Social server.

The following table lists the features that each Mobile Services Client SDK is capable
of.

Developing Applications Using the Mobile and Social Client SDKs 7-1

Introduction to Developing Mobile Services Applications

Table 7-1 Features and Capabilities of the Java and iOS Mobile Services Client SDKs

Feature i0os Java Notes

Build a mobile application that can ¢ See Chapter 9,

acquire Client Registration Handle, "Developing Mobile

User, and Access Tokens through a Services

Mobile and Social Server Applications with
the i0S Client SDK."

Build a desktop application that v See Chapter 8,

can acquire Client, User, and "Developing Mobile

Access Tokens through a Mobile Services

and Social Server Applications with
the Java Client SDK."

Interact with a Directory server v v See Chapter 9,

and implement User Profile "Developing Mobile

Services Services
Applications with
the i0S Client SDK."
See Chapter 8,
"Developing Mobile
Services
Applications with
the Java Client SDK."

Create a mobile single sign-on v See Chapter 9,

(SSO) app "Developing Mobile
Services
Applications with
the iOS Client SDK."

7.2.1 Building Applications With User Profile Services

This section contains notes and information about building applications with User

Profile Services. This information is not specific to any one SDK.

Case Sensitivity

In general, LDAP attribute names are not case sensitive. When communicating with

the Oracle Identity Governance Framework (IGF) APIs, however, LDAP attribute

names are case sensitive.

Special Characters

Special characters should be replaced with their hex value equivalents in the search

filter.

Note:

The WebLogic Server embedded LDAP server does not allow

special characters to be included in the user name. User names are
case sensitive and must be unique. Do not use commas, tabs, or any
other characters in the following comma-separated list:

<> 4, |,& 2, (), {1}

7-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Introduction to Developing Internet Identity Services Applications

7.3 Introduction to Developing Internet Identity Services Applications

Developers who maintain Java-compliant Web applications can add Internet Identity
Services functionality to their Web offering using the Mobile and Social Internet
Identity Services SDK. This SDK is available for Java-powered Web applications only.

For information about how to use the SDK to integrate Internet Identity Services with
a Java-powered Web application, see Chapter 10, "Developing Applications Using the
Internet Identity Services Client SDK."

This Developer’s Guide also includes information about how to add additional
OpenlID and OAuth Service Providers by implementing a Java interface. For
information, see Section 11.2, "Create a new Identity Service Provider for Internet
Identity Services".

Developing Applications Using the Mobile and Social Client SDKs 7-3

Introduction to Developing Internet Identity Services Applications

7-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

8

Developing Mobile Services Applications
with the Java Client SDK

This chapter describes how to use the Java Client SDK to build desktop applications.
The Java Client SDK does not provide support for building applications on mobile
devices. This chapter includes the following topics:

s Section 8.1, "Overview"

= Section 8.2, "Invoking Authentication Services With the Java Client SDK"
= Section 8.3, "Invoking User Profile Services with the Java Client SDK"

= Section 8.4, "Invoking Authorization Services With the Java Client SDK"

8.1 Overview

The Mobile and Social Java Client SDK for Mobile Services is included in the Oracle
Access Management distribution package and can also be downloaded from the
Oracle Technical Network (OTN) website.

In addition to this Developer’s Guide, API documentation generated by the Javadoc tool
is available. Refer to the available API documentation for descriptions of API classes,
interfaces, constructors, methods, and fields. This documentation is provided as
HTML in the SDK, and can also be downloaded from the Oracle Access Management
product library in PDF and HTML formats as the Oracle Fusion Middleware Java API
Reference for Mobile and Social.

8.2 Invoking Authentication Services With the Java Client SDK

This section provides sample code that illustrates how to request a Client Token, a
User Token, and an Access Token.

A token contains attributes related to the item, as well as encrypted information that
establishes the authority, validity, or identity of the token bearer. A Client Token
contains credential information, a User Token encapsulate the Client Token, and an
Access Token contains the security information needed to access a protected resource.

The sample code in this section supports the "JWTAuthentication" (JSON Web Token
Authentication) service type. Refer to "Configuring Mobile Services" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management for information about
configuring a service provider.

The code samples in this section are organized into the following categories:

» Getting Started

Developing Mobile Services Applications with the Java Client SDK 8-1

Invoking Authentication Services With the Java Client SDK

n Create a Client Token

n Create a User Token

m Create an Access Token

= Validate a Client Token

= Validate a User Token

s Perform a User Lookup Using the User Token
» Delete the Client Token

8.2.1 Getting Started
Import the following Java client SDK classes from the oic_clientsdk.jar file:

import oracle.security.idaas.rest.jaxrs.client.sdk.ClientSDKConfig;

import oracle.security.idaas.rest.jaxrs.client.sdk.Headers;

import oracle.security.idaas.rest.jaxrs.client.sdk.HeadersDefaultImpl;

import oracle.security.idaas.rest.jaxrs.client.sdk.0OICClientException;

import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.AuthenticationClient;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.AuthenticationResult;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenCreateRequest;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenCreateRequestImpl;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenDeleteRequest;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenDeleteRequestImpl;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenExchangeRequest;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenExchangeRequestImpl;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenReadRequest;
import oracle.security.idaas.rest.jaxrs.client.sdk.authentication.TokenReadRequestImpl;

Initialize the ClientSDKConfig object, then define the endpoints for various actions
using the service provider jwtauthentication. Then initialize the
AuthenticationClient object.

AuthenticationClientSDKConfig cc = new AuthenticationClientSDKConfig();
cc.setRegisterationServiceURI ("http://hostcomputer.example.com:18001/
oic_rest/rest/jwtauthentication/register");

cc.setAuthenticationServiceURI ("http://hostcomputer.example.com:18001/
oic_rest/rest/jwtauthentication/authenticate");

cc.setAccessTokenServiceURI ("http://hostcomputer.example.com:18001/
oic_rest/rest/jwtauthentication/access");

cc.setTokenInfoServiceURI ("http://hostcomputer.example.com:18001/
oic_rest/rest/jwtauthentication/tokens/info");

AuthenticationClient tc = new AuthenticationClient (cc);

8.2.2 Create a Client Token

Define the required parameters for the Client Token request and then request to create
the token. Save the result of the token request in a variable named savedClientToken:

String subjectType = "USERCREDENTIAL";

String uname = "profileidl";

String password = "secretl2";

String tokenTypeToCreate = "CLIENTTOKEN";

TokenCreateRequest tcrd = new TokenCreateRequestImpl (subjectType, uname, password,
tokenTypeToCreate) ;

8-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking Authentication Services With the Java Client SDK

Headers headers = new HeadersDefaultImpl();
AuthenticationResult savedClientToken = tc.createToken(tcrd, headers);

8.2.3 Create a User Token

Define the required parameters for the User Token request and request to create the
token. Add the Client Token from the previous step to the REST authorization header
and save the result of the User Token request in a variable named savedUserToken:

String subjectType = "USERCREDENTIAL";

String uname = "sean";

String password = "secretl2";

String tokenTypeToCreate = "USERTOKEN";

TokenCreateRequest tcrd = new TokenCreateRequestImpl (subjectType, uname, password,
tokenTypeToCreate) ;

Headers headers = new HeadersDefaultImpl();

//Value expects certain format including type...

String tokenHeaderValue = "TOKEN" + " " + savedClientToken.getValue();
headers.setIdaasRestAuthZHeader (tokenHeaderValue) ;
AuthenticationResult savedUserToken = tc.createToken(tcrd, headers);

8.2.4 Create an Access Token

Define the required parameters for the Access Token request and request to create the
token. Save the result of the token request in a variable named savedAccessToken.

String resource = "http:myserver.com:8080/index.html";

String context = "QaZdhh77randomstuff";

String tokenSubjectValue = savedClientToken.getValue();

String credentialSubjectType = "TOKEN";

String newTokenTypeToCreate = "ACCESSTOKEN";

TokenExchangeRequest tcberd = new TokenExchangeRequestImpl (credentialSubjectType,
tokenSubjectValue, resource, context, newTokenTypeToCreate);
AuthenticationResult savedAccessToken = tc.createToken (tcberd, headers);

8.2.5 Validate a Client Token

String tokenValueToVerify = savedClientToken.getValue();
String tokenSubjectTypeToVerify = "TOKEN";

headers = new HeadersDefaultImpl () ;
headers.setIdaasRestAuthZHeader ("TOKEN " + tokenValueToVerify);

TokenReadRequest tokenToRead = new TokenReadRequestImpl () ;
tokenToRead.setSubjectValue (tokenvValueToVerify) ;
tokenToRead. setSubjectType (tokenSubjectTypeToVerify) ;

AuthenticationResult retrievedToken = tc.readToken (tokenToRead, headers);

System.out.println("Token returned from readToken() =" + retrievedToken.getValue());
if (null != savedClientToken && null != retrievedToken) ({
System.out.println("Does value in savedClientToken == retrievedToken?" +

savedClientToken.getValue() .equals (retrievedToken.getValue()));

Developing Mobile Services Applications with the Java Client SDK 8-3

Invoking User Profile Services with the Java Client SDK

8.2.6 Validate a User Token

Headers headers = new HeadersDefaultImpl();
headers.setIdaasRestAuthZHeader ("TOKEN " + savedClientToken.getValue());

TokenReadRequest tokenToRead = new TokenReadRequestImpl () ;

tokenToRead. setSubjectValue (savedUserToken.getValue()) ;
tokenToRead.setSubjectType ("TOKEN") ;

AuthenticationResult retrievedToken = tc.readToken (tokenToRead, headers);

System.out.println("Token returned from readToken() =" + retrievedToken.getValue());
if (null != savedUserToken && null != retrievedToken) {
System.out.println("Does value in savedUserToken == retrievedToken?" +

savedUserToken.getValue() .equals (retrievedToken.getValue()));

8.2.7 Perform a User Lookup Using the User Token

In this step, User is a protected resource that is protected by the authentication
provider.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

final String SEARCH_PAGE_POSITION_QUERY_ PARAM NAME = "pagePos";
final String SEARCH_PAGE_SIZE_QUERY_PARAM_NAME = "pageSize";
String pageSizeValue = "1"; //Just get one user for this test.
String pageSizePosition = "0";

//Now do a search and fetch first page o results.

Map<String, String> queryParameters = new HashMap<String, String>();
queryParameters.put (SEARCH_PAGE_SIZE_QUERY_PARAM NAME, pageSizeValue);
queryParameters.put (SEARCH_PAGE_POSITION_QUERY_PARAM_NAME, pageSizePosition);

// Set Header to include the User Token for authetication.
Headers headers = new HeadersDefaultImpl () ;
headers.setAuthZHeader (savedUserToken) ;

//Perform search operation.
JSONCollection searchResults = pc.searchUsers (queryParameters, headers);

8.2.8 Delete the Client Token

String deleteSubjectValue = savedClientToken.getValue(); //use first token value
String deleteTokenType = "TOKEN";

TokenDeleteRequest tokenToDelete = new TokenDeleteRequestImpl();
tokenToDelete.setSubjectValue (deleteSubjectValue) ;

tokenToDelete.setTokenType (deleteTokenType) ;

boolean result = false;

result = tc.deleteToken (tokenToDelete, headers);

8.3 Invoking User Profile Services with the Java Client SDK

Before working with the code samples in this section, see "Building Applications With
User Profile Services" for notes and information that are not specific to this SDK.

The code samples in this section are organized into the following categories:

= Working with People

8-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

= Working With Groups
= Working With Organizations
= Searching With Paging Support

8.3.1 Working with People

The following code samples demonstrate how to interact with User records located in
a Directory store that User Profile Services can access and update. This section covers

the following basic scenarios:
s Getting set up

s Creating a User

= Reading a User

= Updating a User

s Deleting a User

= Searching for a User

= Retrieving User Attributes and Validating the Results

8.3.1.1 Getting set up

First import the following Java classes from the oic_clientsdk. jar file, then declare

the "people" Service URI global variable.

import oracle.security.idaas.rest.jaxrs.client.sdk.ClientSDKConfig;

import oracle.security.idaas.rest.jaxrs.client.sdk.Headers;

import oracle.security.idaas.rest.jaxrs.client.sdk.HeadersDefaultImpl;

import oracle.security.idaas.rest.jaxrs.client.sdk.0ICClientException;

import oracle.security.idaas.rest.jaxrs.client.sdk.userprofile.JSONCollection;
import oracle.security.idaas.rest.jaxrs.client.sdk.userprofile.PeopleClient;

private static String serviceURI = "http://hostcomputer.example.com:18001/0ic_
rest/rest/userprofile/people";

8.3.1.2 Creating a User

The following sample creates a User record with uid peopletestuser123.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

//Just generate some fake user info.
String uid = "peopletestuserl23";
String userpassword = "secretl23";
String sn = uid;

String cn = uid;

String mail = uid + "@example.com";

//Now put these values into the resourceAttrs map, and pass to helper.
Map<String, Object> resourceAttrs = new HashMap<String, Object>();
resourceAttrs.put ("uid", uid);

resourceAttrs.put ("password", userpassword) ;

resourceAttrs.put ("lastname", sn);

resourceAttrs.put ("commonname", cn);

resourceAttrs.put ("mail", mail);

List<String> phoneNums = new ArrayList<String>();

phoneNums.add ("408-123-5555") ;

Developing Mobile Services Applications with the Java Client SDK 8-5

Invoking User Profile Services with the Java Client SDK

phoneNums.add ("408-123-9999") ;
resourceAttrs.put ("telephone", phoneNums) ;
String personJson = pc.createUser (resourceAttrs, new HeadersDefaultImpl());

8.3.1.3 Reading a User

The following sample retrieves the User record with uid peopletestuser123.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

String uidForExistingUser = "peopletestuserl23";

//now GET that user just to check

Map<String, String> queryParameters = new HashMap<String, String>();//none yet

String existingUser = pc.readUser (uidForExistingUser, queryParameters, new HeadersDefaultImpl());
boolean found = false;

JSONObject jo = new JSONObject (existingUser) ;

String s = jo.getString("uid");

found = s.equalsIgnoreCase(uid);

8.3.1.4 Updating a User
The following sample updates the User record with uid peopletestuser123.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

//Just generate some fake user info.
final String CN_VALUE = "UPDATED CN";

String uidForExistingUser = "peopletestuserl23"; //From class-defined uid.

//now make some attributes with new values to update

Map<String, Object> attrsToUpdate = new HashMap<String, Object>();

attrsToUpdate.put ("commonname", CN_VALUE);

String result = pc.updateUser (uidForExistingUser, attrsToUpdate,new HeadersDefaultImpl());

8.3.1.5 Deleting a User
The following sample deletes the User record with uid peopletestuserl123.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

boolean deleteResult = pc.deleteUser ("peopletestuserl23", new HeadersDefaultImpl());

8.3.1.6 Searching for a User
The following sample searches for the User record with uid peopletestuser123.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI) ;
PeopleClient pc = new PeopleClient (cc);

//now do a search on uid attribute

Map<String, String> queryParameters = new HashMap<String, String>();
String queryValue = "peopletestuser"+ "*";

queryParameters.put ("searchparam.uid", queryValue);

//Set query parameters and empty headers.
JSONCollection searchResult = pc.searchUsers (queryParameters, new HeadersDefaultImpl());

//Get raw JSON array value in "elements" attribute.

8-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

String elementJSONString = searchResult.getJsonArrayElements();
JSONArray ja = null;
ja = new JSONArray (elementJSONString) ;

//Now try to match the result to the expected User with uid.
JSONObject elem = null;
boolean found = false;
for(int i1=0; i<ja.length() && found==false; i++) {
elem = ja.getJSONObject(i); //Get item from array
String u = elem.getString("uid");

//Check if attr is present AND matches some value.
if (u.equalsIgnoreCase ("peopletestuserl23")) {
found = true;

8.3.1.7 Retrieving User Attributes and Validating the Results

The following sample retrieves the user attribute commonname and checks that the
attribute description is not present.

final String ATTRIBUTES_TO_FETCH_QUERY_ PARAM NAME = "attrsToFetch";
String attributeToFetchName = "commonname"; //fetch this attribute
String attributeShouldNotBePresent = "description";

ClientSDKConfig cc = new ClientSDKConfig(serviceURI);

PeopleClient pc = new PeopleClient(cc);

//Now GET that User just to check.
Map<String, String> queryParameters = new HashMap<String, String>();
queryParameters.put (ATTRIBUTES_TO_FETCH_QUERY_ PARAM NAME, attributeToFetchName);
String existingUser = pc.readUser ("peopletestuserl23", queryParameters, new HeadersDefaultImpl());
boolean found = false;
try {

JSONObject jo = new JSONObject (existingUser) ;

//Throws exception if attribute not present

String s = jo.getString(attributeToFetchName) ;

found = true;
} catch (JSONException je) {

found = false;

//Now verify that a certain attribute is NOT present.
found = false;
try {

JSONObject jo = new JSONObject (existingUser) ;

//throws exception if attribute not present
for(Iterator it = jo.keys(); it.hasNext() && found==false;) {
String key = (String) it.next();
if (key.equalsIgnoreCase (attributeShouldNotBePresent)) {
found = true; //Bad if present because it should not be.

}
} catch (JSONException je) {}

Developing Mobile Services Applications with the Java Client SDK 8-7

Invoking User Profile Services with the Java Client SDK

8.3.2 Working With Groups

A group is a set of Users.

This section presents code samples that cover the following basic scenarios:
s Getting set up

s Creating a Group

= Reading a Group

= Updating a Group

s Deleting a Group

= Searching a Group

s Searching Groups With Paging Support

= Adding a User to a Group

s Getting Group Membership Info

s Searching for a Member Within a Group

= Removing a Member From a Group

= Assigning Group Ownership

s Getting Group Ownership Info

= Searching for the Owner of a Group

= Removing a Group Owner

= Adding a Group (or a User) to a Group Using addMemberOf
s Getting the Membership of a Group Using getMemberOf

s Searching a Group Using searchMemberOf

= Removing a Group (or a User) from a Group Using deleteMemberOf
= Assigning Group Ownership Using addOwnerOf

s Getting Group Ownership Info Using getOwnerOf

= Searching for the Owner of a Group Using searchOwnerOf

8.3.2.1 Getting set up

First import the following Java classes, then declare the "groups" Service URI global
variable.

import oracle.security.idaas.rest.jaxrs.client.sdk.ClientSDKConfig;

import oracle.security.idaas.rest.jaxrs.client.sdk.HeadersDefaultImpl;

import oracle.security.idaas.rest.jaxrs.client.sdk.0ICClientException;

import oracle.security.idaas.rest.jaxrs.client.sdk.userprofile.GroupsClient;
import oracle.security.idaas.rest.jaxrs.client.sdk.userprofile.JSONCollection;

private static GroupsClient gc null;
private static PeopleClient pc = null;

private static String roleServiceURI = 'http://hostcomputer.example.com:18001/0ic_rest/
rest/userprofile/groups";

private static String peopleServiceURI = "http://hostcomputer.example.com:18001/0oic_rest/
rest/userprofile/people";

8-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

Map<String, String> accessURIMap = Util.createAccessURIMap ("manager", "reports", "memberOf",
"members", "groupMemberOf", "groupMembers", "ownerOf", "personOwner", "groupOwner",
"groupOwnerOf") ;

Map<String, String> entityURIMap = Util.createEntityURIMap ("report-uri", "manager-uri",
"person-uri", "group-uri", "member-uri", "group-uri", "owner-uri", "group-uri", "group-uri"
"owner-uri") ;

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(roleServiceURI);
cc.setAccessURIMap (accessURIMap) ;

cc.setEntityURIMap (entityURIMap) ;

gc = new GroupsClient(cc);

UserProfileClientSDKConfig cc2 = new UserProfileClientSDKConfig(peopleServiceURI) ;
cc2.setAccessURIMap (accessURIMap) ;

cc2.setEntityURIMap (entityURIMap) ;

pc = new PeopleClient(cc2);

8.3.2.2 Creating a Group

Map<String, Object> resourceAttrs = new HashMap<String, Object>();
resourceAttrs.put ("commonname", "testGroup");

resourceAttrs.put ("description", "testGroupDescription");

String creategroup = gc.createGroup (resourceAttrs, new HeadersDefaultImpl());

8.3.2.3 Reading a Group

String readgroup = gc.readGroup ("testGroup", new HashMap<String, String>(), new
HeadersDefaultImpl());

8.3.2.4 Updating a Group

Map<String, Object> resourceAttrs2 = new HashMap<String, Object>();
resourceAttrs2.put ("description", "new description");
String udpatedgroup = gc.updateGroup ("testGroup", resourceAttrs2, new HeadersDefaultImpl());

8.3.2.5 Deleting a Group

boolean deletedgroup = gc.deleteGroup ("testGroup", new HeadersDefaultImpl());

8.3.2.6 Searching a Group

//search with searchOperator = OR, commonname and description
Map<String, String> queryParams = new HashMap<String, String>();
String commonname = "testGroup" + 1;

String description = "testGroup" + "Description";
queryParams.put ("searchparam.commonname", commonname) ;
queryParams.put ("searchparam.description", description);
queryParams.put ("searchFilter", "SimpleOR") ;

JSONCollection searchResult = gc.searchGroups (queryParams, new HeadersDefaultImpl());

//get raw JSON array value in "elements" attribute

Developing Mobile Services Applications with the Java Client SDK 8-9

Invoking User Profile Services with the Java Client SDK

String elementJSONString = searchResult.getJsonArrayElements();
JSONArray ja = new JSONArray (elementJSONString) ;

8.3.2.7 Searching Groups With Paging Support

The following sample searches for a group and returns the results one page at a time.

final String SEARCH_PAGE_POSITION_QUERY_ PARAM NAME = "pagePos";
final String SEARCH_PAGE_SIZE_QUERY_PARAM_NAME = "pageSize";
String pageSizeValue = "1"; //just get one group for this test
String pageSizePosition = "0";

//now do a search and fetch first page o results

Map<String, String> queryParams = new HashMap<String, String>();

queryParams.put (SEARCH_PAGE_SIZE_QUERY_ PARAM NAME, pageSizeValue);

queryParams.put (SEARCH_PAGE_POSITION_QUERY_PARAM NAME, pageSizePosition);
JSONCollection searchResults = gc.searchGroups (queryParams, new HeadersDefaultImpl());

//get raw JSON array value in "elements" attribute

String elementJSONString = searchResults.getJsonArrayElements () ;
JSONArray ja = null;

ja = new JSONArray (elementJSONString) ;

boolean justOneFound = false;

//the search returns a set with just one user
if (ja.length() == Integer.parselnt (pageSizeValue)) {
justOneFound = true;

8.3.2.8 Adding a User to a Group

The following sample uses the addPersonMember method. Also see Adding a Group (or
a User) to a Group Using addMemberOf.

String resultRoleMembership = gc.addPersonMember ("testGroup", "testuserl23", new
HeadersDefaultImpl());

8.3.2.9 Getting Group Membership Info

The following sample uses the getPersonMember method. Also see Getting the
Membership of a Group Using getMemberOf.

Map<String, String> queryParameters = new HashMap<String, String>(); //none yet
String membershipId ="testuserl23";

String result = gc.getPersonMember ("testGroup",membershipId, queryParameters, new
HeadersDefaultImpl());

8.3.2.10 Searching for a Member Within a Group

The following sample uses the searchGroupMembers method. Also see Searching a
Group Using searchMemberOf.

String queryFilter = " (uid=" +"*)";
Map<String, String> queryParams = new HashMap<String, String>();
queryParams.put ("nativequery", queryFilter);

//need to use membership uri such as ...doctors/members

JSONCollection searchResults = gc.searchPersonMembers ("testGroup", queryParams, new
HeadersDefaultImpl());

8-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

//get raw JSON array value in "elements" attribute

String elementJSONString = searchResults.getJsonArrayElements () ;
JSONArray ja = null;

ja = new JSONArray (elementJSONString) ;

//Sample of how to get the members’ URIs. A client could call GET on each of these
// persons’ URIs using the person client API to get details about each member.
Set<String> userUriSet = new HashSet<String>();
final String PERSON_URI_FIELD _NAME = "person-uri";
for (int i=0; i<ja.length(); i++) {

JSONObject jo = ja.getJSONObject (i) ;

//Get the URI field of this user.

String uri = jo.getString (PERSON_URI_FIELD_NAME) ;

if (uri !'= null && 'uri.isEmpty()) {
userUriSet.add (uri) ;

// Get Group members in the group.
searchResults = gc.searchGroupMembers ("testGroup", queryParams, new HeadersDefaultImpl());

8.3.2.11 Removing a Member From a Group

The following sample uses the deletePersonMember method. Also see Removing a
Group (or a User) from a Group Using deleteMemberOf.

boolean result = gc.deletePersonMember ("testGroup", "testuserl23", new HeadersDefaultImpl());

8.3.2.12 Assigning Group Ownership

The following sample demonstrates how to assign ownership of a group to a user or a

group.
// Add user testuserl23 to group testGroup as group owner.
String resultRoleOwnership = gc.addPersonOwner ("testGroup", "testuserl23",

new HeadersDefaultImpl());

// Add group testSubGroup to group testGroup as group owner.
String resultRoleOwnership2 = gc.addGroupOwner ("testGroup", "testSubGroup",
new HeadersDefaultImpl());

8.3.2.13 Getting Group Ownership Info

Map<String, String> queryParameters = new HashMap<String, String>();//none yet
String ownershipId="testuserl23";

String result = gc.getPersonOwner ("testGroup", ownershipId, queryParameters,
new HeadersDefaultImpl());

ownershipId ="testSubGroup";

result = gc.getGroupOwner ("testGroup", ownershipId, queryParameters,

new HeadersDefaultImpl());

Developing Mobile Services Applications with the Java Client SDK 8-11

Invoking User Profile Services with the Java Client SDK

8.3.2.14 Searching for the Owner of a Group

String queryFilter = " (uid=" +"*)";
Map<String, String> queryParams = new HashMap<String, String>();
queryParams.put ("nativequery", queryFilter);

// Get Person owners in the group.
JSONCollection searchResults = gc.searchPersonOwners ("testGroup", queryParams,
new HeadersDefaultImpl());

// Get raw JSON array value in the "elements" attribute.

String elementJSONString = searchResults.getJsonArrayElements();
JSONArray ja = null;

ja = new JSONArray (elementJSONString) ;

// Sample of how to get the members’ URIs. A client could call GET on each of these
// person URIs using the person client API and get details on each member.
Set<String> userUriSet = new HashSet<String>();
final String OWNER_URI_FIELD_NAME = "owner-uri";
for(int i=0; i<ja.length(); i++) {

JSONObject jo = ja.getJSONObject (i) ;

//Get URI field of this user.

String uri = jo.getString (OWNER_URI_FIELD_NAME) ;

if (uri != null && !uri.isEmpty()) {
userUriSet.add (uri) ;

// Get Group owners in the group.
searchResults = gc.searchGroupOwners ("testGroup", queryParams, new HeadersDefaultImpl());

8.3.2.15 Removing a Group Owner

boolean result = gc.deletePersonOwner ("testGroup", "testuserl23", new HeadersDefaultImpl());
boolean result2= gc.deleteGroupOwner ("testGroup", "testSubGroup", new HeadersDefaultImpl());

8.3.2.16 Adding a Group (or a User) to a Group Using addMemberOf
The following sample demonstrates how to use the addMemberOf method to make a
group a member of another group, or how to make a user a member of a group.

// Add group "testSubGroup" to be a member of group "testGroup"
String resultRoleMembership2= gc.addMemberOf ("testGroup", "testSubGroup",
new HeadersDefaultImpl());

// Add user "testuserl23" to be a member of group "testGroup"
String resultRoleMembership = pc.addMemberOf ("testuserl23", "testGroup",
new HeadersDefaultImpl());

8.3.2.17 Getting the Membership of a Group Using getMemberOf

The following sample demonstrates how to use the getMemberOf method to get
relationship data about a specified group.

// Get relationship data where user "testuserl23" is a member of group "testGroup"
String resultRoleMembership = pc.getMemberOf ("testuserl23", "testGroup", new HeadersDefaultImpl());

8-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

// Get relationship data where group "testsubGroup" is a member of group "testGroup"
String resultRoleMembership2= gc.getMemberOf ("testGroup", "testSubGroup",
new HeadersDefaultImpl());

8.3.2.18 Searching a Group Using searchMemberOf

String queryFilter = " (uid=" +"*)";
Map<String, String> queryParams = new HashMap<String, String>();
queryParams.put ("nativequery", queryFilter);

// Search groups of which Person "testuserl23" is a member
JSONCollection searchResults = pc.searchMemberOf ("testuserl23", queryParams,
new HeadersDefaultImpl());

//Get raw JSON array value in "elements" attribute

String elementJSONString = searchResults.getJsonArrayElements();
JSONArray ja = null;

ja = new JSONArray (elementJSONString) ;

// Sample of how to get the members’ URIs. A client could call GET on each of these
// person URIs using the person client API to get details about each member.
Set<String> groupUriSet = new HashSet<String>();
final String GROUP_URI_FIELD_NAME = "group-uri";
for(int i=0; i<ja.length(); i++) {

JSONObject jo = ja.getJSONObject (i) ;

//Get URI field of this user.

String uri = jo.getString (GROUP_URI_FIELD_NAME) ;

if (uri !'= null && 'uri.isEmpty()) {
groupUriSet.add(uri);

// Search Groups of which group "testSbuGroup" is a member.
searchResults = gc.searchMemberOf ("testSubGroup", queryParams, new HeadersDefaultImpl());

8.3.2.19 Removing a Group (or a User) from a Group Using deleteMemberOf

// Delete member "testuserl23" from group "testGroup"
boolean result = pc.deleteMemberOf ("testuserl23", "testGroup", new HeadersDefaultImpl());

// Delete member "testSubGroup" from group "testGroup"
boolean result2= gc.deleteMemberOf ("testGroup", "testSubGroup", new HeadersDefaultImpl());

8.3.2.20 Assigning Group Ownership Using addOwnerOf

// Add user "testuserl23" to be an owner of group "testGroup"
String resultRoleOwnership = pc.addOwnerOf ("testuserl23", "testGroup", new HeadersDefaultImpl());

// Add group "testSubGroup" to be an owner of group "testGroup"
String resultRoleOwnership2 = gc.addOwnerOf ("testGroup", "testSubGroup", new HeadersDefaultImpl());

Developing Mobile Services Applications with the Java Client SDK 8-13

Invoking User Profile Services with the Java Client SDK

8.3.2.21 Getting Group Ownership Info Using getOwnerOf

// Get relationship data where user "testuserl23" is an owner of group "testGroup"
String resultRoleOwnership = pc.getOwnerOf ("testuserl23", "testGroup", new HeadersDefaultImpl());

// Get relationship data where group "testsubGroup" is an owner of group "testGroup"
String resultRoleOwnership2= gc.getOwnerOf ("testGroup", "testSubGroup", new HeadersDefaultImpl());

8.3.2.22 Searching for the Owner of a Group Using searchOwnerOf

String queryFilter = " (uid=" +"*)";
Map<String, String> queryParams = new HashMap<String, String>();
queryParams.put ("nativequery", queryFilter);

// Search Groups of which Person "testuserl23" is an owner.
JSONCollection searchResults = pc.searchOwnerOf ("testuserl123", queryParams,
new HeadersDefaultImpl());

// Get raw JSON array value in "elements" attribute.

String elementJSONString = searchResults.getJsonArrayElements();
JSONArray ja = null;

ja = new JSONArray (elementJSONString) ;

// Sample of how to get the members’ URIs. A client could call GET on each of these person URIs
using the person client API to get details about each member.
Set<String> groupUriSet = new HashSet<String>();
final String GROUP_URI_FIELD_NAME = "group-uri";
for(int i=0; i<ja.length(); i++) {
JSONObject jo = ja.getJSONObject (i) ;

// Get URI field of this user.
String uri = jo.getString (GROUP_URI_FIELD_NAME) ;

if (uri != null && !uri.isEmpty()) {
groupUriSet.add(uri);

// Search Groups of which group "testSbuGroup" is an owner.
searchResults = gc.searchOwnerOf ("testSubGroup", queryParams, new HeadersDefaultImpl());

8.3.2.23 Removing a Group (or a User) from a Group Using deleteOwnerOf

// Delete owner "testuserl23" from group "testGroup"
boolean result = pc.deleteOwnerOf ("testuserl123", "testGroup", new HeadersDefaultImpl());

// Delete owner "testSubGroup" from group "testGroup"
boolean result2= gc.deleteOwnerOf ("testGroup", "testSubGroup", new HeadersDefaultImpl());

8-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

8.3.3 Working With Organizations

An organization is a hierarchical group of people that usually includes a manager and
reports.

This section presents code samples that cover the following basic scenarios:
s Getting set up

s Creating Helper Utilities

s Verifying a Manager

s Verifying Direct Reports

= Retrieve All Reports Using Scope=All Feature

= Retrieve the Manager Chain Using Scope=toTop Feature

= Retrieve Report Details Using Pre-Fetch Feature

= Retrieve Manager Data using the Pre-Fetch feature

s Deleting a Report From the Manager

8.3.3.1 Getting set up

First import the following Java classes, then declare the "groups" Service URI global
variable.

import oracle.security.idaas.rest.jaxrs.client.sdk.ClientSDKConfig;

import oracle.security.idaas.rest.jaxrs.client.sdk.Headers;

import oracle.security.idaas.rest.jaxrs.client.sdk.HeadersDefaultImpl;
import oracle.security.idaas.rest.jaxrs.client.sdk.userprofile.PeopleClient;

private static String personServiceURI= "http://hostcomputer.example.com:18001/o0ic_
rest/rest/userprofile/people";

private static String peopleBaseURI = "/oic_rest/rest/userprofile/people";

8.3.3.2 Creating Helper Utilities

The three helper utilities in this section are useful when working with organization
data.

Helper Utility for Creating User Data

public static String createPersonHelper (String personServiceURI, String username, String
password,Map<String, String> optionalAttributes) ({

ClientSDKConfig cc = new ClientSDKConfig (personServiceURI);
PeopleClient pc = new PeopleClient(cc);

//Generate some fake user info.
String uid = username;

String userpassword = password;
String sn = uid;

String cn = uid;

String mail = uid + "@example.com";

try {

//now put these values into the resourceAttrs map, and pass to helper
//these java string names need to match the json field names

Developing Mobile Services Applications with the Java Client SDK 8-15

Invoking User Profile Services with the Java Client SDK

Map<String, Object> resourceAttrs = new HashMap<String, Object>();
resourceAttrs.put ("uid", uid);

resourceAttrs.put ("password", userpassword) ;

resourceAttrs.put ("lastname", sn);

resourceAttrs.put ("commonname", cn);

resourceAttrs.put ("mail", mail);

if (optionalAttributes != null && !optionalAttributes.isEmpty()) {

for (Map.Entry<String, String> me : optionalAttributes.entrySet()) {
resourceAttrs.put (me.getKey (), me.getValue());

}

}

String newUser = pc.createUser (resourceAttrs, new HeadersDefaultImpl());

Helper Utility for Establishing Manager and Reports Relationships

private static boolean assignManagerToUser (String personServiceURI, String serviceBaseURI, String
userUID, String theManagerId) ({

ClientSDKConfig cc = new ClientSDKConfig (personServiceURI);

PeopleClient pc = new PeopleClient(cc);

final String MANAGER_URI_SEGMENT_NAME = "manager";

//now make payload

final String MANAGER_URI_JSON_ATTRIBUTE NAME = "manager-uri";

final String REPORTS_URI_JSON_ATTRIBUTE_NAME = "report-uri";

Map<String, Object> resourceAttrs = new HashMap<String, Object>();

resourceAttrs = new HashMap<String, Object>();

//use base URI od people service within json values

String theManagerURIValue = serviceBaseURI + "/" + theManagerId;

resourceAttrs.put (MANAGER_URI_JSON_ATTRIBUTE_NAME, theManagerURIValue);

String theReporteeURIValue = serviceBaseURI + "/" + userUID; //user being added to list of reports
resourceAttrs.put (REPORTS_URI_JSON_ATTRIBUTE_NAME, theReporteeURIValue);

return pc.addUserToOrgChart (userUID, MANAGER_URI_SEGMENT NAME, resourceAttrs, new
HeadersDefaultImpl());
}

Data Preparation Utility
This utility creates users at different hierarchy levels within an organization.

String theUIDofManager = null;

Map<String, String> optionalAttributes = new HashMap<String, String>();
optionalAttributes.put ("manager", theUIDofManager) ;

//keep a map of created people in orgchart

Map<String, String> createdPeople= new HashMap<String, String>();

String userPassword = "secretl23";

String userId = "ceo"+ "orgcharttestuser"+ "123"; // user is CEO

String person = Util.createPersonHelper (peopleServiceURI, userId, userPassword, optionalAttributes
)i

theUIDofManager = userId; //set to previously created user

userId = "director" + "orgcharttestuer" + "123"; // user id DIRECTOR
optionalAttributes = new HashMap<String, String>();//reset for each new user

person = Util.createPersonHelper (peopleServiceURI, userId, userPassword, optionalAttributes);

//now assign this newly created user DIRECTOR's manager to be CEO

8-16 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

assignManagerToUser (peopleServiceURI, peopleBaseURI, userId, theUIDofManager);

theUIDofManager = userId; //set to previously created user

userId = "developerlll" + "orgcharttestuser" + "123"; // user is DEVELOPER111
optionalAttributes = new HashMap<String, String>();//reset for each new user

person = Util.createPersonHelper (peopleServiceURI, userId, userPassword, optionalAttributes);

//now assign this newly created user DEVELOPER111's manager to be DIRECTOR
assignManagerToUser (peopleServiceURI, peopleBaseURI, userId, theUIDofManager);

userId = "developer222"+ "orgcharttestuser"+"123"; // user is DEVELOPER222

optionalAttributes = new HashMap<String, String>();//reset for each new user

person = Util.createPersonHelper (peopleServiceURI, userId, userPassword, optionalAttributes);
//now assign this newly created user DEVELOPER222's manager to be DIRECOTR
assignManagerToUser (peopleServiceURI, peopleBaseURI, userId, theUIDofManager);

8.3.3.3 Verifying a Manager

//Set empty query parameters and empty headers.

Map<String, String> searchQueryParameters = new HashMap<String, String>();
Headers searchHeaders = new HeadersDefaultImpl();

JSONCollection resultSet = pc.searchManagers ("developer222orgcharttestuser123",
searchQueryParameters, searchHeaders) ;

//get raw JSON array value in "elements" attribute
String elementJSONString = resultSet.getJsonArrayElements();

boolean found = false;
final String MANAGER_URI_ATTRIBUTE_NAME = "manager-uri";
JSONArray ja = new JSONArray (elementJSONString) ;
for(int i=0; i< ja.length() && found==false; i++) {
JSONObject elem = ja.getJSONObject(i);//get item from array
try {
//The "manager-uri" attribute of this item in element array is
//expanded automatically so its value is a JSONObject.
JSONObject managerURIObject = elem.getJSONObject (MANAGER_URI_ATTRIBUTE_NAME) ;

//Check if attr is present AND matches some value.
if (managerURIObject.getString ("uri") .equalsIgnoreCase ("directororgcharttestuserl123")) ({
found = true;
}
} catch (JSONException je) {
//An exception is thrown if attribute is not found or is not a JSON object
//found = false;
}

//print out each user, until found

}

8.3.3.4 Verifying Direct Reports

Map<String, String> searchQueryParameters = new HashMap<String, String>();
Headers searchHeaders = new HeadersDefaultImpl();

JSONCollection resultSet = pc.searchReportees ("ceoorgcharttestuserl23",
searchQueryParameters, searchHeaders) ;

Developing Mobile Services Applications with the Java Client SDK 8-17

Invoking User Profile Services with the Java Client SDK

//Get raw JSON array value in "elements" attribute.
String elementJSONString = resultSet.getJsonArrayElements();

boolean found = false;
final String REPORTS_URI_ATTRIBUTE_NAME = "report-uri";

JSONArray ja = new JSONArray (elementJSONString) ;
for(int i=0; i< ja.length() && found==false; i++) {
JSONObject elem = ja.getJSONObject(i); //Get item from array

try {
JSONObject reportURIObject = elem.getJSONObject (REPORTS_URI_ATTRIBUTE_NAME) ;

//Check if attr is present AND matches some value.
if (reportURIObject.getString ("uri") .equalsIgnoreCase ("directororgcharttestuser123")) ({
found = true;
}
} catch (JSONException je) {
//exception is thrown if attribute is not found or is not JSON object
//found = false;
}

//Print out each user, until found.

}

8.3.3.5 Retrieve All Reports Using Scope=All Feature

The following code sample verifies all of the reports in an organization, including
indirect reports.

ClientSDKConfig cc = new ClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient (cc);

//Now test CEO orgchart by getting reports with scope=all, which should include developer.
String orgChartIdURI = "reports";

//Now do a search and fetch first page o results.

Map<String, String> queryParameters = new HashMap<String, String>();

queryParameters.put (ClientConstants.ATTRIBUTES_TO_ORG_CHART SCOPE_QUERY_ PARAM NAME, "all");
JSONCollection resultSet = pc.searchReportees ("ceoorgcharttestuserl23", queryParameters,
new HeadersDefaultImpl());

//Get raw JSON array value in "elements" attribute.
String elementJSONString = resultSet.getJsonArrayElements();
boolean found = false;
JSONArray ja = new JSONArray (elementJSONString) ;
for (int i=0; i<ja.length(); i++) {
JSONObject jo = ja.getJSONObject (i) ;
Object reportURIObj = jo.get("report-uri");
if (reportURIObj.toString().index0f("developerlllorgcharttestuserl123") != -1) {
found = true;

8.3.3.6 Retrieve the Manager Chain Using Scope=toTop Feature

The following code sample uses the toTop attribute to retrieve an array that contains
the managers in a management chain.

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI) ;

8-18 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services with the Java Client SDK

PeopleClient pc = new PeopleClient (cc);

// Now do a search and fetch the first page of results.

Map<String, String> queryParameters = new HashMap<String, String>();

queryParameters.put (ClientConstants.ATTRIBUTES_TO_ORG_CHART SCOPE_QUERY_PARAM NAME, "toTop");
JSONCollection resultSet = pc.searchManagers ("developerlllorgcharttestuser123",
queryParameters, new HeadersDefaultImpl());

// Get raw JSON array value in "elements" attribute.
String elementJSONString = resultSet.getJsonArrayElements();

8.3.3.7 Retrieve Report Details Using Pre-Fetch Feature

The following code samples retrieves manager details when the Report ID and the
Manager ID are known.

ClientSDKConfig cc = new ClientSDKConfig(serviceURI);

PeopleClient pc = new PeopleClient(cc);

final String ATTRIBUTES_TO_PREFETCH_QUERY PARAM NAME = ClientConstants.ATTRIBUTES_TO_PRFFETCH_
QUERY_PARAM NAME;

String attributeToPrefetch = "report-uri";

final String MANAGER_URI_SEGMENT_NAME = "manager";

//Now read/get new user's details.
String reporteeld = "developerlllorgcharttestuserl23";
String managerId = "directororgcharttestuserl23";

//Now GET that user just to check.
Map<String, String> queryParameters = new HashMap<String, String>();
queryParameters.put (ATTRIBUTES_TO_PREFETCH_QUERY_ PARAM NAME, attributeToPrefetch);

//Get raw JSON representation.
String existingManagerRel = pc.getManager (reporteeld, managerId, queryParameters, new
HeadersDefaultImpl());

//Now obtain manager details and retrieve the reports data.
JSONObject jo = new JSONObject (existingManagerRel) ;
Object managerAttributeValue = jo.get (attributeToPrefetch);

8.3.3.8 Retrieve Manager Data using the Pre-Fetch feature

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

final String ATTRIBUTES_TO_PREFETCH_QUERY_PARAM NAME = ClientConstants.ATTRIBUTES_TO_PRFFETCH_
QUERY_PARAM_NAME;

String attributeToPrefetchName = "manager (commonname)";

Map<String, String> queryParameters = new HashMap<String, String>();

queryParameters.put (ATTRIBUTES_TO_PREFETCH_QUERY_PARAM NAME, attributeToPrefetchName) ;

// Get the raw JSON representation of the person.
String existingUser = pc.readUser ("developerlllorgcharttestuserl23", queryParameters, new
HeadersDefaultImpl());

// Get the manager attribute, which is expanded by prefetch to include one or more
// sub-attributes, so that manager is a JSON object within the person JSON.

// Now it is a JSONObject.

JSONObject jo = new JSONObject (existingUser) ;

Developing Mobile Services Applications with the Java Client SDK 8-19

Invoking User Profile Services with the Java Client SDK

Object managerAttributeValue = (Object) jo.get("manager");
System.out.println(CLASS_NAME + "." + METHOD + ": prefetch detail="
+ managerAttributeValue);

8.3.3.9 Deleting a Report From the Manager

ClientSDKConfig cc = new ClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

String uidForExistingUser = "developerlllorgcharttestuserl23";

String theManagerId = "directororgcharttestuserl23";

final String REPORTS_URI_SEGMENT_NAME = "reports";

Map<String, String> queryParameters = new HashMap<String, String>(); //None yet.

String existingOrgChartInstanceDetails = pc.getReportee(theManagerId, uidForExistingUser,
queryParameters, new HeadersDefaultImpl());

//Now that we verified it exists, delete this membership in the reports list.
boolean deleteResult = pc.deleteOrgChartInstance (theManagerId, REPORTS_URI_SEGMENT_ NAME,

uidForExistingUser, new HeadersDefaultImpl());

//Now try to get/read that user again. This time we should not find the user.

queryParameters = new HashMap<String, String>(); //None yet.
existingOrgChartInstanceDetails = null;
try {

existingOrgChartInstanceDetails = pc.readOrgChartInstance (theManagerId, REPORTS_URI_SEGMENT_NAME,
uidForExistingUser, queryParameters, new HeadersDefaultImpl());
} catch (OICClientException ce) {

System.out.println("existingOrgChartInstanceDetails was successfully deleted so not found"

+ " on subsequent read.");

8.3.4 Searching With Paging Support

UserProfileClientSDKConfig cc = new UserProfileClientSDKConfig(serviceURI);
PeopleClient pc = new PeopleClient(cc);

final String SEARCH_PAGE_POSITION_QUERY_ PARAM NAME = "pagePos";
final String SEARCH_PAGE_SIZE_QUERY_PARAM NAME = "pageSize";
String pageSizeValue = "1"; //Just get one user for this test.
String pageSizePosition = "0";

//Now do a search and fetch first page o results.

Map<String, String> queryParameters = new HashMap<String, String>();
queryParameters.put (SEARCH_PAGE_SIZE QUERY_ PARAM _NAME, pageSizeValue);
queryParameters.put (SEARCH_PAGE_POSITION_QUERY_PARAM_NAME, pageSizePosition);

//Set query params and empty headers.
JSONCollection searchResults = pc.searchUsers (queryParameters, new HeadersDefaultImpl());

//Get raw JSON array value in "elements" attribute

String elementJSONString = searchResults.getJsonArrayElements();
JSONArray ja = null;

ja = new JSONArray (elementJSONString) ;

boolean justOneFound = false;

//The search returns a set with just one user.

if (ja.length() == Integer.parselnt (pageSizeValue)) ({
justOneFound = true;

8-20 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking Authorization Services With the Java Client SDK

8.4 Invoking Authorization Services With the Java Client SDK

This example demonstrates accessing the Authorization Service, which is protected by
the Access Manager Authentication Service.

String clientToken = null;

String userToken = null;

ClientSDKConfig cc = null;
AuthenticationClient authNClient = null;
AuthorizationClient authZClient = null;
Headers headers = new HeadersDefaultImpl () ;
headers.setContractName ("Default");

TokenCreateRequest req = null;
AuthenticationResult resultToken = null;

// Create a Client Token.
cc = new ClientSDKConfig("http://hostcomputer.example.com:18001/0ic_
rest/rest/oamauthentication/authenticate");

authNClient = new AuthenticationClient(cc);

req = new TokenCreateRequestImpl ("USERCREDENTIAL", "profileidl", "secretl2",
"CLIENTTOKEN") ;

headers = new HeadersDefaultImpl () ;

headers.setContractName ("Default");

resultToken = authNClient.createToken(req, headers);

clientToken = resultToken.getValue();

System.out.println("ClientToken from REST Service : " + clientToken);

// Create a User Token.

req = new TokenCreateRequestImpl ("USERCREDENTIAL", "jane", "secretl2",
"USERTOKEN") ;

headers = new HeadersDefaultImpl();
headers.setIdaasRestAuthZHeader ("TOKEN " + clientToken);
headers.setContractName ("Default");

resultToken = authNClient.createToken(req, headers);
userToken = resultToken.getValue();
System.out.println("UserToken from REST Service : " + userToken);

// Access the Authorization Service using the User Token.

cc = new ClientSDKConfig("http://hostcomputer.example.com:18001/idaas_
rest/rest/oamauthorization/authorization") ;

authZClient = new AuthorizationClient (cc);

headers = new HeadersDefaultImpl () ;
headers.setAuthZHeader (userToken) ;
headers.setContractName ("Default");

Map<String, String> gp = new HashMap<String, String>();
gp.put ("resource", "http://hostcomputer.example.com:18001/index.html");

gp.put ("action", "get");

gp.put (ClientConstants.IDAAS_REST SUBJECT TYPE_QUERY PARAM NAME, "TOKEN");
gp.put (ClientConstants.IDAAS_REST_SUBJECT VALUE_QUERY_ PARAM NAME, userToken);
AuthorizationDecision ad = authZClient.getAuthzDecision (gp, headers);
System.out.println("AuthZ Decision from REST Service : " + ad.getAllowed());

Developing Mobile Services Applications with the Java Client SDK 8-21

Invoking Authorization Services With the Java Client SDK

8-22 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

9

Developing Mobile Services Applications
with the iOS Client SDK

This chapter describes how to develop Mobile Services applications with the iOS
Client SDK. This SDK serves as a Security Layer for developing secure mobile
applications on iOS. Every native iOS app must implement this SDK to use Mobile and
Social. This chapter provides the following sections:

= Section 9.1, "Getting Started With the iOS Client SDK"

= Section 9.2, "Invoking Authentication Services With the iOS Client SDK"

= Section 9.3, "Invoking HTTP Basic Authentication With the iOS Client SDK"
= Section 9.4, "Invoking User Profile Services With the iOS Client SDK"

= Section 9.5, "Using the Credential Store Service (KeyChain)"

= Section 9.6, "Invoking the Mobile Single Sign-on Agent App"

= Section 9.7, "Invoking Webgate Protected Resources"

= Section 9.8, "Using the iOS SDK to Create a Custom Mobile Single Sign-on Agent
App”

9.1 Getting Started With the iOS Client SDK

This SDK (camms_sdk_for_ios.zip) is included in the Oracle Access Management
distribution package and can also be downloaded from the Oracle Technical Network
(OTN) website.

In addition to this Developer’s Guide, API documentation in HTML format is provided
in the SDK. Refer to the API documentation for descriptions of API classes, interfaces,
constructors, methods, and fields.

The IDM Mobile iOS Client SDK is provided as a static library. It contains three
modules:

= Authentication Module - Processes authentication requests on behalf of users,
devices, and applications.

= User Role Module - Provides User Profile Services that allow users and
applications to get User and Group details from a configured Identity store.

= Secure Storage Module - Provides APIs to store and retrieve sensitive data using
the iOS Keychain feature.

Developing Mobile Services Applications with the iOS Client SDK 9-1

Invoking Authentication Services With the iOS Client SDK

Note: You must have the Xcode IDE (integrated development
environment) installed on an Intel-based Mac running Mac OS X
Snow Leopard or later to develop applications for iOS mobile devices.

For more information, see the iOS Dev Center website:

https://developer.apple.com/devcenter/ios/index.action

9.1.1 Getting Started Using the iOS Client SDK With XCode

Follow these steps to set up your XCode environment.

1. Add 1ibIDMMobileSDK.a to XCode by following these steps:

a.

d.

e.

Download 1ibIDMMobileSDK.a to your development environment and add it
to a project folder.

Launch XCode and open your project.

Click your project to select it, then click your target and click the Build Phases
tab.

Expand Link Binary With Libraries and click the + button.

Select Other and choose 1ibIDMMobileSDK.a.

2. Download and unzip the PublicHeaders.zip and PublicResources. zip files.

The PublicHeaders.zip archive contains the IDM Mobile SDK header files

The PublicResources. zip archive contains the IDM Mobile SDK resource bundle.

3. Choose Add Files to Your-Project-Name to add the contents of
PublicHeaders.zip and PublicResources.zip to your project.

You can now start coding using the IDM Mobile iOS Client SDK.

Important: Before linking your project, add as a single line both the
-0bjC and -all_load linker flags to your project. Without these flags
your application will crash with a "selector not recognized" runtime
exception.

Because 1ibIDMMobileSDK extends pre-existing classes with
categories, the linker does not know how to associate the object code
of the core class implementation with the category implementation.
This prevents objects created in the resulting application from
responding to a selector that is defined in the category.

For background information and steps that describe how to add flags
to your project, see the following page:

http://developer.apple.com/library/mac/#ga/qald90/

9.2 Invoking Authentication Services With the iOS Client SDK

This section provides sample code that demonstrates how to authenticate with the
Mobile and Social server.

The sample code in this section supports the "JWTAuthentication" JSON Web Token
Authentication) service type. Refer to "Configuring Mobile Services" in Oracle Fusion

9-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking Authentication Services With the iOS Client SDK

Middleware Administrator’s Guide for Oracle Access Management for information about
configuring a service provider.

Step 1: Initialize Required Objects and Declare the Endpoints

Create the OMMobileSecurityService class as follows and initialize it by providing the
required Mobile and Social server details:

OMMobileSecurityService *mss = [[OMMoblieSecurityService alloc] initWithURL: mobileSocialServerURL]

[mss setup];

appName: applicationName
domain: domainName
delegate: self];

The initwithURL argument is the URL (including protocol, host name, and port
number) required to reach the Mobile and Social server. Only the HTTP and HTTPS
protocols are supported.

The appName argument is a unique identifier that identifies the application. This String
value must match the application "Name" value located in the Application Profile
section of the Mobile and Social server administration console. For more information,
see "Editing or Creating Application Profiles" in Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

The domain argument is the name of the Internet domain within which the Mobile and
Social server is located.

The delegate argument should be set to self.

Next, call the OMMobileSecurityService setup method.

The setup method gets the configured security policies and the application profile
from the Mobile and Social server. This method also gets a list of the service endpoints
(the URLSs) that are required for connecting to the authentication, authorization, and
user profile services on the Mobile and Social server.

The setup call is an asynchronous call and the iOS Client SDK calls the following
method for the specified delegate:

didReceiveApplicationProfile: (NSDictionary *)applicationProfile error: (NSError
*)error

This method returns an OMRegistrationService object that handles the client
registration.

Note: The thread that calls [mss setup] must have a run loop
running. If you invoke [mss setup] from a thread other than the main
thread, ensure that a run loop is running in default mode.

For more information, see the iOS Developer Library Threading
Programming Guide:

http://developer.apple.com/library/ios/#documentation/Cocoa/
Conceptual /Multithreading/RunLoopManagement /RunLoopManagemen
t.html

Step 2: Complete the Authentication Process

The OracleMobileSecurityService object maintains all of the details regarding your
current session. Upon receiving the application profile and the URLs needed to
connect to the services, start the authentication process. Call the following methods.

Developing Mobile Services Applications with the iOS Client SDK 9-3

Invoking Authentication Services With the iOS Client SDK

NSError *error = nil;

//startAuthenticationProcess API triggers the authentication process.
error = [self.mss startAuthenticationProcess:nil
presenterViewController:loginController];

if (error)

{
UIAlertView* alertView = [[UIAlertView alloc] initWithTitle:@"Authentication process failed"

message: [error localizedDescription]
delegate:self
cancelButtonTitle:@"OK"
otherButtonTitles:nil];

[alertView show];

[alertView releasel];

return;

The last line starts the authentication process and the iOS Client SDK interacts with the
Mobile and Social server to complete the authentication process. If the user is already
authenticated and the authentication token is still valid, the Mobile and Social server
simply returns the cached token. Otherwise, the server prompts the user to provide
login credentials. If the Mobile and Social server is configured to use Knowledge
Based Authentication, the iOS Client SDK automatically handles the details.

Next, the iOS Client SDK calls your delegate’s didFinishAuthentication: error:
method. The method returns OMAuthenticationContext, which has your token details.

Use the OMMobileSecurityService object’s [mobileSecurityService
authenticationContext] method to retrieve OMAuthenticatonContext at any time.
For details about OMAuthenticationContext, see the API documentation.

- (void)didFinishAuthentication: (OMAuthenticationContext *)context error: (NSError *)error

if (context == nil || error != nil)
NSString *msg = [[NSString alloc] initWithFormat:@"$%@-%d: %@",
[error domain],
[error code], [error localizedDescription]];
UIAlertView* alertView = [[UIAlertView alloc] initWithTitle:@"Err" message:msg delegate:self

cancelButtonTitle:@"OK" otherButtonTitles:nil];
[alertView show];
[msg release];
[alertView release];
return;

// If successful, proceed with your remaining actions.
// This example gets the authenticated user’s attributes
// and presents it using User Profile Viewer.

OMUserRoleProfileService* ups = [mss userRoleProfileService];
OMUserManager *um = [ups getuserManager];
OMUser *user = [um searchUser:context.userName attributes:nil shouldPreFetch:NO error:&error];

self.user = user;
[detailPaneController showProfileButton];

At this point your application can use the token obtained from the Mobile and Social
server to make additional web service calls.

9-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking HTTP Basic Authentication With the iOS Client SDK

Note: The iOS Client SDK does not consume a significant amount of
memory. The SDK stores registration handles, authentication handles,
application profiles, and security profiles. If iOS sends a low memory
warning notification, the SDK persists its cache and releases its
memory. When required, the SDK can read persisted data either from
a file or from KeyChainItem (covered later), as appropriate.

9.3 Invoking HTTP Basic Authentication With the iOS Client SDK

This section provides sample code that show to implement HTTP Basic
Authentication. This authentication model does not require the Mobile and Social
server.

The HTTP Basic authentication scheme supports the following functionality:
s Online and offline authentication

» Credential storage for offline authentication and retrieval

s Idle time-out and session time-out

» Maximum number of allowed failure attempts for offline authentication after
which online authentication is enforced

» Retrieval of HTTPCookie after authentication (for example, 0OAM_ID and
0bSSSOCookie)

= Logout clears the cookie and any cached information in the IDM Mobile iOS Client
SDK

Sample code for HT'TP Basic authentication is provided here:

OMMobileSecurityConfiguration *conf = [[OMMobileSecurityConfiguration alloc]
initWithApplicationID:@"TestApp"
maxFailureAttempts:3
authenticationScheme:0OM_HTTP_BASIC_AUTH_SCHEME] ;

/* Initialize OMMobileSecurityService by passing in ADFMobileSecurityConfiguration */
OMMobileSecurityService *service =
[[OMMobileSecurityService alloc]initWithAppProfileConfiguration:conf delegate:self];

/* Create an authentication request object that will hold all the inputs for one particular
session*/
OMAuthenticationRequest *request = [[[OMAuthenticationRequest alloclinit]];

[request setLogoutURL:@"http://hostName.example.com:14100/0am/server/logout"];

[request setSessionExpiryInSecs:30];

[request setIdleTimeInSecs:12];

[request setIsOnlineMode:true];

NSMutableArray *array = [[[NSMutableArray alloc]init];

[array addObject:@"OAM_ID"];

[request setRequiredTokens:array];

[request setAuthenticationURL:@"http://hostName.example.com:7777/index.html"];

[request setAuthenticationScheme:OM_HTTP_BASIC_AUTH_SCHEME] ;

NSError *error = nil;

UINavigationController *viewController = [service getAuthenticationViewController:request
error:nil];

if (viewController != nil)

[self presentModalViewController:viewController animated:true];
else if (error !'= nil)
{
UIAlertView *alertView = [[UIAlertView alloc]initWithTitle:@"Could not authenticate"

Developing Mobile Services Applications with the iOS Client SDK 9-5

Invoking User Profile Services With the iOS Client SDK

message: [error localizedDescription]
delegate:self
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[alertView show];
[alertView release];

After the authentication process completes, the code calls the delegate’s
didFinishAuthentication: error: method.

9.4 Invoking User Profile Services With the iOS Client SDK

Before working with the code samples in this section, see "Building Applications With
User Profile Services" for notes and information that are not specific to this SDK.

The code samples in this section are organized into the following three categories:
= Working With People

= Working With Groups

= Working With Organizations

9.4.1 Working With People

To search and retrieve user details, get the handle of OMUserManager from the
OMMobileSecurityService object. See "Invoking Authentication Services With the iOS
Client SDK" for information about the OMMobileSecurityService object.

OMUserManager provides synchronous and asynchronous APIs to search and get user
details.

All asynchronous operations return an OMAsyncOpHandle object. You can use this
object to cancel the operation before it completes. Cancelling an operation after it
completes has no effect on it.

- (NSArray *)searchUsersWithFilter: (NSDictionary *)filter
isSimpleSearch: (BOOL)simpleSearch
attributesToBeFetched: (NSArray *)attributesToFetch
pageSize: (NSInteger)pageSize
pagePosition: (NSInteger)pagePosition
error: (NSError **)error;

- (OMAsyncOpHandle *)searchUsersAsynchronouslyWithFilter: (NSDictionary *)filter
isSimpleSearch: (BOOL) simpleSearch
attributesToBeFetched: (NSArray *)attributesToFetch
pageSize: (NSInteger)pageSize
pagePosition: (NSInteger)pagePosition;

- (OMUser *)searchUser: (NSString *)user attributes: (NSArray *)attributes
shouldPreFetch: (BOOL)preFetch
error: (NSError **)error;
- (OMAsyncOpHandle *)searchUserAsynchronously: (NSString *)user
attributes: (NSArray *)attributes
shouldPreFetch: (BOOL)preFetch
error: (NSError **)error;

- (OMAsyncOpHandle *)searchAsynchronouslyUser: (NSString*)user

attributes: (NSArray *)attributes
shouldPreFetch: (BOOL)preFetch;

9-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking User Profile Services With the iOS Client SDK

- (NSError *)deleteUser: (NSString *)userName;

- (OMAsyncOpHandle *)deleteAsynchronouslyUser: (NSString*)userName;

- (NSError *)createUserWithAttributes: (NSDictionary *)attributes;

- (OMAsyncOpHandle *)createUserAsynchronouslyWithAttributes: (NSDictionary *)attributes;

- (OMAsyncOpHandle *)modifyAsynchronouslyUser: (NSString*)user
attributes: (NSDictionary *)attributes;

9.4.2 Working With Groups

To search and retrieve group details, get the handle of OMRoleManager from
OMMobileSecurityService. See "Invoking Authentication Services With the iOS Client
SDK" for information about the OMMobileSecurityService object.

OMRoleManager provides synchronous and asynchronous APIs to search for groups,
add members to groups, and delete members from groups.

All asynchronous operations return an OMAsyncOpHandle object. You can use this
object to cancel the operation anytime before it completes. Cancelling an operation
after it completes has no effect on it.

- (OMRole *)getRoleByName: (NSString *)roleName
error: (NSError **)error;

- (OMAsyncOpHandle *)getAsynchronouslyRoleByName: (NSString *)roleName;
- (NSError *)deleteRoleByName: (NSString *)roleName;
- (OMAsyncOpHandle *)deleteAsynchronouslyRoleByName: (NSString*)name;

- (OMUser *)getUserInfo: (NSString *)userName fromRole: (NSString *)roleName
error: (NSError **)error;

- (OMAsyncOpHandle *)getAsynchronouslyUserInfo: (NSString *)user
fromRole: (NSString *)roleName;

- (NSError *)deleteMember: (NSString *)memberName
fromRole: (NSString *)roleName;

- (OMAsyncOpHandle *)deleteAsynchronouslyMember: (NSString *)memberName
fromRole: (NSString*)roleName;

- (OMAsyncOpHandle *)createAsynchronouslyRoleWithAttributes: (NSArray*)attributes
withValues: (NSArray*)values;

- (OMAsyncOpHandle *)modifyAsynchronouslyRole: (NSString*)role
attributes: (NSArray*)attributes
values: (NSArray*)values;
- (OMAsyncOpHandle *)addUserAsynchronouslyToRole: (NSString *)roleName

withAttributes: (NSArray*)attributes
withValues: (NSArray*)values;

9.4.3 Working With Organizations

Use the following APIs to request information about managers and their reports.

Developing Mobile Services Applications with the iOS Client SDK 9-7

Using the Credential Store Service (KeyChain)

Get a User’s Manager
The following APlIs are available in OMUser.

- (OMUser *)getManager: (NSError **)error;
- (OMAsyncOpHandle *)getManagerAsynchronously;

Get a Given User’s Reports
The following APIs are available in OMUser.

- (NSArray *)getReporteesWithAttributes: (NSArray *)attributes returningError: (NSError **)error;
- (OMAsyncOpHandle *)getReporteesAsynchronouslyWithAttributes: (NSArray *)attributes;

9.5 Using the Credential Store Service (KeyChain)

The Credential Store service provides APIs to store and retrieve sensitive data using
iOS Keychain Services.

Start with the OMMobileSecurityService object and get an OMCredentialStore handle.
Use OMCredentialStore to write to and retrieve sensitive data from KeyChainItem.

The following code snippets illustrate how to use OMCredentialStore.

Add a User Name and Password
This example adds a user name and password to a given key in KeyChainItem.

- (void)addCredential: (NSString *)userName pwd: (NSString *)password url: (NSString *)key;

Add a User Name, Password, and Tenant Name
This is a variation of the previous addCredential function.

- (void)addCredential: (NSString *)
pwd: (NSString *)password
tenantName: (NSString *)tenantName
url: (NSString *)key;

userName

Delete a Credential
This example deletes the credential from KeyChainltem. Because there is not a true
delete operation, the user name and password are instead set to null.

- (void)deleteCredential: (NSString*)key;

Update a User Name and Password
This example updates the user name and password given the user and key values.
Because there is not a true update operation, updateCredential calls addCredential.

- (void)updateCredential: (NSString*)userName pwd: (NSString*)password url: (NSString*)key;

Update a User Name, Password, and Tenant Name
This is a variation of the previous updateCredential function.

- (void)updateCredential: (NSString *)userName

H()
pwd: (NSString *)password
tenantName: (NSString *)tenantName
url: (NSString *)key;

Get a User Name and Password
This example retrieves the user name, password, and tenant name for a given key.

- (OMCredential *)getCredential: (NSString*)key;

9-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking the Mobile Single Sign-on Agent App

Store a Property in KeyChainltem
This example stores a property in KeyChainItem.

- (void)storeProperty:

(NSString *)property withKey: (NSString *)key;

Store Multiple Properties in KeyChainltem
This is a variation of the previous storeProperty function.

- (void)storeProperty:
withKey:

withLabel:
withDescription:

(NSString *)property
(NSString *)key
(NSString *)label
(NSString *)description;

9.6 Invoking the Mobile Single Sign-on Agent App

This section describes how to use the iOS Client SDK to interact with the mobile single
sign-on agent app. For conceptual information about mobile single sign-on in Mobile
and Social, see the "Introducing Mobile Single Sign-on (SSO) Capabilities" and
"Understanding Mobile and Social" in Oracle Fusion Middleware Administrator’s Guide
for Oracle Access Management.

9.6.1 Invoking the Mobile Single Sign-on Agent App From a Web Browser

Web apps can also use the single sign-on authentication features provided by the
mobile SSO agent. This functionality requires Access Manager.

1. Log on to the Oracle Access Management Administration Console and click the
Policy Configuration tab.

2. Under Shared Components click Authentication Schemes, then click the Create
button.

The "Create Authentication Scheme" tab opens.

3. Create a new Authentication Scheme by completing the form as follows:

Name: MobileSSOScheme

Authentication Level: 2

Challenge Method: FORM

Challenge Redirect URL: /oam/server/

Authentication Module: LDAP

Challenge URL: /mobilesso?serviceDomain=MobileServiceDomain

where MobileServiceDomain is the name of the domain that is configured for
single sign-on.

Context Type: customWar

Context Value: /oic_rest

4. In the Oracle Access Management Administration Console, do the following;:

Create a new Authentication Scheme in an Application Domain:
Authentication Scheme: MobileSSOScheme
(MobileSSOScheme is the scheme that was created in step one.)

Create an HTTP Resource, for example /mobileapp, and protect the resource
using the created Authentication Scheme (MobileSSOScheme). This is the URI

Developing Mobile Services Applications with the iOS Client SDK 9-9

Invoking Webgate Protected Resources

that will be accessed from the mobile web browser (mobile Safari for iOS) and
protected by a Webgate.

9.7 Invoking Webgate Protected Resources

You can use the Mobile and Social SDK to authenticate against Access Manager using
the Mobile and Social service. After authenticating against Access Manager, the SDK
gets a token and persists it in the cookie store so that any Access Manager protected
app can use the embedded web browser. Access Manager protected REST web
services, however, cannot be accessed using the web browser.

The Mobile and Social SDK provides the OMRESTRequest class to access REST web
services protected by Access Manager. First, use the SDK to authenticate against the
OAM server using Mobile and Social services.

Next, initialize the OMRESTRequest object by passing a OMMobileSecurityService
object and a delegate object. You can use either of the following methods:

executeRESTRequest: convertDataToJSON: isJsonRepresentation returningResponse: error:

-01 -

executeRESTRequestAsynchronously: convertDataToJSON:

The former is a synchronous call and the latter is an asynchronous call. The
asynchronous call returns the result through the following OMRESTRequestDelegate
method:

didFinishExecutingRESTRequest: data: urlResponse: error: asyncHandle:

The following example demonstrates the asynchronous API of the OMRESTRequest
object.

- (void) someMethod

{

OMMobileSecurityService *mss = ...;

//Initialize OMRESTRequest object. In this example, instead of using
//"initWithMobileSecurityService: delegate:" method, we use init method
//and set the properties

OMRESTRequest *restReq = [[OMRESTRequest alloc] init];

restReqg.delegate = self;

restReqg.mobileService = mss;

NSURL *url = [[NSURL alloc] initWithString:@"http://myresturl.example.com/resturl"];
NSMutableDictionary *dictionary = [[NSMutableDictionary alloc] initWithCapacity:1];

//It is important to set the User-Agent to the value configured in OAM 1lg R2

//Webgate user defined parameters.

[dictionary setObject:@"OAMMS-Agent" forKey:@"User-Agent"];

NSMutableURLRequest *urlRequest = [[NSMutableURLRequest alloc] initWithURL:url];

[urlRequest setAllHTTPHeaderFields:dictionary];

[url release];

[dictionary release];

[urlRequest setHTTPMethod:@"GET"];

OMAsyncOpHandle *opHandle = [restReqg executeRESTRequestAsynchronously:urlRequest
convertDataToJSON: FALSE] ;

[urlRequest release];

OMLog (@"%@", opHandle) ;

9-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Invoking Webgate Protected Resources

- (void) didFinishExecutingRESTRequest: (OMRESTRequest *)RESTRequest
data: (id)data
urlResponse: (NSURLResponse *)urlResponse
error: (NSError *)error
asyncHandle: (OMAsyncOpHandle *)handle

if (error)
{
//In case of error, show the error message
UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"REST Request Error"
message: [error localizedDescription]
delegate:self
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[alertView show];
[alertView release];
}
else
{
//Show the result in the UIAlertView
NSString *disp = nil;
if ([data isKindOfClass: [NSDictionary class]])
{
NSDictionary *dict = (NSDictionary *)data;
disp = [[dict OMJSONRepresentation] retain];
}
else
{
disp = [[NSString alloc] initWithData:data
encoding:NSASCIIStringEncoding] ;
}
UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:@"Received"
message:disp
delegate:self
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[disp release];
[alertView show];
[alertView release];

Note: OMRESTRequest can obtain the required token from Access
Manager only if the REST web service is protected using an Oracle
Access Management 11g R2 Webgate.

The user defined parameter of the Access Management 11g R2
Webgate must contain the User-Agent property. The same User-Agent
property value must be specified by the mobile application in its
header.

OMRESTRequest can be initialized without OMMobileSecurityService,
as well. In such cases, the OMRESTRequest APIs will just return the
URL values.

9.7.1 Understanding the OMRESTRequest API Flow

The following steps describe the internal flow of the OMRESTRequest API:

Developing Mobile Services Applications with the iOS Client SDK 9-11

Using the iOS SDK to Create a Custom Mobile Single Sign-on Agent App

1. The OMRESTRequest API invokes the URL provided by the mobile application.

2. The Oracle Access Management 11g R2 Webgate returns a 401 error with the
following details:

HTTP/1.1 401 Authorization Required
WWW-Authenticate: OAM-Auth realm="<WebGateName>:<AuthenticationLevel>
<RelativeRESTURL>", request-ctx="<RequestContext>"

3. The Mobile and Social SDK maintains a cache of Access Tokens that it has obtained
during the application’s lifetime. If the Access Token for this Webgate is already
present in the cache, the SDK injects the Access Token into the application request.

4. If an Access Token for the Webgate is not available in the Mobile and Social SDK
cache, it sends a REST request to the Mobile and Social server to obtain the Access
Token for the Webgate.

5. If the request is valid, Mobile and Social returns an Access Token in the response.

6. The Mobile and Social SDK injects the token returned by the Mobile and Social
server.

9.8 Using the iOS SDK to Create a Custom Mobile Single Sign-on Agent

App

This section contains information to get you started creating a mobile single sign-on
app.

To serve as a mobile single sign-on agent, the app must include logic to handle
authentication requests coming from other apps (the mobile SSO clients). Mobile and
Social provides a sample SSO agent app that illustrates the required logic. You can
adapt this logic to any business app and enable the app to function as a mobile SSO
agent. To get started, open OICSSOAPP. zip.

Note that the app delegate of the iOS mobile SSO app should implement the openURL
method to handle SSO requests coming from other apps. The URL scheme should also
be defined in the iOS app and on the Mobile and Social server. Finally, when adding
the Application Profile to a Service Domain on the Mobile and Social server, configure
the Mobile Single Sign-on (550) Configuration attributes (Participate in Single Sign-on
and Agent Priority).

Note: For information about configuring iOS specific settings on the
Mobile and Social server, see the following topics in Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management:

= See "Editing or Creating Application Profiles" for information
about specific iOS application settings.

= See "Editing or Creating the Service Domain" for information
about configuring an SSO-enabled application as either a mobile
SSO agent or a mobile SSO client.

9-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

10

Developing Applications Using the
Internet Identity Services Client SDK

This chapter describes how to use the Internet Identity Services Client SDK to
integrate Mobile and Social with supported web and mobile applications. This chapter
includes the following topics:

= Section 10.1, "Before you Begin"
= Section 10.2, "Introduction to Developing Internet Identity Services Applications"
= Section 10.3, "Getting the List of Identity Providers for an Application"

= Section 10.4, "Integrating Internet Identity Services With a Web Application
Running on a Server"

= Section 10.5, "Integrating With an Access Manager Protected Web Application”
= Section 10.6, "Integrating Internet Identity Services With a Mobile Application"

10.1 Before you Begin

Before reading this chapter you should read "Understanding Mobile and Social" in
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management. This
Developer’s Guide assumes that you are already familiar with and understand Mobile
and Social terminology and concepts.

10.2 Introduction to Developing Internet Identity Services Applications

This section covers concepts and requirements that apply to Internet Identity Services
application development in general.

Internet Identity Services supports the following integration scenarios:
» Integrating with a website running on a Java-based application server

» Integrating with a web application that uses Oracle Access Management services,
such as Access Manager and SSO services

= Integrating with an application that runs on iOS mobile devices

Mobile and Social features a prebuilt login page for Internet Identity Services. This
page supports local authentication so that users with existing accounts can log in and
it provides Internet Identity Provider support so that new or existing users can
authenticate using an Internet Identity Provider, such as Yahoo, Google, Facebook,
LinkedIn, and Twitter. You can use the prebuilt login page for both local user
authentication and Internet Identity Provider authentication, or you can choose to use
the Mobile and Social login page for Internet Identity provider authentication only,

Developing Applications Using the Internet Identity Services Client SDK 10-1

Getting the List of Identity Providers for an Application

while keeping the web application’s local user authentication mechanism in place. The
look and feel of the prebuilt login page can be customized as needed.

To facilitate the creation of end-user accounts, end-users who authenticate using an
Internet Identity Provider can be prompted to create a local account. Mobile and Social
retrieves the end-user’s profile from the Identity Provider, and built-in user
registration functionality will pre-populate the user’s data.

Note: OAuth providers such as Facebook, Twitter, and LinkedIn
require that applications register each Mobile and Social instance to
get the consumer key and secret values.

10.2.1 About the Internet Identity Services Client SDK

The primary Java package that you will use when working with the Internet Identity
Services Client SDK is the oracle.security.idaas.rp.client package. (The "rp"
stands for relying party.)

In addition, the following libraries are required to be available during the compilation
and execution phases. These libraries must also be available in the class path of the
application server when the client code is included in a web application that may be
compiled at run time by the web container. These libraries are provided in the product
package, oamms_sdk_for_java.zip.

The following libraries are included in camms_sdk_for_java.zip, as well as license
information and API documentation.

Mobile and Social Libraries
m oic_clientsdk.jar

m oic_common.jar
m oic_sae.jar

s ojdl.jar

Third-Party Archives
m Jjersey-archive-1.9.1

10.3 Getting the List of Identity Providers for an Application

The RPClient class located in the oracle.security.idaas.rp.client package is
required to get the list of configured Internet Identity Providers for an application.

The RPClient class takes two parameters: applicationID and properties.

The first parameter, applicationID, is a unique identifier that identifies the
application. This String value must match the application "Name" value located in the
Application Profile section of the Mobile and Social server administration console. For
more information, see the "Configuring Internet Identity Services" chapter in Oracle
Fusion Middleware Administrator’s Guide for Oracle Access Management.

The second parameter is a URI that maps to a properties file. This properties file lists
the configuration properties that the application and the Mobile and Social server
require to connect and securely exchange data. The properties file must be in a
location that is accessible to the application at run time.

10-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Getting the List of Identity Providers for an Application

The following table lists the required and optional configuration properties that the
Mobile and Social server accepts. All properties are Strings and, unless otherwise

noted, are optional.

Table 10-1

Configuration Properties Required by the RPClient Class

Property Name

Required Description

Comment

rp.server.hosturl

rp.server.idp.service

rp.server.init.service

rp.server.connection. timeout

rp.server.connection.sae.sharedsecret

rp.server.connection.sae.algorithm

rp.server.connection.sae.keystrength

rp.server.connection.sae.cryptotype

rp.server.connection.sae.keystorefile

rp.server. connection.sae. keystoretype

rp.server.connection.sae.keystorepass

rp.server.connection.sae.privatekeyalias

rp.server.connection.sae.publickeyalias

Required The URL (including protocol,
host name, and port number)
required to reach the Mobile
and Social server. Only the
HTTP and HTTPS protocols
are supported.

Required The relative path required to
reach the identity providers

service.

Required The relative path required to
reach the Relying Party (RP)

service.

The duration in milliseconds
after which the connection is
interrupted if the server stops
responding. Null or empty
means infinite (no time-out).

The secret used to secure
communication with the
server.

Required

The algorithm used to secure
communication with the
server. Defaults to SAE if
omitted.

The key length used to encrypt
the key. Defaults to 128 if
omitted.

The type of cryptography.
Defaults to symmetric if
omitted.

The file name containing the
encryption keys.

Determines the type of
keystore.

The keystore password.
The private key alias.
The public key alias.

The current service
path is:
/oic_rp/rest/
identityproviders

This path is
appended to the
rp.server.hosturl
property.

The current service
path is:

/oic_rp/
RPInitServlet

Base64 encoded
String.

Supported values
include:

SAE - Secured
Attribute Exchange.

DES - Data
Encryption Standard.

Developing Applications Using the Internet Identity Services Client SDK 10-3

Getting the List of Identity Providers for an Application

Table 10-1

(Cont.) Configuration Properties Required by the RPClient Class

Property Name

Required Description Comment

rp.server.connection.sae.privatekeypass

rp.server.connection.sae.certclass

proxy.protocol

proxy.host

proxy.port

proxy.username

proxy.password

The private key password.

The class name implementing
the Cert interface.

The protocol to use with a
Pproxy server.

Supported values
include:

http
socks

direct

The host name of the proxy
server.

The proxy server port number.

The user name required to
authenticate with the proxy
server.

The password required to
authenticate with the proxy
server.

// Java import
import java.
import java.
import java.
import java.
import java.

io
io
io

// Mobile and
import oracle.
import oracle.
import oracle.

The following sample code consists of a single class that outputs the available Internet
Identity Providers and their corresponding URLs. You can use this code to verify an
Internet Identity Service platform configuration. Simply provide the required
applicationIdinput parameter.

First, import the following class dependencies:

S

File;
.FileWriter;
.IOException;

Social imports
security.idaas
security.idaas
security.idaas

io.BufferedwWriter;

net.MalformedURLException;

.RPClient;
.RPClientConfigUtil;
.RPClientException;

.rp.client
.rp.client
.rp.client

Next define the following constants:

public class SampleOicClient {
// Define the default properties file name
private static final String PROP_FILE_NAME = "SampleOicClient.properties";
// Pre-define the Client SDK properties

private final static String PEOPLE_SERVICE

"/oic_rest/rest/userprofileservice/people";

private final static String TOKEN_SERVICE = "/oic_rest/rest/tokenservicel/tokens";

The createPropertiesFile() function creates a default properties file if a local file is
not found. You still need to provide the required values, however. Refer to Table 10-1
for details.

{

private static void createPropertiesFile()
try {

10-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Getting the List of Identity Providers for an Application

// Create file

FileWriter fstream = new FileWriter (PROP_FILE_NAME) ;

BufferedWriter out = new BufferedWriter (fstream);

out.write("");
out.write("rp.server.hosturl=http://hostcomputer.example.com:18001\n");
out.write("rp.server.idp.service=/oic_rp/rest/identityproviders\n");
("rp.server.init.service=/oic_rp/RPInitServlet\n");

out.write

out.write("rp.server.connection.timeout=60000\n");
out.write("rp.server.connection.sae.sharedsecret=sharedSecretl\n");
out.write("rp.server.connection.sae.algorithm=AES\n");
out.write("rp.server.connection.sae.keystrength=128\n");
out.write("rp.server.connection.sae.cryptotype=symmetric\n");
out.write("rp.server.connection.sae.keystorefile=\n");
out.write("rp.server.connection.sae.keystoretype=\n");
out.write("rp.server.connection.sae.keystorepass=\n");
out.write("rp.server.connection.sae.privatekeyalias=\n");
out.write("rp.server.connection.sae.publickeyalias=\n");
("rp.server.connection.sae.privatekeypass=\n");
out.write("rp.server.connection.sae.sigvalidityduration=\n");
out.write("rp.server.connection.sae.certclass=\n");

out.write

out.write("#proxy configuration\n");
out.write("proxy.host=\n");
out.write("proxy.port=\n");
out.write("#http|socks|direct\n");
out.write("proxy.protocol=\n");
out.write("proxy.username=\n");
out.write("proxy.password=\n");

out.close();
} catch (Exception e) ({
System.err.println("Error: " + e.getMessage());

The following code outputs the available Internet Identity Providers based on the
required applicationID identifier provided.

public static void main(String[] args) {
RPClient client = null;
int exitStatus = 0;
String ret = null;
File prop = new File(PROP_FILE_NAME) ;
String applicationName = null;

//Check the arguments: applicationID is mandatory
if (args.length < 1 || args[0].isEmpty()) {
System.err.println("Invalid number of arguments. Specify the name of the application
(the applicationID) to be used to connect to the Mobile and Social Server.\n");
exitStatus = 1;
} else {
applicationName = args([0];

// Check if a properties file is available
if (prop.exists()) {
RPClientConfigUtil conf = null;

// Read the configuration using the provided utility class
try {

Developing Applications Using the Internet Identity Services Client SDK 10-5

Integrating Internet Identity Services With a Web Application Running on a Server

conf = new RPClientConfigUtil (prop.toURI().toURL());

} catch (MalformedURLException e) {
System.err.println("Malformed URL:" + e.getMessage());
exitStatus = 1;

} catch (IOException ioe) {

System.err.println("IO Exception:" + ioe.getMessage());
exitStatus = 1;

}

System.out.println("RPClient :\n=========\n");

try {

// Initiate the interface with the Mobile and Social Server using
// the configuration properties and the applicationID.
client = new RPClient (applicationName, conf);

ret = "The application name is [" + applicationName + "]\n";
ret += "The retrieved IDP information is:\n\n";
for (String idp : client.getIDPList()) {

// Display the IDP name

ret += " IDP name : " + idp + "\n";
// DISPLAY the IDP reference URL
ret += " IDP Href : " + client.getHrefByIdpName (idp) ;

ret += "\n";
}
} catch (RPClientException rpce) {
System.err.println("Client Exception:" + rpce.getMessage());
exitStatus = 1;
}
System.out.println(ret);
System.out.println("\nClient SDK :\n============

System.out.println(" CreateToken :\n

new CreateToken(conf.get ("rp.server.hosturl") + TOKEN_SERVICE) ;

System.out.println("\n People :\n ========\n") ;

new CreateUser (conf.get("rp.server.hosturl") + PEOPLE_SERVICE) ;
} else {

//No properties file is available, so create a default one

createPropertiesFile();

System.out.println("The " + PROP_FILE_NAME + " properties file has not been found.
A default one has been created at this location.");

System.out.println("Please edit the file and provide the required values. Then
restart this utility.\n");

exitStatus = 2;

}

System.exit (exitStatus);

10.4 Integrating Internet Identity Services With a Web Application
Running on a Server

The Internet Identity Services SDK supports web applications, such as portal sites and
consumer-driven web sites that run on Java-compliant application servers.

To integrate Internet Identity Services with a web application, first define the web
application on the Mobile and Social server, then integrate the Internet Identity
Services login page with the web application. Next, configure User Registration
(optional) and handle the final return response.

10-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Integrating Internet Identity Services With a Web Application Running on a Server

This section covers the following topics:

s Defining the Web Application on the Mobile and Social Server

= Integrating the Internet Identity Services Login Page With the Web Application
= Handling User Registration

= Handling the Final Return Response

10.4.1 Defining the Web Application on the Mobile and Social Server

Use the Mobile and Social system administration console to define the web application
on the Mobile and Social server. See "Editing or Creating Application Profiles" in
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management for help
completing this task.

Following is a brief description of some of the items that you need to configure on the
Mobile and Social server:

= Application Name - Provide the context name of the web application.

= Application Return URL - Provide the URL that Mobile and Social should use to
send back authentication responses.

s Shared Secret - Provide the security secret that the web application and the
Mobile and Social server share to facilitate secure communication. The shared
secret is also needed during User registration.

= Required Identity Providers - Choose the Identity Providers that the end-user can
pick from to authenticate to the application.

= Application User Profile Attribute Mappings - Map the user profile attributes
that the Identity Provider returns to the user profile attributes that are local to the
application.

s User Registration and Registration URL - Indicate if the system should prompt
Users who do not have a local account to register. Provide the URL to which the
server should redirect Users after authentication when the Service Provider
completes.

10.4.2 Integrating the Internet Identity Services Login Page With the Web Application

To integrate Internet Identity Services, use the Internet Identity Services Client SDK
(oic_clientssdk. jar) and modify its login page (Login. jsp).

There are two ways that you can integrate the Internet Identity Services login page
with a web application: (1) Add the pre-built login page hosted on the Mobile and
Social server to the web application using the HTML <iframe> tag, or (2) Build a
custom login page using Internet Identity provider data provided by Mobile and
Social.

10.4.2.1 Adding the Pre-built Internet Identity Services Login Page

To add the login page hosted on the Mobile and Social server to the web application,
first get a secure token using the SDK. The web application needs a Secured Attribute
Exchange (SAE) token, which is based on the shared secret that is known to the web
application and the Mobile and Social server.

The following sample code shows how to initialize the Internet Identity Service client
SDK and get the saeToken. This code can be added to a JSP page, for example
login. jsp.

Developing Applications Using the Internet Identity Services Client SDK 10-7

Integrating Internet Identity Services With a Web Application Running on a Server

The RPClient class takes two parameters: applicationID and properties.

RPClient rpClient = new RPClient (“sampleapp”,properties);

Map<String, String> attrs = new HashMap<String, String>();

attrs.put ("applicationID", “sampleapp”) ;

String saeToken =

rpClient.getSaeToken (attrs, properties.getProperty ("rp.server.connection.sae.sharedsecret"),
properties.getProperty ("rp.server.connection.sae.sharedsecret"));

The getSaeToken method gets the SAE token for the application.

The sae. sharedsecret property from the properties file makes up the second and
third parameters of the rpClient.getSaeToken method. (For details, see Section 10.3,
"Getting the List of Identity Providers for an Application.") The first instance of the
"SAE secret" is used to sign the attributes, and the second instance is used to encrypt
them. If the second instance of the "SAE secret” (that is, the third parameter of the
method) is null, the attributes are signed but not encrypted.

Next, use an HTML <iframe> tag to embed the Internet Identity Service login page:

<iframe
src="http://oc.example.com:24666/0ic_rp/login.jsp?applicationID=sampleapp&saeToken=<%$=saeToken%>"
scrolling="no"

frameBorder="no"

allowtransparency="true"

style="width:720px;height:440px; ">

</iframe>

The following screen capture shows a sample login screen that has used an iframe to
integrate the prebuilt login page hosted on the Mobile and Social server. This page has
been configured to support both local user authentication and Internet Identity
Provider authentication.

Figure 10-1 Pre-built Login Screen With Local Login Support

Sign in With Local Account | Sign in With Other Account

Cwitter
Linked [}
Google

YaHoO!,

Liser Name

Fasaword

_Login |

10-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Integrating Internet Identity Services With a Web Application Running on a Server

The next screen capture shows the same page as the previous example with only
Internet Identity Provider support enabled. In this example, the web application
would implement its local user authentication mechanism separately.

Figure 10-2 Pre-built Login Screen Without Local Login Support

twitter
Linked [}
Google

YaHoO!,

10.4.2.2 Building a Custom Login Page

If you need greater flexibility building your login page, use the approach outlined in
this section.

The code in the following example initializes the Internet Identity Service client SDK,
invokes the REST endpoint, gets the identity provider data, then builds the login page
using an HTML table to display the Identity Provider logos in table rows.

String ret =" ";
RPClient client = null;
try {
client = new RPClient ("sampleportal", "rpclient.properties");

for (String idp: client.getIDPList()) {
ret += "\n<TR><TD><a href='" + client.getHrefByIdpName (idp)
+ "'><img src='images/" + idp.toLowerCase()
+ ".gif' alt=" + idp + " title=" + idp
+ "border='0'></TD></TR>";
}
} catch(Exception e){
e.printStackTrace() ;
}

The output from the Mobile and Social server looks like this.

<table cellpadding="6" cellspacing="6" align="center">
<th colspan=2>Sign in with any Account</th>

<a href='http://rp.example.com:24666/0ic_rp/init?applicationID=sampleportal
&saeToken=RU5DU11QVEVEN] IwODgxM0ZCNTAXOEZENUZBRTA2MzYXOTJIBQzM3MDIwQj c5NEE1IRDAFM] czZREYXNUYwW

Developing Applications Using the Internet Identity Services Client SDK 10-9

Integrating Internet Identity Services With a Web Application Running on a Server

MzkONJjQwRJjRFRTQwNzBCMzc00OEMyRUVENTkyOTVCMkI5NUUOMzM2QTk5MzYyRjJICQJg5MDIDNDcwND1 FNTFFMT I zMU
Q50TY1RTZBMjA3QzM3NOFCND1BMD1FQjVFQUI2RD1DRTU1RERGOTEXNEIYMThFNzBGM] YZRkI3MkRGNEIwM] 1 ENTBFQ
ZFEMTM1RkUzRjU5RJ cxQkMxQTg2QkNBNZAZQTUwWOTBCRUJBOEY3REM5RUU3R] IyQjEwQ0Q5QzNCQjAORDVDRDBGQUNF
NkM1M0ZGQzJCNDk4NERBRDNGNKI4REY0QkU3QzZCMDU4QTRBREQXNTI4NZzdCMTkXxRKUAMTAGRTY ZNEQOOTAFNOMxQzk
3M0MzQKFFOEVCQzEWQzgONDIzMDQ1NDAYNUZCRQ=="'><img src='images/facebook.gif' alt=Facebook
title=Facebook border='0'></td>

<td>

<a href='http://rp.example.com:24666/0ic_rp/init?applicationID=sampleportal
&saeToken=RU5DU11QVEVEN] IwODgxMO0

xNUYwMzkONjQwRJRFRTQwNZBCMzc00EMyZCNTAXOEZENUZBRTA2Mz YxOTJIBQzM3MDIWQjc5NEEIRDAFM] czZREYRUVENT
RUVENTkyOTVCMkI5NUUOMzM2QTk5MzYyOTM3REYONZJFQTIZQTVDNDY4RjRCREJFRTM4A0EU2RDI2QUI3QTc4QjE3RUNDO
DY4NDU2MDZCQjk4Q0IyNjg3QTNFMUQZzOTVENTM5N] EZRTZDMTM3Rj VBNDJFRUZENZUZOERDOEVDQkUZOEYSNEM5QjU2Qz
E4NJjVGRTA2MzVCMDBBNUYyYNTgzRDUOOEI 40DE4RUI40DgxMKkUYMEM3RDU3RUIwQjMyRTk2RkI30Dc5RkI1MzUSQjhFNDUL
RjZDQzZEQT1EQTVCRDkwQJ IxQzEYyRDUZNEI zZNTMyNTgwRTZCOTM3NzZDMOUYyNTg2QTE3IMTZFMDc3MTIFNDAXMDI30TglQw==">
</td>

</TR><TR>

<td>

<a href='http://rp.example.com:24666/0ic_rp/init??applicationID=sampleportal
&saeToken=RU5DU11QVEVEN] IwODgxM0ZCNTAXOEZENUZBRTA2MzYX0TJIBQzM3MDIwQjc5NEE1RDAFM] czREYXNUYwMzk
ONjQwRJjRFRTQwNzBCMzc0OEMyRUVENTkyOTVCMkI5SNUUOMzM2QTk5MzYyNThGRDM1MjRDRDQ2QTQ5RTRFMEZEMTY30EEYQ
TAxXMOY4NDQ1MjUwODkxRT1BRDgzMDABNDRDR j EzZMkE4AMEJCNKU50DhCMj cyRKNBNUMWREJFRJA4MDA ZQKMwRTAZQZzNGNkUy
OEJEMzMxMDcwNT1EMDAGQjREMZFEQjdACRJRDMOYXNUQ4AOTI2QTY40UMINDIwN]k5MDY3RUMOMOYYNJA0QjBBRDc3MkZGOThB
QjUXRTIDQUFFOEYWOEQOQTE3NJc4MDM1IN] YxNzY5MzY4Mjk0MjVFRDFGNDhEMDAZQTFBM] UIMEQ1QUE1RKM3MKNDMUNGM] UwNOJ
CMEI1NDkzMOQ5NQ=="'>
</td>

<td>

<a href='http://rp.example.com:24666/0ic_rp/init??applicationID=sampleportal
&saeToken=RU5DU11QVEVEMDISMOFFN] IzMEVEOUZEQKEZMEU0QZAXMD1COTg10D1DQ0TI5QkQOxM0IGQIhGQkY5QzAZNDZER
EZGNOI1RDBBM]Q3NzkxNjdBOERFNTUzNOIxMzk0QTAENUUYNDQxXxOTABNKEAMDEWOT1GOEJDNTIYQTQWMEU30TM3OUUXQTRFR
UYyNjYOMDc3Nzc0OEMzNDJICMzhCOUJDREZBQzACNENFQkI SNTBCNDRCOTQYQjUSNKYWMEQ2MUY 3MUMXNKJIEOUIYyQzk5MTk1R
DRGNzQ40Tg0QzFDM]jFEMzQwOUQORUIXQTRFOTZGMTFBNOEXODg3MTZCQTc5QUE2QTUSRDk3IMUMZOUQIMkY1NEM2Q0I10UFCNzZ
FBOTQ3MOVBQkE3QzUzQzc0MzM40Dk3RUY3NEJTFOkJFODg2Q7 E4QkUSRUFGQURFRDE3NUMYRTgONJRDRINDQzJIGNOY1QTU4RD1D
OTIzMDM50Q=="'></td>
</TR><TR>

<td>

<a href='http://rp.example.com:24666/0ic_rp/init??applicationID=sampleportal
&saeToken=RU5DU11QVEVEMDISMOFFN] IzMEVEOUZEQKEZMEU0QzAXMD1COTg10D1DQ0I5QkQxM0IGQIhGQkY5QZzAZNDZEREZGN
0I1RDBBMJQ3NzkxNjdBOERFNTUzNOIxMzk0QTJENUUyNDQxOTABMDQ5MMxQUJIDMUZDMZVEFN] I5NKVBREZBNzkOMUJDQTY20TE3
RKRCQTUYRUFERTVGNEIyNONCMzMzMThBQTM2MD1GOTESNDY40TBCNOEYNZdGRUY2Q7jc1RTBEN] YAMDEYNTVGOTA3MzCc5MTZGQKU
1MKkMORKQWMEJFQJjAZOUQ4ANEQyOEYYNDU4AMDRDM] UzQ]jg20D1GRkM1MKFGRTEWOTAWMDM2NDEXRDIwMz kyMDBBMz YXMKZGRjU4Rj
VNKFBQOQwQTgyMzA2NDA2REEYMzkxMzU2NjAZNDI zNzE5SMDADMORFRURGNTESN] I4MzQ2RTVCNZZCOTg5QONFMKM2RTKkwMQ==">
</td></TR>

</table>

10.4.3 Handling User Registration

To facilitate the creation of local end-user accounts, Mobile and Social can prompt
users to create a local account. After the User authenticates with an Identity Provider,
Mobile and Social can redirect to a custom User registration page or to a built-in
registration page that is included with the Mobile and Social Server.

This section covers both approaches:
s Using a Custom User Registration Page

= Using the Mobile and Social Built-in User Registration Page

10-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Integrating Internet Identity Services With a Web Application Running on a Server

10.4.3.1 Using a Custom User Registration Page

Use the information in this section to configure a custom User Registration Page for
use with Mobile and Social.

Configure the User Registration Properties on the Server

Use the Mobile and Social system administration console to configure the following
User Registration properties for the application:

» User Registration (Choose "Enabled")
= Registration URL
= Attributes (Located in the "Application User Attribute" section)

= Attribute Mapping (Located in the "Registration Service Details with Application
User Attribute Mapping" section)

For information about each field, see "Editing or Creating Application Profiles" in
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

Decrypt the saeToken

If User Registration is enabled for the application, Mobile and Social redirects to the
configured Registration URL. Mobile and Social does a POST to the URL and includes
two parameters: saeToken, which contains the User profile data encrypted with the
shared secret, and Application, which is the application name.

Use the RPClient APl in the oic_clientsdk to decrypt the saeToken.
For example:

String saeToken = request.getParameter ("saeToken");
Map<String, UserAttribute> regAttrMap = null;
if (saeToken != null) {
Map<String, String> saeAttrs = client.getAttrFromSaeToken (saeToken,
"shared secret value”, "shared secret value”);
System.out.println("register: saeAttrs :" + saeAttrs);
String regAttrs = saeAttrs.get ("reg_attrs");
String selectedIDP = saeAttrs.get ("oicInternetIdentityProvider");
String state = saeAttrs.get ("return_url");

}

The following block shows all of the attributes of saeToken:

saeAttrs :{readonly_ fields=uid,mail, password_field=password,
registerReadOnlyToken=RU5DUL1QVEVEODk4Q71GQzUORINDNTQYNTY ONTULMzMZzOTU3RDU3 Q] kwNzd
EMTBGREJDMT1BQjM4NDIzNTFFRKkIOOUNDQjgl1MOJFREQINTACMOI5RkYAMEY YN FDMEEINUFBRJhDQjAL
QTQIMO0IyMDgOMzFCNzgxQjg4Nzg4QzJFNEUSMZzJIFNUMOM]gxMEQxXN]EzZNKFERJEIMUEO0QTMzMOE3MTMyN
ZM5NUEXNQU3MzA2M] ZCRFZDQzgxNOI2Mj IwNzZEYNEQ2REVE,
reg_attrs=uid:UserId:example@gmail.com:,mail:Email Address::,

timezone:Time Zone::,postaladdress:Country:US:,preferredlanguage:Language:en-US:,
lastname:Last Name:doe:,commonname:First Name:john:, password:Password::,,
username_attr=uid, mandatory_fields=uid,mail, password,password,
state=fl66f%aal2edaaeffce703276de2d73c30dbdddo,
oicInternetIdentityProvider=Google,

return_url=http://host.example.com:18001/0ic_
rp/popup?state=f166f9aal2edaaeffce703276de2d73c30dbddd0}

The application needs to process the value of reg_attrs. The other saeToken attributes
should be ignored.

reg_attrs=uid:UserId:example@gmail.com:,mail:Email Address::,

Developing Applications Using the Internet Identity Services Client SDK 10-11

Integrating Internet Identity Services With a Web Application Running on a Server

timezone:Time Zone::,postaladdress:Country:US:,preferredlanguage:Language:en-US:,
lastname:Last Name:doe:,commonname:First Name:john:, password:Password::,,

The value is a comma-separated {User Attribute Name:User Attribute Label:User
Attribute Value} set.

The application can redirect to the Mobile and Social Return URL by appending
oicUserRegister=done to the URL.

For example:
response.sendRedirect (http://oic.host.com:18001/0ic_rp/popup?state=fl66f9aal2edaaeffce703276de2d73c
30dbddd0&oicUserRegister=done) ;

Mobile and Social creates a User Token based on the Identity Provider authentication
and returns it to the application.

10.4.3.2 Using the Mobile and Social Built-in User Registration Page

Use the information in this section to enable the built-in User Registration page. This
page is shown in Figure 10-3.

Configure the User Registration Properties on the Server

Use the Mobile and Social system administration console to configure the following
User Registration properties for the application:

» User Registration (Choose Enabled)

= Registration URL (Set to the URL provided with the default Mobile and Social
Internet Identity Services application, OAMApplication. For example:
http://host.example.com:port/oic_rp/register.jsp

» Attributes (Located in the Application User Attribute section)

= Attribute Mapping (Located in the Registration Service Details with Application
User Attribute Mapping section)

For information about each field, see "Editing or Creating Application Profiles" in
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

If User Registration is enabled for the application, Mobile and Social redirects to the
built-in Mobile and Social User Registration Page. The User can complete the form and
register (required if Access Manager is protecting the resource) or skip registration.
Mobile and Social then redirects to the application’s configured Return URL.

10-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Integrating Internet Identity Services With a Web Application Running on a Server

Figure 10-3 The Mobile and Social Built-In User Registration Page

ORACLE

Mabile and Soclal

User Registration
FPlezse take a moment ta confirm your information and

register,
* UserId [oicusen 01 @gmailcom
* Email Address
Time Zone
Country us
Language [ens
Last Marme fusen
First Name [oi
* Password [
* Confirm Password
Fiegister Skip Registraion

10.4.4 Handling the Final Return Response

After User authentication—and optionally after User registration—Mobile and Social
redirects back to the application.

Depending on whether the user chose to log in locally or to log in using a Identity
Provider, the return response is slightly different.

Local Login Return Response

If the User opted to log in locally, Mobile and Social redirects back to the application’s
Return URL with the saeToken parameter. The saeToken contains the Mobile and
Social generated User Token data, which has been encrypted using the Shared Secret.

Use the RpClient APlin the oic_clientsdk to decrypt the saeToken.
For example:

String saeToken = request.getParameter ("saeToken");
if (saeToken != null) {
Map<String, String> saeAttrs = client.getAttrFromSaeToken (saeToken,
"shared secret value”, "shared secret value”);
System.out.println("register: saeAttrs :" + saeAttrs);
String uid = saeAttrs.get ("uid");
String authType = saeAttrs.get ("authType");
String oicUserToken = saeAttrs.get ("oicLocalLoginUserToken ");

}

The following block shows the saeToken response attributes:

{uid=weblogic, authType=local,

oicLocalLoginUserToken=eyJhbGci0iJSUzUxMiIsInR5cCI6IkpXVCIsImtpZCI6ImThc2VEZGILYW
1uIn0.eyJleHAI0jEzMzkwODkzMzAXMTgsImF1ZCI6InJ1c3REc2VydmVyTIiwiaXNzIjoiSW50ZXJuZXR
JZGVudGl0eUF1dGhlbnRpY2F0aW9uliwicHJuIjoid2VibGInaWMiLCIgdGki01iIyZTVhZmIhZS03ZTQz
LTQwYmMt ODIwZS1mODVhN2MyODE2 ZWUiLCJIvemF jbGUub21jLnRva2vVulnR5¢GUi01IJVUOVSVEILRU4IL
CJIpYXQi0jEzMzkwODU3MzAXMTgs Im9yYWNsZS5vaWMudG9rZwW4udXN1cl9kbiI6InVpZD13ZWJsb2dpYy

Developing Applications Using the Internet Identity Services Client SDK 10-13

Integrating Internet Identity Services With a Web Application Running on a Server

xvdT1wZWIwbGUsb3U9bX1yZWFsbSxkYz11iYXN1X2RvbWFpbiJ9.UIZuur_e_uWyFzoig
_mBolPXKIz5BnmmszmB65zsAVNISQ9dui0PRA6F85N-0ZBPKQME 8Xnch0c_mjIt6eXwUD6YD_
Wo0f44svmzM43X7402VKkMgkH2xM1-31ZEMQb032zZ55CrR5UXpsDKVF54bSa6-jbg20DZAb2ral EgKivdo}

See Section 10.4.4.1, "Secured Attribute Exchange (SAE) Token Response Attributes,"
for information about response attributes.

Identity Provider Login Return Response

If the User opted to log in using an Identity Provider, Mobile and Social redirects back
to the application’s Return URL (using HTTP POST). The response includes the
saeToken parameter, which contains the Mobile and Social generated relying-party
User Token data that has been encrypted using the Shared Secret, and the User profile
data returned by the Identity Provider.

Use the RpClient APlin the oic_clientsdk to decrypt the saeToken.
For example:

String saeToken = request.getParameter ("saeToken");
if (saeToken != null) {
Map<String, String> saeAttrs = client.getAttrFromSaeToken (saeToken,
"shared secret value”, "shared secret value”);
System.out.println("register: saeAttrs :" + saeAttrs);
String uid = saeAttrs.get ("uid");
String authType = saeAttrs.get ("oicInternetIdentityProvider ");
String oicUserToken = saeAttrs.get ("internet_identity_user_token");

}

The following block shows the saeToken response attributes:

{uid=example@gmail.com, mail=, timezone=, postaladdress=US,
internet_identity_user_ token=eyJhbGci0iJSUzUxMiIsInR5cCI6IkpXVCIsImtpZzCI6ImIhc2dn
VEZGItYWluInO.eyJleHAiO]jEzMzkwODk40TM4AN Qs Im9yYWNsZS5vaWMudG9rZWducnAuaWRwX3VyaST
6Imh0dHBz018vd3d3Lmdvb2dsZS5jb20vYWN]b3VudHMvbzgvaQiLCIvemF jbGUub21jLnRva2vVulniw
InVzZXJfaWRfdXIpIjoibWFpbHRVOMIpY3VZzZXIXMDFAZ2 1haWwuY29tTiwiYXVkIjoicmVzdF9zZXJ27
XIiLCJIpc3MiJdbnR1cm51dE1IkZWS50aXR5QXV0aGVudGl jYXRpb24iLCIwem4101iJtYWlsdG86b21jdXNL
¢jEwMUBNbWFpbC5jb20iLCIgqdGki0iI0ZTQxNzhkYy1hOWRhLTQxODMtODVKMi1hNDMOMDM5YmZhNzUiL
CJvemFjbGUub21jLnRva2vVulnR5¢cGUi0iJVUOVSVEILRU41LCIpYXQi0jEzMzkwODYYyOTM4AN Qs ImOy YW
NsZS5valiMudG9rZW4udXN1cl9kbiI6ImlhaWx0bzpvaWN1c2VyMTAXQGAt YW1 sLmNvbSBodHRwezovL3d
3dy5nb29nbGUuY29tL2FjY291bnRz1L284L21kIn0.K4d_gewCE6N61Ng8DsB31BIEEG1S1wMHWpt5CC8u
yidMgtpEjzs77yFYzNz5vS6x61sa8fH2FrSg01xoyoiOnRF8ULIgCzk3VIIDNoDd_2BsYrBQVLGQzWTbs
av05x09macgbrmO0T1JIbg9napfol 8plggTHPZgm3CHTRE7jmxA, preferredlanguage=en-US,
lastname=doe, commonname=johndoe, oicInternetIdentityProvider=Google, password=}

See Section 10.4.4.1, "Secured Attribute Exchange (SAE) Token Response Attributes,"
for information about response attributes.

10.4.4.1 Secured Attribute Exchange (SAE) Token Response Attributes

The following table describes the saeToken response attributes. These attributes can be
used in your code as needed.

Table 10-2 Secured Attribute Exchange (SAE) Token Response Attributes

Attribute Description

uid The User ID of the User who completed the local login on
the Mobile and Social hosted login page.

authType The type of login that the User selected. For example,
authType=1ocal.

10-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Integrating Internet Identity Services With a Mobile Application

Table 10-2 (Cont.) Secured Attribute Exchange (SAE) Token Response Attributes

Attribute Description

oicInternetIdentityProvider The Identity Provider the User selected. For example,
oicInternetIdentityProvider=Google.

oicLocalLoginUserToken The Mobile and Social generated User token for Users who
login locally. You can use this User token in your application
to access User profile and other REST services in Mobile and
Social.

internet_identity_user_token The Mobile and Social generated User token for Users who
login with an Identity Provider. You can use this User token
in your application to access User profile and other REST
services in Mobile and Social.

10.5 Integrating With an Access Manager Protected Web Application

You do not have to write code to integrate Internet Identity Services with web
applications that are integrated with Access Manager. To complete this integration,
use the Mobile and Social and the Access Manager system administration consoles.
For instructions, see "Configuring Internet Identity Services" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management.

10.6 Integrating Internet Identity Services With a Mobile Application

Internet Identity Service provides a mobile-friendly login page if you use a mobile
browser to view the login page hosted on the Mobile and Social server. Mobile and
Social auto-detects the mobile device and displays the appropriate page. Further
configuration is not required.

If you integrate the Internet Identity Services login page in a native mobile app, you
can use either the hosted login page or a custom login page that is installed on the
device. The code running on the mobile device does not need to know which Identity
providers are enabled on the Mobile and Social server. You can add and remove
Identity providers on the server without having to update the code that runs on the
mobile device.

10.6.1 Defining the Mobile Application on the Mobile and Social Server

Use the Mobile and Social system administration console to define an application
profile for the mobile application in Mobile and Social. See "Editing or Creating
Application Profiles" Oracle Fusion Middleware Administrator’s Guide for Oracle Access
Management for help completing this task.

Following is a brief description of some of the items that you need to configure on the
Mobile and Social server:

= Application Name - Provide the name of the application.

= Mobile Application Return URL - Provide the mobile application’s return URL.
Mobile and Social uses this URL to send back authentication responses.

= Shared Secret - Provide the security secret that the mobile application and the
Mobile and Social server share to facilitate secure communication.

= Required Identity Providers - Choose the Identity Providers that the end-user can
pick from to authenticate to the application.

» User Attribute Mappings - Map the user profile attributes that the Identity
Provider returns to the user profile attributes that are local to the application.

Developing Applications Using the Internet Identity Services Client SDK 10-15

Integrating Internet Identity Services With a Mobile Application

10-16 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

11

Extending the Capabilities of the
Mobile and Social Server

This chapter discusses how to extend the Mobile and Social Java interfaces to add new
authentication Services Providers for Mobile Services. This chapter includes the
following topics:

m Section 11.1, "Create a new Authentication Services Provider for Mobile Services"

= Section 11.2, "Create a new Identity Service Provider for Internet Identity Services"

11.1 Create a new Authentication Services Provider for Mobile Services
This section covers the following topics:
= Developing the Custom Authentication Service Provider
s Building the Custom Authentication Service Provider

= Deploying the Custom Authentication Service Provider

11.1.1 Developing the Custom Authentication Service Provider

To create a custom authentication Service Provider you need to write two custom
classes:

s TokenService - Implement this interface first. This is a basic custom token
provider that works with non-mobile applications.

= MobileCompositeTokenServiceProvider - Extend this class to support mobile
applications. Here you are re-purposing the custom token provider you created to
support Mobile SSO. If you do not need to support mobile applications, you do
not need to extend this class.

11.1.1.1 Implementing the TokenService Interface

Refer to the TokenService Java documentation for details about the API to be
implemented. Note that you will also need to implement the
LifecycleServiceProvider and UserAuthenticator interfaces.

In the custom token provider, you must implement the createTokens () method to
reuse this authentication Service Provider to support mobile clients.

When returning a Token object (under successful conditions) or throwing a
RESTUnauthorizedException (under unsuccessful conditions), a PluginContext object
needs to be created. This object needs to be included in the returned Token object or
the thrown RESTUnauthorizedException.

Extending the Capabilities of the Mobile and Social Server 11-1

Create a new Authentication Services Provider for Mobile Services

= Each Service Domain has a Security Handler plug-in. The Security Handler
Plug-in tracks user behavior patterns and, if necessary, can issue an authentication
challenge (for example, a knowledge-based authentication challenge). The
OAAMSecurityHandlerPlugin is included with Mobile and Social. Oracle Adaptive
Access Manager integration is required for knowledge-based authentication (KBA)
challenges.

= After an authentication Service Provider token operation, a Security Handler
Plug-in is typically invoked. Data in this PluginContext is used to communicate
with the security plug-in. If the Token object or RESTUnauthorizedException object
does not contain a PluginContext object, the configured security plug-in is not
invoked.

= A PluginContext object is created through the PluginDataFactory APL The
PluginContext API collects security data, such as the type of security event, the
User ID, the client application ID, and their corresponding ID authentication
status and types. Refer to the Javadocs for details.

11.1.1.2 Extending the MobileCompositeTokenServiceProvider

Extend this class to reuse the custom token Service Provider to support mobile
devices.

Implement the getComponentTokenServiceProviderClass () APL Refer to the
following sample code:

protected Class getComponentTokenServiceProviderClass() {
return CustomTokenProvider.class;
// CustomTokenProvider is the class name you implemented. Change the name to
// the name that you used when implementing the TokenService.

}

For more information, see the Java documentation for this class.

11.1.2 Building the Custom Authentication Service Provider

Build the custom authentication Service Provider as follows.

11.1.2.1 To Build the Custom Authentication Service Provider

1. Gather the oic_rest.jar file, the oic_common. jar file, and any additional JAR
files needed for your custom code.

For example:

com/example/tokenprovider/MyTokenProvider.java implementing TokenService
com/example/tokenprovider/MobileMyTokenProvider.java extending
MobileCompositeTokenServiceProvider

2. Build the custom token provider.
For example:

javac -cp ./oic_rest.jar:./oic_common.jar
com/example/tokenprovider/MyTokenProvider. java

javac -cp ./oic_rest.jar:./oic_common.jar:.
com/example/tokenprovider/MobileMyTokenProvider.java

3. Build the JAR file.

For example:

11-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Create a new Identity Service Provider for Internet Identity Services

jar cvf mytokenpro.jar com/example/tokenprovider/*.class

11.1.3 Deploying the Custom Authentication Service Provider

Deploy the custom authentication Service Provider as follows.

11.1.3.1 To Deploy the Custom Authentication Service Provider

1.

Copy mytokenpro. jar to your deployment's fmwconfig/oic/plugins directory.

The JAR files here are dynamically picked up by Mobile and Social. If additional
JAR files are needed for the custom Service Provider, then those files need to be
available in the CLASSPATH of the container.

To configure your custom token provider from the Administration console, choose
System Configuration > Mobile and Social > Mobile Services > Service
Providers > Authentication Service Providers.

Create a new Service Provider, for example MyTokenProvider.
Configure your custom token Provider for mobile SSO applications.

If you implemented MobileCompositeTokenServiceProvider, from the
Administration console choose System Configuration > Mobile and Social >
Mobile Services > Service Providers > Authentication Service Providers.

Create a new Service Provider, for example MobileMyTokenProvider.

Configure the authentication Service instances, which use the custom token
providers as defined in steps 2 and 3.

From the Administration console choose System Configuration > Mobile and
Social > Mobile Services > Service Domains > Select a Service Domain >
Authentication Services.

Create a new instance, for example MyTokenService.

Define an authentication service instance, which is using custom mobile token
providers as defined in steps 2 and 3.

From the Administration console choose, System Configuration > Mobile and
Social > Mobile Services > Service Domains > Select a Service Domain >
Authentication Services.

Create a new instance, for example MobileMyAuthnService.

The custom authentication Service Providers can now be used in the deployment.

11.2 Create a new Identity Service Provider for Internet Identity Services

Mobile and Social provides support for the following Identity Providers: Facebook,
Google, LinkedIn, Twitter, and Yahoo. You can add additional OpenlD and OAuth
service providers by implementing the IdentityProvider Java interface, and then use
the System Administration Console to add the provider to your Mobile and Social
deployment.

This section covers the following topics:

Developing the Custom Identity Service Provider
Building the Custom Identity Service Provider
Deploying the Custom Identity Service Provider

Extending the Capabilities of the Mobile and Social Server 11-3

Create a new Identity Service Provider for Internet Identity Services

11.2.1 Developing the Custom Identity Service Provider

The interface has three methods:

authenticateUser () - This method initiates the process of authenticating the User
with the Identity Provider. After authentication, the Identity Provider uses the
Return URL sent in the authentication request to return Identity profile
information to the Mobile and Social server.

There are two return URL options:

— https://host.example.com:port/oic_rp/popup - Use this option if the
Identity Provider login page opens in a pop-up window.

— https://host.example.com:port/oic_rp /return - Use this option if the
Identity Provider login page opens in the same browser window as the
application’s login page.

getAccessToken () - If the Identity Provider uses the OAuth protocol, the Mobile
and Social server needs to get an Access Token using this method. The Mobile and
Social server uses the Access Token to get a User Token.

getUserProfile() - This method gets the User profile from the Identity Provider.

11.2.2 Building the Custom Identity Service Provider

Build the custom Identity Service Provider as follows.

11.2.2.1 To Build the Custom Identity Service Provider

1.
2.

Gather the oic_rp.jar file, the oic_common. jar file, and the j2ee. jar file.
Build the class.
For example if the Identity Provider name is XYZ:

javac -cp ./j2ee.jar:./oic_rp.jar:./oic_common.jar
com/xyz/custom/idp/XYZImpl.java

Add any additional JAR files as required by your custom code.
Build the JAR file.
For example:

jar cvf xyz-idp.jar com/xyz/custom/idp/XYZImpl.class

11.2.3 Deploying the Custom Identity Service Provider

Deploy the custom authentication Service Provider as follows. The following steps use
XYZProvider as an example.

11.2.3.1 To Deploy the Custom Identity Service Provider

1.

Copy xyz-idp. jar to your deployment's fmwconfig/oic/plugins directory.

The JAR files here are dynamically picked up by Mobile and Social. If additional
JAR files are needed for the custom Service Provider, then those files need to be
available in the CLASSPATH of the container.

To configure your custom Identity Provider from the Administration console,
choose System Configuration > Mobile and Social > Internet Identity Services.

11-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Create a new Identity Service Provider for Internet Identity Services

In the Internet Identity Providers section click Create to add the new Internet
Identity Provider, for example XYZProvider.

s Define any attributes needed under Protocol Attributes. These attributes are
consumed in the custom implementation.

= Define any User attributes in the User Attributes Returned section. These
attributes are consumed in the custom implementation as part of the
getUserProfile() method logic.

Or, instead of using the Administration console, add the following XML to oic_
rp.xml:

<InternetIdentityProvider description="XYZ OAuth Provider"
name="XYZProvider">

<icon>XYZ.gif</icon>

<protocolType>0Auth</protocolType>

<userAttribute>
<name>id</name>
<value>id</value>

</userAttribute>

<userAttribute>
<name>first_name</name>
<value>first_name</value>

</userAttribute>

<userAttribute>
<name>last_name</name>
<value>last_name</value>

</userAttribute>

<userAttribute>
<name>email</name>
<value>email</value>

</userAttribute>

<userAttribute>
<name>location</name>
<value>location</value>

</userAttribute>

<userAttribute>
<name>birthday</name>
<value>birthday</value>

</userAttribute>

<userAttribute>
<name>gender</name>
<value>gender</value>

</userAttribute>

<userAttribute>
<name>language</name>
<value>language</value>

</userAttribute>

<userAttribute>
<name>country</name>
<value>country</value>

</userAttribute>

<userAttribute>
<name>profile_image_url</name>
<value>profile_image_url</value>

</userAttribute>

<providerImplClass>com.xyz.custom.idp.XYZImpl</providerImplClass>

</InternetIdentityProvider>

3. Create or Edit the Application Profile that will use the custom Identity Provider.

Extending the Capabilities of the Mobile and Social Server 11-5

Create a new Identity Service Provider for Internet Identity Services

For instructions, see "Editing or Creating Application Profiles" in Oracle Fusion
Middleware Administrator’s Guide for Oracle Access Management.

4. In the Application User Attribute Vs. Internet Identity Provider User Attributes
Mapping section select XYZProvider and define the User attribute mapping.

11-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

12

Sending Mobile and Social
REST Calls With cURL

This chapter uses cURL to demonstrate the REST calls that the Mobile and Social client
sends to the Mobile and Social server. This chapter includes the following topics:

Request and Response Header Attribute Name Reference

Mobile and Social REST Security Filter Reference

Mobile Services REST Reference: Authentication and Authorization

Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens
Mobile Services REST Reference: Commands for User Profile Services

Practical Examples

Notes About Using cURL

cURL is free software that you can download from the cURL website at
http://curl.haxx.se/

Using cURL to send REST calls to the server can help you better understand how the
Mobile and Social client interacts with the Mobile and Social server. It can also be a
helpful troubleshooting tool.

Note: cURL commands that contain single quotes (') will fail on
Windows. When possible, use double quotes (") in place of single
quotes.

If a command requires both single quotes and double quotes, escape
the double quotes with a backslash (for example: \") and replace the
single quotes with double quotes.

Note: In this guide, line breaks in cURL commands and server
responses are for display purposes only.

Sending Mobile and Social REST Calls With cURL 12-1

Request and Response Header Attribute Name Reference

Request and Response Header Attribute Name Reference

This section documents the request and response attribute names that are reserved for
use with Mobile and Social REST Services. These attributes can be included in a query
parameter, in an HTTP header, or in the JSON body portion of the header as noted.

Note: All attribute names and values are case-sensitive.

The following attribute names are documented in this section:
s X-IDAAS-REST-VERSION

s X-IDAAS-SERVICEDOMAIN

s X-IDAAS-REST-AUTHORIZATION

= AUTHORIZATION

s X-Idaas-Rest-Subject-Type

» X-Idaas-Rest-Subject-Value

» X-Idaas-Rest-Subject

» X-Idaas-Rest-Subject-Username

s X-Idaas-Rest-Subject-Password

» X-Idaas-Rest-New-Token-Type-To-Create
s X-Idaas-Rest-Application-Context

s X-Idaas-Rest-Application-Resource

s X-Idaas-Rest-User-Principal

» X-Idaas-Rest-Provider-Type

12-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-IDAAS-REST-VERSION

Use this attribute to specify the specific version of the SDK that the client application is
compatible with. If you do not specify an SDK version, the Mobile and Social server
defaults to using the latest SDK version.

Where to use This Attribute

Attribute Type

s HTTP header

= Query parameter

= Request

= Response

Sample cURL Command

Comments

-H "X-IDAAS-REST-VERSION:v1"

Sample Request

curl -i

-H "Content-Type: application/json http://host.us.example.com:14100/0ic_rest
/rest/jwtauthentication/authenticate

-d '{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "profileidl",
"X-Idaas-Rest-Subject-Password": "secretl2",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTTOKEN"} '

-H "X-IDAAS-REST-VERSION:v1"

Sample Response

HTTP/1.1 200 OK Date: Tue, 05 Jun 2012 11:23:19 GMT Transfer-Encoding: chunked
Content-Type: application/json

X-IDAAS-REST-VERSION: vl

Set-Cookie: JSESSIONID=5Z4sPNsHVmrplgs8HNDbQGxdAdAC7TIQS7s4QspYvMpcMIJLC2nGx5!1574
236250;

path=/;

HttpOnly
X-ORACLE-DMS-ECID:a393487d2600b00c:-7abb0b83:137b52ee014:-8000-00000000000026aa
X-Powered-By: Servlet/2.5 JSP/2.1

The attribute value must be a string representation of the protocol version, for
example v1.

Sending Mobile and Social REST Calls With cURL 12-3

X-IDAAS-SERVICEDOMAIN

X-IDAAS-SERVICEDOMAIN

Use to specify a Service Domain value. If a Service Domain value is not provided, the
system will use the "Default" Service Domain.

Where to use This Attribute
s HTTP header

Attribute Type
= Request only

Sample cURL Command
-H "X-IDAAS-SERVICEDOMAIN: Default"
Sample Request
curl -i
-H "Content-Type: application/json"--request POST
http://host.us.example.com:14100/0ic_rest/rest/jwtauthentication/authenticate
_d '{
"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "profileidl",
"X-Idaas-Rest-Subject-Password": "secretl2",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTTOKEN"} '
-H "X-IDAAS-REST-VERSION:v1"
-H "X-IDAAS-SERVICEDOMAIN: Default"

Comments

The attribute value must be a string representation of the target Service Domain, for
example MyMobileServiceDomain.

12-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-IDAAS-REST-AUTHORIZATION

Use to specify an application credential in the HTTP request header.

Use the following format:

-H "X-IDAAS-REST-AUTHORIZATION: <AuthenticationScheme-Name> <Credential Value>"
where AuthenticationScheme-Name is one of the following:

= HTTP Basic

s UIDPassword

s Token

Where to use This Attribute

Attribute Type

s HTTP header

= Request only

Sample cURL Commands

Comments

-H "X-IDAAS-REST-AUTHORIZATION: Token eyJhbG56I40Tg50Tk3M. . .fWlVGmunfzqZ-bG4rM"
-H "X-IDAAS-REST-AUTHORIZATION: Basic fnd9xkOVXunF$%2B5zMQUiGUIWTXPYiKw"

-H "X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred=\"Tp8aUEeptClBz6h9cH8F%2Fwk976\""

Sample Request

curl -i -H "Content-Type: application/json" --request POST
http://host.us.example.com:14100/0ic_rest/rest/jwtauthentication/authenticate
_d|{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",

"X-Idaas-Rest-Subject-Username": "sampleuser",

"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create": "USERTOKEN"}'

-H "X-IDAAS-REST-VERSION:v1"

-H "X-IDAAS-SERVICEDOMAIN: Default"

-H "X-IDAAS-REST-AUTHORIZATION: Token eyJhbGci0iJSUzUxMiIsInR5cS1dUQXV0aGVudGljYXR
CI6IkpXVCIsImtpZCI6Im9yYWtleSJ9.eyJleHAIOjEzZMzgd0Tg50Tk3MzIsIzZXT2ZXIxIiwiaXNzIjol
JoiY2I2MWUSYTQtZjImYS00ZDQzLWF10TYtZWQ5M] Z1MGQ2NDZ1 Iiwib3JhY2x1Lm9pYy50b2t1bi50eXB
1Tj0iQ0xJRUSUVEILRU4iLCIpYXQi0jEZzMzg40TUZz0Tk3MzIsIm9yYWNsZS5vaWMudGIrZwdudXNlcl9kb
1I6InVpZDlwcm9ImaWx1aWQxLG91PXBlb3BsZSxvdTlteXJ1YWxtLGR]PWIhc2VEZGItYWsZSxvdTlteXJl
YWxtLGRJPWJIhc2VEZGItYWIluIn0.kN17WON3GEmdccm7GoUOT41P23yWb6L101e0J0grzkeiijXE-t8KEfy
N6Jg1m8EKzdYgiKFwdb-S09IMpOVMyPgxSRERImMN_3kkcKNagl7yIgu0EJUOS3HUdy2Suv0Th5b6 fDgXLIY
LkBAOcCI1W1P5RgWIVGMUBX7RnfzgZ-bG4rMiLCIwem4 10iJwem9mawxklaWQxIiwianRpI"

The client application must send a security credential using the
X-IDAAS-REST-AUTHORIZATION header if you select the Secured Application
option for either User Profile Services or Authorization Services on the Service
Domain Configuration "Service Protection” tab. The server accepts credentials sent
using any of the three valid security schemes (HTTP Basic, UIDPassword, or Token).

Sending Mobile and Social REST Calls With cURL 12-5

AUTHORIZATION

AUTHORIZATION

Use to specify a user credential in the HTTP request header. Use the AUTHORIZATION
header if a User Token is required and you are using either a JWTAuthentication or an
OAMAuthentication token format. The User Token value has to be the User token
issued by the authentication Service Provider.

Use the following format:

-H "AUTHORIZATION:<User Token Value>"

Where to use This Attribute

Attribute Type

s HTTP header

= Request only

Sample cURL Command

Comments

-H "AUTHORIZATION:eyJhbGci0igSUzUxMiIsInR5cmtpZCI6Im9g50Tk3M. . . sWlVGmunfzgZ-bG4rM"

Sample Request

curl -i --request GET
"http://host.us.example.com:14100/0ic_rest/rest/userprofile/people/weblogic/"

-H

"AUTHORIZATION: eyJhbGci0iJSUzUxMiIsInR5cCI6IKkpXVCIsImtpZCI6ImIyYWt1eSJ9.eyJleHi
EzMzg40Tk3MTMxMzcsImF1ZCI6Im9hbV9zZ2XJ272XIxIiwiaXNzIjoiS1dUuQXv0aGvudGl jYXRpb24iLCIw
cm41i01J3ZWJIsb2dpYyIsImp0aSI6IjNIM]diZjcALTg3NDQtNDFkMS05Mz1mLT1kZGYON2VKNGF 1NyIsIm
YWNsZS5vaWMudG9rzZW4udH1wZSI6I1VTRVIUTOtFTiIsImlhdCI6MTMzODg5NjExMzEzNywib3JhY2x1Lm
9pYy50b2t1bi51c2VyX2RuIjoidWlkPXdlYmxvz21jLGI1PXB1b3BsZSxvdT1teXI1YWxt LGR] PWIhc2V6
ZGItYW1uInO.hHmAa5Syw3AcqRPwIq XLx6DcMzCBzvDXGFYVWALIngVgxgvLTIJfxZzofS5Ut272b0dFG
sv3gakeDm2NTgg6 fR2YKH5BXxAHNEMg0 IAmhLuyWdux_rMZNB-wP8h5JD26UQf_nnBBWApvgULeM2mWQEZY
RVDMpN9K7pycNrsGKOj8U"

The client application must send a security credential using the AUTHORIZATION
header if you select the Secured User option for either User Profile Services or
Authorization Services on the Service Domain Configuration "Service Protection” tab.
The server accepts tokens only.

12-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-ldaas-Rest-Subject-Type

The type of the subject (either USERCREDENTIAL, UID, UIDASSERTION, or TOKEN).

Where to use This Attribute

= Query parameter

= JSON body

Attribute Type
= Request only

Sample cURL Command
-d '{"X-Idaas-Rest-Subject-Type":"USERCREDENTIAL"}"'
-d '{"X-Idaas-Rest-Subject-Type":"UID"}"'
-d '{"X-Idaas-Rest-Subject-Type":"UIDASSERTION"}"'
Sample Request 1
curl -H "Content-Type: application/json" --request GET
"http://host.us.example.com:14100/0ic_rest/rest/jwtauthentication/validate?
X-Idaas-Rest-Subject-Value=eyJhbGci0iJSUzU. . .I_A0PM&
X-Idaas-Rest-Subject-Type=TOKEN"
Sample Request 2
curl -i -H "Content-Type: application/json" --request POST
http://host.us.example.com:14100/0ic_rest/rest/jwtauthentication/authenticate
-d '{
"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "profileidl",
"X-Idaas-Rest-Subject-Password": "secretl12345",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTTOKEN"} '

Comments

The attribute value must be one of the following;:
s USERCREDENTIAL

s UID

m UIDASSERTION

s TOKEN

Sending Mobile and Social REST Calls With cURL 12-7

X-ldaas-Rest-Subject-Value

X-ldaas-Rest-Subject-Value

The string value of the subject. Include this attribute when the value of
X-Idaas-Rest-Subject-Type is either TOKEN, UID, or UIDASSERTION.

Where to use This Attribute

= Query parameter

= JSON body

Attribute Type
= Request only

Sample cURL Command

Sample Request 1

curl -H "Content-Type: application/json" --request GET
"http://host.example.com:14100/0ic_rest/rest/jwtauthentication/validate?
X-Idaas-Rest-Subject-Value~=eyJhbGci0iJSUzU. . .PM&
X-Idaas-Rest-Subject-Type~=TOKEN"

Sample Request 2

curl -H "Content-Type: application/json" --request POST
http://localhost:18001/0ic_rest/rest/jwtauthentication/access

-d '{

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"vTBI8jN...%3D",
"X-Idaas-Rest-Application-Context":"75sSbBZZKJ1UOAWikZxsKA==",
"X-Idaas-Rest-Application-Resource":"http:/host.example.com:7779/index.html",
"X-Idaas-Rest-New-Token-Type-To-Create": "ACCESSTOKEN"} '

12-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-ldaas-Rest-Subject

Use to supply both the subject type and string value in the header when the subject
type is of type TOKEN.

Where to use This Attribute
s HTTP header

Attribute Type
= Request only

Sample cURL Command

Sample Request

curl -H "Content-Type: application/json" --request GET
http://host.example.com:14100/0ic_rest/rest/jwtauthentication/validate

-H

"X-Idaas-Rest-Subject: TOKEN eyJhbGci0iJSUzUxMiIsInR5¢cCI6IkpXVCIsImtpZCI6ImIyYWtl
eSJ9. eyJleHA10jEzMzg5MDEZMzUyMUS IMF1ZCI6 Im9hbV9zZXJI2ZXIxIiwiaXNzIjoiS1dUQXV0aGVu
dG13iYXRpb24iLCIwemdi01T3ZWIsb2dpYyIsImp0aSI6InUzNDZ1iY]JiLTQyZmYtNGRIMC1IhOTZKLWYyY
2U5MjMONTMOYSIsImOyYWNsZS5vaWMudGIrZWdudH1wZSI6I1VTRVIUTOtFTiIsImlhdCI6MTMzODg5NZ
czNTIyNSwib3JhY2x1Lm9pYy50b2t1bi51c2VyX2RuljoidWlkPXd1lY¥mxvz21jLGI91PXB1lb3BszSxvdTl
teXJ1YWxtLGRI PWIhc2VEZGItYWluInO . GZ3-X4NRGAQ9 IMB63B5MmPuyESM2KFwqHMQ9 7AXwBj YE1Mep
ZdziTEgDeYLKJuVB83plSGwpfQEDAz1xR3Sy7tRXbIV3EJK] 1pbUyUyEEIwAfuudxtbNERKrPw3pJoPtU
g0TCd0BV2sRdyy1zuSBAU2J6zUjG8rW-PYDWI_AQOPM"

Sending Mobile and Social REST Calls With cURL 12-9

X-ldaas-Rest-Subject-Username

X-ldaas-Rest-Subject-Username

Use to supply the user name as a string only if the X-Idaas-Rest-Subject-Type value
is USERCREDENTIAL.

Where to use This Attribute
= JSON body

Attribute Type
= Request only

Sample cURL Command

Sample Request

curl -i -H "Content-Type: application/json" --request POST
http://host.example.com:14100/0ic_rest/rest/jwtauthentication/authenticate
-d '{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "sampleuser",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create": "USERTOKEN"}'

12-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-ldaas-Rest-Subject-Password

Use to supply the password as a string only if the X-Idaas-Rest-Subject-Type value
is USERCREDENTIAL.

Where to use This Attribute
= JSON body

Attribute Type
= Request only

Sample cURL Command

Sample Request

curl -i -H "Content-Type: application/json" --request POST
http://host.example.com:14100/0ic_rest/rest/jwtauthentication/authenticate
-d '{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "sampleuser",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create": "USERTOKEN"}'

Sending Mobile and Social REST Calls With cURL 12-11

X-ldaas-Rest-New-Token-Type-To-Create

X-ldaas-Rest-New-Token-Type-To-Create

Use to provide the token types to be created. Multiple token types can be specified in a
request.

Where to use This Attribute
= JSON body

Attribute Type
= Request only

Sample cURL Command

Sample Request

curl -i -H "Content-Type: application/json" --request POST
http://host.example.com:14100/0ic_rest/rest/jwtauthentication/authenticate
-d '{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "sampleuser",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create": "USERTOKEN"}'

Comments

The attribute value must be one of the following:
s CLIENTREGHANDLE

s CLIENTTOKEN

m USERTOKEN

m USERTOKEN: : OAMMT

s ACCESSTOKEN

12-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-ldaas-Rest-Application-Context

Use to specify the application context for which an Access Token is needed. The
supplied value must be string.

Where to use This Attribute
= JSON body

Attribute Type
= Request only

Sample cURL Command

Sample Request 1

curl -H "Content-Type: application/json"

--request POST http://localhost:18001/0ic_rest/rest/jwtauthentication/access

-d '{

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"vTBI8jN8eYIsfAp%2BZge. . .GkiaHv7TJAGZ5XFSQk5A%3D%3D",
"X-Idaas-Rest-Application-Context":"75sSbBZZKJ1UOAWikZxsKA==",
"X-Idaas-Rest-Application-Resource": "http://somehost.example.com:7779/index.html",
"X-Idaas-Rest-New-Token-Type-To-Create": "ACCESSTOKEN" } '

Sending Mobile and Social REST Calls With cURL 12-13

X-ldaas-Rest-Application-Resource

X-ldaas-Rest-Application-Resource

Use to specify the target resource for which an Access Token is needed. The supplied
value must be string.

Where to use This Attribute
= JSON body

Attribute Type
= Request only

Sample cURL Command

Sample Request 1

curl -H "Content-Type: application/json"

--request POST http://localhost:18001/0ic_rest/rest/jwtauthentication/access

-d '{

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"vTBI8jN8eYIsfAp%2BZge. . .GkiaHv7TJAGZ5XFSQk5A%3D%3D",
"X-Idaas-Rest-Application-Context":"75sSbBZZKJ1UOAWikZxsKA==",
"X-Idaas-Rest-Application-Resource":"http://somehost.example.com:7779/index.html",
"X-Idaas-Rest-New-Token-Type-To-Create": "ACCESSTOKEN"} '

12-14 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Request and Response Header Attribute Name Reference

X-ldaas-Rest-User-Principal

Used to return the principal User.

Where to use This Attribute
= JSON body

Attribute Type

= Response only
Sample cURL Command

Sample Response

HTTP/1.1 200 OK Date: Tue, 05 Jun 2012 11:35:13 GMT

Transfer-Encoding: Content-Type: application/json X-IDAAS-REST-VERSION: vl
Set-Cookie: JSESSIONID=

TC3jPNnRvL6 fvhIpMSjLhHY rFyMKawcFxTNL1RQzyvkSI7G2TLj4 11574236250 ;

path=/; HttpOnly X-ORACLE-DMS-ECID: a393487d2600b00c:-7abb0b83:137b52ee014:
-8000-00000000000026f5 X-Powered-By: Servlet/2.5 JSP/2.1

{

"X-Idaas-Rest-Token-Value": "eyJhbGci0iJSUzUxMiIsInR5¢cCI6IkpXVCIsImtpZCI6Im9yYWtle
SJ9.eyJleHAi0jEzMzg40Tk3MTMxMzcsImF1ZCI6Im9hbV9zZXJ2ZXIxIiwiaXNzIjoiS1dUQXV0aGvud
G1jYXRpb24iLCIwcmdi01J3ZWIsb2dpYyIsImp0aSI6IjNIMjdiZ]jc4LTg3NDQENDFkMS05Mz 1mLT1kZG
dON2VKNGF1NyIsIm9yYWNsZS5vaWMudGIrZW4udHI1wZSI6I1VTRVJUTOtFTiIsImlhdCI6MTMzODg5NIE
xMzEzNywib3JdhY2x1ILm9pYy50b2t1bi51c2VyX2RuljoidwWlkPXdlYmxvZ21jLG91PXB1b3BsZSxvdT1t
eXJ1YWxtLGRjPWIhc2VEZGItYWluInO . hHmAa5Syw3AcqRPwIgXLx6DcMzCBzVvDXGFYVwWA L O9ngVgxgvLT
JfxZzofS5U0t272b0dFGsv3gakeDm2NTgg6 fR2YKH5BxAHNEMg0 IAmhLuyWdux_rMZNB-wP8h5JD26UQfE
nnBBWAPvgULeM2mWQEzYRVDMpNIK 7pycNrsGK8U ",

"X-Idaas-Rest-User-Principal":"jdoe",

"X-Idaas-Rest-Provider-Type":"JWT",

"X-Idaas-Rest-Token-Type" : "USERTOKEN"

}

Sending Mobile and Social REST Calls With cURL 12-15

X-ldaas-Rest-Provider-Type

X-ldaas-Rest-Provider-Type

Used to return the token provider type. Valid values include 0AM_10G, 0AM_11G, and
JWT.

Where to use This Attribute
= JSON body

Attribute Type

= Response
Sample cURL Command

Sample Response

HTTP/1.1 200 OK Date: Tue, 05 Jun 2012 11:35:13 GMT

Transfer-Encoding: chunked Content-Type: application/json X-IDAAS-REST-VERSION: vl
Set-Cookie:JSESSIONID=TCJjPNnRvL6{fvhIpMSjLhHYrFyMKqwcFXTNL1RQzyvkSJ7G2TLj4!1157423;
path=/; HttpOnly X-ORACLE-DMS-ECID:

a393487d2600b00c: -7abb0b83:137b52ee014:-8000-00000000000026£5

X-Powered-By: Servlet/2.5 JSP/2.1

{

"X-Idaas-Rest-Token-Value": "eyJhbGci0iJSUzUxMiIsInR
5cCI6IkpXVCIsImtpZCI6Im9yYWtleSJ9.eyJleHAiOjEzMzgd0Tk3MTMxMzcsImF1ZCI6Im9hbv9
zZXJ2ZXIxIiwiaXNzIjoiS1dUuQxv0aGVudGljYXRpb24iLCIJwemdi0iJ3ZWIsb2dpYyIsImp0aSI6IjN
1MjdiZjc4LTg3NDQtNDFkMS05Mz 1mLT1kZGYON2VKNGF 1Ny IsIm9yYWNsZS5vaMudGor ZwWa
udH1wZSI6I1VTRVIUTOtFTiIsImlhdCI6MTMzODg5N]ExMzEzNywib3Jhy2x1lm9pYy50b2t1bi51c2
VyX2RuIjoldWlkPXd1Ymxvz21jLG91PXB1lb3BszZSxvdT1teXJ1YWxtLGR]PWIhc2VEZGItYWluInO0.h
HmAa5Syw3AcqgRPwIqg XLx6DcMzCBzvDXGFYVWALIngVgxgvLTJIJfxZz0ofS5Ut272b0dFGsv3qg
akeDm2NTgg6 fR2YKH5BXxAHNEMG0 IAmhLuyWdux_rMZNB-wP8h5JD26UQf_nnBBWApvgULeM
2mWQEZYRVDMpNIK 7pycNrsGK8U" ,

"X-Idaas-Rest-User-Principal":"weblogic",

"X-Idaas-Rest-Provider-Type":"JWT",

"X-Idaas-Rest-Token-Type" : "USERTOKEN"

}

12-16 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile and Social REST Security Filter Reference

Mobile and Social REST Security Filter Reference

The authorization schemes in this section are used to protect the Mobile and Social
REST Services.

The following calls are demonstrated:
s Authorize With UIDPASSWORD
s Authorize With HTTP Basic

= Authorize With an Access Manager Token

Sending Mobile and Social REST Calls With cURL 12-17

Authorize With UIDPASSWORD

Authorize With UIDPASSWORD

cURL Command

Shows how to send the REST call required for UIDPASSWORD authentication.

curl --request GET
"localhost:18001/idaas_rest/rest/authorizationservice3/authorization?
resource=http://is-x86-05.us.example.com:7779/index.html&
action=GET&X-Idaas-Rest-Subject-Value=

ZNsJcMMM3 ow83Zr5D8KgCPnhBGmui4RnBvUXJI5dgC70fwZ Iv6FDcYWwf PuHUpxN%2B
fs5gN0I6AWIZBX$2F2KQNNQS5LPDN1XgeE8y70PPoy4znteEfCaRHb7UALlialox$2BWS
5LbknXCLazZ5qg%2FN4I0IcXP%2B13FGX9r9LROQ30ZZVNMLhfx3KabZcIVmSHBkK%2F
ARGYEJQV6RO%2FPCMN2YYTJIgWxGr20rWeG8NLbzgN%2FPyADxx 1 PLvkxH2YCVHHH
7bLBfOp3p83IbJI%2FC%2BmIsCd4Y]1S1hsMUXKtvZ1LnIMEAUYmMUR5 t Xuw2B0Yr250HU
bMreIGgRYZXFonmjhAovKhXqIgzpIg$3D%3D&

X-Idaas-Rest-Subject-Type=TOKEN"

-H "X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred=\"
Tp8aUEeptClBz6A6h9CcH8F$2FwcZJIvLok976\""

-H "Authorization: gdX4z0leySgt0DiPeItsQfBweYZIfZ2dm7fVypNz%2Bf6pbrzF7P4
AvUzPXIzLf21L0zHUVNI%2B770sUESMI9U62QjytC%2FgrAD602QdSe2VUNG] jw8Di5evl
gSI0m5a5VQ09rmGN1BlxndnPYoaX0nDpi3eGAyQNw3 PUADEGYglsDMR1js2jsiXKyexryn
8k1lcoc3EHGgk%2ByqafEXzfzGjwEB4ipnSGg2c4a9BX2BKjKLoODOPANVc2nf6£%2F7T2Ck
hA%2BSFowwE$2BEIzvQ7cVbeRYgco2eYCJThs8GS8Hag9T2dnhIAad tuxIMyxVLRNRtDA
g3 9HDr5hvUI70pHQHNUMeRCcPQ%$3D%3D"

Expected Output

Comments

{

"Allowed":"true"

}

= In arequest, use the X-IDAAS-SERVICEDOMAIN header name to specify a Service
Domain value. The X-IDAAS-SERVICEDOMAIN name can be used as a query
parameter or a header. If a Service Domain value is not provided, the system will
use the "Default” Service Domain.

12-18 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile and Social REST Security Filter Reference

Authorize With HTTP Basic

cURL Command

Shows how to send the REST call required for HTTP Basic authorization.

curl --request GET
"localhost:18001/idaas_rest/rest/authorizationservice3/authorization?
resource=http://is-x86-05.us.example.com:7779/index.html

&action=GET&

X-Idaas-Rest-Subject-Value=

ZNsJcMMM3 ow83 Zr5D8KgCPnhBGmui4RnBvUXJI5dgC70fwZIv6FDcYWw PuHUpxN%2Bfs5
gNOI6AWIZBX$2F2KQONNQ5bPDN1XgeE8y70PPoy4znteEfCaRHb7UAlialox%2BW85Lbkn
XCLaZ5q%2FNAT0IcXP%2B13FGX9r9LROQ30ZZVNMLhfx3KabZcIVmSHBKK%2FARGYEJ
QV6RO%2FPCMN2YYTIgWxGr2 0rileG8NLbzgN% 2F PyADxx 1 PLvkxH2YCVHHH7bLBEOp3p
83IbJ%2FC%2Bm9sCd4Yj1S1hsMUXKtvZ1LnIME4AUymuR5 tXuw2B0Yr250HxUbMreIGgRYZ
XFonmjhAovKhXqgIgzpIg%3D%3D&

X-Idaas-Rest-Subject-Type=TOKEN"

-H "X-IDAAS-REST-AUTHORIZATION: Basic Tp8aUEeptClBz6A6h9cH8F%2FwcZJvLok976"
-H "Authorization: TOKEN gdX4z0leySgt0DiPeIltsQfBweYZIfz2dm7fVypNz%$2Bf6pbrzF7P4A
vUzPXIzLf21L0zHuvNI%$2B770sUESM99U6zQ]jytC%2FgrAD602QdSe2VUNG] jw8Di5evlgs
I0m5a5VQ09rmGN1BlxndnPYoaX0nDpi3eGAyQONw3 PUADEGYglsDMR1js2]jsiXKyexryn8kl
coc3EHGgk%2ByqfEXzfzGjwEB4ipnSGg2c4a9BX2BKjKLoODOPANVc2nf6£%$2F7T2CkhA%2B
SFowwE%2BEIzvQ7cVbeRYgco2eYCThs8GS8Hag9T2dnhIAa4 tuxIMyxVLRNRtDAg3 9HDr 5hv
UI70pHQHNUMeRcPQ%3D%3D"

Expected Output

Comments

{

"Allowed": "true"

}

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

» HTTPBasic has to be configured for client with an encrypted password in the
client definition as shown here:

<IdaasClient description="0IC Client 1" name="clientidl">
<authnService>sampletokenservice</authnService>
<param>

<name>userId4BasicAuth</name>
<value>rest_clientl</value>

</param>

<param>

<name>sharedSecret4BasicAuth</name>
<value>9Q0901LI15gDwESYROhOgw==</value>
</param>

</IdaasClient>

Sending Mobile and Social REST Calls With cURL 12-19

Authorize With an Access Manager Token

Authorize With an Access Manager Token

cURL Command

Shows how to send the REST call required for Access Manager authorization.

curl --request GET
"localhost:18001/idaas_rest/rest/authorizationservice3/authorization?
resource=http://is-x86-05.us.example.com:7779/index.html

&action=GET&
X-Idaas-Rest-Subject-Value=ZNsJcMMM3ow83Zr5D8KQCPnhBGmui4RnBvUXJI5dqC70fwzIve
FDcYWwfPuHupxN%2Bfs5gNOI6AWIZBX%2F2KQNNQ5bPDN1XgeE8y70PPoy4znteEfCaRHb
7UAlialox%2BW85LbknXCLaz5q%2FN4I0IcXP%$2B13FGX9r9LROQ30ZZVNMLhfx3KabZcIV
MSHBKK$2FARGYEJQV6RO%$2FPCMN2YYTIgWxGr20riWeG8NLbzgN%$ 2F PyADxx 1 PLvkxH2
YCVHHH7LLBfOp3p83IbJI%2FC%2Bm9sCd4Yj1S1hsMUXKtvZ1LnIME4AUymuR5 tXuw2B0Yr25
OHxUbMreIGgRYZXFonmjhAovKhXqIgzpIg%$3D%3D

&X-Idaas-Rest-Subject-Type=TOKEN"

-H "X-IDAAS-REST-AUTHORIZATION: TOKEN Tp8aUEeptClBz6A6h9cH8F%$2FwcZJIvLok976
¢c5@g0SitrrgSCISFQk58KMtUg2FCPLb] ZbP2%2B3P52zZPiSCeHwNua%2FBHAIDCONUYOXNg
4uBKA7t704jGREn49xkOVXUnF$2B52zMQUiGU1wTXPYiKwooAknkeHs3HIg6s21 £%$2FHpuPH
curRa%2Bdy fjWEYWTpgPeo%2FzyHHzDHI1wF8hM6k 6 YwI%2FpxD8avuXogP%2Bp532tCZ0
aAhonseNMcKvGTRBoV1shGnotK9gt01lnDgc2LWAS01dIgxlcaWDw3$2FXZhvgudkLwl 0 jxEw
0K%2BzffyeZs0gfUkZIBnsm8gh2KP%2BiCPzT7HPVPF%2FyYCg%3D%3D"

-H "Authorization: TOKEN gdX4z0leySgt0DiPeltsQfBweYZIfz2dm7{VypNz%$2Bf6pbrzF7P4AVU
zPXIzLf21L0zHUvNI%2B770sUESMI9U62zQ]jytC%2FgrAD602QdSe2VUNG] jw8Di5ev1gSIOmbs
a5VQ09rmGN1B1xndnPYoaX0nDpi3eGAyQNw3 PUADEGYglsDMR1js2jsiXKyexryn8klcoc3EH
Ggk%$2ByqfEXzfzGjwEB41pnSGg2cda9BX2BKjKLoODOPANVc2nf6£$2F7T2CkhA%2BSFowwE
%2BEIzvQ7cVbeRYgco2eYCThs8GS8Hag9T2dnhIAad tux9MyxVLRNREDAG3 9HDr5hvUI70pHQ
HNUMeRcPQ%3D%3D"

Expected Output

Comments

{

"Allowed":"true"

}

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

s The client has to be defined with a token service name that can validate the token
for the request as shown here:

<IdaasClient description="0IC Client 5" name="clientid5">
<authnService>oamsdktokenservice</authnService>
</IdaasClient>

12-20 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Authentication and Authorization

Mobile Services REST Reference: Authentication and Authorization

The cURL commands in this section show the REST calls used to request security
tokens from the Mobile and Social server. Some REST calls use the POST method,
whereas others use GET.

The following calls are demonstrated:

= Authentication for a Client Token

= Authentication for a User Token

= Authentication for an Access Token
= Get or Validate a (Client) Token

s Authorization

Sending Mobile and Social REST Calls With cURL 12-21

Authentication for a Client Token

Authentication for a Client Token

Shows how to send the REST call to request a client token.

cURL Command

curl -H "Content-Type: application/json" --request POST
http://localhost:18001/idaas_rest/rest/tokenservicel/tokens
-d '{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username":"clientl",
"X-Idaas-Rest-Subject-Password":"secretl2",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTTOKEN"}'

Expected Output

{"X-Idaas-Rest-Token-Value" : "kubExOtDjCtL5Q0R1QhAgL5zNVMDFYKG1Y0AUe+PI9HKvNnz4gIDVX
YIMNxxyfJJpmkT5Xt YKkDgW2 95 uWECK7c7LmPBkxE6Myt c fFvKhdHzWIUGEgS2uKe j 3PQIGA 9RpZ6UXAP
ZbGYW]j7fpjZogBhtPiCtyacI0C22b12/DbbRCVx434126855YiTg0k1GC61TucSor1M7pBI54bxygFZsy
F1DVKXL+RNhrobYsN6I7fFLR4fL+10/BZcbwM/4SNDuCIC82e0xPI/mTcRraz0cLwdtcLbw7cl1MjC2eu
EBSGUJjGcNmxpbhiJIt7SIBzJczzNsaBnH+2 fKx/VTeVVvGQgGAf19e5b1Drj5QyNhj2I=",
"X-Idaas-Rest-Token-Type": "CLIENTTOKEN",

"X-Idaas-Rest-User-Principal":"client-1",

"X-Idaas-Rest-Provider-Type":"OAM_11G"}

Comments

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

12-22 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Authentication and Authorization

Authentication for a User Token

cURL Command

Shows how to send a REST call requesting a User token.

curl -H "Content-Type: application/json"

--request POST http://localhost:18001/idaas_rest/rest/tokenservicel/tokens
-d '{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username":"testerl",
"X-Idaas-Rest-Subject-Password":"secretl2",
"X-Idaas-Rest-New-Token-Type-To-Create" : "USERTOKEN" } '

Expected Output

Comments

{"X-Idaas-Rest-Token-Value": "adc3bfbExOtDjCtL5Q0R1IQhAGL5 ZNVMDFYKG1Y0AUe+P9HKvNzZ4g
IDVXYIMNxxy fJTpmkT5Xt YKkDGW295JuWECK7 ¢ 7LmPBkxE6Mytc fvKh4HzWIUGEgS2uKej3POQJIG4A9RpZ6
UXAPZbGYW]7fpjZogBhtPiCtyacI0C22b12/DbbRCVx434126875YiTg0k1GC61TucSor1M7pBI54bxyg
FZsrF1DVKXL+RNhrobYsN6I7fFLR4fL+10/BZcbwM/4SNDuCIC82e0xPI/mTcRraz0cLw9tcLbw7cl1M]j
C2euEBSGU]jGcNmxpbhiJIt7SIBzJdczzNsaBnH+2fKx/VTeVVvGQgGAf19e5b1Drj5QyNhj2I=",
"X-Idaas-Rest-Token-Type": "USERTOKEN",

"X-Idaas-Rest-User-Principal":"user-1",

"X-Idaas-Rest-Provider-Type":"OAM_11G"}

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

Sending Mobile and Social REST Calls With cURL 12-23

Authentication for an Access Token

Authentication for an Access Token

Shows how to send a REST call requesting an access token.

cURL Command

curl -H "Content-Type: application/json"

--request POST http://localhost:18001/idaas_rest/rest/tokenservicel/tokens
-d '{

"X-Idaas-Rest-Subject-Type": "TOKEN",

"X-Idaas-Rest-Subject-Value":
"vTBI8jN8eYsmHCUzCAkITI8xnvOWCcGaETg50Ec091ErOznl3EZIUpyKkd
xucZ91fbelb367GuCwPUceldPs8v8WAJtSWIO0IKhBcOo4EaBh4djZ1RDcd9y
mNEbh%2BrdaG2rJ0%2BGFGglge%2BNg0JUBVoKemdoe%2By1kQLjIRT4

YV$2Fx0t I7eeXdIOtKD$2BURI IAP$2BZqeDmYHX$2BeTIq019dvhuveb5
AniFPTX3xa05%2Fovs8250a0jYyz465Td0ZmchMyTn%2BSwSPoD81GELV
MddlapJdnred%2BVdStBv$2FHsawIgErLLsCNj1idd90z%2FDVGy31XSOuz3
GkwmEOBOM%2BSiAGZ5XFSQA%3D%3D",
"X-Idaas-Rest-Application-Context":"75sSbBZZKJ1UOAWikZxsKA==")
"X-Idaas-Rest-Application-Resource": "http:/wengatel23.us.example.com:7779/index.ht
ml",

"X-Idaas-Rest-New-Token-Type-To-Create": "ACCESSTOKEN"} '

Expected Output

{"X-Idaas-Rest-Token-Value": "R1QhAgGL5zNVMDFYKG1Y0AUe+PI9HKvnz4gIDVXYIMNxxy fJJIpmkT5
XtYKkDgW295juWECK7c7LmPBkxE6MytcfvKh4dHZWIUGEgS2uKej3PQJG49RpZ6UXAPZLGYW] 7fpjZogBh
tPiCtyacI0C22b12/DbbRCVx4341268j5YiTgOk1GC61IucSor1M7pBI54bxygFZsrF1DVKXL+RNhrobY
sN6I7fFLRAfL+10/BZcbwM/4SNDuCIC82e0xPI/mTcRraz0cLwdtcLbw7cl1MjC2euEBSGU]jGeNmxpbhi
JIt7SIBzJczzNsaBnH+2fKx/VTeVVvGQgGAf19e5b1Drj5QyNhj2I=",
"X-Idaas-Rest-Token-Type": "ACCESSTOKEN",

"X-Idaas-Rest-User-Principal": "user-1",

"X-Idaas-Rest-Provider-Type":"OAM_11G"}

Comments

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

12-24 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Authentication and Authorization

Get or Validate a (Client) Token

cURL Command

Shows how to send the REST call required to request (get) a client token.

curl --request GET http://localhost:18001/idaas_rest/
rest/mobilesecretl/tokens/info -H "X-Idaas-Rest-Subject: TOKEN someTokenValue"

Expected Output

Comments

{"X-Idaas-Rest-Token-Value" : "QA8wjxWGSE3VMggfxFFYW4YrreO0DuG7hOagET4y fF3PX
bbUUsgh7uJUOEX5aZAQPsrV90J20gtALfhiUI32gbxooeqppGnQSlnk0ehpN4%2B6%$2BCgR2n0OMrYzoLi
U7%2FvrnoG7894eUfxHwmvZESQwiwdez6L%2B0caHF2tc05F4zkqi6%2BveSLAuFdiaMh9pd2k$2BXF%2
Fiin2Q8IfOWBdk2IzWeFhwi35CzMLIrNiAST%$2BdMWhteIKcNEFbvS1WFaYR8Fjzx%2FpuU3%2FdTaG2gX
xDIXE%2BpI2bpanks4 fdzwaFmkLCraUfJFdt iGgOk2SIVIwi4UYCBALMIXZJ5ny] tmxpgEESKISGQ%$3D%
3D",

"X-Idaas-Rest-Token-Type" : "USERTOKEN",

"X-Idaas-Rest-User-Principal":"testuser",

"X-Idaas-Rest-Provider-Type": "JWT"

}

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

Sending Mobile and Social REST Calls With cURL 12-25

Authorization

Authorization

Shows how to send the REST call required to request a client token.

cURL Command

curl --request GET "localhost:18001/idaas_rest/
rest/authorizationservicel/authorization?
resource=http://webgatel23.us.example.com:7779/index.html&
action=GET&X-Idaas-Rest-Subject-Value=
ZNsJcMMM3ow83Zr5D8KgCPnhBGmui4RnBvUXJI5dgC70fwZIv6FDcYWwE
PuHUpxN%2Bfs5aN0I6AWIZBX$2F2KQNNQ5bPDN1XgeE8y70PPoy4dznte
EfCaRHb7UAlialox%2BW85LbknXCLazZ5q%2FN4I0IcXP%$2B13FGX9r9LR
0Q30ZZVNMLhfx3KabZcIVmSHBKK$2FARGYEJQV6RO%2FPCMN2YYTJ
gWxGr20rWeG8NLbzgN% 2FPyADxx 1 PLvkxH2YCVHHH7bLBEOp3p83 IbJ%2
FC%2Bm9sCd4Yj1S1hsMUXKtvZ1LnIME4UymuR5tXuw2B0Yr250HxUbMreI
GgRYZXFonmjhAovKhXgIlgzpIg%3D%$3D&
X-Idaas-Rest-Subject-Type=TOKEN"

Expected Output

{
"Allowed": "true"

}

Comments

= A contract name can be specified as a query parameter or a header with a name of
X-IDAAS-CONTRACT. Otherwise, Mobile and Social assumes the contract is a
"default” contract.

12-26 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens

Mobile Services REST Reference: Commands for Mobile Single Sign-on
Tokens

The cURL commands in this section show the REST calls that the mobile single sign-on
agent sends to the Mobile and Social server to request client, user, and access tokens,
and to create client registration handles.

The following calls are demonstrated:
s Create a Client Registration Handle for a Mobile Single Sign-on Agent App

» Create a Client Registration Handle for a Mobile Single Sign-on Client App (User
Name Scenario)

» Create a Client Registration Handle for a Mobile Single Sign-on Client App (User
Token Scenario)

s Create a Request for a User Token
= Create a Request for an Access Token
s The Single Sign-on Agent Request to Create an Access Token for its own use

s Verify a Client Reg Handle

Sending Mobile and Social REST Calls With cURL 12-27

Create a Client Registration Handle for a Mobile Single Sign-on Agent App

Create a Client Registration Handle for a Mobile Single Sign-on Agent App

cURL Command

Shows how to create a client registration handle for a mobile single sign-on (5SO)
agent app based on a user name and password. In this example, the mobile single
sign-on agent app is named MobileAgent1.

curl -H "Content-Type: application/json" --request POST
http://localhost:18001/idaas_rest/rest/mobilejwtauthentication/register -d

it

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "theUserName",
"X-Idaas-Rest-Subject-Password":"thePassword",
"X-Idaas-Rest-New-Token-Type-To-Create": "CLIENTREGHANDLE",
"deviceProfile" : { ... },

"clientId": "MobileAgentl" }'

Expected Output

Comments

{"X-Idaas-Rest-Token-Value": "eyJg0b2tl...",
"X-Idaas-Rest-Token-Type": "CLIENTREGHANDLE",
handles : {

"oaam.session" : { ... } ,

"oaam.device" : { ... }

}
}

The value of CLIENTREGHANDLE is shortened for display purposes.

The user name and password ("theUserName" and "thePassword" in this example)
is a security credential that signifies an authenticated user authorized for such a
device.

12-28 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens

Create a Client Registration Handle for a Mobile Single Sign-on Client App (User
Name Scenario)

cURL Command

This example shows how the mobile single sign-on agent creates a client registration
handle for a mobile business app (the client app) utilizing a user name and password.
In this example, the request originated with the mobile business app, which is named
MobileExpenseReport1.

curl -H "Content-Type: application/json" --request POST
http://localhost:18001/idaas_rest/rest/mobilejwtauthentication/register -H
"X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD ..." -d

{

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username": "theUserName",
"X-Idaas-Rest-Subject-Password": "thePassword",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTREGHANDLE",
"deviceProfile" : { ... },

handles : {

"oaam.session" : "...",

"oaam.device" : "..." },

"clientId": "MobileExpenseReportl" } '

Expected Output

Comments

{"X-Idaas-Rest-Token-Value":"ey...",
"X-Idaas-Rest-Token-Type": "CLIENTREGHANDLE",
handles : {

"oaam.session" : { ... } ,

"oaam.device" : { ... }

}

}

» The value of CLIENTREGHANDLE and other tokens is shortened for display purposes.

» If the clientId is not a mobile SSO agent (for example, MobileExpenseReportl),
then the caller needs to add a header to the HTTP request that contains the client
reg handle obtained previously for a Mobile Agent, for example -H
"X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD...."

Sending Mobile and Social REST Calls With cURL 12-29

Create a Client Registration Handle for a Mobile Single Sign-on Client App (User Token Scenario)

Create a Client Registration Handle for a Mobile Single Sign-on Client App (User
Token Scenario)

cURL Command

This example is similar to the previous example. Instead of a user name and password,
however, a user token is submitted. The user token is a security credential that
signifies that an authenticated user authorized the device. As with the previous
example, the request originated with the mobile business app, which is named
MobileExpenseReport1.

curl -H "Content-Type: application/json" --request POST
http://localhost:18001/idaas_rest/rest/mobilejwtauthentication/register -H
"X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD ..." -d

{

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"ey...",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTREGHANDLE",
"deviceProfile" : { ... },

handles : {

"oaam.session" : "...",

"oaam.device" : "..." },

"clientId": "MobileExpenseReportl" }

Expected Output

Comments

{"X-Idaas-Rest-Token-Value":"ey...",
"X-Idaas-Rest-Token-Type" : "CLIENTREGHANDLE",
handles : {

"oaam.session" : { ... } ,

"oaam.device" : { ... }

}

}

» The value of CLIENTREGHANDLE and other tokens is shortened for display purposes.

= When registering the client application, the user token can only represent a user
registration if the Mobile.reauthnForRegNewClientApp configuration value is set
to false in the corresponding mobile agent client application profile.

s The HTTP header X-IDAAS-REST-AUTHORIZATION has a UIDPASSWORD scheme value
that contains the client reg handle of the mobile agent app (for example,
MobileAgentl).

12-30 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens

Create a Request for a User Token

cURL Command

This example shows the REST call that the mobile single sign-on agent sends to the
Mobile and Social server to request that a user token be created.

curl -H "Content-Type: application/json" --request POST
http://localhost:18001/idaas_rest/rest/mobilejwtauthentication/authenticate -H
'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="..." ' -d

'

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",

"X-Idaas-Rest-Subject-Username": "theUserName",

"X-Idaas-Rest-Subject-Password": "thePassword",
"X-Idaas-Rest-New-Token-Type-To-Create" : "USERTOKEN" ,

"handles" : { ... },

"deviceProfile" : { ... } }

Expected Output

Comments

{"X-Idaas-Rest-Token-Value":"ey...",
"X-Idaas-Rest-Token-Type": "USERTOKEN",
handles : {

"oaam.session" : { ... } ,
"oaam.device" : { ... }

}

}

= Token values are shortened for display purposes.

= AnSSO agent app (MobileAgent1, for example) requests a User token with a user
name and password.
The HTTP header X-IDAAS-REST-AUTHORIZATION has a UIDPASSWORD scheme value
that contains the client reg handle of the SSO agent app (MobileAgent1).

Sending Mobile and Social REST Calls With cURL 12-31

Create a Request for an Access Token

Create a Request for an Access Token

This example shows a mobile SSO agent request for an access token on behalf of a
mobile business app. The mobile SSO agent is named MobileAgent1, and the business
app is named MobileExpenseReport1.

cURL Command
Mobile OAMAuthentication Example

curl -H "Content-Type: application/json" -H
'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="..." ' -H
'X-IDAAS-REST-AGENT-AUTHORIZATION: UIDPASSWORD cred="..." '
--request POST
http://localhost:18001/idaas_rest/rest/mobileocamauthentication/access -d
{

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"... USER TOKEN VALUE...",
"X-Idaas-Rest-Application-Context":"75sSbBZZKJ1UOAWikZxsKA==",
"X-Idaas-Rest-Application-Resource":
"http:/wengatel23.us.example.com:7779/index.html",
"X-Idaas-Rest-New-Token-Type-To-Create":"ACCESSTOKEN",
"handles" : { ... },

"deviceProfile" : { ... }

} 1
Mobile JWTAuthentication Example

curl -H "Content-Type: application/json" -H
'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="..." ' -H
'X-IDAAS-REST-AGENT-AUTHORIZATION: UIDPASSWORD cred="..." '
--request POST
http://localhost:18001/idaas_rest/rest/mobilejwtauthentication/access -d
'

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"... USER TOKEN VALUE ...",
"X-Idaas-Rest-Application-Resource":"...",
"X-Idaas-Rest-New-Token-Type-To-Create": "ACCESSTOKEN",
"handles" : { ... },

"deviceProfile" : { ... }

} 1

Expected Output

{"X-Idaas-Rest-Token-Value":"...",
"X-Idaas-Rest-Token-Type": "ACCESSTOKEN",
handles : {

"oaam.session" : { ... } ,

"oaam.device" : { ... }

}

}

Comments

s This HTTP request carries two headers: The first contains the client registration
handle of the SSO Agent app, and the second contains the client registration
handle of the Business app.

The header X-IDAAS-REST-AGENT-AUTHORIZATION contains the client reg handle of
the SSO agent app (MobileAgent1).

12-32 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens

The header X-IDAAS-REST-AUTHORIZATION contains the client reg handle of the
Business app (MobileExpenseReport1).

The Mobile and Social server component (specifically, the Mobile Services
component) will verify the validity of both handles. It will ensure both apps are
listed in the target service domain. The underlying Token / Authentication Service
will vend out an Access Token upon verifying the validity of the User Token
Value.

In the case of Access Manager, the X-Idaas-Rest-Application-Resource field
refers to a resource protected by a particular WebGate. It also has an
X-Idaas-RESt-Application-Context field that corresponds to the Access
Manager Application Context.

Token values are shortened for display purposes.

Sending Mobile and Social REST Calls With cURL 12-33

The Single Sign-on Agent Request to Create an Access Token for its own use

The Single Sign-on Agent Request to Create an Access Token for its own use

This example shows a mobile SSO agent request for an access token for its own use.
The mobile SSO agent requires an access token before it can request tokens on behalf
of client apps.

cURL Command
Mobile OAMAuthentication Example

curl -H "Content-Type: application/json" -H
'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="..."
--request POST http://localhost:18001/idaas_
rest/rest/mobilecamauthentication/access -d

'

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"... USER TOKEN VALUE...",
"X-Idaas-Rest-Application-Context":"75sSbBZZKJ1UOAWikZxsKA==",
"X-Idaas-Rest-Application-Resource": "http:/wengatel23.us.example.com:7779/index.ht

ml",
"X-Idaas-Rest-New-Token-Type-To-Create":"ACCESSTOKEN",
"handles" : { ... },

"deviceProfile" : { ... }

} 1
Mobile JWTAuthentication Example

curl -H "Content-Type: application/json" -H
'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="...'
--request POST http://localhost:18001/idaas_
rest/rest/mobilejwtauthentication/access -d

'

"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value":"... USER TOKEN VALUE ...",
"X-Idaas-Rest-Application-Resource":"...",
"X-Idaas-Rest-New-Token-Type-To-Create":"ACCESSTOKEN",
"handles" : { ... },

"deviceProfile" : { ... }

} I

Expected Output
{

"X-Idaas-Rest-Token-Value":"...",
"X-Idaas-Rest-Token-Type": "ACCESSTOKEN",
handles : {

"oaam.session" : { ... } ,

"oaam.device" : { ... }

}

}

Comments

» This HTTP request carries ONE header, X-IDAAS-REST-AUTHORIZATION, that
contains the client reg handle of the SSO agent app (MobileAgent1).

There is no X-IDAAS-REST-AGENT-AUTHORIZATION header in this request.

= The Mobile and Social server component (specifically, the Mobile Services
component) will verify the validity of both handles. It will ensure that the

12-34 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens

MobileAgent1 app is listed in the target service domain and that it is marked as an
SSO-capable app (that is, the app is listed with an SSO Priority).

= Token values are shortened for display purposes.

Sending Mobile and Social REST Calls With cURL 12-35

Verify a Client Reg Handle

Verify a Client Reg Handle

This example shows a client reg handle verification request. The Mobile and Social
server has token and handle verification logic, so the mobile client does not need to
make this verification call.

When the request is sent to the Mobile and Social server to create a User Token or an
Access Token, the service verifies the one or two HTTP headers that contain the client
reg handles: X-IDAAS-REST-AUTHORIZATION and X-IDAAS-REST-AGENT-AUTHORIZATION.

cURL Command

curl --request

GET http://localhost:18001/idaas_rest/rest/mobileservicel/tokens/info -H
"X-Idaas-Rest-Subject: TOKEN ey..." -H

"X-IDAAS-REST-AUTHORIZATION: TOKEN ey..."

Expected Output

{

"X-Idaas-Rest-Token-Value":"eyJl...",
"X-Idaas-Rest-Token-Type": "CLIENTREGHANDLE"
}

Comments

s The CLIENTREGHANDLE values are repeated under two different HTTP headers. If an
administrator uses an explicit service binding not requiring a Client Token to
perform a verify token operation, the second HTTP header can be dropped.

s The CLIENTREGHANDLE value is shortened for display purposes.

= Token values are shortened for display purposes.

12-36 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

Mobile Services REST Reference: Commands for User Profile Services

The cURL commands in this section show the REST calls that are sent from a client
application to the Mobile and Social server to perform User Profile Services
transactions with a connected Directory server.

User Profile cURL commands are grouped into the following sections:
= Basic User Operations

= Basic Group Operations

s "memberOf" Relationship Operations

= "members" Relationship Operations

= "manager" Relationship Operations

= 'reports" Relationship Operations

= "ownerOf" Relationship Operations

= "personOwner" Relationship Operations

= "groupOwner" Relationship Operations

s "groupOwnerOf" Relationship Operations

s "groupMemberOf" Relationship Operations
= "groupMembers" Relationship Operations

» Search User Operations

» The "attrsToFetch" Query Parameter Feature
s The "prefetch” Query Parameter Feature

s The "scope" Query Parameter Feature

Sending Mobile and Social REST Calls With cURL 12-37

Basic User Operations

Basic User Operations

Basic user operations commands include the following:
s Create a User

= Read a User

= Update a User

s Delete a User

Create a User

Shows how to create a user profile in a remote directory.

cURL Command

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'{"uid":"John", "description":"test user", "lastname":"Anderson",
"commonname" : "John Anderson", "firstname":"John"}'

Expected Output

{"uid":"John", "guid":"FE1D7BD0590111E1BFDCF77FB8E715D5" , "
description":"test user", "name":"John", "lastname":"Anderson",
"commonname" : "John Anderson", "loginid":"John","firstname":"John",
"uniquename" :"FE1D7BD0590111E1BFDCF7FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}

Read a User

Shows how to retrieve a user profile in a remote directory.

cURL Command
curl -i --request GET http://localhost:14100/idaas_rest/
rest/userprofile/people/John/

Expected Output

{"uid":"John", "guid":"FE1D7BD0590111E1BFDCF77FB8E715D5", "description": "test user",
"name":"John", "lastname": "Anderson", "commonname": "John Anderson", "loginid":"John",
"firstname":"John", "uniquename":"FE1D7BD0590111E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}

Update a User

Shows how to update a user profile record in a remote directory.

cURL Command

curl -H "Content-Type: application/json" --request PUT
http://localhost:14100/idaas_rest/rest/userprofile/people/John/ -d
'{"description":"test userl"}"'

Expected Output
{"uid":"John", "guid":"FE1ID7BD0590111E1BFDCF77FB8E715D5",
"description":"test userl", "name":"John", "lastname":"Anderson",

12-38 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

"commonname" : "John Anderson","loginid":"John","firstname":"John",
"uniquename":"FE1D7BD0590111E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}

Delete a User

Shows how to remove a user profile record in a remote directory.

cURL Command
curl -i --request DELETE http://localhost:14100/
idaas_rest/rest/userprofile/people/John/

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-39

Basic Group Operations

Basic Group Operations

Basic group operations commands include the following:
s Create a Group

= Read a Group

= Update a Group

s Delete a Group

Create a Group

Shows how to create a group profile in a remote directory.

cURL Command

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"groupl testuing", "commonname":"groupl"}"'

Expected Output
{"guid":"2259C6C0592011E1BFDCF77FB8E715D5", "description": "groupl testing",
"name" : "groupl", "commonname" : "groupl",
"uniquename":"2259C6C0592011E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl"}

Read a Group
Shows how to retrieve a group profile in a remote directory.
cURL Command
curl -i --request GET "http://localhost:14100/idaas_rest/
rest/userprofile/groups/groupl/"
Expected Output
{"guid":"2259C6C0592011E1BFDCF77FB8E715D5", "description": "groupl testing",
"name" : "groupl", "commonname" : "groupl",
"uniquename" : "2259C6C0592011E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl"}
Update a Group

Shows how to update a group profile in a remote directory.

cURL Command

curl -H "Content-Type: application/json" --request PUT
http://localhost:14100/idaas_rest/rest/userprofile/groups/groupl/ -d
'{"description":"groupll testing"}'

Expected Output
{"guid":"2259C6C0592011E1BFDCF77FB8E715D5", "description": "groupll testing",
"name" : "groupl", "commonname" : "groupl",
"uniquename":"2259C6C0592011E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl"}

12-40 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

Delete a Group

Shows how to delete a group profile in a remote directory.

cURL Command

curl -H "Content-Type: application/json" --request PUT
http://localhost:14100/idaas_rest/rest/userprofile/groups/groupl/ -d
'{"description":"groupll testing"}'

Expected Output
{"guid":"2259C6C0592011E1BFDCF77FB8E715D5", "description": "groupll testing",
"name" : "groupl", "commonname" : "groupl",
"uniquename":"2259C6C0592011E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl"}

Sending Mobile and Social REST Calls With cURL 12-41

"memberOf" Relationship Operations

"memberOf" Relationship Operations

The "members" and "memberOf" logical entity relationships both point to the same
"member” attribute in the LDAP "group" entity. Both logical entity relationships can be
used to add, delete, read, and search a user with respect to a group.

This section includes the following operations:
» Create a "memberOf" Relationship
= Read a "memberOf" Relationship

s Delete a "memberOf" Relationship

Create a "memberOf" Relationship
Shows how to make a user a member of a group.
cURL Command
Create User "John"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'"{"uid":"John"Anderson", "commonname": "John Anderson","firstname":"John"}'

Create Group "Group1"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"groupl testing","commonname":"groupl"}"'

Create a MemberOf Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/John/member0f/ -d
"{"group-uri":"\/idaas_rest\/rest\/userprofile\/group\/groupl",
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}"'

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl",
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John\/memberOf\/groupl"}

Read a "memberOf" Relationship

Shows how to retrieve a "memberOf" relationship profile for the specified user.

cURL Command
curl -i --request GET "http://localhost:14100/idaas_rest
/rest/userprofile/people/John/memberOf/groupl/"

Expected Output
Either of the following:

» HTTP Status 200 (The request has succeeded.)

= No response.

12-42 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

Delete a "memberOf" Relationship

Shows how to delete a "memberOf" relationship.

cURL Command
Delete the MemberOf Relationship

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/people/John/memberOf/groupl/"

Delete User "John"

curl -i --request DELETE http://localhost:14100/idaas_rest/
rest/userprofile/people/John/

Delete the Group "group1”

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/groups/groupl”

Expected Output
Either of the following:

= HTTP Status 200 (The request has succeeded.)

= Noresponse.

Sending Mobile and Social REST Calls With cURL 12-43

"members" Relationship Operations

"members" Relationship Operations

The "members" and "memberOf" logical entity relationships both point to the same
"member” attribute in the LDAP "group" entity. Both logical entity relationships can be
used to add, delete, read, and search a user with respect to a group.

This section includes the following operations:
» Create a "members" Relationship
= Read a "members" Relationship

= Delete a "'members" Relationship

Create a "members" Relationship

Shows how to assign a user to a group.

cURL Command
Create User "John"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'"{"uid":"John"Anderson", "commonname": "John Anderson","firstname":"John"}'

Create Group "Group1"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"groupl testuing", "commonname":"groupl"}"'

Create a Members Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/groupl/members -d
"{"group-uri":"\/idaas_rest\/rest\/userprofile\/group\/groupl",
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}"'

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl",
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/groupl\/members\/John"}

Read a "members" Relationship

Shows how to read a "members" relationship.

cURL Command

curl -i --request GET "http://localhost:14100/idaas_rest/
rest/userprofile/people/groupl/members/John"

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl",
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/groupl\/members\/John"}

12-44 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

Delete a "members" Relationship

Shows how to delete a "members" relationship profile.

cURL Command
Delete the Members Relationship

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/people/groupl /members/John/"

Delete User "John"

curl -i --request DELETE http://localhost:14100/idaas_rest/
rest/userprofile/people/John/

Delete Group "Group1"

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/groups/groupl/"

Expected Output
HTTP Status 200 (The request has succeeded.)

Sending Mobile and Social REST Calls With cURL 12-45

"manager" Relationship Operations

"manager" Relationship Operations

This section includes the following operations:
» Create a "manager” Relationship
= Read a "manager" Relationship

= Delete a "manager" Relationship

Create a "manager" Relationship

Shows how to assign a manager to a user.

cURL Command
Create User "John"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'"{"uid": "John"Anderson", "commonname": "John Anderson","firstname":"John"}'

Create User "Alan"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
"{"uid":"Alan", "description": "Manager User", "lastname":"Doe",
"commonname" : "Alan Doe","firstname":"Alan"}'

Create a Manager Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/John/manager/ -d
"{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}"'

Expected Output
{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John\/manager\/Alan",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}

Read a "manager" Relationship
Shows how to read a manager relationship profile.
cURL Command

curl -i --request GET "http://localhost:14100/idaas_rest/
rest/userprofile/people/John/manager/Alan"

Expected Output
{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John\/manager\/Alan",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}

Delete a "manager" Relationship

Shows how to delete the manager relationship.

12-46 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

cURL Command
Delete the Manager Relationship

curl -i --request DELETE "http://localhost:14100/
idaas_rest/rest/userprofile/people/John/manager/Alan"

Delete User "John"

curl -i --request DELETE http://localhost:14100/
idaas_rest/rest/userprofile/people/John/

Delete User "Alan"

curl -i --request DELETE "http://localhost:14100/
idaas_rest/rest/userprofile/people/Alan/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-47

"reports" Relationship Operations

"reports" Relationship Operations

This section includes the following operations:
» Create a "reports" Relationship
= Read a "reports" Relationship

= Delete a "reports" Relationship

Create a "reports" Relationship

Shows how to create a reports-to relationship.

cURL Command
Create User "John"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'"{"uid": "John"Anderson", "commonname": "John Anderson","firstname":"John"}'

Create User "Alan"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
"{"uid":"Alan", "description": "Manager User", "lastname":"Doe",
"commonname" : "Alan Doe","firstname":"Alan"}'

Create a Reports Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/Alan/reports/ -d
"{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}"'

Expected Output
{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan\/reports\/John",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}

Read a "reports" Relationship
Shows how to read a reports-to relationship.
cURL Command

curl -i --request GET "http://localhost:14100/idaas_rest/
rest/userprofile/people/Alan/reports/John"

Expected Output
{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan\/reports\/John",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}

Delete a "reports" Relationship

Shows how to delete a reports-to relationship.

cURL Command
Delete the Reports Relationship

12-48 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/people/Alan/reports/John"

Delete User "John"

curl -i --request DELETE http://localhost:14100/idaas_rest/
rest/userprofile/people/John/

Delete User "Alan"

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/people/Alan/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-49

"ownerOf" Relationship Operations

"ownerOf" Relationship Operations

This section includes the following operations:
s Create an "OwnerOf" Relationship

= Read an "OwnerOf" Relationship

s Delete an "OwnerOf" Relationship

Create an "OwnerOf" Relationship

Shows how to create an ownerOf relationship.

cURL Command
Create User "John"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'"{"uid": "John"Anderson", "commonname": "John Anderson","firstname":"John"}'

Create Group "group1"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"groupl testuing", "commonname":"groupl"}"'

Create an "ownerOf" Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/John/ownerOf/ -d
"{"group-uri":"\/idaas_rest\/rest\/userprofile\/group\/groupl",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}"'

Expected Output
{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan\/reports\/John",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}

Read an "OwnerOf" Relationship

Shows how to read an ownerOf relationship.

cURL Command

curl -i --request GET "http://localhost:14100/idaas_rest/
rest/userprofile/people/John/ownerOf/groupl"”

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John\/ownerOf\/groupl"}

Delete an "OwnerOf" Relationship

Shows how to delete an ownerOf relationship.

cURL Command
Delete the "ownerOf" Relationship

curl -i --request DELETE "http://localhost:14100/idaas_rest/

12-50 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

rest/userprofile/people/John/ownerOf/groupl"”

Delete User "John"

curl -i --request DELETE http://localhost:14100/idaas_rest/
rest/userprofile/people/John/

Delete Group "group1”

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/groups/groupl”

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-51

"personOwner" Relationship Operations

"personOwner" Relationship Operations

This section includes the following operations:
s Create an "OwnerOf" Relationship

= Read an "OwnerOf" Relationship

s Delete an "OwnerOf" Relationship

Create a "personOwner" Relationship

Shows how to create a personOwner relationship.

cURL Command
Create User "John"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
'"{"uid": "John"Anderson", "commonname": "John Anderson","firstname":"John"}'

Create Group "group1"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"groupl testing","commonname":"groupl"}"'

Create a "personOwner" Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/groupl/personOwner -d
"{"group-uri":"\/idaas_rest\/rest\/userprofile\/group\/groupl",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}"'

Expected Output
{"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan\/reports\/John",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/Alan"}

Read a "personOwner" Relationship

Shows how to read a personOwner relationship.

cURL Command
curl -i --request GET "http://localhost:18001/idaas_rest/
rest/userprofile/groups/groupl/personOwner/John"

Expected Output
{"owner-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl\/personOwner\/John"

Delete a "personOwner" Relationship

Shows how to delete a personOwner relationship.

cURL Command
Delete the "personOwner" Relationship

curl -i --request DELETE "http://localhost:18001/idaas_rest/

12-52 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

rest/userprofile/groups/groupl/personOwner/John"

Delete User "John"

curl -i --request DELETE http://localhost:14100/idaas_rest/
rest/userprofile/people/John/

Delete Group "group1”

curl -i --request DELETE "http://localhost:14100/idaas_rest/
rest/userprofile/groups/groupl/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-53

"groupOwner" Relationship Operations

"groupOwner" Relationship Operations

This section includes the following operations:
» Create a "groupOwner" Relationship
= Read a "groupOwner" Relationship

s Delete a "groupOwner" Relationship

Create a "groupOwner" Relationship
Shows how to create a groupOwner relationship.

cURL Command
Create Group "XYZ"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"XYZ Group", "commonname":"XYZ"}'

Create Group "ABC"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"ABC Group", "commonname":"ABC"}"'

Create a "groupOwner" Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/XYZ/groupOwner -d
'{"group-uri":"\/idaas_rest\/rest\/userprofile\/group\/XYZ",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/group\/ABC"}"'

Expected Output
{"owner-uri":"\/idaas_rest\/rest\/userprofile\/groups\/ABC",
"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ\/groupOwner\/ABC"}

Read a "groupOwner" Relationship

Shows how to read a groupOwner relationship.

cURL Command
curl -i --request GET "http://localhost:14100/
idaas_rest/rest/userprofile/groups/XYZ/groupOwner/ABC"

Expected Output
{"owner-uri":"\/idaas_rest\/rest\/userprofile\/people\/John",
"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/groupl\/personOwner\/John"

Delete a "groupOwner" Relationship

Shows how to delete a groupOwner relationship.

cURL Command
Delete the "groupOwner" Relationship

curl -i --request DELETE "http://localhost:14100/

12-54 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

idaas_rest/rest/userprofile/groups/XYZ/groupOwner /ABC"

Delete Group "XYZ"

curl -i --request DELETE http://localhost:14100/
idaas_rest/rest/userprofile/groups/XYZ/

Delete Group "ABC"

curl -1 --request DELETE "http://localhost:14100/
idaas_rest/rest/userprofile/groups/ABC/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-55

"groupOwnerOf" Relationship Operations

"groupOwnerOf" Relationship Operations

This section includes the following operations:
» Create a "groupOwnerOf" Relationship

= Read a "groupOwnerOf" Relationship

s Delete a "groupOwnerOf" Relationship

Create a "groupOwnerOf" Relationship
Shows how to create a groupOwnerOf relationship.

cURL Command
Create Group "XYZ"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"XYZ Group", "commonname":"XYZ"}'

Create Group "ABC"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"ABC Group", "commonname":"ABC"}"'

Create a "groupOwnerOf" Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ABC/groupOwnerOf -d
'{"group-uri":"\/idaas_rest\/rest\/userprofile\/group\/XYZ",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/group\/ABC"}"'

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/groups\/ABC",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/ABC\/groupOwnerOf\/XYZ"}

Read a "groupOwnerOf" Relationship

Shows how to read a groupOwnerOf relationship.

cURL Command
curl -i --request GET "http://localhost:14100/
idaas_rest/rest/userprofile/groups/ABC/groupOwnerOf /XYZ"

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"owner-uri":"\/idaas_rest\/rest\/userprofile\/groups\/ABC",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/ABC\/groupOwnerOf\/XYzZ"

Delete a "groupOwnerOf" Relationship

Shows how to delete a groupOwnerOf relationship.

cURL Command
Delete the "groupOwnerOf* Relationship

curl -i --request DELETE "http://localhost:14100/

12-56 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

idaas_rest/rest/userprofile/groups/ABC/groupOwnerOf/XYZ"

Delete Group "XYZ"

curl -i --request DELETE http://localhost:14100/
idaas_rest/rest/userprofile/groups/XYZ/

Delete Group "ABC"

curl -1 --request DELETE "http://localhost:14100/
idaas_rest/rest/userprofile/groups/ABC/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-57

"groupMemberOf" Relationship Operations

"groupMemberOf" Relationship Operations

This section includes the following operations:
s Create a "groupMemberOf" Relationship

= Read a "groupMemberOf" Relationship

s Delete a "groupMemberOf" Relationship

Create a "groupMemberOf" Relationship

Shows how to create a groupMemberOf relationship.

cURL Command
Create Group "XYZ"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"XYZ Group", "commonname":"XYZ"}'

Create Group "iCloud"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"iCloud Group", "commonname":"iCLOUD"}'

Create a "groupMemberOf" Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/XYZ/groupMemberOf -d
'{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD",
"member-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ"}"'

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD",
"member-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ\/groupMemberOf\/iCLOUD"}

Read a "groupMemberOf" Relationship

Shows how to read a groupMemberOf relationship.

cURL Command
curl -i --request GET "http://localhost:14100/
idaas_rest/rest/userprofile/groups/XYZ/groupMemberOf/iCLOUD"

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD",
"member-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ\/groupMemberOf\/iCLOUD"

Delete a "groupMemberOf" Relationship
Shows how to delete a groupMemberOf relationship.

cURL Command
Delete the "groupMemberOf* Relationship

curl -i --request DELETE "http://localhost:14100/

12-58 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

idaas_rest/rest/userprofile/groups/XYZ/groupMemberOf/iCLOUD"

Delete Group "XYZ"

curl -i --request DELETE http://localhost:14100/
idaas_rest/rest/userprofile/groups/XYZ/

Delete Group "iCLOUD"

curl -1 --request DELETE "http://localhost:14100/
idaas_rest/rest/userprofile/groups/iCLOUD/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-59

"groupMembers" Relationship Operations

"groupMembers" Relationship Operations

This section includes the following operations:
» Create a "groupMembers" Relationship

= Read a "groupMembers" Relationship

s Delete a "groupMembers" Relationship

Create a "groupMembers" Relationship

Shows how to create a groupMembers relationship.

cURL Command
Create Group "XYZ"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"XYZ Group", "commonname":"XYZ"}'

Create Group "iCloud"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/ -d
'{"description":"iCloud Group", "commonname":"iCLOUD"}'

Create a "groupMembers" Relationship

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/groups/iCLOUD/groupMembers -d
'{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD",
"member-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ"}"'

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD",
"member-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD\ /groupMembers\/XYZ"}

Read a "groupMembers" Relationship

Shows how to read a groupMembers relationship.

cURL Command
curl -i --request GET "http://localhost:14100/
idaas_rest/rest/userprofile/groups/iCLOUD/groupMembers"

Expected Output
{"group-uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD",
"member-uri":"\/idaas_rest\/rest\/userprofile\/groups\/XYZ",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/iCLOUD\/groupMemberOf\/XYz"

Delete a "groupMembers" Relationship

Shows how to delete a groupMembers relationship.

cURL Command
Delete the "groupMembers" Relationship

curl -i --request DELETE "http://localhost:14100/idaas_rest/rest/

12-60 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

userprofile/groups/iCLOUD/groupMembers"

Delete Group "XYZ"

curl -i --request DELETE http://localhost:14100/
idaas_rest/rest/userprofile/groups/XYZ/

Delete Group "iCLOUD"

curl -1 --request DELETE "http://localhost:14100/
idaas_rest/rest/userprofile/groups/iCLOUD/"

Expected Output
No response.

Sending Mobile and Social REST Calls With cURL 12-61

Search User Operations

Search User Operations

This section includes the following operations:

» Search Users

s Search Users With PageSize and PagePos

» Search Users With a Search Parameter and Without a Search Filter
» Search Users With a Search Filter

= Search Groups

= Search Relationships

Search Users

Shows how to get a list of all users.

cURL Command
curl -i --request GET http://localhost:14100/idaas_rest/rest/userprofile/people

Expected Output
{"next":"\/idaas_rest\/rest\/userprofile\/people?pageSize=10&pagePos=1",
"elements":[{"uid":"OracleSystemUser", "guid":"E9A3B390581611E19F08FB1E3902A71C",
"description":"Oracle]]]] application software system user.",

"name": "OracleSystemUser", "lastname": "OracleSystemUser",

"commonname" : "OracleSystemUser", "loginid": "OracleSystemUser",

"uniquename" : "E9A3B390581611E19F08FB1E3902A71C",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/OracleSystemUser"},
{"uid":"weblogic", "guid":"E9A4C500581611E19F08FB1E3902A71C",
"description":"This user is the default administrator.","name":"weblogic",
"lastname": "weblogic", "commonname": "weblogic", "loginid": "weblogic",
"uniquename" : "E9A4C500581611E19F08FB1E3902A71C",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic"},
{"uid":"alice", "guid":"D8D1907158F511E1BFDCF77FB8E715D5",
"description":"This test user is alice.","name":"alice","lastname":"alice",
"commonname":"alice", "loginid":"alice",
"uniquename":"D8D1907158F511E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/alice"},

{"uid":"sean", "guid":"D8D5AF2058F511E1BFDCF77FB8E715D5",
"description":"This test user is sean.","name":"sean","lastname":"sean",
"commonname": "sean", "loginid":"sean",

"uniquename" : "D8D5AF2058F511E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/sean"},

{"uid":"wei", "guid":"D8D6245058F511E1BFDCF77FB8E715D5",
"description":"This test user is wei.","name":"wei", "lastname":"wei",
"commonname" : "wei", "loginid": "wei",

"uniquename": "D8D6245058F511E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/wei"},

{"uid":"malla", "guid":"D8D64B6058F511E1BFDCF77FB8E715D5",
"description":"This test user is malla.", "name":"malla","lastname":"malla",
"commonname":"malla", "loginid":"malla",

"uniquename" : "D8D64B6058F511E1IBFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/malla"},

{"uid":"alan", "guid":"D8D6998058F511E1BFDCF77FB8E715D5",
"description":"This test user is alan.","name":"alan","lastname":"alan",
"commonname":"alan", "loginid":"alan",

"uniquename" : "D8D6998058F511E1BFDCF77FB8E715D5",

12-62 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

"uri":"\/idaas_rest\/rest\/userprofile\/people\/alan"},
"uri":"\/idaas_rest\/rest\/userprofile\/people?pageSize=10&pagePos=0"}

Search Users With PageSize and PagePos

Shows how to get a list of users while specifying a page size and the page position.

cURL Command

curl -i --request GET "http://localhost:14100/
idaas_rest/rest/userprofile/people?pagePos=0&pageSize=1"

Expected Output
{"next":"\/idaas_rest\/rest\/userprofile\/people?pageSize=1&pagePos=1",
"elements":[{"uid":"OracleSystemUser", "guid":"E9A3B390581611E19F08FB1E3902A71C",
"description":"Oracle]] application software system user.",

"name": "OracleSystemUser", "lastname": "OracleSystemUser",

"commonname" : "OracleSystemUser", "loginid": "OracleSystemUser",

"uniquename" : "E9A3B390581611E19F08FB1E3902A71C",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/OracleSystemUser"}],
"uri":"\/idaas_rest\/rest\/userprofile\/people?pageSize=1&pagePos=0"}

Search Users With a Search Parameter and Without a Search Filter

Shows how to get a list of users while specifying a search parameter but not a search
filter.

cURL Command

curl -i --request GET "http:/localhost:14100/idaas_rest/rest/userprofile/people/
?pagePos=0&pageSize=10&searchparam.name=John*"

Expected Output

{"elements":[{"uid":"John", "guid":"E932E4F0590911E1BFDCF77FB8E715D5",
"description":"test user","name":"John", "lastname":"Anderson",
"commonname" : "John Anderson", "loginid":"John","firstname":"John",
"uniquename": "E932E4F0590911E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}],
"uri":"\/idaas_rest\/rest\/userprofile\/people?pageSize=10
&searchparam.name=John+Anderson&pagePos=0"}

Search Users With a Search Filter

Shows how to get a list of users while specifying the default "out-of-the-box" simple
AND search filter.

cURL Command

curl -i --request GET "http:/localhost:14100/idaas_rest/rest/userprofile/
people?searchFilter=SimpleOR&searchparam.uid=John&searchparam.lastname=TEST"

Expected Output

{"elements": [{

"uid":"John",
"guid":"E932E4F0590911E1BFDCF77FB8E715D5"
"description":"test user",

"name":"John",

"lastname": "Anderson",

"commonname" : "John Anderson",

Sending Mobile and Social REST Calls With cURL 12-63

Search User Operations

"loginid":"John",

"firstname":"John",

"uniquename" : "E932E4F0590911E1BFDCF77FB8E715D5",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/John"}],
"uri":"\/idaas_rest\/rest\/userprofile\/people?pageSize=10
&searchFilter=SimpleOR&searchparam.lastname=TEST&searchparam.uid=John&pagePos=0"}

Search Groups

Shows how to get Group information.

cURL Command

curl -i --request GET "http:/localhost:14100/idaas_rest/rest/userprofile/
groups/?pagePos=0&pageSize=2"

Expected Output
{"next":"\/idaas_rest\/rest\/userprofile\/groups?pageSize=2&pagePos=1",
"elements": [{

"guid":"7CF7EC60724811E1BFB5AB6AIEAE415B",
"description":"AdminChannelUsers]] can access the admin channel.",
"name" : "AdminChannelUsers",

"commonname" : "AdminChannelUsers",
"uniquename":"7CF7EC60724811E1BFB5AB6A1E4E415B",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/AdminChannelUsers"},
{"guid":"7CF7EC61724811E1BFB5AB6AIE4E415B",
"description":"Administrators can view and modify all resource attributes and
start and stop servers.",

"name" : "Administrators",

"commonname" : "Administrators",

"uniquename" : "7CF7EC61724811E1BFB5AB6AIE4E415B",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/Administrators"}],
"yri":"\/idaas_rest\/rest\/userprofile\/groups?pageSize=2&pagePos=0"}

Search Relationships

Given the name of a person in an organization, allows you to search for the person’s
manager.

cURL Command

curl -i --request GET "http:/localhost:14100/idaas_rest/rest/userprofile/
people/JohnD/manager/?pagePos=0&pageSize=2"

Expected Output
{"elements": [{
"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager\/SusanS",
"manager-uri":{
"uyid":"SusanS",
"manager":"\/idaas_rest\/rest\/userprofile\/people\/SusanS\/manager",
"state":"CA",
"lastname":"Smith",
"firstname":"Susan",
"loginid":"SusanS",
"uniquename" : "5B543C30790511E1AF41BD17BABIALCL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS",
"country":"USA",

12-64 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

"guid":"5B543C30790511E1AF41BD17BAB1ALICL",

"title":"Sr]]. Director, Development ",

"name" : "SusanS",

"commonname" : "Susan Smith"}
.
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\ /manager?pageSize=2
&pagePos=0"}

Sending Mobile and Social REST Calls With cURL 12-65

The "attrsToFetch" Query Parameter Feature

The "attrsToFetch" Query Parameter Feature

Use the attrsToFetch query parameter to retrieve a specific set of attributes instead of
the full set of attributes that the system returns otherwise. To specify multiple
attributes use a comma-separated list of attribute names.

For example:
.../people/alice?attrsToFetch=uid, email

The attrsToFetch query parameter can be used with any Search, Read, User, Group,
or Relationship operation.

This section includes the following examples:
= Read a User With attrsToFetch

s Search Groups With attrsToFetch

= Search a Relationship With attrsToFetch

Read a User With attrsToFetch

This example shows how to retrieve the User’s common name only. Without the
attrsToFetch parameter, the system would retrieve the full set of User attributes.

cURL Command
curl -i --request GET
"http://host:10/idaas_rest/rest/userprofile/people/Alice/?attrsToFetch=commonname"

Expected Output With attrsToFetch

{

"commonname": "Alice Mac",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/Alice"}

Expected Output Without attrsToFetch

{

"uid":"Alice",
"guid":"C04020C078FE11E1AF41BD17BAB1ALICL",
"description":"Alice User",

"name":"Alice",

"lastname":"Mac",

"commonname" :"Alice Mac",

"loginid":"Alice",

"firstname":"Alice",
"uniquename":"C04020C078FE11E1AF41BD17BAB1ALICL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/Alice"}

Search Groups With attrsToFetch

This example shows how to search Groups and retrieve only the name of each Group.
Without the attrsToFetch parameter, the system would retrieve every attribute of
each Group.

cURL Command

curl -i --request GET
"http:/host:10/idaas_rest/rest/userprofile/groups?pagePos=0&pageSize=2
&attrsToFetch=name"

Expected Output With attrsToFetch

{"next":

12-66 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

"\ /idaas_rest\/rest\/userprofile\/groups?pageSize=2&attrsToFetch=name&pagePos=1",
"elements": [{

"name" : "AdminChannelUsers",
"yri":"\/idaas_rest\/rest\/userprofile\/groups\/AdminChannelUsers"},

{

"name": "Administrators",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/Administrators"

.

"uri":"\/idaas_rest\/rest\/userprofile\/groups?pageSize=2&attrsToFetch=name
&pagePos=0"}

Expected Output Without attrsToFetch

{"next":

"\ /idaas_rest\/rest\/userprofile\/groups?pageSize=2&pagePos=1",
"elements": [{

"guid":"7CF7EC60724811E1BFB5AB6AIE4AE415B",
"description":"AdminChannelUsers can access the admin channel.",
"name" : "AdminChannelUsers",

"commonname" : "AdminChannelUsers",
"uniquename":"7CF7EC60724811E1BFB5AB6A1E4E415B",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/AdminChannelUsers"},
{

"guid":"7CF7EC61724811E1BFB5AB6ALIE4E415B",
"description":"Administrators can view and modify all resource attributes and
start and stop servers.",

"name": "Administrators",

"commonname" : "Administrators",
"uniquename":"7CF7EC61724811E1BFB5AB6AIE4AE415B",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/Administrators"

iy
"uri":"\/idaas_rest\/rest\/userprofile\/groups?pageSize=2&pagePos=0"}

Search a Relationship With attrsToFetch

This example shows how to retrieve the name of the Groups that a User is a member
of. Without the attrsToFetch parameter, the system would retrieve the full set of
Group attributes for each Group.

cURL Command

curl -i --request GET
"http://host:10/idaas_rest/rest/userprofile/people/weblogic/memberOf?
pagePos=0&pageSize=2&attrsToFetch=name"

Expected Output With attrsToFetch
{"next":
"\ /idaas_rest\/rest\/userprofile\/people\/weblogic\/memberOf?
pageSize=2&attrsToFetch=name&pagePos=1",
"elements": [
{
"group-uri":
{
"name": "Administrators",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/Administrators"
I
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic\/memberOf\/
Administrators"

Iy

Sending Mobile and Social REST Calls With cURL 12-67

The "attrsToFetch" Query Parameter Feature

"group-uri":
{
"name" : "OAAMEnvAdminGroup",
"uri":"\/idaas_rest\/rest\/userprofile\/groups\/OAAMEnvAdminGroup"
I
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic",
"uri":"\/idaas_ rest\/rest\/userprofile\/people\/weblogic\/memberOf\/
OAAMENnvVAdminGroup"
.
"yri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic\/memberOf?
pageSize=2&attrsToFetch=name&pagePos=0"}

Expected Output Without attrsToFetch
{"next":
"\ /idaas_rest\/rest\/userprofile\/people\/weblogic\/memberOf?
pageSize=2&pagePos=1",
"elements": [
{
"group-uri":
{
"guid":"7CF7EC61724811E1BFB5AB6AIE4AE41I5B",
"description":"Administrators can view and modify all resource attributes
and start and stop servers.",
"name": "Administrators",

"commonname" : "Administrators",

"uniquename":"7CF7EC61724811E1BFB5AB6A1E4E4A15B",

"uri":"\/idaas_rest\/rest\/userprofile\/groups\/Administrators"

b
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic\/memberOf\/

Administrators"
3,
{
"group-uri":
{

"guid":"7CF83A81724811E1BFB5AB6A1E4AE415B",

"description": "EnvAdminGroup",

"name" : "OAAMEnvAdminGroup",

"commonname" : "OAAMEnvAdminGroup",

"uniquename":"7CF83A81724811E1BFB5AB6A1E4AE415B",

"uri":"\/idaas_rest\/rest\/userprofile\/groups\/OAAMEnvAdminGroup"

I
"person-uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic\/memberOf\/

OAAMEnvAdminGroup"
I
"uri":"\/idaas_rest\/rest\/userprofile\/people\/weblogic\ /memberOf?
pageSize=2&pagePos=0"}

12-68 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

The "prefetch” Query Parameter Feature

Use the prefetch query parameter to expand a query to retrieve a collection of
attributes linked to the User or Group or Relationship that is the subject of the query.
To specify multiple attributes use a comma-separated list of attribute names.

For example:
.../people/alice?prefetch=attrl,attr2(bl,b2),attr3 (bl,b2,b3)

If you do not specify the prefetch query parameter, the system returns the requested
URI only.

You can use the prefetch query parameter with any User, Group, or Relationship
profile operation, but not a Search operation.

So for example, you can use prefetch with instance resources such as the following:

m .../people/alice
m .../groups/Admin
m .../people/alice/memberOf/Admin

But you cannot use prefetch with collection resources, such as the following:

u .../people
u .../groups
m .../people/alice/memberOf

This section includes one example:

= Read a User With prefetch

Read a User With prefetch

This example shows how to retrieve the collection of "manager" attributes for the
specified user in addition to the full set of User attributes that is returned by default.

cURL Command

curl -i --request GET
"http://localhost:16191/idaas_rest/rest/userprofile/people/JohnD/
?prefetch=manager"

Expected Output With prefetch
{
"uid":"JohnD",
"manager" :
{"elements":
[{
"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager\/SusanS",
"manager-uri":
{
"uid":"SusanS",
"manager":"\/idaas_rest\/rest\/userprofile\/people\/SusanS\/manager",
"state":"CA",
"lastname":"Smith",
"firstname":"Susan",
"loginid":"SusanS",
"uniquename":"5B543C30790511E1AF41BD17BABIALICL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS",

Sending Mobile and Social REST Calls With cURL 12-69

The "prefetch" Query Parameter Feature

"country":"USA",
"guid":"5B543C30790511E1AF41BD17BAB1ALICL",
"title":"Sr]]. Director, Development ",
"name" : "SusanS",
"commonname" : "Susan Smith"
}
Iy
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager
?pageSize=0&pagePos=-1"
},
"state":"CA",
"lastname" : "Doe",
"firstname":"John",
"loginid":"JohnD",
"uniquename":"2F23AC90790511E1AF41BD17BAB1ALICL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"country":"USA",
"guid":"2F23AC90790511E1AF41BD17BAB1ALICL",
"title":"Director, Development ",
"name":"JohnD",
"commonname" : "John Doe"}

Expected Output Without prefetch

{

"uid":"JohnD",
"manager":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager",
"state":"CA",

"lastname": "Doe",

"firstname":"John",

"loginid":"JohnD",

"uniquename" : "2F23AC90790511E1AF41BD17BABIALCL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"country":"USA",
"guid":"2F23AC90790511E1AF41BD17BAB1AICL",
"title":"Director, Development ",

"name" : "JohnD",

"commonname" : "John Doe"}

12-70 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

The "scope" Query Parameter Feature

Use the scope query parameter to retrieve a nested level of attributes in a relationship
search.

For example:
.../people/JohnD/manager?scope=toTop

Use scope if a search is between two entities that have a direct hierarchical
relationship, for example a manager relationship between one user and another user, or
a memberOf relationship between a user and a group.

The scope query parameter can be used with the following User Profile Services
standard entities: manager, reports, groupMemberOf, groupMembers, groupOwner,
and groupOwnerOf.

Note: Configure the toTop scope attribute value by editing the User
Profile Service Provider in the Oracle Access Management system
administration console. In the Relationship Configuration section of
the page, edit the values in the Scope for Requesting Recursion
column. See "Editing or Creating a User Profile Service Provider" in
the Administrator’s Guide for Oracle Access Management for more
information.

This section includes one example:

= Search a Relationship With scope

Search a Relationship With scope

This example shows how to do a Manager relationship Search with scope set toTop.

cURL Commands
Create User "JohnD"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
{

"uid":"JohnD",

"title":"Director, Development ",

"state":"CA",

"lastname": "Doe",

"commonname": "John Doe ",

"firstname":"John",

"password": "secret12345",

"country":"USA"}'

Create User "SusanS"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d
{

"uid":"SusanS",

"title":"Sr. Director, Development ",

"state":"CA",

"lastname":"Smith",

Sending Mobile and Social REST Calls With cURL 12-71

The "scope" Query Parameter Feature

"commonname" : "Susan Smith",
"firstname":"Susan",
"password":"12345secret",
"country":"USA"}'

Create User "AlanC"

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/ -d

R
"uid":"AlanC",
"title":"VP, Identity Management Development ",
"state":"CA",

"lastname": "Cooper",
"commonname": "Alan Cooper",
"firstname":"Alan",
"password": "welcome321",
"country":"USA"}'

Create a "manger" relationship between JohnD and SusanS

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/JohnD/manager -d
'
"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS"}"'

Create a "manager” relationship between SusanS and AlanC

curl -H "Content-Type: application/json" --request POST
http://localhost:14100/idaas_rest/rest/userprofile/people/SusanS/manager -d
'
"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS",
"manager-uri":"\/idaas_rest\/rest\/userprofile\/people\/AlanC"}"'

Perform a "manager” relationship Search with scope = toTop

curl -i --request GET "http://localhost:14100/idaas_rest/rest/userprofile/people/
JohnD/manager/?scope=toTop&pagePos=0&pageSize=2"

Expected Output With scope = toTop

{"next":

"\ /idaas_rest\/rest\/userprofile\/people\/JohnD\ /manager

?pageSize=2&scope=toTop&pagePos=1",

"elements":

[{
"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager\/SusanS",
"manager-uri":

{

"uid":"SusansS",
"manager":"\/idaas_rest\/rest\/userprofile\/people\/SusanS\/manager",
"state":"CA",

"lastname":"Smith",

"firstname":"Susan",

"loginid":"Susans",

"uniquename": "5B543C30790511E1AF41BD17BABIAICL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/SusansS",
"country":"USA",
"guid":"5B543C30790511E1AF41BD17BAB1ALICL",

"title":"Sr. Director, Development ",

"name": "SusanS",

12-72 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Mobile Services REST Reference: Commands for User Profile Services

"commonname" : "Susan Smith"
}
I

"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS\/manager\/AlanC",
"manager-uri":
{

"uid":"AlanC",

"guid":"31486BE0790611E1AF41BD17BAB1AICL",

"title":"VP, Identity Management Development ",

"name":"AlanC",

"state":"CA",

"lastname": "Cooper",

"commonname" : "Alan Cooper",

"loginid":"AlanC",

"firstname":"Alan",

"uniquename":"31486BE0790611E1AF41BD17BABIAICL",

"uri":"\/idaas_rest\/rest\/userprofile\/people\/AlanC",

"country":"USA"

.
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager
?pageSize=2&scope=toTop&pagePos=0"}

Expected Output Without scope = toTop
{"elements":

[{
"report-uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager\/SusanS",
"manager-uri":

{
"uid":"SusanS",
"manager":"\/idaas_rest\/rest\/userprofile\/people\/SusanS\/manager",
"state":"CA",
"lastname":"Smith",
"firstname":"Susan",
"loginid":"SusanS",
"uniquename" : "5B543C30790511E1AF41BD17BABIALCL",
"uri":"\/idaas_rest\/rest\/userprofile\/people\/SusanS",
"country":"USA",
"guid":"5B543C30790511E1AF41BD17BAB1ALICL",
"title":"Sr. Director, Development ",
"name": "SusanS",
"commonname" : "Susan Smith"
}
I
"uri":"\/idaas_rest\/rest\/userprofile\/people\/JohnD\/manager
?pageSize=2&pagePos=0"}

Sending Mobile and Social REST Calls With cURL 12-73

Practical Examples

Practical Examples

The examples in this section present a progression of REST calls. First a device
registration handle is acquired and then used in subsequent calls to the Mobile and
Social server in order to authenticate a user, obtain access to a protected resource, and
interact with User Profile Services. The basic sequence is (1) obtain a device
registration handle, (2) obtain a user token, and (3) obtain an access token.

Note: The REST examples presented in this section include line
breaks and indented code blocks to help make them easy to read.

= Mobile SSO Agent Requests Client Registration Handle (Client Token)

= Mobile SSO Agent Requests Client Registration Handle on Behalf of Business App
= A User Token Request

= An Access Token Request

» Access Manager Master Token Authentication

s Device Registration Request with KBA Response

12-74 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Practical Examples

Mobile SSO Agent Requests Client Registration Handle (Client Token)

This example shows the client registration request call that the mobile SSO agent app

on an iOS device sends to the Mobile and Social Server.

The Request

curl -H "Content-Type: application/json" --request POST
http://hostname.example.com:18001/idaas_rest/rest/mobilejwtauthentication/register
-H 'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain'
-d
'
"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username":"jdoe",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTREGHANDLE" ,
"deviceProfile":
{
"oracle:idm:claims:client:sdkversion":"11.1.2.0.0",
"hardwareIds":
{
"oracle:idm:claims:client:udid":"0e83ff56al2a9cf0c7",
"oracle:idm:claims:client:phonenumber":"1-650-555-1234",
"oracle:idm:claims:client:macaddress":"00-16-41-34-2C-A6",
"oracle:idm:claims:client:imei":"010113006310121"
Iy
"oracle:idm:claims:client:jailbroken":false,
"oracle:idm:claims:client:geolocation":"+40.689060,-74.044636",
"oracle:idm:claims:client:networktype": "PHONE_CARRIER",
"oracle:idm:claims:client:vpnenabled":false,
"oracle:idm:claims:client:ostype":"iPhone 0S",
"oracle:idm:claims:client:phonecarriername": "AT&T",
"oracle:idm:claims:client:locale":"EN-US",
"oracle:idm:claims:client:osversion":"4.0"
}
"clientId":"OICSecurityApp"
} 1

The Response
{"X-Idaas-Rest-Token-Value":"eyJ0b2t1blR...19M=",
"X-Idaas-Rest-Token-Type": "CLIENTREGHANDLE",
"handles":
{"oaam.device":
{
"expirationTSInSec":1334423076,
"value":"20_7fedbde3d448598c4cb8211d214b5eaded0620428c06061b1261644603717cd3"
Iy
"oaam.session":
{
"expirationTSInSec":1332955447,
"value":"18_2743f64c111cb6691ea18689317958192d748b191a4955851e43£40910079e9a"
}

Sending Mobile and Social REST Calls With cURL

12-75

Mobile SSO Agent Requests Client Registration Handle on Behalf of Business App

Mobile SSO Agent Requests Client Registration Handle on Behalf of Business App

The Request

curl -H "Content-Type: application/json" --request POST
http://hostname.example.com:18001/idaas_rest/rest/mobilejwtauthentication/register
-H 'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain'
-H 'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="T01DU2VjdxJ...Gw5TT0=""
-d
'
"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username":"jdoe",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTREGHANDLE",
"deviceProfile":
{
"oracle:idm:claims:client:sdkversion":"11.1.2.0.0",
"hardwareIds":
{
"oracle:idm:claims:client:udid":"0e83ff56al2a9cf0c7",
"oracle:idm:claims:client:phonenumber":"1-650-555-1234",
"oracle:idm:claims:client :macaddress":"00-16-41-34-2C-A6",
"oracle:idm:claims:client:imei":"010113006310121"
Iy
"oracle:idm:claims:client:jailbroken":false,
"oracle:idm:claims:client:geolocation":"+40.689060,-74.044636",
"oracle:idm:claims:client:networktype" : "PHONE_CARRIER",
"oracle:idm:claims:client:vpnenabled":false,
"oracle:idm:claims:client:ostype":"iPhone 0S",
"oracle:idm:claims:client:phonecarriername": "AT&T",
"oracle:idm:claims:client:locale":"EN-US",
"oracle:idm:claims:client:osversion":"4.0"
}
"handles":
{"oaam.session":"18_2743f64c111cb6691eal8689317958192d748b191a4955851e43£40910079e9%a",
"oaam.device":"20_7fedbde3d448598c4cb8211d214b5eaded0620428c06061b1261644603717cd3"
I
"clientId":"WhitePageApp"
} 1

The Response

{"X-Idaas-Rest-Token-Value":"eyJ0b2t1blR. . .Lyhko=",
"X-Idaas-Rest-Token-Type": "CLIENTREGHANDLE",
"handles":
{"oaam.device":
{
"expirationTSInSec":1334423298,
"value":"20_7fedbde3d448598c4chb8211d214b5eaded0620428c0606101261644603717cd3"
b
"oaam.session":
{
"expirationTSInSec":1332955669,
"value":"18_2743f64c111cb6691ea18689317958192d748b191a4955851e43£40910079e9%a"
}

12-76 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Practical Examples

A User Token Request

The Request

curl -H "Content-Type: application/json" --request POST
http://hostname.example.com:18001/idaas_rest/rest/mobilejwtauthentication/authenticate
-H 'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain'
-H 'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="T01DU2VjdxJpdHlBc...Fa00vOD0O=""
-d
'
"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL",
"X-Idaas-Rest-Subject-Username":"jdoe",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create" : "USERTOKEN",
"deviceProfile":
{
"oracle:idm:claims:client:sdkversion":"11.1.2.0.0",
"hardwareIds":
{
"oracle:idm:claims:client:udid":"0e83ff56al2a9cf0c7",
"oracle:idm:claims:client:phonenumber":"1-650-555-1234",
"oracle:idm:claims:client:macaddress":"00-16-41-34-2C-A6",
"oracle:idm:claims:client:imei":"010113006310121"
I
"oracle:idm:claims:client:jailbroken":false,
"oracle:idm:claims:client:geolocation":"+40.689060,-74.044636",
"oracle:idm:claims:client:networktype" : "PHONE_CARRIER",
"oracle:idm:claims:client:vpnenabled":false,
"oracle:idm:claims:client:ostype":"iPhone 0S",
"oracle:idm:claims:client:phonecarriername":"AT&T",
"oracle:idm:claims:client:locale":"EN-US",
"oracle:idm:claims:client:osversion":"4.0"
}
"handles":
{"oaam.session":"21 9e2e728b3180a7a3c9b80cef542c58339¢c2c7edlelalbabbdbd807eflcfl15234d",
"oaam.device":"23_3a958d144b04£91c53b4236ed9£880357122df946£14ba21d957beb5b49ef529b"
}

The Response

{"X-Idaas-Rest-Token-Value": "eyJhbGci0iJSUzUx. ..10C6qw",
"X-Idaas-Rest-Token-Type": "USERTOKEN",
"handles":
{"oaam.device":
{
"expirationTSInSec":1334424634,
"value":"23_3a958d144b04£91c53b4236ed9£880357122df946f14ba21d957be5b49ef529b"
Iy
"oaam.session":
{
"expirationTSInSec":1332957005,
"value":"21_9e2e728b3180a7a3c9b80cef542c58339c2¢c7edlelal3babbdbd807eflcf15234"
}

Sending Mobile and Social REST Calls With cURL 12-77

An Access Token Request

An Access Token Request

The Request

curl -H "Content-Type: application/json" --request POST
http://hostname.example.com:18001/idaas_rest/rest/mobilejwtauthentication/access
-H 'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain'
-H 'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="T01DU2VjdxXJpdHlBc...TFPQzZxdw==""
-d
'
"X-Idaas-Rest-Subject-Type": "TOKEN",
"X-Idaas-Rest-Subject-Value": "eyJhbGci0iJSUzUxM. . .4110C6qw",
"X-Idaas-Rest-Application-Context":"<webgate context>",
"X-Idaas-Rest-Application-Resource":"http:\/\/am-v40z-04.us.example.com:7777\/index.html",
"X-Idaas-Rest-New-Token-Type-To-Create": "ACCESSTOKEN",
"deviceProfile":
{
"oracle:idm:claims:client:sdkversion":"11.1.2.0.0",
"hardwareIds":
{
"oracle:idm:claims:client:udid":"0e83ff56al2a9cf0c7",
"oracle:idm:claims:client:phonenumber":"1-650-555-1234",
"oracle:idm:claims:client:macaddress":"00-16-41-34-2C-26",
"oracle:idm:claims:client:imei":"010113006310121"
Iy
"oracle:idm:claims:client:jailbroken":false,
"oracle:idm:claims:client:geolocation":"+40.689060,-74.044636",
"oracle:idm:claims:client:networktype" : "PHONE_CARRIER",
"oracle:idm:claims:client:vpnenabled":false,
"oracle:idm:claims:client:ostype":"iPhone 0S",
"oracle:idm:claims:client:phonecarriername": "AT&T",
"oracle:idm:claims:client:locale": "EN-US",
"oracle:idm:claims:client:osversion":"4.0"
}
"handles":
{"oaam.session":"21_9e2e728b3180a7a3c9b80cef542c58339¢c2¢c7edlelal3babbdbd807eflcfl5234",
"oaam.device":"23_3a958d144b04£91c53b4236ed9£880357122df946f14ba21d957be5b49ef529b"
}
} 1

12-78 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Practical Examples

Access Manager Master Token Authentication

-d
'

The Request

curl -H "Content-Type: application/json" --request POST
http://hostname.example.com:18001/idaas_rest/rest/mobilejwtauthentication/authenticate
-H 'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain'

-H 'X-IDAAS-REST-AUTHORIZATION: UIDPASSWORD cred="T01DU2VjdxJpdHlBc...TFPQzZxdw==""

"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL"
"X-Idaas-Rest-Subject-Username":"jdoe",
"X-Idaas-Rest-Subject-Password": "passwordl23",
"X-Idaas-Rest-New-Token-Type-To-Create" : "USERTOKEN",
"OAM-Token-Type-To-Create" : "USERTOKEN: : OAMMT",
"deviceProfile":

{

"oracle:idm:claims:client:sdkversion":"11.1.2.0.0",
"hardwareIds":

{

"oracle:
"oracle:
"oracle:
"oracle:

H

"oracle:
"oracle:
"oracle:
"oracle:
"oracle:
"oracle:
"oracle:
"oracle:

}
"handles":

idm:
idm:
idm:
idm:
idm:
idm:
idm:
idm:

idm:claims:
idm:claims:
idm:claims:
idm:claims:

claims:
claims:
claims:
claims:
claims:
claims:
claims:
claims:

client:
client:
client:
client:
client:
client:
client:
client:

client:udid":"0e83ff56al2a9cf0c7",
client:phonenumber":"1-650-555-1234",
client:macaddress":"00-16-41-34-2C-A6",
client:imei":"010113006310121"

jailbroken":false,
geolocation":"+40.689060,-74.044636",
networktype": "PHONE_CARRIER",
vpnenabled":false,

ostype":"iPhone 0S",
phonecarriername": "AT&T",
locale":"EN-US",

osversion":"4.0"

{"oaam.session":"21_9e2e728b3180a7a3c9b80cef542c58339¢c2¢c7edlelal3babbdbd807eflcfl5234",
"oaam.device":"23_3a958d144b04£91c53b4236ed9£880357122df946£14ba21d957bebb49ef529b"

}
} 1

Sending Mobile and Social REST Calls With cURL 12-79

Device Registration Request with KBA Response

Device Registration Request with KBA Response

Knowledge-based authentication (KBA) is an authentication scheme in which the user
is asked to answer at least one question.

The Request to Register a Device

curl -H "Content-Type: application/json" --request POST
http://serverl.domain.com:14100/
oic_rest/rest/mobileoamauthentication/register -H
'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain' -d

' {"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTREGHANDLE" ,
"X-Idaas-Rest-Subject-Password": "welcomel",
"deviceProfile":{"oracle:idm:claims:client:sdkversion":"11.1.2.0.0", "hardwareIds":
{"oracle:idm:claims:client:udid":"0e83ff56al2a9cf0c7",
"oracle:idm:claims:client:phonenumber":"1-650-555-1234",
"oracle:idm:claims:client:macaddress":"00-16-41-34-2C-A6",
"oracle:idm:claims:client:imei":"010113006310121"},
"oracle:idm:claims:client:jailbroken":false,
"oracle:idm:claims:client:geolocation":"+40.689060,-74.044636",
"oracle:idm:claims:client:networktype": "PHONE_CARRIER",
"oracle:idm:claims:client:vpnenabled":false,
"oracle:idm:claims:client:ostype":"iPhone 0S",
"oracle:idm:claims:client:phonecarriername" : "AT&T",
"oracle:idm:claims:client:locale":"EN-US",
"oracle:idm:claims:client:osversion":"4.0"},
"X-Idaas-Rest-Subject-Username": "JohnS", "clientId":"OICSSOApp",
"X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL"}'

The Response Containing the KBA Question

{"handles":{"oaam.device":{"expirationTSInSec":1352076952, "value":"563_
23552f26€974030dc16018cc6b76237432¢363d47a019cec8c73aal318caf2f97"},
"oaam.session":{"expirationTSInSec":1350609323, "value":"561_
419dc5ee6b325535dd026c882ac67cabec271dd7e0297ab73¢c74573a49dec233a"},
"oic.multiStepAuthnSessionHandle": {"expirationTSInSec":1350606623, "value":
"eyJvemlnU2VjdXJpdH1FdmVudHMi01 s 1 UkVHXINFQ1VSSVRZXONMSUVOVFIBUFA1IXSwib3Jpz1J1cUlhe
CI6eyJjbGl1bnRIUEFKZHI1c3Mi01IXMCAXMZMUMTMSLIEOMYyIsI1gt SWRhYXMtUmVzdC1TAWIgZWNOLVB
hc3N3b3JkIjoid2VsY29tZTEILCIYLUlKYWFzLVJI1c3QtTmV3LVRva2VuLVR5cGULVG8tQ3J1YXR1TIjoiQ
0xJRUSUUKVHSEFOREXFIiwiWC1JZGFhcylSZXNOLVN1YmplY3QtVXN1cm5hbWUiOiJKb2huUyIsImNsaWVv
udE1kIjoiT01DUINPQXBwIiwiWC1JZGFhcylSZXNOLVN1YmplY3QtVHIwZSI6I1VTRVIDUKVERUSUSUFMI
n0sImMNVbnRyYWNOTmFtZSI6Ik1vYmlsZVNlcnZpY2VEb21haW4iLCJIzZXJ2aWN1SWRFUCI6I1wvbW9iaWwx
1b2FtYXV0aGVudGljYXRpb24ifQ=="}}, "message":

"The Challenge Action is triggered",
"multi-step-challenge-question":{"challengeType":"KBA", "locale":"en",
"questionRefId":"112", "questionStr":

"What was the year of your favorite sports moment?"},
"oicErrorCode":"IDAAS-61010", "status": "REQUIRE_MULTI_STEP_AUTHN"}

The Request to Register the Device Containing the KBA Answer

curl -H "Content-Type: application/json" --request POST
http://serverl.domain.com:14100/0ic_rest/rest/mobileoamauthentication/register
-H 'X-IDAAS-SERVICEDOMAIN:MobileServiceDomain' -d

' {"X-Idaas-Rest-New-Token-Type-To-Create" : "CLIENTREGHANDLE" ,
"X-Idaas-Rest-Subject-Password": "welcomel", "deviceProfile":
{"oracle:idm:claims:client:sdkversion":"11.1.2.0.0", "hardwareIds":

12-80 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Practical Examples

{"oracle:idm:claims:client:udid":"0e83ff56al2a9cf0c7",

"oracle:idm:claims:client :phonenumber":"1-650-555-1234",

"oracle:idm:claims:client :macaddress":"00-16-41-34-2C-A6",
"oracle:idm:claims:client:imei":"010113006310121"},
"oracle:idm:claims:client:jailbroken":false,
"oracle:idm:claims:client:geolocation":"+40.689060,-74.044636",
"oracle:idm:claims:client:networktype": "PHONE_CARRIER",
"oracle:idm:claims:client:vpnenabled":false,
"oracle:idm:claims:client:ostype":"iPhone 0S",
"oracle:idm:claims:client:phonecarriername":"AT&T",
"oracle:idm:claims:client:locale":"EN-US",
"oracle:idm:claims:client:osversion":"4.0"},
"X-Idaas-Rest-Subject-Username": "JohnS", "multi-step-challenge-answer":
{"challengeType":"KBA", "locale": "EN-US", "answerStr":

"moment", "questionRefId":"112"},

"handles": {"oaam.session":"561_
419dc5eebb325535dd026c882ac67cabe271dd7e0297ab73¢74573a49dec233a",
"oaam.device":"563_
23552f26e€974030dc16018cc6b76237432¢363d47a019cec8c73aal318caf2f97",
"oic.multiStepAuthnSessionHandle":
"eyJvemlnU2V3jdXJpdH1FdmVudHMi01 s 1 UkVHXINFQ1VSSVRZXONMSUVOVFIBUFA1IXSwib3Jpz1J1cUlhe
CI6eyJjbGl1bnRIUEFKZHI1c3Mi01IXMCAXMZMUMTMSLIEOMYyIsI1gt SWRhYXMtUmVzdC1TAWIgZWNOLVB
hc3N3b3JkIjoid2VsY29tZTEILCIYLUlKYWFzLVJI1c3QtTmV3LVRva2VuLVR5cGULVG8tQ3J1YXR1TIjoiQ
0xJRUSUUKVHSEFOREXFIiwiWC1JZGFhcylSZXNOLVN1YmplY3QtVXN1cm5hbWUiOiJKb2huUyIsImNsaWVv
udE1kIjoiT01DUINPQXBwIiwiWC1JZGFhceylSZXNOLVN1YmplY3QtVHIwWZSI6I1VTRVIDUKVERUSUSUFMI
n0sImMNvbnRyYWNOTmFtZSI6Ik1vYmlsZVNlcnZpY2VEb21haW4iLCJIzZXJ2aWN1SWRFUCI6I1wvbW9iaWwx
1b2FtYXV0aGVudGljYXRpb24ifQ=="}, "X-Idaas-Rest-Subject-Type" : "USERCREDENTIAL" }'

The Response with a Client Registration Handle

{"X-Idaas-Rest-Token-Value": "eyJvcmFjbGU6aWRtOMNsYWltczpibGllbnQ6c2RrdmvVyc21vbiI6T
JEXLIEuMi4wLjAILCI0b2t1blR5cGUI01JDTEIFT1RSRUAIQUSETEUILCIvemF jbGU6aWRtOmNs YWl tczp
jbG11bnQ6bWFjYWRkcmVzceyI6IjAWLTE2LTQXLTMOLTIDLUE2 TiwicmVnVXN1ciI6TkpvaGsTIiwiaXNzI
joiTW91iaWx1TOFNQXV0aGVudGljYXRpb24iLCIvemFjbGU6aWRtOmMNs YWl tczpjbGllbnQ6b3N0eXBlIjo
1aVBob251IE9TIiwib3JhY2x10mlkbTpjbGFpbXM6Y2xpZW500ml t ZWki01i IWMTAXMTMwMDY ZMTAXMIELiL
CJyZWdUUyI6MTMIMDYwNTCcAMCwianRpIjoi YTNIMWMIM] YtYIBIMS00ZDg0LTh YzAt ZF YyMDNmY MANWY
1Tiwib3JhY2x10mlkbTpibGFpbXM6Y2xpZW500m9zdmVyc21vbiI6IjQuMCIsImNsaWVudElkIjoiT01DU
1INPQXBwInO=.gA6Ez+gXNdLbk/hD5LRVDaBRK3t6b6I00k7Z81iwW03s=",
"X-Idaas-Rest-Token-Type" : "CLIENTREGHANDLE",

"handles":{"ocaam.device": {"expirationTSInSec":1352077009, "value":"563_
23552£26e974030dc16018cc6b76237432¢c363d47a019cec8c73aa318caf2f97"},
"oaam.session":{"expirationTSInSec":1350609380, "value":"561_
419dc5eebb325535dd026c882ac67cabe271dd7e0297ab73¢c74573a49dec233a"}}}

Sending Mobile and Social REST Calls With cURL 12-81

Device Registration Request with KBA Response

12-82 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Part IV

Developing with Identity Federation

This part discusses developing applications using the Oracle Access Management
Identity Federation APlIs.

Part IV contains the following chapters:

» Chapter 13, "Developing a Custom User Provisioning Plug-in"

13

Developing a Custom User Provisioning
Plug-in

Oracle Access Management Identity Federation (Identity Federation) leverages the
Access Manager plug-in framework to facilitate the provisioning of users. A standard
user provisioning plug-in is provided or you can develop a custom plug-in, which is
discussed here. This chapter provides the following sections:

= Section 13.1, "Introduction to User Provisioning Plug-ins"
= Section 13.2, "Introduction to Plug-in Interfaces"
= Section 13.3, "Sample Code: Custom User Provisioning Plug-in"

ms Section 13.4, "Developing a User Provisioning Plug-in"

See Also: For more information about using the default user
provisioning plug-in, see Oracle Fusion Middleware Administrator’s
Guide for Oracle Access Management.

13.1 Introduction to User Provisioning Plug-ins

When Identity Federation is acting in Service Provider (5P) mode, the user assertion is
mapped to a local store to complete the federated single sign-on. However, in some
cases when a Service Provider is performing user assertion, a user may not be found.
The default user provisioning plug-in (LDAPProvisioningPlugin) will provision the
user in the LDAP store configured as the Access Manager identity store.

All the information collected at runtime is passed to any user provisioning plug-in,
standard or custom. The custom user provisioning plug-in must decide, based on this
information, what user information it needs to retrieve and use. Additionally, each
custom plug-in can include its own configuration designed to perform extra
processing of the user to be provisioned.

When Identity Federation is acting in SP mode and fails to map assertion to a user, it
will look for a configuration property to check if the missing user should be
provisioned. If the user provisioning flag is set to true, Identity Federation will look up
the plug-in name that needs invoking. The stand plug-in (LDAPProvisioningPlugin) is
invoked by default if a custom plug-in is not being used. The GenricPluginFactory is
used to locate the plug-in defined and executes the provisioning logic.

Identity Federation retrieves the property associated with the partner
nameideattrname to populate the nameid value in the attribute list sent to the plug-in.
If Identity Federation is configured to use the standard plug-in, the options for data
store selection is as follows:

Developing a Custom User Provisioning Plug-in 13-1

Introduction to Plug-in Interfaces

s If Identity Federation is using the partner specific data store (multi-store), then
Identity Federation will pass the identify store name to the plug-in.

» If Identity Federation uses the default user identity store, the standard plug-in will
use the User Provisioning APIs to provision user data in the data store.

s If no partner specific store is configured, the default identity store is used.

The User Provisioning API used to provision a user is the same regardless whether a
default identity store or a partner specific store is used.

13.2 Introduction to Plug-in Interfaces

The main class a custom user provisioning plug-in extends is
OIFUserProvisioningPlugin. The following interfaces are exposed to custom plug-ins:

m oracle.security.fed.plugins.fed.provisioning.0IFUserProvisioningPlugin.ja
va (extends oracle.security.am.plugin.AbstractAMPlugin)

m oracle.security.fed.plugins.fed.provisioning.UserContext.java

m oracle.security.fed.plugins.fed.provisioning.UserProvisioningException.ja
va

m oracle.security.fed.plugins.fed.provisioning.UserProvisioningConstants.ja
va

For more information about these interfaces, see Oracle Fusion Middleware User
Provisioning Plug-in Java API Reference for Oracle Access Management Identity Federation.

13.3 Sample Code: Custom User Provisioning Plug-in

The custom user provisioning plug-in jar file structure must conform to an Access
Manager custom authentication plug-in structure. Namely, it requires the following
files: plugin.class, plugin.xml, and MANIFEST.MEF. For more information about this
structure, see Section 3.4, "Sample Code: Custom Database User Authentication
Plug-in".

This section provides the following user provisioning plug-in code samples:
= Example 131, "Sample UserProvisioning java"

= Example 13-2, "Sample UserPlugin.xml"

= Example 13-3, "Sample MANIFEST.MF"

Example 13—-1 Sample UserProvisioning.java
package oif.test;

import java.util.Hashtable;
import java.util.Iterator;

import java.util.Map;

import java.util.Set;

import java.util.StringTokenizer;

import javax.naming.Context;

import javax.naming.NamingException;

import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.BasicAttributes;

13-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Sample Code: Custom User Provisioning Plug-in

import javax.naming.directory.DirContext;
import javax.naming.directory.InitialDirContext;

import oracle.security.am.plugin.ExecutionStatus;

import oracle.security.am.plugin.MonitoringData;

import oracle.security.am.plugin.PluginConfig;

import oracle.security.fed.plugins.fed.provisioning.0IFUserProvisioningPlugin;
import oracle.security.fed.plugins.fed.provisioning.UserContext;

import oracle.security.fed.plugins.fed.provisioning.UserProvisioningConstants;
import oracle.security.fed.plugins.fed.provisioning.UserProvisioningException;

/*
* Sample OIF User proisioning plugin
*/

public class ProvisioningPlugin extends OIFUserProvisioningPlugin {

private boolean monitoringStatus = false;
private Map paramMap ;
private String userRecordAttrList = null;
private String useridAssertionAttr = null;

/* (non-Javadoc)
*/
@override
public ExecutionStatus process (UserContext context) throws
UserProvisioningException {
/*
* Execute method for plugin
*/
boolean provisioningStatus = false;
try{
Map<String, Object> attrs = context.getAttributes();
Map<String, Object> attrsMapping = context.getAttributesUsedInMapping();
if (useridAssertionAttr == null) {
System.out.println("User id attribute to create user is not found in the
attributes list");
return ExecutionStatus.ABORT;

}

String userid = null;

if (attrs.containsKey(useridAssertionAttr)) ({
Object valueObj = attrs.get (useridAssertionAttr);
if (valueObj instanceof String)

userid = (String) valueObj;

else {

userid = (String) ((Set) valueObj).iterator().next();
}

}

DirContext ctx = getContext();

// creating the user record
Attributes record = new BasicAttributes();

// Create the objectclass to add

Developing a Custom User Provisioning Plug-in 13-3

Sample Code: Custom User Provisioning Plug-in

Attribute objClasses = new BasicAttribute("objectClass");
objClasses.add("top");

objClasses.add("person") ;

String objectClass = "inetOrgPerson";

objClasses.add (objectClass) ;
objClasses.add("organizationalPerson") ;

record.put (objClasses) ;

String userIDAttr = "uid";

// Set the attributes
record.put (new BasicAttribute (userIDAttr, userid));
StringTokenizer st = new StringTokenizer (userRecordAttrList, ",");
while (st.hasMoreTokens()) {
String key = (String) st.nextToken();
record.put (new BasicAttribute(key, attrs.get(key)));

Set keys = attrsMapping.keySet();
Iterator itr = keys.iterator();
while (itr.hasNext()) {
String key = (String) itr.next();
if ('attrs.containsKey (key)) {
record.put (new BasicAttribute(key, attrsMapping.get(key)));

String ldapUserBaseDN = "dc=iplanet,dc=com";
// Create the record
ctx.createSubcontext ("cn=" + userid + "," + ldapUserBaseDN, record);
provisioningStatus = true;
}
catch (Exception e) {
/*
* If exception abort the authentication.
*/
e.printStackTrace() ;
return ExecutionStatus.ABORT;

if (provisioningStatus) {
/~k
* Success
*/
return ExecutionStatus.SUCCESS;
telse(
/*
* Failure.
*/
return ExecutionStatus.FAILURE;

/* (non-Javadoc)
* @see
oracle.security.am.plugin.GenericPluginService#initialize (java.util.Map)
*/
@Ooverride
public ExecutionStatus initialize(PluginConfig config) {
//success for the execution status
userRecordAttrList = (String)config.getParameter (UserProvisioningConstants.KEY_

13-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Sample Code: Custom User Provisioning Plug-in

USER_RECORD_ATTRIBUTE_LIST) ;
useridAssertionAttr = (String)config.getParameter (UserProvisioningConstants.KEY_
USERID_ATTRIBUTE_NAME) ;

return ExecutionStatus.SUCCESS;

/* (non-Javadoc)
* @see oracle.security.am.plugin.GenericPluginService#getDescription ()
*/
@override
public String getDescription() {
return "Ldap Provisioning Plugin";

/* (non-Javadoc)
* @see oracle.security.am.plugin.GenericPluginService#getMonitoringData ()
*/
@override
public Map < String, MonitoringData > getMonitoringData() {
// TODO Auto-generated method stub
return null;

/* (non-Javadoc)
* @see oracle.security.am.plugin.GenericPluginService#getMonitoringStatus ()
*/
@override
public boolean getMonitoringStatus() {
return monitoringStatus;

/* (non-Javadoc)
* @see oracle.security.am.plugin.GenericPluginService#getName ()
*/
@override
public String getPluginName() {
return "LDAP_Provisioning plugin";

/* (non-Javadoc)
* @see oracle.security.am.plugin.GenericPluginService#getVersion()
*/
@Ooverride
public int getRevision() {
return 10;

/* (non-Javadoc)
* @see
oracle.security.am.plugin.GenericPluginService#setMonitoringStatus (boolean)
*/
@Override
public void setMonitoringStatus (boolean status) {
monitoringStatus = status;

private DirContext getContext() {
try {

Developing a Custom User Provisioning Plug-in 13-5

Sample Code: Custom User Provisioning Plug-in

DirContext context = null;

String ldapURL = "ldap://myldap.oracle.com:389";
String ldapUserBaseDN = "dc=iplanet,dc=com";

Hashtable<String, String> env = new Hashtable <String, String> ();

env.put (Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put (Context.PROVIDER_URL, ldapURL);

env.put (Context.SECURITY_AUTHENTICATION, "simple");

env.put (Context .REFERRAL, "follow");

String credential = "password";

String secPrincipal = "cn=Directory Manager";
env.put (Context.SECURITY_PRINCIPAL, secPrincipal);
env.put (Context.SECURITY_CREDENTIALS, credential);

context = new InitialDirContext (env);
return context;

} catch (NamingException ne) {

throw new UserProvisioningException (ne);
} catch (Throwable e) {

throw new UserProvisioningException(e);

}

Example 13-2 Sample UserPlugin.xml

<Plugin type="User Provisioning">
<author>uid=Userl</author>
<email>Userl@mycompany</email>
<creationDate>09:32:20,2012-06-15</creationDate>
<description>User provisioning</description>
<configuration>
<AttributeValuePair>
<Attribute type="string" length="100">KEY_USERID_ATTRIBUTE_NAME</Attribute>
<mandatory>false</mandatory>
<instanceOverride>false</instanceOverride>
<globalUIOverride>true</globalUIOverride>
<value>uid</value>
</AttributeValuePair>
<AttributeValuePair>
<Attribute type="string" length="200">KEY_ USER_RECORD_ATTRIBUTE_LIST</Attribute>
<mandatory>true</mandatory>
<instanceOverride>false</instanceOverride>
<globalUIOverride>true</globalUIOverride>
<value>mail,uid</value>
</AttributeValuePair>
</configuration>
</Plugin>

Example 13-3 Sample MANIFEST.MF

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: ProvisioningPlugin
Bundle-SymbolicName: ProvisioningPlugin
Bundle-Version: 10

Bundle-Activator: oif.test.ProvisioningPlugin
Import-Package:

13-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Developing a User Provisioning Plug-in

org.osgi.framework;version="1.3.0",oracle.security.fed.plugins.fed.provisioning
Bundle-RequiredExecutionEnvironment: JavaSE-1.6

13.4 Developing a User Provisioning Plug-in

This section provides steps to write a custom Identity Federation user provisioning
plug-in. The following describes the actions a developer must take after the system
architect identifies the business requirements for the custom plug-in and considers the
user provisioning flow when a user is not mapped to a local user store.

This section contains the following topics:
= Process Overview: Developing a Custom Plug-in

= Files Required for Compiling a Plug-in

13.4.1 Process Overview: Developing a Custom Plug-in

As Identity Federation leverages the Access Manager plug-in framework, the process
is similar for both. For more information, see Section 3.1.2, "About Planning, the
Authentication Model, and Plug-ins".

1. Extend 0IFUserProvisioningPlugin class and implement the following methods.
For more information, see Section 3.5.1, "About Writing a Custom Authentication
Plug-in".

= Implement initialize method
= Implement process method

2. Develop plug-in code using appropriate Access Manager 11¢ interfaces and
packages. For more information, see:

= Section 3.3, "Introduction to Plug-in Interfaces"
= Section 3.4, "Sample Code: Custom Database User Authentication Plug-in"

3. Prepare metadata for the custom plug-in. For more information, see Section 3.4.2,
"Sample Plug-in Configuration Metadata Requirements".

4. DPrepare the plug-in jar file and manifest and deliver to your deployment team. For
more information, see:

= Section 3.4.3, "Sample Manifest File for the Plug-in"
= Section 3.4.4, "Plug-in JAR File Structure"
5. Proceed to Section 13.4.2, "Files Required for Compiling a Plug-in".

For information about deploying and managing custom authentication plug-ins, see
Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

13.4.2 Files Required for Compiling a Plug-in

The following jar files are needed for compiling the custom user provisioning plug-in:
s felixjar

= oam-pluginjar

s fedjar

The file are located in DOMAIN_HOME /servers/managed_instance_name/tmp/_WL_
user/oam_server_11.1.2.0.0/RANDOM_STRING/APP-INF/lib.

Developing a Custom User Provisioning Plug-in 13-7

Developing a User Provisioning Plug-in

13-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Part V

Developing with Security Token Service

This part discusses developing applications using the Oracle Access Management
Security Token Service APIs.

Part V contains the following chapters:

» Chapter 14, "Developing a Custom Token Module"

14

Developing a Custom Token Module

When Oracle Security Token Service does not support the token that you want to
validate or issue out-of-the-box, you can write your own validation and issuance
module classes. This chapter contains information on Oracle Security Token Service
custom token options. It includes the following sections:

= Section 14.1, "Introduction to Oracle Security Token Service Custom Token Module
Classes"

= Section 14.2, "Writing a TokenValidatorModule Class"

» Section 14.3, "Writing a TokenIssuanceModule Class"

14.1 Introduction to Oracle Security Token Service Custom Token
Module Classes
One of the two (validation or issuance class) is required for custom tokens:
s The custom validation class, which is used to validate a custom token.
s The custom issuance class, which is used to issue a custom token.

The following overview outlines the tasks you must perform.

Task overview: Deploying custom token module classes

1. Writing a TokenValidatorModule Class to validate a custom token with Oracle
Security Token Service, if needed.

2. Writing a TokenlssuanceModule Class to issue a custom token with Oracle
Security Token Service, if needed.

3. Create a Custom Token module that will allow the user to create Validation
Templates and Issuance Templates for their custom token. For more information,
see Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

4. Create Validation and Issuance Templates for the custom token, and use the
custom templates in Endpoints and Partner Profiles as you would use the
templates of standard tokens. For more information, see Oracle Fusion Middleware
Administrator’s Guide for Oracle Access Management.

14.2 Writing a TokenValidatorModule Class

This section provides the following topics:
= About Writing a TokenValidatorModule Class
= Writing a TokenValidatorModule Class

Developing a Custom Token Module 14-1

Writing a TokenValidatorModule Class

14.2.1 About Writing a TokenValidatorModule Class

The Oracle Security Token Service Validation module class implements the
oracle.security.fed.sts.token.tpe.TokenValidatorModule interface.
The following properties can be fetched from the TokenContext during the
validation process:

XML_TOKEN: The bytes of the XML message that contains the token that must be
validated.

BST_VALUE_TYPE: If the custom token is sent as a Binary Security Token, this
will contain the Binary Security Token value type.

BST_ENCODING: If the token is sent as a Binary Security Token, this will contain
the encoding.

BST_CONTENT: If the token is sent as a Binary Security Token, this will contain
the Binary Security Token content.

TOKEN_ELEMENT: If the token is not a Binary Security Token and does not have
a JAXB representation in the Oracle Security Token Service internal classes, this
will contain the XML element or custom JAXB class representing the token.

XML_DOM: This is the DOM representation of the incoming message. This will be
present only if a DOM object was created as a part of Oracle Security Token
Service processing thus far.

The token should be validated using the information in the properties in the
TokenContext and a TokenResult should be returned. The following properties
can be set on a TokenResult object to return information to Oracle Security Token
Service:

TPE_RESULT_FAILURE_CODE: The failure code if there was a failure.
TPE_RESULT_FAILURE_STRING: A string describing the failure.

Any other properties that are set in the result are available in the context to be
used for token mapping. Usually, validators set STS_SUBJECT_ID property to the
name ID and use this to map to a user record.

Example 14-1 EmailTokenValidatorModulelmpl.java

package oracle.security.fed.sts.tpe.providers.email;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.security.fed.sts.token.tpe.TokenContext;

import oracle.security.fed.sts.token.tpe.TokenProcessingException;

import oracle.security.fed.sts.token.tpe.TokenResult;

import oracle.security.fed.sts.token.tpe.TokenValidatorModule;

import oracle.security.fed.sts.token.tpe.TokenResultImpl;

import oracle.security.fed.sts.tpe.providers.TokenValidationErrors;

import oracle.security.fed.xml.security.wss.ext.v10.BinarySecurityTokenType;
import oracle.security.fed.util.common.Base64;

import sun.misc.BASE64Decoder;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class EmailTokenValidatorModuleImpl implements TokenValidatorModule({

14-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Writing a TokenValidatorModule Class

private Map options = null;
private String testSetting = null;

private static final String TEST SETTING_IN_TEMPLATE = "testsetting";
public void init(Map optionsl) throws TokenProcessingExceptionf{

options = optionsl;

try{
testSetting = (String)options.get (TEST_SETTING_IN_TEMPLATE) ;
}catch (Exception e){
throw new TokenProcessingException(e);

public TokenResult validate(TokenContext context) throws
TokenProcessingException{

byte[] tokenBytes = (byte[])context.getOtherProperties().get ("XML_TOKEN") ;
Document inputDocument = (Document)context.getOtherProperties().get ("XML_
DOM") ;

Element tokenElement = (Element)context.getOtherProperties().get ("TOKEN_
ELEMENT") ;

String encodedBytes = (String) context.getOtherProperties().get ("BST_
CONTENT") ;

byte[] decodedBytes = null;

BASE64Decoder decoder = new BASE64Decoder () ;

try{
if (encodedBytes != null) {

decodedBytes = decoder.decodeBuffer (encodedBytes) ;

}catch(java.io.IOException exp) {
exp.printStackTrace() ;
}

if (tokenElement != null && tokenElement.getLocalName () .equals("email")) {
String emailAddress = tokenElement.getTextContent () ;
TokenResultImpl result = null;
result = new TokenResultImpl (0, TokenResult.SUCCESS, null);
result.setTokenProperty ("STS_SUBJECT ID", emailAddress);

//add any other attributes - necessary only if you need for mapping or
issuance
result.setTokenProperty("testattr2", "attr2");

return result;

}else if (decodedBytes !'= null) {
String emailAddress = new String(decodedBytes);
TokenResultImpl result = null;
result = new TokenResultImpl (0, TokenResult.SUCCESS, null);
result.setTokenProperty ("STS_SUBJECT ID", emailAddress);

//add any other attributes - necessary only if you need for mapping or
issuance
result.setTokenProperty ("testattr2", "attr2");

Developing a Custom Token Module 14-3

Writing a TokenValidatorModule Class

return result;

} else {

TokenResultImpl result = new TokenResultImpl (0, TokenResult.FAILURE,
null);

String failureCode = null;

failureCode = "TEST_FAILURE_CODE";

result.setTokenProperty ("TPE_RESULT_FAILURE_CODE", failureCode);

result.setTokenProperty ("TPE_RESULT FAILURE_STRING", "validation
failed");

return result;

}
The following overview outlines development highlights for this module class.

Development highlights: Writing a TokenValidatorModule class

1. Implement the init (Map options) method, called when the
TokenValidatorModule is initialized. The init method is passed in a map
containing the parameters defined in the validation template.

2. Implement the validate (TokenContext context) method, called when a
particular incoming custom token must be validated.

a. Fetch token information from the properties in the TokenContext object.
b. Validate the token and return a TokenResult object:
On Success, return:
TokenResultImpl result = new TokenResultImpl (0, TokenResult.SUCCESS,
token) ;
On Failure, return:

TokenResultImpl result = new TokenResultImpl (0, TokenResult.FAILURE,
token) ;

result.setTokenProperty ("TPE_RESULT FAILURE_CODE", failureCode);
result.setTokenProperty ("TPE_RESULT FAILURE_STRING", "validation failed");

c. Confirm the validated token result returns the SubjectID in the token and
any attributes that are parsed from the token, in the following format:

result.setTokenProperty ("STS_SUBJECT_ID", emailAddress);
//add any other attributes - necessary only if you need for mapping or

issuance
result.setTokenProperty ("testattr2", "attr2")

14.2.2 Writing a TokenValidatorModule Class

Perform the following tasks to write a custom TokenValidatorModule class.

Task overview: Writing a TokenValidatorModule class
1. Develop your own module class while referring to:

14-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Writing a TokenlssuanceModule Class

Section 14.2.1, "About Writing a TokenValidatorModule Class"

Oracle Fusion Middleware Java API Reference for Oracle Access Management
Security Token Service

2. Proceed as needed:

Section 14.3, "Writing a TokenIssuanceModule Class"

For information abut managing a custom Security Token Service
configuration, see Oracle Fusion Middleware Administrator’s Guide for Oracle
Access Management

14.3 Writing a TokenlssuanceModule Class

This section provides the following topics:

= About Writing a TokenIssuanceModule Class

= Writing a TokenIssuanceModule Class

14.3.1 About Writing a TokenlssuanceModule Class

The EmailTokenIssuerModuleImpl. java class should implement the
oracle.security.fed.sts.token. tpe.TokenIssuerModule interface and
attributes in the TokenContext.

Example 14-2 provides and example of EmailTokenIssuanceModuleImpl class.
The overview that follows outlines development highlights for this module class.

Example 14-2 EmailTokenlssuanceModule.java

package oracle.security.fed.sts.tpe.providers.email;

import
import
import
import
import

import

import
import
import
import
import
import
import
import

public

java.util.ArrayList;

java.util.Iterator;
java.util.List;
java.util.Map;

java.util.HashMap;

javax.xml .namespace.

oracle.
oracle.
oracle.
oracle.

oracle

oracle.
oracle.
oracle.

security.
security.
security.
security.
.security.
security.
security.
security.

fed.
fed.
fed.
fed.
fed.
fed.
fed.
fed.

QName;

sts.
sts.
sts.
sts.
sts.
sts.

sts

sts.

token.
token.
token.
token.

token

token.
.token.
token.

tpe.
tpe.
tpe.
tpe.
.tpe.
tpe.
.TokenResult;
tpe.

tpe

TokenContext;
TokenIssuerModule;
TokenProcessingException;
TokenResult;

Token;

TokenImpl;

TokenResultImpl;

class EmailTokenIssuerModuleImpl implements TokenIssuerModule({

Map config;

private static final String TEST_SETTING_IN_TEMPLATE = "testsetting";

public void init (Map options) throws TokenProcessingException

{

config

= options;

Developing a Custom Token Module 14-5

Writing a TokenlssuanceModule Class

}
public TokenResult issue(TokenContext context) throws TokenProcessingException
{
//use any config options necessary for processing from issuance template
String setting = (String)config.get (TEST_SETTING_IN_TEMPLATE) ;

HashMap attributes = (HashMap)context.getOtherProperties().get ("STS_TOKEN_
ATTRIBUTES") ;
System.out.println("attributes : " + attributes.toString());
String emailAddress = null;
Iterator attrIter = null;
if (attributes != null) {
attrIter = attributes.keySet().iterator();
}
if (attrIter != null) {
while (attrIter.hasNext()) {
String attributeName = (String)attrIter.next();
if ("mail".equals(attributeName)) {
Object valuesObj = attributes.get (attributeName) ;
if (valuesObj instanceof List) {
Iterator iter = ((List)valuesObj).iterator();

while (iter.hasNext()) {
Object valueObj = iter.next();
if (valueObj instanceof String) {
emailAddress = (String)valueObj;
break;

}
} else if (valuesObj instanceof String) {
emailAddress = (String)valuesObj;

String email = "<email>" + emailAddress + "</email>";
System.out.println("email : " + email);

TokenImpl token = new TokenImpl () ;

byte[] tokenBytes = email.getBytes();

token.setTokenBytes (tokenBytes) ;
//set the below if you have a doc object that can be reused
token.setTokenDocument (null) ;

token.setTokenBytes (tokenBytes) ;
TokenResultImpl result = new TokenResultImpl (0, TokenResult.SUCCESS,
token) ;
Map resultMap = new HashMap() ;
resultMap.put ("STS_KEY_IDENTIFIER_VALUE", emailAddress);
resultMap.put ("STS_KEY_IDENTIFIER_VALUE_TYPE", "EmailAddress");
System.out.println ("TOKEN_KEY_IDENTIFIER_VALUE : "o+
emailAddress) ;

result.setTokenProperties (resultMap) ;
return result;

14-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Writing a TokenlssuanceModule Class

Development highlights: Writing a TokenlssuanceModule class

1.

Implement the public void init(Map options)throws
TokenProcessingException method.

The init () method is called when the issuer module is initialized. The init
method is passed a map contain the parameters defined in the issuance template.

Implement the public TokenResult issue(TokenContext context)
throws TokenProcessingException method.

This method is called when a custom outgoing token must be created.

a.

Create, within the i ssue method, the token using the attributes in the
issuance template and the attributes passed in the TokenContext. Attributes
in the TokenContext are accessed in the following way:

HashMap attributes = (HashMap)context.getOtherProperties().get ("STS_TOKEN_
ATTRIBUTES") ;

System.out.println("attributes : " + attributes.toString());

String emailAddress = null;

Iterator attrIter = null;

if (attributes !'= null) {

attrIter = attributes.keySet().iterator();

}

if (attrIter != null) {

while (attrIter.hasNext()) {

String attributeName = (String)attrIter.next();
if ("mail".equals(attributeName)) {

Object valuesObj = attributes.get (attributeName) ;
if (valuesObj instanceof List){

Iterator iter = ((List)valuesObj).iterator();

while (iter.hasNext()) {

Object valueObj = iter.next();

if (valueObj instanceof String) {
emailAddress = (String)valueObj;
break;

}

}

} else if (valuesObj instanceof String) ({
emailAddress = (String)valuesObj;
}

}

}

}

Status

Create a result object and set the bytes of the token and the Document Object
Model (DOM) representation of the token (only if the DOM representation
was created during the processing in this class):

token.setTokenDocument (null);--> if you have a doc object that can be
reuse.d set it here

token.setTokenBytes (tokenBytes) ;

TokenResult result = new TokenResultImpl (0, TokenResult.SUCCESS, token);

Developing a Custom Token Module 14-7

Writing a TokenlssuanceModule Class

c. Set the key identifier information into the token properties, as follows:

Map resultMap = new HashMap() ;
resultMap.put ("STS_KEY_IDENTIFIER_VALUE", emailAddress);
resultMap.put ("STS_KEY_ IDENTIFIER_VALUE_TYPE", "EmailAddress");
result.setTokenProperties (resultMap) ;

Note: The attributes set as token properties are available in the
context. The attributes can be used for token mapping or can be
specified in the relying party profile attributes section for inclusion in
the outgoing token in the usual way.

14.3.2 Writing a TokenlssuanceModule Class

Task overview: Writing an Issuance Module class

1. Write the issuance module class as you refer to Section 14.3.1, "About Writing a
TokenIssuanceModule Class" and Oracle Fusion Middleware Java API Reference for
Oracle Access Management Security Token Service.

2. For information about managing a custom Security Token Service configuration,
see Oracle Fusion Middleware Administrator’s Guide for Oracle Access Management.

14-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Part VI

Appendices

This part contains reference appendices.
Part VI contains the following appendices:

s Appendix A, "Creating Deployment-Specific Pages"

A

Creating Deployment-Specific Pages

Oracle Single Sign-On provides a framework for integrating deployment-specific
login, change password, and single sign-off pages with the single sign-on server. This
means that you can tailor these pages to your Ul look and feel and globalization
requirements.

Oracle recommends that you use JavaServer (JSP) pages. Other Web technologies may
provide inconsistent results. PLSQL pages are not supported. Sample pages are
provided with the product. The Oracle Single Sign-On product ships with sample
pages that are designed for testing with the Oracle Application Server.

This chapter contains the following topics:

Section A.1, "How the Single Sign-On Server Uses Deployment-Specific Pages"
Section A.2, "How to Write Deployment-Specific Pages"

Section A.3, "Page Error Codes"

Section A .4, "Adding Globalization Support"

Section A.5, "Guidelines for Deployment-Specific Pages"

Section A.6, "Examples of Deployment-Specific Pages"

Section A.7, "Adding an External Application”

A.1 How the Single Sign-On Server Uses Deployment-Specific Pages

The process that enables single sign-on pages can be summarized as follows:

1.
2.

The user requests a application and is redirected to the single sign-on server.

If the user is not authenticated, the single sign-on server redirects the user to the
sample login page or to a deployment-specific page. As part of the redirection, the
server passes to the page the parameters contained in Table A-1 on page A-2.

The user submits the login page, passing the parameters contained in Table A-2 on
page A-3 to the authentication URL:

http://sso_host:sso_port/oam/server/auth_cred_submit

or

https://sso_host:sso_ssl_port/oam/server/auth_cred_submit

At least two of these parameters, ssousername and password, appear on the
page as modifiable fields.

Creating Deployment-Specific Pages A-1

How to Write Deployment-Specific Pages

4. If authentication fails, the server redirects the user back to the login page and
displays an error message.

5. To finish the single sign-on session, the user clicks Logout in the application he or
she is working in. This act calls application logout URLs in parallel, logging the
user out from all accessed applications and ending the single sign-on session.

6. The user is redirected to the single sign-on server, which presents the single
sign-off page.

A.1.1 Change Password Page Behavior

Users who try to log in when their passwords have expired or are about to expire
experience the following server behavior.

A.1.1.1 Password Has Expired

Users are shown the password expiry page. User must enter the old and the new
password. The new password must conform to the Access Manager password policy
rules.

A.1.1.2 Password Is About to Expire

A warning page is displayed where the user can either change their password, or
continue without changing before continuing.

A.1.1.3 Grace Login Is in Force
Same behavior as when password is about to expire.

A.1.1.4 Force Change Password

This feature prompts users to change their password after it has been reset by an
administrator. The reset is required after the attribute obpasswordchangeflag is set
to 1. Once the attribute is set, the user is required to change the password at next login.

A.2 How to Write Deployment-Specific Pages

The URLs for login, change password, and single sign-off pages must accept the
parameters described in the tables that follow if these pages are to function properly.

This section contains the following topics:
s Login Page Parameters

s Change Password Page Parameters

A.2.1 Login Page Parameters

The URL for the login page must accept the parameters listed in Table A-1 on
page A-2.

Table A-1 Login Page Parameters Submitted to the Page by the Single Sign-On Server

Parameter Description

p_error_code Contains the error code in the form of a string. Passed when an
error occurs during authentication.

request_id Unique identifier that is used to track requests routed back and
forth between client and server.

A-2 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

How to Write Deployment-Specific Pages

Table A-1 (Cont.) Login Page Parameters Submitted to the Page by the Single Sign-On

Parameter Description

OAM_REQ User login request context tracked at client until authentication
process is completed.

The login page must pass the parameters listed in Table A-2 to the authentication
URL:

http://sso_host:sso_port/sso/auth

Table A-2 Login Page Parameters Submitted by the Page to the Single Sign-On Server

Parameter Description

Ssousername Contains the username. Must be UTF-8 encoded.

password Contains the password entered by the user. Must be UTF-8
encoded.

OAM_REQ, if present in User login request context tracked at client until authentication

request process is completed.

request_id, if present ~ Unique identifier that is used to track requests routed back and
in request forth between client and server.

The login page must have at least two fields: a text field with the parameter name
ssousername and a password field with the parameter name password. The values
are submitted to the authentication URL.

In addition to submitting these parameters, the login page is responsible for
displaying appropriate error messages, as specified by p_error_code, redirecting to
p_cancel_url if the user clicks Cancel.

A.2.2 Change Password Page Parameters

The URL for the change password page must accept the parameters listed in
Table A-3.

Note: Ina GIT deployment, when a partner logout flow requires
query parameters in the p_done_url, the parameters must be URL
encoded such that the Access Manager logout servlet does not
interpret them as being Access Manager parameters but elements of
the single p_done_url.

Table A-3 Change Password Parameters Submitted to the Page

Parameter Description
p_username Contains the user name to be displayed somewhere on the page.
p_subscribername The subscriber nickname when hosting is enabled.

Note: This field is required on the login page.

p_error_code Contains the error code, in the form of a string, if an error
occurred in the prior attempt to change the password.

p_done_url Contains the URL of the appropriate page to return to after the
password is saved.

Creating Deployment-Specific Pages A-3

How to Write Deployment-Specific Pages

Table A-3 (Cont.) Change Password Parameters Submitted to the Page

Parameter

Description

site2pstoretoken

p_pwd_is_exp

locale

Contains the site2pstoretoken that is required by the
/sso/auth login URL if the password has expired or is about to
expire.

Contains the flag value indicating whether the password has
expired or is about to expire. The value can be either WARN or
FORCE. See Table A-5 for the associated error codes.

User’s language preference (optional). Must be in ISO format.
For example, French is £r-fr. For more about this parameter,
see "Adding Globalization Support".

The change password page must pass the parameters listed in Table A—4 to the change

password URL:

http://sso_host:sso_port/sso/ChangePwdServlet

Table A-4 Change Password Page Parameters Submitted by the Page

Parameter

Description

p_username

p_old_password
p_new_password

p_new_password_confirm

p_done_url

p_pwd_is_exp

site2pstoretoken

p_action

p_subscribername
p_request

locale

Contains the user name to be displayed somewhere on the page.
Should be posted as a hidden field by the change password page.
Must be UTF-8 encoded.

Contains the user’s old password. Must be UTF-8 encoded.
Contains the user’s new password. Must be UTF-8 encoded.

Contains the confirmation of the user’s new password. Must be
UTE-8 encoded.

Contains the URL of the appropriate page to return to after the
password is saved.

Contains the flag value indicating whether the password has
expired or is about to expire. The value can be either WARN or
FORCE. See Table A-5 for the associated error codes.

Contains the redirect URL information for login processing.

Commits changes. The values must be either OK (commit) or
CANCEL (ignore).

Contains the user name to be displayed somewhere on the page.
Protected URL requested by the user.

User’s language preference (optional). Must be in ISO format.
Example: French is fr-fr.

See "Adding Globalization Support".

The change password page must have at least three password fields: p_old_
password, p_new_password, and p_new_password_confirm. The page should
submit these fields to the change password URL.

The page should also submit p_done_url as a hidden parameter to the change
password URL. In addition, it should display error messages according to the value of

p_error_code.

A-4 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Page Error Codes

A.3 Page Error Codes

URLs for login and change password pages must accept the process errors described
in the tables that follow if these pages are to function properly.

A.3.1 0SSO 10g Login Page Error Codes

When OAM Server is set to OSSO10g, the login page must process the error codes

listed in Table A-5.

Table A-5 Login Page Error Codes

Value of p_error_code

Corresponding message and description

acct_lock_err

pwd_exp_err

null_uname_pwd_err

auth_fail_ exception

null_password_err

sso_forced_auth

unexpected_exception

unexp_err

internal_server_err

internal_server_try_again_err

Description: The user has committed too many
login failures.

Message: "Your account is locked. Please notify
the system administrator."

Description: The user’s password has already
expired.

Message: "Your password has expired. Please
contact the administrator to reset it."

Description: The user left the user name field
blank.

Message: "You must enter a valid user name."

Description: Authentication has failed.
Message: "Authentication failed. Please try
again."

Description: The user left the password field
blank.

Message: "You must enter your logon password."

Description: The application requires
authentication.

Message: "The application you are trying to
access requires you to sign in again even if you
have signed in previously."

Description: An unexpected error occurred
during authentication.

Message: "An unexpected error occurred. Please
try again."
Description: Unexpected error.

"Unexpected Error. Please contact
Administrator."

Description: Internal server error report.

Message: "Internal Server Error. Please contact
Administrator."

Description: Internal server error report with "try
again" prompt.

Message: "Internal Server Error. Please retry the
operation."

Creating Deployment-Specific Pages A-5

Adding Globalization Support

Table A-5 (Cont.) Login Page Error Codes

Value of p_error_code Corresponding message and description

internal_server_try_later_err Description: Internal server error report with "try
later" prompt.

Message: "Internal Server Error. Please try the
operation later."

gito_err Description: Inactivity timeout. User must log in
again.

Message: "Your Single Sign_on session has
expired. For your security, your session expires
after some duration of inactivity. Please sign in
again."

cert_auth_err Description: Certificate sign-on has failed. User
should check that the certificate is valid or should
contact the administrator.

Message: "Certificate-based sign in failed. Please
ensure that you have a valid certificate or contact
the administrator.”

session_exp_error Description: Single sign-on session time limit
reached.

Message: "Your Single Sign-On session has
expired. For your security, your session expires
after the specified amount of time. Please sign in
again."

userid_mismatch Description: The user ID presented during a
forced authentication does not match the user ID
in the current single sign-on session.

Message: "The user name submitted for
authentication does not match the user name
present in the existing Single Sign-On session."

A.4 Adding Globalization Support

The OracleAS Single Sign-On framework enables you to globalize deployment-specific
pages to fit the needs of your deployment. When deciding what language to display
the page in, you can adopt different strategies. Two strategies are presented in the
following sections.

A.4.1 Deciding What Language to Display the Page In

This section explains how to use either the HTTP Accept-Language header or
deployment page logic to choose a language to display.

A.4.1.1 Use the Accept-Language Header to Determine the Page

Browsers enable end users to decide the language (locale) they would like to view
their Web content in. The browser sends the language that the user chooses to the
server in the form of the HTTP Accept-Language header. The logic of the
deployment-specific page must examine this header and render the page accordingly.
When it receives this page, the single sign-on server takes note of the header value for
Accept-Language and sends it to applications when it propagates the user’s identity.
Note that, although many applications enable users to override this header, the single
sign-off page appears in the language established at sign-on. The net effect is a
consistent session language for all applications.

A-6 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Guidelines for Deployment-Specific Pages

The Accept-Language header is the preferred mechanism for determining the
language preference. A major benefit of this approach is that end users have typically
already set their language preference while browsing other Web sites. The result is
browsing consistency between these pages and single sign-on pages.

A.4.1.2 Use Page Logic to Determine the Language

Although Oracle recommends the approach described in the preceding section, you
may choose to implement globalization based on mechanisms that extend or override
the language preference set in the browser. You may, for instance, do one of the
following:

= Display a list of languages on the login page and allow the user to select from this
list. As a convenience to the user, you can make this selection persistent by setting
a persistent cookie.

= Render the page in one, fixed language. This method is appropriate when you
know that the user population is monolingual.

s Obtain language preferences from a centralized application repository or a
directory. A centralized store for user and system preferences and configuration
data is ideal for storing language preferences.

If you use page logic to set language preferences, the page must propagate this
information to the single sign-on server. The server must propagate this information to
applications. The net result is a consistent globalization experience for the user. Your
page must pass the language in ISO-639 format, using the 1ocale parameter

(Table A-2) in the login form. A number of sites contain a full list of ISO-639 two-letter
language codes. Here is one of them:

http://www.ics.uci.edu/pub/ietf/http/related/iso0639.txt

Here is a site that contains a full list of ISO-3166 two-letter country codes:

http://www.chemie. fu-berlin.de/diverse/doc/IS0O_3166.html

Note: In the event that the 1ocale parameter is passed to the single
sign-on server (Table A-1), the parameter value is sent to mod_osso.
mod_osso prefixes this value to the HTTP Accept-Language header
before passing the header to applications.

A.4.2 Rendering the Page

Once it determines the end-user’s locale, the deployment-specific page must use the
corresponding translation strings to render the page. To learn how to store and
retrieve these strings, see the chapter about locale awareness inOracle Application
Server Globalization Guide. You may also want to consult standard documents about
Java development. Here are two links:

= Java Internationalization Guide:

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

» General link for Java documentation:

http://java.sun.com/j2se/1.4.2/docs

A.5 Guidelines for Deployment-Specific Pages

When implementing deployment-specific pages, observe the following guidelines:

Creating Deployment-Specific Pages A-7

Examples of Deployment-Specific Pages

s Oracle recommends that login and change password pages be protected by SSL.

s Thelogin and change password pages must code against cross-site scripting
attacks.

s Thelogin and change password pages must have auto-fill and caching set to of £.
This prevents user credentials from being saved or cached in the browser. Here is
an example of the AutoComplete tag:

<FORM NAME="foo" AutoComplete="off" METHOD="POST" ACTION="bar">

s Oracle recommends that you configure your login page to display a banner that
warns against unauthorized access. You may, for example, want to use the
following text or a variant thereof:

Unauthorized use of this site is prohibited and may subject you to civil and
criminal prosecution.

= Deploy the login and change password pages on the computer that hosts the
single sign-on server. This makes it easier to detect false versions of these pages.

A.6 Examples of Deployment-Specific Pages

The ipassample. jar file contains the files login-ex. jsp, password-ex. jsp,
and signoff-ex.jsp. You may customize these to suit your deployment. If you
want to use these files. Use this command to extract the file:

ORACLE_HOME/jdk/bin/jar -xvf ORACLE_HOME/sso/lib/ipassample.jar

A.6.1 Using Custom Classes

In general, customized deployment-specific pages must operate with the current
versions of component classes in use by OC4J_SECURITY. If your custom application
needs to use a different version of a given class, you must deploy that class in a
separate OC4] instance and not in the OC4J_SECURITY instance.

For example, if your deployment requires the use of custom log4;j classes that conflict
with the versions in use by OC4]_SECURITY, start a separate OC4J_SECURITY
instance that uses a local log4j jar file containing the custom classes.

WARNING: Replacing the classes used by OC4]_SECURITY with
custom versions may render Oracle Single Sign-On or other Oracle
Application Server components unusable.

A.7 Adding an External Application

From the Single Sign-On Server Administration page, clicking the Administer External
Applications link, then clicking Add External Application link takes you to the Add
External Applications page. This page contains the following headings and fields:

A-8 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Adding an External Application

Table A-6 External Application Login

Field Description

Application Name Enter a name that identifies the external application. This is the default name for the
external application.

Login URL Enter the URL to which the HTML login page for the external application is
submitted for authentication. This, for example, is the login URL for Yahoo! Mail:
http://login.yahoo.com/config/login?6p4f5s40333h0

Username/ID Field Name Enter the term that identifies the user name or user ID field of the HTML login form

Password Field Name

for the application. You find this term by viewing the HTML source of the form. (See
the example after the steps immediately following). This field is not applicable if you
are using basic authentication.

Enter the term that identifies the password field of the HTML login form for the
application. You find this term by viewing the HTML source of the form. (See the
example after the steps immediately following). This field is not applicable if you are
using basic authentication.

Table A-7 Authentication Method

Field

Description

Type of Authentication
Use

Use the pull-down menu to select the form submission method for the application.
This method specifies how message data is sent by the browser. You find this term by
viewing the HTML source for the login form. Select one of the following three
methods:

POST: Posts data to the single sign-on server and submits login credentials within the
body of the form.

GET: Presents a page request to a server, submitting the login credentials as part of
the login URL.

Basic authentication: Submits the login credentials in the application URL, which is
protected by HTTP basic authentication.

Notes:

= Basic authentication uses pop-up windows, which by default are blocked by
Windows XP, service pack 2. If you use this service pack, make sure that you
reconfigure browser settings to display the window for the single sign-on login
page. Use the pop-up blocker item in the Tools menu of Internet Explorer.

Other browsers and browser plug-ins are able to block pop-ups. Mozilla is one of
these. Make sure that these do not block the single sign-on login page.

= If you use Internet Explorer 5.0 or a later version, basic authentication may not
work with external applications. This version of Internet Explorer includes
Microsoft MS04-004 Cumulative Security Update (832894). See this link for a
workaround:

http://support.microsoft.com

Table A-8 Additional Fields

Field Description

Field Name Enter the name of any additional fields on the HTML login form that may require
user input to log in. This field is not applicable if you are using basic authentication.

Field Value Enter a default value for a corresponding field name value, if applicable. This field is

not applicable if you are using basic authentication.

Creating Deployment-Specific Pages A-9

Adding an External Application

To add an external application:

1.

8.

From the Administer External Applications page, select Add External
Application.

The Add External Applications page appears.

In the External Application Login field, enter the name of the external application
and the URL to which the HTML login form is submitted. If you are using basic
authentication, enter the protected URL.

If the application uses HTTP POST or HTTP GET authentication, in the User
Name/ID Field Name field, enter the term that identifies the user name or user ID
field of the HTML login form.

You can find the name by viewing the HTML source of the login form.

If the application uses the basic authentication method, the User Name/ID Field
Name field should be empty.

If the application uses HTTP POST or HTTP GET authentication, in the Password
Field Name field, enter the term that identifies the password field of the
application.

See the HTML source of the login form.

If the application uses the basic authentication method, the Password Field Name
field should be empty.

In the Additional Fields field, enter the name and default values for any
additional fields on the HTML login form that may require user input.

If the application uses the basic authentication method, these fields should be
empty.

Select the Display to User check box to allow the default value of an additional
field to be changed by the user on the HTML login form.

Click OK. The new external application appears under the Edit/Delete External
Application heading on the Administer External Applications page, along with
the other external applications.

Click the application link to test the login.

The following example shows the source of the values that are used for Yahoo! Mail.

<form method=post action="http://login.yahoo.com/config/login?6p4f5s403j3h0"
autocomplete=off name=a>

<td><input name=login size=20 maxlength=32></td>

<td><input name=passwd type=password size=20 maxlength=32></td>

<input type=checkbox name=".persistent" value="Y" >Remember my ID & password

</form>

The source provides values for the following:

Login URL:

http://login.yahoo.com/config/login?6p4f5s4033j3h0

Username/ID Field Name: 1ogin

Password Field Name: passwd

A-10 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

Adding an External Application

s Type of Authentication Used: POST
s Field Name: .persistent Y

s Field Value: [of£f]

Note: If you change the host name of the AS middle tier, you must
manually update the Login URL field for external applications on this
middle tier. You do this on the Edit External Applications page,
described in the next section.

Creating Deployment-Specific Pages A-11

Adding an External Application

A-12 Oracle Fusion Middleware Developer's Guide for Oracle Access Management

	Contents
	List of Examples
	List of Tables
	List of Figures
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle Access Management?
	Guide Changes: 11g Release 2 (11.1.2) November 2012 Library Refresh
	New Features in 11g Release 2 (11.1.2)
	New Features in 11g Release 1 (11.1.1)
	Product and Component Name Changes

	Part I Introduction
	1 Developing with Oracle Access Management Components
	1.1 About Oracle Access Management
	1.2 About Access Manager
	1.3 About Mobile and Social
	1.4 About Identity Federation
	1.5 About Security Token Service
	1.6 System Requirements and Certification

	Part II Developing with Access Manager
	2 Developing Access Clients
	2.1 About Developing Access Clients
	2.1.1 About the Access SDK and APIs
	2.1.2 About Installing Access SDK
	2.1.3 About Custom Access Clients
	2.1.3.1 When to Create a Custom Access Client
	2.1.3.2 Access Client Architecture

	2.1.4 About Access Client Request Processing

	2.2 Developing Access Clients
	2.2.1 Structure of an Access Client
	2.2.2 Typical Access Client Execution Flow
	2.2.3 Sample Code: Simple Access Client
	2.2.4 Annotated Sample Code: Simple Access Client
	2.2.5 Sample Code: Java Login Servlet
	2.2.6 Annotated Sample Code: Java Login Servlet
	2.2.7 Sample Code: Additional Methods
	2.2.8 Annotated Sample Code: Additional Methods
	2.2.9 Sample Code: Certificate-Based Authentication in Java

	2.3 Messages, Exceptions, and Logging
	2.3.1 Messages
	2.3.2 Exceptions
	2.3.3 Logging

	2.4 Building an Access Client Program
	2.4.1 Setting the Development Environment
	2.4.2 Compiling a New Access Client Program

	2.5 Configuring and Deploying Access Clients
	2.5.1 Task Overview: Configuring and Deploying an Custom Access Client
	2.5.2 Configuration Requirements
	2.5.3 Generating the Required Configuration Files
	2.5.4 SSL Certificate and Key Files
	2.5.4.1 Simple Transport Security Mode
	2.5.4.2 Cert Transport Security Mode
	2.5.4.2.1 Importing the CA Certificate
	2.5.4.2.2 Setting Up The Keystore

	2.6 Compatibility: 11g versus 10g Access SDK and APIs
	2.6.1 Compatibility of the 11g Access SDK
	2.6.2 Compatibility of 10g JNI ASDK and 11g Access SDK
	2.6.3 Deprecated: 10g JNI ASDK

	2.7 Migrating Earlier Applications or Converting Your Code
	2.7.1 Modifying Your Development and Runtime Environment
	2.7.2 Migrating Your Application
	2.7.2.1 Configuration Specific to Migration

	2.7.3 Converting Your Code
	2.7.3.1 Understanding Differences Between 10g JNI ASDK and 11g Access SDK
	2.7.3.2 Converting Code
	2.7.3.2.1 Initializing and Uninitializing Access SDK
	2.7.3.2.2 Performing Access Operations

	2.8 Best Practices
	2.8.1 Avoiding Problems with Access Clients
	2.8.1.1 Thread Safe Code

	2.8.2 Identifying and Resolving Access Client Problems
	2.8.3 Resolving Environment Problems
	2.8.3.1 Java EE Containers
	2.8.3.2 Oracle WebLogic Server
	2.8.3.3 Other Application Servers

	2.8.4 Tuning for High Load Environment

	3 Developing Custom Authentication Plug-ins
	3.1 Introduction to Authentication Plug-ins
	3.1.1 About the Custom Plug-in Life Cycle
	3.1.2 About Planning, the Authentication Model, and Plug-ins

	3.2 Introduction to Multi-Step Authentication Framework
	3.2.1 About the Multi-Step Framework
	3.2.2 Process Overview: Multi-Step Authentication
	3.2.3 About the PAUSE State
	3.2.4 About Information Collected
	3.2.4.1 UserContextData
	3.2.4.2 UserActionContext
	3.2.4.3 UserAction
	3.2.4.4 UserActionMetaData

	3.3 Introduction to Plug-in Interfaces
	3.3.1 About the Plug-in Interfaces
	3.3.1.1 GenericPluginService
	3.3.1.2 AuthnPluginService

	3.3.2 About Plug-in Hierarchies

	3.4 Sample Code: Custom Database User Authentication Plug-in
	3.4.1 Sample Code: Database User Authentication Plug-in
	3.4.2 Sample Plug-in Configuration Metadata Requirements
	3.4.3 Sample Manifest File for the Plug-in
	3.4.4 Plug-in JAR File Structure

	3.5 Developing an Authentication Plug-in
	3.5.1 About Writing a Custom Authentication Plug-in
	3.5.2 Writing a Custom Authentication Plug-in
	3.5.3 Error Codes in an Authentication Plug-In
	3.5.4 JAR Files Required for Compiling a Custom Authentication Plug-in

	4 Developing Custom Pages
	4.1 Introduction to Custom Pages
	4.1.1 About Developing Custom Pages
	4.1.2 About Authentication and Custom Pages

	4.2 Developing Custom Login Pages
	4.2.1 Creating a Form-Based Login Page
	4.2.1.1 Returning OAM_REQ Token
	4.2.1.2 Returning the End Point

	4.2.2 Page Redirection Process

	4.3 Developing Custom Error Pages
	4.3.1 Process Overview: Creating a Custom Error Page
	4.3.2 Standard Error Codes
	4.3.3 Default Page Locations
	4.3.4 Security Level Configuration
	4.3.5 Password Policy Validation Error Codes
	4.3.6 Secondary Error Message Propagation
	4.3.7 Retrieving Error Codes
	4.3.7.1 Code Samples
	4.3.7.2 Retrieving Password Policy Error Codes
	4.3.7.3 Password Policy Rules

	4.3.8 Error Data Sources Summary

	4.4 Developing Using the Detached Credential Collector
	4.4.1 Detached Credential Collector Considerations
	4.4.2 Process Overview: Creating a Form-Based Login Page Using DCC

	4.5 Deploying the Custom Login Page
	4.6 Programmatic Authentication
	4.6.1 Using mod_osso Agent
	4.6.1.1 OSSO 10g
	4.6.1.2 11g OAM Server
	4.6.1.3 Process Overview: Developing Programmatic Clients

	4.6.2 Using Unsolicited Post

	4.7 Setting Custom OSSO Cookies After Authentication

	5 Managing Policy Objects
	5.1 Introduction to Policy Administration API
	5.1.1 Access Manager Policy Model
	5.1.2 Security Model
	5.1.3 Resource URLs
	5.1.4 URL Resources and Supported HTTP Methods
	5.1.5 Error Handling

	5.2 Compatibility
	5.3 Managing Policy Objects
	5.3.1 HTTP Methods
	5.3.2 Media Types
	5.3.3 Resources Summary

	5.4 Examples
	5.4.1 Retrieve Application Domains
	5.4.2 Create a New Application Domain
	5.4.3 Get All Authentication Schemes
	5.4.4 Create a New Authentication Scheme
	5.4.5 Get a Particular Authentication Scheme
	5.4.6 Get All Resources in an Application Domain
	5.4.7 Create a Resource in an Application Domain
	5.4.8 Get All Policies in an Application Domain

	5.5 Client Tooling

	6 Developing an Application to Manage Impersonation
	6.1 About Impersonation
	6.1.1 Impersonation Concepts and Terminology
	6.1.2 Impersonation Grant Syntax
	6.1.3 Impersonation Trigger Invocation Using the SSO Service
	6.1.4 Triggering Impersonation Without API Abstraction
	6.1.5 Impersonator Identity Communication During Impersonation Sessions

	6.2 Configuring Impersonation Support
	6.2.1 Configuring Impersonation Using oam-config.xml
	6.2.2 Configuring Impersonation Using idmConfigTool
	6.2.3 Configuring the Authentication Scheme

	6.3 Testing SSO Login and Impersonation

	Part III Developing with Mobile and Social
	7 Developing Applications Using the Mobile and Social Client SDKs
	7.1 Before you Begin
	7.2 Introduction to Developing Mobile Services Applications
	7.2.1 Building Applications With User Profile Services

	7.3 Introduction to Developing Internet Identity Services Applications

	8 Developing Mobile Services Applications with the Java Client SDK
	8.1 Overview
	8.2 Invoking Authentication Services With the Java Client SDK
	8.2.1 Getting Started
	8.2.2 Create a Client Token
	8.2.3 Create a User Token
	8.2.4 Create an Access Token
	8.2.5 Validate a Client Token
	8.2.6 Validate a User Token
	8.2.7 Perform a User Lookup Using the User Token
	8.2.8 Delete the Client Token

	8.3 Invoking User Profile Services with the Java Client SDK
	8.3.1 Working with People
	8.3.1.1 Getting set up
	8.3.1.2 Creating a User
	8.3.1.3 Reading a User
	8.3.1.4 Updating a User
	8.3.1.5 Deleting a User
	8.3.1.6 Searching for a User
	8.3.1.7 Retrieving User Attributes and Validating the Results

	8.3.2 Working With Groups
	8.3.2.1 Getting set up
	8.3.2.2 Creating a Group
	8.3.2.3 Reading a Group
	8.3.2.4 Updating a Group
	8.3.2.5 Deleting a Group
	8.3.2.6 Searching a Group
	8.3.2.7 Searching Groups With Paging Support
	8.3.2.8 Adding a User to a Group
	8.3.2.9 Getting Group Membership Info
	8.3.2.10 Searching for a Member Within a Group
	8.3.2.11 Removing a Member From a Group
	8.3.2.12 Assigning Group Ownership
	8.3.2.13 Getting Group Ownership Info
	8.3.2.14 Searching for the Owner of a Group
	8.3.2.15 Removing a Group Owner
	8.3.2.16 Adding a Group (or a User) to a Group Using addMemberOf
	8.3.2.17 Getting the Membership of a Group Using getMemberOf
	8.3.2.18 Searching a Group Using searchMemberOf
	8.3.2.19 Removing a Group (or a User) from a Group Using deleteMemberOf
	8.3.2.20 Assigning Group Ownership Using addOwnerOf
	8.3.2.21 Getting Group Ownership Info Using getOwnerOf
	8.3.2.22 Searching for the Owner of a Group Using searchOwnerOf
	8.3.2.23 Removing a Group (or a User) from a Group Using deleteOwnerOf

	8.3.3 Working With Organizations
	8.3.3.1 Getting set up
	8.3.3.2 Creating Helper Utilities
	8.3.3.3 Verifying a Manager
	8.3.3.4 Verifying Direct Reports
	8.3.3.5 Retrieve All Reports Using Scope=All Feature
	8.3.3.6 Retrieve the Manager Chain Using Scope=toTop Feature
	8.3.3.7 Retrieve Report Details Using Pre-Fetch Feature
	8.3.3.8 Retrieve Manager Data using the Pre-Fetch feature
	8.3.3.9 Deleting a Report From the Manager

	8.3.4 Searching With Paging Support

	8.4 Invoking Authorization Services With the Java Client SDK

	9 Developing Mobile Services Applications with the iOS Client SDK
	9.1 Getting Started With the iOS Client SDK
	9.1.1 Getting Started Using the iOS Client SDK With XCode

	9.2 Invoking Authentication Services With the iOS Client SDK
	9.3 Invoking HTTP Basic Authentication With the iOS Client SDK
	9.4 Invoking User Profile Services With the iOS Client SDK
	9.4.1 Working With People
	9.4.2 Working With Groups
	9.4.3 Working With Organizations

	9.5 Using the Credential Store Service (KeyChain)
	9.6 Invoking the Mobile Single Sign-on Agent App
	9.6.1 Invoking the Mobile Single Sign-on Agent App From a Web Browser

	9.7 Invoking Webgate Protected Resources
	9.7.1 Understanding the OMRESTRequest API Flow

	9.8 Using the iOS SDK to Create a Custom Mobile Single Sign-on Agent App

	10 Developing Applications Using the Internet Identity Services Client SDK
	10.1 Before you Begin
	10.2 Introduction to Developing Internet Identity Services Applications
	10.2.1 About the Internet Identity Services Client SDK

	10.3 Getting the List of Identity Providers for an Application
	10.4 Integrating Internet Identity Services With a Web Application Running on a Server
	10.4.1 Defining the Web Application on the Mobile and Social Server
	10.4.2 Integrating the Internet Identity Services Login Page With the Web Application
	10.4.2.1 Adding the Pre-built Internet Identity Services Login Page
	10.4.2.2 Building a Custom Login Page

	10.4.3 Handling User Registration
	10.4.3.1 Using a Custom User Registration Page
	10.4.3.2 Using the Mobile and Social Built-in User Registration Page

	10.4.4 Handling the Final Return Response
	10.4.4.1 Secured Attribute Exchange (SAE) Token Response Attributes

	10.5 Integrating With an Access Manager Protected Web Application
	10.6 Integrating Internet Identity Services With a Mobile Application
	10.6.1 Defining the Mobile Application on the Mobile and Social Server

	11 Extending the Capabilities of the Mobile and Social Server
	11.1 Create a new Authentication Services Provider for Mobile Services
	11.1.1 Developing the Custom Authentication Service Provider
	11.1.1.1 Implementing the TokenService Interface
	11.1.1.2 Extending the MobileCompositeTokenServiceProvider

	11.1.2 Building the Custom Authentication Service Provider
	11.1.2.1 To Build the Custom Authentication Service Provider

	11.1.3 Deploying the Custom Authentication Service Provider
	11.1.3.1 To Deploy the Custom Authentication Service Provider

	11.2 Create a new Identity Service Provider for Internet Identity Services
	11.2.1 Developing the Custom Identity Service Provider
	11.2.2 Building the Custom Identity Service Provider
	11.2.2.1 To Build the Custom Identity Service Provider

	11.2.3 Deploying the Custom Identity Service Provider
	11.2.3.1 To Deploy the Custom Identity Service Provider

	12 Sending Mobile and Social REST Calls With cURL
	Request and Response Header Attribute Name Reference
	Mobile and Social REST Security Filter Reference
	Mobile Services REST Reference: Authentication and Authorization
	Mobile Services REST Reference: Commands for Mobile Single Sign-on Tokens
	Mobile Services REST Reference: Commands for User Profile Services
	Practical Examples

	Part IV Developing with Identity Federation
	13 Developing a Custom User Provisioning Plug-in
	13.1 Introduction to User Provisioning Plug-ins
	13.2 Introduction to Plug-in Interfaces
	13.3 Sample Code: Custom User Provisioning Plug-in
	13.4 Developing a User Provisioning Plug-in
	13.4.1 Process Overview: Developing a Custom Plug-in
	13.4.2 Files Required for Compiling a Plug-in

	Part V Developing with Security Token Service
	14 Developing a Custom Token Module
	14.1 Introduction to Oracle Security Token Service Custom Token Module Classes
	14.2 Writing a TokenValidatorModule Class
	14.2.1 About Writing a TokenValidatorModule Class
	14.2.2 Writing a TokenValidatorModule Class

	14.3 Writing a TokenIssuanceModule Class
	14.3.1 About Writing a TokenIssuanceModule Class
	14.3.2 Writing a TokenIssuanceModule Class

	Part VI Appendices
	A Creating Deployment-Specific Pages
	A.1 How the Single Sign-On Server Uses Deployment-Specific Pages
	A.1.1 Change Password Page Behavior
	A.1.1.1 Password Has Expired
	A.1.1.2 Password Is About to Expire
	A.1.1.3 Grace Login Is in Force
	A.1.1.4 Force Change Password

	A.2 How to Write Deployment-Specific Pages
	A.2.1 Login Page Parameters
	A.2.2 Change Password Page Parameters

	A.3 Page Error Codes
	A.3.1 OSSO 10g Login Page Error Codes

	A.4 Adding Globalization Support
	A.4.1 Deciding What Language to Display the Page In
	A.4.1.1 Use the Accept-Language Header to Determine the Page
	A.4.1.2 Use Page Logic to Determine the Language

	A.4.2 Rendering the Page

	A.5 Guidelines for Deployment-Specific Pages
	A.6 Examples of Deployment-Specific Pages
	A.6.1 Using Custom Classes

	A.7 Adding an External Application

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

