

Oracle® Fusion Middleware
Developer's Guide for Oracle Entitlements Server

11g Release 1 (11.1.2)

E27154-01

July 2012

Oracle Fusion Middleware Developer's Guide for Oracle Entitlements Server 11g Release 1 (11.1.2)

E27154-01

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

Primary Author: Michael Teger

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions .. xii

1 Using the Policy Model

1.1 Examining Policy Elements ... 1-1
1.2 Composing A Simple Policy.. 1-2
1.3 Adding Fine Grained Objects to a Simple Policy ... 1-4
1.3.1 Creating an Application Role... 1-5
1.3.2 Defining A Role Mapping Policy .. 1-5
1.3.3 Adding a Condition... 1-6
1.3.4 Populating a Permission Set... 1-6
1.3.5 Building an Obligation.. 1-6
1.4 Using Roles to Implement Policy ... 1-7

2 Constructing A Policy Programmatically

2.1 Using the Java API.. 2-1
2.1.1 Creating a Policy Object.. 2-2
2.1.2 Modifying a Policy Object .. 2-2
2.1.3 Deleting a Policy Object .. 2-2
2.1.4 Searching for Policy Objects... 2-2
2.2 Using the Data Types ... 2-3
2.3 Executing A Simple Policy... 2-6
2.3.1 Accessing the Policy Store .. 2-6
2.3.2 Creating an Application Policy.. 2-7
2.3.3 Defining Resource Types.. 2-8
2.3.4 Instantiating a Resource.. 2-9
2.3.5 Associating Actions with the Resource ... 2-11
2.3.5.1 Using a ResourceEntry.. 2-11
2.3.5.2 Using a ResourceNameExpression ... 2-12
2.3.6 Specifying a Policy Rule... 2-13
2.3.7 Specifying the Principal ... 2-13

iv

2.3.8 Defining the Policy ... 2-15
2.4 Creating Fine Grained Elements for a Simple Policy ... 2-16
2.4.1 Creating Application Roles ... 2-16
2.4.2 Creating Role Mapping Policies ... 2-18
2.4.3 Creating Attribute and Function Definitions ... 2-19
2.4.3.1 Creating Attribute Definitions... 2-20
2.4.3.2 Creating Custom Function Definitions .. 2-21
2.4.4 Defining Permission Sets ... 2-21
2.4.5 Defining a Condition.. 2-22
2.4.5.1 Constructing a Boolean Expression .. 2-25
2.4.5.2 Constructing a Custom Function Expression.. 2-26
2.4.6 Adding Obligations .. 2-27
2.5 Accessing Code Examples .. 2-28

3 Managing Policy Objects Programmatically

3.1 Managing Policies Using Oracle Entitlements Server ... 3-1
3.2 Using Scope Levels to Manage Policy Objects.. 3-1
3.2.1 Managing Objects Created at the PolicyStore Scope .. 3-3
3.2.2 Managing Objects Within the ApplicationPolicy Scope .. 3-3
3.2.2.1 Managing PolicyDomainEntry Objects ... 3-4
3.2.2.2 Managing ResourceTypeEntry Objects ... 3-5
3.2.2.3 Managing and Granting AppRoleEntry Objects.. 3-5
3.2.2.4 Managing Role Mapping Policy (RolePolicyEntry) Objects 3-7
3.2.2.5 Managing AttributeEntry and FunctionEntry Objects ... 3-7
3.2.2.5.1 Managing AttributeEntry Objects... 3-8
3.2.2.5.2 Managing FunctionEntry Objects ... 3-8
3.2.2.6 Managing ResourceEntry Objects .. 3-9
3.2.2.7 Managing Permission Sets ... 3-10
3.2.2.8 Managing the Policy.. 3-11
3.2.3 Managing Objects within the PolicyDomainEntry Scope... 3-12

4 Distributing Policies

4.1 Understanding Policy Distribution .. 4-1
4.1.1 Using a Centralized Policy Distribution Component... 4-1
4.1.2 Using a Local Policy Distribution Component.. 4-2
4.2 Defining Distribution Modes .. 4-3
4.2.1 Controlled Distribution... 4-3
4.2.2 Non-Controlled Distribution ... 4-4
4.3 Creating Security Module Configurations and Bindings ... 4-4
4.3.1 Managing Security Module Configurations .. 4-5
4.3.2 Managing Security Module Bindings ... 4-6
4.4 Initiating Policy Distribution... 4-7

5 Delegating Policy Administration

5.1 Delegating Administration.. 5-1
5.2 Managing Scope and Delegating Granularity .. 5-2

v

5.3 Assigning Permissions ... 5-3
5.4 Using the Default Administration Roles ... 5-3
5.5 Creating Administration Roles ... 5-3
5.5.1 Creating An Administration Role ... 5-4
5.5.2 Assigning Actions and Resources (Permissions) to an Administration Role 5-4
5.5.3 Assigning Principals to an Administration Role... 5-5
5.5.4 Retrieving a Principal’s Administration Resources.. 5-5
5.6 Managing Administration Roles .. 5-6
5.7 Delegating with a Policy Domain... 5-6

6 Handling Authorization Calls and Decisions

6.1 Using the PEP API .. 6-1
6.1.1 Understanding the PEP API... 6-2
6.1.1.1 Working with the PEP API.. 6-2
6.1.1.2 Using the Different PEP API Requests .. 6-3
6.1.1.3 Specifying the PEP API Subject .. 6-4
6.1.1.4 Formatting Authorization Request Strings .. 6-4
6.1.1.4.1 Formatting the PEP API Scope String .. 6-4
6.1.1.4.2 Formatting the PEP API Resource String .. 6-5
6.1.1.5 Retrieving Authentication Information Using a Query.. 6-6
6.1.2 Using the PEP API for Java .. 6-7
6.1.2.1 Getting a Java PEP API Subject .. 6-7
6.1.2.2 Making Simple Java PEP API Authorization Requests .. 6-9
6.1.2.3 Processing Java PEP API Obligations.. 6-9
6.1.2.4 Making Java PEP API Bulk Authorization Requests ... 6-10
6.1.2.5 Making Java PEP API Query Requests .. 6-11
6.1.2.6 Configuring the Java PEP API ... 6-13
6.1.3 Using the PEP API for .NET.. 6-15
6.1.3.1 Getting a .NET PEP API Subject.. 6-15
6.1.3.2 Making Simple .NET PEP API Authorization Requests...................................... 6-16
6.1.3.3 Processing .NET PEP API Obligations ... 6-17
6.1.3.4 Making .NET PEP API Bulk Authorization Requests.. 6-17
6.1.3.5 Making .NET PEP API Query Requests... 6-18
6.1.3.6 Configuring the .NET PEP API ... 6-20
6.2 Making checkPermission() Calls.. 6-21
6.3 Using the XACML Gateway... 6-22

7 Extending Functionality

7.1 Working With Attribute Retrievers.. 7-1
7.1.1 Understanding Attribute Retrievers ... 7-1
7.1.2 Creating Custom Attribute Retrievers.. 7-2
7.1.3 Implementing Custom Attribute Retrievers.. 7-3
7.1.3.1 Getting Attribute Values Directly .. 7-3
7.1.3.2 Getting Attribute Values Using a Handle... 7-4
7.1.4 Configuring Oracle Entitlements Server for Custom Attribute Retrievers................. 7-5
7.2 Developing Custom Functions ... 7-6

vi

7.2.1 Implementing a Custom Function .. 7-6
7.2.2 Using InspectableFunction For Metadata Information ... 7-10

8 Using the JSP Standard Tag Library

8.1 Using the Tag Library... 8-1
8.2 Defining the Functional Tags .. 8-1
8.2.1 isAccessAllowed Tag .. 8-1
8.2.2 isAccessNotAllowed Tag.. 8-3
8.2.3 getUserRoles Tag ... 8-5
8.2.4 isUserInRole Tag.. 8-6
8.3 Defining the Assistant Tags... 8-7
8.3.1 setSecurityContext Tag ... 8-8
8.3.2 attribute Tag ... 8-8
8.3.3 then/else Tags.. 8-9

Index

vii

List of Examples

2–1 Using createApplicationPolicy() Method.. 2-7
2–2 Using the createResourceType() Method .. 2-8
2–3 Using createResource() Method... 2-10
2–4 Building a ResourceActionsEntry with ResourceEntry ... 2-11
2–5 Building a ResourceActionsEntry with ResourceNameExpression 2-12
2–6 Create a PolicyRuleEntry .. 2-13
2–7 Using createPolicy() Example .. 2-15
2–8 Creating an Application Role... 2-16
2–9 Assigning Principals to an Application Role ... 2-17
2–10 Applying Application Role Hierarchies ... 2-17
2–11 Using the createRolePolicy() Method ... 2-18
2–12 Creating a Dynamic Attribute Definition... 2-20
2–13 Creating a Custom Function Definition ... 2-21
2–14 Building a PermissionSetEntry .. 2-22
2–15 Defining a BooleanExpressionEntry ... 2-23
2–16 Building a BooleanExpressionEntry.. 2-24
3–1 Definition of a Policy Store in jps-config.xml ... 3-1
3–2 Using deleteApplicationPolicy() Method.. 3-3
3–3 Using deletePolicyDomain() Method .. 3-4
3–4 Using modifyPolicyDomain() Method .. 3-4
3–5 Using getPolicyDomain() Method.. 3-4
3–6 Using the deleteResourceType() Method.. 3-5
3–7 Using deleteAppRole() Method.. 3-6
3–8 Using the deleteRolePolicy() Method .. 3-7
3–9 Using the modifyRolePolicy() Method .. 3-7
3–10 Using the getAttribute() Method .. 3-8
3–11 Using the deleteAttribute() Method... 3-8
3–12 Using the getFunction() Method... 3-8
3–13 Using the deleteFunction() Method ... 3-9
3–14 Using the getResource() Method .. 3-9
3–15 Using deleteResource() Method.. 3-9
3–16 Using modifyResource() Method .. 3-10
3–17 Modifying a PermissionSetEntry... 3-10
3–18 Using the deletePermissionSet() Method ... 3-11
3–19 Using modifyPolicy() Method.. 3-11
3–20 Using deletePolicy() Method.. 3-12
4–1 Using the createSecurityModule() Method... 4-5
4–2 Using the bindSecurityModule() Method ... 4-5
4–3 Using the getSecurityModule() Method.. 4-5
4–4 Using the deleteSecurityModule() Method... 4-6
4–5 Using the getBoundSecurityModules() Method .. 4-6
4–6 Using the getBoundApplications() Method.. 4-6
4–7 Using the unbindSM() Method ... 4-7
4–8 Using the distributePolicy() Method.. 4-7
5–1 Using deleteAdminRole() Method ... 5-6
5–2 Using getAdminRole() Method .. 5-6
5–3 Using createPolicyDomain() Method... 5-7
6–1 Using Authenticated Subject in Java PEP API Request... 6-7
6–2 Using WebLogic Server Subject with Java PEP API Request ... 6-8
6–3 Using Websphere Application Server Subject with Java PEP API Request 6-8
6–4 Requesting Java PEP API Authorization Against a Resource.. 6-9
6–5 Making PEP API Request and Parsing Response .. 6-9
6–6 Returned Obligations from Example 6–5 ... 6-10
6–7 Requesting Bulk Authorization with the Java PEP API... 6-10

viii

6–8 Defining the Java PEP API Query Type ... 6-11
6–9 Defining the New Java PEP API Response Type .. 6-11
6–10 Verbose Query For a Resource and Children with Java PEP API 6-12
6–11 Query Request for Immediate Searchscope with Java PEP API 6-12
6–12 Query Request for Children Searchscope with Java PEP API... 6-12
6–13 Query Request for Allow/Deny Results & Obligations with Java PEP API................... 6-13
6–14 Sample jps-config.xml File.. 6-14
6–15 Requesting .NET PEP API Authorization Against a Resource ... 6-16
6–16 Requesting .NET PEP API Authorization with a String Subject....................................... 6-16
6–17 Requesting .NET PEP API Authorization with a UserPrincipal Subject 6-16
6–18 Requesting Single Authorization and Obligations with the .NET PEP API 6-17
6–19 Requesting Bulk Authorization ... 6-17
6–20 .NET Query for List of Allowed Resource Action Pairs... 6-18
6–21 .NET Query for List of Denied Resource Action Pairs ... 6-19
6–22 .NET Query for List of All Resource Action Pairs .. 6-19
6–23 Requesting Authorization Results for a Resource and Its Children................................. 6-20
6–24 Using the checkPermission() Method ... 6-22
6–25 Sample Code to Establish Session For XACML Gateway.. 6-23
6–26 Sample Code To Establish Session with Principal Information.. 6-24
6–27 Creating a XACML Request ... 6-24
6–28 XACML 2.0 Authorization Request .. 6-25
6–29 XACML 2.0 Authorization Response.. 6-26
7–1 Implementing getAttributeValue() Method.. 7-3
7–2 Using getAttribute() Method... 7-5
7–3 serviceProviders Section of jps-config.xml.. 7-5
7–4 serviceProviders Section of jps-config.xml.. 7-6
7–5 jpsContext Section of jps-config.xml .. 7-6
7–6 Sample Code for a Custom Function ... 7-7
7–7 Sample Code for a Custom Function Returning DataType Argument 7-9
7–8 Sample Code for getArgMetadata() Method ... 7-11
7–9 Sample Code for getArgValues() Method.. 7-11
7–10 Sample Code For isValidArgValue() Method.. 7-12
8–1 isAccessAllowed Tag Example ... 8-2
8–2 isAccessNotAllowed Tag Example .. 8-4
8–3 getUserRoles Tag Example.. 8-6
8–4 isUserInRole Tag Example .. 8-7
8–5 setSecurityContext Tag Example .. 8-8
8–6 attribute Tag Example .. 8-9

ix

List of Figures

1–1 Policy Components Mapped to Policy Objects .. 1-2
4–1 Using Oracle Entitlements Server Policy Distribution Component 4-2
4–2 Using the Security Module Policy Distribution Component ... 4-2
5–1 The Administration Role Model ... 5-2
6–1 Relationship Between Open AZ API and PEP API.. 6-2

x

List of Tables

2–1 Using the Complex SearchQuery Parameters ... 2-3
2–2 Data Types Descriptions ... 2-4
2–3 Functional Categories for Data Types... 2-5
2–4 Matching ResourceNameExpression Objects ... 2-12
2–5 Examples of ResourceNameExpression .. 2-12
2–6 Specifying a Principal Programmatically .. 2-14
5–1 Resource Name Options ... 5-5
6–1 Understanding the PEP API Authorization Request Types .. 6-3
6–2 PEP API Query Types ... 6-6
7–1 Methods in AttributeRetrieverV2 Interface ... 7-3
8–1 isAcessAllowed Tag Definition ... 8-2
8–2 isAccessNotAllowed Tag Definition... 8-4
8–3 getUserRoles Tag Definition .. 8-5
8–4 isUserInRole Tag Definition ... 8-6
8–5 setSecurityContext Tag Definition .. 8-8
8–6 attribute Tag Definition... 8-8

xi

Preface

The Oracle Fusion Middleware Developer's Guide for Oracle Entitlements Server describes
how to create authorization policies, request authorization decisions and delegate
administration using the available application programming interfaces (API). It also
contains information regarding the policy model, and how to use the API to create
policy objects.

Audience
This document is intended for engineers who use Oracle Entitlements Server
development tools to control access to an organization’s protected resources. This
might involve programmatically requesting an authorization decision, creating an
authorization or role mapping policy, developing custom Security Modules and
Attribute Retrievers, and managing policy objects.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For information about Oracle's commitment to
accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xii

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following guides in the Oracle Entitlements Server
documentation set:

■ Oracle Fusion Middleware Release Notes

■ Oracle Fusion Middleware Installation Guide for Oracle Identity Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server

■ Oracle Fusion Middleware Management Java API Reference for Oracle Entitlements
Server

■ Oracle Fusion Middleware PDP Extension Java API Reference for Oracle Entitlements
Server

■ Oracle Fusion Middleware .NET API Reference for Oracle Entitlements Server

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Using the Policy Model 1-1

1Using the Policy Model

Oracle Entitlements Server uses a model to define the elements that comprise a policy
and how to use those elements to create a policy. The Oracle Fusion Middleware
Administrator's Guide for Oracle Entitlements Server has detailed information on the
policy model. It includes a glossary of the model’s components and a use case for
implementing policy. This chapter contains information on how the Oracle
Entitlements Server policy model is implemented using the Management API. It
contains the following sections:

■ Section 1.1, "Examining Policy Elements"

■ Section 1.2, "Composing A Simple Policy"

■ Section 1.3, "Adding Fine Grained Objects to a Simple Policy"

■ Section 1.4, "Using Roles to Implement Policy"

1.1 Examining Policy Elements
A policy is created to bestow an effect (GRANT or DENY) upon a request for a
protected target resource based on the profile of the requesting principal. From a high
level, the policy defines an association between an effect, a principal, the target
resource, the resource’s allowed actions and an optional condition. A policy is
applicable to a request for access if the parameters in the request match those specified
in the policy. Consider the syntax of this policy (also discussed in the Oracle Fusion
Middleware Administrator's Guide for Oracle Entitlements Server):

GRANT the SupportManagerEast role MODIFY access to the Incidents servlet
 if the request is made from an IP address of 229.188.21.21; return Obligation
 (“send log message if access is granted")

Figure 1–1 illustrates how these elements map to policy-related objects (in the policy
model) that can be used to create policies programmatically.

Composing A Simple Policy

1-2 Developer's Guide for Oracle Entitlements Server

Figure 1–1 Policy Components Mapped to Policy Objects

This image illustrates how general policy components map to Oracle Entitlements
Server policy objects.

An effect (PolicyRuleEntry.EffectType) and an optional condition
(RuleExpressionEntry) are defined in a policy rule (PolicyRuleEntry). The
target resource (ResourceEntry) and the actions that can be performed on it are
defined in a ResourceActionsEntry. The requesting user, group or role is defined
as the principal (PrincipalEntry) and the principal has been assigned a role
defined in an AppRoleEntry. The optional obligation (ObligationEntry) specifies
information returned to the caller with the decision. It will be evaluated during
enforcement of the decision (rather than during evaluation of the decision); the
information may or may not be used by the caller, or affect the decision itself. These
programmatic objects are stored in an instance of a policy store (PolicyStore). For
more information, see Section 1.2, "Composing A Simple Policy" and Section 2.3.1,
"Accessing the Policy Store." Additionally:

■ Authorization Policies define rules that control access to both application software
components and application business objects. See Chapter 2, "Constructing A
Policy Programmatically" for more information.

■ Role Mapping Policies define rules that control how principals are granted or
denied roles. See Section 1.3.2, "Defining A Role Mapping Policy" for information.

Chapter 2, "Constructing A Policy Programmatically" has more information.

1.2 Composing A Simple Policy
Composing a simple Authorization Policy requires that the elements (or policy objects)
be created in a particular order. For example, a ResourceEntry object can only be
created after defining a ResourceTypeEntry object. A simple policy can be
composed by following the sequence described below.

1. Access the policy store.

A PolicyStore object represents the entire policy store. All policy management
activity can be initiated only by an authenticated user with the administrative
rights to retrieve a handle to the policy store and manage the policies. The user
must be assigned to at least one Administrative Role. Errors will be returned for

Composing A Simple Policy

Using the Policy Model 1-3

any methods the role is not authorized to call. For more information, see
Section 2.3.1, "Accessing the Policy Store."

2. Create an ApplicationPolicy.

An ApplicationPolicy object is a child of the PolicyStore object and should
be created as the overall container for policies and related information that secure
the components of a particular application. You may create as many
ApplicationPolicy objects as needed although it is recommended that only
one is created for each application to be secured. After using the
createApplicationPolicy method, the ApplicationPolicy object handle
is returned. For more information, see Section 2.3.2, "Creating an Application
Policy."

3. Create a ResourceTypeEntry.

A ResourceTypeEntry object specifies one or more resource attributes, and
definitions of all possible valid actions that can be performed on a particular kind
of resource. The actions can be standard actions (GET and POST to a URL) or
custom actions on a business object (transfer to or from a bank account). Consider
the following ResourceTypeEntry objects and their valid actions:

■ A text file may support Read, Write, Copy, Edit, and Delete.

■ A checking account application may support deposit, withdrawal, view
account balance, view account history, transfer to savings, and transfer from
savings.

Actions will be granted or denied when accessing a protected ResourceEntry
instance created from the ResourceTypeEntry. To create a
ResourceTypeEntry, call the ResourceTypeManager which provides
methods to create, read, update and modify the object. For more information, see
Section 2.3.3, "Defining Resource Types."

4. Instantiate a ResourceEntry from the ResourceTypeEntry.

A specific protected target (ResourceEntry) will be instantiated from a
ResourceTypeEntry object. The ResourceManager provides methods to
create, read, update and delete a ResourceEntry. A ResourceEntry object
represents a secured target (for example, an application), references a
ResourceTypeEntry, and is created under a PolicyDomainEntry object. If no
PolicyDomainEntry object is specified, it is created under the default
PolicyDomainEntry object. For more information, see Section 2.3.4,
"Instantiating a Resource."

Note: A policy store is created and configured during the installation
of Oracle Fusion Middleware. The default policy store file is
system-jazn-data.xml, located in the $DOMAIN_
HOME/config/oeswlssmconfig/ directory. For more
information, see Oracle Fusion Middleware Installation Guide for Oracle
Identity Management.

Note: The PolicyDomainEntrynis an organizational concept. An
instance of the default PolicyDomainEntry can not be retrieved. To
retrieve objects within the default PolicyDomainEntry, get the
ApplicationPolicy and use the objects’ Manager interfaces.

Adding Fine Grained Objects to a Simple Policy

1-4 Developer's Guide for Oracle Entitlements Server

5. Associate the applicable actions with the instantiated ResourceEntry using the
ResourceActionsEntry interface.

Build a ResourceActionsEntry object to define the actions that can be
performed on a ResourceEntry object. The set of actions defined in a
ResourceActionsEntry object are a subset of the set of legal actions already
defined in the ResourceTypeEntry it references. A ResourceActionsEntry
object can be added directly to a policy or one or more can be added to a
PermissionSetEntry. For general information, see Section 1.3.4, "Populating a
Permission Set." For programming details on adding ResourceActionsEntry
objects to a PermissionSetEntry object, see Section 2.4.4, "Defining Permission
Sets."

6. Build the PolicyEntry.

This includes:

a. Specifying the effects (GRANT or DENY) in a PolicyRuleEntry object.

See Section 2.3.6, "Specifying a Policy Rule" for more information.

b. Specifying a User or Group as the policy principal in a PrincipalEntry
object

See Section 2.3.7, "Specifying the Principal" for more information. You can also
specify an Application Role as the policy principal. See Section 1.3.1, "Creating
an Application Role" for more information.

c. Using the ResourceActionsEntry object containing the target resource
instance and applicable actions.

See Section 2.3.5, "Associating Actions with the Resource" for more
information.

d. Calling the PolicyManager and creating the PolicyEntry.

See Section 2.3.8, "Defining the Policy" for more information.

This sequence, and information on the creation of the policy objects, is reiterated in
Chapter 2, "Constructing A Policy Programmatically" with additional information.
Programming details regarding the management (including retrieval, modification
and deletion) of policy objects is in Chapter 3, "Managing Policy Objects
Programmatically."

1.3 Adding Fine Grained Objects to a Simple Policy
Section 1.2, "Composing A Simple Policy" documented the minimum components
needed to create a policy. The following sections contain information on the objects
that can be added to a simple policy to make it more fine grained.

■ Section 1.3.1, "Creating an Application Role"

■ Section 1.3.2, "Defining A Role Mapping Policy"

■ Section 1.3.3, "Adding a Condition"

■ Section 1.3.4, "Populating a Permission Set"

■ Section 1.3.5, "Building an Obligation"

Additional programmatic information regarding the creation of these objects is in
Chapter 2, "Constructing A Policy Programmatically." Additional programmatic
information regarding the retrieval, modification, and deletion of these objects is in
Chapter 3, "Managing Policy Objects Programmatically."

Adding Fine Grained Objects to a Simple Policy

Using the Policy Model 1-5

1.3.1 Creating an Application Role
An Application Role is a collection of users, groups, and other Application Roles. For
example, you might grant an Application Role all privileges necessary for a given
target application. After the Application Role is created, it can be assigned statically to
a user by granting the user membership in the role. It can also be assigned
dynamically by referencing the role in a Role Mapping Policy which will, in turn,
grant the policy’s principals the permissions defined in the policy itself. An
Application Role can be assigned to an enterprise user, group, or role in an identity
store, or another Application Role in the policy store. One target application may have
several different roles, with each role assigned a different set of privileges for more
fine-grained access.

Application Roles are defined at the ApplicationPolicy level (thus, its name). The
AppRoleEntry object represents the Application Role. The AppRoleManager
provides the methods to create, delete, modify and search for application roles as well
as methods to grant and revoke membership in the role. Membership can be granted
statically through the use of the grantAppRole() method or dynamically with a
Role Mapping Policy. A Role Mapping Policy assigns the role to users and an
Authorization Policy defines the role's access rights.

Application Roles use role inheritance and hierarchy. The inheritance pattern is such
that an enterprise user or group or an identity role assigned to an Application Role
(using a Role Mapping Policy) also inherits any child roles as long as it is not
prohibited by other Role Mapping Policies. For example, if Application Role 1 is
granted to Application Role 2, Application Role 2 is a member of Application Role 1.
Thus, all subjects defined as Application Role 2 are also defined as Application Role 1
(if not prohibited by other Role Mapping Policies) thorugh inheritance. When an
AppRoleEntry is referenced as a policy principal, access to the resource for all users
assigned the role is governed by the policy.

For more information, see Section 2.4.1, "Creating Application Roles."

1.3.2 Defining A Role Mapping Policy
Access to a protected resource can be granted by defining the resource and the specific
users or groups that can access it in an Authorization Policy. But access can also be
granted by defining an Application Role, setting the protected resource and
Application Role in an Authorization Policy and creating a Role Mapping Policy to
dynamically determine the users, prior to authorization, at runtime.

As documented in Section 1.3.1, "Creating an Application Role," membership to an
Application Role can be granted statically through the use of the grantAppRole()
method or dynamically with a Role Mapping Policy (RolePolicyEntry). An
Application Role, referenced as a Principal in a Role Mapping Policy, could grant a
user access to the defined resources but the Role Mapping Policy needs to be resolved
before an authorization decision is reached. The resolution answers the question Can

Note: For more information on Role Mapping Policies, see
Section 1.3.2, "Defining A Role Mapping Policy."

Note: An Application Role can not be assigned to another
Application Role with a Role Mapping Policy. Membership between
Application Roles can only be defined statically.

Adding Fine Grained Objects to a Simple Policy

1-6 Developer's Guide for Oracle Entitlements Server

the user requesting access be assigned this Application Role? Once a request for access to a
resource is received, the Authorization Policies that apply are retrieved and evaluated.
If the policy references any Application Roles as the principal, they must be evaluated
before the access decision is made.

You can also apply restrictions that limit access to the resource by defining conditions
on the Role Mapping Policy and/or the Authorization Policy - such as the time of day
or the day of the week. See Section 1.3.3, "Adding a Condition" for more information.
Section 1.4, "Using Roles to Implement Policy" and Section 2.4.2, "Creating Role
Mapping Policies" contains more information on Role Mapping Policies.

1.3.3 Adding a Condition
A Condition can be added to either an Authorization Policy or a Role Mapping Policy
as a way of setting an additional constraint on the policy. A Condition is written in the
form of an expression that resolves to true or false (boolean) and has one of the
following outcomes:

■ If the expression resolves to true, the policy condition is satisfied and the
PolicyRuleEntry is applicable.

■ If the expression does not resolve to true, the policy is not applicable.

Conditions can be complex combinations of boolean expressions that test the value of
some user, resource, or system attribute or they can be custom Java evaluation
functions that evaluate complex business logic. To create a Condition in which you
want to define an attribute and/or function, call the ExtensionManager and use the
available methods to create one of the following objects for reference in the policy.

■ AttributeEntry (a name/value pair that can be dynamically added to a policy
rule)

■ FunctionEntry (externally implemented logic)

Either can be added to a PolicyRuleEntry as a means of setting a Condition during
policy evaluation. For more information, see Section 2.4.5, "Defining a Condition."

1.3.4 Populating a Permission Set
A ResourceActionsEntry object associates a specific protected target (Resource)
with the action(s) that can be performed on it. The ResourceActionsEntry object is
specified when creating a simple Authorization Policy or you can build a more
complex policy by populating a PermissionSetEntry object (also referred to as the
entitlement) with one or more ResourceActionEntry objects.

To populate, call the PermissionSetManager, instantiate a PermissionSetEntry
and add one or more ResourceActionsEntry objects. The PermissionSetEntry
is then referenced in a PolicyEntry object. For more information, see Section 2.4.4,
"Defining Permission Sets."

1.3.5 Building an Obligation
An Obligation specifies optional information that is returned to the calling application
with the access decision. This information may or may not be taken into account
during policy enforcement based on settings defined by the application. The
Obligation information is returned with the allowed policy effect (GRANT or DENY).
For example, the reason a request for access has been denied might be returned as an
Obligation. A different type of Obligation might involve sending a message; for

Using Roles to Implement Policy

Using the Policy Model 1-7

example, if a certain amount of money is withdrawn from a checking account, send a
text message to the account holder’s registered mobile phone.

To specify an Obligation, build an ObligationEntry object. This object contains a
set of attributes that form the arguments of the Obligation. The ObligationEntry is
then referenced in a PolicyEntry object. For more information, see Section 2.4.6,
"Adding Obligations."

1.4 Using Roles to Implement Policy
As documented in Section 1.3.2, "Defining A Role Mapping Policy," when users and
groups are mapped to Application Roles, the mapping can be static (using direct role
membership) or dynamic (using a Role Mapping Policy). A Role Mapping Policy
contains the Principal (User, Group), an optional Target (resource, resource name
expression) and (optionally) a Condition. Roles can also be mapped to access rights
using an Authorization Policy. An Authorization Policy can contain the Principal
(User, Group, Application Role), a Target (resource, entitlement set, resource name
expression), actions that can be performed on the target, and (optionally) a Condition
and Obligation. The following happens during authorization evaluation:

1. Based on the Principal, a list of Application Roles is determined by checking static
role membership and applicable Role Mapping Policies.

2. Based on the Principal and resulting list of Application Roles, a list of
Authorization Policies is evaluated to find any that are applicable. An applicable
policy is based on the principal, target matching and condition evaluation.

3. Evaluation results are based on the DENY overrides combining algorithm.

For more information, see Section 2.4.1, "Creating Application Roles" and Section 2.4.2,
"Creating Role Mapping Policies."

Note: If a Condition evaluates to false, Obligations are not sent to the
caller.

Using Roles to Implement Policy

1-8 Developer's Guide for Oracle Entitlements Server

2

Constructing A Policy Programmatically 2-1

2Constructing A Policy Programmatically

Oracle Entitlements Server contains Java application programming interfaces (API) for
creating policies and policy objects programmatically. This chapter contains
information on how to create these various policy objects using the API. It contains the
following sections.

■ Using the Java API

■ Using the Data Types

■ Executing A Simple Policy

■ Creating Fine Grained Elements for a Simple Policy

■ Accessing Code Examples

2.1 Using the Java API
The Oracle Entitlements Server Java API can be used to construct, manage (read,
modify, delete) and search for the policy objects discussed in Chapter 1, "Using the
Policy Model." Policy definitions are constructed from these policy objects. A policy
object is generally any interface that ends in Entry. The
oracle.security.jps.service.policystore.info package comprises most
of the policy objects including (but not limited to) the PolicyEntry, AppRoleEntry,
and PermissionSetEntry. The
oracle.security.jps.service.policystore.info.resource package
comprises the ResourceEntry, ResourceTypeEntry and the
ResourceActionsEntry. To construct or manage a policy object, you must:

1. Get a handle to the policy store.

See Section 2.3.1, "Accessing the Policy Store."

2. Retrieve the application policy under which the object will be (or has been)
created.

See Section 2.3.2, "Creating an Application Policy."

Note: For information on the corresponding WebLogic Scripting
Tool (WLST) commands, see the Oracle Fusion Middleware
Administrator's Guide for Oracle Entitlements Server.

Note: This may or may not entail the retrieval of a policy domain.
See Chapter 5, "Delegating Policy Administration" for more
information.

Using the Java API

2-2 Developer's Guide for Oracle Entitlements Server

3. Retrieve an instance of the appropriate entity manager interface. A policy object is
constructed and managed using an entity manager.

The oracle.security.jps.service.policystore.entitymanager
package comprises all interfaces including (but not limited to) the
ResourceManager, PolicyManager, AppRoleManager, and
PermissionSetManager.

The following sections document more specifically how the API can be used to
perform specific operations on policy objects.

■ Section 2.1.1, "Creating a Policy Object"

■ Section 2.1.2, "Modifying a Policy Object"

■ Section 2.1.3, "Deleting a Policy Object"

■ Section 2.1.4, "Searching for Policy Objects"

For more detailed information, see one or both of the Oracle Entitlements Server Java
API Reference guides.

■ Oracle Fusion Middleware Management Java API Reference for Oracle Entitlements
Server

■ Oracle Fusion Middleware PDP Extension Java API Reference for Oracle Entitlements
Server

2.1.1 Creating a Policy Object
To create a particular policy object, get a handle to the policy store and an instance of
the applicable entity manager interface and use the create method. Policy objects
have common elements that should be defined when they are being created including
a Name, Display Name and Description. Additional elements that are specific to the
type of object being created must also be defined. See Section 2.3, "Executing A Simple
Policy" and Section 2.4, "Creating Fine Grained Elements for a Simple Policy" for
examples of the create method and descriptions of its parameters.

2.1.2 Modifying a Policy Object
To modify a particular policy object, get a handle to the policy store and retrieve the
object, either by creating a new one or searching for an existing one. An instance of the
object will be placed in memory. Use the object’s methods to modify the in-memory
instance; you can call one or more as necessary. After completing the modifications,
get an instance of the object’s Manager interface and use the modify method, passing
to it a reference to the in-memory object. This will propogate the changes to the object
itself in the policy store. See Chapter 3, "Managing Policy Objects Programmatically"
for examples of these operations and descriptions of their parameters.

2.1.3 Deleting a Policy Object
To delete a policy object, get a handle to the policy store and an instance of the
applicable entity manager interface. Pass the object’s defined Name to the manager’s
delete method to remove it. Additionally, some objects allow cascade removal. See
Chapter 3, "Managing Policy Objects Programmatically" for more information.

2.1.4 Searching for Policy Objects
Searches are often required to retrieve policy objects referenced in policy definitions.
To search for policy objects, use a simple query or a complex query. Each Manager

Using the Data Types

Constructing A Policy Programmatically 2-3

interface has a singular and plural get method for each type of query, respectively.
Use the singular get method to search for, and retrieve, a specific policy object by
passing the object’s defined Name. Use the plural get method to retrieve mutiple
objects using a complex query. With the plural get method, pass search criteria to it
using the appropriate SearchQuery class as defined in the
oracle.security.jps.service.policystore.search package. Table 2–1
documents the parameters and descriptions of the generic SearchQuery classes.

See Chapter 3, "Managing Policy Objects Programmatically" for more information on
these search operations. See the Oracle Entitlements Server Java API Reference for
SearchQuery parameter information specific to the particular policy object.

2.2 Using the Data Types
Policy store support for additional data types has been added to Oracle Entitlements
Server to make it compliant with the XACML 2.0 standard. The data type used is
dependent on the type of data itself and how Oracle Entitlements Server will interpret
it. For example, if you have an IP address and want Oracle Entitlements Server to use

Table 2–1 Using the Complex SearchQuery Parameters

Parameter Description

policy_object.SEARCH_
PROPERTY

An enum in which the properties used to perform the query are
defined. May include Name, Display Name, Description and
others that vary by object type. For the permitted properties of a
particular search type, see the Java API Reference.

negation A boolean that takes as a value either true or false. If true, the
NOT operator is applied to the search.

operator An enum that defines the ComparatorType as one of the
following:

■ EQUALITY

■ GREATER THAN

■ GREATER THAN OR EQUAL TO

■ LESS THAN

■ LESS THAN OR EQUAL TO

search string Takes as a value the string used for the search.

■ If the value is null, the match must be ANY.

■ If populated, the algorithm matches the value against those
being searched.

SearchQuery.MATCHER An enum that defines how the search string is matched against the
values being searched. It should define one of the following:

■ ANY — Any non-NULL value satisfies the search string. (If
the search string is NULL, the match must be ANY.) Use this
to retrieve all instances of the object type.

■ BEGINS_WITH — The object property must begin with the
search string.

■ CONTAINED_IN — The object property must contain the
search string.

■ ENDS_WITH — The object property must end with the search
string.

■ EXACT — The object property must be exactly the same as the
search string.

Using the Data Types

2-4 Developer's Guide for Oracle Entitlements Server

IP address semantics in handling it for masking, use the OpssIPAddress data type. If
OpssString is used, Oracle Entitlements Server wouldn't know that the string needs
to be treated as an IP address. Table 2–2 describes the data types.

The data types can be used for the following:

■ Declaration of attributes by assigning the data type to an attribute (dynamic
attributes, resource attributes, custom attributes retrieved by a custom Attribute
Retriever)

■ Constraints in policy rules

■ Return values in Obligations

■ Input parameters

■ Return’s declaration of customer/built-in function

Table 2–3 lists the functional categories that can be used with each data type.

Table 2–2 Data Types Descriptions

Data Type Description

ANY_URI Represents a Uniform Resource Identifier (URI) with an
optional fragment identifier.

BASE64_BINARY Represents arbitrary Base64-encoded binary data.

DATE_TIME Values may be viewed as objects with integer-valued year,
month, day, hour and minute properties, a decimal-valued
second property, and a boolean time-zoned property.

DAYTIME_DURATION Represents a duration of time as an object where the
coordinates designate the Gregorian year, month, day, hour,
minute, and second components.

DNS_NAME Represents a Domain Name Service (DNS) host name, with
optional port or port range.

DOUBLE Represents the IEEE double-precision 64-bit floating point
type.

HEX_BINARY Represents arbitrary hex-encoded binary data.

IP_ADDRESS Represents an Internet Protocol (IP) address.

RFC822_NAME Represents an e-mail address.

X500_NAME Represents a Distinguished Name (DN).

YEARMONTH_DURATION Represents a duration of time; can contain years and months.

BOOLEAN Represents true or false.

DATE Values may be viewed as objects with integer-valued year,
month, day, hour and minute properties, a decimal-valued
second property, and a boolean time-zoned property.

INTEGER Represents a finite-length sequence of decimal digits with an
optional leading sign. If the sign is omitted, positive numerals
are assumed.

STRING Represents a character string.

TIME Represents an instant of time that recurs every day. When the
PDP evaluates time specified in a constraint or obligation, it
interprets it as the local time of the host on which the PDP is
deployed.

Using the Data Types

Constructing A Policy Programmatically 2-5

The functions can be used for the following:

■ Constraints in policy rules

■ Return values in Obligations

Table 2–3 Functional Categories for Data Types

Function Category Description

LOGICAL_FUNCTION Operates on boolean data type arguments

EQUALITY_COMPARISON_
FUNCTION

Compares two arguments (integer or double data
types) and yields a boolean as to whether they are
equal or not

LESS_THAN_COMPARISON_
FUNCTION

Compares two arguments (integer or double data
types) and yields a boolean as to whether one is less
than the other

GREATER_THAN_COMPARISON_
FUNCTION

Compares two arguments (integer or double data
types) and yields a boolean as to whether one is
greater than the other

LESS_THAN_EQUAL_COMPARISON_
FUNCTION

Compares two arguments (integer or double data
types) and yields a boolean as to whether one is less
than or equal to the other

GREATER_THAN_EQUAL_
COMPARISON_FUNCTION

Compares two arguments (integer or double data
types) and yields a boolean as to whether one is
greater than or equal to the other

TYPE_IS_IN_EXISTENCE_FUNCTION

HAS_VALUE_EXISTENCE_FUNCTION

REGEXP_FUNCTION

VALID_FOR_FUNCTION

ARITHMETIC_FUNCTION Takes two arguments of the integer or double data
type and returns an integer or double data type

STRING_CONVERSION_FUNCTION Takes a string data type argument and converts it as
defined

NUMERIC_CONVERSION_
FUNCTION

Takes one argument of the integer or double data
type and converts it to the double or integer data
type, respectively

DATE_TIME_ARITHMETIC_
FUNCTION

Performs arithmetic operations with date and time
data types.

STRING_FUNCTION Takes a string and converts it to other data types

BAG_FUNCTION Operates on a bag (an unordered collection of values
in which there may be duplicate values) of primitive
data types to decide, for example, what data type or
how many values in the bag

SET_FUNCTION Operates on two bags mimicking sets (by
eliminating duplicate elements)

HIGHER_ORDER_BAG_FUNCTION Perform operations on bags such that functions may
be applied to the bags in general

SPECIAL_MATCH_FUNCTION Operates on various data types and evaluate to a
boolean based on the specified standard matching
algorithm

CUSTOM_FUNCTION

Executing A Simple Policy

2-6 Developer's Guide for Oracle Entitlements Server

■ Input parameters of custom/built-in functions

For more information on the data types and how they might be used, see the XACML
2.0 specifications at http://docs.oasis-open.org/xacml/ .

2.3 Executing A Simple Policy
Executing the simple policy procedure documented in Section 1.2, "Composing A
Simple Policy" requires that the objects be created in a particular order. For example, a
ResourceEntry object can only be created after defining a ResourceType object.
The following sections are listed in the correct order for executing a simple policy
programmatically.

■ Section 2.3.1, "Accessing the Policy Store"

■ Section 2.3.2, "Creating an Application Policy"

■ Section 2.3.3, "Defining Resource Types"

■ Section 2.3.4, "Instantiating a Resource"

■ Section 2.3.5, "Associating Actions with the Resource"

■ Section 2.3.6, "Specifying a Policy Rule"

■ Section 2.3.7, "Specifying the Principal"

■ Section 2.3.8, "Defining the Policy"

2.3.1 Accessing the Policy Store
Any policy management activity must be preceded by retrieving an instance of the
PolicyStore object. The following procedure shows how the PolicyStore object
is retrieved using interfaces in the oracle.security.jps package. Smith is
specified as the user with the administrative rights to manage the policies.

1. Retrieve an instance of PolicyStore.

JpsContextFactory ctxFact = JpsContextFactory.getContextFactory();
JpsContext ctx = ctxFact.getContext();
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
if (ps == null) {
 // if no policy store instance configured in jps-config.xml
 System.out.println(“no policy store instance configured”);
 return;
}

JpsContext declares a collection of service instances common to a particular
domain in the file that configures Oracle Platform Security Services,

Note: Before creating any policy objects, you should determine the
overall organizational structure of the policy model components; for
example, it may be beneficial to implement only one
ApplicationPolicy object and, within that parent, delegate
policies in multiple PolicyDomainEntry objects. For more
information, see Section 5.7, "Delegating with a Policy Domain."

Caution: Errors will be returned for any methods the user is not
authorized to call.

Executing A Simple Policy

Constructing A Policy Programmatically 2-7

jps-config.xml. If there is more than one JpsContext defined in the
jps-config.xml, the policy store specified in the default JpsContext will be
returned. You can also get a particular JpsContext by name.

See the Oracle Fusion Middleware Security Guide for more information on this
configuration file. Parameters specific to Oracle Entitlements Server are
documented in the Oracle Fusion Middleware Administrator's Guide for Oracle
Entitlements Server.

2. Specify the administrative user.

Subject smith = new Subject();
Principal principal = new WLSUserImpl("smith");
smith.getPrincipals().add(principal);
BindingPolicyStore ps = BindingPolicyStoreFactory.getInstance();
ps.setSubject(smith);

This code is required only if the subject is not set using the application container’s
authentication mechanism. In the case of the subject being set with the
authentication mechanism, the authenticated subject retrieved is used to authorize
access to the policy store; it is not required to use BindingPolicyStore.

2.3.2 Creating an Application Policy
An ApplicationPolicy object is a container for all objects needed to define secure
access to a particular application. An ApplicationPolicy object should be created
for each target to be secured. You may create as many as needed. Once created, the
ApplicationPolicy is represented by the ApplicationPolicy interface which
contains the programmatic managers needed to create resources, policies and other
security objects used to define the application’s access requirements. These security
objects comprise those defined in Chapter 1, "Using the Policy Model."

You can create, delete and retrieve ApplicationPolicy objects with the methods
found in the PolicyStore interface. Example 2–1 illustrates how to create an
ApplicationPolicy object using the createApplicationPolicy() method.

Example 2–1 Using createApplicationPolicy() Method

ApplicationPolicy ap = ps.createApplicationPolicy("Trading", "Trading
 Application","Trading Application.");

Notes: ■If no policy store instance is configured,
getServiceInstance() will return null.

■ If a connection is not established, getServiceInstance()
throws javax.persistence.PersistenceException.

■ If the PolicyStore object was already retrieved but the
connection went down, any operations within the policy store will
lead to a PolicyStoreException. If the backend is down,
resume operations once the backup is available. High availability
for backend stores is also possible.

Note: The ApplicationPolicy object is represented in the Oracle
Entitlements Server Administration Console as an Application.

Executing A Simple Policy

2-8 Developer's Guide for Oracle Entitlements Server

The values of the createApplicationPolicy() parameters are defined as:

■ Name - Trading is a unique identifier for the ApplicationPolicy object.

■ Display Name - Trading Application is an optional, human-readable name for the
ApplicationPolicy object.

■ Description - Trading Application. is optional information describing the
ApplicationPolicy object.

2.3.3 Defining Resource Types
A ResourceTypeEntry object specifies the full scope of traits for a particular kind of
resource. From the higher level ResourceTypeEntry object (associated with an
ApplicationPolicy object), you instantiate a specific Resource object to represent
an actual, secured target. Thus, the ResourceTypeEntry contains a full spectrum of
resource attributes (specifications that an instance of this resource type may have) and
definitions of all possible valid actions that can be performed on the protected
instance. The actions added to a ResourceTypeEntry can be standard actions (GET
and POST to a URL) or a custom action on a business object (transfer to or from a bank
account).

To create, delete, retrieve or modify a ResourceTypeEntry, obtain an instance of the
ResourceTypeManager. Example 2–2 creates a ResourceTypeEntry named
TradingResType within the TradingApp ApplicationPolicy object.
TradingResType has two permissible actions (BUY and SELL) and an attribute named
ManagerType .

Example 2–2 Using the createResourceType() Method

ResourceTypeManager resourceTypeManager = tradingApp.getResourceTypeManager();
List<String> actions = new ArrayList();
 actions.add("get");
List<AttributeEntry<? extends DataType>> attributes = new
 ArrayList<AttributeEntry<? extends DataType>>();
attributes.add(new BasicAttributeEntry<OpssString>
 ("orderNo", OpssString.class));
attributes.add(new BasicAttributeEntry<OpssBoolean>
 ("isDomestic", OpssBoolean.class));
ResourceTypeEntry resType = rtm.createResourceType
 ("TradingResType", "Trading ResType", "Trading Resource Type",
 actions, attributes, ",", null);

tradingApp is the name of the ApplicationPolicy object from which the
ResourceTypeManager is being retrieved. The values of the
createResourceType() parameters are defined as:

■ Name - TradingResType is a unique identifier for the ResourceTypeEntry.

■ Display Name - Trading ResType is an optional, human-readable name for the
ResourceTypeEntry.

Caution: Deleting an ApplicationPolicy object deletes all child
objects created within it.

Note: The ResourceTypeEntry object is represented in the Oracle
Entitlements Server Administration Console as a Resource Type.

Executing A Simple Policy

Constructing A Policy Programmatically 2-9

■ Description - Trading Resource Type is optional information describing the
ResourceTypeEntry.

■ Actions - actions is the name of an ordered collection (list) of all valid actions on
the ResourceTypeEntry - in this case, GET. Use the setAllAction() method
to set a default action keyword.

■ Attributes - attributes specifies a listing of all valid attributes for the
ResourceTypeEntry. If there are duplicate ones, they will be handled as one. To
define one or more attributes, create them with the createAttribute() method
in the ExtensionManager and reference them here. See Section 2.4.3, "Creating
Attribute and Function Definitions" for more information. Attributes can also be
null.

■ Delimiter - / (forward slash) is the default delimeter for the actions. Use the
setResourceNameDelimiter() method to set a different delimiter. The
delimiter is passed to the method as a
ResourceTypeEntry.ResourceNameDelimiter enum.

■ Resource Matcher Class - null signifies there is no resource permission matcher
class used for target and action matching. To set an implementation of the Java
Permission class, assign the class name as the matcher class. In this case, the
Resource Type is bound with a given permission. A policy defined with the
Resource Type is a permission-based policy.

ResourceTypeEntry objects can also be defined as hierarchical by invoking the
object’s setHierarchicalResource() method. By passing true to the
isHierarchical parameter, the ResourceTypeEntry will be set as hierarchical. A
hierarchical ResourceTypeEntry can then be used to instantiate a ResourceEntry
in which the following applies.

1. A policy applicable to a ResourceEntry created from a hierarchical
ResourceTypeEntry is also applicable to any ResourceEntry objects that are
its children.

2. Any attribute defined for a ResourceEntry created from a hierarchical
ResourceTypeEntry is inherited by any ResourceEntry objects that are its
children.

The isHierarchicalResource() method can be used to determine whether a
ResourceTypeEntry has been set as hierarchical.

See Section 2.3.4, "Instantiating a Resource" for information on creating a
ResourceEntry instance of a ResourceTypeEntry object.

2.3.4 Instantiating a Resource
A ResourceEntry object represents a specific, secured target in a protected
application. It can represent software components managed by a container (URLs,
EJBs, JSPs) or business objects in an application (reports, transactions, revenue charts).

A ResourceEntry object is defined as an instance of a ResourceTypeEntry object.
Be sure the appropriate ResourceTypeEntry is defined before attempting to create a

Note: See the Oracle Fusion Middleware Administrator's Guide for
Oracle Entitlements Server for more information on software
components and business objects.

Executing A Simple Policy

2-10 Developer's Guide for Oracle Entitlements Server

ResourceEntry instance. For more information, see Section 2.3.3, "Defining Resource
Types."

To create a ResourceEntry object, obtain an instance of the ResourceManager
using the getResourceManager() method in the applicable ApplicationPolicy
or PolicyDomainEntry. Following that, use the createResource() method to
create the object.

Example 2–3 creates a checking account ResourceEntry. Trading refers to the
ApplicationPolicy object from which the ResourceManager is being retrieved.

Example 2–3 Using createResource() Method

ResourceManager resMgr = Trading.getResourceManager();
List<AttributeEntry<? extends DataType>> attributes = new
 ArrayList<AttributeEntry<? extends DataType>>();
attributes.add(new BasicAttributeEntry<OpssString>
 ("orderNo", new OpssString("12345678")));
attributes.add(new BasicAttributeEntry<OpssBoolean>
 ("isDomestic", new OpssBoolean(true)));
ResourceEntry checkingRes = resMgr.createResource("Bob_checking1",
"Bob Checking Account", "Checking account.", resType, attributes);

The values of the createResource() parameters are defined as:

■ Name - Bob_checking1 is the unique identifier for the ResourceEntry.

■ Display Name - Bob Checking Account is an optional, human-readable name for
the ResourceEntry.

■ Description - Checking account. is optional information describing the
ResourceEntry.

■ Type - resType is the ResourceTypeEntry object from which the resource will
be instantiated.

■ Attributes - specifies that there are (optional) resource attributes being configured
for this ResourceEntry; in this case, the order number and boolean regarding
whether the Resource is domestic or not. To define one or more attributes, create
them with the createAttribute() method in the ExtensionManager and
reference them here.

Once a ResourceEntry is created, it can be paired with actions in a
ResourceActionsEntry or included in a PermissionSetEntry. For more
information, see Section 2.3.5, "Associating Actions with the Resource" and
Section 2.4.4, "Defining Permission Sets."

Note: The ResourceEntry object is represented in the Oracle
Entitlements Server Administration Console as a Resource.

Executing A Simple Policy

Constructing A Policy Programmatically 2-11

2.3.5 Associating Actions with the Resource
A ResourceActionsEntry object associates a Resource instance with a set of actions
that can be performed on it. The Resource instance is specified as either a static
ResourceEntry or a dynamic ResourceNameExpression.

The following sections have more information.

■ Section 2.3.5.1, "Using a ResourceEntry"

■ Section 2.3.5.2, "Using a ResourceNameExpression"

2.3.5.1 Using a ResourceEntry
The procedure to instantiate a ResourceEntry is explained in Section 2.3.4,
"Instantiating a Resource." After instantiating a ResourceEntry, build a
ResourceActionsEntry object to define the actions that can be performed on the
resource. The set of actions are defined in a list using a subset of the legal actions
defined in the Resource’s corresponding ResourceTypeEntry. Example 2–4 builds a
list that defines the association (resActsList) between the ResourceEntry and its
actions using the ResourceActionsEntry interface. This example creates a
checking account ResourceEntry and associates the checking account with the
ability to read it or modify it.

Example 2–4 Building a ResourceActionsEntry with ResourceEntry

ResourceEntry checkingRes = resMgr.createResource("Bob_checking1",
 "Bob Checking Account", "Checking account.",resType, null);
List<String> actions = new ArrayList<String>();
 actions.add(“read”);
 actions.add(“write”);
List<ResourceActionsEntry> resActsList = new
 ArrayList<ResourceActionsEntry>();
resActsList.add(new BasicResourceActionsEntry(checkingRes, actions));

Bob_checking1 is the ResourceEntry. The List defines the applicable actions for
Bob_checking1 that will be governed by this ResourceActionsEntry object: read
and write. The allowable actions are culled from the parent ResourceTypeEntry.

Note: As noted in Section 2.3.3, "Defining Resource Types,"
hierarchical ResourceEntry objects can be instantiated from
ResourceTypeEntry objects. When instantiating a hierarchical
ResourceEntry object:

■ The name of the ResourceEntry must start with a delimiter. For
example, if the delimiter is /, a valid name is /region/East.

■ All parent ResourceEntry objects must already be created. For
example, a resource /region/East/NY can only be created if
both /region and /region/East have already been created.

Note: A ResourceActionsEntry is not a named object that is
independently managed. It is just an association.

Executing A Simple Policy

2-12 Developer's Guide for Oracle Entitlements Server

2.3.5.2 Using a ResourceNameExpression
Instead of using a ResourceEntry, a ResourceNameExpression can be specified.
A ResourceNameExpression contains a defined ResourceTypeEntry and a Java
regular expression, expressed as a string. The string is used to match the
ResourceEntry instance at runtime. For example, assume the policy data in
Table 2–4 has been defined. RAE1 and RAE2 are defined with specific
ResourceEntry objects, ResType1 and ResType2. RAE3 is defined with a
ResourceNameExpression; during the runtime evaluation of Policy3, http://* is
used to match the ResourceEntry and returns ResType1, the ResourceEntry for
an HTTP URL.

Example 2–5 illustrates how to build a ResourceActionsEntry with a
ResourceNameExpression.

Example 2–5 Building a ResourceActionsEntry with ResourceNameExpression

// create one ResourceActionEntry
ResourceNameExpression resExpression = new ResourceNameExpression
 (resTypeName, resNameExp);
ResourceActionsEntry resActionsEntry = new BasicResourceActionsEntry
 (resExpression, actions);

List<ResourceActionsEntry> resActionsList =
 new ArrayList<ResourceActionsEntry>();
resActionsList.add(resActionsEntry);

Table 2–5 has examples of the ResourceNameExpression. While any regular
expression can be used, the pattern expressions listed in the table are processed faster
then regular expresisons.

Table 2–4 Matching ResourceNameExpression Objects

ResourceEntry ResourceActionsEntry Policies

ResType1 (HTTP URL) RAE1 with ResType1 ResourceEntry
http://www.oracle.com and action GET

Policy1 with RAE1

ResType2 (HTTPS URL) RAE2 with ResType2 ResourceEntry
https://www.oracle.com and action GET

Policy2 with RAE2

RAE3 with ResType1
ResourceNameExpression http://* and
action GET

Policy3 with RAE3

Table 2–5 Examples of ResourceNameExpression

Expression Description

Specific to
Resource
Type

To specify any action type, use the keyword specific to the
Resource Type.

resActsList.add(new
BasicResourceActionsEntry(checkingRes,"any"));

".*" To specify all resources

resActsList.add(new
BasicResourceActionsEntry(".*", actions));

"http.*" To specify all resources beginning with http.

resActsList.add(new
BasicResourceActionsEntry("http.*", actions));

Executing A Simple Policy

Constructing A Policy Programmatically 2-13

You may also populate a Permission Set with one or more ResourceActionsEntry
objects. See Section 2.4.4, "Defining Permission Sets" for more information.

2.3.6 Specifying a Policy Rule
A PolicyRuleEntry defines an Effect (and optionally a Condition). An Effect
specifies the possible outcomes of the policy rule. Effects in Oracle Entitlements Server
are GRANT or DENY. When the policy rule is evaluated (coupled with information
regarding a principal and a target ResourceEntry), the rights of the subject in terms
of the ResourceEntry are determined. All PolicyEntry objects must contain one
(and only one) Policy Rule. See Section 2.3.8, "Defining the Policy" for more
information.

Example 2–6 illustrates how to create a PolicyRuleEntry object named myRule
programmatically using the BasicPolicyRuleEntry implementation.

Example 2–6 Create a PolicyRuleEntry

PolicyRuleEntry myRule = new BasicPolicyRuleEntry
 ("ReportRule", "Report Policy Rule", "Rule for Reports policy.",
 PolicyRuleEntry.EffectType.GRANT, myCondition);

The values of the parameters are defined as:

■ Name - ReportRule is a unique identifier for the policy rule.

■ Display Name - Report Policy Rule is an optional, human-readable name for the
policy rule.

■ Description - Rule for Reports policy is optional information describing the policy
rule.

■ PolicyRuleEntry.EffectType - takes a value of GRANT based on the desired
outcome. The PolicyRuleEntry.EffectType enum defines the available effect
types for Oracle Entitlements Server. The constants are GRANT or DENY.

■ Condition - myCondition is the name of the optional Condition used by this policy
rule. The Condition is a BooleanExpressionEntry which represents an
Expression that returns a boolean value. See Section 2.4.5, "Defining a
Condition" for more information.

2.3.7 Specifying the Principal
A PrincipalEntry specifies the users, groups, or roles to which the policy pertains.
It is added to a PolicyEntry object as documented in Section 2.3.8, "Defining the
Policy." Table 2–6 illustrates the types of principals and how each can be specified
programmatically.

".*html" To specify all resources ending in html.

ResourceActionsEntry suffixResActions = new
BasicResourceActionsEntry(".*html", actions);

Table 2–5 (Cont.) Examples of ResourceNameExpression

Expression Description

Executing A Simple Policy

2-14 Developer's Guide for Oracle Entitlements Server

When a policy’s subject is multiple groups and/or roles, that policy applies to a user
based on the principal semantic defined. Options include:

■ PRINCIPAL_AND_SEMANTIC defines a policy that applies to a user if the user
matches ALL groups or roles listed as the principal. For example, if a list of
principals contains two roles, the user must be member of both roles for the policy
to apply.

■ PRINCIPAL_OR_SEMANTIC defines a policy that applies to a user if the user
matches AT LEAST one of the groups or roles listed as the principal. For example,
if a list of principals contains two roles, the user can be a member of ONLY one of
these roles for the policy to apply.

Table 2–6 Specifying a Principal Programmatically

Principal Type Example

User Specify the class name of the user principal validation provider
(weblogic.security.principal.WLSUserImpl) and the user
name. The following example defines a user named smith.

PrincipalEntry aUser = new BasicPrincipalEntry
 ("weblogic.security.principal.WLSUserImpl", "smith");
List<PrincipalEntry> myPrincipal = new
 ArrayList<PrincipalEntry>(); myPrincipal.add(aUser);

Group Specify the class name of the group principal validation provider
(weblogic.security.principal.WLSGroupImpl) and the group
name. The following example defines a group named Acme.

PrincipalEntry aGroup = new BasicPrincipalEntry
 ("weblogic.security.principal.WLSGroupImpl", "Acme");
List<PrincipalEntry> myPrincipal = new
 ArrayList<PrincipalEntry>(); myPrincipal.add(aGroup);

Role Retrieve the tRole Application Role and add it to the PrincipalEntry.

AppRoleEntry aRole =
 appRoleManager.getAppRole(tRole);
List<PrincipalEntry> principal =
 new ArrayList<PrincipalEntry>();
principals.add(tRole);

See Section 2.4.1, "Creating Application Roles" for more information.

Anonymous Role Add anonymous as a principal to policies that allow access to
anonymous users.

PrincipalEntry anonymous = new AnonymousRoleEntry();
List<PrincipalEntry> principals = new
 ArrayList<PrincipalEntry>();
principals.add(anonymous);

See Section 2.4.1, "Creating Application Roles" for more information.

Authenticated Role Add authenticated as a principal to policies that allow access to
authenticated users.

PrincipalEntry authenticated = new AuthenticatedRoleEntry();
List<PrincipalEntry> principals = new
 ArrayList<PrincipalEntry>();
principals.add(authenticated);

See Section 2.4.1, "Creating Application Roles" for more information.

Executing A Simple Policy

Constructing A Policy Programmatically 2-15

2.3.8 Defining the Policy
A Policy specifies the access rights that specific principals have on specific resources.
Basically, it consolidates all the pieces needed to create the access control - including,
but not limited to, a PolicyRuleEntry, a ResourceActionsEntry, and a
PrincipalEntry.

A Policy is programmatically represented as a PolicyEntry object. To create a
PolicyEntry object, obtain an instance of the PolicyManager using the
getPolicyManager() method. Following that, use the createPolicy() method
to create the object. Example 2–7 creates a policy named myPolicy.

Example 2–7 Using createPolicy() Example

PolicyManager policyMgr = domain.getPolicyManager();

List<PermissionSetEntry> permSets = new ArrayList<PermissionSetEntry>();
permSets.add(permSet1);
permSets.add(permSet2);

List<PrincipalEntry> principals = new ArrayList<PrincipalEntry>();
principals.add(appRole1);
principals.add(new BasicPrincipalEntry(WLSUserImpl.class.getCanonicalName(),
"john"));

PolicyEntry myPolicy = policyManager.createPolicy
 ("BankPolicy", "Bank policy", "Policy for bank.", myRule,
 permSets, principals, null, obligations, PolicyEntry.POLICY_SEMANTIC.AND);

domain refers to the Policy Domain under which the policy is being created. The
values of the createPolicy() parameters are defined as:

■ Name - Bank Policy is a unique identifier for the PolicyEntry.

■ Display Name - Bank policy is an optional, human-readable name for the
PolicyEntry.

■ Description - Policy for bank. is optional information describing the
PolicyEntry.

■ Policy Rule - myrule is the PolicyRuleEntry object.

■ PermissionSetEntry - permSets is a collection (list) of PermissionSetEntry
objects. See Section 2.4.4, "Defining Permission Sets" for more information.

■ Principal - principals is an ordered collection (list) of PrincipalEntry objects
defined as the subject of this policy.

■ ResourceActionsEntry - A list of ResourceActionsEntry objects can also
be defined. If the list of PermissionSetEntry objects is null, this list should
contain at least one valid element.

■ Obligations - A list of ObligationEntry objects may be used. See Section 2.4.6,
"Adding Obligations" for more information.

■ policySemantic - describes how principals specified in the policy should be
handled. The PolicyEntry.POLICY_SEMANTIC enum defines the available
constants as AND or OR.

– PolicyEntry.POLICY_SEMANTIC.AND applies to a user if the user matches
all principals listed in the policy. For example, if a list of principals contains
two roles, the user must be a member of both roles for the policy to apply.

Creating Fine Grained Elements for a Simple Policy

2-16 Developer's Guide for Oracle Entitlements Server

– PolicyEntry.POLICY_SEMANTIC.OR applies to a user if the user matches at
least one of the principals listed in the policy. For example, if list of principals
contains two roles, the user can be a member of at least one of these roles for
the policy to apply.

2.4 Creating Fine Grained Elements for a Simple Policy
Section 2.3, "Executing A Simple Policy" documented how to create the minimum
components needed to define a policy. The following sections contain information on
how to add the advanced policy elements discussed in Section 1.3, "Adding Fine
Grained Objects to a Simple Policy" to a simple policy.

■ Section 2.4.1, "Creating Application Roles"

■ Section 2.4.2, "Creating Role Mapping Policies"

■ Section 2.4.3, "Creating Attribute and Function Definitions"

■ Section 2.4.4, "Defining Permission Sets"

■ Section 2.4.5, "Defining a Condition"

■ Section 2.4.6, "Adding Obligations"

2.4.1 Creating Application Roles
An AppRoleEntry object is associated with an ApplicationPolicy to group
access rights that can then be distributed to users who are granted the Application
Role. Once an AppRoleEntry is defined, the grantAppRole method can be used to
assign the role to a principal statically or a Role Mapping Policy can be created to assign
it to principals dynamically. (See Section 2.4.2, "Creating Role Mapping Policies" for
more information.) The following can be added as members to an AppRoleEntry:

■ Enterprise users from an identity store

■ Enterprise roles from an identity store

■ Other Application Roles in a policy store

When an Application Role is specified as a principal for a particular policy, all users
assigned to the role are governed by that policy. All ApplicationPolicy containers
have two implicit Application Roles:

■ Anonymous Role — implicitly assigned to all unauthenticated users.

■ Authenticated Role — implicitly assigned to all authenticated users.

To create an AppRoleEntry, get an instance of AppRoleManager from within the
ApplicationPolicy object where the Application Role will be created and use the
createAppRole() method. Example 2–8 shows the creation of an AppRoleEntry
named TraderRole.

Example 2–8 Creating an Application Role

AppRoleManager roleMgr = bankApplication.getAppRoleManager();

Note: The AppRoleEntry object is represented in the Oracle
Entitlements Server Administration Console as an Application Role.
Application Roles are consolidated under the Role Catalog branch of
the Administration Console navigation tree.

Creating Fine Grained Elements for a Simple Policy

Constructing A Policy Programmatically 2-17

AppRoleEntry traderRole = roleMgr.createAppRole("TraderRole",
 "Trader Role", "Trader role");

bankApplication defines the ApplicationPolicy object for which we are
retrieving the AppRoleManager. The values of the createAppRole() parameters
are defined as:

■ Name - TraderRole is a unique identifier for the AppRoleEntry object.

■ Display Name - Trader Role is an optional, human-readable name for the
AppRoleEntry object.

■ Description - Trader Role is optional information describing the AppRoleEntry
object.

To assign a Principal to an AppRoleEntry object, build a PrincipalEntry list
containing the appropriate users or groups. Use grantAppRole() to assign the role
to the principals in the list. Example 2–9 shows the creation and assignment of user
JSMITH to the TraderRole.

Example 2–9 Assigning Principals to an Application Role

//create user named JSMITH PrincipalEntry aUser = new
BasicPrincipalEntry("weblogic.security.principal.WLSUserImpl", "JSMITH");

//Add user to principals list
List<PrincipalEntry> principalList = new ArrayList<PrincipalEntry>();
principal.add(aUser);

//assign user to role.
roleMgr.grantAppRole(traderRole, principal);

The values of the grantAppRole() parameters are defined as:

■ Name - TraderRole is the name of the AppRoleEntry object to which the user is
being assigned.

■ Principal - principal is the name of the list which contains the user being added.

Application Role hierarchies can be built by assigning Application Roles as members
of other Application Roles. A policy that applies to an Application Role also applies to
all Application Roles that have been assigned to it as members. Example 2–10
illustrates how the TraderManagers role is assigned as a member of the AllManagers
role. Thus, all policies that apply to members of the AllManagers role also apply to all
members of the TraderManagers role.

Example 2–10 Applying Application Role Hierarchies

//create AllManagers and TraderManagers roles
AppRoleEntry allManagers = roleMgr.createAppRole("AllManagers",
 "AllManagers Role","Role for all managers.");
AppRoleEntry traderManagers = roleMgr.createAppRole(“TraderManagers",
 "TraderManagers Role", "Role for Trader managers.");

//add TraderManagers to a principals list
List<PrincipalEntry> principalList = new ArrayList<PrincipalEntry>();
principal.add(traderManagers);

//add TraderManagers role as principal of AllManagers role
roleMgr.grantAppRole(allManagers, principal);

Creating Fine Grained Elements for a Simple Policy

2-18 Developer's Guide for Oracle Entitlements Server

2.4.2 Creating Role Mapping Policies
A Role Mapping Policy is created at the ApplicationPolicy level - the same level
at which the Application Role is defined. A RolePolicyEntry object represents a
Role Mapping Policy. It provides the methods to define a policy that will determine if
a user or group is granted or denied an Application Role.

To create a RolePolicyEntry object, obtain an instance of the
RolePolicyManager using the getRolePolicyManager() method in the
applicable ApplicationPolicy. Following that, use the createRolePolicy()
method to create the object.

Example 2–11 Using the createRolePolicy() Method

//get the RolePolicyManager
RolePolicyManager roleMapPolicyManager = TellerApp.getRolePolicyManager();

List<AppRoleEntry> appRoles = new ArrayList<AppRoleEntry>();
appRoles.add(appRole1);

List<PrincipalEntry> principalList = new ArrayList<PrincipalEntry>();
principals.add(new BasicPrincipalEntry(WLSUserImpl.class.getCanonicalName(),
"john"));

PolicyRuleEntry rule = new BasicRuleEntry("rule", "rule for role policy", "rule
for role policy", EffectType.GRANT, null);

List<ResourceEntry> resources = new ArrayList<ResourceEntry>();
resources.add(resource1);

//create the RolePolicyEntry
RolePolicyEntry rolepolicy = roleMapPolicyManager.createRolePolicy
 ("TellerRoleMapping", "Teller Role Mapping", "Teller Role Mapping Policy",
 appRoles, principals, rule, resources, null);

TellerApp is the name of the ApplicationPolicy object from which the
RolePolicyManager is being retrieved. The values of the
createRolePolicyEntry() parameters are defined as:

■ Name - TellerRoleMapping is a unique identifier for the RolePolicyEntry.

■ Display Name - Teller Role Mapping is an optional, human-readable name for the
RolePolicyEntry.

■ Description - Teller Role Mapping Policy is optional information describing the
ResourceTypeEntry.

■ Application Roles List - appRoles is an ordered collection (list) of all application
roles to grant (or deny) on evaluation of the RolePolicyEntry.

■ Principals List - principals is a collection (list) of PrincipalEntry objects to map
to the Application Roles. This value cannot be an ApplicationRole or an
Administration Role, and the list cannot be empty.

Note: The RolePolicyEntry object is represented in the Oracle
Entitlements Server Administration Console as a Role Mapping
Policy, organized within the Role Catalog.

Creating Fine Grained Elements for a Simple Policy

Constructing A Policy Programmatically 2-19

■ Policy Rule - rule is the PolicyRuleEntry object that defines a Condition for the
Role Mapping Policy. A value is required.

■ Resource Names - resources is a list of ResourceEntry objects to associate with
the Role Mapping Policy. It is an optional parameter for which you can supply
null or an empty list. This parameter also allows scoping the Role Mapping Policy
to a particular resource(s).

■ Resource Name Expressions - This value can contain a list of resource name
expressions to associate with the Role Mapping Policy. It is an optional parameter
for which you can supply null (as in this example) or an empty list. This parameter
also allows scoping the Role Mapping Policy to a particular resource(s).

2.4.3 Creating Attribute and Function Definitions
An attribute or function definition is metadata that describes a specific attribute or
function. Among other information, it defines the name of the attribute or function, the
type of data the attribute takes, or the function returns, as a value and whether said
value is single or multiple. The metadata informs Oracle Entitlements Server how to
deal with the particular attribute or function that is being defined.

Attribute and function definitions can be used in a Condition or an Obligation. In
regards to a Condition, attribute and function definitions can be used to make an
optional expression that can be added to a policy to further restrict access to the
protected resource. In regards to an Obligation, this optional set of name-value pairs
returns additional information, with a policy decision, to the Policy Enforcement Point
(PEP). There are two ways to define an Obligation:

■ Statically where an attribute with an absolute value is returned.

■ Dynamically where an attribute value, or a custom function, is evaluated at
runtime and the output is returned.

Attribute and function definitions are managed at the ApplicationPolicy level.
You can use definitions pre-defined for Oracle Entitlements Server or, you can define
new ones to suit your requirements using the ExtensionManager. Information on
creating custom definitions is in the following sections.

■ Section 2.4.3.1, "Creating Attribute Definitions."

■ Section 2.4.3.2, "Creating Custom Function Definitions."

Note: Role Mapping Policies use only the OR semantic. See
Section 2.3.7, "Specifying the Principal" for more information.

Note: Conditions in Role Mapping Policies provide the same
functionality as conditions in Authorization Policies.

Note: See Section 1.3.3, "Adding a Condition" and Section 1.3.5,
"Building an Obligation" for more general information. Section 2.4.5,
"Defining a Condition" and Section 2.4.6, "Adding Obligations"
contain additional coding information.

Creating Fine Grained Elements for a Simple Policy

2-20 Developer's Guide for Oracle Entitlements Server

Information on the pre-defined RuleExpressionEntry.BuiltInAttributes and
RuleExpressionEntry.BuiltInFunctions enum definitions can be found in the
Oracle Fusion Middleware Management Java API Reference for Oracle Entitlements Server.

2.4.3.1 Creating Attribute Definitions
An AttributeEntry object can be a value dynamically defined at runtime (for
example, the locality of the user) or a value based on the type of protected resource
(for example, creation date of a text file). During policy evaluation, attribute values can
be passed in by the application or Oracle Entitlements Server can retrieve it using a
custom attribute retriever.

To create an attribute definition, get an instance of the ExtensionManager and use
the createAttribute() method. Example 2–12 creates an attribute definition
named myAttr.

Example 2–12 Creating a Dynamic Attribute Definition

//get the ExtensionManager
ExtensionManager xMgr = bankApplication.getExtensionManager();

//create the dynamic attribute
AttributeEntry<OpssString> attr = xMgr.createAttribute
 ("min_age", "minimum age", "minimum age of subject.", OpssString.class,
 AttributeEntry.AttributeCategory.DYNAMIC, true);

bankApplication refers to the ApplicationPolicy object under which the
extension is being created. The values of the createAttribute() parameters are
defined as:

■ Name - min_age is a unique identifier for the attribute.

■ Display Name - minimum age is an optional, human-readable name for the
attribute.

■ Description - minimum age of subject. is optional information describing the
attribute.

■ Data Type - OpssString.class is the attribute’s data type; in this case, a string. This
parameter takes a value of any of the sub classes of the
oracle.security.jps.service.policystore.info.DataType class.

■ Category - AttributeEntry.AttributeCategory.DYNAMIC defines the attribute as
dynamic. This can be DYNAMIC or RESOURCE. The value of a dynamic attribute
is passed with the authorization request or retrieved by the Policy Decision Point.
The value of a resource attribute is defined by the resource instance.

■ isSingleValue - true indicates that the attribute takes a single value. A value of
false would indicate multiple values.

Note: Dynamic attribute definitions are managed as a child object of
the ApplicationPolicy so that they may be used in policies within
different Policy Domains. See Chapter 5, "Delegating Policy
Administration" for information on Policy Domains.

Note: attr.setValue(new OpssString("John")) is a line of
code that would set the value of the string as John.

Creating Fine Grained Elements for a Simple Policy

Constructing A Policy Programmatically 2-21

2.4.3.2 Creating Custom Function Definitions
A custom function represents some externally implemented logic that is used to
generate an output which is returned to the PDP; the value is then used in a
Condition. Example 2–13 illustrates how to create a custom function by retrieving the
ApplicationPolicy under which the function will be created and getting an
instance of the ExtensionManager.

Example 2–13 Creating a Custom Function Definition

ApplicationPolicy ap = ps.getApplicationPolicy("MyAppPolicy");
ExtensionManager xMgr = ap.getExtensionManager();
FunctionEntry func = xMgr.createFunction("myFunc",
 "Credit Standing Function", "Returns credit standing.",
 "acme.demo.CreditStanding", OpssBoolean.class, params);

MyAppPolicy is the identifier for the ApplicationPolicy object under which the
function is being created. The values of the createFunction() method parameters
are defined as:

■ Name - myFunc is a unique identifier for the FunctionEntry.

■ Display Name - Credit Standing Function is an optional, human-readable name
for the FunctionEntry.

■ Description - Returns credit standing. is optional information describing the
FunctionEntry.

■ Class Name - acme.demo.CreditStanding is the fully-qualified name of the class
implementing the FunctionEntry.

■ Return Data Type - Any sub class of the
oracle.security.jps.service.policystore.info.DataType class
which is a super class comprised of all data types supported by the policy store
(OpssBoolean, OpssDate, OpssInteger, OpssString, OpssTime).

■ Input Data Type - params denotes the input data type for the function. It is one of
the sub classes of the
oracle.security.jps.service.policystore.info.DataType class
which is a super class comprised of all data types supported by the policy store
(OpssBoolean, OpssDate, OpssInteger, OpssString, OpssTime).

For more information, see Section 2.4.5, "Defining a Condition" and Section 7.2,
"Developing Custom Functions."

2.4.4 Defining Permission Sets
As documented in Section 1.2, "Composing A Simple Policy," a
PermissionSetEntry object is used to aggregate one or more
ResourceActionsEntry objects. A ResourceActionsEntry object is a pairing of
the resource being secured with the action(s) that the policy will allow or deny on it.
(See Section 2.3.5, "Associating Actions with the Resource" for more information on
ResourceActionsEntry objects.) With the PermissionSetEntry, you can bundle
ResourceActionsEntry objects as needed. This is a construct that can be used
instead of the standard RBAC role aggregations.

Note: The PermissionSetEntry object is represented in the
Oracle Entitlements Server Administration Console as an Entitlement.

Creating Fine Grained Elements for a Simple Policy

2-22 Developer's Guide for Oracle Entitlements Server

Example 2–14 illustrates how to create a PermissionSetEntry object. It includes the
code for creating a ResourceEntry and ResourceActionsEntry. domain is the
name of the Policy Domain from which the instance of the PermissionSetManager
is retrieved.

Example 2–14 Building a PermissionSetEntry

//get the PermissionSetManager
PermissionSetManager psMgr = domain.getPermissionSetManager();

//create a ResourceEntry and ResourceActionsEntry
ResourceManager resMgr = domain.getResourceManager();
ResourceEntry checkingRes = resMgr.createResource("Bob_checking1",
 "Bob Checking Account", "Checking account.", type, null);
List<String> actions = new ArrayList<String>();
 actions.add(“read”);
 actions.add(“write”);
List<ResourceActionsEntry> resActsList = new
 ArrayList<ResourceActionsEntry>();
resActsList.add(new BasicResourceActionsEntry(checkingRes, actions));

//create a PermissionSetEntry
PermissionSetEntry permSet =
 permSetManager.createPermissionSet("RptsPermSet", "Reports Permission Set",
 "Permission set for Reports policy.", resActsList);

The values of the createPermissionSet() parameters are defined as:

■ Name - RptsPermSet is a unique identifier for the PermissionSetEntry object.

■ Display Name - Reports Permission Set is an optional, human-readable name for
the PermissionSetEntry object.

■ Description - Permission set for Report policy. is optional information describing
the PermissionSetEntry object.

■ ResourceActionsEntry - resActsList is the ResourceActionsEntry being
associated with this PermissionSetEntry object.

2.4.5 Defining a Condition
An optional Condition in a policy rule can be used to set additional requirements on a
decision returned in response to a request for access. For example, a Condition can be
used to grant access to a resource only on the condition that the request was issued
from a specific location or at a specific time. A Condition is written in the form of an
expression that resolves to either true or false. If the expression resolves to true, the
condition is satisfied and the policy is applicable. If the expression does not resolve to
true, the policy is not applicable.

A Condition is defined in a PolicyRuleEntry as discussed in Section 2.3.6,
"Specifying a Policy Rule." It is an expression built using attributes or functions that
can (optionally) be added to the policy rule to further restrict it. The expression is
evaluated using dynamic or resource attribute values, or values returned from
component functions.

Note: Conditions in Role Mapping Policies provide the same
functionality, and take the same format, as Conditions in
Authorization Policies.

Creating Fine Grained Elements for a Simple Policy

Constructing A Policy Programmatically 2-23

A Condition must return true or false so the expression can only return true or false;
thus, it must be defined in a BooleanExpressionEntry. The
BooleanExpressionEntry may:

■ Have an unlimited number of ExpressionComponent objects.

An expression object has a function and one or more arguments of the type
ExpressionComponent. The ExpressionComponent interface represents any
entity that can appear as part of the expression.

The following objects are of the type ExpressionComponent:

– Any DataType object

See Section 2.1, "Using the Java API."

– AttributeEntry

– ValueCollection

– Expression

■ Nest ExpressionComponent objects.

■ Use predefined or custom functions with boolean or non-boolean return types.

■ Use predefined or dynamic attributes as function input:

– A dynamic attribute is one whose value is obtained at evaluation time.

– A predefined attribute is one whose value is not related to the subject,
resource, action of the policy or rule; for example, the time of day.

– A literal value (defined as an ExpressionComponent) that is of any
currently supported data type: Boolean, Date, Integer, String and Time.

■ Compare the boolean values returned from two or more expressions using the
AND or OR operators.

Example 2–15 illustrates how to define a Condition using the
BooleanExpressionEntry class to specify the expression and (optional)
parameters.

Example 2–15 Defining a BooleanExpressionEntry

BooleanExpressionEntry bexp =
 new BooleanExressionEntry(expression)

The BooleanExpressionEntry parameter has:

■ A FunctionEntry for a built-in function, or a custom function obtained using
the ExtensionManager.

■ Zero or more ExpressionComponent objects. An ExpressionComponent is an
interface implemented by Class<? extends DataType>, ValueCollection,

Note: the order in which components are added to an expression
must be the same order in which the parameters appear in the input
parameter list. For example, if a function needs (OpssString,
OpssTime, OpssInteger), the expression must be constructed as:

ex.addExpressionComponent(<string param>);
ex.addExpressionComponent(<time param>);
ex.addExpressionComponent(<integer param>);

Creating Fine Grained Elements for a Simple Policy

2-24 Developer's Guide for Oracle Entitlements Server

AttributeEntry and Expression. The following objects can be used to build
an Expression: OpssBoolean, OpssDate, OpssInteger, OpssString, OpssTime,
ValueCollection, all classes that implement the AttributeEntry interface, or an
Expression itself (nesting). It represents a simple condition such as string1 =
string2 or a more complex condition such as (((checking_balance +
savings_balance) > 10000) AND (customFunc_
checkCustomerType(user_name, “GOLD”)).

From a high level, a developer must take the following steps to define a Condition as a
BooleanExpressionEntry. This procedure assumes the logic detailing the process
has been defined; in this example, assume a banking policy is applicable only to users
who are GOLD members with a combined savings and checking balance of $10,000.

1. Isolate the individual components of the logic for which AttributeEntry
objects will be defined; in this example, an attribute that defines a combined
savings and checking balance (to compare with $10,000) and one that defines the
type of customer (to compare with GOLD).

2. Identify functions implicit in each component for which FunctionEntry objects
will be defined; in this example, there is one function that creates a combined
balance (saving_balance + checking_balance > 10000) and one that checks for the
customer type (customFunc_checkCustomerType(username, “GOLD”)).

3. Build ExpressionComponent objects one by one, identifying them as functions
and parameters; in this example, expressions are nested and use the AND
operator.

■ integer_add(saving_balance, check_balance)

■ integer_greater_than(integer_add
 (saving_balance, check_balance), 10000)

■ customFunc_checkCustomerType(username, “GOLD”)

■ and(integer_greater_than(integer_add
 (saving_balance, check_balance), 10000,
 customFunc_checkCustomerType(username, “GOLD”))

4. Build the BooleanExpressionEntry using the ExpressionComponent
objects. The preferred way to generate a boolean expression is illustrated in
Example 2–16.

Example 2–16 Building a BooleanExpressionEntry

//Define the checking and savings balances and compute one total

Expression addBalance = new Expression(function entry for integer_add);
addBalance.add(attribute entry for savings_balance);
addBalance.add(attribute entry for checking_balance);

//Compare the total balance to 10,000

Expression greaterThan = new Expression
 (function entry for integer_greater_than);
greaterThan.addExpressionComponent(addBalance);
greaterThan.addExpressionComponent(new OpssInteger(10000));

//Define the function to check the customer type

Expression goldMember = new Expression(function entry for customFunc_
checkCustomerType);
goldMember.addExpressionComponent(attribute entry for username);

Creating Fine Grained Elements for a Simple Policy

Constructing A Policy Programmatically 2-25

goldMember.addExpressionComponent(new OpssString(“GOLD”));

//Compare the outcome using AND operator

Expression top = new Expression(function entry for AND);
top.addExpressionComponent(greaterThan);
top.addExpressionComponent(goldMember);

The expression constructor is provided with the function entry, and each function
argument is added as an expression component from left to right.

5. Create a BooleanExpressionEntry.

Oracle Entitlements Server supports many predefined functions to be used in
conditions (AND/OR, boolean functions, or string functions). The following sections
contain information on the kinds of expressions that can be used.

■ Section 2.4.5.1, "Constructing a Boolean Expression"

■ Section 2.4.5.2, "Constructing a Custom Function Expression"

2.4.5.1 Constructing a Boolean Expression
A boolean expression can evaluate an outcome based on the comparison between two
boolean results. The outcome of the comparison would be true or false. A boolean
expression allows a policy condition to be based on the results of two or more basic
expressions of different value types.

The following code contains two basic expressions and a boolean expression. The
integer expression (comparing two integers) and the string expression (comparing two
stings) are basic expressions. The boolean expression compares the results returned by
the basic expressions.

Expression leftExpression =
 new Expression(function-entry-for-INTEGER_LESS_THAN);
leftExpression.add(attribute entry for userBudget);
leftExpression.add(new OpssInteger(2000));

Expression rightExpression =
 new Expression(function-entry-for-STRING_EQUAL);
rightExpression.addExpressionComponent(thisMonth);
rightExpression.addExpressionComponent(new OpssString("December"));

Expression expression = new Expression(function-entry-for-AND);
expression.addExpressionComponent(leftExpression);
expression.addExpressionComponent(rightExpression);

//boolean expression
RuleExpressionEntry<OpssBoolean> condition =
 new BooleanExpressionEntry<OpssBoolean>(expression);

The values of the parameters are defined as:

Note: To add all ExpressionComponent objects at once, use the
setExpressionComponent(List<ExpressionComponent>)
interface. The list of components must be built in order of the
arguments passed to the function; for example, the first component in
the list is the first argument passed to the function, the second
component is the second argument and so on.

Creating Fine Grained Elements for a Simple Policy

2-26 Developer's Guide for Oracle Entitlements Server

■ userBudget - a dynamic attribute that represents a dollar amount

■ 2000 - a constant integer

■ function-entry-for-INTEGER_LESS_THAN - takes a FunctionEntry obtained by
using the enum
(ExtensionManager.getFunctionEntry(BuiltInFunctions.INTEGER_
LESS_THAN)

■ thisMonth - a dynamic attribute representing the current month

■ December - a constant string

■ function-entry-for-STRING_EQUAL - takes a FunctionEntry obtained by using
the enum
(ExtensionManager.getFunctionEntry(BuiltInFunctions.STRING_
EQUAL)

■ leftExpression / rightExpression - dynamic attributes representing the results of
the basic expressions.

■ December - a constant string

■ function-entry-for-AND - takes a FunctionEntry obtained by using the enum
(ExtensionManager.getFunctionEntry(BuiltInFunctions.AND)

2.4.5.2 Constructing a Custom Function Expression
A custom function expression invokes a custom function and returns true or false
based on the outcome. The custom function expression can also include one or more
parameters. Once the function is called and any parameter(s) are defined, construct a
RuleExpressionEntry object to invoke the function using the parameter(s) as
input. The following code determines whether the client from which the request is
being made would be considered low risk. The function analyzes the client type and
returns the string Low Risk if it is.

//get the ClientType custom function
FunctionEntry function = xMgr.getFunction("ClientType");
Expression ex = new Expression(function);

//add component referencing "LowRisk" string to expression
ex.addExpressionComponent(new OpssString("LowRisk");

//construct BooleanExpressionEntry to invoke function
RuleExpressionEntry<OpssBoolean> = new BooleanExpressionEntry(ex);

This second example shows how to build a custom function expression that takes
parameters of different expression value types.

// define the acceptable expression value types
List<Class<? extends DataType>> inputParams =
 new ArrayList<Class <? extends DataType>>();
 inputParams.add(OpssInteger.class);
 inputParams.add(OpssString.class);
 inputParams.add(OpssTime.class

Note: AND returns true only if the results of the basic expressions
were also true. The other supported operations for a boolean
expression are NOT (takes a single true/false value and negates it)
and OR (takes two true/false values and produces one true result if
either operand is true).

Creating Fine Grained Elements for a Simple Policy

Constructing A Policy Programmatically 2-27

);

// declare the function
FunctionEntry func = extensionManager.createFunction(“ReportsPolicyCondition”,
“ReportsPolicyCondition”, “Condition for Reports policy.”,
“oracle.demo.oes.ComplexFunction”, OpssBoolean.class, inputParams);

// use the function to construct a condition
AttributeEntry<OpssInteger> attrEntry =
 extMngr.getAttribute(BuiltInAttributes.SYS_OBJ.toString());

Expression expression = new Expression (func)

expression.addExpressionComponent(new OpssInteger(100));
expression.addExpressionComponent(attrEntry);
expression.addExpressionComponent(new OpssTime(17, 0, 0));

RuleExpressionEntry<OpssBoolean> condition =
 new BooleanExpressionEntry <OpssBoolean>(expression);

2.4.6 Adding Obligations
An Obligation specifies optional information that is taken into account during policy
enforcement. This information is returned to the entity calling for an authorization
decision with the resolved effect (GRANT or DENY) and imposes an additional
requirement on the policy outcome; for example, if a certain amount of money is
withdrawn from a checking account, send a text message to the account holder’s
registered mobile phone.

An Obligation is managed as a named object that contains a set of name-value pairs.
The object is always managed in the context of a policy. There are two ways to define
an Obligation:

■ Statically where an attribute with an absolute value is returned as an Obligation.

■ Dynamically where an attribute value, or a custom function, is evaluated at
runtime and the output is returned as the Obligation.

If a policy contains an Obligation, the information is returned to the application as a
named ObligationEntry object containing a set of attributes. To specify an
Obligation, build an ObligationEntry object that contains the data to return. The
following procedure constructs an ObligationEntry that provides the string
message Trader managers may run reports.

1. Define the message string using the AttributeAssignment class and add it to
an attribute array list named traderRptList.

AttributeAssignment<OpssString>traderRpt = new
 AttributeAssignment<OpssString>
 ("traderRptMessage", new OpssString("Trader managers may run reports."));
List<AttributeAssignment<? extends DataType>> traderRptList =
 new ArrayList<AttributeAssignment<? extends DataType>>();
traderRptList.add(traderRpt);

The values of the parameters are defined as:

■ Name - traderRptMessage is a unique identifier for the string.

Note: Custom function expressions do not use comparison
operators.

Accessing Code Examples

2-28 Developer's Guide for Oracle Entitlements Server

■ OpssString - Trader managers may run reports. is the string.

2. Construct the traderRptObl Obligation and traderRptOblList array using
the ObligationEntry interface.

ObligationEntry traderRptObl = new BasicObligationEntry
 ("traderRptObl", "Trader Report Obligation",
 "obligation for Trader Report policy.", traderRptList);
List<ObligationEntry>traderRptOblList = new ArrayList<ObligationEntry>();
traderRptOblList.add(traderRptObl);

The values of the parameters are defined as:

■ Name - traderRptObl is a unique identifier for the Obligation.

■ Display Name - Trader Report Obligation is an optional, human-readable
name for the Obligation.

■ Description - Obligation for Trader Report policy. is an optional description of
the Obligation.

■ Assignments - traderRptList is the attribute array list previously created.

3. Specify the obligation when creating the policy.

PolicyEntry policyEntry = policyManager.createPolicy
 ("TraderRpt", "TraderRpt", "Trader report policy.", traderRptRule,
 traderRptPermissionSetEntryList, traderRptPrincipals, traderRptOblList);

The values of the parameters are defined as:

■ Name - TraderRpt is a unique identifier for the policy.

■ Display Name - TraderRpt is an optional, human-readable name for the
policy.

■ Description - Trader Report policy. is an optional description.

■ Rule - traderRptRule is the name of the PolicyRuleEntry object.

■ PermSets - traderRpt is a list of PermissionSetEntry objects.

■ Principals - traderRptPrincipals is a list of PrincipalEntry objects.

■ Obligations - traderRptRule is a list of ObligationEntry objects.

2.5 Accessing Code Examples
http://www.oracle.com/technetwork/middleware/oes/overview/index.
html contains links from which developer and administration examples for Oracle
Entitlements Server can be accessed.

Note: If an application uses an Obligation, it must be requested in
the isAccessAllowed() authorization request.

3

Managing Policy Objects Programmatically 3-1

3Managing Policy Objects Programmatically

Many of the application programming interfaces (API) documented in Chapter 2,
"Constructing A Policy Programmatically" contain methods that allow for managing
policy objects programmatically. This chapter contains information on how to use
those methods. It contains the following sections.

■ Section 3.1, "Managing Policies Using Oracle Entitlements Server"

■ Section 3.2, "Using Scope Levels to Manage Policy Objects"

3.1 Managing Policies Using Oracle Entitlements Server
Oracle Entitlements Server allows administrators to perform create, read, update, and
delete (CRUD) operations on all policy and global objects. This can be done in any of
the following ways:

■ Using the Management API (as described in Section 3.2, "Using Scope Levels to
Manage Policy Objects")

■ Using the Administration Console (as described in Oracle Fusion Middleware
Administrator's Guide for Oracle Entitlements Server)

■ Using the WebLogic Scripting Tool on the command line (as described in Oracle
Fusion Middleware Administrator's Guide for Oracle Entitlements Server)

3.2 Using Scope Levels to Manage Policy Objects
The policy store contains three scoping levels under which policies are managed: the
top-level Policy Store itself, the Application (Application Policy), and the Policy
Domain.

■ A PolicyStore object represents the entire policy store. Application policies and
system administration policies are managed at this scope. Any policy management
activity must be preceded by retrieving an instance of the PolicyStore object as
documented in Section 2.3.1, "Accessing the Policy Store." The policy store
location, the account and the account password used to access it are defined in
jps-config.xml, the Oracle Platform Security Services configuration file.
Example 3–1 illustrates how this information is defined in jps-config.xml
during installation.

Example 3–1 Definition of a Policy Store in jps-config.xml

<jpsConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://
xmlns.oracle.com/oracleas/schema/jps-config-11_0.xsd">
 <serviceProviders>

Using Scope Levels to Manage Policy Objects

3-2 Developer's Guide for Oracle Entitlements Server

 <serviceProvider type="POLICY_STORE" name="policy.db"
class="oracle.security.jps.internal.policystore.OPSSPolicyStoreProvider">
 <property name="policystore.type" value="DB_ORACLE"/>
 <property name="repository.type" value="database"/>
 </serviceProvider>
 </serviceProviders>
 <serviceInstances>
 <serviceInstance name="policystore.db" provider="policy.db">
 <property name="jdbc.url"
value="jdbc:oracle:thin:@10.182.219.120:1521:mc"/>
 <property name="jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="bootstrap.security.principal.key" value="bootstrap"/>
 <property name="bootstrap.security.principal.map"
value="BOOTSTRAP_JPS"/>
 <property name="oracle.security.jps.ldap.root.name"
 value="cn=farm,cn=JPSContext,cn=jpsroot"/>
 </serviceInstance>
 </serviceInstances>
 <jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="policystore.db"/>

 </jpsContext>
 </jpsContexts>
</jpsConfig>

For more information, see Section 3.2.1, "Managing Objects Created at the
PolicyStore Scope."

■ An ApplicationPolicy object represents an application being secured by
Oracle Entitlements Server. Within an ApplicationPolicy, programmatic
objects used to define policies (ResourceTypeEntry, FunctionEntry,
AppRoleEntry, RolePolicyEntry and the like) are managed.

For more information, see Section 3.2.2, "Managing Objects Within the
ApplicationPolicy Scope."

■ An optional PolicyDomainEntry object can be created to partition, and serve as
a management point for policy objects and completed policy definitions. One
PolicyDomainEntry can be used to maintain all policies securing an application
or multiples can be used to organize policy components as needed. Policies are
defined using objects created in its parent ApplicationPolicy object. Policy
Domains are invisible to each other, even those in a parent-child relationships.
Thus, the Resources, Permission Sets and Policies managed in a Policy Domain

Note: See the Oracle Fusion Middleware Security Guide for more
information on the jps-config.xml configuration file. Parameters
specific to Oracle Entitlements Server are documented in the Oracle
Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Note: Optionally, these programmatic objects can also be managed
by creating one (or multiple) PolicyDomainEntry objects within the
ApplicationPolicy as described in the following bullet point and
in Chapter 5, "Delegating Policy Administration."

Using Scope Levels to Manage Policy Objects

Managing Policy Objects Programmatically 3-3

can only be used in that Policy Domain. More information on the Policy Domain
can be found in Chapter 5, "Delegating Policy Administration."

For more information, see Section 3.2.3, "Managing Objects within the
PolicyDomainEntry Scope."

Administration Roles are managed at all scope levels depending on where they were
created. For information on creating and managing Administration Roles, see
Chapter 5, "Delegating Policy Administration."

The following sections contain more specific information.

■ Section 3.2.1, "Managing Objects Created at the PolicyStore Scope"

■ Section 3.2.2, "Managing Objects Within the ApplicationPolicy Scope"

■ Section 3.2.3, "Managing Objects within the PolicyDomainEntry Scope"

3.2.1 Managing Objects Created at the PolicyStore Scope
Within the PolicyStore object, policy components securing different applications
are organized within one or more second level ApplicationPolicy objects.
Section 2.3.2, "Creating an Application Policy" documented how to create an
ApplicationPolicy object. You can also delete and retrieve ApplicationPolicy
objects with the methods found in the PolicyStore interface.

Example 3–2 illustrates how to delete an ApplicationPolicy object named Trading
using the deleteApplicationPolicy() method.

Example 3–2 Using deleteApplicationPolicy() Method

PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ApplicationPolicy ap = ps.deleteApplicationPolicy("Trading");

The value of the deleteApplicationPolicy() parameter is Trading, the unique
identifier defined as the Name when the object was initially created. The
getApplicationPolicy() method will retrieve the ApplicationPolicy object
using the same Name value. Additionally, you can retrieve many
ApplicationPolicy objects by calling the getApplicationPolicies() method
and passing search criteria to it using the ApplicationPolicySearchQuery class.

3.2.2 Managing Objects Within the ApplicationPolicy Scope
Within the ApplicationPolicy object, policy components are organized within one
or more PolicyDomainEntry objects. Other components managed at the
ApplicationPolicy level include Resource Types, Application Roles, Role Policies
and Extensions (Functions and Attributes). The following sections have more
information.

■ Section 3.2.2.1, "Managing PolicyDomainEntry Objects"

■ Section 3.2.2.2, "Managing ResourceTypeEntry Objects"

Note: The ApplicationPolicy object is represented in the Oracle
Entitlements Server Administration Console as an Application.

Caution: Deleting an ApplicationPolicy object deletes all child
objects created within it.

Using Scope Levels to Manage Policy Objects

3-4 Developer's Guide for Oracle Entitlements Server

■ Section 3.2.2.3, "Managing and Granting AppRoleEntry Objects"

■ Section 3.2.2.4, "Managing Role Mapping Policy (RolePolicyEntry) Objects"

■ Section 3.2.2.5, "Managing AttributeEntry and FunctionEntry Objects"

■ Section 3.2.2.6, "Managing ResourceEntry Objects"

■ Section 3.2.2.7, "Managing Permission Sets"

■ Section 3.2.2.8, "Managing the Policy"

3.2.2.1 Managing PolicyDomainEntry Objects
Section 5.7, "Delegating with a Policy Domain" documents how to create an optional
PolicyDomainEntry object that can be used to help partition policy definition
components. You can also delete and retrieve PolicyDomainEntry objects with the
methods found in the ApplicationPolicy interface. To manage a Policy Domain,
obtain an instance of the PolicyDomainManager and call the appropriate method.
Example 3–3 illustrates how to delete a PolicyDomainEntry created within the
Trading ApplicationPolicy. mydomain is the unique identifier defined as the
Name when the object was initially created.

Example 3–3 Using deletePolicyDomain() Method

PolicyDomainManager domainMgr = Trading.getPolicyDomainManager();
PolicyDomainEntry pdEntry = domainMgr.deletePolicyDomain("mydomain");

Example 3–4 illustrates how to modify the Display Name and Description of the
PolicyDomainEntry using the setDescription() and setDisplayName()
methods available through that interface.

Example 3–4 Using modifyPolicyDomain() Method

PolicyDomainManager domainMgr = Trading.getPolicyDomainManager();

PolicyDomainManager domainMgr = Trading.getPolicyDomainManager();
PolicyDomainEntry pdEntry = domainMgr.getPolicyDomain("mydomain");

// modify PolicyDomainEntry displayName and description
pdEntry.setDescription("This is description.");
pdEntry.setDisplayName("Domain Display Name");

// persist the change
domainMgr.modifyPolicyDomain(pdEntry);

Example 3–5 illustrates how to retrieve a PolicyDomainEntry using mydomain, the
unique identifier defined as the Name when the object was initially created.

Example 3–5 Using getPolicyDomain() Method

PolicyDomainManager domainMgr = Trading.getPolicyDomainManager();
PolicyDomainEntry PDEntry = domainMgr.getPolicyDomain("mydomain");

Additionally, you can retrieve many PolicyDomainEntry objects by calling the
getPolicyDomains() method and passing search criteria to it using the
PolicyDomainSearchQuery class.

Using Scope Levels to Manage Policy Objects

Managing Policy Objects Programmatically 3-5

3.2.2.2 Managing ResourceTypeEntry Objects
Section 2.3.3, "Defining Resource Types" documented how to create a
ResourceTypeEntry object. You can also delete, modify and retrieve
ResourceTypeEntry objects by getting an instance of the ResourceTypeManager
(using getResourceTypeManager() in the ApplicationPolicy interface) and
calling the appropriate method.

Example 3–6 deletes a ResourceTypeEntry named TradingResType within the
Trading ApplicationPolicy object.

Example 3–6 Using the deleteResourceType() Method

//get the ResourceTypeManager
ResourceTypeManager resourceTypeManager = Trading.getResourceTypeManager();

//delete the Resource Type
resourceTypeManager.deleteResourceType("TradingResType", "true");

Trading is the name of the ApplicationPolicy under which the ResourceType
object was created. TradingResType is the name of the ResourceType object being
deleted. The values of the deleteResourceType() parameters are defined as:

■ Name - TradingResType is the unique identifier defined as the Name when the
object was initially created.

■ cascadeDelete - This parameter takes a value of true or false and governs how the
ResourceTypeEntry and related objects would be removed. If true, the
ResourceTypeEntry and all instantiated ResourceEntry objects are deleted. If
false, and ResourceEntry instances exist, the operation fails and the
PolicyStoreOperationNotAllowedException is thrown.

The getResourceType() method can be used to retrieve a ResourceTypeEntry,
also by Name. You can retrieve many ResourceTypeEntry objects by calling the
getResourceTypes() method and passing search criteria to it using the
ResourceTypeSearchQuery class.

3.2.2.3 Managing and Granting AppRoleEntry Objects
Section 2.4.1, "Creating Application Roles" documents how to create an
AppRoleEntry object and assign users to it. (When the AppRoleEntry object is then
specified as a principal for a particular policy, all users assigned to the role are
governed by that policy.) You can also delete, modify and retrieve AppRoleEntry
objects by getting an instance of the AppRoleManager (using
getAppRoleManager() in the ApplicationPolicy interface) and calling the
appropriate method.

Note: The ResourceTypeEntry object is represented in the Oracle
Entitlements Server Administration Console as a Resource Type.

Using Scope Levels to Manage Policy Objects

3-6 Developer's Guide for Oracle Entitlements Server

Example 3–7 removes an AppRoleEntry named TradingAppRole from the policy
store. TradingApp is the name of the ApplicationPolicy under which the
AppRoleEntry object was created.

Example 3–7 Using deleteAppRole() Method

//get the AppRoleManager
AppRoleManager appRoleManager = Trading.getAppRoleManager();

//delete the AppRoleEntry
appRoleManager.deleteAppRole("TradingAppRole", "true");

The values of the deleteAppRole() parameters are defined as:

■ Name - TradingAppRole is the unique identifier defined as the Name when the
object was initially created.

■ cascadeDelete - This parameter takes a value of true or false and governs how the
AppRoleEntry and related objects would be removed. If true, the
AppRoleEntry is deleted and removed from all policies referencing it. (If it is the
only role referenced by a policy, the policy is also removed.) If false, and the role is
referenced in any policy, the operation fails and a
PolicyStoreOperationNotAllowedException is thrown.

The getAppRole() method can be used to retrieve an AppRoleEntry by passing to
it the Name. You can retrieve many AppRoleEntry objects by calling the
getAppRoles() method and passing search criteria to it using the
AppRoleSearchQuery class. Additionally, you can modify an AppRoleEntry with
the modifyAppRole() method, retrieve members granted directly to an Application
Role with the getDirectAppRoleMembers() method, and retrieve Application Role
hierarchies for a principal with the getDirectGrantedAppRoles() method.

Revocation of the AppRoleEntry can be done using the revokeAppRole() method.
Granting of the AppRoleEntry to one or more PrincipalEntry objects can be
achieved statically using the grantAppRole() method or dynamically using a Role
Mapping Policy.

Note: The AppRoleEntry object is represented in the Oracle
Entitlements Server Administration Console as an Application Role.
Application Roles are searched for, and consolidated, under the Role
Catalog branch of the Administration Console navigation tree. A Role
Catalog is a user interface grouping of all activities related to
managing Application Roles and its characteristics. A Role Category is
a tag you can assign to a role for ease of management.

Note: A Role Mapping Policy may define a principal (User, Group),
a target (resource, resource name expression), and an (optional)
Condition. Authorization Policies are used to map Application Roles
to access rights. An Authorization Policy may define a principal (User,
Group, Application Role), a target (resource, entitlement set, resource
name expression), a Condition, and an Obligation. See Section 3.2.2.4,
"Managing Role Mapping Policy (RolePolicyEntry) Objects" for more
information.

Using Scope Levels to Manage Policy Objects

Managing Policy Objects Programmatically 3-7

Application Roles also use inheritance and hierarchy. Roles can be created in a
hierarchy such that a Principal assigned to a role (using a Role Mapping Policy) also
inherits any child roles (as long as it is not prohibited by other configured policies).
Users who are granted actions based on a child role inherit the actions from that role's
parents. Users denied actions based on a parent role are also denied actions for that
role's children.

3.2.2.4 Managing Role Mapping Policy (RolePolicyEntry) Objects
Section 2.4.2, "Creating Role Mapping Policies" documents how to create a
RolePolicyEntry object. You can also delete, modify and retrieve
RolePolicyEntry objects by getting an instance of the RolePolicyManager
(using getRolePolicyManager() in the ApplicationPolicy interface) and
calling the appropriate method. Example 3–8 illustrates how to remove a
RolePolicyEntry named TellerRoleMapping within the TellerApp
ApplicationPolicy object.

Example 3–8 Using the deleteRolePolicy() Method

//get the RolePolicyManager
RolePolicyManager rolePolicyManager = tellerApp.getRolePolicyManager();

//delete the RolePolicyEntry
rolePolicyManager.deleteRolePolicy("TellerRoleMapping");

Example 3–9 illustrates how to revise a RolePolicyEntry by passing a revised
instance of the object to the modifyRolePolicy() method.

Example 3–9 Using the modifyRolePolicy() Method

//get the RolePolicyManager
RolePolicyManager rolePolicyManager = tellerApp.getRolePolicyManager();

// get the policy
RolePolicyEntry rolePolicy = rolePolicyManager.getRolePolicy("TellerRoleMapping");

// change description
rolePolicy.setDescription("the policy is changed!");

//persist the change
rolePolicyManager.modifyRolePolicy(rolePolicy);

The getRolePolicy() method can be used to retrieve a RolePolicyEntry by
passing to it the Name. You can retrieve many RolePolicyEntry objects by calling
the getRolePolicies() method and passing to it an array of search criteria using
the RolePolicySearchQuery class.

3.2.2.5 Managing AttributeEntry and FunctionEntry Objects
Section 2.4.3, "Creating Attribute and Function Definitions" documents how to create
an AttributeEntry definition and a FunctionEntry definition for (optional) use
in policy Conditions and Obligations. You can also delete, modify and retrieve these
objects by calling the ExtensionManager. The following sections contain more
information.

■ Section 3.2.2.5.1, "Managing AttributeEntry Objects"

■ Section 3.2.2.5.2, "Managing FunctionEntry Objects"

Using Scope Levels to Manage Policy Objects

3-8 Developer's Guide for Oracle Entitlements Server

3.2.2.5.1 Managing AttributeEntry Objects

Example 3–10 retrieves an AttributeEntry object named Phone from the policy
store. bankApplication refers to the ApplicationPolicy object from which the
ExtensionManager is instantiated. Phone refers to the unique identifier defined as
the Name when the AttributeEntry object was initially created.

Example 3–10 Using the getAttribute() Method

//get the ExtensionManager
ExtensionManager extMgr = bankApplication.getExtensionManager();

//retrieve the attribute
AttributeEntry<? extends DataType> oneAttrEntry =
 extMgr.getAttribute("Phone");

You can also retrieve many AttributeEntry objects by calling the
getAttributes() method and passing search criteria to it using the
AttributeSearchQuery class. Example 3–11 deletes the AttributeEntry object
from the ApplicationPolicy.

Example 3–11 Using the deleteAttribute() Method

//get the ExtensionManager
ExtensionManager extMgr = bankApplication.getExtensionManager();

//retrieve the attribute
AttributeEntry<? extends DataType> oneAttrEntry =
 extMgr.deleteAttribute("myattr", false);

To modify an AttributeEntry object, pass to the ExtensionManager the object
with new, modified values using the modifyAttribute() method. Use the methods
available in the AttributeEntry interface to set the new, modified values before
passing the object.

3.2.2.5.2 Managing FunctionEntry Objects

Example 3–12 retrieves a FunctionEntry object named ClientType from the policy
store. bankApplication refers to the ApplicationPolicy object from which the
ExtensionManager is instantiated. ClientType refers to the unique identifier defined
as the Name when the FunctionEntry object was initially created.

Example 3–12 Using the getFunction() Method

//get the ExtensionManager
ExtensionManager extMgr = bankApplication.getExtensionManager();

//retrieve the function
FunctionEntry oneFuncEntry = extMgr.getFunction("ClientType");

Caution: Remove the applicable AttributeEntry from any
policies in which it is referenced before running the
deleteAttribute() method. If the attribute is in use, it will not be
deleted and a PolicyStoreOperationNotAllowedException
will be thrown. For this release, the cascadeDelete parameter must
be false.

Using Scope Levels to Manage Policy Objects

Managing Policy Objects Programmatically 3-9

You can also retrieve many FunctionEntry objects by calling the getFunctions()
method and passing search criteria to it using the FunctionSearchQuery class.
Example 3–13 deletes the FunctionEntry object from the ApplicationPolicy.

Example 3–13 Using the deleteFunction() Method

//get the ExtensionManager
ExtensionManager extMgr = bankApplication.getExtensionManager();

//remove the function
extMgr.deleteFunction("ClientType", false);

To modify a FunctionEntry object, pass to the ExtensionManager the object with
new, modified values using the modifyFunction() method. Use the methods
available in the FunctionEntry interface to set the new, modified values before
passing the object.

3.2.2.6 Managing ResourceEntry Objects
Section 2.3.4, "Instantiating a Resource" documents how to instantiate a
ResourceEntry object from a ResourceTypeEntry object. You can also delete,
modify and retrieve ResourceEntry objects by getting an instance of the
ResourceManager (using getResourceManager() in the ApplicationPolicy
interface, or in the PolicyDomainEntry interface if using Policy Domains to
delegate administration) and calling the appropriate method.

Example 3–14 illustrates how to retrieve a ResourceEntry object. The
getResource() method is defined in the ResourceFinder interface which is
extended by the ResourceManager interface. By passing to the method the defined
name of a resource type and the resource, a ResourceEntry will be returned.

Example 3–14 Using the getResource() Method

//get the ResourceManager
ResourceManager resMgr = domain.getResourceManager();

//retrieve the Resource
ResourceEntry checkingRes = resMgr.getResource
 ("WidgetType", "WidgetResource")

Example 3–15 removes a checking account ResourceEntry. domain refers to the
PolicyDomainEntry object from which the ResourceManager is being retrieved.
By passing to the method the defined name of a resource type and the resource, a
ResourceEntry will be returned.

Example 3–15 Using deleteResource() Method

//get the ResourceManager
ResourceManager resMgr = domain.getResourceManager();

//remove the Resource
resMgr.deleteResource("WidgetType", "WidgetResource", true);

The values of the deleteResource() parameters are defined as:

Note: The ResourceEntry object is represented in the Oracle
Entitlements Server Administration Console as a Resource.

Using Scope Levels to Manage Policy Objects

3-10 Developer's Guide for Oracle Entitlements Server

■ Resource Type Name - WidgetType is the unique identifier defined as the Name
when the ResourceTypeEntry was initially created.

■ Name - WidgetResource is the unique identifier defined as the Name when the
ResourceEntry was initially created.

■ cascadeDelete - This parameter takes a value of true or false and governs how the
ResourceEntry and related objects would be removed. If true, the
ResourceEntry is removed from any policies that reference it. If it is the only
object being referenced by a policy, the policy is also deleted. If false, and
ResourceEntry instances exist, the operation fails and
PolicyStoreOperationNotAllowedException is thrown.

You can also modify a ResourceEntry object by calling the modifyResource()
method and passing to it a handle to the object itself in the form of an
EntryReference and an array of modifications. Example 3–16 illustrates this.

Example 3–16 Using modifyResource() Method

//get the ResourceManager
ResourceManager resMgr = domain.getResourceManager();

// get resource object
ResourceEntry resEntry = resMgr.get("WidgetType", "WidgetResource");

// create attrName Attribute with value of 'test'
AttributeEntry attrEntry1 = new BasicAttributeEntry("testAttr",
 new OpssString("test"));
resEntry.addResourceAttribute(attrEntry1);

// persist the change
resMgr.modifyResource(resEntry);

3.2.2.7 Managing Permission Sets
Section 2.4.4, "Defining Permission Sets" documents how to organize one or more
ResourceActionsEntry objects in a PermissionSetEntry object by calling the
PermissionSetManager and using the createPermissionSet() method. You
can also delete, modify and retrieve PermissionSetEntry objects by getting an
instance of the PermissionSetManager (using getPermissionSetManager() in
the ApplicationPolicy interface, or in the PolicyDomainEntry interface if using
Policy Domains to delegate administration) and calling the appropriate method.

Example 3–17 illustrates how to modify a PermissionSetEntry by removing two
ResourceActionsEntry objects. domain refers to the Policy Domain under which
the policy was created, and from which the PermissionSetManager is retrieved.

Example 3–17 Modifying a PermissionSetEntry

// get the PermissionSetManager
PermissionSetManager psMgr = domain.getPermissionSetManager();

// get the PermissionSet
PermissionSetEntry permSetEntry = psMgr.getPermissionSet("myPermSet");

Note: The PermissionSetEntry object is represented in the
Oracle Entitlements Server Administration Console as an Entitlement.

Using Scope Levels to Manage Policy Objects

Managing Policy Objects Programmatically 3-11

// get the ResourceActionEntries from PermissionSet
List<ResourceActionsEntry> resultResActions =
 permSetEntry.getResourceActionsList();

// delete the first ResourceActionsEntry object
permSetEntry.deleteResourceActions(resultResActions.get(0));

// persist the change
psMgr.modifyPermissionSet(permSetEntry);

Example 3–18 illustrates how to remove a PermissionSetEntry object.

Example 3–18 Using the deletePermissionSet() Method

//get the PermissionSetManager
PermissionSetManager psMgr = domain.getPermissionSetManager();

//remove PermissionSetEntry
psMgr.deletePermissionSet("RptsPermSet", "true");

The values of the deletePermissionSet() parameters are defined as:

■ Name - RptsPermSet is the unique identifier defined as the Name when the object
was initially created.

■ cascadeDelete - This parameter takes a value of true or false and governs how the
PermissionSetEntry and related objects would be removed. If true, the
PermissionSetEntry is removed from any policies that reference it. If it is the
only object being referenced by a policy, the policy is also deleted. If false, and
PermissionSetEntry instances are referenced, the operation fails and
PolicyStoreOperationNotAllowedException is thrown.

The getPermissionSet() method can be used to retrieve a
PermissionSetEntry, also by Name. You can retrieve many
PermissionSetEntry objects by calling the getPermissionSets() method and
passing search criteria to it using the PermissionSetSearchQuery class.
modifyPermissionSet() will persist any changes defined in the PermissionSet
object used as input.

3.2.2.8 Managing the Policy
Section 2.3.8, "Defining the Policy" documents how to create a PolicyEntry object by
consolidating all the pieces needed to create the access control - including, but not
limited to, a PolicyRuleEntry, a ResourceActionsEntry, and a
PrincipalEntry; after obtaining an instance of the PolicyManager, use the
createPolicy() method. You can also delete, modify and retrieve PolicyEntry
objects by getting an instance of the PolicyManager (using getPolicyManager()
in the ApplicationPolicy interface, or in the PolicyDomainEntry interface if
using Policy Domains to delegate administration) and calling the appropriate method.

Example 3–19 illustrates how to modify the values of the Display Name and
Description parameters of the PolicyEntry. domain refers to the Policy Domain
under which the policy was created, and from which the PolicyManager is
retrieved.

Example 3–19 Using modifyPolicy() Method

// get the Policy
PolicyManager policyMgr = domain.getPolicyManager();
PolicyEntry policyEntry = policyMgr.getPolicy("mypolicy");

Using Scope Levels to Manage Policy Objects

3-12 Developer's Guide for Oracle Entitlements Server

// update PolicyEntry description and displayName
policyEntry.setDescription("updated description");
policyEntry.setDisplayName("updated display name");

// persist the change
policyMgr.modifyPolicy(policyEntry);

Example 3–20 illustrates how to use the deletePolicy() method. Bank Policy refers
to the unique identifier defined as the value of the Name parameter when the
PolicyEntry was created.

Example 3–20 Using deletePolicy() Method

PolicyManager policyMgr = domain.getPolicyManager();
policyManager.deletePolicy("BankPolicy");

The getPolicy() method can be used to retrieve a PolicyEntry, also by the value
of its Name parameter. You can retrieve many PolicyEntry objects by calling the
getPolicies() method and passing search criteria to it using the
PolicySearchQuery class. modifyPolicy() will persist any changes defined in
the PolicyEntry object used as input.

To search for PolicyEntry objects, use the PolicySearchQuery class. You can
build a query to search based on the following:

■ Name

■ Display Name

■ Description

■ Principal

■ Permission Set

■ Obigation

■ Attribute

■ Function

For more information, see the Oracle Fusion Middleware Management Java API Reference
for Oracle Entitlements Server.

3.2.3 Managing Objects within the PolicyDomainEntry Scope
Components of policy definitions can be organized within one or more
PolicyDomainEntry objects if partitioning of policies is required. These components
include Resources, Permission Sets and Policies.

The following sections document how components can be managed in the
ApplicationPolicy scope. These sames components can be managed at the
PolicyDomainEntry scope if a PolicyDomainEntry has been created for further
partitioning.

■ Section 3.2.2.6, "Managing ResourceEntry Objects"

Note: The creation of a PolicyDomainEntry is optional. If
partitioning of policies is not required, manage policy definition
components at the ApplicationPolicy scope.

Using Scope Levels to Manage Policy Objects

Managing Policy Objects Programmatically 3-13

■ Section 3.2.2.7, "Managing Permission Sets"

■ Section 3.2.2.8, "Managing the Policy"

For information on using the PolicyDomainEntry, see Section 5.7, "Delegating with
a Policy Domain."

Using Scope Levels to Manage Policy Objects

3-14 Developer's Guide for Oracle Entitlements Server

4

Distributing Policies 4-1

4Distributing Policies

Policy distribution comprises the process used to make configured policies and policy
data available to the Policy Decision Point (PDP) such that it can evaluate them and
produce a GRANT or DENY authorization decision. This chapter contains the
following sections.

■ Section 4.1, "Understanding Policy Distribution"

■ Section 4.2, "Defining Distribution Modes"

■ Section 4.3, "Creating Security Module Configurations and Bindings"

■ Section 4.4, "Initiating Policy Distribution"

4.1 Understanding Policy Distribution
Managing policies and distributing them are distinct operations in Oracle Entitlements
Server. Policy management operations are used to define, modify and delete policies
in the policy store. The Policy Distribution Component then makes the policies
available to a PDP endpoint (Security Module) where the data is used to grant or deny
access to a protected resource. Policies are not enforced until they are distributed.
Policy distribution may include any or all of the following actions:

■ Reading policies from the policy store.

■ Caching policy objects in the in-memory policy cache maintained by the Security
Module for use during authorization request processing.

■ Perserving policy objects in a file-based persistent cache, local to the Policy
Distribution Component, that provides independence from the policy store.

Both the central Oracle Entitlements Server Administration Console and the
locally-installed (to the protected application) Security Module contain the Policy
Distribution Component. This architecture allows two deployment scenarios: the first
involves a centralized Policy Distribution Component that can communicate with
many Security Modules while the second involves a Policy Distribution Component
that is local to, and communicates with, one Security Module. The following sections
contain more information.

■ Section 4.1.1, "Using a Centralized Policy Distribution Component"

■ Section 4.1.2, "Using a Local Policy Distribution Component"

4.1.1 Using a Centralized Policy Distribution Component
The centralized Policy Distribution Component scenario involves the use of the Policy
Distribution Component (within the Administration Console) to act as a server

Understanding Policy Distribution

4-2 Developer's Guide for Oracle Entitlements Server

communicating with the Security Module's Policy Distribution Component client.
Figure 4–1 illustrates how, in this scenario, the Security Module's Policy Distribution
Component client does not communicate with the policy store. The distribution of
policies is initiated by the Oracle Entitlements Server administrator and pushed to the
Policy Distribution Component client. Currently, data can only be pushed in a
controlled manner as described in Section 4.2.1, "Controlled Distribution." This
scenario allows for a central Policy Distribution Component that can communicate
with many Security Modules.

Figure 4–1 Using Oracle Entitlements Server Policy Distribution Component

This image illustrates how the Oracle Entitlements Server Policy Distribution
Component works.

4.1.2 Using a Local Policy Distribution Component
The local (to the Security Module) scenario involves the Security Module's Policy
Distribution Component communicating directly with the policy store. This scenario
allows for a local Policy Distribution Component to communicate with one Security
Module only. The application administers management operations and decides when
the Security Module instance of the Policy Distribution Component will distribute
policies or policy deltas. In this deployment, as illustrated in Figure 4–2, the Policy
Distribution Component pulls data from the policy store (by periodically checking the
policy store for data to be distributed) and sends policy data from the policy store,
making it available to the PDP after administrator-initiated policy distribution.

Figure 4–2 Using the Security Module Policy Distribution Component

This image illustrates how to use a Security Module with the Policy Distribution
Component.

Defining Distribution Modes

Distributing Policies 4-3

Currently, data can be pulled in either a controlled manner as described in
Section 4.2.1, "Controlled Distribution" or a non-controlled manner as described in
Section 4.2.2, "Non-Controlled Distribution."

4.2 Defining Distribution Modes
Oracle Entitlements Server handles the task of distributing policies to individual
Security Modules that protect applications and services. Policy data is distributed in
either a controlled manner or a non-controlled manner. The distribution mode is defined
in the jps-config.xml configuration file for each Security Module. The specified
distribution mode is applicable for all ApplicationPolicy objects bound to that
Security Module. The following sections have more information on the distribution
modes.

■ Section 4.2.1, "Controlled Distribution"

■ Section 4.2.2, "Non-Controlled Distribution"

4.2.1 Controlled Distribution
Controlled distribution is initiated by the Policy Distribution Component, ensuring that
the PDP client (Security Module) receives policy data that has been created or
modified since the last distribution. In this respect, distribution is controlled by the
policy administrator who takes explicit action to distribute the new or updated policy
data. (The Policy Distribution Component maintains a versioning mechanism to keep
track of policy changes and distribution.) When controlled distribution is enabled, the
Security Module can not request distribution of the Policy Distribution Component
directly.

Controlled distribution may be push or pull. With controlled push distribution, the
Policy Distribution Component distributes new and updated policy data to the
Security Module where the data is stored in a local persistent cache, a file-based cache
maintained by the PDP to store policy objects and provide independence from the
policy store. With controlled pull distribution, a Security Module (with local Policy
Distribution Component) retrieves new and updated policy data from the policy store.
Controlled push distribution is the default mode.

The Policy Distribution Component does not maintain constant live connections to its
Security Module clients; it will establish a connection before distributing policy to it.
Thus, the Security Module is not dependent on the policy store for making policy
decisions; it can use its own local cache if the policy store is offline. When the Security
Module starts, it will check if the policy store is available. If it is not available, the
Security Module will use policy data from the local persistent cache.

A flush distribution of all policy data can be enforced using the flush parameter of
the distributePolicy() method. Flush distribution is when the Policy Distribution
Component notifies the Security Module to cleanup its locally stored policies in
preparation for a new, complete re-distribution of all policy objects in the policy store.
See Section 4.4, "Initiating Policy Distribution" for more information.

Note: The exception is when a Security Module starts and registers
itself with the Policy Distribution Component with a Configuration
ID. The policies are distributed to the Security Module based on this
registration.

Creating Security Module Configurations and Bindings

4-4 Developer's Guide for Oracle Entitlements Server

With controlled distribution, if any portion of the policy distribution operation fails,
the entire distribution operation fails. See the appendix in the Oracle Fusion Middleware
Administrator's Guide for Oracle Entitlements Server for information on the Policy
Distribution Component configuration properties.

4.2.2 Non-Controlled Distribution
When the PDP client (Security Module) periodically retrieves (or pulls) policies and
policy modifications from a policy store, it is referred to as non-controlled distribution.
Policy changes are saved to the policy store and non-controlled distribution retrieves
them at the next defined interval. Non-controlled distribution is initiated by the
Security Module and may retrieve policies that are not completely defined. The policy
store must be online and constantly available for non-controlled distribution.
Non-controlled distribution is supported on any policy store type.

4.3 Creating Security Module Configurations and Bindings
A Security Module acts as a Policy Decision Point (PDP), receiving a request for
authorization, evaluating it based on applicable policies, reaching a decision and
returning the decision to the Policy Enforcement Point (PEP), the entity which first
made the authorization call. In order for this process to work, the Security Module
must be able to retrieve the applicable policies. This is accomplished by binding an
instance of a Security Module to the appropriate ApplicationPolicy object. All
Security Module instances bound to an ApplicationPolicy object will receive
policy data associated with that object when policy distribution is initiated. Each
Security Module instance deployed has its configuration information stored in the
policy store. The SMEntry object is a pointer to the configuration information of the
instance.

To bind a Security Module with an ApplicationPolicy object, create an SMEntry
object (representing the Security Module configuration) and bind it to the
ApplicationPolicy object. Example 4–1 illustrates how to create an SMEntry
object by retrieving an instance of the PolicyStore and getting the
ConfigurationManager. This returns the SMEntry object which can be used for
binding one or more ApplicationPolicy objects.

Caution: Controlled distribution is supported only on database type
policy stores - not on LDAP-based policy stores. If the distribution
API is invoked for an LDAP policy store, it will be non-operable.

Note: When a Security Module starts, it registers itself with Oracle
Entitlements Server. This registration record is added to the Policy
Store as a PDPInfoEntry object. Registration records include the
Security Module endpoint and the unique identifier that names it. The
PDPInfoEntry interface is located in the
oracle.security.jps.service.policystore.info.distrib
ution package. This package also contains interfaces used to get
information regarding distribution status
(DistributionStatusEntry) and regarding distribution status to
a particular Security Module (PDPStatusEntry).

Creating Security Module Configurations and Bindings

Distributing Policies 4-5

Example 4–1 Using the createSecurityModule() Method

//get the policy store and configuration manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationManager configMgr = ps.getConfigurationManager();

//create the SM configuration
SMEntry sm = configMgr.createSecurityModule("MyDomainSM",
 "MyDomainSM Configuration", "MyDomain Security Module Configuration");

The values of the createSecurityModule() parameters are defined as:

■ smName - MyDomainSM is a unique identifier for the SMEntry object. The
Security Module uses this value to connect to the policy store to get the
configuration information. The SMEntry object itself does not contain the
configuration information; it only points to it.

■ Display Name - MyDomainSM Configuration is an optional, human-readable
name for the SMEntry object.

■ Description - MyDomain Security Module Configuration is optional information
describing the SMEntry object.

After creating it, bind the SMEntry object to a specific ApplicationPolicy object
by calling the ConfigurationBindingManager interface and using the
bindSecurityModule() method. Example 4–2 illustrates this step.

Example 4–2 Using the bindSecurityModule() Method

//get the policy store and the configuration binding manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationBindingManager configBindingMgr =
 ps.getConfigurationBindingManager();

//bind Security Module to Application Policy
configBindingMgr.bindSecurityModule("MyDomainSM", "MyAppPolicy");

The values of the bindSecurityModule() parameters are defined as:

■ smName - MyDomainSM is the unique identifier defined for the SMEntry object
when it was created.

■ AppID - MyAppPolicy is the unique identifier defined for the
ApplicationPolicy object when it was created.

The following sections contain information on the management methods for the
Security Module configurations and bindings.

■ Section 4.3.1, "Managing Security Module Configurations"

■ Section 4.3.2, "Managing Security Module Bindings"

4.3.1 Managing Security Module Configurations
After getting an instance of the ConfigurationManager, you can also delete,
retrieve and modify SMEntry objects. Example 4–3 illustrates how to get a specific
Security Module configuration by passing the unique identifier of the SMEntry object.

Example 4–3 Using the getSecurityModule() Method

//get the policy store and configuration manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationManager configMgr = ps.getConfigurationManager();

Creating Security Module Configurations and Bindings

4-6 Developer's Guide for Oracle Entitlements Server

//get Security Module configuration
SMEntry sm = configMgr.getSecurityModule("MyDomainSM");

MyDomainSM is the unique identifier defined for the SMEntry object when it was
created. Additionally, you can retrieve multiple SMEntry objects by calling the
getSecurityModules() method and passing to it an array of search criteria using
the SecurityModuleSearchQuery class. Example 4–4 illustrates how to remove a
Security Module configuration.

Example 4–4 Using the deleteSecurityModule() Method

//get the policy store and configuration manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationManager configMgr = ps.getConfigurationManager();

//get Security Module configuration
configMgr.deleteSecurityModule("MyDomainSM");

Again, MyDomainSM is the unique identifier defined for the SMEntry object when it
was created.

4.3.2 Managing Security Module Bindings
After getting an instance of the ConfigurationBindingManager, you can also
retrieve the ApplicationPolicy objects bound to a particular Security Module, or
the Security Module bound to a particular ApplicationPolicy. Example 4–5
illustrates how to use the getBoundSecurityModules() method to retrieve the
identifier for all SMEntry objects bound to a particular ApplicationPolicy object.

Example 4–5 Using the getBoundSecurityModules() Method

//get the policy store and the configuration binding manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationBindingManager configBindingMgr =
 ps.getConfigurationBindingManager();

//get Security Module bound to Application Policy
List<SMEntry> sms = configBindingMgr.getBoundSecurityModules("MyAppPolicy");

MyAppPolicy is the unique identifier defined for the ApplicationPolicy object
when it was created. The getBoundSecurityModules() method returns a list of
the unique identifiers for all SMEntry objects bound to the ApplicationPolicy.
Example 4–6 illustrates the reverse: retrieving all ApplicationPolicy objects bound
to a particular Security Module.

Example 4–6 Using the getBoundApplications() Method

//get the policy store and the configuration binding manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationBindingManager configBindingMgr =
 ps.getConfigurationBindingManager();

//get Application Policy bound to Security Module
List<ApplicationPolicy> apps =
 configBindingMgr.getBoundApplications("MyDomainSM");

MyDomainSM is the unique identifier defined for the SMEntry object when it was
created. The getBoundApplications() method returns a list of the unique

Initiating Policy Distribution

Distributing Policies 4-7

identifiers for all ApplicationPolicy objects bound to the SMEntry. Example 4–7
illustrates how to unbind an SMEntry object from its partner ApplicationPolicy
object.

Example 4–7 Using the unbindSM() Method

//get the policy store and the configuration binding manager
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ConfigurationBindingManager configBindingMgr =
 ps.getConfigurationBindingManager();

//unbind Application Policy from Security Module
configBindingMgr.unbindSM("MyDomainSM", "MyAppPolicy");

MyDomainSM is the unique identifier defined for the SMEntry object when it was
created. MyAppPolicy is the unique identifier defined for the ApplicationPolicy
object when it was created.

4.4 Initiating Policy Distribution
Programmatically, policy distribution is performed by calling the
distributePolicy() method. This method distributes the policies created for an
ApplicationPolicy object to the Security Module that is bound to it. A PDP
endpoint receives only those policies which are bound to it. Example 4–8 illustrates
how to call the PolicyDistributionManager and use the distributePolicy()
method. It also includes code to check the status of the distribution and to wait until
the operation is 100% complete.

Example 4–8 Using the distributePolicy() Method

//get the application policy
PolicyStore ps = ctx.getServiceInstance(PolicyStore.class);
ApplicationPolicy bankApplication =
 ps.getApplicationPolicy("AcmeBank");

//get the PolicyDistributionManager
PolicyDistributionManager pdm =
 bankApplication.getPolicyDistributionManager();

//distribute policies
String distID = pdm.distributePolicy(true);

DistributionStatusEntry status = pd.getDistributionStatus(distID);

while (status.getPercentComplete() != 100) {
 Thread.currentThread().sleep(200);
 status = pdm.getDistributionStatus(distID);
}

Note the flush parameter of distributePolicy() is set to true. This indicates that
the policies will be distributed in a flush manner. In other words, the Policy
Distribution Component informs the Security Module to cleanup its locally stored
policies in preparation for a new, complete re-distribution of all policy objects in the
policy store. A value of false indicates an incremental distribution of policies when
only deltas are distributed.

Initiating Policy Distribution

4-8 Developer's Guide for Oracle Entitlements Server

The distributePolicy() method returns a distribution identifier string that can
be passed to the application using the getDistributionStatus() method to query
the progress of the distribution.

A second getDistributionStatus() method takes as input a start time and an
end time. It returns a list of DistributionStatusEntry objects. A
DistributionStatusEntry object represents the distribution status (complete or in
progess) and includes a start time, an end time, the distribution initiater, and whether
the distribution is successful or not for each PDP.

Note: distributePolicy() is an asynchronous method; if the
application is stopped before the distribution is complete, the
distribution process will be interrupted.

5

Delegating Policy Administration 5-1

5Delegating Policy Administration

System administrative rights and policy management permissions can be delegated
from one administrator to another by creating Administration Roles with restricted
rights, or by granting an existing Administration Role to a user. Delegating
administration consists of defining a role with a subject (the person to whom the role
is granted), resources (the objects to which the role pertains) and the actions on the
resource that the role controls (view, manage). This chapter documents information on
how to delegate policy and system administrative tasks. It contains the following
sections.

■ Section 5.1, "Delegating Administration"

■ Section 5.2, "Managing Scope and Delegating Granularity"

■ Section 5.3, "Assigning Permissions"

■ Section 5.4, "Using the Default Administration Roles"

■ Section 5.5, "Creating Administration Roles"

■ Section 5.6, "Managing Administration Roles"

■ Section 5.7, "Delegating with a Policy Domain"

5.1 Delegating Administration
Administration is when one or more authorized rights are granted to someone to do a
certain job. Delegation is the ability for that someone to transfer the authorized right
that has been granted them to another. In combination, we can define delegating
administration as the transference of authorized rights from one to another. In Oracle
Entitlements Server, administrators who are authorized to perform a task on policy
objects and entities may transfer this right to others.

Delegated administration in Oracle Entitlements Server is modelled using the
Role-Based Access Control (RBAC) approach. This approach allows users to transfer
the administration of Applications, Policy Domains, and other policy objects using
roles. The core concept behind RBAC is that privileges (approvals to perform an
action) are coupled with the objects on which the action can be performed and
modelled as permissions. These permissions are then assigned to roles. When users are
assigned the roles, the user is granted the appropriate permissions.

Managing Scope and Delegating Granularity

5-2 Developer's Guide for Oracle Entitlements Server

Figure 5–1 The Administration Role Model

As illustrated in Figure 5–1, an Administration Role is created for a particular operation
on a policy related object. The permissions to perform the operation specific to that job
are defined in that role. Users are then assigned the role and through those
assignments acquire the permissions to perform the job. As users are not directly
assigned permissions, management of individual user privileges is a matter of
assigning the appropriate roles to the appropriate users. Administration Roles are
used to determine who may manage policy objects.

5.2 Managing Scope and Delegating Granularity
Delegated administration is all about transferring management of resources and policy
objects from one person to another. The scope of the delegation (or range of objects
covered by the delegation) is defined in levels. The granularity of administration
defines the type of objects managed at each scope. A default Administration Role is
automatically created when each scope is created; additional Administration Roles can
be created later. From highest to lowest, the scopes and applicable granularity are as
follows:

■ The top-level System Administrator has privileges to manage system-level
resources as well as policy-related objects at the top-level Policy Store scope.
System resources include Administrator Roles and system configurations and
bindings. Objects at the Policy Store level are the ApplicationPolicy objects
and global objects.

■ Application Policy administrators have privileges to manage all objects in the
ApplicationPolicy object to which it is assigned. One Application Policy
Administrator is generated for each Application Policy that is created. They are
primarily intended to delegate the management of policy objects within the
Application Policy (including the Policy Domain objects and its children, such as
Functions, Attributes, Application Roles and Resource Types).

■ Policy Domain administrators have privileges to manage all child objects in the
Policy Domain object to which it is assigned. One Policy Domain Administrator is
generated for each Policy Domain that is created. They are primarily intended to
define the policies, permission sets, and resources within the applicable Policy
Domain.

Note: System Administrators have rights to the entire Policy Store,
including all ApplicationPolicy objects and child PolicyDomain
objects but they are primarily intended to manage configurations,
ApplicationPolicy objects, and the bindings between the two.

Note: See Chapter 1, "Using the Policy Model" for more information
on the ApplicationPolicy objects and Section 5.7, "Delegating
with a Policy Domain" for information on the PolicyDomain objects.

Creating Administration Roles

Delegating Policy Administration 5-3

5.3 Assigning Permissions
Administration Roles can be assigned permissions with Manage or View actions. The
privileges of these actions are:

■ Administrator Roles with Manage privileges may call all methods on objects in the
assigned administrative scope including any child objects. For example, an
Application Policy administrator with Manage rights may call all methods on
objects in both the Application Policy and its Policy Domain objects. An
administrator with Manage rights may also view any required objects in a parent
scope. For example, an administrator with Manage rights in a Policy Domain can
view all Resources Types, Functions, and Attributes in its parent Application
Policy because these objects are used when defining policies.

■ Administrators with View privileges may call only get methods in the assigned
administrative scope including any child objects. For example, a Global
administrator with View privileges may view all objects in all Application Policy
objects and its Policy Domain objects.

5.4 Using the Default Administration Roles
After installation, the Policy Store will contain a default Administration Role called
SystemAdmin with full view and manage rights at the Policy Store level. This and
other default administration roles are described in the following list. Only the
members of these default Administration Roles can create and manage other
Administration Roles. The default Administration Roles cannot be deleted and their
rights cannot be changed.

■ SystemAdmin — This is the default Policy Store administrator with Manage rights
in the entire Policy Store. This role is assigned to the WebLogic Server
Administrators group, and has all the rights needed to manage policies in all
Application Policy objects and Policy Domain objects.

■ ApplicationPolicyAdmin — A role by this name is automatically created with each
new Application Policy object. It has Manage rights in the Application Policy and
its nested Policy Domain objects.

■ PolicyDomainAdmin — A role by this name is automatically created with each
new Policy Domain object. It has Manage rights in the Policy Domain and any
nested Policy Domain objects. It also has View rights on objects in its parent
Application Policy.

5.5 Creating Administration Roles
Administration Roles are used to delegate system administrative rights. An
Administration Role can be created for purposes of managing data at different scopes.
For example, Application Policy and Policy Domain administrators can be defined by
creating an Administration Role at the appropriate level and assigning the role to a
user or a group.

Note: Administration Roles delegate system privileges through
scoping and are not hierarchical. See Section 5.2, "Managing Scope
and Delegating Granularity" for more information.

Creating Administration Roles

5-4 Developer's Guide for Oracle Entitlements Server

Creating Administration Roles involves a number of specifics. Use the following steps
as a blueprint to grant View or Manage permissions on specific administration
resources.

1. Retrieve the object within which the Administration Role will be created and an
instance of the AdminManager as documented in Section 5.5.1, "Creating An
Administration Role."

2. Define the resource and appropriate actions as documented in Section 5.5.2,
"Assigning Actions and Resources (Permissions) to an Administration Role."

3. Assign users (principals) as documented in Section 5.5.3, "Assigning Principals to
an Administration Role."

Section 5.5.4, "Retrieving a Principal’s Administration Resources" contains information
on how to retrieve the administration roles that a principal has been assigned.

5.5.1 Creating An Administration Role
To create an Administration Role, retrieve the object that comprises the desired
management scope (Policy Store, Application Policy or Policy Domain), use the
getAdminManager() method to retrieve an instance of the AdminManager, and
then use the createAdminRole() method to create the adminRole role. The
following code illustrates the creation of an administrator named AppAdmin for the
TRADING Application Policy.

//Get the Application Policy and AdminManager
ApplicationPolicy app = ps.getApplicationPolicy(“TRADING”);
AdminManager appAdminManager = app.getAdminManager();
AdminRoleEntry adminRole = appAdminManager.createAdminRole
 (“AppAdmin", "AppAdmin Role", "Role for application admins.");

The values of the createAdminRole() parameters are defined as follows:

■ Name - AppAdmin is the name of the Administration Role.

■ Display Name - AppAdmin Role is an optional, human-readable name for the
Administration Role.

■ Description - Role for application admins. is an optional description of the
Administration Role.

5.5.2 Assigning Actions and Resources (Permissions) to an Administration Role
Privileges are assigned to an Administration Role by creating an ArrayList into
which the resource(s) being managed and the permitted actions are added (using a
BasicAdminResourceActionEntry). In the following code, the previously created
AppAdmin role is assigned Manage rights on Resource Types and Application Roles
in the TRADING application.

//Construct the permission to be granted
List<AdminResourceActionEntry> adminResourceActions = new ArrayList
 <AdminResourceActionEntry>();

//Add operations (Manage) and objects (resources) to the permission
adminResourceActions.add(new BasicAdminResourceActionEntry
 (AdminResource.RESOURCE_TYPE, Action.MANAGE));
adminResourceActions.add(new BasicAdminResourceActionEntry
 (AdminResource.APPLICATION_ROLE, Action.MANAGE));

//Grant AppAdmin the rights

Creating Administration Roles

Delegating Policy Administration 5-5

admManager.grant(adminRole, adminResourceActions);

To remove privileges from a role, use the revoke() method rather than the grant()
method. The allowed resource name options for the Policy Store, Application Policy,
and Policy Domain scopes are described in Table 5–1.

5.5.3 Assigning Principals to an Administration Role
One or more principals are assigned to the Administration Role by creating a second
ArrayList with the appropriate user entries and passing the list to the
grantAdminRole() method. In the following code, the previously created
adminRole role is granted to the user SMITH.

//Construct the list of users to be granted
List<PrincipalEntry> principals = new ArrayList<PrincipalEntry>();
principals.add(new BasicPrincipalEntry
 ("weblogic.security.principal.WLSUserImpl", "SMITH"));

//Grant the users in the list the role
adminManager.grantAdminRole(adminRole, principals);

To remove principals from a role, use the revokeAdminRole() method.

5.5.4 Retrieving a Principal’s Administration Resources
To determine what resources an administrative user can access, get an instance of the
AdminManager at the appropriate scope (Policy Store, Application Policy, or Policy
Domain) and use the getAdminRole() method and name of the Administration Role
to retrieve the administrator. Then by invoking the getGrantedAdminResources()
method, all AdminResourceActionEntry objects applicable to the administrator
will be returned. (A AdminResourceActionEntry object pairs an entity that can be
managed by the administrator with the action that can be performed on it.)

Table 5–1 Resource Name Options

Name Description

ADMIN_POLICY Allows management of Administration Policy

ADMIN_ROLE Allows management of Administration Role membership and
permissions

APPLICATION_ POLICY Allows management of Application Policy objects

APPLICATION_ ROLE Allows management of Application Roles

CONFIGURATION Allows management of Security Modules

DISTRIBUTE_
APPLICATION_ POLICY

Allows administrator to initiate policy distribution

ENROLL Allows administrator to enroll a Security Module instance

EXTENSION Allows management of Functions and Attributes

PERMISSION_SET Allows management of Permission Sets

POLICY Allows management of Policies

RESOURCE_TYPE Allows management of Resource Types

RESOURCE Allows management of Resources

ROLE_CATEGORY Allows management of Role Categories

SUB_POLICY_DOMAIN Allows management of child Policy Domain objects

Managing Administration Roles

5-6 Developer's Guide for Oracle Entitlements Server

5.6 Managing Administration Roles
Section 5.5, "Creating Administration Roles" documented how to create an
AdminRoleEntry object. Administration Roles can be created at all scope levels
(including the PolicyStore, ApplicationPolicy and PolicyDomain) by
retrieving an instance of the AdminManager from within the desired scope. You can
also delete and retrieve AdminRoleEntry objects from any of these scopes by getting
an instance of the AdminManager. Example 5–1 illustrates the delete action by getting
the AdminManager in an ApplicationPolicy.

Example 5–1 Using deleteAdminRole() Method

//Get the Application Policy and AdminManager
ApplicationPolicy app = ps.getApplicationPolicy(“TRADING”);
AdminManager appAdminManager = app.getAdminManager();

//delete the Administration Role
AdminRoleEntry adminRole = appAdminManager.deleteAdminRole
 (“AppAdmin");

TRADING is the name of the ApplicationPolicy under which the
AdminRoleEntry object was created. AppAdmin is the unique identifier of the role
being deleted.

The getAdminRole() method can be used to retrieve an AdminRoleEntry, also by
Name. Example 5–2 illustrates this.

Example 5–2 Using getAdminRole() Method

//Get the Application Policy and AdminManager
ApplicationPolicy app = ps.getApplicationPolicy(“TRADING”);
AdminManager appAdminManager = app.getAdminManager();

//Get the Administration Role
AdminRoleEntry adminRole = appAdminManager.getAdminRole
 (“AppAdmin");

You can retrieve many AdminRoleEntry objects by calling the getAdminRoles()
method and passing search criteria to it using the ResourceTypeSearchQuery class.
Also available in the AdminManager interface are methods that do the following:

■ Add or remove a PrincipalEntry object as an administration role member.

■ Return a list of PrincipalEntry objects granted the named administration role.

■ Grant or revoke actions and resources (AdminResourceActionEntry) for the
named administration role.

■ Retrieve the actions and resources (AdminResourceActionEntry) defined for
the current administrator.

■ Modify the administration role.

5.7 Delegating with a Policy Domain
A Policy Domain contains the components of completed policy definitions. It is the
amalgamation of a target Resource (an instance of the Resource Type), a Permission Set
(the actions that can be performed on the Resource), and a Policy (a rule that assembles
the controls and the principals they affect). Policy Domains are created for purposes of

Delegating with a Policy Domain

Delegating Policy Administration 5-7

delegating administration. One (or more) of these domains can be created to delegate
policy management to different administrators.

Administration of the policies securing one protected application may be delegated
using one or more Policy Domains. The use of multiple Policy Domains allows policies
to be partitioned according to defined logic, such as the architecture of the protected
application or how administration of the policies will be delegated. For example, one
Policy Domain can be used to maintain all policies securing a Resource or multiple
Policy Domains can be used to reflect a particular characteristic of the Resource.
Different administrators can then be placed in charge of different Policy Domains. If
there is no need to delegate policy administration, there is no need to create any Policy
Domains. In this case, all child objects associated with a Policy Domain can be created
by calling the applicable child object manager using the ApplicationPolicy
interface.

The Policy Domain is programmatically represented as a PolicyDomainEntry
object. Within an ApplicationPolicy object, one or more (optional)
PolicyDomainEntry objects can be created. A PolicyDomainEntry object may
contain one or more child objects. These objects need to be defined before creating the
Policy Domain.

To create a PolicyDomainEntry, obtain an instance of the PolicyDomainManager
using getPolicyDomainManager(). (You can invoke
getPolicyDomainManager() for an ApplicationPolicy or for a
PolicyDomainEntry itself to create nested Policy Domains.) Use the
createPolicyDomain() method of the PolicyDomainManager interface to create
the object. Example 5–3 creates a PolicyDomainEntry object named East_Trading by
retrieving the PolicyDomainManager from the Trading ApplicationPolicy.

Example 5–3 Using createPolicyDomain() Method

PolicyDomainManager domainMgr = Trading.getPolicyDomainManager();
PolicyDomainEntry domain = domainMgr.createPolicyDomain
 ("East_Trading", "East_Trading Domain", "East_Trading Domain");

The values of the createPolicyDomain() parameters are defined as:

■ Name - East_Trading is a unique identifier for the PolicyDomainEntry.

■ Display Name - East_Trading Domain is an optional, human-readable name for
the PolicyDomainEntry object.

■ Description - East_Trading Domain is optional information describing the
PolicyDomainEntry object.

After creating a PolicyDomainEntry object, the necessary child objects can be
added to it thus allowing the administrator the control in creating policy definition

Note: Because the creation of a Policy Domain is optional, an
ApplicationPolicy object can serve as a default Policy Domain
under which a Resource, a Permission Set, and a Policy can be created.
Creation of subsequent Policy Domains is dependent on the
organization’s plan for delegation.

Caution: Deleting a PolicyDomainEntry object deletes all child
objects created within it.

Delegating with a Policy Domain

5-8 Developer's Guide for Oracle Entitlements Server

components. The following list documents the child objects of a
PolicyDomainEntry with pointers to the appropriate descriptive section in
Chapter 2, "Constructing A Policy Programmatically."

■ A PermissionSetEntry (one or more ResourceActionsEntry objects that
associate a specific resource with the actions that can be performed on it). See
Section 2.4.4, "Defining Permission Sets" for more information.

■ A PolicyEntry (includes one PolicyRuleEntry, one PermissionSetEntry,
one PrincipalEntry or AppRoleEntry and, optionally, one
ObligationEntry). See Section 2.3.8, "Defining the Policy" for more information.

■ An AdminRoleEntry (to define management of the domain). See Section 2.3.4,
"Instantiating a Resource" for more information.

Note: The same target Resource can not be shared between Policy
Domains.

6

Handling Authorization Calls and Decisions 6-1

6Handling Authorization Calls and Decisions

Oracle Entitlements Server contains different application programming interfaces
(API) that allow the caller to request authorization for a particular subject and handle
the returned decisions. This chapter contains the following sections.

■ Using the PEP API

■ Making checkPermission() Calls

■ Using the XACML Gateway

6.1 Using the PEP API
The AzAPI is a Java API developed by the OpenAZ project and designed to
communicate requests for authorization decisions and responses to same. The
communications are based on the authorization decision request and response
standards defined in the XACML specifications and require that an authorization
engine create request and response objects using these definitions. The AzAPI
interfaces enable a Policy Decision Point (PDP) to supply and consume all the XACML
information required when submitting an authorization resquest and receiving an
authorization response.

The Oracle Entitlements Server PEP API are built on top of the AzAPI for protecting
either Java or .NET applications. The PEP API contain utility classes for building a
Policy Enforcement Point (PEP), and are designed to present a more simplified,
scalable interface than the AzAPI, using native Java or .NET data objects rather than
XACML data objects. Figure 6–1 illustrates the relationship between the AzAPI, the
PEP API and Oracle Entitlements Server.

Note: More information on the OpenAZ project can be found at
http://openliberty.org/.

Using the PEP API

6-2 Developer's Guide for Oracle Entitlements Server

Figure 6–1 Relationship Between Open AZ API and PEP API

The following sections contain information on how the AzAPI has been implemented
by Oracle Entitlements Server.

■ Section 6.1.1, "Understanding the PEP API"

■ Section 6.1.2, "Using the PEP API for Java"

■ Section 6.1.3, "Using the PEP API for .NET"

6.1.1 Understanding the PEP API
Oracle Entitlements Server provides a Java and a .NET provider implementation of the
org.openliberty.openaz.azapi.pep package. The Java PEP API provider is
packaged in oracle.security.jps.openaz.pep. .NET provider interfaces are
implemented under the Oes.Pep.Api name space.

The following sections contain more information.

■ Section 6.1.1.1, "Working with the PEP API"

■ Section 6.1.1.2, "Using the Different PEP API Requests"

■ Section 6.1.1.3, "Specifying the PEP API Subject"

■ Section 6.1.1.4, "Formatting Authorization Request Strings"

■ Section 6.1.1.5, "Retrieving Authentication Information Using a Query"

6.1.1.1 Working with the PEP API
For each PEP API authorization request, the provider implementation will invoke the
Oracle Entitlements Server Authorization Engine and return a decision. The
implementation is responsible for converting and mapping native Java or .NET objects
(subjects, resources, actions and the like) to the underlying security platform. The
provider implementation takes the following actions to retrieve an authorization
decision. This sequence assumes policies have already been defined for the specified
target. The Request and the Response provide a standard format for interacting with a
PDP.

Note: The PEP API call the Web Services Security Module through
its proxy implementation. This proxy layer will handle failover and
caching. For information on installing the Oracle Entitlements Server
Web Service Security Module, see the Oracle Fusion Middleware
Installation Guide for Oracle Identity Management.

Using the PEP API

Handling Authorization Calls and Decisions 6-3

1. A request for access is received at the PEP.

A request contains a Subject, Resource, Action, and (optional) Environment
attributes. It can be a call to authorize a Subject to access a protected resource, or it
may query for what is allowed in terms of actions and authorization decisions.

2. The PEP calls the PEP API which passes a request for authorization (based on the
type of Resource being accessed) to the Policy Decision Point (PDP).

The PEP API determines the type of authorization request based on the Resource
Type.

3. The PDP requests additional subject, resource, action, environment and other
attributes, if applicable.

Attributes are requested from a Policy Information Point (PIP). The PIP returns the
requested attributes and the information is passed back to the PDP.

4. The PDP evaluates the request against any relevant policies.

5. The PDP returns a response (including the authorization decision) to the PEP.

A response consists of one or more results. (Multiple results can only be caused by
evaluation of a hierarchical resource.) Each result contains a Decision (Permit,
Deny), status information (for example, why the evaluation failed) and
(optionally) one or more Obligations (the PEP is obligated to act on these before
granting or denying access).

6. The PEP fulfills the obligations, if any.

7. The PEP permits access to the resource if the request is granted; otherwise, access
is denied.

6.1.1.2 Using the Different PEP API Requests
The PEP API can be used to request access authorization in several ways. One or more
subjects can be authorized in a single or bulk authorization call, respectively. Oracle
Entitlements Server also supports queries on authorization decisions and actions.
Table 6–1, " Understanding the PEP API Authorization Request Types" contains more
details on these request types.

Table 6–1 Understanding the PEP API Authorization Request Types

Authorization Request
Type Input Parameters Returns

Single Authorization
Request

(Only supported when
using permissions)

■ Object or string representing the
Subject

■ Object representing a
Resource/Action pair or a
Resource and an Action

■ Object representing the
environment context (optional)

■ Returns a Response
object with an
authorization decision
and (optional)
Obligation for a single
request

■ Throws an exception

Bulk Authorization
Request

■ Object or string representing one
subject

■ List representing multiple
resource/action pairs, or one list
representing a resource and one
representing an action

■ Object representing the
environment context

■ Returns a Response
object with mutiple
authorization
decisions and
(optional) Obligations
for mutiple requests
in a single call

■ Throws an exception

Using the PEP API

6-4 Developer's Guide for Oracle Entitlements Server

6.1.1.3 Specifying the PEP API Subject
The Subject requesting authorization to access a protected resource can be defined by
passing a string, or an object representing a currently authenticated user.

■ A String representing the value of the Name of the subject as defined in the
identity store may be passed; for example, Josh Smith.

■ A Java or .NET object (representing an authenticated user) may be passed.

See Section 6.1.2.1, "Getting a Java PEP API Subject" or Section 6.1.3.1, "Getting a .NET
PEP API Subject" for details.

6.1.1.4 Formatting Authorization Request Strings
The PEP API methods contain a string that defines the scope of the request. A resource
string is then defined within the scope string. The following sections contain
information on how to format these scope and resource strings.

■ Section 6.1.1.4.1, "Formatting the PEP API Scope String"

■ Section 6.1.1.4.2, "Formatting the PEP API Resource String"

6.1.1.4.1 Formatting the PEP API Scope String

The scope input string is a PDP policy-specific resource representation that
encapsulates resource, actions and search scope information. It is represented as:

String scope = "resource = resourceString,actions = actionString1,
 actionString2, actionString3, searchscope = immediate/children";

Query returns a list of
authorization decisions for
specified
resource/action/subject/e
nvironment associations

■ Allows retrieval of
granted and denied
decisions for all
resources of a given
type or for all children
of a given resource

■ Allowed query
returns a list of
resource action
associations that are
allowed

■ Denied query returns
a list of resource
action associations
that are denied

■ Verbose query returns
full result of
authorization
decisions for each
resource action
association

■ Object or string representing the
subject

■ Object representing a
resource/action pair or a
resource and an action

■ Object representing the
environment context

■ Search scope (for one query
request API) specifying whether
authorization information is
required for the given resource
or the given resource and
children

■ Returns a list of
results that contain
the authorization
decisions in the same
order as the declared
resource/action pairs

■ Depending on the
defined search scope,
returns an
authorization decision
for the given resource
or all resources of a
given type or all
children of a given
resource

■ Throws an exception

Table 6–1 (Cont.) Understanding the PEP API Authorization Request Types

Authorization Request
Type Input Parameters Returns

Using the PEP API

Handling Authorization Calls and Decisions 6-5

The following is true regarding this representation.

■ resource is required and the resource string should appear first within the scope
string. See Section 6.1.1.4.2, "Formatting the PEP API Resource String."

■ actions is optional. If present, it contains a comma separated list of requested
actions and they must precede scope.

■ searchscope is optional, is only used with the Query request type, and takes a
value of children (the default value) or immediate.

– If the value is children, resourceString may contain only the application
identifier as documented in Section 6.1.1.4.2, "Formatting the PEP API
Resource String." In this case, the PEP API provider will query the specified
resource object and its children (if any). In the following example, Scope string
defines a resource which contains a Resource string (with application
identifier), no actions and no defined search scope; thus, the search scope is set
to children, by default.

String scope = "resource = PepQueryTest/resource_type_1/resource_1";

– If the value is immediate, resourceString should be fully qualified as
documented in Section 6.1.1.4.2, "Formatting the PEP API Resource String." In
this case, the PEP API provider will query the specified resource object. For
example:

String scope = "resource = PepQueryTest/resource_type_1/resource_1,
 actions = action1,action2, searchscope=immediate";

The following Scope string defines a hierarchical resource.

String scope= "resource = PepQueryTest/hierarchical_type//res1/res2/res3,
 searchscope= children";

6.1.1.4.2 Formatting the PEP API Resource String

The string should be in the format appId/resourceType/resourceName with the forward
slash (/) acting as delimiter. The appId and resourceType cannot be empty or null;
the resourceName can be empty for a query request but must be populated for all
other requests.

When formatting the string, there is no need to escape the delimiter character if it is
used in the resourceName. For example, if there is a hierarchical resource with the
name /res1/res2/res3, the resource string passed to the PEP API will be
appId/ResType//res1/res2/res3. It is necessary to escape the delimiter
character if it is used in the appId or resourceType though. In these cases, a string
with more than two delimiters is considered invalid.

The following list of examples illustrate these rules.

■ myapp/computer\/laptop/res1 signifies a Resource named res1 in the
myapp Application with the Resource Type computer/laptop.

■ myapp/computer\\laptop/res1 signifies a Resource named res1 in the
myapp Application with the Resource Type computer\laptop.

Note: The Resource string myapp/computer\laptop/res1 is
invalid because the character after \ is neither / nor \.

Using the PEP API

6-6 Developer's Guide for Oracle Entitlements Server

■ myapp/computer/laptop/res1 signifies a Resource named laptop/res1 in
the myapp Application with the Resource Type computer.

■ myapp/computer/laptop\/res1 signifies a Resource named laptop\/res1
in the myapp Application with the Resource Type computer.

■ myapp/hierarchialResource\\res1\res2\res3 signifies a Resource
named \res1\res2\res3 in the myapp Application with the Resource Type
hierarchicalResource.

6.1.1.5 Retrieving Authentication Information Using a Query
A Query operation can be initiated using the PEP API. The query accepts the following
objects as input parameters, returning the appropriate results.

■ Application - results are returned for all Resource instances for each Resource
Type defined in the given Application.

■ Application and Resource Type - results are returned for all Resource instances for
the Resource Type in the given Application. This call is valid for both hierarchical
and non hierarchical Resource Types.

■ Application, Resource Type and Resource - results are returned for the given
Resource instances for the Resource Type in the given Application. If the Resource
Type is hierarchical, results are returned for the children of the given Resource
instance as well.

There are two types of Queries as described in Table 6–2. Each type of query can
operate on hierarchical and non-hierarchical Resource instances.

Note: For strings in Java, the character \ itself needs to be escaped.
Thus, three of the strings previously documented, in Java, are:

■ myapp/computer\\/laptop/mybox

■ myapp/computer\\\\laptop/mybox

■ myapp/computer\\laptop/mybox

Table 6–2 PEP API Query Types

Query Type Returns Methods

Returns allowed/denied
actions on a Resource
and/or its children
(depending on the defined
scope)

Returns a PepRequest that
contains privileges of the
specified subject.

■ When searchscope =
"immediate", the PepApi
provider queries the
specified Resource object.

■ When searchscope =
"children", the PepApi
provider queries the
specified resource object
and its children (if any).

public PepRequest
newQueryPepRequest(Obje
ct subjectObj, Object
environmentObj, String
scope,
PepRequestQueryType
queryType) throws
PepException

Using the PEP API

Handling Authorization Calls and Decisions 6-7

6.1.2 Using the PEP API for Java
The following sections contain information on how to use the PEP API for Java.

■ Section 6.1.2.1, "Getting a Java PEP API Subject"

■ Section 6.1.2.2, "Making Simple Java PEP API Authorization Requests"

■ Section 6.1.2.3, "Processing Java PEP API Obligations"

■ Section 6.1.2.4, "Making Java PEP API Bulk Authorization Requests"

■ Section 6.1.2.5, "Making Java PEP API Query Requests"

■ Section 6.1.2.6, "Configuring the Java PEP API"

6.1.2.1 Getting a Java PEP API Subject
This section contains sample code that illustrates how the PEP API for Java can
retrieve an authenticated subject for an authorization request. It is recommended to
call the newPepRequest() method with a Java Authentication and Authorization
Service (JAAS) Subject.

See Section 6.1.1.4, "Formatting Authorization Request Strings" for information on
how the scope and resource strings are specified in the following examples.

■ Example 6–1, "Using Authenticated Subject in Java PEP API Request"

■ Example 6–2, "Using WebLogic Server Subject with Java PEP API Request"

■ Example 6–3, "Using Websphere Application Server Subject with Java PEP API
Request"

Example 6–1 shows how to get the authenticated user with the login service and use
the authenticated subject for a single PEP API authorization request. This code returns
an authorization decision based on the specified resource and action. (Bulk and query
requests are created and used in a similar way.)

Example 6–1 Using Authenticated Subject in Java PEP API Request

ServiceLocator locator = JpsServiceLocator.getServiceLocator();
LoginService loginService = locator.lookup(LoginService.class);
CallbackHandler cbh = new MyCallbackHandler("name", "password".toCharArray());

LoginContext ctx = loginService.getLoginContext(new Subject(), cbh);
ctx.login();

Returns full authorization
results on a Resource and
its children.

Returns full authorization
results on a Resource and its
children. Returns a PepRequest
that can be used to get
resource-actions that are
allowed or denied access to
current subject with given
environment parameter.

public PepRequest
newQueryPepRequest(Obje
ct subjectObj, Object
resourceObj, Object
actionObj, Object
environmentObj,
PepResponseType
responseType, boolean
resourceActionOnly)
throws PepException

Note: A string subject will be converted to a JAAS subject.

Table 6–2 (Cont.) PEP API Query Types

Query Type Returns Methods

Using the PEP API

6-8 Developer's Guide for Oracle Entitlements Server

Subject s = ctx.getSubject();

String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
Map<String, String> env = new HashMap<String, String>();
env.put("myAttr", "Hello");

//Alternately, a String subject like “tom” can be used.
String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
Map<String, String> env = new HashMap<String, String>();
env.put("myAttr", "Hello");

PepRequest pepRequest =
PepRequestFactoryImpl.getPepRequestFactory().newPepRequest
 (s, action, resourceString, env);

PepResponse response = pepRequest.decide();
System.out.println("result: " + response.allowed());
Map<String, Obligation> obligations = response.getObligations();
for (String name : obligations.keySet())
 {
 System.out.print("obligation: name = " + name + ", values = " +
 obligations.get(name).getStringValues());
 }

Example 6–2 illustrates how, after Java Enterprise Edition (JEE) authentication, you
can get the WebLogic Server subject to use with the PEP API.

Example 6–2 Using WebLogic Server Subject with Java PEP API Request

import weblogic.security.Security;

...

Subject s = Security.getCurrentSubject();

String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
Map<String, String> env = new HashMap<String, String>();
env.put("myAttr", "Hello");

PepResponse response =
 PepRequestFactoryImpl.getPepRequestFactory().newPepRequest
 (s, action, resourceString, env).decide();
System.out.println("result: " + response.allowed());
Map<String, Obligation> obligations = response.getObligations();
for (String name : obligations.keySet()) {
System.out.print("obligation: name = " + name + ", values = "
 + obligations.get(name).getStringValues());
 }

Example 6–3 illustrates how, after Java Enterprise Edition (JEE) authentication, you
can get the Websphere Application Server subject to use with the PEP API.

Example 6–3 Using Websphere Application Server Subject with Java PEP API Request

import com.ibm.websphere.security.auth.WSSubject;

...

Using the PEP API

Handling Authorization Calls and Decisions 6-9

Subject s = WSSubject.getCallerSubject();

String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
Map<String, String> env = new HashMap<String, String>();
env.put("myAttr", "Hello");

PepResponse response = PepRequestFactoryImpl.getPepRequestFactory().
 newPepRequest(s, action, resourceString, env).decide();
System.out.println("result: " + response.allowed());
Map<String, Obligation> obligations = response.getObligations();
for (String name : obligations.keySet())
 {
 System.out.print("obligation: name = " + name + ", values =
 " + obligations.get(name).getStringValues());
 }

6.1.2.2 Making Simple Java PEP API Authorization Requests
Oracle Entitlements Server offers two types of query requests. You can request a list of
all actions for a particular Resource (and its children), or you can request complete
authorization results for a particular Resource (and its children). Both types of queries
will retrieve results for all instantiated Resources of a given Resource Type.
Example 6–4 is a query request against a particular Resource. Note that the search
scope is defined as immediate. See Section 6.1.1.4, "Formatting Authorization Request
Strings" for information on how the scope and resource strings are specified.

Example 6–4 Requesting Java PEP API Authorization Against a Resource

...
String scope = "resource = PepQueryTest/resource_type_1/resource_1,
 actions = action1, searchscope=immediate";
PepRequest req = PepRequestFactoryImpl.getPepRequestFactory().
 newQueryPepRequest(subject, env, scope,
 PepRequestQueryType.RETURN_ONLY_ALLOWED_RESULTS);

PepResponse resp = req.decide();

//List of RuntimeAction objects
List actions = (List) resp.getAction();
RuntimeResource resource = (RuntimeResource) resp.getResource();

6.1.2.3 Processing Java PEP API Obligations
An Obligation specifies optional information that is returned to the calling application
with the access decision. Each obligation in the PEP API response has a map in type
Map<String, String>. (There are no double quotes around the String value.) See
Section 6.1.1.4, "Formatting Authorization Request Strings" for information on how the
scope and resource strings are specified in the following examples.

■ Example 6–5, "Making PEP API Request and Parsing Response"

■ Example 6–6, "Returned Obligations from Example 6–5"

Example 6–5 is an authorization request that also requests any Obligations.

Example 6–5 Making PEP API Request and Parsing Response

Subject s = ...; // a Jps subject (with app roles inside)

Using the PEP API

6-10 Developer's Guide for Oracle Entitlements Server

String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
Map<String, String> env = new HashMap<String, String>();
env.put("myAttr", "Hello");

PepResponse response =
 PepRequestFactoryImpl.getPepRequestFactory().newPepRequest
 (s,action,resourceString,env).decide();
System.out.println("result: " + response.allowed());
Map<String, Obligation> obligations = response.getObligations();
for (String name : obligations.keySet())
{ System.out.print("obligation: name = " + name + ", values = " +
obligations.get(name).getStringValues()); }

Example 6–6 is an example of an Obligation output. Again, there are no double quotes
around the string value.

Example 6–6 Returned Obligations from Example 6–5

result: true
obligation: name = MyObligation, values =
{attr1=18, attr2=World, time=08:59:59, attr_date=12/29/2010}

6.1.2.4 Making Java PEP API Bulk Authorization Requests
Example 6–7 is sample code written to request authorization in bulk. It encapsulates
two requests.

Example 6–7 Requesting Bulk Authorization with the Java PEP API

public void testBulkRequest() throws Exception {
 Map<String, String> env = new HashMap<String, String>();
 env.put("dynamic_attr", "dynamic_attr_value");
 String resourceString =
 MY_APPLICATION + "/" + MY_RESOURCE_TYPE + "/" + MY_RESOURCE;
 String wrongAction = "wrong_action";
 PepResponse resp = pepRequestFactory.newBulkPepRequest(
 subject,
 Arrays.asList(new Object[]{MY_ACTION, wrongAction}),
 Arrays.asList(new Object[]{resourceString, resourceString}),
 env).decide();

//
// response corresponding to first authorization decision
//

 assertTrue(resp.next());

 assertTrue("resp.allowed() is expected to be true!! ", resp.allowed());
 assertSame(MY_ACTION, resp.getAction());
 assertSame(RESOURCE_STRING, resp.getResource());

//
// response corresponding to second authorization decision
//

 assertTrue(resp.next());

 assertFalse("resp.allowed() is expected to be false!! ", resp.allowed());

Using the PEP API

Handling Authorization Calls and Decisions 6-11

 assertSame(wrongAction, resp.getAction());
 assertSame(RESOURCE_STRING, resp.getResource());

//
// call next() again..
//
 assertFalse(resp.next());
 }

See Section 6.1.1.4, "Formatting Authorization Request Strings" for information on
how the scope and resource strings are specified in these examples.

6.1.2.5 Making Java PEP API Query Requests
The PEP API for Java contains newQueryPepRequest() methods for retrieving
information regarding the scope of resources and actions covered by the authorization
request. The scope is based on subject and environment objects passed to the method.
(See Section 6.1.1.4, "Formatting Authorization Request Strings" for information on
how the scope and resource strings are specified.) The information returned depends
on how the PepRequestQueryType is defined. It takes one of the following values.

■ RETURN_ONLY_ALLOWED_RESULTS returns a list of resource action pairs that
are allowed within the defined scope.

■ RETURN_ONLY_DENIED_RESULTS returns a list of resource action pairs that
are denied within the defined scope.

■ VERBOSE returns all results for each resource action pairs requested within the
defined scope.

Example 6–8 illustrates the signature in which you can define the query type as one of
the values in the PepRequestQueryType enum.

Example 6–8 Defining the Java PEP API Query Type

public PepRequest newQueryPepRequest
 (object subjectObj,
 Object environmentObj
 String scope
 PepRequestQueryType queryType)

Example 6–9 illustrates the signature in which you can define a response type as one of
the values in the new PepResponseType enum. resourceActionOnly is a Boolean
indicating whether information describing just the identity of the resource and actions
(to which the query applies) will be returned in the response or, if full responses
(including Obligations) will be returned.

Example 6–9 Defining the New Java PEP API Response Type

public PepRequest newQueryPepRequest
 (java.lang.Object subjectObj,
 java.lang.Object resourceObj,
 java.lang.Object actionObj,
 java.lang.Object environmentObj,
 org.openliberty.openaz.azapi.constants.PepResponseType responseType,
 boolean resourceActionOnly)

Example 6–10 is a query requesting all allowed and denied actions against a particular
Resource and its children. Note that the search scope is defined as children.

Using the PEP API

6-12 Developer's Guide for Oracle Entitlements Server

Example 6–10 Verbose Query For a Resource and Children with Java PEP API

...
String scope = "resource=PepQueryTest/Hierarchical/\\/res1";

PepRequest req = PepRequestFactoryImpl.getPepRequestFactory
 (subject, env, scope, PepRequestQueryType.VERBOSE);
PepResponse resp = req.decide();

ArrayList arrayList;
List grantedActions;
List deniedActions;

int i = 0;

//there can be more than 1 result when searchscope="children"
while (resp.next()) {
 RuntimeResource res = (RuntimeResource) resp.getResource();

//both granted actions and denied actions are returned for
PepRequestQueryType.VERBOSE
//PepResponse.getAction() returns an ArrayList where ArrayList.get(0) returns list
of granted actions;
//it returns an ArrayList where ArrayList.get(1) returns list of denied actions;

arrayList = (ArrayList) resp.getAction();
grantedActions = null;
deniedActions = null;

if (arrayList != null) {
 grantedActions = (List) arrayList.get(0);
 deniedActions = (List) arrayList.get(1);
 }
String resourceName = res.getResourceName();
}

Example 6–11 illustrates query code that returns only allowed results in the immediate
search scope.

Example 6–11 Query Request for Immediate Searchscope with Java PEP API

String scope = "resource=PepQueryTest/resource_type_1/resource_1,
 actions=action1, searchscope=immediate";
PepRequest req =
 PepRequestFactoryImpl.getPepRequestFactory().newQueryPepRequest
 (subject, env, scope, PepRequestQueryType.RETURN_ONLY_ALLOWED_RESULTS);
PepResponse resp = req.decide();

//Getting list of RuntimeAction objects
List actions = (List) resp.getAction();
RuntimeResource resource = (RuntimeResource) resp.getResource();

Example 6–12 illustrates query code that returns allowed and denied results in the
children search scope.

Example 6–12 Query Request for Children Searchscope with Java PEP API

String scope = "resource=PepQueryTest/Hierarchical/\\/res1";
PepRequest req = PepRequestFactoryImpl.getPepRequestFactory
 (subject, env, scope, PepRequestQueryType.VERBOSE);
PepResponse resp = req.decide();

Using the PEP API

Handling Authorization Calls and Decisions 6-13

ArrayList arrayList;
List grantedActions;
List deniedActions;

int i = 0;

//there can be more than 1 result when searchscope="children"
while (resp.next()) {
RuntimeResource res = (RuntimeResource) resp.getResource();

//both granted actions and denied actions are returned for
//PepRequestQueryType.VERBOSE
//PepResponse.getAction() returns an ArrayList where ArrayList.get(0)
//returns list of granted actions;
//it returns an ArrayList where ArrayList.get(1) returns list of denied actions;

arrayList = (ArrayList) resp.getAction();
grantedActions = null;
deniedActions = null;

if (arrayList != null) {
 grantedActions = (List) arrayList.get(0);
 deniedActions = (List) arrayList.get(1);
}
 String resourceName = res.getResourceName();
}

Example 6–13 illustrates query code that returns only allowed and denied results
along with any Obligations.

Example 6–13 Query Request for Allow/Deny Results & Obligations with Java PEP API

String resourceString = "MyApplication/MyResourceType/MyResource";
String action = "read";
PepRequest req = pepRequestFactory.newQueryPepRequest(subject,
 resourceString, action, null, PepResponseType.ALL_RESULTS, true);

PepResponse resp = req.decide();
 while (resp.next()) {
//print authorization results for each resource and action.
System.out.println(“For resource “ + resp.getResource() + “ and action” +
 resp.getAction() + “ authorization allowed = “ + resp.allowed());

//check out obligations
Map<String, Obligation> obligations = resp.getObligations();
Set<String> obIds = obligations.keySet();
 for (String obId : obIds) {
Obligation obligation = obligations.get(obId);
Map<String, String> strValus = obligation.getStringValues();
}
}

6.1.2.6 Configuring the Java PEP API
To use the Java PEP API, details regarding the identity store, the policy store, the
Policy Distribution Service, and the user assertion login module must be defined in the
jps-config.xml configuration file.

Using the PEP API

6-14 Developer's Guide for Oracle Entitlements Server

Example 6–14 is a snippet of jps-config.xml, copied for informational purposes.

Example 6–14 Sample jps-config.xml File

...
<serviceInstance name="idstore.ldap" provider="idstore.ldap.provider">
 <description>LDAP Identity Store Service Instance</description>
 <property name="idstore.config.provider"
 value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
 <property name="CONNECTION_POOL_CLASS"
 value="oracle.security.idm.providers.stdldap.JNDIPool"/>
</serviceInstance>
<serviceInstance name="idstore.loginmodule" provider="jaas.login.provider">
 <description>Identity Store Login Module</description>
 <property name="loginModuleClassName"
 value="oracle.security.jps.internal.jaas.module.idstore.IdStoreLoginModule"/>
 <property name="jaas.login.controlFlag" value="REQUIRED"/>
</serviceInstance>
<serviceInstance name="pdp.service" provider="pdp.service.provider">
 <description>Runtime PDP service instance</description>
 <property name="oracle.security.jps.runtime.pd.client.sm_name" value="mixedsm"/>
 <property name="oracle.security.jps.runtime.pd.client.localpolicy.work_folder"
 value="/ade/diazhao_entsec_
 2/oracle/work/utp/buildout/functional/platsec/tempdir/mixedpd-work"/>
 <property name="oracle.security.jps.pdp.AuthorizationDecisionCacheEnabled"
 value="true"/>
 <property
 name="oracle.security.jps.pdp.AuthorizationDecisionCacheEvictionCapacity"
 value="500"/>
 <property
 name="oracle.security.jps.pdp.AuthorizationDecisionCacheEvictionPercentage"
 value="10"/>
 <property name="oracle.security.jps.pdp.AuthorizationDecisionCacheTTL"
 value="60"/>
 <property name="oracle.security.jps.pd.client.PollingTimerEnabled" value="true"/>
 <property name="oracle.security.jps.pd.client.PollingTimerInterval" value="10"/>
 <property name="oracle.security.jps.ldap.cache.refresh.interval" value="10000"/>
 <property name="oracle.security.jps.runtime.pd.client.policyDistributionMode"
 value="mixed"/>
</serviceInstance>
<serviceInstance name="policystore.db" provider="policystore.provider">
 <property name="policystore.type" value="DB_ORACLE"/>
 <property name="oracle.security.jps.farm.name"
 value="cn=testfarm_diazhao_entsec_2"/>
 <property name="server.type" value="DB_ORACLE"/>
 <property name="oracle.security.jps.ldap.root.name" value="cn=jpsroot"/>
 <property name="datasource.jndi.name" value="platsec_test_ds"/>
</serviceInstance>
<serviceInstance name="user.assertion.loginmodule" provider="jaas.login.provider">
 <description>User Assertion Login Module</description>
 <property name="loginModuleClassName" value="oracle.
 security.jps.internal.jaas.module.assertion.JpsUserAssertionLoginModule"/>
 <property name="jaas.login.controlFlag" value="REQUIRED"/>

Note: See the Oracle Fusion Middleware Security Guide for more
information on this configuration file. Parameters specific to Oracle
Entitlements Server are documented in the Oracle Fusion Middleware
Administrator's Guide for Oracle Entitlements Server.

Using the PEP API

Handling Authorization Calls and Decisions 6-15

</serviceInstance>
...
<jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="credstore.db"/>
 <serviceInstanceRef ref="keystore.db"/>
 <serviceInstanceRef ref="policystore.db"/>
 <serviceInstanceRef ref="audit.db"/>
 <serviceInstanceRef ref="trust"/>
 <serviceInstanceRef ref="pdp.service"/>
 <serviceInstanceRef ref="attribute"/>
 <serviceInstanceRef ref="idstore.ldap"/>
 </jpsContext>
</jpsContexts>

6.1.3 Using the PEP API for .NET
The PEP API for .NET can be used to integrate Oracle Entitlements Server
authorization into applications built using Microsoft .NET technology. The .NET
application calls the PEP API for .NET to get an authorization decision. (The PEP API
for .NET invokes the authorization web service exposed by the Web Services Security
Module through its proxy implementation (which handles the failover and caching).

To invoke the .NET Security Module for authorization, create an IPepRequest where
a list of action objects and a corresponding list of resource objects are provided to
represent applicable resource-action pairs. An authorization decision for each
resource-action pair will be returned when IPepRequest.decide() is invoked. The
following sections contain information on how to use the PEP API for .NET
applications.

■ Section 6.1.3.1, "Getting a .NET PEP API Subject"

■ Section 6.1.3.2, "Making Simple .NET PEP API Authorization Requests"

■ Section 6.1.3.3, "Processing .NET PEP API Obligations"

■ Section 6.1.3.4, "Making .NET PEP API Bulk Authorization Requests"

■ Section 6.1.3.5, "Making .NET PEP API Query Requests"

■ Section 6.1.3.6, "Configuring the .NET PEP API"

6.1.3.1 Getting a .NET PEP API Subject
You can define a subject for the IPepRequest call by doing one of the following:

■ Pass the user name as a String.

■ Pass the System.Security.Principal.IIdentity user object. This object is
the .NET standard and signifies authentication by the Windows operating system
which Oracle Entitlements Server supports. Get the IIdentity user object as
follows:

– For a standalone application, use:

IIdentity iIdentity = WindowsIdentity.GetCurrent();

– For a web application, use:

IIdentity iIdentity = (IIdentity)(HttpContext.Current.User.Identity);

Using the PEP API

6-16 Developer's Guide for Oracle Entitlements Server

■ Use the UserPricipal class to set the user information and pass a
UserPrincipal object if the .NET application has custom authentication.

6.1.3.2 Making Simple .NET PEP API Authorization Requests
Oracle Entitlements Server offers requests for authorization (single and bulk) and
queries. You can query for a list of all actions for a particular Resource (and its
children), or you can request complete authorization results for a particular Resource
(and its children). Both types of queries can also be used to retrieve results for all
instantiated Resources of a given Resource Type.

Authorization information that is passed includes an object corresponding to
authenticated subject (for example, iIdentity), a list of objects representing the actions
[for example, String (read)], a list of objects representing the Resources (for
example, applicationId/resourcetype/resource), and an object representing
the environment (containing information passed in the form of a hashtable). See
Section 6.1.1.4, "Formatting Authorization Request Strings" for information on how the
scope and resource strings are specified in Example 6–15, "Requesting .NET PEP API
Authorization Against a Resource". Note the code also contains an Obligation as
discussed in Section 6.1.3.3, "Processing .NET PEP API Obligations."

Example 6–15 Requesting .NET PEP API Authorization Against a Resource

String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
Hashtable env = new Hashtable();
env.Add("myAttr", "Hello");
IIdentity iIdentity = WindowsIdentity.GetCurrent();
IPepResponse response =
 PepRequestFactoryImpl.GetPepRequestFactory().NewPepRequest
 (iIdentity, action, resourceString, env).Decide();
Console.Write ("result: " + response.Allowed());
Dictionary<String, IObligation> obligations = response.GetObligations();

foreach (KeyValuePair<String, IObligation> entry in obligations)
{Console.WriteLine
 ("Print the obligation" + entry.Value.GetStringValues());
}

Example 6–16 requests authorization using the .NET PEP API when the subject is
specified as a string.

Example 6–16 Requesting .NET PEP API Authorization with a String Subject

String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
IPepResponse response = PepRequestFactoryImpl.GetPepRequestFactory().
 NewPepRequest("John", action, resourceString).Decide();
Console.WriteLine("result: " + response.Allowed());

Example 6–17 requests authorization using the .NET PEP API when the subject is
specified as UserPrincipal.

Example 6–17 Requesting .NET PEP API Authorization with a UserPrincipal Subject

UserPrincipal userPrincipal = new UserPrincipal("user1");
Hashtable envTable = new Hashtable();
String action = "read";
String resourceString = "MyApplication/MyResourceType/MyResource";
IPepResponse response = PepRequestFactoryImpl.GetPepRequestFactory().

Using the PEP API

Handling Authorization Calls and Decisions 6-17

 NewPepRequest
 (userPrincipal, action, resourceString, envTable).Decide();
Console.WriteLine("result: " + response.Allowed());

6.1.3.3 Processing .NET PEP API Obligations
The GetObligationId() method of the IObligation interface is used to retrieve
any obligation relevant to the authorization request. An Obligation specifies optional
information that is returned to the calling application with the access decision.
Example 6–15 (in the previous section) is an authorization request that also gets any
Obligations. Example 6–18 is another example.

Example 6–18 Requesting Single Authorization and Obligations with the .NET PEP API

String appId = "test-app";
String userName = "weblogic";
String resourceType = "Electronics-MyRT";
String resource1 = ":Nelco1";
String action1 = "view";
String action2 = "off";

IPepRequestFactory pepRequestFactoryImpl =
 PepRequestFactoryImpl.GetPepRequestFactory();
Hashtable envTable = new Hashtable();
envTable.Add("electronicType", "entertainment");
IPepResponse pepresponse = pepRequestFactoryImpl.NewPepRequest
 (userName, action1, appId + "/" + resourceType + "/" + resource1,
 envTable).Decide();
Dictionary<String,IObligation> obligations=pepresponse.GetObligations();
foreach (KeyValuePair<String, IObligation> entry in obligations)
{
Console.WriteLine("Print the obligation" + entry.Value.GetStringValues());
}

6.1.3.4 Making .NET PEP API Bulk Authorization Requests
See Section 6.1.1.4, "Formatting Authorization Request Strings" for information on
how the scope and resource strings are specified. Example 6–19 illustrates a call for
bulk authorization.

Example 6–19 Requesting Bulk Authorization

String appId = "test-app";
String userName = "weblogic";
String authenticatedUser = "weblogic";
//String resourceType = "LibraryResourceType";
String resourceType = "Electronics-MyRT";
String resource1 = ":Nelco1";
String resource2 = ":Nelco1:TV";
String resource3 = ":Nelco1:TV:small-screen";
String action1 = "view";
String action2 = "on";
String action3 = "off";

IPepRequestFactory pepRequestFactoryImpl =
 PepRequestFactoryImpl.GetPepRequestFactory();
IPepResponse pepresponse=null;
bool isNext = false;

Using the PEP API

6-18 Developer's Guide for Oracle Entitlements Server

Collection<Object> resList = new Collection<Object>();
resList.Add(appId + "/" + resourceType + "/" + resource1);
resList.Add(appId + "/" + resourceType + "/" + resource2);
Collection<Object> actList = new Collection<Object>();
actList.Add(action1);
actList.Add(action3);
Hashtable envTable = new Hashtable();
envTable.Add("electronicType", "entertainment");
pepresponse = pepRequestFactoryImpl.NewBulkPepRequest
 (userName, actList, resList, envTable).Decide();

//First authorization decision
isNext = pepresponse.Next();
Debug.Assert(isNext == false, "Error in bulk operation");
Debug.Assert(pepresponse.Allowed() == false, "Error in bulk operation");

//Second authorization decision
isNext = pepresponse.Next();
Debug.Assert(isNext == false, "Error in bulk operation");
Debug.Assert(pepresponse.Allowed() == true, "Error in bulk operation");

6.1.3.5 Making .NET PEP API Query Requests
The PEP API for .NET contains a newQueryPepRequest() method for retrieving
information regarding the scope of resources and actions covered by the authorization
request. The scope is based on subject and environment objects passed to the method.
(See Section 6.1.1.4, "Formatting Authorization Request Strings" for information on
how the scope and resource strings are specified.) The information returned depends
on how the PepRequestQueryType is defined. It takes one of the following values.

■ RETURN_ONLY_ALLOWED_RESULTS returns a list of resource action pairs that
are allowed within the defined scope. See Example 6–20.

■ RETURN_ONLY_DENIED_RESULTS returns a list of resource action pairs that
are denied within the defined scope. See Example 6–21.

■ VERBOSE returns all results for each resource action pairs requested within the
defined scope. See Example 6–22.

Example 6–20 .NET Query for List of Allowed Resource Action Pairs

String appId = "MyApplication";
String resourceType = "resourceType";
String resource = "res";
IIdentity iIdentity = WindowsIdentity.GetCurrent();
IPepRequestFactory pepRequestFactoryImpl =
 PepRequestFactoryImpl.GetPepRequestFactory();
IPepResponse pepresponse=null;
String actionStr="view,on,off";
bool isNext=false;
String scopeImmediate = "resource=" + "application" + "/" + "resource_type" +
 "/" + "resource2" + ", actions=" + actionStr + ",searchscope=immediate";
Hashtable envTable = new Hashtable();
envTable.Add("electronicType", "entertainment");

pepresponse = pepRequestFactoryImpl.NewQueryPepRequest
 (iIdentity, envTable,scopeImmediate,PepRequestQueryType.
 RETURN_ONLY_ALLOWED_RESULTS).Decide();

isNext=pepresponse.Next();

Using the PEP API

Handling Authorization Calls and Decisions 6-19

Object act = pepresponse.GetAction();
List<String> actList = (List<String>)act;
if (actList.Contains("view") && actList.Contains("on"))
 { Debug.Assert(actList.Count == 2, "Invalid result");
}

Example 6–21 .NET Query for List of Denied Resource Action Pairs

String appId = "MyApplication";
String resourceType = "resourceType";
String resource = "res";
IIdentity iIdentity = WindowsIdentity.GetCurrent();
IPepRequestFactory pepRequestFactoryImpl =
 PepRequestFactoryImpl.GetPepRequestFactory();
IPepResponse pepresponse=null;
String actionStr = "view,on,off";
bool isNext = false;
String scopeImmediate = "resource=" + "application" + "/" + "resource_type" +
 "/" + "resource2" + ", actions=" + actionStr + ",searchscope=immediate";
Hashtable envTable = new Hashtable();
envTable.Add("electronicType", "entertainment");
pepresponse = pepRequestFactoryImpl.NewQueryPepRequest
 (iIdentity, envTable, scopeImmediate, PepRequestQueryType.
 RETURN_ONLY_DENIED_RESULTS).Decide();
isNext = pepresponse.Next();
Object act = pepresponse.GetAction();
List<String> actList = (List<String>)act;
if (actList.Count == 1 || actList[0].Equals("off"))
 {
 Debug.Assert(actList.Count == 1, "Invalid result");
 }

Example 6–22 .NET Query for List of All Resource Action Pairs

String appId = "MyApplication";
String resourceType = "resourceType";
String resource = "res";
IIdentity iIdentity = WindowsIdentity.GetCurrent();
//for standalone
IPepRequestFactory pepRequestFactoryImpl =
 PepRequestFactoryImpl.GetPepRequestFactory();
IPepResponse pepresponse=null;
String actionStr = "view,on,off";
String scopeImmediate = "resource=" + "application" + "/" + "resource_type" +
 "/" + "resource2" + ", actions=" + actionStr + ", searchscope=immediate";
Hashtable envTable = new Hashtable();
envTable.Add("electronicType", "entertainment");

pepresponse = pepRequestFactoryImpl.NewQueryPepRequest
 (iIdentity, envTable, scopeImmediate, PepRequestQueryType.VERBOSE).Decide();

//isNext = pepresponse.Next();
Object act = pepresponse.GetAction();
List<List<String>> actList = (List<List<String>>)act;
List<String> actListAllowed = actList[0];
List<String> actListDenied = actList[1];
if (actListAllowed.Count == 2)
 { Debug.Assert(actListAllowed.Count == 2, "Invalid result");
}

Using the PEP API

6-20 Developer's Guide for Oracle Entitlements Server

if (actListDenied.Count == 1)
 {
 Debug.Assert(actListDenied.Count == 1, "Invalid result");
}

Example 6–23 illustrates a query for authorization results for a specified resource and
its children. Note that searchscope=children.

Example 6–23 Requesting Authorization Results for a Resource and Its Children

IPepRequestFactory pepRequestFactoryImpl =
 PepRequestFactoryImpl.GetPepRequestFactory();
IPepResponse pepresponse=null;
String actionStr = "view,on,off";
String scopeImmediate = "resource=" + "application" + "/" + "resource_type" +
 "/" + "resource2" + ", actions=" + actionStr + ",searchscope=children";
Hashtable envTable = new Hashtable();
envTable.Add("electronicType", "entertainment");

IIdentity iIdentity = WindowsIdentity.GetCurrent();
pepresponse = pepRequestFactoryImpl.NewQueryPepRequest
 (iIdentity, envTable, scopeImmediate, PepRequestQueryType.VERBOSE).Decide();

//isNext = pepresponse.Next();
Object act = pepresponse.GetAction();
List<List<String>> actList = (List<List<String>>)act;
List<String> actListAllowed = actList[0];
List<String> actListDenied = actList[1];
if (actListAllowed.Count == 2)
 { Debug.Assert(actListAllowed.Count == 2, "Invalid result");
}
 if (actListDenied.Count == 1)
{
 Debug.Assert(actListDenied.Count == 1, "Invalid result");
}

6.1.3.6 Configuring the .NET PEP API
The .NET PEP API are exposed to Microsoft .NET applications through Dynamic Link
Libraries (DLL). The .NET application developer must incorporate OES-PEP.dll as
part of the protected application. Also, as part of the configuration process:

1. Incorporate OES-PEP.dll as part of the protected application. This is done by the
.NET application developer.

2. Update the following properties in the dotnetsm_config.properties file
located in the OES_CLIENT_HOME/oessm/dotnetsm/configtool/ directory.

■ gac.utility : defines the Global Assembly utility path of the .NET
framework with which the DLL have been registered.

■ wssm.smurl : defines the URL of the Web Service Security Module used by
the .NET application to communicate with Oracle Entitlements Server.

■ application.config.file : defines the configuration file of the protected
application. This parameter has two possible values. If it is a web application,
the configuration file is named web.config; if it is a standalone application,
the configuration file is named app.config.

■ operation : defines the action for which you are preparing, this parameter
has two possible values. config denotes configuration; remove will remove

Making checkPermission() Calls

Handling Authorization Calls and Decisions 6-21

all configuration that has been added to the .NET application’s configuration
file as well as remove the registered OES-PEP.dll and log4net.dll from
the GAC utility.

■ application.log4NetXmlfil : defines the path of the log4net.xml
which will generate the log file for the .NET Security Module. If the .NET
application has already generated the log file, use the existing log4net.xml
location. Otherwise, use the .NET Security Module’s log4net.xml file
located in OES_CLIENT_HOME/dotnetsm/logging/.

3. Run the configuration tool on the Windows machine using the following
command where smType denotes the type of Security Module instantiated (in this
case, dotnet) and smConfigId denotes the identifier defined when the Security
Module was instantiated (in this case, myDotnet).

config.cmd -smType dotnet -smConfigId myDotnet

This tool will register OES-PEP.dll and log4net.dll on the Windows
machine that is hosting the protected application and update the application’s
configuration file (web.config or app.config) with the locations of the Web
Services Security Module and logging configuration files. Additionally, the
following properties are defined:

■ oracle.security.jps.pdp.proxy.RequestTimeoutMilliSecs -
interval in which a request times out if the server is not responding. The
default value is 10 (seconds).

■ oracle.security.jps.pdp.proxy.FailureRetryCount - number of
attempts to contact a server before trying an alternate failover server. The
default value is 3 (attempts).

■ oracle.security.jps.pdp.proxy.FailbackTimeoutMilliSecs -
interval of time after which communication may be re-attempted with a
primary server. The default value is 3 (minutes).

■ oracle.security.jps.pdp.proxy.SynchronizationIntervalMilliSe
cs - defines how often the PDP Proxy polls the PDP server in order to
synchronize state. For example, the interval is used to periodically check
whether the authorization cache has to be flushed. The default value is 60
(seconds).

6.2 Making checkPermission() Calls
checkPermission() uses Java Permission objects to determine access to
protected resources. A Java Permission object represents access to a resource and is
constructed and assigned (access granted) based on the configured policy in effect.
Oracle Entitlements Server supports the use of the checkPermission() method in
the following standard classes:

■ java.lang.SecurityManager

■ java.security.AccessController

Note: The static AccessController.checkPermission method
uses the default access control context (the context inherited when the
thread was created). To check permissions on some other context, call
the instance checkPermission() method on a particular
AccessControlContext instance.

Using the XACML Gateway

6-22 Developer's Guide for Oracle Entitlements Server

Additionally, Oracle Entitlements Server supports the use of the
checkPermission() method in the oracle.security.jps.util.JpsAuth
class.

When invoking the checkPermission() method (in a JavaSE application), make
sure:

1. The java.security.policy system property has been set to the location of the
Oracle Platform Security Services/Oracle WebLogic Server policy file.

2. Your application first calls the setPolicy() method to explicitly set the policy
provider. This is illustrated by the following sample code.

java.security.Policy.setPolicy(new
 oracle.security.jps.internal.policystore.JavaPolicyProvider());

oracle.security.jps.util.JpsAuth.checkPermission() works exactly as
the standard methods by accepting a Permission object. If the requested access is
allowed, checkPermission() returns quietly; if denied, an
AccessControlException is thrown. Example 6–24 illustrates how you might use
checkPermission().

Example 6–24 Using the checkPermission() Method

java.security.Policy.setPolicy(new
 oracle.security.jps.internal.policystore.JavaProvider()); // Java SE env only
PolicyContext.setContextID(TARGET_APP); // Java SE env only

// authorization runtime
Subject s = new Subject(); s.getPrincipals().add(new WLSUserImpl("wcai"));
s.setReadOnly();
JpsSubject.invokeAs(s, new PrivilegedAction<Object>() {

public Object run() {
FilePermission perm2 = new FilePermission(“HARRY_PORTER”, "read");
psAuth.checkPermission(perm2);
 return null;
}

6.3 Using the XACML Gateway
Oracle Entitlements Server allows external applications to ask authorization questions
using the XACML 2.0 protocol. The Web Services Security Module contains a XACML
gateway that allows it to receive XACML authorization requests and return XACML
authorization responses. This capability is supported only when using the
Multi-Protocol Security Module.

The Web Services Security Module XACML gateway acts as a remote PDP. It uses the
standard XACML 2.0 context to convey authorization requests and responses between
the PEP and the PDP. Here is the processing sequence for a XACML authorization
request.

1. The PEP (application) establishes a session, authenticates a user and gets a valid
token for the principal.

Tip: Oracle recommends the use of the checkPermission()
method in the oracle.security.jps.util.JpsAuth class as it
provides improved debugging support, better performance, and audit
support.

Using the XACML Gateway

Handling Authorization Calls and Decisions 6-23

Example 6–25 illustrates how to establish the session and send a XACML 2.0
authorization request. Example 6–26 illustrates an alternative option.

Example 6–25 Sample Code to Establish Session For XACML Gateway

setupSession();
request = createRequest();
try {
 resp = xacmlSvc.authorize(request);
} catch (AxisFault af) {
 if (isTokenExpired(af)) {
 resetupSession();
 try {
 resp = xacmlSvc.authorize(request);
 }
 catch (RemoteException e) {
 throw new XACMLException("Error calling the XACML service.", e);
 }
 }
 else {
 throw new XACMLException(“Error calling the XACML service.”, af);
 }
} catch (RemoteException e) {
 throw new XACMLException("Error calling the XACML service.", e);
 }

private boolean isTokenExpired(AxisFault af) {
 String faultReason = af.getFaultReason();
 if((faultReason != null) && (faultReason.indexOf
 ("IdentityAssertionException") != -1)) {
 return true;
}
return false;
 }

private void setupSession() throws XACMLException {
 if (identity == null) {
 establishSession();
}
 }

private void resetupSession() throws XACMLException {
 establishSession();
}

private void establishSession() throws XACMLException {
 try {
 EstablishSessionType sess = new EstablishSessionType();
 sess.setPrincipalsInfo(convertSubjectToPrincipalsInfo(subject));
 sess.setRequestedCredentialType(OES_CREDENTIAL_TYPE);
 AuthenticationResultType result = atzSvc.establishSession(sess);
 identity = result.getIdentityAssertion();
 }
 catch (Exception e) {
 throw new XACMLException("Unable to authenticate user.", e);
 }
 if (identity == null) {
 throw new XACMLException("Null identity received.
 Unable to establish session for " + subject);
 }

Using the XACML Gateway

6-24 Developer's Guide for Oracle Entitlements Server

 System.out.println("Authentication Succeeded, Identity: ");
 MessageElement ele = identity.get_any()[0];
 System.out.println(ele.getFirstChild());
 }

Example 6–26 illustrates a new mode which can pass the Subject on every request
and doesn't require the establishSession method. The previous mode,
Example 6–25, is still supported.

Example 6–26 Sample Code To Establish Session with Principal Information

/**
 * Test authorize for user role in new mode which send the principal info in
 every request.
 * @throws Exception
 */
public void testAtzForUserRoleNewMode() throws Exception {
 SubjectType sbjct1 = constructSubject(OTHER_USER, new String[]{OTHER_ROLE});
 SubjectType sbjct2 = constructSubject(ADMIN_USER, new String[]{ADMIN_ROLE});

printTestHeader("Deny Test: user \"" + OTHER_USER + "\" is in role \"" +
 OTHER_ROLE + "\"");
sendRequest(new SubjectType[]{sbjct1}, new ResourceType[]{resTest1},
 actionWrite, emptyEnv);

printTestHeader("Permit Test: user \"" + ADMIN_USER + "\" is in role \"" +
 ADMIN_ROLE + "\"");
sendRequest(new SubjectType[]{sbjct2}, new ResourceType[]{resTest1},
 actionWrite, emptyEnv);
}

2. The PEP sends a XACML request containing the token to the PDP (Security
Module).

Example 6–27 iluustrates how to create a XACML authorization request.

Example 6–27 Creating a XACML Request

private RequestType createRequest() throws XACMLException
{
 // create resource
 String res = "Library/LibraryResourceType/Book";
 AttributeType attr = createAttribute(res, RESOURCE_ID, XML_STRING_TYPE);
 ResourceType resource = new ResourceType(null, new AttributeType[]{attr});
 // create action
 String actionStr = "borrow";
 attr = createAttribute(actionStr, ACTION_ID, XML_STRING_TYPE);
 ActionType action = new ActionType(new AttributeType[]{attr});
 // create environment
 String isRegistered = input.getString("Is the user registered in the library
(yes|no): ");
 String numberOfBorrowedBooks = input.getString("How many books has the user
borrowed already:: ");
 EnvironmentType env;
 List attrs = new ArrayList();
 attrs.add(createAttribute(isRegistered, XACML_NAMESPACE + "RegisteredAttribute",
XML_STRING_TYPE));
 attrs.add(createAttribute(numberOfBorrowedBooks, XACML_NAMESPACE +
"NumberOfBorrowedBooksAttribute", XML_STRING_TYPE));
 // obligations
 attrs.add(createAttribute(LIST_VAL1, XACML_NAMESPACE + ATTRIBUTE_NAME, XML_

Using the XACML Gateway

Handling Authorization Calls and Decisions 6-25

STRING_TYPE));
 attrs.add(createAttribute(LIST_VAL2, XACML_NAMESPACE + ATTRIBUTE_NAME, XML_
STRING_TYPE));
 env = new EnvironmentType((AttributeType[])attrs.toArray(new
AttributeType[attrs.size()]));
 // subject
 attr = createAttribute(identity.get_any(), SUBJECT_ID, XACML_NAMESPACE + OES_
CREDENTIAL_TYPE);
 SubjectType subject = new SubjectType(new AttributeType[]{attr}, null);
 // now construct the request with subject, resource, action and environment.
 return new RequestType(new SubjectType[]{subject},
 new ResourceType[]{resource}, action, env);
}

Example 6–28 is a sample XACML 2.0 authorization request. The SSM-SOAPWS_
xacml.wsdl file provides the operation interface definitions.

Example 6–28 XACML 2.0 Authorization Request

<Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">
 <Subject xsi:type="ns1:SubjectType"
xmlns:ns1="urn:oasis:names:tc:xacml:2.0:context:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#OESIdentityAssertion"
xsi:type="ns1:AttributeType">
 <AttributeValue xsi:type="ns1:AttributeValueType">
 <OESIdentityAssertion
 xmlns="http://security.bea.com/ssmws/ssm-soap-types-1.0.xsd">
 SU=John;TS=1288702235781;CT=1</OESIdentityAssertion>
 </AttributeValue>
 </Attribute>
 </Subject>
 <ns2:Resource xsi:type="ns2:ResourceType"
 xmlns:ns2="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns2:Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:resource:resource-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 xsi:type="ns2:AttributeType">
 <ns2:AttributeValue xsi:type="ns2:AttributeValueType">
 Library/LibraryResourceType/Book</ns2:AttributeValue>
 </ns2:Attribute>
 </ns2:Resource>
 <ns3:Action xsi:type="ns3:ActionType"
 xmlns:ns3="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns3:Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 xsi:type="ns3:AttributeType">
 <ns3:AttributeValue
 xsi:type="ns3:AttributeValueType">borrow</ns3:AttributeValue>
 </ns3:Attribute>
 </ns3:Action>
 <ns4:Environment xsi:type="ns4:EnvironmentType"
 xmlns:ns4="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns4:Attribute AttributeId=
 "http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#RegisteredAttribute"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 xsi:type="ns4:AttributeType">

Using the XACML Gateway

6-26 Developer's Guide for Oracle Entitlements Server

 <ns4:AttributeValue xsi:type="ns4:AttributeValueType">yes</ns4:AttributeValue>
 </ns4:Attribute>
 <ns4:Attribute AttributeId=
 "http://security.bea.com/ssmws/ssm-ws-1.0.wsdl
 #NumberOfBorrowedBooksAttribute"
 DataType="http://www.w3.org/2001/XMLSchema#string"
 xsi:type="ns4:AttributeType">
 <ns4:AttributeValue xsi:type="ns4:AttributeValueType">2</ns4:AttributeValue>
 </ns4:Attribute>
 </ns4:Environment>
</Request>

3. The XACML gateway asserts the token and converts it to the applicable identity.

4. Oracle Entitlements Server reaches an authorization decision regarding the
principal using any applicable policies and returns a XACML response to the PEP.

Example 6–29 is a sample XACML 2.0 authorization response. The SSM-SOAPWS_
xacml.wsdl file provides the operation interface definitions.

Example 6–29 XACML 2.0 Authorization Response

<Response xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os">
 <Result ResourceId="Library/LibraryResourceType/Book">
 <Decision>Permit</Decision>
 <Status>
 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>
 </Status>
 <ns1:Obligations xmlns:ns1="urn:oasis:names:tc:xacml:2.0:policy:schema:os">
 <ns1:Obligation ObligationId=
 "http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#Roles" FulfillOn="Permit">
 <ns1:AttributeAssignment
 DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#role">
 AuthenticatedUser</ns1:AttributeAssignment>
 </ns1:Obligation>
 <ns1:Obligation
 ObligationId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#
 ResponseAttributes" FulfillOn="Permit">
 <ns1:AttributeAssignment
 DataType="http://www.w3.org/2001/XMLSchema#dateTime"
 AttributeId="http://security.bea.com/ssmws/ssm-ws-1.0.wsdl#decisionTime">
 2010-11-02T12:50:43.685Z</ns1:AttributeAssignment>
 </ns1:Obligation>
 </ns1:Obligations>
 </Result>
 </Response>

7

Extending Functionality 7-1

7Extending Functionality

An extension class can be loaded by the Oracle Entitlements Server runtime
environment to enhance core functionality. Extensions are bundled as Java Archive
(JAR) files. This chapter contains the following sections on extensions that can be
created.

■ Section 7.1, "Working With Attribute Retrievers"

■ Section 7.2, "Developing Custom Functions"

7.1 Working With Attribute Retrievers
The Policy Information Point (PIP) is a system entity that acts as a source for attribute
values. During runtime evaluation of a policy, Oracle Entitlements Server relies on an
Attribute Retriever plug-in to get attribute values from one or more PIP information
stores. These Attribute Retrievers allow policies to be data-driven in that the value of
the attribute can impact the access decision. For example, if access to transfer money
from a bank account is based on how much money is currently in the account, an
Attribute Retriever can be used to get a value for the current balance. This
infrastructure is highly extensible, allowing users to develop their own PIP plug-ins to
retrieve information from many places - for example, from a file, a USB driver, or the
internet.

The following sections have more information.

■ Section 7.1.1, "Understanding Attribute Retrievers"

■ Section 7.1.2, "Creating Custom Attribute Retrievers"

■ Section 7.1.3, "Implementing Custom Attribute Retrievers"

■ Section 7.1.4, "Configuring Oracle Entitlements Server for Custom Attribute
Retrievers"

7.1.1 Understanding Attribute Retrievers
Oracle Entitlements Server uses predefined Attribute Retrievers to connect to
Lightweight Directory Access Protocol (LDAP) data stores and relational database
management systems (RDBMS). Custom Attribute Retrievers can be developed to get
attribute values from other types of PIP data stores. A custom Attribute Retrievers can
return values for one or many attributes.

Note: See Oracle Fusion Middleware Administrator's Guide for Oracle
Entitlements Server for a detailed explanation of the PIP.

Working With Attribute Retrievers

7-2 Developer's Guide for Oracle Entitlements Server

Configuration information for Attribute Retrievers is defined in the jps-config.xml
configuration file. Configuration of the Attribute Retriever within this file is
dependent on whether it is predefined or custom.

■ For predefined Attribute Retrievers:

– Configure information needed to connect to the data store as well as credential
information.

– Configure individual attribute values including attribute name, name of
Attribute Retriever used, search query to retrieve the value (for example, SQL
query if the PIP is a relational database or LDAP query if it’s a directory), and
any attribute value caching information).

For detailed information on configuring predefined Attribute Retrievers, see the
Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

■ For custom Attribute Retrievers, configure information regarding the name of the
class implementing the Attribute Retriever.

A given Attribute Retriever can return a single value or multiple values attribute.

7.1.2 Creating Custom Attribute Retrievers
As described in Section 1.3.3, "Adding a Condition," a policy Condition is built using
attributes or functions. If a dynamic attribute is used in a Condition, the attribute
value can be passed in from the com.bea.security.AppContext interface or
retrieved with either a predefined or custom Attribute Retriever. The following
procedure documents the steps to create a custom Attribute Retriever.

1. Implement the custom Attribute Retriever using the
com.bea.security.providers.authorization.asi.AttributeRetriev
erV2 interface.

See Section 7.1.3, "Implementing Custom Attribute Retrievers" for more
information.

2. Create a JAR file.

3. Add the JAR file to the appropriate classpath.

■ If connecting to a Java Security Module, add the JAR file to the application
classpath.

■ If connecting to an RMI, Web Services or WebLogic Server Security Module,
add the JAR file to the system classpath with the rest of the Security Module
JAR files.

It does not matter where the JAR is physically stored.

4. Configure the Security Module to use the custom Attribute Retriever.

Make sure the configuration specifies the fully-qualified location of the custom
Attribute Retriever. See the Security Module configuration appendix in the Oracle
Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Note: See the Oracle Fusion Middleware Security Guide for more
information on the jps-config.xml configuration file. Parameters
specific to Oracle Entitlements Server are documented in the Oracle
Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Working With Attribute Retrievers

Extending Functionality 7-3

7.1.3 Implementing Custom Attribute Retrievers
A custom Attribute Retriever must implement the AttributeRetrieverV2
interface. Table 7–1 explains the methods available for this purpose.

In the simplest use case, an Attribute Retriever does not need additional information
to get the value. For example, to get the time of day, getAttributeValue() calls a
system function and returns the information. Another use case might find the
Attribute Retriever needs additional information before it can return an attribute
value. For example, the Attribute Retriever would have to know the user’s identifier in
order to get the location of the user. For this purpose, the Attribute Retriever is
provided a RequestHandle interface to get the values for other attributes. In this
example, the attribute retriever can use the RequestHandle interface to get the value
of the built-in SYS_USER attribute which resolves to the identity of the current user.

The following sections contain more information on the attribute retrieval options.

■ Section 7.1.3.1, "Getting Attribute Values Directly"

■ Section 7.1.3.2, "Getting Attribute Values Using a Handle"

7.1.3.1 Getting Attribute Values Directly
An implementation of AttributeRetrieverV2 can use the
getAttributeValue() method to return the value of a named attribute. This
method takes as input the name of the attribute whose value will be returned.
Example 7–1 illustrates how getAttributeValue() might be used.

Example 7–1 Implementing getAttributeValue() Method

package oracle.security.oes.test;

Table 7–1 Methods in AttributeRetrieverV2 Interface

Method Description

getAttributeValue() This method is called every time the value of a particular
attribute is required. It returns the value of the named attribute
and takes the following parameters:

■ Name defines the name of the attribute being retrieved.

■ RequestHandle is the interface that will retrieve values of
other attributes (if required). It also allows the sharing of
context – an arbitrary Object - between different attribute
retrievers or custom functions.

■ Subject defines the user associated with the request.

■ Roles defines any role membership of the subject, or null if
this is a role mapping call.

■ Resource defines the protected resource associated with the
request.

■ contextHandler is the context associated with the request;
this may be null if non-existent.

getHandledAttributeNa
mes()

This method is called once, usually during loading of the
attribute retriever. The method returns the list of attribute names
for which the attribute retriever can return values.

Note: Names of system attributes must be placed between
percentage (%) signs as in %sys_user%.

Working With Attribute Retrievers

7-4 Developer's Guide for Oracle Entitlements Server

import java.util.Map;

import javax.security.auth.Subject;

import weblogic.security.service.ContextHandler;
import weblogic.security.spi.Resource;

import com.bea.security.providers.authorization.asi.AttributeRetrieverV2;
import com.bea.security.providers.authorization.asi.ARME.evaluator.RequestHandle;

public class SimpleAttributeRetriever implements AttributeRetrieverV2 {

 public Object getAttributeValue(String name, RequestHandle requestHandle,
 Subject subject, Map roles, Resource resource,
 ContextHandler contextHandler) {
 if (name == null) return null;
 return "static_value";
 }

 public String[] getHandledAttributeNames() {
 return new String[] {"static_attr"};
 }

}

MyAttributeRetrieverV2 is the implementation of AttributeRetrieverV2.
The getHandledAttributeNames() method returns the names of attributes
handled by this implementation. It may return at least one attribute name; an empty or
null value indicates that the retriever will be called for any attribute. The values of the
getAttributeValue() parameters are defined as:

■ name is the name of the attribute being retrieved.

■ requestHandle is the implementation of the interface that allows you to retrieve
values of other attributes (if required). It also allows the sharing of context – an
arbitrary Object - between different attribute retrievers or custom functions. It is
passed to the function even if it is not used.

■ subject is the principal associated with the request.

■ roles defines the role membership of the associated principal. The object is a map
where the key signifies the role name and the value is the role object.

■ resource is the protected resource associated with the request.

■ contextHandler defines the context associated with the request. It may be null if
the context is non-existent.

7.1.3.2 Getting Attribute Values Using a Handle
In some cases, the Attribute Retriever might need to get an attribute for information
before retrieving the attribute value it wants. For example, in order to get the location
of a user, the attribute retriever would need the identifier of the user. By invoking the
getAttribute() method in the RequestHandle interface, the Attribute Retriever
is able to get the identifier and with it access to all of the user’s information. The
getAttribute() method returns the attribute name and value as a name-value pair
in an AttributeElement object.

Working With Attribute Retrievers

Extending Functionality 7-5

RequestHandle is the interface that allows you to retrieve values of other attributes
if required. It also allows to share context – arbitrary Object - between different
invocation of Attribute Retrievers and/or custom functions

Example 7–2 illustrates how getAttribute() might be used.

Example 7–2 Using getAttribute() Method

public Object getAttributeValue
 (String name, RequestHandle requestHandle, Subject subject,
 Map roles, Resource resource, ContextHandler contextHandler) {

... ...

// retrieve sys_user built-in attribute
 String user = null;
 try {
 AttributeElement element = requestHandle.getAttribute("sys_user", true);
 if (element != null) {
 user = (String)element.getValueAs(String.class);
 }
 } catch (Exception e) {
// ignore it
 }

... ...
}

The values of the getAttribute() parameters are defined as:

■ sys_user is the name of the attribute being retrieved.

■ true enables the attribute type check functionality. The value may be false to
disable the type check.

7.1.4 Configuring Oracle Entitlements Server for Custom Attribute Retrievers
This section contains the procedure on how to configure Oracle Entitlements Server to
recognize a custom attribute retriever. After implementing
com.bea.security.providers.authorization.asi.AttributeRetrieverV
2 (as discussed in Section 7.1.3, "Implementing Custom Attribute Retrievers"), compile
the Java code, add the compiled class to the class path of the Security Module instance,
and make the following changes to the jps-config.xml configuration file.

1. Declare the PIP service provider in the <serviceProviders> section as
illustrated in Example 7–3.

Example 7–3 serviceProviders Section of jps-config.xml

<serviceProviders>
 <serviceProvider
 class="oracle.security.jps.az.internal.runtime.provider.
 PIPServiceProvider" name="pip.service.provider" type="PIP"/>
</serviceProviders>

Note: The getAttribute() method is used to retrieve values for
user and resource attributes. It should not be used to get values for
dynamic or extension attributes.

Developing Custom Functions

7-6 Developer's Guide for Oracle Entitlements Server

2. Declare the PIP service instance in the <serviceInstances> section as
illustrated in Example 7–4.

Example 7–4 serviceProviders Section of jps-config.xml

<serviceInstances>
 <serviceInstance name="pip.service.MyAttributeRetriever"
 provider="pip.service.provider">
 <property name="type" value="CUSTOM_PIP"/>
 <property name="application" value="testPIPBasedOnCustomPIP"/>
 <property name="description" value="MyAttributeRetriever"/>
 <property name="classnames" value="pips.MyDummyAttributeRetriever"/>
 </serviceInstance>
</serviceInstances>

Specify the properties as defined in the following table.

3. Declare the PIP service instance in the <jpsContext> section as illustrated in
Example 7–5.

Example 7–5 jpsContext Section of jps-config.xml

<jpsContext name="default">
 <serviceInstanceRef ref="pip.service.MyAttributeRetriever"/>
</jpsContext>

7.2 Developing Custom Functions
A function can be used in a policy Condition to perform some advanced operation.
The function may have a number of parameters and can return any of the supported
data types. Oracle Entitlements Server provides a number of predefined functions and,
additionally, allows you to declare your own.

A custom function can be implemented as a method in a class that may contain one or
more custom functions. You can choose any method name as long as the name
matches the corresponding name referenced in the policy. Custom functions can be
passed as arguments consisting of constants or names of other attributes (including
dynamic attributes) or names of other functions. Since all evaluation functions share a
common namespace, two functions cannot have the same name. The following
sections have more information.

■ Section 7.2.1, "Implementing a Custom Function"

■ Section 7.2.2, "Using InspectableFunction For Metadata Information"

7.2.1 Implementing a Custom Function
The following procedure details the steps to take when implementing a custom
function in your policy.

Name Value

Type The value should be CUSTOM_PIP

Application The application in which the PIP instance takes effect

Classnames The fully qualified class name of the custom PIP

Developing Custom Functions

Extending Functionality 7-7

1. Write the custom code for the function. See Example 7–6 and Example 7–7 in this
section.

2. Compile the Java code.

3. Add the complied class to the class path of the Security Module.

Example 7–6 illustrates how you might create a custom function.

Example 7–6 Sample Code for a Custom Function

package com.bea.security.examples;

import java.util.Map;
import java.util.Properties;

import javax.security.auth.Subject;

import weblogic.security.service.ContextHandler;
import weblogic.security.spi.Resource;

import com.bea.security.providers.authorization.asi.ARME.evaluator.RequestHandle;
import com.wles.util.AttributeElement;

public class MyEvaluationFunction {

 /**named evaluation function. Additional authorization request data
 is made available to allow for more complex attribute evaluation.
 This method will be registered to ARME, and be invoked while the policy
 contains a custom evaluation function with name "string_longer_then".
 @param requestHandle the attributes container associated with the request,
 through which the function can get required attribute value.
 @param args an array of function arguments.
 Each element is either <code>null</code>, or a String
 @param subject the subject associated with the request
 @param roles the role membership of the subject
 key: role name.
 value: role object
 <code>null</code> if function is called during role mapping
 @param resource the resource associated with the request
 @param contextHandler the context associated with the request,
 may be <code>null</code> if non-existant
 @return <code>true</code> or <code>false</code> as the result of the function
 @throws MissingAttributeException for can not get required attribute value.
 */
 public boolean string_longer_then(RequestHandle requestHandle,
 Object[] args,
 Subject subject,
 Map roles,
 Resource resource,
 ContextHandler contextHandler) {
 // Check if we got a correct number of the input paramters
 if(args.length < 2 || args.length > 3 ||
 args[0] == null || args[1] == null) {
 // Incorrect number of arguments.
 // Such policy is invalid and can not be evaluated
 throw new RuntimeException
 ("Incorrect number of arguments in a function");
 }

 // Arguments for an evalaution function are attribute names.

Developing Custom Functions

7-8 Developer's Guide for Oracle Entitlements Server

 // Unfortunately, if a string literal or a numeric value is used
 // it is passed in as value. The only way to distinguish
 // values from names is to try to look up the attribute.

 // Evaluation function should not set any values.

 // Get the integer value of the first argument.
 // This example does not do any type error checking
 // - but your code should.
 int intCompLength = 0;
 try {
 AttributeElement strLength =
requestHandle.getAttribute((String)args[0], true);
 if(strLength != null) {
 if(strLength.isList()) {
 // string_longer_then: first argument not a single value
 return false;
 }
 intCompLength =
Integer.parseInt((String)strLength.getValueAs(String.class));
 } else {
 // numerical constant will be passed in as is.
 try {
 intCompLength = Integer.parseInt((String)args[0]);
 } catch(NumberFormatException ne) {
 //value format is error, and no attribute in requestHandle.
 throw new RuntimeException("miss attribute: " + args[0]);
 }
 }
 } catch(Exception e) {
 //caught exception while get attribute
 throw new RuntimeException(
 "failed while get attribute: " + (String)args[0] + ".
Exception: " + e.getMessage());
 }

 // Get the string value
 String input = null;
 try {
 AttributeElement strContent =
requestHandle.getAttribute((String)args[1], true);
 if(strContent != null) {
 if(strContent.isList()) {
 // string_longer_then: second argument is not a single value
 return false;
 }
 input = (String)strContent.getValueAs(String.class);
 } else {
 input = (String)args[1];
 }
 } catch(Exception e) {
 //caught exception while get attribute
 throw new RuntimeException(
 "failed while get attribute: " + (String)args[0] + ".
Exception: " + e.getMessage());
 }

 // return false, if the conditin is not satisfied
 if(input.length() <= intCompLength) {
 return false;

Developing Custom Functions

Extending Functionality 7-9

 }

 // Condition was satisfied. Create and attach the return attribute

 /* The method appendReturnData(String name, Object data) on RequestHandle
object
 does a copy of data.
 Return value will only be appended if the rule
 that called this function actually fired.
 (other elements in the condition may prevent that)
 */
 requestHandle.appendReturnData("cropped_string", input);
 return true;
 }

}

Example 7–7 illustrates how you might create a custom function that returns a
DataType argument.

Example 7–7 Sample Code for a Custom Function Returning DataType Argument

import oracle.security.jps.service.policystore.info.DataType;
import oracle.security.jps.service.policystore.info.OpssString;

 /**
 Another example of evaluation function.
 Additional authorization request data
 is made available to allow for more complex attribute evaluation.
 This method will be registered to ARME, and be invoked while the policy
 contains a custom evaluation function with name "string_longer_then".
 @param requestHandle the attributes container associated with the request,
 through which the function can get required attribute value.
 @param args an array of function arguments.
 Each element is either <code>null</code>, or a String
 @param subject the subject associated with the request
 @param roles the role membership of the subject
 key: role name.
 value: role object
 <code>null</code> if function is called during role mapping
 @param resource the resource associated with the request
 @param contextHandler the context associated with the request,
 may be <code>null</code> if non-existant
 @return <code>DataType</code> as the result of the function where
 DataType is any of the out-of-the-box supported data typs such as
 OpssDate/ OpssTime/ OpssString etc.
 @throws MissingAttributeException for can not get required attribute value.
 */
 public DataType string_to_upper_case(RequestHandle requestHandle,
 Object[] args,
 Subject subject,
 Map roles,
 Resource resource,
 ContextHandler contextHandler)
 throws MissingAttributeException {
 // Check if we got a correct number of the input paramters
 if((args.length != 1) || (args[0] == null)) {
 // Incorrect number of arguments.
 // Such policy is invalid and can not be evaluated
 throw new RuntimeException

Developing Custom Functions

7-10 Developer's Guide for Oracle Entitlements Server

 ("Incorrect number of arguments in a function");
 }

 // Arguments for an evalaution function are attribute names.
 // Unfortunately, if a string literal or a numeric value is used
 // it is passed in as value. The only way to distinguish
 // values from names is to try to look up the attribute.

 // Evaluation function should not set any values.

 // Get the integer value of the first argument.
 // This example does not do any type error checking
 // - but your code should.
 int intCompLength = 0;
 try {
 AttributeElement str = requestHandle.getAttribute((String)args[0],
true);
 String input = null;
 if(str != null) {
 if(str.isList()) {
 // string_to_upper_case: first argument not a single value
 return false;
 }
 input = (String)str.getValueAs(String.class);
 } else {
 // string constant will be passed in as is.
 input = (String)args[0];
 }
 } catch(Exception e) {
 //caught exception while get attribute
 throw new RuntimeException(
 "failed while get attribute: " + (String)args[0] + ".
Exception: " + e.getMessage());
 }

 String output = input.toUpperCase();

 return new OpssString(output);
 }

For more information, see Section 2.4.3.2, "Creating Custom Function Definitions" and
Section 2.4.5, "Defining a Condition."

7.2.2 Using InspectableFunction For Metadata Information
An argument metadata interface is used to query for information about the arguments
expected by a custom Oracle Entitlements Server function. (Ths includes information
such as the number of arguments and their names and types.) Optionally, the
InspectableFunction interface can be implemented for these argument queries.
When adding a custom function based on this interface, the Administration Console
calls the getArgMetadata method to return metadata describing the arguments, and
verify the metadata that is expected by the custom function.

For each argument expected by the function starting with the first (argument 0),
getArgMetadata must return metadata describing the argument. Once the
Administration Console collects the metadata about each expected argument, it uses
the interface methods getArgValue and isValidArgValue to automate the process
of working with custom Oracle Entitlements Server functions.

Developing Custom Functions

Extending Functionality 7-11

■ Example 7–8 illustrates sample code for the getArgMetadata(String
functionName) method.

■ Example 7–9 illustrates sample code for the getArgValues (String
functionName, int argNumber,
ArrayList<oracle.security.jps.service.policystore.info.DataTy
pe> prevArgValues) method.

■ Example 7–10 illustrates sample code for the isValidArgValue (String
functionName, int argNumber,
oracle.security.jps.service.policystore.info.DataType
argValue,
ArrayList<oracle.security.jps.service.policystore.info.DataTy
pe> prevArgValues) method.

Example 7–8 Sample Code for getArgMetadata() Method

public ArrayList<ArgMetadata> getArgMetadata (String functionName)
{
 if (functionName.compareToIgnoreCase(Constants.GET_STRING_IDC_FUNC_NAME) == 0 ||
 functionName.compareToIgnoreCase(Constants.GET_INTEGER_IDC_FUNC_NAME) == 0 ||
 functionName.compareToIgnoreCase(Constants.GET_BOOLEAN_IDC_FUNC_NAME) == 0)
 {
ArrayList<ArgMetadata> metadata = new ArrayList<ArgMetadata>();
metadata.add (new ArgMetadata (Constants.GET_IDC_FUNC_ARGS.CLAIM_NAME.ordinal(),
 "Attribute", OpssString.class, true, false, true));
return metadata;
} else {
 throw new RuntimeException ("Invalid function name " + functionName);
}
}

Example 7–9 Sample Code for getArgValues() Method

public ArrayList<oracle.security.jps.service.policystore.info.DataType>
 getArgValues (String functionName, int argNumber,
 ArrayList<oracle.security.jps.service.policystore.info.DataType> prevArgValues)

throws RuntimeException {

ArrayList<oracle.security.jps.service.policystore.info.DataType> values =
 new ArrayList<oracle.security.jps.service.policystore.info.DataType>();

if (functionName.compareToIgnoreCase(Constants.GET_STRING_IDC_FUNC_NAME) == 0 ||
functionName.compareToIgnoreCase(Constants.GET_INTEGER_IDC_FUNC_NAME) == 0 ||
functionName.compareToIgnoreCase(Constants.GET_BOOLEAN_IDC_FUNC_NAME) == 0)
{
 if (argNumber == Constants.GET_IDC_FUNC_ARGS.CLAIM_NAME.ordinal()) {

// return claims in the dictionary

Iterator<ClaimSchema> it = dictCtx.getDictionary().getClaimsForAllNamespaces();

while (it.hasNext()) {

if ((functionName.compareToIgnoreCase(Constants.GET_STRING_IDC_FUNC_NAME) ==
 0 && it.next().getType() == String.class) ||

(functionName.compareToIgnoreCase(Constants.GET_INTEGER_IDC_FUNC_NAME) ==

Developing Custom Functions

7-12 Developer's Guide for Oracle Entitlements Server

 0 && it.next().getType() == Integer.class) ||

(functionName.compareToIgnoreCase(Constants.GET_BOOLEAN_IDC_FUNC_NAME) ==
 0 && it.next().getType() == Boolean.class))

{
nameList.add (it.next().getUniqueName());

 }
 }
 Collections.sort(nameList);
 for (String name : nameList)
 values.add (new OpssString (name));

 } else {

 throw new RuntimeException ("Invalid argument number " + argNumber);

 }

 } else {

throw new RuntimeException ("Invalid function name " + functionName);
 }
 return values;
 }

Example 7–10 Sample Code For isValidArgValue() Method

public boolean isValidArgValue (String functionName, int argNumber,
oracle.security.jps.service.policystore.info.DataType argValue,
ArrayList<oracle.security.jps.service.policystore.info.DataType> prevArgValues)

throws RuntimeException {

if (functionName.compareToIgnoreCase(Constants.GET_STRING_IDC_FUNC_NAME) == 0 ||

functionName.compareToIgnoreCase(Constants.GET_INTEGER_IDC_FUNC_NAME) == 0 ||

functionName.compareToIgnoreCase(Constants.GET_BOOLEAN_IDC_FUNC_NAME) == 0) {

if (argNumber == Constants.GET_IDC_FUNC_ARGS.CLAIM_NAME.ordinal())
 {
// is it a valid claim?
try {
ClaimSchema schema = dictCtx.getDictionary().getClaimSchema(argValue.toString());
return ((functionName.compareToIgnoreCase(Constants.GET_STRING_IDC_FUNC_NAME)
 == 0 && schema.getType() == String.class) ||
 (functionName.compareToIgnoreCase(Constants.GET_INTEGER_IDC_FUNC_NAME)
 == 0 && schema.getType() == Integer.class) ||
 (functionName.compareToIgnoreCase(Constants.GET_BOOLEAN_IDC_FUNC_NAME)
 == 0 && schema.getType() == Boolean.class));

} catch (UnknownClaimException e) {
return false;
}
} else {
throw new RuntimeException ("Invalid argument number " + argNumber);

Developing Custom Functions

Extending Functionality 7-13

}
} else {
throw new RuntimeException ("Invalid function name " + functionName);
}

}

Developing Custom Functions

7-14 Developer's Guide for Oracle Entitlements Server

8

Using the JSP Standard Tag Library 8-1

8Using the JSP Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) consists of custom JavaServer Pages
(JSP) elements that encapsulate recurring tasks. Custom tags are reusable JSP
components that contain the objects to implement the tasks. They are distributed in a
tag library. Oracle Entitlements Server contains custom tags that will call the
authorization API. Developers can use these tags in JSP to build a security-based web
application. The sections in this chapter contain information on the custom Oracle
Entitlements Server JSP tags.

■ Section 8.1, "Using the Tag Library"

■ Section 8.2, "Defining the Functional Tags"

■ Section 8.3, "Defining the Assistant Tags"

8.1 Using the Tag Library
When using the JSTL, you must define the directives in your JSP as follows:

<%@ taglib uri="http://www.oracle.com/oes/utils/tags" prefix="oes" %>
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

Additionally, add the oestags.jar to the classpath. oestags.jar is located in the OES_
CLIENT_HOME/oessm/oestags/ directory in a Security Module installation or in the
OES_ADMIN_HOME/oes/oestags/ directory in an Oracle Entitlements Server
Administration Server installation.

8.2 Defining the Functional Tags
These functional JSP tags capture the authorization features on Oracle Entitlements
Server. The following sections contain information on these functional tags.

■ isAccessAllowed Tag

■ isAccessNotAllowed Tag

■ getUserRoles Tag

■ isUserInRole Tag

8.2.1 isAccessAllowed Tag
isAccessAllowed checks if the user is authorized to access a specific resource. If access
is allowed, display the body of the tag; if not, skip the body. This is a cooperative and a
conditional tag. It will return true or false, and a variable to the body of the JSP which
can be used to process obligations.

Defining the Functional Tags

8-2 Developer's Guide for Oracle Entitlements Server

Table 8–1 documents the isAccessAllowed tag definition.

Example 8–1 illustrates how isAccessAllowed may be used.

Example 8–1 isAccessAllowed Tag Example

<%-- Set global attributes --%>
 <oes:setSecurityContext appId="TagLibraryApp" resourceType="image"
 resourcePrefix="images/">
 <oes:attribute name="test_attr" value="good_job"/>
 </oes:setSecurityContext>

 <%!

Note: If you want to show JSP content by tag body, the then/else
tag must be used. JSP content cannot be written in the tag body
directly without using then/else.

Table 8–1 isAcessAllowed Tag Definition

Name Details

resource Description: The resource used when calling isAccessAllowed.

Mandatory

Return Type: not applicable

resourceType Description: The type of resource used when calling isAccessAllowed. If
not set, the global resource type set by setSecurityContext will be used.

Optional

Return Type: not applicable

action Description: The action used when calling isAccessAllowed. The default
action is view.

Optional

Return Type: not applicable

resultVar Description: The name of the scripting variable used to tell if access is
allowed.

Optional

Return Type: boolean

resultVarScope Description: The scope of the resultVar (page, request, session, or
application). The default scope is page.

Optional

Return Type: not applicable

obligationVar Description: The name of the variable used for returning obligations
from the isAccessAllowed call.

Optional

Return Type: A map of obligations; the key is the obligation name and
the value is a map of attributes with attribute names and values.

obligationVarScope Description: The scope of the variable containing obligations from
isAccessAllowed (page, request, session, or application). The default
scope is page.

Optional

Return Type: not applicable

Defining the Functional Tags

Using the JSP Standard Tag Library 8-3

 String resourceStr="private.jpg";
 String actionStr="read";
 String returnVar = "isAllowed";
 %>

<%-- Test for isAccessAllowed tag --%>
 <oes:isAccessAllowed resource="<%=resourceStr %>" action="<%=actionStr %>"
 resultVar="<%=returnVar %>" obligationVar="obligations">
 <oes:attribute name="test_attr_local" value="hard_work" />
 <oes:then>
 You have the permission to <%=actionStr %> the image <%=resourceStr %>.

 The obligations are:

 <c:forEach items="${obligations}" var="entry">
 <c:out value="${entry.key}" /> = <c:out
 value="${entry.value}" />

 </c:forEach>
 </oes:then>
 <oes:else>
 You have not the permission to <%=actionStr %> the image
 <%=resourceStr %>.

 </oes:else>
 </oes:isAccessAllowed>

<%-- another way to use tag isAccessAllowed --%>
 <oes:isAccessAllowed resource="<%=resourceStr %>" action="<%=actionStr %>"
 resultVar="<%=returnVar %>" obligationVar="obligations">
 <oes:attribute name="test_attr_local" value="hard_work" />
 </oes:isAccessAllowed>
 <c:choose>
 <c:when test="${isAllowed}">You have the permission to <%=actionStr %>
 the image <%=resourceStr %>.

 The obligations are:

 <c:forEach items="${obligations}" var="entry">
 <c:out value="${entry.key}" /> =
 <c:out value="${entry.value}" />

 </c:forEach>
 </c:when>
 <c:otherwise>
 You have not the permission to <%=actionStr %> the image
 <%=resourceStr %>.

 </c:otherwise>
 </c:choose>

8.2.2 isAccessNotAllowed Tag
isAccessNotAllowed checks if the user is not authorized to access a specific resource.
If access is not allowed, display the body of the tag; if it is, skip the body. This is a
cooperative and a conditional tag. It will return true or false, and a variable to the
body of the JSP that can be used later to process obligations.

Table 8–2 documents the isAccessNotAllowed tag definition.

Note: If you want to show JSP content by tag body, the then/else
tag must be used. JSP content cannot be written in the tag body
directly without using then/else.

Defining the Functional Tags

8-4 Developer's Guide for Oracle Entitlements Server

Example 8–2 illustrates how isAccessNotAllowed may be used.

Example 8–2 isAccessNotAllowed Tag Example

<%-- Test for isAccessNotAllowed tag --%>
 <oes:isAccessNotAllowed resource="<%=resourceStr %>"
 action="<%=actionStr %>" resultVar="isNotAllowed"
 obligationVar="obligations_not">
 <oes:then>
 You have not the permission to <%=actionStr %> the image <%=resourceStr %>.

 The obligations are:

 <c:forEach items="${obligations_not}" var="entry">
 <c:out value="${entry.key}" /> =
 <c:out value="${entry.value}" />

 </c:forEach>
 </oes:then>

Table 8–2 isAccessNotAllowed Tag Definition

Name Details

resource Description: The resource used when calling isAccessAllowed.

Mandatory

Return Type: not applicable

resourceType Description: The type of resource used when calling
isAccessAllowed. If not set, the global resource type set by
setSecurityContext will be used.

Optional

Return Type: not applicable

action Description: The action used when calling isAccessAllowed. The
default action is view.

Optional

Return Type: not applicable

resultVar Description: The name of the scripting variable used to tell if access
is allowed.

Optional

Return Type: boolean

resultVarScope Description: The scope of the resultVar (page, request, session, or
application). The default scope is page.

Optional

Return Type: not applicable

obligationVar Description: The name of the variable used for returning
obligations from the isAccessAllowed call.

Optional

Return Type: A map of obligations. The key is the obligation name
and the value is a map of attributes with attribute names and
values.

obligationVarScope Description: The scope of the variable containing obligations from
isAccessAllowed (page, request, session, or application). The
default scope is page.

Optional

Return Type: not applicable

Defining the Functional Tags

Using the JSP Standard Tag Library 8-5

 <oes:else>
 You have the permission to <%=actionStr %> the image <%=resourceStr %>.

 The obligations are:

 <c:forEach items="${obligations_not}" var="entry">
 <c:out value="${entry.key}" /> =
 <c:out value="${entry.value}" />

 </c:forEach>
 </oes:else>
</oes:isAccessNotAllowed>

<%-- another way to use tag isAccessNotAllowed --%>
<oes:isAccessNotAllowed resource="<%=resourceStr %>"
 action="<%=actionStr %>" resultVar="isNotAllowed"
 obligationVar="obligations_not" />
 <c:choose>
 <c:when test="${isNotAllowed}">You have not the permission to
 <%=actionStr %> the image <%=resourceStr %>.

 </c:when>
 <c:otherwise>
 You have the permission to <%=actionStr %> the image <%=resourceStr %>.

 The obligations are:

 <c:forEach items="${obligations}" var="entry">
 <c:out value="${entry.key}" /> =
 <c:out value="${entry.value}" />

 </c:forEach>
 </c:otherwise>
 </c:choose>

8.2.3 getUserRoles Tag
getUserRoles retrieves the roles assigned to the user for a particular resource and
action. This is a cooperative tag that returns a variable to the JSP that can be used later
for processing. Table 8–3 documents the getUserRoles tag definition.

Table 8–3 getUserRoles Tag Definition

Name Details

resource Description: The resource used when calling getUserRoles.

Mandatory

Return Type: not applicable

resourceType Description: The type of resource used when calling getUserRoles; If it is
not set, the global resource type set by setSecurityContext will be used.

Optional

Return Type: not applicable

action Description: The action used when calling getUserRoles. The default
action is view.

Optional

Return Type: not applicable

Defining the Functional Tags

8-6 Developer's Guide for Oracle Entitlements Server

Example 8–3 illustrates how getUserRoles may be used.

Example 8–3 getUserRoles Tag Example

<%-- Test for tag getUserRoles --%>
 <oes:setSecurityContext appId="TagLibraryApp" resourceType="jspfile"
 resourcePrefix="">
 <oes:attribute name="myroleattr" value="its_my_role"/>
 </oes:setSecurityContext>
 <oes:getUserRoles resource="protected/rolepolicy.jsp" action="write"
 resultVar="rolenames" />
 <c:out value="Role names are : " />
 <c:forEach items="${rolenames}" var="rolename">
 <c:out value="${rolename}" />

 </c:forEach>

8.2.4 isUserInRole Tag
isUserInRole checks if the user has been assigned to the specified role for a particular
resource and action. This is a cooperative and a conditional tag. It will return true (if
the current user has a specific role) or false, and a result variable to the body of the JSP
for later processing.

Table 8–4 documents the isUserInRole tag definition.

resultVar Description: The name of the variable to set that contains the list of user's
roles.

Mandatory

Return Type: A list of strings of role names.

resultVarScope Description: The scope of the resultVar (page, request, session, or
application). The default scope is page.

Optional

Return Type: not applicable

Note: If you want to show JSP content by tag body, the then/else
tag must be used. JSP content cannot be written in the tag body
directly without using then/else.

Table 8–4 isUserInRole Tag Definition

Name Details

role Description: The name of the role to check against the user.

Mandatory

Return Type: not applicable

resource Description: The name of the resource against which to check the user's
roles.

Mandatory

Return Type: not applicable

Table 8–3 (Cont.) getUserRoles Tag Definition

Name Details

Defining the Assistant Tags

Using the JSP Standard Tag Library 8-7

Example 8–4 illustrates how isUserInRole may be used.

Example 8–4 isUserInRole Tag Example

<%-- Test for tag isUserInRole --%>
 <oes:isUserInRole role="tagrole1" resource="protected/rolepolicy.jsp"
 action="write" resultVar="isUserInRole" resultVarScope="request">
 <oes:then>You are in the role "tagrole1".</oes:then>
 <oes:else>You are not in the role "tagrole1".</oes:else>
 </oes:isUserInRole>

 <%-- we can also use following scripts to test if the user is in the specific
 role --%>
 <c:choose>
 <c:when test="${isUserInRole}">
 <iframe src="protected/rolepolicy.jsp?isUserInRole=<c:out
 value='${isUserInRole}'/>" width="500" height="250" />
 </c:when>
 <c:otherwise>
 You are not in role "tagrole1", and can not see the content of
 protected/rolepolicy.jsp
 </c:otherwise>
 </c:choose

8.3 Defining the Assistant Tags
Assistant (also known as non-functional) tags are helper tags. The following sections
contain information on these assistant tags.

■ setSecurityContext Tag

■ attribute Tag

■ then/else Tags

resourceType Description: The type of resource against which to check the user's roles. If it
is not set, the global resource type set by setSecurityContext will be used.

Optional

Return Type: not applicable

action Description: The resource’s action against which the user's role will be
checked. The default value will be view.

Optional

Return Type: not applicable

resultVar Description: A variable used to hold the result from isUserInRole for later
use.

Optional

Return Type: boolean

resultVarScope Description: The scope of the resultVar (page, request, session, or
application). The default scope is page.

Optional

Return Type: not applicable

Table 8–4 (Cont.) isUserInRole Tag Definition

Name Details

Defining the Assistant Tags

8-8 Developer's Guide for Oracle Entitlements Server

8.3.1 setSecurityContext Tag
setSecurityContext is a cooperative tag that will set up data (including the
application ID, Resource Type and the prefix of the resource name for other tags) in
the specified page scope. The attributes that should be set globally in the application
context can be set in the body of this tag using the attribute tag (as described in
Section 8.3.2, "attribute Tag"). The attributes set by setSecurityContext will then be
put into the application context as its authorization call elements. Table 8–5 documents
the setSecurityContext tag definition.

Example 8–5 illustrates how setSecurityContext may be used.

Example 8–5 setSecurityContext Tag Example

<%-- Set global attributes --%>
 <oes:setSecurityContext appId="TagLibraryApp" resourceType="image"
 resourcePrefix="images/">
 <oes:attribute name="test_attr" value="good_job"/>
 </oes:setSecurityContext>

8.3.2 attribute Tag
attribute is a tag that can be used to pass extra variables into the Oracle Entitlements
Server application context by other Oracle Entitlements Server JSP tags. These
variables will be used to write constraints against Authorization Policies. Table 8–6
documents the attribute tag definition.

Table 8–5 setSecurityContext Tag Definition

Name Details

appId Description: The appId of the security context that will be used
to construct the runtime resource for all other tags on the page
that have a resource attribute.

Mandatory

Return Type: not applicable

resourceType Description: The global resource type which can be used by all
other authorization tags.

Optional

Return Type: not applicable

resourcePrefix Description: The prefix of the resource name. If most of the
resources on one JSP have the same prefix, this attribute can be
used to shorten the resource name for each authorization tag.
For example, if there are many images protected by the
Authorization Policy under /product/cat1/images/, the prefix
can set as /product/cat1/images/ and the resource name would
be the simple image name such as mobile.jpg.

Optional

Return Type: not applicable

Table 8–6 attribute Tag Definition

Name Details

name Description: The name of the attribute to set in the application context.

Mandatory

Return Type: not applicable

Defining the Assistant Tags

Using the JSP Standard Tag Library 8-9

Example 8–6 illustrates how attribute may be used.

Example 8–6 attribute Tag Example

<oes:attribute name="myroleattr" value="its_my_role"/>

8.3.3 then/else Tags
then/else is a tag used for displaying content for conditional tags (including
isAccessAllowed, isAccessNotAllowed and isUserInRole. If the result of the
conditional tags is true, the content in the tag then is displayed; otherwise the content
in the tag else is displayed. These tags are simple tags with no additional defintion.

value Description: The value of the attribute to set in the application context.

Mandatory

Return Type: not applicable

Table 8–6 (Cont.) attribute Tag Definition

Name Details

Defining the Assistant Tags

8-10 Developer's Guide for Oracle Entitlements Server

Index-1

Index

A
actions

adding, 2-11
policy, 1-4

adding fine grained components, 1-4
administration

delegating, 5-1
administration roles, 5-1

ApplicationPolicyAdmin, 5-3
assigning principals, 5-5
creating, 5-3, 5-4
default, 5-3
definition, 5-2
manage, 5-3
managing, 5-6
PolicyDomainAdmin, 5-3
system, 5-2
SystemAdmin, 5-3
view, 5-3

administrator
application policy, 5-2
policy domain, 5-2

AdminManager, 5-4
AdminResourceActionEntry, 5-4
adminRole, 5-4
AdminRoleEntry

managing, 5-6
advanced policy, 1-4
advanced policy elements, 2-16
application

see ApplicationPolicy, 2-7
Application object, 1-3
application policy

administrator, 5-2
creating, 2-7

application role object, 2-16
application roles

creating, 1-5
hierarchy, 2-17
managing, 3-5

ApplicationPolicy, 1-3
bind to Security Module, 4-4
creating, 2-7
managing, 3-3
scope level, 3-2

ApplicationPolicyAdmin administration role, 5-3
AppRoleEntry, 1-5, 2-16

managing, 3-5
AppRoleManager, 1-5
attribute retrievers, 7-1

and jps-config.xml, 7-1
custom, 7-2

attribute tag, 8-8
AttributeEntry, 1-6, 2-20

managing, 3-8
AttributeRetrieverV2 interface, 7-2

implementing, 7-3
attributes

as extensions, 2-19
authorization policy

and role mapping policy, 2-18, 3-6

B
BasicPolicyRuleEntry, 2-13
binding

Security Module, 4-4
SMEntry, 4-6

boolean
resourceActionOnly, 6-11

boolean expressions
constraint, 2-25

BooleanExpressionEntry, 2-23

C
cascadeDelete, 3-5
checkPermission()

calls, 6-21
comparison operators, 2-3
complex search, 2-2
constraint, 2-22

adding, 1-6
boolean expressions, 2-25
function expressions, 2-26

controlled distribution, 4-3
controlled pull distribution, 4-3
controlled push distribution, 4-3
create method

overview, 2-2
custom attribute retrievers, 7-2

Index-2

custom functions, 7-6

D
data types, 2-3
default administration roles, 5-3
delegated administration

overview, 5-1
scope, 5-2

delete method
overview, 2-2

deleteRolePolicy(), 3-7
distribution modes, 4-3

controlled, 4-3
non-controlled, 4-4

dynamic attribute, 2-20

E
entitlement, 1-6
Extension, 1-6
ExtensionManager, 1-6
extensions

attributes, 2-19
functions, 2-19
managing, 3-8

F
fine grained elements, 2-16
fine grained policy, 1-4
function expressions

constraint, 2-26
FunctionEntry, 1-6, 2-21

managing, 3-8
functions

as extensions, 2-19

G
gateway

XACML, 6-22
getGrantedAdminResources, 5-5
getRolePolicy(), 3-7
getSecurityContext tag, 8-8
getUserRoles tag, 8-5
grantAdminRole, 5-5
granularity

delegated administration, 5-2

H
hierarchical resources, 2-9, 2-11
hierarchy

application roles, 2-17

I
InspectableFunction, 7-6, 7-10
isAccessAllowed tag, 8-1
isAccessNotAllowed tag, 8-3

isUserInRole tag, 8-6

J
Java API

create method, 2-2
delete method, 2-2
manager interfaces, 2-2
modify method, 2-2
policy objects, 2-1
search query, 2-2

jps-config.xml, 2-7
and attribute retrievers, 7-1

JSP tags
see tags, 8-1

M
manage privileges, 5-3
management

scoping, 3-1
manager interfaces, 2-2
managing

SMEntry, 4-5
modify method

overview, 2-2
modifyRolePolicy(), 3-7

N
non-controlled distribution, 4-4

O
object

PermissionSetEntry, 1-6
objects

AdminResourceActionEntry, 5-4
adminRole

creating, 5-4
AdminRoleEntry, 5-6
ApplicationPolicy, 1-3, 2-7

managing, 3-3
AppRoleEntry, 1-5, 2-16

managing, 3-5
AttributeEntry, 1-6, 2-20

managing, 3-8
FunctionEntry, 1-6, 2-21

managing, 3-8
managing

PolicyStore, 3-3
ObligationEntry, 1-6, 2-27
PermissionSetEntry, 2-21

managing, 3-10
PolicyDomainEntry, 1-3

creating, 5-6
managing, 3-4, 3-12

PolicyEntry, 1-4, 2-15
managing, 3-11

PolicyRuleEntry, 2-13
PolicyStore, 1-2, 2-6, 3-1

Index-3

PrincipalEntry, 2-13
ResourceActionsEntry, 1-4, 2-11
ResourceEntry, 1-3, 2-9

managing, 3-9
ResourceTypeEntry, 1-3, 2-8

managing, 3-5
RolePolicyEntry, 3-7
RuleExpressionEntry, 2-22
SMEntry, 4-4

binding, 4-6
managing, 4-5

obligation
building, 1-6

obligation object, 2-27
ObligationEntry, 1-6, 2-27
obligations, 2-27

P
PEP API

calls, 6-1
Permission Set

managing, 3-10
permission set

populating, 1-6
Permission Set object, 2-21
PermissionSetEntry, 1-6, 2-21

managing, 3-10
PIP

and attribute retrievers, 7-1
policy

actions, 1-4
adding advanced elements, 2-16
adding fine grained elements, 1-4
and roles, 1-7
building, 1-4
components, 1-1
composing simple, 1-2
consolidating, 2-15
constraint, 1-6
executing simple, 2-6
managing, 3-11, 3-12
obligation, 1-6

policy distribution
initiating, 4-7
overview, 4-1

policy domain
administrator, 5-2
creating, 5-6
default, 1-3
managing, 3-4

policy objects
and API, 2-1

policy rule, 2-13
policy simple components, 1-2
policy store, 1-2

accessing, 2-6
defining, 3-1

PolicyDomainAdmin administration role, 5-3
PolicyDomainEntry, 1-3

creating, 5-6
managing, 3-4, 3-12
scope levels, 3-2

PolicyEntry, 1-4
consolidating, 2-15
managing, 3-11

PolicyManager, 3-11
PolicyRuleEntry, 1-4, 2-13
PolicyStore, 1-2

accessing, 2-6
defining, 3-1
managing objects, 3-3

principal, 2-13
PrincipalEntry, 1-4, 2-13
principals

assigning, 5-5
retrieving resources, 5-5

privileges
assigning, 5-4
manage, 5-3
view, 5-3

pull (policy distribution), 4-3
push (policy distribution), 4-3

R
RBAC

and delegating administration, 5-1
resource

instantiating, 2-9
managing, 3-9

resource attribute, 2-20
resource attributes, 2-8
resource object, 1-3
resource type

creating, 2-8
managing, 3-5

resource type object, 1-3
resourceActionOnly, 6-11
ResourceActionsEntry, 1-4

creating, 2-11
ResourceEntry, 1-3, 1-4

hierarchical, 2-9, 2-11
instantiating, 2-9
managing, 3-9

ResourceManager, 1-3
ResourceTypeEntry, 1-3

creating, 2-8
hierarchical, 2-9, 2-11
managing, 3-5

ResourceTypeManager, 1-3
role catalog, 2-16, 3-6
role category, 3-6
role mapping policy, 2-16, 3-6

and authorization policy, 2-18, 3-6
managing, 3-7
overview, 1-5

roles
implementing policy, 1-7

RuleExpressionEntry, 2-22

Index-4

S
scope

delegated administration, 5-2
scope levels, 3-1

ApplicationPolicy, 3-2
PolicyDomainEntry, 3-2

search query
overview, 2-2
simple and complex, 2-2

Security Module
bind to ApplicationPolicy, 4-4

simple policy, 1-2, 2-6
simple search, 2-2
SMEntry

binding, 4-6
managing, 4-5

system administrator, 5-2
SystemAdmin administration role, 5-3

T
tags, 8-1

attribute, 8-8
getSecurityContext, 8-8
getUserRoles, 8-5
isAccessAllowed, 8-1
isAccessNotAllowed, 8-3
isUserInRole, 8-6
then/else, 8-9

then/else tag, 8-9

U
use cases

attribute retrievers, 7-1

V
view privileges, 5-3

X
XACML gateway, 6-22

	Contents
	1 Using the Policy Model
	2 Constructing A Policy Programmatically
	3 Managing Policy Objects Programmatically
	4 Distributing Policies
	5 Delegating Policy Administration
	6 Handling Authorization Calls and Decisions
	7 Extending Functionality
	8 Using the JSP Standard Tag Library
	List of Tables
	Preface
	1 Using the Policy Model
	1.1 Examining Policy Elements
	1.2 Composing A Simple Policy
	1.3 Adding Fine Grained Objects to a Simple Policy
	1.3.1 Creating an Application Role
	1.3.2 Defining A Role Mapping Policy
	1.3.3 Adding a Condition
	1.3.4 Populating a Permission Set
	1.3.5 Building an Obligation

	1.4 Using Roles to Implement Policy

	2 Constructing A Policy Programmatically
	2.1 Using the Java API
	2.1.1 Creating a Policy Object
	2.1.2 Modifying a Policy Object
	2.1.3 Deleting a Policy Object
	2.1.4 Searching for Policy Objects

	2.2 Using the Data Types
	2.3 Executing A Simple Policy
	2.3.1 Accessing the Policy Store
	2.3.2 Creating an Application Policy
	2.3.3 Defining Resource Types
	2.3.4 Instantiating a Resource
	2.3.5 Associating Actions with the Resource
	2.3.5.1 Using a ResourceEntry
	2.3.5.2 Using a ResourceNameExpression

	2.3.6 Specifying a Policy Rule
	2.3.7 Specifying the Principal
	2.3.8 Defining the Policy

	2.4 Creating Fine Grained Elements for a Simple Policy
	2.4.1 Creating Application Roles
	2.4.2 Creating Role Mapping Policies
	2.4.3 Creating Attribute and Function Definitions
	2.4.3.1 Creating Attribute Definitions
	2.4.3.2 Creating Custom Function Definitions

	2.4.4 Defining Permission Sets
	2.4.5 Defining a Condition
	2.4.5.1 Constructing a Boolean Expression
	2.4.5.2 Constructing a Custom Function Expression

	2.4.6 Adding Obligations

	2.5 Accessing Code Examples

	3 Managing Policy Objects Programmatically
	3.1 Managing Policies Using Oracle Entitlements Server
	3.2 Using Scope Levels to Manage Policy Objects
	3.2.1 Managing Objects Created at the PolicyStore Scope
	3.2.2 Managing Objects Within the ApplicationPolicy Scope
	3.2.2.1 Managing PolicyDomainEntry Objects
	3.2.2.2 Managing ResourceTypeEntry Objects
	3.2.2.3 Managing and Granting AppRoleEntry Objects
	3.2.2.4 Managing Role Mapping Policy (RolePolicyEntry) Objects
	3.2.2.5 Managing AttributeEntry and FunctionEntry Objects
	3.2.2.6 Managing ResourceEntry Objects
	3.2.2.7 Managing Permission Sets
	3.2.2.8 Managing the Policy

	3.2.3 Managing Objects within the PolicyDomainEntry Scope

	4 Distributing Policies
	4.1 Understanding Policy Distribution
	4.1.1 Using a Centralized Policy Distribution Component
	4.1.2 Using a Local Policy Distribution Component

	4.2 Defining Distribution Modes
	4.2.1 Controlled Distribution
	4.2.2 Non-Controlled Distribution

	4.3 Creating Security Module Configurations and Bindings
	4.3.1 Managing Security Module Configurations
	4.3.2 Managing Security Module Bindings

	4.4 Initiating Policy Distribution

	5 Delegating Policy Administration
	5.1 Delegating Administration
	5.2 Managing Scope and Delegating Granularity
	5.3 Assigning Permissions
	5.4 Using the Default Administration Roles
	5.5 Creating Administration Roles
	5.5.1 Creating An Administration Role
	5.5.2 Assigning Actions and Resources (Permissions) to an Administration Role
	5.5.3 Assigning Principals to an Administration Role
	5.5.4 Retrieving a Principal’s Administration Resources

	5.6 Managing Administration Roles
	5.7 Delegating with a Policy Domain

	6 Handling Authorization Calls and Decisions
	6.1 Using the PEP API
	6.1.1 Understanding the PEP API
	6.1.1.1 Working with the PEP API
	6.1.1.2 Using the Different PEP API Requests
	6.1.1.3 Specifying the PEP API Subject
	6.1.1.4 Formatting Authorization Request Strings
	6.1.1.5 Retrieving Authentication Information Using a Query

	6.1.2 Using the PEP API for Java
	6.1.2.1 Getting a Java PEP API Subject
	6.1.2.2 Making Simple Java PEP API Authorization Requests
	6.1.2.3 Processing Java PEP API Obligations
	6.1.2.4 Making Java PEP API Bulk Authorization Requests
	6.1.2.5 Making Java PEP API Query Requests
	6.1.2.6 Configuring the Java PEP API

	6.1.3 Using the PEP API for .NET
	6.1.3.1 Getting a .NET PEP API Subject
	6.1.3.2 Making Simple .NET PEP API Authorization Requests
	6.1.3.3 Processing .NET PEP API Obligations
	6.1.3.4 Making .NET PEP API Bulk Authorization Requests
	6.1.3.5 Making .NET PEP API Query Requests
	6.1.3.6 Configuring the .NET PEP API

	6.2 Making checkPermission() Calls
	6.3 Using the XACML Gateway

	7 Extending Functionality
	7.1 Working With Attribute Retrievers
	7.1.1 Understanding Attribute Retrievers
	7.1.2 Creating Custom Attribute Retrievers
	7.1.3 Implementing Custom Attribute Retrievers
	7.1.3.1 Getting Attribute Values Directly
	7.1.3.2 Getting Attribute Values Using a Handle

	7.1.4 Configuring Oracle Entitlements Server for Custom Attribute Retrievers

	7.2 Developing Custom Functions
	7.2.1 Implementing a Custom Function
	7.2.2 Using InspectableFunction For Metadata Information

	8 Using the JSP Standard Tag Library
	8.1 Using the Tag Library
	8.2 Defining the Functional Tags
	8.2.1 isAccessAllowed Tag
	8.2.2 isAccessNotAllowed Tag
	8.2.3 getUserRoles Tag
	8.2.4 isUserInRole Tag

	8.3 Defining the Assistant Tags
	8.3.1 setSecurityContext Tag
	8.3.2 attribute Tag
	8.3.3 then/else Tags

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

