

Oracle® Communications Converged Application
Server
Developer’s Guide

Release 5.1

E27707-01

December 2012

Oracle Communications Converged Application Server Developer's Guide, Release 5.1

E27707-01

Copyright © 2005, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Related Documents ... xi
Documentation Accessibility ... xi

Part I Introduction to Developing Applications for Converged Application
Server

1 About Developing Applications for the Converged Application Server

About Converged Application Server APIs .. 1-1
About this Book .. 1-2

Part II Developing Applications with the Service Creation Environment

2 Getting Started

About the Service Creation Environment ... 2-1
SCE Workflow Overview.. 2-2

About Converged Application Projects ... 2-2
Converged Application Project Configuration.. 2-3
Converged SIP Diameter Project Configuration ... 2-3

Before Starting .. 2-4
Enabling Converged Application Server Debug Option ... 2-4
Installing the Converged Application Service Creation Environment ... 2-5
Creating a Converged Application Project.. 2-6
Adding Converged Application Project Facets to an Existing Project... 2-7
Creating an Ant Build File.. 2-8
Deploying SIP Applications from Eclipse .. 2-9

3 Creating Applications with the Converged Application SCE Wizards

About SCE Wizards ... 3-1
About SIP Servlet Templates .. 3-1

Using the SIP Servlet Wizard... 3-2
Creating a SIP Servlet .. 3-2
Creating a SIP Servlet Based on a Template... 3-3

iv

Using the SIP Listener Wizard... 3-5
Using the SFT Communication Bean Wizard ... 3-6

4 Using Simulators and Other Testing Tools

About the SCE Tools.. 4-1
Using the XDMS Simulator.. 4-2

Deploying and Starting the XDMS Simulator.. 4-3
Using the XCAP Interface to Populate and Query the XDMS... 4-3

Configuring the Media Server Driver .. 4-4
Configuring the Diameter Simulator Settings ... 4-5
Extending Domains with Diameter Capabilities... 4-5
Using the SIPp Plug-in .. 4-8

Part III Developing SIP Applications

5 Overview of SIP Servlet Application Development

About the SIP Protocol .. 5-1
SIP Requests .. 5-1
SIP Responses ... 5-2

What are SIP Servlets?... 5-2
Differences Between HTTP Servlets and SIP Servlets ... 5-3
Differences from HTTP Servlets ... 5-4

Multiple Responses.. 5-4
Receiving Responses.. 5-5
Proxy Functions.. 5-6
Message Body ... 5-6

Servlet Request .. 5-7
Servlet Response ... 5-7
SipServletMessage .. 5-7

Role of a Servlet Container ... 5-8
Application Management .. 5-8
SIP Messaging.. 5-9
Utility Functions... 5-11

SIP Session, Application Session .. 5-12
SIP Factory ... 5-12
Proxy... 5-12

6 Porting Existing Applications to Oracle Communications Converged
Application Server

Application Router and Legacy Application Composition.. 6-1
SipSession and SipApplicationSession Not Serializable .. 6-1
SipServletResponse.setCharacterEncoding() API Change .. 6-2
Transactional Restrictions for SipServletRequest and SipServletResponse 6-2
Immutable Parameters for New Parameterable Interface .. 6-2
Stateless Transaction Proxies Deprecated ... 6-3
Backward-Compatibility Mode for v1.0 Deployments... 6-3

v

Validation Warnings for v1.0 Servlet Deployments ... 6-3
Modifying Committed Messages... 6-3
Path Header as System Header.. 6-3
SipServletResponse.createPrack() Exception ... 6-4
Proxy.proxyTo() Exceptions ... 6-4
Changes to Proxy Branch Timers... 6-4

Deprecated APIs ... 6-4
SNMP MIB Changes.. 6-5
Renamed Diagnostic Monitors and Actions ... 6-5

7 Requirements and Best Practices for SIP Applications

Overview of Developing Distributed Applications for Converged Application Server........... 7-1
Applications Must Not Create Threads ... 7-2
Servlets Must Be Non-Blocking .. 7-2
Store all Application Data in the Session.. 7-2
All Session Data Must Be Serializable .. 7-3
Use setAttribute() to Modify Session Data in “No-Call” Scope ... 7-3
send() Calls Are Buffered ... 7-4
Mark SIP Servlets as Distributable .. 7-5
Use SipApplicationSessionActivationListener Sparingly ... 7-5
Session Expiration Best Practices .. 7-5
Observe Best Practices for Java EE Applications ... 7-5
Optimizing Memory Utilization and Performance with Serialization ... 7-5

8 Using Compact and Long Header Formats for SIP Messages

Overview of Header Format APIs and Configuration .. 8-1
Summary of Compact Headers .. 8-1
Assigning Header Formats with WlssSipServletMessage ... 8-2
Summary of API and Configuration Behavior ... 8-2

9 Composing SIP Applications

Using the Application Router .. 9-1
Using the Default Application Router .. 9-2
Configuring a Custom Application Router.. 9-3
Using the Built-in Custom Application Router ... 9-4

Configuring the Custom Application Router ... 9-5
Working with SIP and HTTP Sessions .. 9-8

Modifying the SipApplicationSession.. 9-10
Synchronous Access .. 9-10
Asynchronous Access.. 9-11

Session Key-Based Request Targeting.. 9-11
Join and Replaces Header Support .. 9-12

About the Join Header.. 9-12
About the Replaces Header ... 9-12
Enabling Support for Join and Replaces Headers .. 9-13

API to Set Transport Parameter on Record-Route Header .. 9-13

vi

Setting Content in SIP Responses.. 9-13

10 Developing Converged Applications

Overview of Converged Applications... 10-1
Assembling and Packaging a Converged Application .. 10-1
Converged Application Samples.. 10-2

11 Developing Custom Profile Service Providers

Overview of the Profile Service API ... 11-1
Implementing Profile Service API Methods.. 11-2
Configuring and Packaging Profile Providers .. 11-3

Mapping Profile Requests to Profile Providers .. 11-4
Configuring Profile Providers Using the Administration Console .. 11-4

12 Using Content Indirection in SIP Servlets

Overview of Content Indirection ... 12-1
Using the Content Indirection API .. 12-1
Additional Information.. 12-1

13 Securing SIP Servlet Resources

Overview of SIP Servlet Security... 13-1
Triggering SIP Response Codes ... 13-2
Specifying the Security Realm ... 13-2
Converged Application Server Role Mapping Features.. 13-2
Using Implicit Role Assignment .. 13-3
Assigning Roles Using security-role-assignment ... 13-3

Important Requirements .. 13-3
Assigning Roles at Deployment Time.. 13-5
Dynamically Assigning Roles Using the Administration Console.. 13-5

Assigning run-as Roles .. 13-6
Role Assignment Precedence for SIP Servlet Roles ... 13-6
Debugging Security Features.. 13-7
weblogic.xml Deployment Descriptor Reference ... 13-7

14 Enabling Message Logging

Overview ... 14-1
Enabling Message Logging ... 14-1

Specifying a Predefined Logging Level ... 14-2
Customizing Log Records.. 14-2

Specifying Content Types for Unencrypted Logging .. 14-3
Example Message Log Configuration and Output ... 14-4
Configuring Log File Rotation.. 14-5

15 Generating SNMP Traps from Application Code

Overview ... 15-1

vii

Requirement for Accessing SipServletSnmpTrapRuntimeMBean... 15-2
Obtaining a Reference to SipServletSnmpTrapRuntimeMBean .. 15-2
Generating an SNMP Trap .. 15-3

16 Using the Location Service RESTful Interface

About the Location Service RESTful Interface ... 16-1
About REST .. 16-1
About JSON Body Parameters .. 16-1
About the Context Root.. 16-2
Using Authentication and Authorization... 16-2
 RESTful APIs for the Location Service .. 16-3

Store Registrations for Address-of-Record.. 16-4
Lookup an Address-of-Record.. 16-6
Clear All Address of Record Bindings ... 16-8

Part IV Developing Applications With the Service Foundation Toolkit

17 Introduction to the Service Foundation Toolkit

The Service Foundation Toolkit Programming Model.. 17-1
About the Communication Interface ... 17-1
About Communication Beans ... 17-3
About Participants... 17-4
About SIP Messages and SFT ... 17-5
About Communication Context Types ... 17-6
About Agents ... 17-7
About Media Control.. 17-7
Searching Communications .. 17-7
Packaging and Deploying SFT Applications... 17-8
SFT Annotations .. 17-8

Using the @CommunicationBean Annotation .. 17-8
About Event Handling ... 17-9

Understanding Event Flow.. 17-9
Event Walkthrough... 17-11
Using the @CommunicationEvent Annotation .. 17-11
About Communication and Participant Events.. 17-12

CommunicationEvent Enumeration Types.. 17-13
Using the @ParticipantEvent Annotation.. 17-14

ParticipantEvent Enumeration Types... 17-14
SFT Sample Application .. 17-15

18 Packaging and Deploying SFT Applications

Structure of a SFT Application ... 18-1
Packaging SFT Applications.. 18-1
Integrating SFT with SIP Servlets ... 18-1
SFT.XML Deployment Descriptor .. 18-2

viii

19 SFT Deployment Descriptor and Schema Reference

Application-Based Deployment ... 19-1
XML Schema Definitions and Namespace Declarations... 19-1
Annotation-based Configuration ... 19-1

Using the @ServiceAttributes Annotation... 19-1
About the sft.xml Deployment Descriptor Elements ... 19-2

About the communication-bean Element.. 19-2
The service-attributes Element.. 19-4
Annotation Scanning .. 19-7
Overriding Annotations with the SFT.XML Deployment Descriptor 19-7

SFT.XML Schema .. 19-9

20 Event Orchestration in the Service Foundation Toolkit

About Event Orchestration.. 20-1
Using Annotations to Define the Invocation Order ... 20-1
Using XML to Define the Invocation Order .. 20-2
Filtering and Overriding Communication Beans ... 20-3

Filtering Communication Beans ... 20-3
Filtering Specific Communication Bean Annotations.. 20-4
Overriding CommunicationBean Annotations... 20-4

21 Implementing Call Control Services

About Converged Application Framework and VoLTE .. 21-1
Call Forwarding ... 21-1

Accessing Call Forwarding History ... 21-2
Discovering Call Reject Reasons ... 21-4
Call Forwarding Example .. 21-5

Call Barring... 21-6
Communication Hold ... 21-8

Setting the Communication Hold Bandwidth .. 21-9
Identity Presentation and Restriction ... 21-10

Identity Presentation and Restriction Interfaces .. 21-11
Privacy Service Behavior.. 21-12
Enabling User-Level Privacy ... 21-13
Providing Privacy for the History-Info Header.. 21-14

Communication Waiting.. 21-14
Supporting Network- and Terminal-based Communication Waiting.................................. 21-14

About Network-based Communication Waiting.. 21-14
About Terminal-based Communication Waiting.. 21-15

About the Communication Waiting Interfaces... 21-15
Creating a Communication Waiting Application .. 21-15
CallWaitingBean Example Code... 21-17

Message Waiting Indication.. 21-18
Configuring Message Waiting Indication ... 21-19
About the Message Waiting Indication Interfaces ... 21-19
Creating a Message Waiting Indication Application... 21-20

ix

Sending MWI Notifications to Subscribers .. 21-22
Removing a Subscription.. 21-23

Message Waiting Indication Example.. 21-23

22 Using Announcements

About Announcements .. 22-1
APIs for Announcement Support... 22-1

MediaPartner ... 22-3
CommunicationEvent Enumeration Types... 22-3
ParticipantEvent Enumeration Types .. 22-4

About the MediaPartner and UserPartner Interfaces... 22-4
Callout Announcement .. 22-5
Call Barring Announcement ... 22-6

Call Barring Announcement Using Error-Info ... 22-6
Call Barring Announcement Using Early Media ... 22-7
Playing a Call Barring Announcement With Established Sessions ... 22-8

Playing a Colorful Ring Tone ... 22-10
Playing Colorful Ring Back Tone .. 22-10

Colorful Ring Back Tone by Alert-Info .. 22-11
Colorful Ring Back Tone Without Early Media Exchange.. 22-11
CRBT After Early Media Exchange .. 22-12

Playing a Call Rejection Announcement.. 22-13
Call Rejection Using Error-Info... 22-13
Call Rejection Announcements Using Early Media... 22-13

Call Forwarding Announcements .. 22-14
Un-Conditional Call Forwarding Announcement ... 22-14
Conditional Call Forwarding .. 22-15

Call Waiting Announcement .. 22-17
Call Waiting Announcement Using ALERT-INFO.. 22-17
Call Waiting Announcement Using Early Media... 22-17

Pickup Announcement... 22-18

23 Conferencing With Media Control

Conferencing with Media Control... 23-1
About the Conferencing and Media Control Interfaces .. 23-1
Creating a Conference With the Focus Interface ... 23-2
Creating Conferences Using Resource-Contained Lists.. 23-3

Ad-Hoc Conferencing... 23-8
Configuring the Conference Event Package ... 23-8
Handling Subscription and Notification Events .. 23-9

Handling Conference Subscription Events .. 23-9
Handling Conference Notification Events ... 23-10

24 Using the XCAP Interfaces

About XCAP and VoLTE ... 24-2
Creating and Accessing an XCAP Client .. 24-2

x

Fetching, Creating, and Deleting Resources With XCAP ... 24-3
Fetching Documents from the XDMS .. 24-3
Creating or Replacing Documents in the XDMS.. 24-4
Deleting a Document from the XDMS ... 24-5

Using XCAP for IR.92 Supplementary Services .. 24-5
XCAP Supplementary Service APIs ... 24-6
Creating Supplementary Service Rules ... 24-7

Adding and Editing Elements... 24-8
Validating Data ... 24-9
XCAP Authentication and Authorization... 24-10

Using Digest Authentication ... 24-10
Using Transport Layer Security .. 24-11
Using X-3GPP-Asserted-Identity Header Authentication .. 24-11

25 Creating Instant Messaging and Rich Media Services

About Rich Communication Services ... 25-1
Discovering Device Capability... 25-1

About the Capability Discovery Interfaces ... 25-2
Using the Capability Discovery Interfaces .. 25-3

Using In-dialog, SIP Options-based Capability Discovery .. 25-5
Using End User Confirmation Request .. 25-6

About the EUCR Interfaces.. 25-7
Using EUCR in Response to a File Transfer .. 25-8

Conferencing Using MSRP ... 25-9
Using Instant Message Disposition Notification.. 25-9

About the IMDN Interfaces ... 25-11
Creating an Instant Message with IMDN Request... 25-11
Creating an IMDN With CommunicationBean .. 25-12

xi

Preface

This document provides an overview of SIP Servlets and developing SIP applications
for Oracle Communications Converged Application Server.

Audience
This document is intended for developers who build SIP applications for use with
Converged Application Server.

Related Documents
For more information, see the following documents in the Oracle Communications
Converged Application Server Release 5.1 documentation set:

■ Converged Application Server Release Notes

■ Converged Application Server Installation Guide

■ Converged Application Server Concepts

■ Converged Application Security Guide

■ Converged Application Server Administrator’s Guide

■ Converged Application Server Diameter Application Development Guide

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xii

Part I
Part I Introduction to Developing Applications for

Converged Application Server

This part provides an overview of this guide, and describes the contents of each
chapter.

It contains the following chapter:

■ Chapter 1, "About Developing Applications for the Converged Application
Server"

1

About Developing Applications for the Converged Application Server 1-1

1About Developing Applications for the
Converged Application Server

This chapter introduces application development for the Oracle Communications
Converged Application Server.

About Converged Application Server APIs
Converged Application Server supports a set of different APIs:

■ SIP Servlet API

■ Service Foundation Toolkit API

■ Media server API

■ Diameter API

■ Converged Load Balancer API

Communications-oriented applications can also use the JEE APIs exposed by Oracle
WebLogic Server, and thus making them converged applications.

The SIP Servlet container exposes a JSR 289 compliant API for developing SIP
applications.

The Service Foundation Toolkit API adds higher level of abstraction over SIP Servlets
and provides abstracted programming model for creating Rich Communication
Services (RCS) including Voice over LTE (VoLTE), support for SIP OPTIONS, Presence,
Instant Messaging, MSRP, XDMS, and media servers.

The media server API is a JSR 389 compliant and provides an object model for
controlling media server resources and the topology of media streams independently
of the underlying media server control protocols. Media server specifics are handled
by a JSR 309 Driver, similar to how JDBC are abstracting away database specifics. This
allows an application to interact with different media servers regardless of vendor.

The Diameter API provides programmatic access to Diameter nodes. This books does
not cover this topic, see Oracle Communications Converged Application Server Diameter
Application Development Guide for further information.

The Converged Load Balancer API allows for creating data centric rules to customize
load distribution selection in the Converged Load Balancer. This books does not cover
this topic, see Oracle Communications Converged Application Server System Administrator’s
Guide for further information.

About this Book

1-2 Oracle Communications Converged Application Server Developer's Guide

About this Book
This book is structured into the following parts:

■ Part II, "Developing Applications with the Service Creation Environment"
describes the Service Creation Environment (SCE), an Eclipse based integrated
application development environment. It introduces the use of SCE for
developing, packaging, and deploying SIP applications that run in Converged
Application Server.

■ Part III, "Developing SIP Applications" provides the programming guide for
developing SIP based converged applications. It introduces the key elements of the
SIP Servlet API and describes considerations for developing SIP Servlets to be
deployed in Converged Application Server.

■ Part IV, "Developing Applications With the Service Foundation Toolkit"provides
the programming guide for developing applications using the Service Foundation
Toolkit (SFT).

Part II
Part II Developing Applications with the Service

Creation Environment

This part contains the following chapters:

■ Chapter 2, "Getting Started"

■ Chapter 3, "Creating Applications with the Converged Application SCE Wizards"

■ Chapter 4, "Using Simulators and Other Testing Tools"

2

Getting Started 2-1

2Getting Started

This chapter describes the Oracle Communications Converged Application Server
Service Creation Environment (SCE), an Eclipse-based development environment that
eases the task of developing SIP and converged applications.

About the Service Creation Environment
The SCE is a separately installed software component that supplements the Oracle
Enterprise Pack for Eclipse (OEPE). The Converged Application SCE works with
OEPE version 7.1 and later.

The OEPE supplements the underlying Eclipse software with features specifically
intended to facilitate application development for WebLogic. The features are available
for converged application development as well, and include:

■ Tools for editing deployment descriptors and deployment plans graphically.

■ Remote application deployment capabilities

■ Oracle WebLogic Server Extension Facets

For more information about OEPE, see the Oracle Enterprise Pack for Eclipse overview
page on Oracle Technology Network:

http://www.oracle.com/technetwork

In addition, the Converged Application SCE supplements the OEPE with features
specifically intended for converged application development. The features enable you
to:

■ Create SIP and converged applications using rapid development tools, such as
wizards and templates. SCE provides wizards for creating SIP listeners, SIP
servlets and other SIP components.

■ Use simulators to perform the functions of IMS components in your development
environment, such as an XML Document Management Server (XDMS), media
servers, and charging servers.

■ Use SIPp directly from the Eclipse development environment.

■ Reduce the time required to build, deploy, and debug your application due to the
integration between the SCE and the Converged Application Server runtime
environment.

The SCE supplements Eclipse using the mechanism of the Eclipse faceted project
framework. Each facet in Eclipse is made up of a bundled set of features in the form of
libraries, tools, and resources. The capabilities are typically targeted to a specific type

About Converged Application Projects

2-2 Oracle Communications Converged Application Server Developer's Guide

of application or for creating applications for a target domain, such as communication
services.

When you create a converged application project, the appropriate SCE facets are
included in the project. In addition, you can add the SCE facets to existing projects. See
"Converged Application Project Configuration" for more information about SCE
project facets.

SCE Workflow Overview
The high-level steps for getting started developing converged applications with the
SCE are:

1. Ensure that your system meets the requirements for installing and using the
Service Creation Environment.

See "Before Starting" for more information.

2. Install the Converged Application SCE software to OEPE.

See "Installing the Converged Application Service Creation Environment" for more
information.

3. Create a Converged Application Project, using the Converged Application Server
as the runtime target environment for the project.

See "Creating a Converged Application Project" for more information.

4. Use wizards and templates to create the initial source code for your converged
application classes.

See "Creating Applications with the Converged Application SCE Wizards" for
more information.

5. Deploy, test, and debug the application using the SCE simulators and other testing
tools.

See "Creating Applications with the Converged Application SCE Wizards" for
more information.

The followings sections provide more information on the steps specific for the SCE.
For more information on using OEPE for Eclipse, see the Eclipse documentation.

About Converged Application Projects
Eclipse organizes the resources and artifacts associated with a particular application
development effort into projects. There are various types of projects, each of which is
intended for a particular type of application.

To develop SIP and converged applications with the SCE, you use the project type
Converged Application Project. The Converged Application Project contains the
resources for developing applications for the Converged Application Server.

The Converged Application Project offers two types of configuration types. The
configuration types are the base Converged Application Project configuration and the
Converged SIP Diameter Project configuration, which are described in the following
sections.

About Converged Application Projects

Getting Started 2-3

Converged Application Project Configuration
A Converged Application Project is similar to a Dynamic Web Project, but it adds
components intended for SIP and converged application development, such as SIP and
SFT libraries, IMS simulators, and more.

The base Converged Application Project includes the following facets:

■ Dynamic Web Module

■ Java

■ JavaScript

■ Oracle Communication Converged Application Extensions, including:

– SIP Servlet

– SFT Communication Bean

■ Oracle WebLogic Web Application Extensions

In addition to standard JRE resources, the facets contain Converged Application Server
system library files, such as sft-communication-api.jar and sipservlet.jar, as well as
sft.xml, sip.xml, and web.xml deployment descriptor files.

The Converged Application Projects enables you to create SFT Communication Beans
and SIP Servlets along with standard HTTP Servlets, JPSs, static files, and EJB-based
classes.

Notice that an additional Converged Application Project facet, the Diameter extension
facet, is not enabled by default. To create Diameter applications with the SCE, either
use the Converged SIP Diameter Project type configuration with the Converged
Application Project, or enable the facet.

Converged SIP Diameter Project Configuration
You use the Converged SIP Diameter Project configuration for converged applications
that need to interact with Diameter nodes.

The Converged SIP Diameter Project incorporates these facets:

■ Dynamic Web Module

■ Java

■ JavaScript

■ Oracle Communication Converged Application Extensions, including:

– Diameter Extension

– SIP Servlet

■ Oracle WebLogic Web Application Extensions

The target domain server to which you deploy a Diameter-enabled application must
be capable of operating as a Diameter node. Therefore, before deploying a Diameter
application, you should ensure that the target domain has been extended for Diameter
operability. The SCE provides an interface for extending target domains with Diameter
capabilities. See "Extending Domains with Diameter Capabilities" for more
information.

Notice that the SFT Communication Bean facet is not enabled by default. To create SFT
applications, you need to enable the facet.

Before Starting

2-4 Oracle Communications Converged Application Server Developer's Guide

Before Starting
The SCE relies on external components that must be present before you can install or
use SCE.

Before you can start working with the SCE, confirm the following prerequisites:

■ A Converged Application Server installation with an administrative domain that
you can configure and restart as necessary.

See information on creating a domain in the Oracle Communications Converged
Application Server Installation Guide.

■ Oracle Enterprise Pack for Eclipse 11g R1 (11.1.1.7.1) or later.

To get OEPE, download the latest installer suitable for your operating system from the
Oracle Enterprise Pack for Eclipse download page on Oracle Technology Network:

http://www.oracle.com/technetwork/developer-tools/eclipse

Follow the instructions provided for downloading and installing the OEPE software.

Enabling Converged Application Server Debug Option
When developing and testing converged applications, you may find it useful to enable
debug options on the Converged Application Server.

Follow these steps to add debugging options to the startup script and to attach the
debugger from within Eclipse.

1. Use a text editor to open the StartWebLogic.cmd script for your development
domain.

2. Beneath the line that reads:

set JAVA_OPTIONS=
Enter the following line:
set DEBUG_OPTS=-Xdebug -Xrunjdwp:transport=dt_
socket,address=9000,server=y,suspend=n

3. In the last line of the file, add the %DEBUG_OPTS% variable in the place indicated
below:

"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS% %DEBUG_OPTS%
-Dweblogic.Name=%SERVER_NAME% -Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server

4. Save the file and use the script to restart Converged Application Server.

5. To attach the debugger from within Eclipse select Run, and then select the Open
debug dialog box.

6. Create a new Remote Java Application.

7. Enter the host and port corresponding to the DEBUG_OPTS.

Note: On Linux, debug is enabled by default if you install in
developer mode. However, the port is set to 8453.

Installing the Converged Application Service Creation Environment

Getting Started 2-5

Installing the Converged Application Service Creation Environment
The SCE software is distributed as a JAR file that is located in your Converged
Application Server installation directory.

The JAR file is named:

com.oracle.occas.sce.updatesite_5.1.0.jar

The JAR file is located in the following directory:

MW_HOME/occas_5.1/sce

Where MW_HOME is the Oracle Middleware home directory as defined during
installation.

You install the Converged Application SCE software to the OEPE using the Update
Manager feature in the Eclipse environment.

Before starting, make sure that you have installed the correct version of OEPE and that
you can access the JAR file from the computer on which you are using the OEPE. If
necessary, copy the JAR file from the Converged Application Server computer to the
computer on which you intend to install the SCE software.

The following steps describe how to use the update manager to install the SCE. As a
final step in the installation, you will need to restart the OEPE. You should start the
installation procedure only if it is convenient to restart Eclipse.

To install Converged Application Server SCE in OEPE:

1. From the main menu in the Eclipse window, click Help and then Install New
Software.

2. Click the Add button next to the Work with field.

3. In the Add Repository dialog, click Archive.

4. In the Repository archive dialog, navigate to the directory that contains the SCE
distribution archive. By default, the name and location of the file is:

OCCAS_HOME/sce/com.oracle.occas.sce.updatesite_5.1.0.jar

5. Select the file and click OK.

6. In the Add Repository dialog, click OK.

The available software list in the Available Software dialog refreshes, showing an
item for OCCAS Service Creation Environment.

7. Select OCCAS Service Creation Environment check box.

8. If the option is enabled, clear the Contact all update sites during install to find
required software check box.

9. Select OCCAS Service Creation Environment check box and click Next.

The Install Details page appears in the Install dialog. The page lists the OCCAS
Service Creation Environment as the item to install.

10. Make sure that the OCCAS Service Creation Environment appears as an item to be
installed in the Install Details screen and click Next.

The Review license page appears.

11. Review the license agreement and click I accept the terms of the license
agreement and then Finish to complete the installation. Alternatively, click Cancel
to terminate the installation.

Creating a Converged Application Project

2-6 Oracle Communications Converged Application Server Developer's Guide

If you accepted the license agreement, the Installing Software dialog appears.

12. If a security warning appears that indicates that the software contains unsigned
content, click OK to continue.

The Installing Software dialog shows the progress of the installation. When it is
finished, you are prompted to restart the Eclipse platform to complete the
installation.

13. Click Restart Now to have the installation changes take effect.

The SCE software is now installed in OEPE. Notice that the OCCAS menu appears on
the top menu bar of the Eclipse interface. You can now use the SCE to create
Converged Application Server projects or add Converged Application Server facets to
existing projects.

You can uninstall the SCE software at any time from the Install New Software dialog
by clicking the What is already installed? link. When the list of installed software
appears, select the OCCAS Service Creation Environment from the list and click the
Uninstall button. Follow the on-screen instructions to complete the software removal.

Creating a Converged Application Project
Eclipse organizes the resources of a particular application or set of applications into
projects. There are various types of projects, each associated with a particular type or
class of application.

To develop converged applications with the SCE, you can use the Converged
Application Project or the Converged SIP Diameter Project.

The Converged Application Project type is similar to the Dynamic Web Project, but
adds support for SIP and converged application development. Thus, for example, you
can use it to develop SIP servlets, HTTP servlets, JPSs, static files, EJBs, and so on.

The SIP Diameter Project type adds tools for developing SIP applications that can
interact with Diameter nodes.

To create a new converged application project, follow these steps:

1. From the File menu, select New and Other.

2. In the Select a wizard screen, expand the Oracle node and then the OCCAS
Application node.

3. Choose Converged Application Project and click Next.

4. Type a name for the project in the Project name field.

5. From the Target Runtime menu, choose the target server environment to which to
deploy the converged application.

If you have not already defined a Converged Application Server installation as a
target server, do the following:

a. Click New Runtime.

b. Under the Oracle node in the target environment list, choose Oracle WebLogic
Server 11gR1 (10.3.6) and click Next.

c. Specify the WebLogic home directory by clicking the browse icon and
selecting the wlserver_10.3 directory in your Oracle Middleware home.

d. Specify the Java home, if it is not already populated based on your WebLogic
home selection.

Adding Converged Application Project Facets to an Existing Project

Getting Started 2-7

e. Click Finish to save the target runtime configuration.

6. From the Dynamic web module version menu choose 2.5.

7. Verify that the Dynamic web module version value is 2.5.

8. From the Configuration menu, choose:

■ Converged Application Project to create converged and SIP applications,
including SFT applications.

■ Converged SIP Diameter Project to create converged and SIP applications
that can act as Diameter nodes.

9. If needed, select the option to have the project output added to an EAR file or to
working sets.

In most cases, converged applications are deployed as SAR or WAR files.
However, you can choose to output to an EAR file if your project contains both SIP
and enterprise JavaBean components.

10. Click Next and optionally specify the source file location. By default, source files
are stored in the src directory.

11. If you want to modify the default context root or content directory, click Next and
specify the new values for the project.

12. Click Finish

The wizard creates the project components and configuration settings. You can now
add source files to the project by creating them manually or by using the SCE code
generation wizards. SCE provides wizards and templates for creating a variety of SIP
and converged application types.

Adding Converged Application Project Facets to an Existing Project
As an alternative to creating a new Converged Application Project, you can add the
Converged Application Project facets to an existing project of a different type, such as
a Dynamic Web Project or Enterprise Application Project.

Adding Converged Application facets to the projects makes the SCE wizards, tools,
and project resources available in the existing project.

To add the Converged Application Project facets to an existing project:

1. In the Project Explorer, right click on the name of the project and choose Properties
from the menu.

2. In the Properties dialog, choose Project Facets.

3. Select the following facets:

■ Oracle Communications Converged Applications Server SIP adds SIP API
support to the project.

■ SIP Deployment Descriptor adds the SIP Deployment Descriptor file
(sip.xml) to the project.

4. Click OK.

You can now use the Converged Application tools and wizards in your project.

Creating an Ant Build File

2-8 Oracle Communications Converged Application Server Developer's Guide

Creating an Ant Build File
The OEPE includes project-build features that allow you to build your applications
automatically. However, for complex projects, you may choose to use the Ant build
tool. Ant provides fine-grained control over project building and deploying logic.

To create an Ant build file:

1. Right-click on the name of your project in Eclipse, and select New, and then select
File.

2. Enter the name build.xml and click Finish. Eclipse opens the empty file in a new
window.

3. Copy the sample text from Example 2–1, substituting your domain name and
application name for myDomain and myApplication.

Example 2–1 Ant Build File Contents

<?xml version="1.0" encoding="ISO-8859-1"?>
<project default="all">
 <property environment="env"/>
 <property name="beahome" value="${env.BEA_HOME}"/>
 <target name="all" depends="compile,install"/>
 <target name="compile">
 <mkdir dir="WEB-INF/classes"/>
 <javac destdir="WEB-INF/classes" srcdir="src" debug="true"
debuglevel="lines,vars,source">
 <classpath>
 <pathelement path="${weblogic.jar}"/>
 </classpath>
 </javac>
 </target>
 <target name="install">
 <jar destfile="${beahome}/user_
projects/domains/myDomain/applications/myApplication.war">
 <zipfileset dir="WEB-INF" prefix="WEB-INF"/>
 <zipfileset dir="WEB-INF" includes="*.html"/>
 <zipfileset dir="WEB-INF" includes="*.jsp"/>
 </jar>
 </target>
</project>

4. Close the build.xml file and save your changes.

5. Verify that the build.xml file is valid by selecting the Window menu, then select
Show View, and then select Ant and dragging the build.xml file into the Ant
view. Correct any problems before proceeding.

6. Right-click on the project name and select Properties.

7. Select the Builders property in the left column, and click New.

8. Select the Ant Build tool type and click OK to add an Ant builder.

9. In the Buildfile field, click Browse Workspace and select the build.xml file you
created.

10. In the Base Directory field, click Browse Workspace and select the top-level
directory for your project.

11. Click the JRE tab and choose Separate JRE in the Runtime JRE field. Use the
drop-down list or the Installed JREs... button to select an installed version 1.6 JRE.

Deploying SIP Applications from Eclipse

Getting Started 2-9

12. Click the Environment tab, and then click New. Enter a new name/value pair to
define the BEA_HOME variable. The BEA_HOME variable must point to the home
directory of the Converged Application Server directory. For example:

■ Name: BEA_HOME

■ Value: c:\oracle

13. Click OK to add the new Ant builder to the project.

14. De-select Java Builder in the builder list to remove the Java builder from the
project.

15. Click OK to finish configuring Builders for the project.

Deploying SIP Applications from Eclipse
The deployable SIP application is a EAR archive file created by the export wizard. In
addition to project resources, the EAR file includes the SIP deployment descriptor file.

1. Right click on the project name in the Project Explorer, and select Run As, then
select Run on Servers.

2. In the Run On Server dialog box, verify that the server you are targeting is
selected.

3. Click Finish.

The SCE does the following:

■ Packages the SIP application.

■ Starts the specified OCCAS instance if it is not running.

■ Publishes the application to the OCCAS instance.

■ Launches the application.

The console view displays the log file tracking the progress of the deployment.

Deploying SIP Applications from Eclipse

2-10 Oracle Communications Converged Application Server Developer's Guide

3

Creating Applications with the Converged Application SCE Wizards 3-1

3Creating Applications with the Converged
Application SCE Wizards

This chapter describes how to use the SCE wizards to create the starter code for your
converged web and telecommunication applications. The classes generated by the
wizards can serve as the starting point for your development.

About SCE Wizards
The SCE wizards eases the task of developing converged applications. Using the
wizards, you can generate the initial code for various types of SIP services.

The SCE includes the following types of wizards:

■ SIP Servlet

■ SIP Listener

■ CommunicationBean

Using the wizards, you can rapidly develop converged applications that provide
services such as call control, conferencing, and other advanced communication
services.

After running a wizard, you have compilable code that serves as the starting point for
your development. In addition to source files for your application, the wizards
produce project resources are artifacts, such as pre-populated deployment descriptor
files.

About SIP Servlet Templates
When using the SIP servlet wizard, you can choose to a template on which to base
your new SIP servlet. The templates correspond to the standards-defined roles for SIP
servlets.

Templates are available for the following types of SIP servlet classes:

■ SIP Proxy creates a class that performs the SIP proxy functions, including
providing routing capabilities and performing user authentication, accounting,
registration, and security. Note that, by default, the record route flag in the
generated SIP proxy class is enabled, so that the application is included in the
message path for the requests sent within a dialog.

■ B2BUA creates a class that acts as a back-to-back user agent. A back-to-back user
agent can act as both a user agent client and server. The class uses the helper class,
javax.servlet.sip.B2buaHelper, which provides methods required by back to
back user agents.

Using the SIP Servlet Wizard

3-2 Oracle Communications Converged Application Server Developer's Guide

■ Subscribe UAS creates a class that subscribes to a User Agent Server (UAS).

■ Invite UAS creates a class that initiates communication sessions between UA
peers.

When you choose to create the servlet based on a template, the wizard populates the
new class with the stub methods appropriate for the type of SIP servlet you chose. For
example, a class created with the Invite UAS template contains an empty doInvite
method. After using a template, you only need to supplement the stub methods with
the custom code required for your specific application requirements.

Alternatively, you can create a new SIP servlet with the wizard and choose which
method stubs to include from a list of methods defined by the SIP specification.

For servlets based on any of the template types, you can add these common methods:

■ Session Key: adds the session key annotation and getKey method to the class. The
session key mechanism allows incoming SIP requests of various dialogs to be
correlated to an existing application session instance, so that multiple user
interactions can be linked together more easily, such as for a conference call.

■ WlssAction: adds a method that implements the WlssAction API. WlssAction
defines a transaction boundary to execute a series of updates in a synchronous
manner.

■ WlssAsynchronousAction: represents the work to be done on a SIP application
session object in an asynchronous manner. This API is useful for accessing the SIP
application session from Web or EJB modules in a converged application.

The code comments included with the common methods provide more information on
how to implement and use the methods. features.

Using the SIP Servlet Wizard
The Create SIP Servlet Wizard generates starter code for SIP servlets based on the
options you specify in the wizard. When using the wizard, you can specify the
methods in the class yourself or have the wizard populate the class with the methods
based on a particular template type.

The following sections provide information about each method for creating SIP
servlets with the wizard. See "About SCE Wizards" for more general information about
the SIP Servlet templates.

Creating a SIP Servlet
The SIP servlet wizard can populate the methods in the starter class based on the
template you choose, or by allowing you to manually select the methods to be used to
populate the generated class.

This section describes how to manually select the constituent methods in the generated
class. See "Creating a SIP Servlet Based on a Template" for information on creating a
SIP servlet based on a template.

To create a SIP servlet:

1. From the Eclipse main menu, choose File, New, and then Other.

The Select a wizard dialog opens.

2. From the list of available wizards, expand the Oracle node and then the OCCAS
Application node.

Using the SIP Servlet Wizard

Creating Applications with the Converged Application SCE Wizards 3-3

3. From the OCCAS application wizards, choose SIP Servlet and click Next.

The first screen of the Create SIP Servlet wizard appears.

4. In the Create SIP Servlet dialog, provide the following values:

■ Project: Choose the name of the project to which you want to add the new SIP
Servlet class.

■ Source folder: The folder where the new class source file will be located. By
default, this is default source code folder for the project selected.

■ Java Package: The optional name of the package to which the new class
belongs.

■ Class name: The name of the new SIP servlet class.

■ Superclass name: The name of the class the new SIP servlet is extending. By
default, this is javax.servlet.sip.SipServlet. You do not need to modify
this value in most cases.

The other options in the dialog can remain disabled, as they are by default.

5. Click Next.

6. Optionally, enter deployment descriptor parameters for the class.

The deployment descriptor mechanism controls application selection and
initialization properties. The values you add in this screen will appear in the
sip.xml file for the project.

7. Click Next.

8. Optionally, add an interface to be implemented by the new class by clicking the
Add button and choosing the interface.

9. Choose the method stubs to be included in the class by selecting the check boxes
next to the desired methods.

10. Click Finish.

The SIP Servlet wizard generates the Java source file based and sip.xml content
based on your configuration.

You can now add your custom logic to the generated SIP servlet class. The generated
source file includes TODO markers that indicate places in the code that require further
development or customization.

To view a combined view of the TODO markers, open the Marker view tab and
expand the Java Task node. The lists of TODO marker comments in the current file
appear under the node.

Creating a SIP Servlet Based on a Template
As an alternative to selecting methods in the generated class manually, you can use
templates to automatically populate the SIP servlet with the methods appropriate for
the role of the SIP servlet.

To create a SIP servlet based on a template:

1. From the Eclipse main menu, choose File, New, and then Other.

The Select a wizard dialog opens.

2. From the list of available wizards, expand the Oracle node and then the OCCAS
Application node.

Using the SIP Servlet Wizard

3-4 Oracle Communications Converged Application Server Developer's Guide

3. From the OCCAS application wizards, choose SIP Servlet and click Next.

The first screen of the Create SIP Servlet wizard appears.

4. In the Create SIP Servlet dialog, specify values for the following fields:

■ Project: Choose the name of the project to which you want to add the new SIP
Servlet class.

■ Source folder: The folder where the new class source file will be located. By
default, this is source code folder specified for the selected project.

■ Java Package: The optional name of the package to which the new class
belongs.

■ Class name: The name of the new SIP servlet class.

■ Superclass name: The name of the class the new SIP servlet is extending. By
default, this is javax.servlet.sip.SipServlet. You do not need to modify
this value in most cases.

5. To have the servlet pre-configured for a specific SIP servlet role (SIP proxy,
back-to-back user agent, subscribe UAS, or invite UAS) enable the Use Servlet
templates option and click Next.

6. If you chose to use a template for the new servlet, select the type of template to
apply from these options:

■ Proxy, for a SIP proxy class.

■ B2BUA, for a back-to-back user agent class.

■ SUBSCRIBE UAS, for a user agent server that subscribes to INVITE events.

■ INVITE UAS, for a user agent server that generates INVITE events.

Optionally choose the common methods to be added to the class from Session
Key, WlssAction, or WlssAsynchronousAction. Note that these methods
supplement those that are added based on the template type you chose. See
"About SCE Wizards" for more information about the template types and common
methods.

7. Click Next.

8. Optionally, enter a description and deployment descriptor parameters for the
class.

The deployment descriptor mechanism controls application selection and
initialization parameters. The values you add in this screen will appear in the
sip.xml file for the project.

9. Click Finish.

The SIP Servlet wizard generates the Java source file based and sip.xml content
based on your configuration.

You can now customize the generated SIP servlet class with your own business logic.

The generated class includes TODO markers that indicate places in the code that
require customization. The Marker view tab presents these markers as a task list. To
view the list, open the Marker view tab and expand the Java Task node. The TODO
markers in the current source code file appear below the node.

Using the SIP Listener Wizard

Creating Applications with the Converged Application SCE Wizards 3-5

Using the SIP Listener Wizard
The SCE SIP listener wizard makes it easy to create SIP listener applications. A SIP
listener application listens for certain types of SIP-specific events, and typically
performs some processing action in response to the event.

To create a SIP listener:

1. From the Eclipse main menu, choose File, New, and then Other.

The Select a wizard dialog opens.

2. From the list of available wizards, expand the Oracle node and then the OCCAS
Application node.

3. From the OCCAS application wizards, choose SIP Listener and click Next.

The first screen of the Create SIP Listener wizard appears.

4. In the Create SIP Listener dialog, specify values for the following fields:

■ Project: Choose the name of the project to which you want to add the new SIP
Servlet class.

■ Source folder: The folder where the new class source file will be located. By
default, this is default source code folder for the project selected.

■ Java Package: The optional name of the package to which the new class
belongs.

■ Class name: The name of the new SIP servlet class.

■ Superclass name: Optionally, the name of the class the new SIP listener is
extending.

5. Click Next.

6. Select at least one application event to listen for. Optionally, click the Select All
button to choose all events, or Deselect All to reset your event selection.

The available events are standard SIP-specified events, and include application
events, session events, errors, timer events, and initialization events.

7. Click Next.

8. Optionally, specify additional interfaces to be implemented by the class. By
default, the listener implements the interfaces appropriate for your event selection.
You can add other interfaces in the modifier page.

If you add an interface, specify whether it should be a public, abstract, or final
interface. Also, the last panel in the wizard defines the interfaces and methods to
use with the SIP Listener. Stubs are automatically created in the servlet class. You
implement the servlet by developing the code for the stubs.

9. Click Finish to create the SIP Listener.

The SIP Servlet wizard generates the Java source file based and updates sip.xml
based on your configuration.

You can now customize the generated SIP listener class with your own business logic.

The generated class includes TODO markers that indicate places in the code that
require customization. The Marker view tab presents these markers as a task list. To
view the list, open the Marker view tab and expand the Java Task node. The TODO
markers in the current source code file appear below the node.

Using the SFT Communication Bean Wizard

3-6 Oracle Communications Converged Application Server Developer's Guide

Using the SFT Communication Bean Wizard
A CommunicationBean is a Java class that performs the functions of a SIP or HTTP
servlet while hiding the complexities of SIP and communication protocol
programming.

CommunicationBeans use annotations to encapsulate common functions or roles
fulfilled by communication applications. Instead of specifying the code that performs
the function, you simply add the annotation to the source file. The SFT framework
expands the annotation to the appropriate code.

Annotations take the form of @annotation_name, where annotation_name identifies the
annotation. Some annotations take arguments, which you specify alongside the
annotation. For example:

@EventOrchestration(priority = 100)

See Chapter 17, "Introduction to the Service Foundation Toolkit," for more information
on CommunicationBean classes and annotations.

You can use the SCE wizard to generate CommunicationBean classes.

To create a Communication Bean with the SCE wizard:

1. From the Eclipse main menu, choose File, New, and then Other.

The Select a wizard dialog opens.

2. From the list of available wizards, expand the Oracle node and then the OCCAS
Application node.

3. From the OCCAS application wizards, choose SFT CommunicationBean and click
Next.

The first screen of the Communication Bean wizard appears.

4. In the Create SFT CommunicationBean page, specify general attributes of the
CommunicationBean class, from these attributes:

■ Project: The Converged Application project in which to create the
CommunicationBean class.

■ Source Folder: The project folder in which to create the source file for the
class.

■ Package: The Java package to which the class will belong.

■ Class Name: The name for the new CommunicationBean class.

5. Click Next.

The SFT CommunicationBean Information Page appears.

6. From the Communication Type menu, choose the SFT interface the class will
extend.

This interface determines the type of communication the new class implements,
such as conferencing, conversation, IM conferencing, and so on. See Chapter 17,
"Introduction to the Service Foundation Toolkit," for complete information on SFT
interfaces and communication types.

7. From the Service Attribute list, choose the annotations that you want to add to the
CommunicationBean class.

Using the SFT Communication Bean Wizard

Creating Applications with the Converged Application SCE Wizards 3-7

In SFT, annotations encapsulate features and characteristics provided by the
communication bean. See "SFT Annotations" in Chapter 17, "Introduction to the
Service Foundation Toolkit,"for information about the SFT service attributes.

8. From the Context Member options, choose the type of communication context in
which this bean will participate. Options include communication sessions,
communication context, and communication service.

See "About Communication Context Types" in Chapter 17, "Introduction to the
Service Foundation Toolkit," for complete information on SFT communication
context types.

9. Click Next.

The SFT Event Selection Wizard Page appears.

10. Add methods to your communication bean that listen for specific events as
follows:

a. From the Event Type list, choose the event category from these options:
CommunicationEvent, ParticipantEvent, or ProtocolEvent.

b. From the Event menu, choose the specific event on which you want the
method to listen. The options vary depending on the event type. For instance,
for ProtocolEvent, you can choose from these specific events:
REQUESTRECEIVED, REQUESTSENT, RESPONSERECEIVED, or
RESPONSESENT.

c. Optionally, modify the default priority for the method, 100.

d. In the Method Name field, enter a name for the new method.

e. Click Add.

The method appears in the Event Type list.

f. Repeat steps a through e for each method you want to add. Note that you can
only create one method per event type or communication type.

11. Click Finish to create the SIP Listener.

The SIP Servlet wizard generates the Java source file based and updates sip.xml
based on your configuration.

You can now supplement the initial code with your own custom business logic. In
addition, you can use the SCE simulators and testing tools to develop and refine your
application.

Using the SFT Communication Bean Wizard

3-8 Oracle Communications Converged Application Server Developer's Guide

4

Using Simulators and Other Testing Tools 4-1

4Using Simulators and Other Testing Tools

This chapter describes the testing tools included with the SCE. The tools include
simulators, SIPp, and Diameter domain extension tools.

About the SCE Tools
The SCE includes simulators and other network service tools that you can use to
develop and test applications. The simulators provide the functions of common IMS
network components. The simulators allow you to test your applications against
network components without having to access a live or production network.

The SCE includes simulators or simulator integration features for the following types
of network components:

■ XDMS server

■ Diameter Ro server

■ Diameter Rf server

■ Diameter HSS server

■ Media server

In addition to simulator-related features, the SCE provides a graphical user interface
for using SIPp directly from the SCE. It also enables you to extend and configure a
Converged Application Server domain with Diameter capabilities.

You access the converged application tools from the OCCAS menu in the OEPE.
Figure 4–1 shows the general components of the graphical user interface for
configuring the SCE simulators:

Using the XDMS Simulator

4-2 Oracle Communications Converged Application Server Developer's Guide

Figure 4–1 Service Creation Environment Simulator Interface

As shown, the simulator list provides access to the various configuration page for each
type of simulator. After setting the configuration, you can deploy the simulator to the
selected target servers by clicking the start icon. The stop icon terminates the simulator
process, and also removes the simulator as a deployed application from the target
server.

Any target server you have added to the SCE project appears in the target server list.
You can click the refresh icon to update the list of servers that appear in the list.
Refreshing the server list adds newly created servers and removes deleted servers
from the list.

The following sections provide more information on how to use each type of
simulator, as well as the SIPp and Diameter domain configuration tools.

Using the XDMS Simulator
In an IMS network, the XML Document Management Server (XDMS) makes
user-specific service information available to client applications. The type of
information hosted by the XDMS presence authorization policies, contact and group
lists, and presence status. The SCE provides an XDMS simulator that allows you to test
applications that interact with XDMS servers.

The XDMS simulator is suitable for testing purposes only. It supports only those
document management capabilities applicable to call functions that are available
through the SFT APIs, including call barring, call forwarding, and OIP.

The XDMS simulator does not support data persistence, high availability, or other
requirements of a production XDMS system. Since it lacks data persistence, when you
shut down the XDMS simulator, its hosted data is lost. Also, the simulator supports
basic operations only, such as GET and SET.

In addition, shared XDMS is not supported; the SCE supports single XDMS simulator
instances only.

Using the XDMS Simulator

Using Simulators and Other Testing Tools 4-3

The XDMS runs on the Converged Application Server. To use it, you deploy it from the
Converged Application SCE to the Converged Application Server. It can be deployed
to any server you have added as a target server environment in the SCE.

Using an XDMS system involves both loading and querying information. The XDMS
simulator exposes get and set operations through a REST-based XCAP interface. See
"Using the XCAP Interface to Populate and Query the XDMS" for more information
about the RESTful interface.

Deploying and Starting the XDMS Simulator
The XDMS simulator software is distributed as a WAR file that you deploy to the
Converged Application Server. Although it is possible to deploy the XDMS file to the
Converged Application Server manually, the SCE enables you to deploy and control
the XDMS simulator directly from the development interface.

The following steps describe how to deploy and start the simulator. Before starting,
configure the target server environment to which you want to deploy the simulator in
the SCE.

To deploy and start the XDMS in the Converged Application SCE, follow these steps:

1. From the OCCAS menu, click Simulators.

2. If is not already selected, select the XDMS Simulator node from the SCE
Simulators list.

The XDMS Simulator settings appear in the right pane. Notice that the target
servers appear at the bottom of the pane.

3. To have the XDMS simulator enforce digest authentication requirements, select the
Enable digest filter.

4. Select the check box of the server to which you want to deploy the XDMS
software.

You should deploy the simulator to a Converged Application Server
administration server only; it does not operate on engine tier servers. XDMS
simulators on different servers cannot share information. For most development
testing scenarios, deploying the XDMS simulator to a single server is sufficient.

5. Click the start icon.

The SCE deploys the XDMS bundle to the selected server and starts the XDMS
application. You can now populate the XDMS simulator with data and test it from
SFT applications.

After starting the XDMS simulator, you can remove the XDMS simulator from the
server by clicking the stop icon. Stopping the XDMS simulator removes the XDMS
simulator package from the Converged Application Server to which it was deployed.

While the XDMS simulator is running, you can populate it with data using its XCAP
interface. See "Using the XCAP Interface to Populate and Query the XDMS" for more
information.

Using the XCAP Interface to Populate and Query the XDMS
After deploying the XDMS to the Converged Application Server, you can use the
XCAP interface to add or get documents in the XDMS.

By default, the XDMS simulator exposes its XCAP root address at the following
location:

Configuring the Media Server Driver

4-4 Oracle Communications Converged Application Server Developer's Guide

http://hostname:7001/xdms_simulator

An XCAP client application can establish a connection to the simulator as it does to the
any XDMS system.

For example, given an XCAP client instantiated on the communication service, the
following code fragment creates the connection to the XDMS simulator on the local
host:

XCAPClient client = getClient();
 XcapRoot root = client.createXcapRoot("http://127.0.0.1:7001/xdms");
 XcapConnection connection = client.createConnection(root);

See Chapter 24, "Using the XCAP Interfaces,"to learn about XCAP and XDMS from a
programming perspective.

You can shut down and undeploy the XDMS simulator from the server by clicking the
stop icon in the XDMS Simulator tab. Because the XDMS simulator stores its contents
in memory only, stopping the simulator application clears its contents and returns it to
its initial state.

Configuring the Media Server Driver
Converged applications rely on media servers to enable rich media services, such as
conferencing, audio prompting, and speech detection. The SCE provides a JSR 309
adapter that allows you to test interactions between converged applications and an
external media server.

The SCE includes a media server simulator that you can use to test applications that
rely on a media server.

To configure the media server connectivity in the SCE, follow these steps:

1. From the OCCAS menu, click Simulators.

2. In the simulators list, choose Media Server Simulator.

The media server configuration settings appear in the right pane.

3. Configure the following settings:

■ Media Server Address: Enter the host name or IP address of the media server
in your environment.

■ Media Server Port: Enter the port number on which the media server listens
for client requests. By default, this is 6666.

■ JNDI Name: The name of the media server resource in Java Naming and
Directory Interface (JNDI) format. By default, this is mscontrol/jvb/default.

4. Select the Converged Application Server on which to deploy the media server
driver. The page shows the servers that have been configured as target servers for
the project. Choose the server on which to deploy the media server driver.

5. Click the start icon to deploy and start the simulator.

The media server starts. You can now test the applications that rely on the media
server.

6. When finished, click the stop icon to terminate the media server process and
remove the deployment from the Converged Application Server.

You can now test your converged applications that use the media server simulator.

Extending Domains with Diameter Capabilities

Using Simulators and Other Testing Tools 4-5

Configuring the Diameter Simulator Settings
The Diameter charging and HSS simulators enable you to test operations related to
charging and authentication in your converged applications.

The Diameter and HSS simulators can operate as standalone servers only. For
additional information about deploying and running the simulator, see the
information about the Sh and Rf simulator in the Oracle Communications Converged
Application Server Administrator’s Guide.

To configure connectivity to the Diameter server from the SCE:

1. From the OCCAS menu, click Simulators.

2. In the simulators list, choose one of the following nodes:

■ Diameter Ro Simulator to have the simulator perform online charging
functions.

■ Diameter Rf Simulator if the simulator performs offline charging server
functions.

■ Diameter HSS Simulator if the simulator performs Home Subscriber Server
(HSS) functions, such as serving subscriber information.

The configurations settings for the simulator integration appear in the right pane.

3. Configure the following settings:

■ realm name: Enter the realm name for which the Diameter node simulator has
responsibility.

■ host name: Enter the identity of the Diameter simulator.

■ listen address: Enter the listen address on which the Diameter simulator
listens for Diameter traffic.

■ listen port: Enter the listen port on which this node listens for Diameter traffic
with the simulator.

■ Enable debug output: Select to have debug output printed to the SCE log
screen.

■ Enable message tracing: Select to have log output printed to the SCE log
screen.

4. Click the start icon to start the simulator.

You can now test run the applications that rely on charging functions of the
simulator.

5. When finished, click the stop icon to terminate the simulator process.

You can now test the Diameter interactions of your converged applications with the
Diameter simulator.

Extending Domains with Diameter Capabilities
Diameter-enabled converged applications can run only on domains that have been
extended with the Diameter domain template. The template provides the container
framework for enabling Diameter capabilities. You can use the Diameter configuration
tool in the SCE to extend an existing Converged Application Server domain for
Diameter.

Extending Domains with Diameter Capabilities

4-6 Oracle Communications Converged Application Server Developer's Guide

The SCE Diameter configuration interface provides an alternative to extending the
domain with the Converged Application Server Configuration Wizard, as described in
the Converged Application Server Installation Guide. The interface also enables you to
specify the initial configuration for the domain from the SCE.

The Diameter domain extension configuration page has settings that populate the
diameter.xml configuration file for the Converged Application Server. See the
Converged Application Server Administrator’s Guide for more information on the
diameter.xml file.

The configuration page has several types of settings, including:

■ Application settings apply to Diameter applications that run on the node.

■ Peer configuration settings define the other Diameter nodes with which this node
operates. You can define peer connection information for each Diameter node.

Alternatively, you can use the allow-dynamic-peers functionality in combination
with TLS transport to allow peers to be recognized automatically. See the Oracle
Communications Converged Application Server Administrator’s Guide for more
information.

■ Routes configuration settings define realm-based routes that the node can use
when resolving messages.

■ The target servers for the domains to be extended. Any target server configured in
the SCE appears in the list.

To extend a domain with Diameter capabilities from the SCE, follow these steps:

1. From the OCCAS menu, click Extending Diameter.

The Diameter domain extension configuration page appears.

2. Click the Add button next to the Diameter application settings list.

3. In the Diameter Application dialog, specify the following settings:

■ Application Name: Enter a name for the application configuration.

■ Class Name: Enter the class name of the application to deploy to this node,
from the following options:

– com.bea.wcp.diameter.sh.WlssShApplication for the HSS application

– com.bea.wcp.diameter.charging.RoApplication for the Diameter Ro
(online charging) application

– com.bea.wcp.diameter.charging.RfApplication for the Diameter Rf
(offline charging) application.

■ Application ID: The Diameter application ID for this application. If one of the
predefined Diameter classes is selected, this field is populated automatically.

– 16777217 for Diameter HSS

– 3 for Diameter Rf

– 4 for Diameter Ro

■ Parameters: Enter optional parameters to pass to the application upon startup.

Note: The SCE can extend domains on a local server only; it cannot
extend domains on remote servers.

Extending Domains with Diameter Capabilities

Using Simulators and Other Testing Tools 4-7

For example, the Rf application accepts the parameters cdf.host and
cdf.realm, which are used to identify the host name and realm of the Charging
Data Function (CDF), respectively. See information about configuring
Diameter applications in the Oracle Communications Converged Application
Server Administrator’s Guide for more information on parameters accepted by
the applications.

4. Click Add to save the settings.

5. Configure peer nodes by clicking the Add button next to the peer node
configuration list.

6. In the Diameter Peer dialog, specify the peer Diameter node using the following
settings:

■ Import configuration from: Select this option to import Charging or HSS
simulator parameters from the simulator view.

■ Host: Enter the peer node's host identity.

■ Realm: Enter the peer node’s Diameter realm.

■ Address: Enter the peer node's address (DNS name or IP address).

■ Port: Enter the listen port number of the peer node.

■ Protocol: Select the protocol used to communicate with the peer (TCP or
SCTP).

■ Enable WatchDog: Select this check box to specify that the peer supports the
Diameter Tw watchdog timer interval.

7. Click Add to save the settings.

8. Optionally, configure settings the Converged Application Server container will use
to resolve routes to the peer nodes by clicking the Add button next to the
realm-based routes configuration list.

9. In the Diameter Route dialog, specify the following settings:

■ Name: A unique, identifying name for this route configuration.

■ Servers: The peer for which this route applies. The peer nodes you have
configured appear as menu options for this item.

■ realm: The target Diameter realm associated with this route.

■ Application ID: The Diameter application ID for this application. If one of the
predefined Diameter classes is selected, this field is populated automatically.

– 16777217 for Diameter HSS

– 3 for Diameter Rf

– 4 for Diameter Ro

■ Action: Select an action that this node performs when using the configured
route. The action type may be one of: local, relay, proxy, or redirect.

10. For a given route, choose the route in the route list and choose Default Route to
make this route the default route used when resolving messages.

The Converged Application Server uses the selected route as the default message
exchange route. In the view, a blue icon indicates the currently selected default
route.

11. Click Add to save the settings.

Using the SIPp Plug-in

4-8 Oracle Communications Converged Application Server Developer's Guide

12. Select the target server from the list of configured servers, and click the extend
icon to extend the domain and deploy the configuration to the selected server.

You can now deploy Diameter-capable applications to the target server.

Using the SIPp Plug-in
With the SCE, you can run SIPp directly from Eclipse. SIPp is a freely available SIP
traffic generator and testing tool. To use SIPp with the SCE, you must have the SIPp
program installed on your computer.

The SIPp software is available for download from:

http://sipp.sourceforge.net/

The SCE SIPp interface exposes existing SIPp features. Therefore, for detailed
information on any of the SIPp interface settings, including SIPp embedded scenarios,
XML scenario files, CSV files, and other features, see the SIPp documentation page at:

http://sipp.sourceforge.net/doc/reference.html

The SIPp integration page appears as a simulator resource in the SCE user interface, as
shown in Figure 4–2:

Figure 4–2 SIPp Configuration Setup Tab

As shown in the figure, you compose the SIPp command in the SIPp Setup tab. When
you click the run icon at the top right corner of the page, a new tab is created for the
command. You can create additional commands by returning to the SIPp Setup tab
and repeating the command configuration. The output of the execution appears in the
Console log viewer at the bottom of the screen.

There are several ways to compose SIPp commands in the tab. They include:

■ Choosing a SIPp embedded scenario from the list.

■ Specifying a standard SIPp scenario file.

Note: The SCE SIPp interface does not support SIPp short cut keys.

Using the SIPp Plug-in

Using Simulators and Other Testing Tools 4-9

■ Entering the command manually in the SIPp command line field.

In the SCE SIPp interface, the command you create in the interface appears in the SIPp
command line field. When you use the SIPp interface controls to configure the
command, changes to the command are automatically reflected in the command that
appears in the field.

For example, if you choose the uac embedded scenario and added an address to the
Remote IP address field, the SIPp command line field is populated with this
command:

sipp -sn uac 10.1.3.11:5060

You can further modify the command by editing the command in the field directly.

Embedded scenarios are simple, predefined scenarios for SIPp. You can create complex
or custom scenarios using scenario XML files. Further, SIPp provides a mechanism for
injecting values from a CSV file into scenarios. In the command line invocation, the
CSV file name is specified as a value for the -inf option. In the SCE SIPp interface, you
can specify the equivalent file name in the CSV file field.

After installing SIPp and creating the scenarios and CSV files, you can run SIPp from
the SCE as follows:

1. From the OCCAS menu, click Simulators.

2. From the SCE Simulators list in the Service Creation Environment pane, click the
SIPp Testing Tool node.

3. In the SIPp Setup tab, specify the full path to the SIPp program file in the Set SIPp
installation directory, such as /opt/sipp/sipp-3.1.

4. Use the configuration fields in the setup tab to compose the SIPp command. The
fields are:

■ SIPp embedded scenarios: choose from one of the common, predefined SIPp
scenarios.

■ Remote IP address: The IP address and port on which a client agent runs.

■ CSV file: A comma-separated values file that contains injection values for this
scenario. The values in the file are matched to placeholders in the scenario
XML file.

5. Manually modify or extend, if desired, the SIPp command as it appears in the
SIPp command line field.

6. When the command is ready, click the Start button at the top right corner of the
interface.

A new tab appears that contains that command instance. The console tab appears
with a printout of the execution log for the command. You can simultaneously
issue additional command executions.

Note: The SCE SIPp interface exposes only existing SIPp features.
Therefore, for detailed information on any of the SIPp interface
settings, including SIPp embedded scenarios, XML scenario files, CSV
files, and other features, see the SIPp documentation page at:

http://sipp.sourceforge.net/doc/reference.html

Using the SIPp Plug-in

4-10 Oracle Communications Converged Application Server Developer's Guide

7. Optionally, click the SIPp Setup tab to return to the command configuration page
and create a new command. You can run any number of commands
simultaneously.

8. While the command is running, you can click the Stop icon at any time to
terminate the command.

Part III
Part III Developing SIP Applications

This part contains the following chapters:

■ Chapter 5, "Overview of SIP Servlet Application Development"

■ Chapter 6, "Porting Existing Applications to Oracle Communications Converged
Application Server"

■ Chapter 7, "Requirements and Best Practices for SIP Applications"

■ Chapter 8, "Using Compact and Long Header Formats for SIP Messages"

■ Chapter 9, "Composing SIP Applications"

■ Chapter 10, "Developing Converged Applications"

■ Chapter 11, "Developing Custom Profile Service Providers"

■ Chapter 12, "Using Content Indirection in SIP Servlets"

■ Chapter 13, "Securing SIP Servlet Resources"

■ Chapter 14, "Enabling Message Logging"

■ Chapter 15, "Generating SNMP Traps from Application Code"

■ Chapter 16, "Using the Location Service RESTful Interface"

5

Overview of SIP Servlet Application Development 5-1

5 Overview of SIP Servlet Application
Development

This chapter describes the SIP protocol, and provides a background on SIP application
development using the Java programming language.

■ About the SIP Protocol

■ What are SIP Servlets?

■ Differences Between HTTP Servlets and SIP Servlets

■ Differences from HTTP Servlets

About the SIP Protocol
The session initiation protocol (SIP) is a simple network signalling protocol for
creating and terminating sessions with one or more participant. The SIP protocol is
designed to be independent of the underlying transport protocol, so SIP applications
can run on TCP,UDP, or other lower-layer networking protocols.

Typically, the SIP protocol is used for internet telephony and multimedia distribution
between two or more endpoints. For example, one person can initiate a telephone call
to another person using SIP, or someone may create a conference call with many
participants.

The SIP protocol was designed to be very simple, with a limited set of commands. It is
also text-based, so humans can read the SIP messages passed between endpoints in a
SIP session.

SIP Requests
The SIP protocol defines the following common request types:

Table 5–1 File Structure Example of Application

SIP Request Description

INVITE Initiates a session between two participants.

ACK The client acknowledges receiving the final message from an
INVITE request.

BYE Terminates a connection.

CANCEL Cancels any pending actions, but does not terminate any accepted
connections.

OPTIONS Queries the server for a list of capabilities.

What are SIP Servlets?

5-2 Oracle Communications Converged Application Server Developer's Guide

SIP requests are codes used to indicate the various stages in a connection between
SIP-enabled entities.

SIP Responses
The SIP Protocol uses response codes similar to the HTTP protocol. Some of the
common response codes are:

■ 100 (Trying)

■ 200 (OK)

■ 404 (Not found)

■ 500 (Server error)

■ 600 (Global failure)

What are SIP Servlets?
A servlet is a Java programming language class used to extend the capabilities of
servers that host applications accessed via a request-response programming model. A
Servlet is a Java class in Java EE that conforms to the Java Servlet API, a protocol by
which a Java class may respond to requests. They are not tied to a specific client-server
protocol, but are most often used with the HTTP protocol. Therefore, the word
“Servlet” is often used in the meaning of “HTTP Servlet”.

A SIP servlet is a Java programming language server-side component that performs
SIP signalling. SIP servlets are managed by a SIP servlet container, which typically are
part of a SIP-enabled application server. SIP servlets interact with clients by
responding to incoming SIP requests and returning corresponding SIP responses.

SIP servlets are built off the generic servlet API provided by the Java Servlet
Specification. The SIP Servlet API is standardized as JSR289 of JCP (Java Community
Process).

Figure 5–1 Servlet API and SIP Servlet API

REGISTER Registers the address in the To header with the server.

Note: In this document, the term "SIP Servlet" is used to represent
the API, and "SIP servlet" is used to represent an application created
with the API.

Table 5–1 (Cont.) File Structure Example of Application

SIP Request Description

Differences Between HTTP Servlets and SIP Servlets

Overview of SIP Servlet Application Development 5-3

SIP Servlets are similar to HTTP Servlets, and HTTP servlet developers can easily
adapt to the programming model. The service level defined by both HTTP and SIP
Servlets is very similar, allowing fro the design of applications that support both HTTP
and SIP. Example 5–1 shows an example of a simple SIP servlet.

Example 5–1 SimpleSIPServlet.java

package oracle.example.simple;
import java.io.IOException;
import javax.servlet.*;
import javax.servlet.sip.*;

public class SimpleSIPServlet extends SipServlet {
 protected void doMessage(SipServletRequest req)
 throws ServletException, IOException
 {
 SipServletResponse res = req.createResponse(200);
 res.send();
 }
}

Example 5–1 shows a simple SIP servlet that sends back a 200 OK response to the SIP
MESSAGE request. As you can see from the list, SIP Servlet and HTTP Servlet have
many things in common:

1. Servlets must inherit the base class provided by the API. HTTP servlets must
inherit HttpServlet, and SIP servlets must inherit SipServlet.

2. Methods doXxx must be overridden and implemented. HTTP servlets have
doGet/doPost methods corresponding to GET/POST methods. Similarly, SIP
servlets have doXxx methods corresponding to the method name (in Example 5–1,
the MESSAGE method). Application developers override and implement
necessary methods.

3. The life cycle and management methods (init, destroy) of SIP Servlet are exactly
the same as HTTP Servlet. Manipulation of sessions and attributes is also the
same.

4. Although not shown in the example above, there is a deployment descriptor called
sip.xml for a SIP servlet, which corresponds to web.xml. Application developers
and service managers can edit this file to configure applications using multiple SIP
servlets.

However, there are several differences between SIP and HTTP servlets. A major
difference comes from protocols. The next section describes these differences as well as
features of SIP servlets.

Differences Between HTTP Servlets and SIP Servlets
SIP servlets differ from typical HTTP servlets used in web applications in the
following ways:

■ HTTP servlets have a particular context (called the context-root) in which they
run, while SIP servlets have no context.

■ HTTP servlets typically return HTML pages to the requesting client, while SIP
servlets typically connect SIP-enabled clients to enable telecommunications
between the client and server.

Differences from HTTP Servlets

5-4 Oracle Communications Converged Application Server Developer's Guide

■ SIP is a peer-to-peer protocol, unlike HTTP, and SIP servlets can originate SIP
requests, unlike HTTP servlets which only send responses to the originating client.

■ SIP servlets often act as proxies to other SIP endpoints, while HTTP servlets are
typically the final endpoint for incoming HTTP requests.

■ SIP servlets can generate multiple responses for a particular request.

■ SIP servlets can communicate asynchronously, and are not obligated to respond to
incoming requests.

■ SIP servlets often work in concert with other SIP servlets to respond to particular
SIP requests, unlike HTTP servlets which typically are solely responsible for
responding to HTTP requests.

Differences from HTTP Servlets
This section describes differences between SIP Servlets and HTTP Servlets.

Multiple Responses
You might notice in Example 5–1 that the doMessage method has only one argument.
In HTTP, a transaction consists of a pair of request and response messages, so
arguments of a doXxx method specify a request (HttpServletRequest) and its response
(HttpServletResponse). An application takes information such as parameters from the
request to execute it, and returns its result in the body of the response.

protected void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException

For SIP, more than one response may be returned to a single request.

Figure 5–2 Example of Request and Response in SIP

The above figure shows an example of a response to the INVITE request. In this
example, the server sends back three responses 100, 180, and 200 to the single INVITE
request. To implement such sequence, in SIP Servlet, only a request is specified in a
doXxx method, and an application generates and returns necessary responses in an
overridden method.

Currently, SIP Servlet defines the following doXxx methods:

protected void doInvite(SipServletRequest req);
protected void doAck(SipServletRequest req);
protected void doOptions(SipServletRequest req);
protected void doBye(SipServletRequest req);
protected void doCancel(SipServletRequest req);

Differences from HTTP Servlets

Overview of SIP Servlet Application Development 5-5

protected void doSubscribe(SipServletRequest req);
protected void doNotify(SipServletRequest req);
protected void doMessage(SipServletRequest req);
protected void doInfo(SipServletRequest req);
protected void doPrack(SipServletRequest req);

Receiving Responses
One of the major features of SIP is that roles of a client and server are not fixed. In
HTTP, Web browsers always send HTTP requests and receive HTTP responses: They
never receive HTTP requests and send HTTP responses. In SIP, however, each terminal
needs to have functions of both a client and server.

For example, both of two SIP phones must call to the other and disconnect the call.

Figure 5–3 Relationship between Client and Server in SIP

Figure 5–3 indicates that a calling or disconnecting terminal acts as a client. In SIP,
roles of a client and server can be changed in one dialog. This client function is called
UAC (User Agent Client) and server function is called UAS (User Agent Server), and
the terminal is called UA (User Agent). SIP Servlet defines methods to receive
responses as well as requests.

protected void doProvisionalResponse(SipServletResponse res);
protected void doSuccessResponse(SipServletResponse res);
protected void doRedirectResponse(SipServletResponse res);
protected void doErrorResponse(SipServletResponse res);

These doXxx response methods are not the method name of the request. They are
named by the type of the response as follows:

■ doProvisionalResponse: A method invoked on the receipt of a provisional
response (or 1xx response).

■ doSuccessResponse: A method invoked on the receipt of a success response.

■ doRedirectResponse: A method invoked on the receipt of a redirect response.

■ doErrorResponse: A method invoked on the receipt of an error response (or 4xx,
5xx, 6xx responses).

Differences from HTTP Servlets

5-6 Oracle Communications Converged Application Server Developer's Guide

The use of methods to receive responses indicates that the SIP Servlet requests and
responses are independently transmitted by the application using different threads.
Applications must explicitly manage the association of SIP messages. The use of
independent requests and responses makes the process more complicated, but enables
you to write more flexible processes.

Also, SIP Servlet allows applications to explicitly create requests. Using these
functions, SIP servlets not only wait for requests as a server (UAS), but also send
requests as a client (UAC).

Proxy Functions
Another function that is different from the HTTP protocol is forking. Forking is a
process of proxying one request to multiple servers simultaneously (or sequentially)
and used when multiple terminals (operators) are associated with one telephone
number (such as in a call center).

Figure 5–4 Proxy Forking

SIP Servlet provides a utility to proxy SIP requests for applications that have proxy
functions.

Message Body
As Figure 5–5 illustrates, the contents of SIP messages is the same as the contents of
HTTP messages. Both SIP and HTTP messages include:

■ Starting line: Identifies the message as a request or a response. The starting line is
also referred to as the initial request line or the initial response line.

■ Header field: Provides information about the request or response.

■ Separator: A blank line separating the header field from the message body.

■ Message body: A message may have a body of data sent after the header lines. In a
response, this is where the requested resource is returned to the client (the most
common use of the message body).

Differences from HTTP Servlets

Overview of SIP Servlet Application Development 5-7

Figure 5–5 SIP Message Example

HTTP is a protocol that transfers HTML files, images, and multimedia data. Contents
to be transferred are stored in the message body. HTTP Servlet defines a stream
manipulation-based API that enables the sending and receiving of these large-file
content types.

Servlet Request
ServletInputStream getInputStream()
BufferedReader getReader()

Servlet Response
ServletOutputStream getOutputStream()
PrintWriter getWriter()
int getBufferSize()
void setBufferSize(int size)
void resetBuffer()
void flushBuffer()

In SIP, however, only low-volume contents are stored in the message body since SIP is
intended for real-time communication. Therefore, above methods are provided only
for compatibility, and their functions are disabled.

In SIP, contents stored in the body include:

■ SDP (Session Description Protocol): A protocol to define multimedia sessions used
between terminals. This protocol is defined in RFC2373.

■ Presence Information: A message that describes presence information defined in
CPIM.

■ IM Messages: IM (instant message) body. User-input messages are stored in the
message body.

Since the message body is in a small size, processing it in a streaming way increases
overhead. SIP Servlet re-defines API to manipulate the message body on memory as
follows:

SipServletMessage
void setContent(Object content, String contentType)
Object getContent()
byte[] getRawContent()

Differences from HTTP Servlets

5-8 Oracle Communications Converged Application Server Developer's Guide

Role of a Servlet Container
The following sections describe major functions provided by Converged Application
Server as a SIP servlet container:

■ Application Management: Describes functions such as application management by
servlet context, life cycle management of servlets, application initialization by
deployment descriptors.

■ SIP Messaging: Describes functions of parsing incoming SIP messages and
delivering to appropriate SIP servlets, sending messages created by SIP servlets to
appropriate UAS, and automatically setting SIP header fields.

■ Utility Functions: Describes functions such as sessions, factories, and proxying that
are available in SIP servlets.

Application Management
Like HTTP servlet containers, SIP servlet containers manage applications by servlet
context (see Figure 5–6). Servlet contexts (applications) are normally archived in a
WAR format and deployed in each application server.

Figure 5–6 Servlet Container and Servlet Context

A servlet context for a converged SIP and Web application can include multiple SIP
servlets, HTTP servlets, and JSPs.

Converged application Server can deploy applications using the same method as the
application server you use as the platform. However, if you deploy applications
including SIP servlets, you need a SIP specific deployment descriptor (sip.xml)
defined by SIP servlets. The table below shows the file structure of a general
converged SIP and Web application.

Note: The method of deploying in application servers varies
depending on your product. Refer to the documentation of your
application server.

Table 5–2 File Structure Example of Application

File Description

WEB-INF/ Place your configuration and executable files of your converged
SIP and Web application in the directory. You cannot directly refer
to files in this directory on Web (servlets can do this).

WEB-INF/web.xml The Java EE standard configuration file for the Web application.

WEB-INF/sip.xml The SIP Servlet-defined configuration files for the SIP application.

WEB-INF/classes/ Store compiled class files in the directory. You can store both HTTP
and SIP servlets in this directory.

Differences from HTTP Servlets

Overview of SIP Servlet Application Development 5-9

Information specified in the sip.xml file is similar to that in the web.xml except
servlet-mapping setting that is different from HTTP servlets. In HTTP you specify a
servlet associated with the file name portion of URL. But SIP has no concept of the file
name. You set filter conditions using URI or the header field of a SIP request. The
following example shows that a SIP servlet called registrar is assigned all REGISTER
methods.

Example 5–2 Filter Condition Example of sip.xml

 <servlet-mapping>
 <servlet-name>registrar</servlet-name>
 <pattern>
 <equal>
 <var>request.method</var>
 <value>REGISTER</value>
 </equal>
 </pattern>
 </servlet-mapping>

Once deployed, life cycle of the servlet context is maintained by the servlet container.
Although the servlet context is normally started and shutdown when the server is
started and shutdown, the system administrator can explicitly start, stop, and reload
the servlet context.

SIP Messaging
SIP messaging functions provided by a SIP servlet container are classified under the
following types:

■ Parsing received SIP messages.

■ Delivering parsed messages to the appropriate SIP servlet.

■ Sending SIP servlet-generated messages to the appropriate UA

■ Automatically generating a response (such as “100 Trying”).

■ Automatically managing the SIP header field.

All SIP messages that a SIP servlet handles are represented as a SipServletRequest or
SipServletResponse object. A received message is first parsed by the parser and then
translated to one of these objects and sent to the SIP servlet container.

A SIP servlet container receives the following three types of SIP messages, for each of
which you determine a target servlet.

■ First SIP Request: When the SIP servlet container received a request that does not
belong to any SIP session, it uses filter conditions in the sip.xml file (described in
the previous section) to determine the target SIP servlet. Since the container creates
a new SIP session when the initial request is delivered, any SIP requests received
after that point are considered as subsequent requests.

WEB-INF/lib/ Store class files archived as Jar files in the directory. You can store
both HTTP and SIP servlets in this directory.

*.jsp, *.jpg Files comprising the Web application (for example JSP) can be
deployed in the same way as Java EE.

Table 5–2 (Cont.) File Structure Example of Application

File Description

Differences from HTTP Servlets

5-10 Oracle Communications Converged Application Server Developer's Guide

■ Subsequent SIP Request: When the SIP Servlet container receives a request that
belongs to any SIP session, it delivers the request to a SIP Servlet associated with
that session. Whether the request belongs to a session or not is determined using
dialog ID.

Each time a SIP Servlet processes messages, a lock is established by the container
on the call ID. If a SIP Servlet is currently processing earlier requests for the same
call ID when subsequent requests are received, the SIP Servlet container queues
the subsequent requests. The queued messages are processed only after the Servlet
has finished processing the initial message and has returned control to the SIP
Servlet container.

This concurrency control is guaranteed both in a single containers and in clustered
environments. Application developers can code applications with the
understanding that only one message for any particular call ID gets processed at a
given time.

■ SIP Response: When the received response is to a request that a SIP servlet
proxied, the response is automatically delivered to the same servlet since its SIP
session had been determined. When a SIP servlet sends its own request, you must
first specify a servlet that receives a response in the SIP session. For example, if the
SIP servlet sending a request also receives the response, the following handler
setting must be specified in the SIP session.

SipServletRequest req = getSipFactory().createRequest(appSession, ...);
req.getSession().setHandler(getServletName());

Normally, in SIP a session means a real-time session by RTP/RTSP. On the other
hand, in HTTP Servlet a session refers to a way of relating multiple HTTP
transactions. In this document, session-related terms are defined as follows:

Converged Application Server automatically execute the following response and
retransmission processes:

Note: Filtering should be done carefully. In Oracle Communications
Converged Application Server, when the received SIP message
matches multiple SIP servlets, it is delivered only to any one SIP
servlet.

The use of additional criteria such as request parameters can be used
to direct a request to a servlet.

Table 5–3 Session-Related Terminology

Session Name Description

Realtime Session A realtime session established by RTP/RTSP.

HTTP Session A session defined by HTTP Servlet. A means of relating multiple
HTTP transactions.

SIP Session A means of implementing the same concept as in HTTP session in
SIP. SIP (RFC3261) has a similar concept of "dialog," but in this
document this is treated as a different term since its lifecycle and
generation conditions are different.

Application Session A means for applications using multiple protocols and dialogs to
associate multiple HTTP sessions and SIP sessions. Also called "AP
session."

Differences from HTTP Servlets

Overview of SIP Servlet Application Development 5-11

■ Sending “100 Trying”: When Converged Application Server receives an INVITE
request, it automatically creates and sends “100 Trying.”

■ Response to CANCEL: When WebLogic Communications Server receives a
CANCEL request, it executes the following processes if the request is valid.

1. Sends a 200 response to the CANCEL request.

2. Sends a 487 response to the INVITE request to be cancelled.

3. Invokes a doCancel method on the SIP servlet. This allows the application to
abort the process within the doCancel method, eliminating the need for
explicitly sending back a response.

■ Sends ACK to an error response to INVITE: When a 4xx, 5xx, or 6xx response is
returned for INVITE that were sent by a SIP servlet, WebLogic Communications
Server automatically creates and sends ACK. This is because ACK is required only
for a SIP sequence, and the SIP servlet does not require it.

When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never receives
ACK for the response.

■ Retransmission process when using UDP: SIP defines that sent messages are
retransmitted when low-trust transport including UDP is used. WebLogic
Communications Server automatically do the retransmission process according to
the specification.

Applications typically do not need to explicitly set and see header fields in HTTP
Servlet, as HTTP Servlet containers automatically manage fields such as
Content-Length and Content-Type. SIP Servlet provides the same header management
functions.

In SIP, however, since important information about message delivery exists in some
fields, these headers are not allowed to change by applications. Headers that can not
be changed by SIP Servlets are called system headers. Table 5–4 below lists system
headers:

Utility Functions
SIP Servlet defines the following utilities, which are available to SIP servlets:

1. SIP Session, Application Session

Table 5–4 System Headers

Header Name Description

Call-ID Contains ID information to associate multiple SIP messages as Call.

From, To Contains Information on the sender and receiver of the SIP request
(SIP, URI, etc.). tag parameters are given by the servlet container.

CSeq Contains sequence numbers and method names.

Via Contains a list of servers the SIP message passed through. This is
used when you want to keep track of the path to send a response to
the request.

Record-Route, Route Used when the proxy server mediates subsequent requests.

Contact Contains network information (such as IP address and port
number) that is used for direct communication between terminals.
For a REGISTER message, 3xx, or 485 response, this is not
considered as the system header and SIP servlets can directly edit
the information.

Differences from HTTP Servlets

5-12 Oracle Communications Converged Application Server Developer's Guide

2. SIP Factory

3. Proxy

SIP Session, Application Session As stated before, SIP Servlet provides a “SIP session”
whose concept is the same as a HTTP session. In HTTP, multiple transactions are
associated using information like Cookie. In SIP, this association is done with header
information (Call-ID and tag parameters in From and To). Servlet containers maintain
and manage SIP sessions. Messages within the same dialog can refer to the same SIP
session. Also, For a method that does not create a dialog (such as MESSAGE),
messages can be managed as a session if they have the same header information.

SIP Servlet has a concept of an “application session,” which does not exist in HTTP
Servlet. An application session is an object to associate and manage multiple SIP
sessions and HTTP sessions. It is suitable for applications such as B2BUA.

SIP Factory A SIP factory (SipFactory) is a factory class to create SIP Servlet-specific
objects necessary for application execution. You can generate the following objects:

SipFactory is located in the servlet context attribute under the default name. You can
take this with the following code.

ServletContext context = getServletContext();
SipFactory factory =
 (SipFactory) context.getAttribute("javax.servlet.sip.SipFactory");

Proxy Proxy is a utility used by a SIP servlet to proxy a request. In SIP, proxying has its
own sequences including forking. You can specify the following settings in proxying
with Proxy:

■ Recursive routing (recursive): When the destination of proxying returns a 3xx
response, the request is proxied to the specified target.

■ Record-Route setting: Sets a Record-Route header in the specified request.

■ Parallel/Sequential (parallel): Determines whether forking is executed in parallel
or sequentially.

■ stateful: Determines whether proxying is transaction stateful. This parameter is
not relevant because stateless proxy mode is deprecated in JSR289.

■ Supervising mode: In the event of the state change of proxying (response receipts),
an application reports this.

Table 5–5 Objects Generated with SipFactory

Class Name Description

URI, SipURI, Address Can generate address information including SIP URI from String.

SipApplicationSession Creates a new application session. It is invoked when a SIP servlet
starts a new SIP signal process.

SipServletRequest Used when a SIP servlet acts as UAC to create a request. Such
requests can not be sent with Proxy.proxyTo. They must be sent
with SipServletRequest.send.

6

Porting Existing Applications to Oracle Communications Converged Application Server 6-1

6Porting Existing Applications to Oracle
Communications Converged Application

Server

This chapter describes guidelines and issues related to porting existing applications
based on the SIP Servlet v1.0 specification to Oracle Communications Converged
Application Server and the SIP Servlet v1.1 specification.

■ Application Router and Legacy Application Composition

■ SipSession and SipApplicationSession Not Serializable

■ SipServletResponse.setCharacterEncoding() API Change

■ Transactional Restrictions for SipServletRequest and SipServletResponse

■ Immutable Parameters for New Parameterable Interface

■ Stateless Transaction Proxies Deprecated

■ Backward-Compatibility Mode for v1.0 Deployments

■ Deprecated APIs

■ SNMP MIB Changes

■ Renamed Diagnostic Monitors and Actions

Application Router and Legacy Application Composition
The SIP Servlet v1.1 specification describes a formal application selection and
composition process, which is fully implemented in Converged Application Server.
Use the SIP Servlet v1.1 techniques for all new development. Application composition
techniques described in earlier versions of WebLogic SIP Server are now deprecated.

Converged Application Server provides backwards compatibility for applications
using version SIP Servlet 1.0 composition techniques, provided that:

■ You do not configure a custom Application Router, and

■ You do not configure Default Application Router properties.

SipSession and SipApplicationSession Not Serializable
The SipSession and SipApplicationSession interfaces are no longer serializable in
the SIP Servlet v1.1 specification. Converged Application Server maintains binary
compatibility for the earlier v1.0 specification to allow any compiled applications that
treat these interfaces as serializable objects to work. However, you must modify the

SipServletResponse.setCharacterEncoding() API Change

6-2 Oracle Communications Converged Application Server Developer's Guide

source code of such applications before you can recompile them with Converged
Application Server.

Version 1.0 Servlets that stored the SipSession as a serializable info object using the
TimerService.createTimer API can achieve similar functionality by storing the
SipSession ID as the serializable info object. On receiving the timer expiration
callback, applications must use the SipApplicationSession and the serialized ID
object returned by the ServletTimer to find the SipSession within the
SipApplicationSession using the retrieved ID. See the SIP Servlet v1.1 API JavaDoc
at the Java Community Process web site (JSR 289: SIP Servlet v1.1 at jcp.org) for more
information.

SipServletResponse.setCharacterEncoding() API Change
SipServletResponse.setCharacterEncoding() no longer throws
UnsupportedEncodingException. If you have an application that explicitly catches
UnsupportedEncodingException with this method, the existing, compiled application
can be deployed to Converged Application Server unchanged. However, the source
code must be modified to not catch the exception before you can recompile.

Transactional Restrictions for SipServletRequest and SipServletResponse
SIP Servlet v1.1 acknowledges that SipServletRequest and SipServletResponse
objects always belong to a SIP transaction. The specification further defines the
conditions for committing a message, after which no application can modify or re-send
the message. See 5.2 Implicit Transaction State in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for a list of conditions that commit SIP
messages.

As a result of this change, any attempt to modify (set, add, or remove a header) or
send a committed message now results in an IllegalStateException. Ensure that any
existing code checks for the committed status of a message using
SipServletMessage.isCommitted() before modifying or sending a message.

Immutable Parameters for New Parameterable Interface
SIP Servlet v1.1 introduces a new javax.servlet.sip.Parameterable interface for
accessing, creating, and modifying parameters in various SIP headers. Note that the
system header parameters described in Table 6–1 are immutable and cannot be
modified using this new interface.

Table 6–1 Immutable System Header Parameters

Parameter Description

Header Immutable Parameters

Contact

From tag

To tag

Via branch, received, rport, wlsslport, wlssladdr, maddr, ttl

Record-Route All parameters are immutable.

Route For initial requests, the application that pushes the Route header can modify
any of the header's parameters. In all other cases, the parameters of the Route
header are immutable.

Backward-Compatibility Mode for v1.0 Deployments

Porting Existing Applications to Oracle Communications Converged Application Server 6-3

Stateless Transaction Proxies Deprecated
For applications in Converged Application Server, the Proxy function is always
transactionally stateful, and setting the Proxy object to stateless has no effect.

The Proxy.setStateful() and Proxy.getStateful() methods are redundant:
Proxy.getStateful() always returns true, and Proxy.setStateful() performs no
operation.

Backward-Compatibility Mode for v1.0 Deployments
Converged Application Server automatically detects precompiled, v1.0 deployments
and alters the SIP container behavior to maintain backward compatibility. The sections
that follow describe differences in behavior that occur when deploying v1.0 SIP
Servlets to Converged Application Server.

Validation Warnings for v1.0 Servlet Deployments
The SIP Servlet v1.1 specification requires more strict validation of Servlet
deployments than the previous specification. In the following cases, v1.0 SIP Servlets
can be successfully deployed to Converged Application Server, but a warning message
is displayed at deployment:

■ If a listener is declared in the listener-class element of a v1.0 deployment
descriptor but the corresponding class does not implement the EventListener
interface, a warning is displayed during deployment. (Version 1.1 SIP Servlets that
declare a listener must implement EventListener, or the application cannot be
deployed).

■ If a SIP Servlet is declared in the servlet-class element of a v1.0 deployment
descriptor, but the corresponding class does extend the SipServlet abstract class,
a warning is displayed. (Version 1.1 SIP Servlets must extend SipServlet, or the
application cannot be deployed).

Modifying Committed Messages
The SIP Servlet v1.1 specification now recommends that the SIP container throw an
IllegalStateException if an application attempts to modify a committed message. To
maintain backward compatibility, Converged Application Server throws the
IllegalStateException only when a version 1.1 SIP Servlet deployment modifies a
committed message.

Path Header as System Header
The SIP Servlet v1.1 specification now defines the Path header as a system header,
which cannot be modified by an application. Version 1.0 SIP Servlets can still modify
the Path header, but a warning message is generated. Version 1.1 SIP Servlets that
attempt to modify the Path header fail with an IllegalArgumentException.

Path For Register requests, the application that pushes the Path header can modify
any of the header's parameters. In all other cases, the parameters of the Path
header are immutable.

Table 6–1 (Cont.) Immutable System Header Parameters

Parameter Description

Deprecated APIs

6-4 Oracle Communications Converged Application Server Developer's Guide

SipServletResponse.createPrack() Exception
In Converged Application Server, SipServletResponse.createPrack() can throw
Rel100Exception only for version 1.1 SIP Servlets. createPrack() does not throw the
exception for version 1.0 SIP Servlets to maintain backward compatibility.

Proxy.proxyTo() Exceptions
For version 1.1 SIP Servlets, Converged Application Server throws an
IllegalStateException if a version 1.1 SIP Servlet specifies a duplicate branch URI
with Proxy.proxyTo(uri) or Proxy.proxyTo(uris). To maintain backward
compatibility, Converged Application Server ignores the duplicate URIs (and throws
no exception) if a version 1.0 SIP Servlet specifies duplicate URIs with these methods.

Changes to Proxy Branch Timers
SIP Servlet v1.1 makes several protocol changes that effect the behavior of proxy
branching for both sequential and parallel proxying.

For sequential proxying, the v1.1 specification requires that Converged Application
Server start a branch timer using the maximum of the sequential-search-timeout
value, which is configured in sip.xml, or SIP protocol Timer C (> 3 minutes). Prior
versions of Converged Application Server always set sequential branch proxy
time-outs using the value of sequential-search-timeout; this behavior is maintained
for v1.0 deployments.

For parallel proxying, the v1.1 specification provides a new proxyTimeout value that
controls proxying. The specification requires that Converged Application Server reset
a branch timer using the configured proxyTimeout value, rather than using the Timer
C value as required in the SIP Servlet v1.0 specification. The Timer C value is still used
for v1.0 deployments.

Deprecated APIs
Earlier versions of WebLogic SIP Server provided proprietary APIs to support
functionality and RFCs that were not supported in the SIP Servlet v1.0 specification.
The SIP Servlet v1.1 specification adds new RFC support and functionality, making the
proprietary APIs redundant. Table 6–2 shows newly-available SIP Servlet v1.1
methods that must be used in place of now-deprecated WebLogic SIP Server methods.
The deprecated methods are still available in this release to provide backward
compatibility for v1.0 applications.

Table 6–2 Deprecated APIs

Deprecated Methods (WebLogic SIP Server
Proprietary) Replacement Method (SIP Servlet v1.1)

WlssSipServlet.doRefer(),
WlssSipServlet.doUpdate(),
WlssSipServlet.doPrack()

SipServlet.doRefer(),
SipServlet.doUpdate(),
SipServlet.doPrack()

WlssSipServletResponse.createPrack() SipServletResponse.createPrack()

WlssProxy.getAddToPath(),
WlssProxy.setAddToPath()

Proxy.getAddToPath(),
Proxy.setAddToPath()

WlssSipServletMessage.setHeaderForm(),
WlssSipServletMessage.getHeaderForm()

SipServletMessage.setHeaderForm(),
SipServletMessage.getHeaderForm()

Renamed Diagnostic Monitors and Actions

Porting Existing Applications to Oracle Communications Converged Application Server 6-5

SNMP MIB Changes
Previous versions of the Converged Application Server SNMP MIB definition did not
follow the WebLogic MIB naming convention. Specifically, the MIB table column name
label did not begin with the table name. Converged Application Server changes the
SNMP MIB definition to prepend labels with sipServer in order to comply with the
WebLogic naming convention and provide compatibility with WebLogic tools that
generate the metadata file.

For example, in version 3.x the SipServerEntry MIB definition was:

 SipServerEntry ::= SEQUENCE {
 sipServerIndex DisplayString,
 t1TimeoutInterval INTEGER,
 t2TimeoutInterval INTEGER,
 t4TimeoutInterval INTEGER,

 }
In Converged Application Server, the definition is now:

 SipServerEntry ::= SEQUENCE {
 sipServerIndex DisplayString,
 sipServerT1TimeoutInterval Counter64,
 sipServerT2TimeoutInterval INTEGER,
 sipServerT4TimeoutInterval INTEGER,

 }
This change in the MIB may cause backwards compatibility issues if an application or
script uses the MIB table column name labels directly. All hard-coded labels, such as
iso.org.dod.internet.private.enterprises.bea.wlss.sipServerTable.t1Timeout
Interval must be changed to prepend the table name
(iso.org.dod.internet.private.enterprises.bea.wlss.sipServerTable.sipServe
rT1TimeoutInterval).

Renamed Diagnostic Monitors and Actions
The diagnostic monitors and diagnostic actions provided in Converged Application
Server are now prefixed with occas/. For example, the SIP Server 3.1 Sip_Servlet_
Before_Service monitor is now named occas/Sip_Servlet_Before_Service. You
must update any existing diagnostic configuration files or applications that reference
the non-prefixed names before they can work with Converged Application Server.

com.bea.wcp.util.Sessions See Table 9–1, " Deprecated
com.bea.wcp.util.Sessions Methods" to learn
more.

Note: Client-side SNMP tools generally load a MIB and issue
commands to retrieve values based on the loaded MIB labels. These
tools are unaffected by the above change.

The complete Converged Application Server MIB file is
installed as $WLSS_HOME/server/lib/WLSS-MIB.asn1.

Table 6–2 (Cont.) Deprecated APIs

Deprecated Methods (WebLogic SIP Server
Proprietary) Replacement Method (SIP Servlet v1.1)

Renamed Diagnostic Monitors and Actions

6-6 Oracle Communications Converged Application Server Developer's Guide

See the discussion on using the WebLogic Server Diagnostic Framework (WLDF) in
the Converged Application Server Administrator’s Guide for more information.

7

Requirements and Best Practices for SIP Applications 7-1

7Requirements and Best Practices for SIP
Applications

This chapter describes requirements and best practices for developing applications for
deployment to Oracle Communications Converged Application Server:

■ Overview of Developing Distributed Applications for Converged Application
Server

■ Applications Must Not Create Threads

■ Servlets Must Be Non-Blocking

■ Store all Application Data in the Session

■ All Session Data Must Be Serializable

■ Use setAttribute() to Modify Session Data in “No-Call” Scope

■ send() Calls Are Buffered

■ Mark SIP Servlets as Distributable

■ Use SipApplicationSessionActivationListener Sparingly

■ Observe Best Practices for Java EE Applications

■ Optimizing Memory Utilization and Performance with Serialization

Overview of Developing Distributed Applications for Converged
Application Server

In a typical production environment, SIP applications are deployed to a cluster of
Converged Application Server instances that form the engine tier cluster. A separate
cluster of servers in the SIP data tier provides a replicated, in-memory database of the
call states for active calls. In order for applications to function reliably in this
environment, you must observe the programming practices and conventions described
in the sections that follow to ensure that multiple deployed copies of your application
perform as expected in the clustered environment.

If you are porting an application from a previous version of Converged Application
Server, the conventions and restrictions described below may be new to you, because
the 2.0 and 2.1 versions of WebLogic SIP Server implementations did not support
clustering. Thoroughly test and profile your ported applications to discover problems
and ensure adequate performance in the new environment.

Applications Must Not Create Threads

7-2 Oracle Communications Converged Application Server Developer's Guide

Applications Must Not Create Threads
Converged Application Server is a multi-threaded application server that carefully
manages resource allocation, concurrency, and thread synchronization for the modules
it hosts. To obtain the greatest advantage from the Converged Application Server
architecture, construct your application modules according to the SIP Servlet and Java
EE API specifications.

Avoid application designs that require creating new threads in server-side modules
such as SIP Servlets:

■ The SIP Servlet container automatically locks the associated call state when
invoking the doxxx method of a SIP Servlet. If the doxxx method spawns
additional threads or accesses a different call state before returning control,
deadlock scenarios and lost updates to session data can occur.

■ Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause poor Converged Application Server performance when the server
load increases. Problems such as deadlocks and thread starvation may not appear
until the application is under a heavy load.

■ Multi threaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult
to anticipate and analyze.

■ The WlssSipApplicationSession.doAction() method, described in "Use
setAttribute() to Modify Session Data in “No-Call” Scope", does not provide
synchronization for spawned Java threads. Any threads created within
doAction() can execute another doAction() on the same
WlssSipApplicationSession. Similarly, main threads that use doAction() to
access a different wlssSipApplicationSession can lead to deadlocks, because the
container automatically locks main threads when processing incoming SIP
messages. "Use setAttribute() to Modify Session Data in “No-Call” Scope"
describes a potential deadlock situation.

Servlets Must Be Non-Blocking
SIP and HTTP Servlets must not block threads in the body of a SIP method because the
call state remains locked while the method is invoked. For example, no Servlet method
must actively wait for data to be retrieved or written before returning control to the
SIP Servlet container.

Store all Application Data in the Session
If you deploy your application to more than one engine tier server (in a replicated
Converged Application Server configuration) you must store all application data in the
session as session attributes. In a replicated configuration, engine tier servers maintain
no cached information; all application data must be de-serialized from the session
attribute available in SIP data tier servers.

Caution: If your application must spawn threads, you must guard
against deadlocks and carefully manage concurrent access to session
data. At a minimum, never spawn threads inside the service method
of a SIP Servlet. Instead, maintain a separate thread pool outside of
the service method, and be careful to synchronize access to all session
data.

Use setAttribute() to Modify Session Data in “No-Call” Scope

Requirements and Best Practices for SIP Applications 7-3

All Session Data Must Be Serializable
To support in-memory replication of SIP application call states, you must ensure that
all objects stored in the SIP Servlet session are serializable. Every field in an object
must be serializable or transient in order for the object to be considered serializable. If
the Servlet uses a combination of serializable and non-serializable objects, Converged
Application Server cannot replicate the session state of the non-serializable objects.

Use setAttribute() to Modify Session Data in “No-Call” Scope
The SIP Servlet container automatically locks the associated call state when invoking
the doxxx method of a SIP Servlet. However, applications may also attempt to modify
session data in “no-call” scope. No-call scope refers to the context where call state data
is modified outside the scope of a normal doxxx method. For example, data is
modified in no-call scope when an HTTP Servlet attempts to modify SIP session data,
or when a SIP Servlet attempts to modify a call state other than the one that the
container locked before invoking the Servlet.

Applications must always use the SIP Session's setAttribute method to change
attributes in no-call scope. Likewise, use removeAttribute to remove an attribute from
a session object. Each time setAttribute/removeAttribute is used to update session
data, the SIP Servlet container obtains and releases a lock on the associated call state.
(The methods enqueue the object for updating, and return control immediately.) This
ensures that only one application modifies the data at a time, and also ensures that
your changes are replicated across SIP data tier nodes in a cluster.

If you use other set methods to change objects within a session, Converged
Application Server cannot replicate those changes.

Note that the Converged Application Server container does not persist changes to a
call state attribute that are made after calling setAttribute. For example, in the
following code sample the setAttribute call immediately modifies the call state, but
the subsequent call to modifyState() does not:

 Foo foo = new Foo(..);
 appSession.setAttribute("name", foo); // This persists the call state.
 foo.modifyState(); // This change is not persisted.

Instead, ensure that your Servlet code modifies the call state attribute value before
calling setAttribute, as in:

 Foo foo = new Foo(..);
 foo.modifyState();
 appSession.setAttribute("name", foo);

Also, keep in mind that the SIP Servlet container obtains a lock to the call state for each
individual setAttribute call. For example, when executing the following code in an
HTTP Servlet, the SIP Servlet container obtains and releases a lock on the call state lock
twice:

appSess.setAttribute("foo1", "bar2");
appSess.setAttribute("foo2", "bar2");

This locking behavior ensures that only one thread modifies a call state at any given
time. However, another process could potentially modify the call state between
sequential updates. The following code is not considered thread safe when done
no-call state:

Integer oldValue = appSession.getAttribute("counter");
Integer newValue = incrementCounter(oldValue);

send() Calls Are Buffered

7-4 Oracle Communications Converged Application Server Developer's Guide

appSession.setAttribute("counter", newValue);

To make the above code thread safe, you must enclose it using the
wlssAppSession.doAction method, which ensures that all modifications made to the
call state are performed within a single transaction lock, as in:

wlssAppSession.doAction(new WlssAction() {
 public Object run() throws Exception {
 Integer oldValue = appSession.getAttribute("counter");
 Integer newValue = incrementCounter(oldValue);
 appSession.setAttribute("counter", newValue);
 return null;
 }
 });

Finally, be careful to avoid deadlock situations when locking call states in a
doSipMethod call, such as doInvite(). Keep in mind that the Converged Application
Server container has already locked the call state when the instructions of a
doSipMethod are executed. If your application code attempts to access the current call
state from within such a method (for example, by accessing a session that is stored
within a data structure or attribute), the lock ordering results in a deadlock.

Example 7–1 shows an example that can result in a deadlock. If the code is executed by
the container for a call associated with callAppSession, the locking order is reversed
and the attempt to obtain the session with getApplicationSession(callId) causes a
deadlock.

Example 7–1 Session Access Resulting in a Deadlock

WlssSipApplicationSession confAppSession = (WlssSipApplicationSession) appSession;
confAppSession.doAction(new WlssAction() {
 // confAppSession is locked
 public Object run() throws Exception {
 String callIds = confAppSession.getAttribute("callIds");
 for (each callId in callIds) {
 callAppSess = Session.getApplicationSession(callId);
 // callAppSession is locked
 attributeStr += callAppSess.getAttribute("someattrib");
 }
 confAppSession.setAttribute("attrib", attributeStr);
 }
}

See "Modifying the SipApplicationSession" for more information about using the
com.bea.wcp.sip.WlssAction interface.

send() Calls Are Buffered
If your SIP Servlet calls the send() method within a SIP request method such as
doInvite(), doAck(), doNotify(), and so forth, keep in mind that the Converged
Application Server container buffers all send() calls and transmits them in order after
the SIP method returns. Applications cannot rely on send() calls to be transmitted
immediately as they are called.

Caution: Applications must not wait or sleep after a call to send(),
because the request or response is not transmitted until control returns
to the SIP Servlet container.

Optimizing Memory Utilization and Performance with Serialization

Requirements and Best Practices for SIP Applications 7-5

Mark SIP Servlets as Distributable
If you have designed and programmed your SIP Servlet to be deployed to a cluster
environment, you must include the distributable marker element in the Servlet's
deployment descriptor when deploying the application to a cluster of engine tier
servers. If you omit the distributable element, Converged Application Server does
not deploy the Servlet to a cluster of engine tier servers. If you mark distributable in
sip.xml it must also be marked in the web.xml for a WAR file.

The distributable element is not required, and is ignored if you deploy to a single,
combined-tier (non-replicated) Converged Application Server instance.

Use SipApplicationSessionActivationListener Sparingly
The SIP Servlet 1.1 specification introduces
SipApplicationSessionActivationListener, which can provide callbacks to an
application when SIP Sessions are passivated or activated. Keep in mind that callbacks
occur only in a replicated Converged Application Server deployment. Single-server
deployments use no SIP data tier, so SIP Sessions are never passivated.

Also, keep in mind that in a replicated deployment Converged Application Server
activates and passivates a SIP Session many times, before and after SIP messages are
processed for the session. (This occurs normally in any replicated deployment, even
when RDBMS-based persistence is not configured.) Because this constant cycle of
activation and passivation results in frequent callbacks, use
SipApplicationSessionActivationListener sparingly in your applications.

Session Expiration Best Practices
For a JSR289 application, the container is more “intelligent” in removing sessions. For
example, there is no need to explicitly call invalidate() on a SIP session or SIP
application session.

However, if setExpirs() is used on a session and the application is of a JSR289 type
then that call has no effect unless setInvalidateWhenRead(false) is called on the
session.

Observe Best Practices for Java EE Applications
If you are deploying applications that use other Java EE APIs, observe the basic
clustering guidelines associated with those APIs. For example, if you are deploying
EJBs, you must design all methods to be idempotent and make EJB homes clusterable
in the deployment descriptor. See the discussion on clustering best practices in the
Oracle WebLogic Server Documentation for more information.

Optimizing Memory Utilization and Performance with Serialization
Converged Application Server provides a local serialization command that enables
you to optimize a standalone domain for memory utilization or performance, as
required by a SIP application. The local serialization command is a system property
called wlss.local.serialization which must be provided to the Java Virtual
Machine (JVM) that starts Converged Application Server.

To enable or disable serialization, edit the system property wlss.local.serialization
in the startWebLogic.sh script, and set its value to true or false. The

Optimizing Memory Utilization and Performance with Serialization

7-6 Oracle Communications Converged Application Server Developer's Guide

startWebLogic.sh script is located in the DOMAIN_HOME/bin directory, where
DOMAIN_HOME is the domain’s home directory.

This command can be set to one of the following values:

■ True: This is the default setting. When you set the local serialization flag to true,
Converged Application Server will optimize a standalone domain for efficient
memory utilization. Maintain this setting if memory utilization is of concern in
your environment, especially in scenarios where the application session time-out
values are large. When set to true, Converged Application Server will serialize the
call state once a dialog is established and will de-serialize that call state as it
becomes necessary to do so. Note that performance may be impacted by the
serialization and de-serialization of call states.

■ False: When set to false, Converged Application Server optimizes a standalone
domain for performance. Set to false when performance is critical in your
environment and calls have fewer hold times or lower application session time-out
values. Converged Application Server will not serialize or de-serialize call states.
Note that, since the call state will be held in memory for the life of each call, an
increase in the hold times for the calls will have an impact on memory utilization.

8

Using Compact and Long Header Formats for SIP Messages 8-1

8Using Compact and Long Header Formats for
SIP Messages

This chapter describes how to use the Oracle Communications Converged Application
Server SipServletMessage interface and configuration parameters to control SIP
message header formats:

■ Overview of Header Format APIs and Configuration

■ Summary of Compact Headers

■ Assigning Header Formats with WlssSipServletMessage

■ Summary of API and Configuration Behavior

Overview of Header Format APIs and Configuration
Applications that operate on wireless networks may want to limit the size of SIP
headers to reduce the size of messages and conserve bandwidth. JSR 289 provides the
SipServletMessage.setHeaderForm() method, which enables application developers
to set a long or compact format for the value of a given header.

One feature of the SipServletMessage API provided in JSR 289 is the ability to set long
or compact header formats for the entire SIP message using the setHeaderForm
method.

In addition to SipServletMessage, Converged Application Server provides a
container-wide configuration parameter that can control SIP header formats for all
system-generated headers. This system-wide parameter can be used along with
SipServletMessage.setHeaderForm and SipServletMessage.setHeader to further
customize header formats.

Summary of Compact Headers
Table 8–1 defines the compact header abbreviations described in the SIP specification
(http://www.ietf.org/rfc/rfc3261.txt). Specifications that introduce additional
headers may also include compact header abbreviations.

Table 8–1 Compact Header Abbreviations

Header Name (Long
Format)

Compact
Format

Call-ID i

Contact m

Assigning Header Formats with WlssSipServletMessage

8-2 Oracle Communications Converged Application Server Developer's Guide

Assigning Header Formats with WlssSipServletMessage
All instances of SipServletRequest, SipServletResponse, and
WlssSipServletResponse can be cast to WlssSipServletMessage in order to use the
extended API.

A pair of getter/setter methods, setUseHeaderForm and getUseHeaderForm, are used
to assign or retrieve the header formats used in the message. These methods assign or
return a HeaderForm object, which is a simple Enumeration that describes the header
format:

■ COMPACT: Forces all headers in the message to use compact format. This behavior is
similar to the container-wide configuration value of “force compact,” as described
in use-header-form in the Converged Application Server Administrator’s Guide.

■ LONG: Forces all headers in the message to use long format. This behavior is similar
to the container-wide configuration value of “force long,” as described in
use-header-form in the Converged Application Server Administrator’s Guide.

■ DEFAULT: Defers the header format to the container-wide configuration value set in
use-header-form.

WlssSipServletResponse.setUseHeaderForm can be used in combination with
SipServletMessage.setHeader and the container-level configuration parameter,
use-compact-form. See "Summary of API and Configuration Behavior".

Summary of API and Configuration Behavior
Header formats can be specified at the header, message, and SIP Servlet container
levels. Table 8–2 shows the header format that results when adding a new header with
SipServletMessage.setHeader, given different container configurations and
message-level settings with WlssSipServletResponse.setUseHeaderForm.

Content-Encoding e

Content-Length l

Content-Type c

From f

Subject s

Supported k

To t

Via v

Table 8–2 API Behavior when Adding Headers

SIP Servlet
Container Header
Configuration
(use-compact-for
m Setting)

WlssSipServletMessage.

setUseHeaderForm Setting

SipServletMessage.

setHeader Value
Resulting
Header

COMPACT DEFAULT “Content-Type” “Content-Type”

COMPACT DEFAULT “c” “c”

Table 8–1 (Cont.) Compact Header Abbreviations

Header Name (Long
Format)

Compact
Format

Summary of API and Configuration Behavior

Using Compact and Long Header Formats for SIP Messages 8-3

Table 8–3 shows the system header format that results when setting the header format
with WlssSipServletResponse.setUseHeaderForm given different container
configuration values.

COMPACT COMPACT “Content-Type” “c”

COMPACT COMPACT “c” “c”

COMPACT LONG “Content-Type” “Content-Type”

COMPACT LONG “c” “Content-Type”

LONG DEFAULT “Content-Type” “Content-Type”

LONG DEFAULT “c” “c”

LONG COMPACT “Content-Type” “c”

LONG COMPACT “c” “c”

LONG LONG “Content-Type” “Content-Type”

LONG LONG “c” “Content-Type”

FORCE_COMPACT DEFAULT “Content-Type” “c”

FORCE_COMPACT DEFAULT “c” “c”

FORCE_COMPACT COMPACT “Content-Type” “c”

FORCE_COMPACT COMPACT “c” “c”

FORCE_COMPACT LONG “Content-Type” “Content-Type”

FORCE_COMPACT LONG “c” “Content-Type”

FORCE_LONG DEFAULT “Content-Type” “Content-Type”

FORCE_LONG DEFAULT “c” “Content-Type”

FORCE_LONG COMPACT “Content-Type” “c”

FORCE_LONG COMPACT “c” “c”

FORCE_LONG LONG “Content-Type” “Content-Type”

FORCE_LONG LONG “c” “Content-Type”

Table 8–3 API Behavior for System Headers

SIP Servlet
Container Header
Configuration
(use-compact-form
Setting)

WlssSipServletMessage.

setUseHeaderForm
Setting Resulting Contact Header

COMPACT DEFAULT “m”

COMPACT COMPACT “m”

COMPACT LONG “Contact”

LONG DEFAULT “Contact”

LONG COMPACT “m”

Table 8–2 (Cont.) API Behavior when Adding Headers

SIP Servlet
Container Header
Configuration
(use-compact-for
m Setting)

WlssSipServletMessage.

setUseHeaderForm Setting

SipServletMessage.

setHeader Value
Resulting
Header

Summary of API and Configuration Behavior

8-4 Oracle Communications Converged Application Server Developer's Guide

LONG LONG “Contact”

FORCE_COMPACT DEFAULT “m”

FORCE_COMPACT COMPACT “m”

FORCE_COMPACT LONG “Contact”

FORCE_LONG DEFAULT “Contact”

FORCE_LONG COMPACT “m”

FORCE_LONG LONG “Contact”

Table 8–3 (Cont.) API Behavior for System Headers

SIP Servlet
Container Header
Configuration
(use-compact-form
Setting)

WlssSipServletMessage.

setUseHeaderForm
Setting Resulting Contact Header

9

Composing SIP Applications 9-1

9Composing SIP Applications

This chapter describes how to use Oracle Communications Converged Application
Server application composition features.

Using the Application Router
Application composition is the process of “chaining” multiple SIP applications into a
logical path to apply services to a SIP request. The SIP Servlet v1.1 specification
introduces an Application Router (AR) deployment, which performs a key role in
composing SIP applications. The Application Router examines an initial SIP request
and uses custom logic to determine which SIP application must process the request. In
Converged Application Server, all initial requests are first delivered to the AR, which
determines the application used to process the request.

Converged Application Server supports the Default Application Router, which can be
configured using a text file. Custom Application Routers are also supported. You
create a Custom Application Router by implementing the SipApplicationRouter
interface. A Custom Application Router can use complex processing to make routing
decisions.

In contrast to the Application Router, which requires knowledge of which SIP
applications are available for processing a message, individual SIP applications remain
independent from one another. An individual application performs a very specific
service for a SIP request, without requiring any knowledge of other applications
deployed on the system. (The Application Router does require knowledge of deployed
applications, and the SipApplicationRouter interface provides for automatic
notification of application deployment and undeployment.)

Individual SIP applications may complete their processing of an initial request by
proxying or relaying the request, or by terminating the request as a User Agent Server

Note: The SIP Servlet v1.1 specification
(http://jcp.org/en/jsr/detail?id=289) describes a formal
application selection and composition process, which is fully
implemented in Converged Application Server. Use the SIP Servlet
v1.1 techniques, as described in this document, for all new
development. Application composition techniques described in earlier
versions of Converged Application Server are now deprecated.

Converged Application Server provides backwards compatibility for
applications using version 1.0 composition techniques, provided that:

■ You do not configure a custom Application Router.

■ You do not configure the Default Application Router properties.

Using the Application Router

9-2 Oracle Communications Converged Application Server Developer's Guide

(UAS). If an initial request is proxied or relayed, the SIP container again forwards the
request to the Application Router, which selects the next SIP application to provide a
service for the request. In this way, the AR can chain multiple SIP applications as
needed to process a request. The chaining process is terminated when:

■ A selected SIP application acts as a UAS to terminate the chain, or

■ There are no more applications to select for that request. (In this case, the request is
sent out.)

When the chain is terminated and the request sent, the SIP container maintains the
established path of applications for processing subsequent requests, and the AR is no
longer consulted.

Figure 9–1 shows the use of an Application Router for applying multiple service to a
SIP request.

Figure 9–1 Composed Application Model

Note that the AR may select remote as well as local applications. The chain of services
need not reside within the same Converged Application Server container.

Using the Default Application Router
Converged Application Server includes a Default Application Router (DAR), which
provides the basic functionality described in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289), Appendix C: Default Application Router.

In summary, the Converged Application Server DAR implements all methods of the
SipApplicationRouter interface, and is configured using the simple Java properties
file described in the v1.1 specification.

Each line of the DAR properties file specifies one or more SIP methods, and is
followed by SIP routing information in comma-delimited format. The DAR initially
reads the properties file on startup, and then reads it each time a SIP application is
deployed or undeployed from the container.

Using the Application Router

Composing SIP Applications 9-3

To specify the location of the configuration file used by the DAR, configure the
properties using the Administration Console, as described in "Configuring a Custom
Application Router", or include the following parameter when starting the Converged
Application Server instance:

-Djavax.servlet.sip.ar.dar.configuration

(To specify a property file, rather than a URI, include the prefix file:///) This Java
parameter is specified at the command line, or it can be included in your server
startup script.

See Appendix C in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for detailed information about the format of
routing information used by the Default Application Router.

Note that the Converged Application Server DAR accepts route region strings in
addition to “originating,” “terminating,” and “neutral.” Each new string value is
treated as an extended route region. Also, the Converged Application Server DAR uses
the order of properties in the configuration file to determine the route entry sequence;
the state_info value has no effect when specified in the DAR configuration.

Configuring a Custom Application Router
In contrast to DAR, which is property-file driven, a Custom Application Router is
implemented as a Java class, which allows for complex decision-making processes.

If you develop a custom Application Router, you must store the implementation for
the AR in the /approuter subdirectory of the domain home directory. Supporting
libraries for the AR can be stored in a /lib subdirectory within /approuter. (If you
have multiple implementations of SipApplicationRouter, use the
-Djavax.servlet.sip.ar.spi.SipApplicationRouterProvider option at startup to
specify which one to use.)

Converged Application Server provides several configuration parameters to specify
the AR class and to pass initialization properties to the AR or AR. To configure these
parameters using the Administration Console:

1. Log in to the Administration Console for your domain.

2. Select the SipServer node in the left pane.

3. Click the Configuration tab and then the Application Router tab.

4. Use the options on the Application Router pane to configure the custom AR:

■ Use Custom AR: Select this option to use a custom AR instead of the Default
AR. Note that you must restart the server after selecting or clearing this
option, to switch between using the DAR and a custom AR.

■ Custom AR filename: Specify only the filename of the custom AR (packaged
as a JAR) to use. The custom AR implementation must reside in the $DOMAIN_
HOME/approuter subdirectory.

■ AR configuration data: Enter properties to pass to the AR in the init method.
The options are passed either to the DAR or custom AR, depending on
whether the Use Custom AR option is selected.

Note: In a clustered environment, the custom AR is deployed to all
engine tier instances of the domain; you cannot deploy different AR
implementations within the same domain.

Using the Application Router

9-4 Oracle Communications Converged Application Server Developer's Guide

All configuration properties must conform to the Java Properties format. DAR
properties must further adhere to the detailed property format described in
Appendix C of the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289). Each property must be listed on a
separate, single line without line breaks or spaces, as in:

INVITE:("OriginatingCallWaiting","DAR:From","ORIGINATING","","NO_
ROUTE","0"),("CallForwarding","DAR:To","TERMINATING","","NO_ROUTE","1")
SUBSCRIBE:("CallForwarding","DAR:To","TERMINATING","","NO_ROUTE","1")
You can optionally specify AR initialization properties when starting the
Converged Application Server instance by including the
-Djavax.servlet.sip.ar.dar.configuration Java option. (To specify a
property file, rather than a URI, include the prefix file:///) If you specify the
Java startup option, the container ignores any configuration properties defined
in AR configuration data (stored in sipserver.xml). You can modify the
properties in AR configuration data at any time, but the properties are not
passed to the AR until the server is restarted with the
-Djavax.servlet.sip.ar.dar.configuration option omitted.

■ Default application name: Enter the name of a default application that the
container should call when the custom AR cannot find an application to
process an initial request. If no default application is specified, the container
returns a 500 error if the AR cannot select an application.

5. Select Save.

See Section 15 in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for more information about the function of
the AR. See also the SIP Servlet v1.1 API for information about how to implement a
custom AR.

Using the Built-in Custom Application Router
The Converged Application Server provides a built-in CAR that you can use. To use
the CAR implementation, you supply configuration parameters to the CAR in the
form of an XML file. The file specifies the applications in the chain, and the rules for
targeting them.

The rules can impose conditions on application targeting based on factors such as the
user identity or the request URI.

To use the prebuilt CAR, first create the configuration file that controls the behavior of
the CAR.

After creating the configuration file, follow the steps listed in "Configuring a Custom
Application Router" to apply the built-in CAR. In the configuration fields, provide the
following values:

Note: You must first deploy an application before specifying its
name as the value of Default application name.

Note: These configuration options are persisted as XML elements in
the sipserver.xml file. See the chapter “Engine Tier Configuration
Reference (sipserver.xml)” in the Converged Application Server
Administrator’s Guide for more information.

Using the Application Router

Composing SIP Applications 9-5

■ For the custom AR filename, use approuter-SDP.jar

■ In the AR configuration data field, specify the name of the configuration file you
created as the value of the configFileName variable. For example:

configFileName=./app.xml

■ As the second line of the AR configuration data, enter the following:

byPassIfAppIsNotWorking=true

The following section provides more information on the prebuilt CAR configuration
file format.

Configuring the Custom Application Router
You control the prebuilt custom application router using an XML-based configuration
file. The file lets you specify the application chain and the conditions for invoking the
applications.

The configuration file is specified by configFileName property in the AR
Configuration Data field of the UI.

You place the file in the following location:

domain_home/approuter/lib

The schema definition for the configuration file is located in the same location. It is
named app-easydef.xsd.

Figure 9–1 shows a sample configuration for the prebuilt CAR implementation:

Example 9–1 Example Prebuilt CAR Configuration File

<app-router-conf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/sdp/easyapp-def easyapp-def.xsd"
 xmlns="http://www.oracle.com/sdp/easyapp-def" >
 <external-resource>
 <file>
 <file-path>./approuter/lib/user.properties</file-path>
 </file>
 </external-resource>
 <user-identity-header>From</user-identity-header>
 <terminating>
 <app>
 <app-name>basic-call-app</app-name>
 <index>0</index>
 <mapping-rule>
 <protocol>SIP</protocol>
 <pattern>
 <and>
 <equal><var>request.method</var><value>INVITE</value></equal>
<not><contains><var>request.uri</var><value>voicemail</value></contains></not>
 </and>
 </pattern>
 <subscriber-identity>.*</subscriber-identity>
 <request-uri>.*</request-uri>
 </mapping-rule>
 </app>
 <app>
 <app-name>presence-app</app-name>
 <index>1</index>
 <mapping-rule>
 <protocol>SIP</protocol>

Using the Application Router

9-6 Oracle Communications Converged Application Server Developer's Guide

 <pattern>
 <and>
 <equal><var>request.method</var><value>SUBSCRIBE</value></equal>
 <equal><var>request.method</var><value>PUBLISH</value></equal>
 </and>
 </pattern>
 <subscriber-identity>.*</subscriber-identity>
 <request-uri>.*</request-uri>
 </mapping-rule>
 </app>
 <app>
 <app-name>RouteToExternalURI</app-name>
 <index>2</index>
 <externalURI>sip:media@voicemail.com</externalURI>
 <mapping-rule>
 <protocol>SIP</protocol>
 <pattern>
 <and>
 <equal><var>request.method</var><value>INVITE</value></equal>
 <contains><var>request.uri</var><value>voicemail</value></contains>
 </and>
 </pattern>
 <subscriber-identity>.*</subscriber-identity>
 <request-uri>.*</request-uri>
 </mapping-rule>
 </app>
 </terminating>
</app-router-conf>

Notice the application named RouteToExternalURI, in the final app-name element.
This is a symbolic application name that enables routing to an external URI. The CAR
implementation adds the external URI to SipApplicationRouterInfo, which directs
the container to route the request to the external URI. You can configure more than one
special application, each with its own name, pattern, and index.

The pattern element syntax is the same as the pattern syntax used in sip.xml

The Application Router must provide the user identity of a subscriber to retrieve
subscriber information from external sources. For the IMS environment, the
P-Asserted-Identify header identifies the user by default. For non-IMS environments,
the From header identifies the user. You can specify which header should be used to
extract the user identity using the user-identity-header element.

For example:

<app-router-conf xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/sdp/app-def app-def.xsd"
 xmlns="http://www.oracle.com/sdp/app-def" >
 <external-resource>
 <file>
 <file-path>./approuter/lib/user.properties</file-path>
 </file>
 </external-resource>
 <user-identity-header>From</user-identity-header>

To access a database, you must specify the JNDI name for the JDBC connection the
SQL statement that selects the subscriber information.

For example:

 <external-resource>
 <rdbms>

Using the Application Router

Composing SIP Applications 9-7

 <jdbc-jndi-name>jdbc/OwlcsLs</jdbc-jndi-name>
 <sql>select appname from userapp where aor=?</sql>
 </rdbms>
 </external-resource>

In this example, appname identifies the column name in the table that contains the
applications for the subscriber. The aor variable is the column name that represents the
subscriber. The parameter for this SQL will be the P-Asserted-Identity header or From
header of the initial request, as defined by the user-identity-header element.

If an HSS system is used as the external source, the diameter channel must be set up
for each server, as specified in the Oracle Communications Converged Application Server
Administrator’s Guide.

Additional information you need to specify in the configuration file includes:

■ file-path: The diameter configuration file path

■ service-indication: The Service-Indication AVP value which is defined in the 3GPP
29.328 section 7.4

■ app-element: The customer AVP name. Its value is the applications subscribed to
by the subscriber. In the context of the HSS, the app-element is the value of the
ServiceData AVP.

The configuration file may be like:

 <external-resource>
 <hss>
 <file-path>./approuter/lib/hssconfig.xml</file-path>
 <service-indication>ARTest</service-indication>
 <app-element>apps</app-element>
 </hss>
 </external-resource>

The diameter configuration file, hssconfig.xml in the example, must comply with the
OCCAS diameter.xml format, and be located in the following directory:

domain_home/approuter/lib

An example of the hssconfig.xml file is as follows:

<?xml version="1.0" encoding="utf-8"?>

<diameter xmlns="http://www.bea.com/ns/wlcp/diameter/300" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance">
 <configuration>
 <name>hssclient</name>
 <target>engine1</target>
 <target>engine2</target>
 <host>hssclient</host>
 <realm>bea.com</realm>

 <message-debug-enabled>true</message-debug-enabled>

 <application>
 <name>WlssShApplication</name>
 <class-name>com.bea.wcp.diameter.sh.WlssShApplication</class-name>
 <param>
 <name>destination.host</name>
 <value>hss</value>
 </param>
 </application>

Working with SIP and HTTP Sessions

9-8 Oracle Communications Converged Application Server Developer's Guide

 <peer>
 <host>hss</host>
 <address>10.182.101.206</address>
 <port>3900</port>
 </peer>
 </configuration>
</diameter>

Properties can also reside externally. This may be useful in testing or evaluation
scenarios. In this case, you only need to configure the file path.

 <external-resource>
 <file>
 <file-path>./approuter/lib/user.properties</file-path>
 </file>
 </external-resource>

The file, user.properties in the example, should contain configuration information
consisting of name-value pairs, and should be parsable by a Java Properties class. It
should be located in the following directory:

domain_home/approuter/lib

The format of each line in the user properties file should be subscriber name followed
by the applications available to the subscriber.

For example:

alice@example.com=proxyregistrar,app2,app1
bob@example.com=proxyregistrar,app1

The index element specifies the order of invocation for the applications. The lower
number has higher priority. The index must start at 0.

The mapping-rule element is used to determine if the application should be invoked
by a special initial request. The value of subscriber-identity and request-uri must be
Java regular expression. Only if the initial request matches all conditions, including
protocol, pattern, subscriber-identity and request-uri, can the request be targeted to the
application.

Working with SIP and HTTP Sessions
As shown in Figure 9–2, each converged application deployed to the Converged
Application Server container has a unique SipApplicationSession, which can contain
one or more SipSession and HttpSession objects.

Working with SIP and HTTP Sessions

Composing SIP Applications 9-9

Figure 9–2 Sessions in a Converged Application

The API provided by javax.servlet.SipApplicationSession enables you to iterate
through all available sessions in a given SipApplicationSession. It also provides
methods to encode a URL with the unique application session when developing
converged applications.

In prior releases, Converged Application Server extended the basic SIP Servlet API to
provide methods for:

■ Creating new HTTP sessions from a SIP Servlet

■ Adding and removing HTTP sessions from SipApplicationSession

■ Obtaining SipApplicationSession objects using either the call ID or session ID

■ Encoding HTTP URLs with session IDs from within a SIP Servlet

This functionality is now provided directly as part of the SIP Servlet API version 1.1,
and the proprietary API (com.bea.wcp.util.Sessions) is now deprecated. Table 9–1
lists the SIP Servlet APIs to use in place of now deprecated methods. See the SIP
Servlet v1.1 API JavaDoc at the Java Community Process web site (JSR 289: SIP Servlet
v1.1 at jcp.org) for more information.

Table 9–1 Deprecated com.bea.wcp.util.Sessions Methods

Deprecated Method (in
com.bea.wcp.util.Sessions) Replacement Method Description

getApplicationSession javax.servlet.sip.SipSessionsUtil.

getApplicationSession

Obtains the
SipApplicationSession object
with a specified session ID.

getApplicationSessionsByCallI
d

None. Obtains an Iterator of
SipApplicationSession objects
associated with the specified call
ID.

createHttpSession None. Applications can instead cast an
HttpSession into
ConvergedHttpSession.

Working with SIP and HTTP Sessions

9-10 Oracle Communications Converged Application Server Developer's Guide

Modifying the SipApplicationSession
When using a replicated domain, Converged Application Server automatically
provides concurrency control when a SIP Servlet modifies a SipApplicationSession
object. In other words, when a SIP Servlet modifies the SipApplicationSession object,
the SIP container automatically locks other applications from modifying the object at
the same time.

Non-SIP applications, such as HTTP Servlets, must themselves ensure that the
application call state is locked before modifying it in a replicated environment. This is
also required if a single SIP Servlet needs to modify other call state objects, such as
when a conferencing Servlet joins multiple calls.

To help application developers manage concurrent access to the application session
object, Converged Application Server extends the standard SipApplicationSession
object with com.bea.wcp.sip.WlssSipApplicationSession, and adds a two new
interfaces, com.bea.wcp.sip.WlssAction and
com.bea.wcp.sip.WlssAsynchronousAction, to encapsulate tasks performed to
modify the session. When these APIs are used, the SIP container ensures that all
business logic contained within the WlssAction and WlssAsynchronousAction objects
is executed on a locked copy of the associated SipApplicationSession instance. The
sections that follow describe each interface.

Synchronous Access
Applications that need to read and update a session attribute in a transactional and
synchronous manner must use the WlssAction API. WlssAction obtains an explicit

setApplicationSession javax.servlet.sip.ConvergedHttpSe
ssion.

getApplicationSession

Associates an HTTP session with
an existing
SipApplicationSession.

removeApplicationSession None. Removes an HTTP session from
an existing
SipApplicationSession.

getEncodeURL javax.servlet.sip.ConvergedHttpSe
ssion.

encodeURL

Encodes an HTTP URL with the
jsessionid of an existing HTTP
session object.

Note: The com.bea.wcp.util.Sessions API is provided only for
backward compatibility. Use the SIP Servlet APIs for all new
development. Converged Application Server does not support
converged applications that mix the com.bea.wcp.util.Sessions API
and JSR 289 convergence APIs.

Specifically, the deprecated
Sessions.getApplicationSessionsByCallId(String callId method
cannot be used with v1.1 SIP Servlets that use the session key-based
targeting method for associating an initial request with an existing
SipApplicationSession object. See Section 15.11.2 in the SIP Servlet
Specification v1.1 (http://jcp.org/en/jsr/detail?id=289) for more
information about this targeting mechanism.

Table 9–1 (Cont.) Deprecated com.bea.wcp.util.Sessions Methods

Deprecated Method (in
com.bea.wcp.util.Sessions) Replacement Method Description

Session Key-Based Request Targeting

Composing SIP Applications 9-11

lock on the session for the duration of the action. Example 9–2 shows an example of
using this API.

Example 9–2 Example Code using WlssAction API

final SipApplicationSession appSession = ...;
WlssSipApplicationSession wlssAppSession = (WlssSipApplicationSession) appSession;
wlssAppSession.doAction(new WlssAction() {
 public Object run() throws Exception {
 // Add all business logic here.
 appSession.setAttribute("counter", latestCounterValue);
 sipSession.setAttribute("currentState", latestAppState);
 // The SIP container ensures that the run method is invoked
 // while the application session is locked.
 return null;
 }
});

Because the WlssAction API obtains an exclusive lock on the associated session,
deadlocks can occur if you attempt to modify other application session attributes
within the action.

Asynchronous Access
Applications that need to update a different SipApplicationSession while in the
context of a locked SipApplicationSession can perform asynchronous updates using
the WlssAsynchronousAction API. This API reduces contention when multiple
applications might need to update attributes in the same SipApplicationSession at the
same time. Example 9–3 shows an example of using this API.

To compile applications using this API, you need to include wlssapi.jar, and
sipservlet.jar to your class path. Both JARs are located in the directory MW_
HOME/wlserver_10.3/sip/server/lib.

Example 9–3 Example Code using WlssAsynchronousAction API

SipApplicationSession sas1 = req.getSipApplicationSession(); //
SipApplicationSession1 is already locked by the container
 // Obtain another SipApplicationSession to schedule work on it
 WlssSipApplicationSession wlssSipAppSession =
SipSessionsUtil.getApplicationSessionById(conferenceAppSessionId);
 // The work is done on the application session asynchronously
 appSession.doAsynchronousAction(new WlssAsynchronousAction() {
 Serializable run(SipApplicationSession appSession) {
 // Add all business logic here.
 int counter = appSession.getAttribute("counter");
 ++ counter;
 appSession.setAttribute("counter", counter);
 return null;
 }
});

Performing the work on appSession in an asynchronous manner prevents nested
locking and associated deadlock scenarios.

Session Key-Based Request Targeting
The SIP Servlet v1.1 specification also provides a mechanism for associating an initial
request with an existing SipApplicationSession object. This mechanism is called

Join and Replaces Header Support

9-12 Oracle Communications Converged Application Server Developer's Guide

session key-based targeting. Session key-based targeting is used to direct initial
requests having a particular subscriber (request URI) or region, or other feature to an
already-existing SipApplicationSession, rather than generating a new session. To use
this targeting mechanism with an application, you create a method that generates a
unique key and annotate that method with @SipApplicationKey. When the SIP
container selects that application (for example, as a result of the AR choosing it for an
initial request), it obtains a key using the annotated method, and uses the key and
application name to determine if the SipApplicationSession exists. If one exists, the
container associates the new request with the existing session, rather than generating a
new session.

See section 15 in the SIP Servlet Specification v1.1
(http://jcp.org/en/jsr/detail?id=289) for more information about using session
key-based targeting.

Join and Replaces Header Support
Converged Application Server provides support for the use of both the Join and
Replaces headers. To learn how to create SIP applications that use the functionality
provided by the Join and Replaces headers, refer to the JSR 289 documentation and
APIs.

About the Join Header
The Join header, defined in RFC 3911, is for use with SIP Call Control and Multi-Party
applications. The Join header logically joins an existing SIP dialog with a new SIP
dialog. You can use this to enable features such as Call Forwarding, Message
Screening, and Call Center Monitoring.

The Join header contains information an application can use to match an existing SIP
dialog to a new dialog. You can use the Join header to add a new dialog or SIP
application session to an existing SIP application session in the same way that an
encoded URI is used. This is achieved by setting the call-id, to-tag, and from-tag in
the Join header of the SIP INVITE to match that of the existing dialog.

About the Replaces Header
The Replaces header, defined in RFC 3891, logically replaces an existing SIP dialog
with a new SIP dialog. You can use this functionality to enable features such as
Attended Call Transfer and Call Pickup.

The Replaces header contains information used to match and replace an existing SIP
dialog (using the call-id, to-tag, and from-tag) to the newly created dialog. The Join
header can be used to replace an existing SIP session associated with a SIP application
session with a new dialog/session. This is achieved by setting the call-id, to-tag,
and from-tag in the Replaces header of the INVITE to match that of an existing dialog.

Note: If you develop a spiral proxy application using this targeting
mechanism, and the application modifies the record-route more than
once, it must generate different keys for the initial request, if
necessary, when processing record-route hops. If it does not, then the
application cannot discriminate record-route hops for subsequent
requests.

Setting Content in SIP Responses

Composing SIP Applications 9-13

Enabling Support for Join and Replaces Headers
Support for the Join and Replaces headers is disabled by default. If you have
applications that need to use the Join and Replaces headers, you must enable
Converged Application Server to handle these types of headers.

To enable support for Join and Replaces headers, edit the entry for the
–Dwlss.dialog.index.enabled=false command in the startWebLogic.sh script, and
set its value to true. The startWebLogic.sh script is located in the DOMAIN_
HOME/bin directory, where DOMAIN_HOME is the domain’s home directory. When
support for Join and Replace headers is enabled, the entry in the startWebLogic.sh
script appears as shown below:

–Dwlss.dialog.index.enabled=true

See the Converged Application Server Administrator’s Guide learn more about the
startWebLogic.sh script and the start-up options it controls.

API to Set Transport Parameter on Record-Route Header
Converged Application Server provides a setRecordRouteUriTransport API on the
WlssProxy interface which will allow proxy applications to set the transport parameter
of the Record-Route header, in scenarios where the proxy is aware of the transport
supported by the next downstream element.

RFC 3261 (Section 16.6, Item4) states that “The URI SHOULD NOT contain the
transport parameter unless the proxy has knowledge (such as in a private network)
that the next downstream element that will be in the path of subsequent requests
supports that transport.”

The API consists of the method setRecordRouteUriTransport on the WlssProxy
interface. This method takes a string value for the required transport. Use the API to
set the transport parameter of a Record-Route header as shown in the following code
sample:

...
WlssProxy p = (WlssProxy)req.getProxy();
p.setRecordRouteUriTransport("tcp");
...

Setting Content in SIP Responses
Converged Application Server provides you with a System property to specify
whether SIP Proxy applications that are acting in supervised Proxy mode should be
able to modify the content of SIP responses before forwarding such messages

Note: The SIP application must determine to send a BYE message
using the original dialog. Converged Application Server does not
automatically send a BYE message to terminate the original dialog.

Note: Enabling support for the Join and Replaces header may affect
the performance of Converged Application Server. When enabling this
feature ensure that your deployment of Converged Application Server
has enough memory, computing power, and network bandwidth to
function properly using Join- and Replaces-enabled applications.

Setting Content in SIP Responses

9-14 Oracle Communications Converged Application Server Developer's Guide

upstream. By default, a SIP application will be able to modify the content of a SIP
response when that application acts in a supervised Proxy mode.

Converged Application Server reconciles the different approaches specified in JSR289
(Section 10.2.4) and RFC 3261 (Section 16.7, Item 9) by implementing a flag to control
the behavior of message content modification by a Proxy application that is
functioning in a supervised mode.

The system property is wlss.proxy.setcontent and the default value for the property
is true. Maintain this default setting to allow proxy applications in supervised mode
to set the content of the responses that such applications forward upstream. To prevent
such proxy applications from modifying the content in SIP responses, set the system
property wlss.proxy.setcontent to false in the startWebLogic.sh script. The
startWebLogic.sh script is located in the DOMAIN_HOME/bin directory, where
DOMAIN_HOME is the domain’s home directory.

10

Developing Converged Applications 10-1

10Developing Converged Applications

This chapter describes how to develop converged HTTP and SIP applications with
Oracle Communications Converged Application Server:

■ Overview of Converged Applications

■ Assembling and Packaging a Converged Application

■ Converged Application Samples

Overview of Converged Applications
In a converged application, SIP protocol functionality is combined with HTTP or Java EE
components to provide a unified communication service. For example, an online
push-to-talk application might enable a customer to initiate a voice call to ask
questions about products in their shopping cart. The SIP session initiated for the call is
associated with the customer's HTTP session, which enables the employee answering
the call to view customer's shopping cart contents or purchasing history.

You must package converged applications that utilize Java EE components (such as
EJBs) into an Enterprise Archive (EAR) file. EAR is a file format used by Java EE for
packaging one or more modules into a single archive so that the deployment of the
various modules onto an application server happens simultaneously and coherently. It
also contains XML files called deployment descriptors which describe how to deploy
the modules. Converged applications that use SIP and HTTP protocols must be
packaged in a single SAR or WAR file containing both a sip.xml and a web.xml
deployment descriptor file.You can optionally package the SIP and HTTP Servlets of a
converged application into separate SAR and WAR components within a single EAR
file.

The HTTP and SIP sessions used in a converged application can be accessed
programmatically through a common application session object. The SIP Servlet API
also helps you associate HTTP sessions with an application session.

Assembling and Packaging a Converged Application
The SIP Servlet specification fully describes the requirements and restrictions for
assembling converged applications. The following statements summarize the
information in the SIP Servlet specification:

■ Use the standard SIP Servlet directory structure for converged applications.

■ Store all SIP Servlet files under the WEB-INF subdirectory; this ensures that the
files are not served up as static files by an HTTP Servlet.

Converged Application Samples

10-2 Oracle Communications Converged Application Server Developer's Guide

■ Include deployment descriptors for both the HTTP and SIP components of your
application. This means that both sip.xml and web.xml descriptors are required. A
weblogic.xml deployment descriptor may also be included to configure Servlet
functionality in the Converged Application Server container.

■ Observe the following restrictions on deployment descriptor elements:

■ The distributable tag must be present in both sip.xml and web.xml, or it must
be omitted entirely.

■ context-param elements are shared for a given converged application. If you
define the same context-param element in sip.xml and in web.xml, the parameter
must have the same value in each definition.

■ If either the display-name or icons element is required, the element must be
defined in both sip.xml and web.xml, and it must be configured with the same
value in each location.

Converged Application Samples
Converged Application Server includes sample converged applications. All source
code, deployment descriptors, and build files for the examples are found in

MiddleWare_Home\wlserver_Version\samples\sipserver\examples

See index.html in the src sub-directory for descriptions of the examples, source code,
and build files.

11

Developing Custom Profile Service Providers 11-1

11Developing Custom Profile Service Providers

This chapter describes how to use the Profile Service API to develop custom profile
providers.

■ Overview of the Profile Service API

■ Implementing Profile Service API Methods

■ Configuring and Packaging Profile Providers

■ Configuring Profile Providers Using the Administration Console

Overview of the Profile Service API
Oracle Communications Converged Application Server includes a profile service API,
com.bea.wcp.profile.API, that may have multiple profile service provider
implementations can be used to create profile provider implementations. A profile
provider performs the work of accessing XML documents from a data repository using
a defined protocol. Deployed SIP Servlets and other applications need not understand
the underlying protocol or the data repository in which the document is stored; they
simply reference profile data using a custom URL, and Converged Application Server
delegates the request processing to the correct profile provider.

The provider performs the necessary protocol operations for manipulating the
document. All providers work with documents in XML DOM format, so client code
can work with many different types of profile data in a common way.

You can also use the profile service API to create a custom provider for retrieving
document schemas using another protocol. For example, a profile provider could be
created to retrieve subscription data from an LDAP store or RDBMS.

Note: The Diameter Sh application also accesses profile data from a
Home Subscriber Server using the Sh protocol. Profile. Although
applications access this profile data using a simple URL, the Diameter
applications are implemented using the Diameter base protocol
implementation rather than the profile provider API.

Implementing Profile Service API Methods

11-2 Oracle Communications Converged Application Server Developer's Guide

Figure 11–1 Profile Service API and Provider Implementation

Each profile provider implemented using the API may enable the following operations
against profile data:

■ Creating new documents.

■ Querying and updating existing documents.

■ Deleting documents.

■ Managing subscriptions for receiving notifications of profile document changes.

Clients that want to use a profile provider obtain a profile service instance through a
Servlet context attribute. They then construct an appropriate URL and use that URL
with one of the available Profile Service API methods to work with profile data. The
contents of the URL, combined with the configuration of profile providers, determines
the provider implementation that Converged Application Server to process the client's
requests.

The sections that follow describe how to implement the profile service API interfaces
in a custom profile provider.

Implementing Profile Service API Methods
A custom profile providers is implemented as a shared Java EE library (typically a
simple JAR file) deployed to the engine tier cluster. The provider JAR file must
include, at minimum, a class that implements
com.bea.wcp.profile.ProfileServiceSpi. This interface inherits methods from
com.bea.wcp.profile.ProfileService and defines new methods that are called
during provider registration and unregistration.

In addition to the provider implementation, you must implement the
com.bea.wcp.profile.ProfileSubscription interface if your provider supports
subscription-based notification of profile data updates. A ProfileSubscription is
returned to the client subscriber when the profile document is modified.

The Converged Application Server Java API Reference describes each method of the
profile service API in detail. Also keep in mind the following notes and best practices
when implementing the profile service interfaces:

Configuring and Packaging Profile Providers

Developing Custom Profile Service Providers 11-3

■ The putDocument, getDocument, and deleteDocument methods each have two
distinct method signatures. The basic version of a method passes only the
document selector on which to operate. The alternate method signature also
passes the address of the sender of the request for protocols that require explicit
information about the requestor.

■ The subscribe method has multiple method signatures to allow passing the
sender's address, as well as for supporting time-based subscriptions.

■ If you do not want to implement a method in
com.bea.wcp.profile.ProfileServiceSpi, include a “no-op” method
implementation that throws the OperationNotSupportedException.

com.bea.wcp.profile.ProfileServiceSpi defines provider methods that are called
during registration and unregistration. Providers can create connections to data stores
or perform any required initializing in the register method. The register method
also supplies a ProviderBean instance, which includes any context parameters
configured in the provider's configuration elements in profile.xml.

Providers must release any backing store connections, and clean up any state that they
maintain, in the unregister method.

Configuring and Packaging Profile Providers
Providers must be deployed as a shared Java EE library, because all other deployed
applications must be able to access the implementation.

See the documentation on creating shared Java EE libraries and optional packages in
Developing Applications for Oracle WebLogic Server in the WebLogic Server 11g
documentation for information on how to assemble Java EE libraries. For most profile
providers, you can simply package the implementation classes in a JAR file and then
register the library with Converged Application Server.

After installing the provider as a library, you must also identify the provider class as a
provider in a profile.xml file. The name element uniquely identifies a provider
configuration, and the class element identifies the Java class that implements the
profile service API interfaces. One or more context parameters can also be defined for
the provider, which are delivered to the implementation class in the register method.
For example, context parameters might be used to identify backing stores to use for
retrieving profile data.

Example 11–1 shows a sample configuration for a provider that accesses data using
XCAP.

Example 11–1 Provider Mapping in profile.xml

<profile-service xmlns="http://www.bea.com/ns/wlcp/wlss/profile/300"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema=instance"
 xmlns:wls="http;//www.bea.com/ns/weblogic/90/security/wls">
 <mapping>
 <map-by>provider-name</map-by>
 </mapping>
 <provider>
 <name>xcap</name>
 <provider-class>com.mycompany.profile.XcapProfileProvider</provider-class>
 <param>
 <name>server</name>
 <value>example.com</name>
 </param>

Configuring Profile Providers Using the Administration Console

11-4 Oracle Communications Converged Application Server Developer's Guide

 ...
 </provider>
</profile-service>

Mapping Profile Requests to Profile Providers
When an application makes a request using the Profile Service API, Converged
Application Server must find a corresponding provider to process the request. By
default, Converged Application Server maps the prefix of the requested URL to a
provider name element defined in profile.xml. For example, with the basic
configuration shown in Example 11–1, Converged Application Server would map
Profile Service API requests beginning with xcap:// to the provider class
com.mycompany.profile.XcapProfileProvider.

Alternately, you can define a mapping entry in profile.xml that lists the prefixes
corresponding to each named provider. Example 11–2 shows a mapping with two
alternate prefixes.

Example 11–2 Mapping a Provider to Multiple Prefixes

...
<mapping>
 <map-by>prefix</map-by>
 <provider>
 <provider-name>xcap</provider-name>
 <doc-prefix>sip</doc-prefix>
 <doc-prefix>subscribe</doc-prefix>
 </provider>
 <by-prefix>
<mapping>
...

If the explicit mapping capabilities of profile.xml are insufficient, you can create a
custom mapping class that implements the com.bea.wcp.profile.ProfileRouter
interface, and then identify that class in the map-by-router element. Example 11–3
shows an example configuration.

Example 11–3 Using a Custom Mapping Class

...
<mapping>
 <map-by-router>
 <class>com.bea.wcp.profile.ExampleRouter</class>
 </map-by-router>
</mapping>
...

Configuring Profile Providers Using the Administration Console
You can optionally use the Administration Console to create or modify a profile.xml
file. To do so, you must enable the profile provider console extension in the config.xml
file for your domain.

Example 11–4 Enabling the Profile Service Resource in config.xml

...
<custom-resource>
 <name>ProfileService</name>
 <target>AdminServer</target>

Configuring Profile Providers Using the Administration Console

Developing Custom Profile Service Providers 11-5

 <descriptor-file-name>custom/profile.xml</descriptor-file-name>

<resource-class>com.bea.wcp.profile.descriptor.resource.ProfileServiceResource</re
source-class>

<descriptor-bean-class>com.bea.wcp.profile.descriptor.beans.ProfileServiceBean</de
scriptor-bean-class>
 </custom-resource>
</domain>

The profile provider extension appears under the SipServer node in the left pane of the
console, and enables you to configure new provider classes and mapping behavior.

Configuring Profile Providers Using the Administration Console

11-6 Oracle Communications Converged Application Server Developer's Guide

12

Using Content Indirection in SIP Servlets 12-1

12Using Content Indirection in SIP Servlets

This chapter describes how to develop SIP Servlets that work with indirect content
specified in the SIP message body, and how to use the Oracle Communications
Converged Application Server content indirection API.

■ Overview of Content Indirection

■ Using the Content Indirection API

Overview of Content Indirection
Data provided by the body of a SIP message can be included either directly in the SIP
message body, or indirectly by specifying an HTTP URL and metadata that describes
the URL content. Indirectly specifying the content of the message body is used
primarily in the following scenarios:

■ When the message bodies include large volumes of data. In this case, content
indirection can be used to transfer the data outside of the SIP network (using a
separate connection or protocol).

■ For bandwidth-limited applications. In this case, content indirection provides
enough metadata for the application to determine whether or not it must retrieve
the message body (potentially degrading performance or response time).

Converged Application Server provides a simple API that you can use to work with
indirect content specified in SIP messages.

Using the Content Indirection API
The content indirection API provided by Converged Application Server helps you
quickly determine if a SIP message uses content indirection, and to easily retrieve all
metadata associated with the indirect content. The basic API consists of a utility class,
com.bea.wcp.sip.util.ContentIndirectionUtil, and an interface for accessing
content metadata, com.bea.wcp.sip.util.ICParsedData.

SIP Servlets can use the utility class to identify SIP messages having indirect content,
and to retrieve an ICParsedData object representing the content metadata. The
ICParsedData object has simple “getter” methods that return metadata attributes.

Additional Information
Complete details about content indirection are available in RFC 4483:

http://www.ietf.org/rfc/rfc4483.txt

Additional Information

12-2 Oracle Communications Converged Application Server Developer's Guide

See also the Converged Application Server Java API Reference for additional
documentation about the content indirection API.

13

Securing SIP Servlet Resources 13-1

13Securing SIP Servlet Resources

This chapter describes how to apply security constraints to SIP Servlet resources when
deploying to Oracle Communications Converged Application Server:

■ Overview of SIP Servlet Security

■ Converged Application Server Role Mapping Features

■ Using Implicit Role Assignment

■ Assigning Roles Using security-role-assignment

■ Assigning run-as Roles

■ Role Assignment Precedence for SIP Servlet Roles

■ Debugging Security Features

■ weblogic.xml Deployment Descriptor Reference

Overview of SIP Servlet Security
The SIP Servlet API specification defines a set of deployment descriptor elements that
can be used for providing declarative and programmatic security for SIP Servlets. The
primary method for declaring security constraints is to define one or more
security-constraint elements in the sip.xml deployment descriptor. The
security-constraint element defines the actual resources in the SIP Servlet, defined
in resource-collection elements, that are to be protected. security-constraint
also identifies the role names that are authorized to access the resources. All role
names used in the security-constraint are defined elsewhere in sip.xml in a
security-role element.

SIP Servlets can also programmatically refer to a role name within the Servlet code,
and then map the hard-coded role name to an alternate role in the sip.xml
security-role-ref element during deployment. Roles must be defined elsewhere in a
security-role element before they can be mapped to a hard-coded name in the
security-role-ref element.

The SIP Servlet specification also enables Servlets to propagate a security role to a
called Enterprise JavaBean (EJB) using the run-as element. Once again, roles used in
the run-as element must be defined in a separate security-role element in sip.xml.

Chapter 14 in the SIP Servlet API specification provides more details about the types
of security available to SIP Servlets. SIP Servlet security features are similar to security
features available with HTTP Servlets; you can find additional information about
HTTP Servlet security by referring to these sections in the Oracle WebLogic Server 11g
documentation:

Triggering SIP Response Codes

13-2 Oracle Communications Converged Application Server Developer's Guide

■ The discussion on securing web applications in Programming WebLogic Security
provides an overview of declarative and programmatic security models for
Servlets.

■ The discussion on EJB security-related deployment descriptors in “Securing
Enterprise JavaBeans (EJBs)” in Programming WebLogic Security describes all
security-related deployment descriptor elements for EJBs, including the run-as
element used for propagating roles to called EJBs.

See also the example sip.xml excerpt in Example 13–1, "Declarative Security
Constraints in sip.xml".

Triggering SIP Response Codes
You can distinguish whether you are a proxy application, or a UAS application, by
configuring the container to trigger the appropriate SIP response code, either a 401 SIP
response code, or a 407 SIP response code. If your application needs to proxy an
invitation, the 407 code is appropriate to use. If your application is a registrar
application, you must use the 401 code.

To configure the container to respond with a 407 SIP response code instead of a 401 SIP
response code, you must add the <proxy-authentication> element to the security
constraint.

Specifying the Security Realm
You must specify the name of the current security realm in the sip.xml file as follows:

<login-config>
<auth-method>DIGEST</auth-method>
<realm-name>myrealm</realm-name>
</login-config>

Converged Application Server Role Mapping Features
When you deploy a SIP Servlet, security-role definitions that were created for
declarative and programmatic security must be assigned to actual principals and/or
roles available in the Servlet container. Converged Application Server uses the
security-role-assignment element in weblogic.xml to help you map security-role
definitions to actual principals and roles. security-role-assignment provides two
different ways to map security roles, depending on how much flexibility you require
for changing role assignment at a later time:

■ The security-role-assignment element can define the complete list of principal
names and roles that map to roles defined in. This method defines the role
assignment at deployment time, but at the cost of flexibility; to add or remove
principals from the role, you must edit the sip.xml and weblogic.xml deployment
descriptors, and redeploy the SIP Servlet.

■ The externally-defined element in security-role-assignment enables you to
assign principal names and roles to a sip.xml role at any time using the
Administration Console. When using the externally-defined element, you can
add or remove principals and roles to a sip.xml role without having to redeploy
the SIP Servlet.

Two additional XML elements can be used for assigning roles to the sip.xml
deployment descriptor’s run-as element: run-as-principal-name and
run-as-role-assignment. These role assignment elements take precedence over

Assigning Roles Using security-role-assignment

Securing SIP Servlet Resources 13-3

security-role-assignment elements if they are used, as described in "Assigning
run-as Roles".

Optionally, you can choose to specify no role mapping elements in weblogic.xml to
use implicit role mapping, as described in "Using Implicit Role Assignment".

The sections that follow describe Converged Application Server role assignment in
more detail.

Using Implicit Role Assignment
With implicit role assignment, Converged Application Server assigns a security-role
name in sip.xml to a role of the exact same name, which must be configured in the
Converged Application Server security realm. To use implicit role mapping, you omit
the security-role-assignment element in weblogic.xml, as well as any
run-as-principal-name, and run-as-role-assignment elements use for mapping
run-as roles.

When no role mapping elements are available in weblogic.xml, Converged
Application Server implicitly maps the sip.xml deployment descriptor’s
security-role elements to roles having the same name. Note that implicit role
mapping takes place regardless of whether the role name defined in sip.xml is actually
available in the security realm. Converged Application Server displays a warning
message anytime it uses implicit role assignment. For example, if you use the
“everyone” role in sip.xml but you do not explicitly assign the role in weblogic.xml,
the server displays the warning:

<Webapp: ServletContext(id=id,name=application,context-path=/context),
the role: everyone defined in web.xml has not been mapped to principals
in security-role-assignment in weblogic.xml.
Will use the rolename itself as the principal-name.>

You can ignore the warning message if the corresponding role has been defined in the
Converged Application Server security realm. The message can be disabled by
defining an explicit role mapping in weblogic.xml.

Use implicit role assignment if you want to hard-code your role mapping at
deployment time to a known principal name.

Assigning Roles Using security-role-assignment
The security-role-assignment element in weblogic.xml enables you to assign roles
either at deployment time or at any time using the Administration Console. The
sections that follow describe each approach.

Important Requirements
If you specify a security-role-assignment element in the weblogic.xml deployment
descriptor, Converged Application Server requires that you also define a duplicate
security-role element in a web.xml deployment descriptor. This requirement applies
even if you are deploying a pure SIP Servlet, which would not normally require a
web.xml deployment descriptor (generally reserved for HTTP Web Applications).

Assigning Roles Using security-role-assignment

13-4 Oracle Communications Converged Application Server Developer's Guide

For example, Example 13–1 shows a portion of a sip.xml deployment descriptor that
defines a security constraint with the role, roleadmin. Example 13–2 shows that a
security-role-assignment element has been defined in weblogic.xml to assign
principals and roles to roleadmin. In Converged Application Server, this Servlet must
be deployed with a web.xml deployment descriptor that also defines the roleadmin
role, as shown in Example 13–3.

If the web.xml contents were not available, Converged Application Server would use
implicit role assignment and assume that the roleadmin role was defined in the
security realm; the principals and roles assigned in weblogic.xml would be ignored.

Example 13–1 Declarative Security Constraints in sip.xml

...
 <security-constraint>
 <resource-collection>
 <resource-name>RegisterRequests</resource-name>
 <servlet-name>registrar</servlet-name>
 </resource-collection>
 <auth-constraint>
 <javaee:role-name>roleadmin</javaee:role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <javaee:role-name>roleadmin</javaee:role-name>
 </security-role>
...

Example 13–2 Example security-role-assignment in weblogic.xml

<weblogic-web-app>
 <security-role-assignment>
 <role-name>roleadmin</role-name>
 <principal-name>Tanya</principal-name>
 <principal-name>Fred</principal-name>
 <principal-name>system</principal-name>
 </security-role-assignment>
</weblogic-web-app>

Example 13–3 Required security-role Element in web.xml

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <security-role>
 <role-name>roleadmin</role-name>

Note: If you specify a security-role-assignment in weblogic.xml, but
there is no corresponding security-role element in web.xml,
Converged Application Server generates the error message:

The security-role-assignment references an invlaid
security-role: rolename

The server then implicitly maps the security-role defined in
sip.xml to a role of the same name, as described in "Using Implicit
Role Assignment".

Assigning Roles Using security-role-assignment

Securing SIP Servlet Resources 13-5

 </security-role>
</web-app>

Assigning Roles at Deployment Time
A basic security-role-assignment element definition in weblogic.xml declares a
mapping between a security-role defined in sip.xml and one or more principals or
roles available in the Converged Application Server security realm. If the
security-role is used in combination with the run-as element in sip.xml, Converged
Application Server assigns the first principal or role name specified in the
security-role-assignment to the run-as role.

Example 13–2, "Example security-role-assignment in weblogic.xml" shows an example
security-role-assignment element. This example assigns three users to the
roleadmin role defined in Example 13–1, "Declarative Security Constraints in sip.xml".
To change the role assignment, you must edit the weblogic.xml descriptor and
redeploy the SIP Servlet.

Dynamically Assigning Roles Using the Administration Console
The externally-defined element can be used in place of the <principal-name>
element to indicate that you want the security roles defined in the role-name element
of sip.xml to use mappings that you assign in the Administration Console. The
externally-defined element gives you the flexibility of not having to specify a
specific security role mapping for each security role at deployment time. Instead, you
can use the Administration Console to specify and modify role assignments at
anytime.

Additionally, because you may elect to use this element for some SIP Servlets and not
others, it is not necessary to select the ignore roles and polices from DD option for the
security realm. (You select this option in the On Future Redeploys: field on the
General tab on the Security control panel in the Administration Console.) Therefore,
within the same security realm, deployment descriptors can be used to specify and
modify security for some applications while the Administration Console can be used
to specify and modify security for others.

Example 13–4 shows an example of using the externally-defined element with the
roleadmin role defined in Example 13–1, "Declarative Security Constraints in sip.xml".
To assign existing principals and roles to the roleadmin role, the Administrator would
use the Converged Application Server Administration Console.

Note: When specifying security role names, observe the following
conventions and restrictions:

■ The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

■ Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

■ Security role names are case sensitive.

■ The Oracle-suggested convention for security role names is that
they be singular.

Assigning run-as Roles

13-6 Oracle Communications Converged Application Server Developer's Guide

See “Users, Groups, and Security Roles” in Securing WebLogic Resources Using Roles and
Policies in the Oracle WebLogic Server 11g documentation for information about
adding and modifying security roles by using the Administration Console.

Example 13–4 Example externally-defined Element in weblogic.xml

<weblogic-web-app>
 <security-role-assignment>
 <role-name>webuser</role-name>
 <externally-defined/>
 </security-role-assignment>
</weblogic-web-app>

Assigning run-as Roles
The security-role-assignment described in "Assigning Roles Using
security-role-assignment" can be also be used to map run-as roles defined in sip.xml.
Note, however, that two additional elements in weblogic.xml take precedence over the
security-role-assignment if they are present: run-as-principal-name and
run-as-role-assignment.

run-as-principal-name specifies an existing principle in the security realm that is
used for all run-as role assignments. When it is defined within the
servlet-descriptor element of weblogic.xml, run-as-principal-name takes
precedence over any other role assignment elements for run-as roles.

run-as-role-assignment specifies an existing role or principal in the security realm
that is used for all run-as role assignments, and is defined within the
weblogic-web-app element.

See "weblogic.xml Deployment Descriptor Reference" for more information about
individual weblogic.xml descriptor elements. See also "Role Assignment Precedence
for SIP Servlet Roles" for a summary of the role mapping precedence for declarative
and programmatic security as well as run-as role mapping.

Role Assignment Precedence for SIP Servlet Roles
Converged Application Server provides several ways to map sip.xml roles to actual
roles in the SIP Container during deployment. For declarative and programmatic
security defined in sip.xml, the order of precedence for role assignment is:

1. If weblogic.xml assigns a sip.xml role in a security-role-assignment element,
the security-role-assignment is used.

2. If no security-role-assignment is available (or if the required web.xml role
assignment is missing), implicit role assignment is used.

For run-as role assignment, the order of precedence for role assignment is:

1. If weblogic.xml assigns the sip.xml deployment descriptor’s run-as role in a
run-as-principal-name element defined within servlet-descriptor, the
run-as-principal-name assignment is used.

Note: Converged Application Server also requires a role definition in
web.xml in order to use a security-role-assignment. See "Important
Requirements".

weblogic.xml Deployment Descriptor Reference

Securing SIP Servlet Resources 13-7

2. If weblogic.xml assigns the sip.xml deployment descriptor’s run-as role in a
run-as-role-assignment element, the run-as-role-assignment element is used.

3. If weblogic.xml assigns the sip.xml deployment descriptor’s run-as role in a
security-role-assignment element, the security-role-assignment is used.

4. If no security-role-assignment is available (or if the required web.xml role
assignment is missing), implicit role assignment is used.

Debugging Security Features
If you want to debug security features in SIP Servlets that you develop, specify the
-Dweblogic.Debug=wlss.Security startup option when you start Converged
Application Server. Using this debug option causes Converged Application Server to
display additional security-related messages in the standard output.

weblogic.xml Deployment Descriptor Reference
The weblogic.xml DTD contains detailed information about each of the role mapping
elements discussed in this section. See “weblogic.xml Deployment Descriptor
Elements” in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server in
the Oracle WebLogic Server 11g documentation.

Note: Converged Application Server also requires a role definition in
web.xml in order to assign roles with run-as-principal-name. See
"Important Requirements".

Note: Converged Application Server also requires a role definition in
web.xml in order to assign roles with run-as-role-assignment. See
"Important Requirements".

Note: Converged Application Server also requires a role definition in
web.xml in order to use a security-role-assignment. See "Important
Requirements".

weblogic.xml Deployment Descriptor Reference

13-8 Oracle Communications Converged Application Server Developer's Guide

14

Enabling Message Logging 14-1

14Enabling Message Logging

This chapter describes how to use Oracle Communications Converged Application
Server message logging features on a development system:

■ Overview

■ Enabling Message Logging

■ Specifying Content Types for Unencrypted Logging

■ Example Message Log Configuration and Output

■ Configuring Log File Rotation

Overview
Message logging records SIP and Diameter messages (both requests and responses)
received by Converged Application Server. This requires that the logging level be set
to at least the INFO level. You can use the message log in a development environment
to check how external SIP requests and SIP responses are received. By outputting the
distinguishable information of SIP dialogs such as Call-IDs from the application log,
and extracting relevant SIP messages from the message log, you can also check SIP
invocations from HTTP servlets and so forth.

When you enable message logging, Converged Application Server records log records
in the Managed Server log file associated with each engine tier server instance by
default. You can optionally log the messages in a separate, dedicated log file, as
described in "Configuring Log File Rotation".

Enabling Message Logging
You enable and configure message logging by adding a message-debug element to the
sipserver.xml configuration file. Converged Application Server provides two different
methods of configuring the information that is logged:

■ Specify a predefined logging level (terse, basic, or full), or

Note: The message logging functionality logs all SIP requests and
responses; do not enable this feature in a production system. In a
production system, you can instead configure one or more logging
Servlets, which enable you to specify additional criteria for
determining which messages to log. See “Logging SIP Requests and
Responses” in Converged Application Server Administrator’s Guide.

Enabling Message Logging

14-2 Oracle Communications Converged Application Server Developer's Guide

■ Identify the exact portions of the SIP message that you want to include in a log
record, in a specified order

The sections that follow describe each method of configuring message logging
functionality using elements in the sipserver.xml file. Note that you can also set these
elements using the Administration Console. In the left pane of the Administration
Console, select Configuration, then select the Message Debug tab of the SipServer
console extension node.

Specifying a Predefined Logging Level
The optional level element in message-debug specifies a predefined collection of
information to log for each SIP request and response. The following levels are
supported:

■ terse: Logs only the domain setting, logging Servlet name, logging level, and
whether or not the message is an incoming message.

■ basic: Logs the terse items plus the SIP message status, reason phrase, the type of
response or request, the SIP method, the From header, and the To header.

■ full: Logs the basic items plus all SIP message headers plus the timestamp,
protocol, request URI, request type, response type, content type, and raw content.

Example 14–1 shows a configuration entry that specifies the full logging level.

Example 14–1 Sample Message Logging Level Configuration in sipserver.xml

<message-debug>
 <level>full</level>
</message-debug>

Customizing Log Records
Converged Application Server also enables you to customize the exact content and
order of each message log record. To configure a custom log record, you provide a
format element that defines a log record pattern and one or more tokens to log in
each record.

Table 14–1 describes the nested elements used in the format element.

Table 14–2 describes the string token values used to specify information in a message
log record:

Note: When level is set to full, format is overridden.

Table 14–1 Nested format Elements

param-name param-value Description

pattern Specifies the pattern used to format a message log entry.
The format is defined by specifying one or more integers,
bracketed by “{“ and “}”. Each integer represents a token
defined later in the format definition.

token A string token that identifies a portion of the SIP message
to include in a log record. Table 14–2 provides a list of
available string tokens. You can define multiple token
elements as needed to customize your log records.

Specifying Content Types for Unencrypted Logging

Enabling Message Logging 14-3

See "Example Message Log Configuration and Output" for an example sipserver.xml
file that defines a custom log record using two tokens.

Specifying Content Types for Unencrypted Logging
By default Converged Application Server uses String format (UTF-8 encoding) to log
the content of SIP messages having a text or application/sdp Content-Type value. For

Table 14–2 Available Tokens for Message Log Records

Token Description Example or Type

%call_id The Call-ID header. It is blank when forwarding. 43543543

%content The raw content. Byte array

%content_length The content length. String value

%content_type The content type. String value

%cseq The CSeq header. It is blank when forwarding. INVITE 1

%date The date when the message was received. (“yyyy/MM/dd”
format)

2004/05/16

%from The From header (all). It is blank when forwarding. sip:foo@oracle.com;tag=
438943

%from_addr The address portion of the From header. foo@oracle.com

%from_port The port number portion of the From header. 7002

%from_tag The tag parameter of the From header. It is blank when
forwarding.

12345

%from_uri The SIP URI part of the From header. It is blank when forwarding. sip:foo@oracle.com

%headers A List of message headers stored in a 2-element array. The first
element is the name of the header, while the second is a list of all
values for the header.

List of headers

%io Whether the message is incoming or not. TRUE

%method The name of the SIP method. It records the method name to
invoke when forwarding.

INVITE

%msg Summary Call ID String value

%mtype The type of receiving. SIPREQ

%protocol The protocol used. UDP

%reason The response reason. OK

%req_uri The request URI. This token is only available for the SIP request. sip:foo@oracle.com

%status The response status. 200

%time The time when the message was received. (“HH:mm:ss” format) 18:05:27

%timestampmillis Time stamp in milliseconds. 9295968296

%to The To header (all). It is blank when forwarding. sip:foo@oracle.com;tag=
438943

%to_addr The address portion of the To header. foo@oracle.com

%to_port The port number portion of the To header. 7002

%to_tag The tag parameter of the To header. It is blank when forwarding. 12345

%to_uri The SIP URI part of the To header. It is blank when forwarding. sip:foo@oracle.com

Example Message Log Configuration and Output

14-4 Oracle Communications Converged Application Server Developer's Guide

all other Content-Type values, Converged Application Server attempts to log the
message content using the character set specified in the charset parameter of the
message, if one is specified. If no charset parameter is specified, or if the charset
value is invalid or unsupported, Converged Application Server uses Base-64 encoding
to encrypt the message content before logging the message.

If you want to avoid encrypting the content of messages under these circumstances,
specify a list of String-representable Content-Type values using the string-rep
element in sipserver.xml. The string-rep element can contain one or more
content-type elements to match. If a logged message matches one of the configured
content-type elements, Converged Application Server logs the content in String
format using UTF-8 encoding, regardless of whether or not a charset parameter is
included.

Example 14–2 shows a sample message-debug configuration that logs String content
for three additional Content-Type values, in addition to text/* and application/sdp
content.

Example 14–2 Logging String Content for Additional Content Types

 <message-debug>
 <level>full</level>
 <string-rep>
 <content-type>application/msml+xml</content-type>
 <content-type>application/media_control+xml</content-type>
 <content-type>application/media_control</content-type>
 </string-rep>
 </message-debug>

Example Message Log Configuration and Output
Example 14–3 shows a sample message log configuration in sipserver.xml.
Example 14–4, "Sample Message Log Output" shows sample output from the Managed
Server log file.

Example 14–3 Sample Message Log Configuration in sipserver.xml

<message-debug>
 <format>
 <pattern>{0} {1}</pattern>
 <token>%headers</token>
 <token>%content</token>
 </format>
</message-debug>

Example 14–4 Sample Message Log Output

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver>
 <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS Kernel>> <>
<BEA- 331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060>
 <mailto:sip:invite@10.32.5.230:5060>
Content-Length: 136
Contact: user:user@10.32.5.230:5061
CSeq: 1 INVITE

Note: You do not need to specify text/* or application/sdp content
types as these are logged in String format by default.

Configuring Log File Rotation

Enabling Message Logging 14-5

Call-ID: 59.3170.10.32.5.230@user.call.id
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061>
;tag=59
Via: SIP/2.0/UDP 10.32.5.230:5061
Content-Type: application/sdp
Subject: Performance Test
Max-Forwards: 70
 v=0
o=user1 53655765 2353687637 IN IP4 127.0.0.1
s=-
c=IN IP4 127.0.0.1
t=0 0
m=audio 10000 RTP/AVP 0
a=rtpmap:0 PCMU/8000
>
####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com> <myserver>
 <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS Kernel>> <>
<BEA- 331802> <SIP Tracer: logger Message: To: sut <sip:invite@10.32.5.230:5060>
 <mailto:sip:invite@10.32.5.230:5060>
Content-Length: 0
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id
Via: SIP/2.0/UDP 10.32.5.230:5061
From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061>
 ;tag=59
Server: Oracle WebLogic Communications Server 10.3.1.0
 >

Configuring Log File Rotation
Message log entries for SIP and Diameter messages are stored in the main Converged
Application Server log file by default. You can optionally store the messages in a
dedicated log file. Using a separate file makes it easier to locate message logs, and also
enables you to use Converged Application Server's log rotation features to better
manage logged data.

Log rotation is configured using several elements nested within the main
message-debug element in sipserver.xml. As with the other XML elements described
in this section, you can also configure values using the Configuration->Message
Debug tab of the SIP Server Administration Console extension.

Table 14–3 describes each element. Note that a server restart is necessary in order to
initiate independent logging and log rotation.

Table 14–3 XML Elements for Configuring Log Rotation

Element Description

logging-enabled Determines whether a separate log file is used to store message debug log
messages. By default, this element is set to false and messages are logged in the
general log file.

file-min-size Configures the minimum size, in kilobytes, after which the server automatically
rotate log messages into another file. This value is used when the rotation-type
element is set to bySize.

log-filename Defines the name of the log file for storing messages. By default, the log files are
stored under domain_home/servers/server_name/logs.

Configuring Log File Rotation

14-6 Oracle Communications Converged Application Server Developer's Guide

Example 14–5 shows a sample message-debug configuration using log rotation.

Example 14–5 Sample Log Rotation Configuration

<?xml version='1.0' encoding='UTF-8'?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300"
 xmlns:sec="http://www.bea.com/ns/weblogic/90/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls">
 <message-debug>
 <logging-enabled>true</logging-enabled>
 <file-min-size>500</file-min-size>
 <log-filename>sip-messages.log</log-filename>
 <rotation-type>byTime</rotation-type>
 <number-of-files-limited>true</number-of-files-limited>
 <file-count>5</file-count>
 <rotate-log-on-startup>false</rotate-log-on-startup>
 <log-file-rotation-dir>old_logs</log-file-rotation-dir>
 <rotation-time>00:00</rotation-time>
 <file-time-span>20</file-time-span>
 <date-format-pattern>MMM d, yyyy h:mm a z</date-format-pattern>
 </message-debug>
</sip-server>

rotation-type Configures the criterion for moving older log messages to a different file. This
element may have one of the following values:

■ bySize: This default setting rotates log messages based on the specified
file-min-size.

■ byTime: This setting rotates log messages based on the specified
rotation-time.

■ none: Disables log rotation.

number-of-files-limited Specifies whether or not the server places a limit on the total number of log files
stored after a log rotation. By default, this element is set to false.

file-count Configures the maximum number of log files to keep when
number-of-files-limited is set to true.

rotate-log-on-startup Determines whether the server must rotate the log file at server startup time.

log-file-rotation-dir Configures a directory in which to store rotated log files. By default, rotated log
files are stored in the same directory as the active log file.

rotation-time Configures a start time for log rotation when using the byTime log rotation
criterion.

file-time-span Specifies the interval, in hours, after which the log file is rotated. This value is
used when the rotation-type element is set to byTime.

date-format-pattern Specifies the pattern to use for rending dates in log file entries. The value of this
element must conform to the java.text.SimpleDateFormat class.

Table 14–3 (Cont.) XML Elements for Configuring Log Rotation

Element Description

15

Generating SNMP Traps from Application Code 15-1

15Generating SNMP Traps from Application Code

This chapter describes how to use the Oracle Communications Converged Application
Server SipServletSnmpTrapRuntimeMBean to generate SNMP traps from within a SIP
Servlet:

■ Overview

■ Requirement for Accessing SipServletSnmpTrapRuntimeMBean

■ Obtaining a Reference to SipServletSnmpTrapRuntimeMBean

■ Generating an SNMP Trap

See “Configuring SNMP” in the Converged Application Server Administrator’s Guide for
information about configuring SNMP in a Converged Application Server domain.

Overview
Converged Application Server includes a runtime MBean,
SipServletSnmpTrapRuntimeMBean,that enables applications to easily generate SNMP
traps. The Converged Application Server MIB contains seven new OIDs that are
reserved for traps generated by an application. Each OID corresponds to a severity
level that the application can assign to a trap, in order from the least severe to the most
severe:

■ Info

■ Notice

■ Warning

■ Error

■ Critical

■ Alert

■ Emergency

To generate a trap, an application simply obtains an instance of the
SipServletSnmpTrapRuntimeMBean and then executes a method that corresponds to
the desired trap severity level (sendInfoTrap(), sendWarningTrap(),
sendErrorTrap(), sendNoticeTrap(), sendCriticalTrap(), sendAlertTrap(), and
sendEmergencyTrap()). Each method takes, as a single parameter, the String value of
the trap message to generate.

For each SNMP trap generated in this manner, Converged Application Server also
automatically transmits the Servlet name, application name, and Converged
Application Server instance name associated with the calling Servlet.

Requirement for Accessing SipServletSnmpTrapRuntimeMBean

15-2 Oracle Communications Converged Application Server Developer's Guide

Requirement for Accessing SipServletSnmpTrapRuntimeMBean
In order to obtain a SipServletSnmpTrapRuntimeMBean, the calling SIP Servlet must be
able to perform MBean lookups from the Servlet context. To enable this functionality,
you must assign a Converged Application Server administrator role-name entry to the
security-role and run-as role elements in the sip.xml deployment descriptor.
Example 15–1 shows a sample sip.xml file with the required role elements highlighted.

Example 15–1 Sample Role Requirement in sip.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app
 PUBLIC "-//Java Community Process//DTD SIP Application 1.0//EN"
 "http://www.jcp.org/dtd/sip-app_1_0.dtd">
<sip-app>
 <display-name>My SIP Servlet</display-name>
 <distributable/>
 <servlet>
 <servlet-name>myservlet</servlet-name>
 <servlet-class>com.mycompany.MyServlet</servlet-class>
 <run-as>
 <role-name>weblogic</role-name>
 </run-as>
 </servlet>
 <servlet-mapping>
 <servlet-name>myservlet</servlet-name>
 <pattern>
 <equal>
<var>request.method</var>
<value>INVITE</value>
 </equal>
 </pattern>
 </servlet-mapping>
 <security-role>
 <role-name>weblogic</role-name>
 </security-role>
</sip-app>

Obtaining a Reference to SipServletSnmpTrapRuntimeMBean
Any SIP Servlet that generates SNMP traps must first obtain a reference to the
SipServletSnmpTrapRuntimeMBean. Example 15–2 shows the sample code for a
method to obtain the MBean.

Example 15–2 Sample Method for Accessing SipServletSnmpTrapRuntimeMBean

public SipServletSnmpTrapRuntimeMBean getServletSnmpTrapRuntimeMBean() {
 MBeanHome localHomeB = null;
 SipServletSnmpTrapRuntimeMBean ssTrapMB = null;

 try
 {
 Context ctx = new InitialContext();
 localHomeB = (MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
 ctx.close();
 } catch (NamingException ne){
 ne.printStackTrace();
 }

Generating an SNMP Trap

Generating SNMP Traps from Application Code 15-3

 Set set = localHomeB.getMBeansByType("SipServletSnmpTrapRuntime");
 if (set == null || set.isEmpty()) {
 try {
 throw new ServletException("Unable to lookup type
'SipServletSnmpTrapRuntime'");
 } catch (ServletException e) {
 e.printStackTrace();
 }
 }
 ssTrapMB = (SipServletSnmpTrapRuntimeMBean) set.iterator().next();
 return ssTrapMB;
}

Generating an SNMP Trap
In combination with the method shown in Example 15–2, Example 15–3 demonstrates
how a SIP Servlet would use the MBean instance to generate an SNMP trap in
response to a SIP INVITE.

Example 15–3 Generating a SNMP Trap

public class MyServlet extends SipServlet {
 private SipServletSnmpTrapRuntimeMBean sipServletSnmpTrapMb = null;

 public MyServlet () {
 }

 public void init (ServletConfig sc) throws ServletException {
 super.init (sc);
 sipServletSnmpTrapMb = getServletSnmpTrapRuntimeMBean();
 }

 protected void doInvite(SipServletRequest req) throws IOException {
 sipServletSnmpTrapMb.sendInfoTrap("Rx Invite from " + req.getRemoteAddr() +
"with call id" + req.getCallId());
 }
}

Generating an SNMP Trap

15-4 Oracle Communications Converged Application Server Developer's Guide

16

Using the Location Service RESTful Interface 16-1

16Using the Location Service RESTful Interface

This chapter describes the Oracle Communications Converged Application Server
RESTful API, a RESTful interface that creates, modifies, and deletes address-of-record
(AOR) entries in the Location Service.

About the Location Service RESTful Interface
This chapter lists RESTful operations for the Location Service, including the
parameters accepted and returned by each operation and examples of HTTP requests
and responses.

These operations store, lookup, and clear address-of-record registrations in the
Location Service. An AOR is a SIP or SIPS URI that points to a domain with a location
service that can map the URI to another URI where the user might be available.
Typically, the location service is populated through registrations. An AOR is
frequently thought of as the “public address” of the user.

For example, to create objects that represent the AOR, the client application sends the
following request to the API:

POST / context-root/locationservice/registration/sip:alice@example.com

About REST
The Location Service API follows the style of a REpresentational State Transfer (REST)
interface.

In a RESTful API, functions are distinguished by the combination of a particular URI
and the HTTP method used to access it. In general, the URI identifies the resource on
which to act, and the HTTP method identifies the type of action to perform.

The methods in the HTTP protocol used in the Location Service RESTful API - POST,
GET, PUT, and DELETE - correspond to the programming operations commonly
known as CRUD operations. CRUD, which stands for create, read, update, and delete,
represent the common operations applicable in data-oriented APIs. The equivalent
function calls in a traditional API may be similar to createUser(), getUser(), setUser(),
and deleteUser(). In this case, the instance on which the function operates is typically
identified through an input parameter.

About JSON Body Parameters
Operations that are performed by using the GET or DELETE HTTP methods do not
require input values other than what is provided in the URL and headers of the client

About the Context Root

16-2 Oracle Communications Converged Application Server Developer's Guide

request. That is, they do not require HTTP body content to be supplied in the
invocation request.

However, Location Service RESTful API operations are performed by using the POST
methods require additional input data. The API takes input parameters in the form of
JSON (JavaScript Object Notation) data in the body of the request.

JSON is a data exchange format based on JavaScript that is commonly used to pass
information between web clients and servers over HTTP. In the body of the request,
JSON data appears as one or more name-value pairs.

About the Context Root
The context root is set when the application is deployed. By default Converged
Application Server uses proxyregistrarssr as context root. You can change the context
root by editing the application.xml in the file

MW_home/occas_5.1/applications/proxyregistrarear-5.1.0.0.0.ear.

To learn more, see the chapter on configuring the Proxy Registrar in Converged
Application Server Administrator’s Guide.

Using Authentication and Authorization
The Location Service RESTful interface’s security consists of authentication and
authorization. Authentication supports HTTP Digest and X-3GPP-Asserted-Identity
header. Authorization allows only the AOR owner to access and update their
registration information.

To use HTTP Digest and X-3GPP-Asserted-Identity authentication you must configure
Converged Application Server to handle these header types for authentication. To
learn more, see the chapters on configuring Digest authentication and 3GPP HTTP
authentication assertion providers in Converged Application Server Security Guide.

RESTful APIs for the Location Service

Using the Location Service RESTful Interface 16-3

 RESTful APIs for the Location Service

The RESTful Location Service APIs are:

■ Store Registrations for Address-of-Record

■ Lookup an Address-of-Record

■ Clear All Address of Record Bindings

Store Registrations for Address-of-Record

16-4 Oracle Communications Converged Application Server Developer's Guide

Store Registrations for Address-of-Record

Stores registrations for the AOR.

An HTTP response 200 message is returned on success.

16HTTP Method
POST

16URI
proxyregistrarssr/locationservice/registration/uri

Where the URI is of the form: sip:username@domain.com

16Request Header
Accept application/json, Content-Type application/json

16Request Body
The cseq, contactAddress, and callId parameters are required and case-sensitive.

[
{
"cseq":7,
"callId":"a97d0d177949304c@enpoYWkwMS5hcGFjLmJlYS5jb20.",
"contactAddress":"<sip:alice@10.182.101.231:5060>;expires=3600",
"methodsParam":"INVITE,BYE,CANCEL,ACK"
}
]

16Response Body
[{
"aor":"sip:alice@example.com",
"contactUri":"sip:alice@10.182.101.231:5060",
"contactAddress":"<sip:alice@10.182.101.231:5060>;expires=3600",
"callId":"a97d0d177949304c@enpoYWkwMS5hcGFjLmJlYS5jb20.",
"cseq":7,
"qvalue":1.0,
"methodsParam":"INVITE,BYE,CANCEL,ACK",
"expiresParam":3600,
"expires":1335173253469,
"path":null,
"sipInstanceId":null,
"regId":null,
"remoteIP":"localhost",
"remotePort":2169,
"created":1335169653469,
"updated":1335169653469
}]

16Example
Example 16–1 stores an AOR registration in the Proxy Registrar using the following
parameters:

RESTful APIs for the Location Service

Using the Location Service RESTful Interface 16-5

final String DEST_URL =
"/proxyregistrarssr/locationservice/registration/sip:alice@example.com";
private String account_name = "alice";
private String account_pass = "welcome1";

Example 16–1 Storing AOR Registrations

public void StoreRegistration() throws Exception {
String restUrl = "http://127.0.0.1:7001" + DEST_URL;
URL url = new URL(restUrl);
HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("POST");
httpConn.connect();
OutputStreamWriter outWriter = new OutputStreamWriter(httpConn.getOutputStream(), "UTF-8");
String requestRegistration = "[{\"cseq\":2," +
"\"callId\":\"LSRestfulTest.testStoreRegistration@10.182.107.197:5071\"," +
"\"contactAddress\":\"<sip:alice@10.182.107.197:5071>;expires=300\"," +
"\"methodsParam\":\"INVITE,BYE,CANCEL,ACK\"}]";
outWriter.write(requestRegistration);
outWriter.flush();
outWriter.close();
int responseCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_UNAUTHORIZED, responseCode);
String digestValue = httpConn.getHeaderField(HttpAuthenticationUtils.HEADER_WWW_
AUTHENTICATE);
// Calculate the authorization header value from the authenticate header
String authorizeValue = caculateAuthorizationFromDigest(digestValue, DEST_URL, account_name,
account_pass, "POST");
httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("POST");
httpConn.setRequestProperty(HttpAuthenticationUtils.HEADER_AUTHORIZATION, authorizeValue);
httpConn.connect();
outWriter = new OutputStreamWriter(httpConn.getOutputStream(), "UTF-8");
outWriter.write(requestRegistration);
outWriter.flush();
outWriter.close();
responseCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_OK, responseCode);
InputStream input = httpConn.getInputStream();
BufferedReader reader = new BufferedReader(new InputStreamReader(input, "UTF-8"));
String responseContent = "";
String line = null;
while ((line = reader.readLine()) != null) {
responseContent += line;
}
 reader.close();

httpConn.disconnect();
 }
 void setHttpConnReqProperty(HttpURLConnection httpConn) throws ProtocolException {
 httpConn.setRequestProperty("Accept", "application/json");
 httpConn.setRequestProperty("Content-Type", "application/json");
 httpConn.setDoInput(true);
 httpConn.setDoOutput(true);
 }

Lookup an Address-of-Record

16-6 Oracle Communications Converged Application Server Developer's Guide

Lookup an Address-of-Record

This API looks up all bindings of an AOR. An HTTP response 200 message is returned
on success.

16HTTP Method
GET

16URI
proxyregistrarssr/locationservice/registration/uri

16Request Header
Accept application/json, Content-Type application/json

16Request Body
None.

16Response Body
[{
"aor":"sip:alice@example.com",
"contactUri":"sip:alice@10.182.101.231:5060",
"contactAddress":"<sip:alice@10.182.101.231:5060>;expires=3600",
"callId":"a97d0d177949304c@enpoYWkwMS5hcGFjLmJlYS5jb20.",
"cseq":7,
"qvalue":1.0,
"methodsParam":"INVITE,BYE,CANCEL,ACK",
"expiresParam":3600,
"expires":1335173253469,
"path":null,
"sipInstanceId":null,
"regId":null,
"remoteIP":"localhost",
"remotePort":2169,
"created":1335169653469,
"updated":1335169653469
}]

16Example
Example 16–2 stores an AOR registration in the Proxy Registrar using the following
parameters:

final String DEST_URL =
"/proxyregistrarssr/locationservice/registration/sip:alice@example.com";
private String account_name = "alice";
private String account_pass = "welcome1";

Example 16–2 Looking Up An AOR

public void LookupRegistration() throws Exception {
String restUrl = "http://127.0.0.1:7001" + DEST_URL;
URL url = new URL(restUrl);
HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();

RESTful APIs for the Location Service

Using the Location Service RESTful Interface 16-7

setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("GET");
httpConn.connect();
String digestValue = httpConn.getHeaderField(HttpAuthenticationUtils.HEADER_WWW_
AUTHENTICATE);
String authorizeValue = caculateAuthorizationFromDigest(digestValue, DEST_URL, account_name,
account_pass, "GET");
httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("GET");
httpConn.setRequestProperty(HttpAuthenticationUtils.HEADER_AUTHORIZATION, authorizeValue);
httpConn.connect();
responseCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_OK, responseCode);
InputStream input = httpConn.getInputStream();
BufferedReader reader = new BufferedReader(new InputStreamReader(input, "UTF-8"));
String responseContent = "";
String line = null;
while ((line = reader.readLine()) != null) {
responseContent += line;
}
reader.close();
httpConn.disconnect();

 }

Clear All Address of Record Bindings

16-8 Oracle Communications Converged Application Server Developer's Guide

Clear All Address of Record Bindings

An HTTP response 204 message is returned on success.

16HTTP Method
DELETE

16URI
proxyregistrarssr/locationservice/registration/uri

Where the URI is of the form: sip:username@domain.com

16Parameters
None.

16Request Header
None.

16Request Body
None.

16Response Body
None.

16Examples
Example 16–3 clears an AOR registration in the Proxy Registrar using the following
parameters:

final String DEST_URL =
"/proxyregistrarssr/locationservice/registration/sip:alice@example.com";
private String account_name = "alice";private String account_pass = "welcome1";

Example 16–3 Clearing AOR Binding

public void testClearAllBindings() throws Exception {
String restUrl = "http://127.0.0.1:7001" + DEST_URL;
URL url = new URL(restUrl);
HttpURLConnection httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("DELETE");
httpConn.connect();
String digestValue = httpConn.getHeaderField(HttpAuthenticationUtils.HEADER_
WWW_AUTHENTICATE);
String authorizeValue = caculateAuthorizationFromDigest(digestValue, DEST_URL,
account_name, account_pass, "DELETE");
httpConn = (HttpURLConnection)url.openConnection();
setHttpConnReqProperty(httpConn);
httpConn.setRequestMethod("DELETE");

httpConn.setRequestProperty(HttpAuthenticationUtils.HEADER_AUTHORIZATION,

RESTful APIs for the Location Service

Using the Location Service RESTful Interface 16-9

authorizeValue);
httpConn.connect();
respCode = httpConn.getResponseCode();
assertEquals(HttpURLConnection.HTTP_NO_CONTENT, respCode);
httpConn.disconnect();

 }

Clear All Address of Record Bindings

16-10 Oracle Communications Converged Application Server Developer's Guide

Part IV
Part IV Developing Applications With the Service

Foundation Toolkit

This part contains the following chapters:

■ Chapter 17, "Introduction to the Service Foundation Toolkit"

■ Chapter 18, "Packaging and Deploying SFT Applications"

■ Chapter 19, "SFT Deployment Descriptor and Schema Reference"

■ Chapter 20, "Event Orchestration in the Service Foundation Toolkit"

■ Chapter 21, "Implementing Call Control Services"

■ Chapter 22, "Using Announcements"

■ Chapter 24, "Using the XCAP Interfaces"

■ Chapter 25, "Creating Instant Messaging and Rich Media Services"

17

Introduction to the Service Foundation Toolkit 17-1

17Introduction to the Service Foundation Toolkit

Service Foundation Toolkit (SFT) is a server-side Java framework built on top of Oracle
Communication Converged Application Server’s SIP Servlet programming model (SIP
Servlet 1.1 as defined by JSR 289). SFT allows for the rapid development of converged
communication services using the Java EE programming model, and provides Java
APIs that you can use to implement services such as call control, media control, and
instant messaging.

This chapter provides an overview of SFT, and how to create SFT applications.

The Service Foundation Toolkit Programming Model
SFT was developed with the understanding that SIP and converged applications are
highly asynchronous, and that an event driven programming model is the preferred
application development environment. SFT also supports the Java EE component
model, and the ease-of-development and ease-of-configuration features introduced by
Java EE—improving developer productivity by simplifying application development.
Since the Java EE programming model and development concepts are widely
recognized within the enterprise application development profession, these concepts
are leveraged by SFT. In addition, SFT simplifies the usage of Communication artifacts
from the Java EE components.

Normally, an application developer creates a CommunicationBean containing the
necessary application logic in their event handling methods. In this way they can
control the state of the communication session. Using dependency injection with the
CommunicationService and CommunicationSession objects, a developer creates a
communication session from Java EE components, or from the CommunicationBean
itself. To do this, the developer uses the search API to locate the correct Communication
object and modify it as necessary using the Java EE components.

The business logic common to both Java EE components and CommunicationBeans
can be coded into Agents. Agents act as bridge between Java EE and Communication.

About the Communication Interface
The parent interface of all communication types within SFT is
com.oracle.sft.api.Communication. There are two categories of communication:

■ UserActivity represent a single Participant within a communication.

■ Interaction represents multiple Participants within a communication.

Interaction provides the following sub-interfaces that represent different types of
communications between multiple Participants.

About the Communication Interface

17-2 Oracle Communications Converged Application Server Developer's Guide

– Two-party communication involves two SIP User Agents, and is represented
by the Conversation, IMConversation, and MSRPConversation interfaces.

– Multi-party communication contains more than two SIP User Agents, and is
represented by the Conference, IMConference, and MSRPConference interfaces.

SFT instantiates a Communication object in response to an incoming SIP message from
a UA or application. If the Communication object is created as the result of a SIP
message request, SFT treats it as a two-party communication. The SFT application can
then use the CommunicationBean’s INITIALIZATION event to convert the two-party
communication into a multi-party communication.

Table 17–1 lists the sub-classes of the Communication class. Each of these interfaces
determines the type of communication the Communication Bean implements. To learn
more about the Communication class, its sub-classes, and their usage, refer to the
Converged Application Server API Reference.

Table 17–1 Sub-Classes of the Communication Class

Class Description

Conversation Represents a conversation between two parties. Typically this is
between two UAs. It can also be between a UA and the Player
or Recorder interface which plays an announcement or records
a message (for example, voice mail).

Conference Represents a communication involving multiple parties (more
than two UAs). Conference requires that you use the media
mixer in combination with a JSR309-compliant media server.

IMConversation Instant messaging between two participants.

IMConference Instant messaging between multiple participants. Converged
Application Server brokers the communication session among
the participants.

Interaction A communication session where more than one participant
interacts with another participant. Conversation and
Conference are typical communication sessions that make use
of the Interaction interface.

MSRPConversation A two-party communication session that uses the Message
Session Relay Protocol (MSRP). MSRP is a protocol for
transmitting a series of related instant messages in the context of
a communications session. In addition to text messaging, this
communication object can be used to transfer files among the
participants involved in the communication

MSRPConference A multi-party communication session that uses the MSRP
protocol. This type of communication is brokered by the SFT’s
MSRP server. As with MSRPConversation, this type of
communication can be used to transfer files among the
participants involved in the communication.

QueryInteraction Queries a message exchange between two UAs via the
application server (AS). This allows a client to discover
information about the supported methods, content types,
extensions, and codec without “calling” the other party.

For example, before a client inserts a Require header field into a
SIP INVITE listing an option that it is not certain the destination
UAS supports, the client can query the destination UAS with an
OPTIONS to see if this option is returned in a Supported header
field.

About Communication Beans

Introduction to the Service Foundation Toolkit 17-3

About Communication Beans
The SFT APIs use Java ease-of-development features such as Plain Old Java Objects
(POJO), annotations, and dependency injection. At the core of SFT is
CommunicationBean, a stateless POJO. CommunicationBean functions as an
intermediary between the SIP Servlet and incoming SIP messages, simplifying the
development of SIP-based applications.

Developers can create applications that contain one or more CommunicationBeans
whose logic modifies the default behavior of SFT. This is done by invoking methods on
the contextual objects (such as Communications and CommunicationSession) injected
into the CommunicationBean rather than the SIP protocol itself. This is done by
modifying the behavior of the communication session the bean is handling rather than
the SIP protocol itself.

By default CommunicationBean acts as a Back-to-Back User Agent (B2BUA).When an
event is generated, the related communication artifact is made available to
CommunicationBean. CommunicationBean is a high level Java bean that encapsulates the
logic for handling SIP-based communications. It exposes the call flow of a
communication by generating events at logical stages of the communication session.
CommunicationBean provides the capabilities of regular Java EE components—looking
up JDBC data sources, J2EE Connector Architecture (JCA) resources, and Enterprise
JavaBeans (EJBs). It also provides the ability to initiate transactions using the Java
Transaction API (JTA), and propagates security related context information from SFT
to the application server.

You implement CommunicationBeans using the @CommunicationBean annotation,
which identifies a Java class as a CommunicationBean. CommunicationBeans act as
event listeners for communication events initiated within the network. Methods in
CommunicationBean—when annotated with a particular event annotation using the
appropriate attributes—act as event listeners for the communication. For example, if
SFT receives a SIP INVITE it results in an INITIALIZATION event within the
CommunicationBean, which is handled using the method level @CommunicationEvent
annotation. Once communication is established, a method annotated with the
ESTABLISHED event type is triggered.

Example 17–1 illustrates the use of the INITIALIZATION and ESTABLISHED event
types applied using the @CommunicationEvent annotations.

Example 17–1

@CommunicationBean
public class MyCommunicationBean {

 @Context CommunicationSession sess;
 @Context CommunicationContext ctx;

 @CommunicationEvent(type=CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 String confName = call.getCallee().getUserName();

UserActivity Encapsulates user activity. You can use this to retrieve
information about a participant’s activity, and either allow or
reject a communication between participants to be established
based on the user’s activity.

Table 17–1 (Cont.) Sub-Classes of the Communication Class

Class Description

About Participants

17-4 Oracle Communications Converged Application Server Developer's Guide

 if (confName.equalsIgnoreCase("conf1@example.com")) {
 sess.createConference(confName, call);
 }
 @CommunicationEvent(type=CommunicationEvent.Type.ESTABLISHED)
 void handleESTABLISH() {
...

About Participants
SIP applications invite participants to scheduled or existing communication sessions.
A participant can be a person, an automated service (such as voice mail or an
announcement), or a physical device such as a mobile phone (the user equipment, or
UE). A participant can also add or remove media to or from a communication. Within
SFT, a participant in a communication is represented by the Participant interface. A
communication session can have different types of participants.

For example, UserParticipant represents a SIP UA, and a MediaParticipant
represents a party involved in media operations such as audio playback and recording.
The Player and Recorder classes are sub-classes of MediaParticipant, and represent
the ability to play an audio announcement or record a conversation.

Participants are added to a communication session either by SFT at runtime, or by an
application. For example, when a SIP INVITE for a two-party call reaches Converged
Application Server, SFT instantiates a Conversation object, and adds the caller and
callee as participants. In cases where an application within Converged Application
Server initiates the call, the application instantiates a Conversation object, and adds

Table 17–2 Sub-Classes of the Participant Class

Class Description

ActiviyParticipant Represents the activity of a Participant. For example, a SIP
participant listening to waiting messages (voice mail) is an
ActivityParticipant. That is, they are an active participant in
a communication.

Focus Represents the Participant class in a Conference. Applications
use the Focus interface to initialize JSR 309-compliant media
server via the JSR 309 APIs.

MediaParticipant Represents a media participant such as the Player or Recorder
interfaces (see below) which you use to add or remove media
streams.

MediaPartner Represents a MediaPartner, which functions as both a Player
and Recorder. The MediaPartner can also attach to a Participant
in an established Conversation to play an announcement.

MSRPPlayer Represents a participant that is used to send files (such a JPEG
images or documents) from the AS to the other participants in a
MSRP communication.

MSRPRecorder A participant that is used to save files sent with MSRPPlayer
and/or record the message history of a MSRP communication.

Player Represents a Player object that you can add to a Communication
object for the playback of audio files.

Recorder Represents a Recorder object that you can add to a
Communication object for the recording of audio files.

UserParticipant Represents a participant—a User Agent—using the
communication session.

About SIP Messages and SFT

Introduction to the Service Foundation Toolkit 17-5

participants to the object to initiate the conversation. For example, a Third Party Call
Control (3PCC) application in which the operator creates a call that connects two
participants. Similarly, a conferencing application adds a participant in the form of the
Recorder class to the Communication object, and then records the conversation.

Example 17–2 The UserParticipant Interface Getting Caller Information

...
@Context CommunicationContext<Conversation,UserParticipant> ctx
...
 Conversation call = ctx.getCommunication();
 UserParticipant callee = (UserParticipant) ctx.getCallee();
 UserParticipant caller = (UserParticipant) ctx.getCaller();

 IdentityInformation ii = ctx.getContextElement(IdentityInformation.class);
 if (isRoaming(ii)) {
 caller.reject(Reason.DECLINE);
 }
 PhoneNumber ph = callee.getPhoneNumber();
 if (isInternationalCall(ph, caller)) {
 caller.reject(Reason.DECLINE);
 }
...

About SIP Messages and SFT
SIP signaling—the setting up, modification, and termination of communication
sessions—occurs through the exchange of SIP messages. There are two types of SIP
messages: requests and responses. Requests are sent to initiate an action; responses are
sent as replies to requests, acknowledging receipt of the requests and indicating their
status.

Requests and responses share a common message format which consist of a start-line,
one or more header fields, an empty line indicating the end of the header fields, and
an optional message-body.

SIP messages often carry a lot of information. For example, the SIP MESSAGE body
may include a text message, and the SIP INFO method communicates additional
information about an active session using dual-tone multi-frequency (DTMF) signaling
(DTMF). SIP Servlets read the SIP message contents, interpret them, and respond
accordingly.

SFT converts SIP request and response messages into Java objects, which are defined
by the Java interface Message. When an event is generated, SFT provides these Message
objects to the application. Examples of Message objects include TextMessage,
DtmfSignal, and MessageIndication.

Example 17–3 illustrates a CommunicationBean using the MessageIndication class
within the @CommunicationEvent annotation. Depending on the type of message,
applications may modify the message content. For example, an application can alter
the text message sent in the SIP message body by adding a warning, or translating the
content. Similarly, some messages may be consumed by the application to facilitate
communication between the server and user agents. For example, a web-to-SIP phone
IM session.

Example 17–3 The MessageIndication Communication Event

@CommunicationBean
public class MyCommunicationBean {

About Communication Context Types

17-6 Oracle Communications Converged Application Server Developer's Guide

 @Context CommunicationContext ctx;

 @CommunicationEvent(type=CommunicationEvent.Type.MESSAGEINDICATION)
 void handleMessageIndication() {
 IMConversation conv = (IMConversation) ctx.getCommunication();
 MessageIndication msg = (MessageIndication) ctx.getMessage();
 System.out.println("Message State : " + msg.getState());
 System.out.println("Next Message Type : " + msg.getNextMessageType());
 }

About Communication Context Types
SFT provides three objects that can be injected into the CommunicationBean and other
Java application components: CommunicationSession, CommunicationContext, and
CommunicationService.

You inject these objects using the @Context annotation, as shown in Example 17–4. As
shown below, dependency injection allows one component to reference another by
having the container “inject” the component into a method or instance variable.

Example 17–4

@CommunicationBean
public class CallBean {

 @Context CommunicationSession session;
 @Context CommunicationContext<Conversation,UserParticipant,Message> ctx;
 @Context CommunicationService service;
...

CommunicationSession
A communication or participant is always associated with CommunicationSession. For
every event generated that pertains to a Communication or Participant object,
CommunicationSession is injected into the application. This association is made at the
time of creation of the object (by the application or by the SFT runtime). Multiple
objects can be created using the same CommunicationSession object.

CommunicationService
CommunicationService configures the underlying communication service. Persistent
information—such as groups—are created using CommunicationService.

CommunicationContext
CommunicationContext represents the context in which the current event is generated.
SFT injects CommunicationContext into the CommunicationBean for each event.
Applications obtain artifacts relevant to the event such as Communication,
Participant, and Message from the CommunicationContext object.

CommunicationContext is only injected into CommunicationBean, and is not injected
into other Java EE artifacts.

Note: CommunicationContext is only injected into
CommunicationBean, and is not into other Java EE artifacts.

Searching Communications

Introduction to the Service Foundation Toolkit 17-7

To learn more about CommunicationSession, CommunicationContext, and
CommunicationService and their usage, refer to the Converged Application Server API
Reference.

About Agents
The CommunicationSession object is injected into HTTP Servlets and the
CommunicationBean. Applications can use CommunicationSession to create any kind of
communication. Different entities in a communication, such as Communication or
Participant objects, have different life cycles, and there may be different events
associated with these entities. A converged application may need to execute logic
based on such events. For example, in a conferencing application, when the host of the
communication joins the conference, audio recording is automatically activated.
Events such as this are invoked in the CommunicationBean.

SFT provides the ability to attach agents to different communication session artifacts.
An agent is an object defined by the application that contains data and logic specific to
the application. Agents can be attached to a Communication object, a Participant
object, or to both the Communication and Participant objects. The application invokes
the agent to perform application specific logic whenever an event occurs. Given
communication session artifacts are accessible both from web applications and
CommunicationBean, the agent enables you to develop converged applications in an
organized manner.

About Media Control
SFT provides APIs to control media object composition. Media objects are composed
together for media processing and functions. Media objects are MediaParticipants,
such as a Recorder and Player, that can be added to a Communication object.

A composable media object is referred to as Joinable in the Java Media Control API (JSR
309). When a joiner joins a Communication with a joinee, the media streams are
connected between them. You can specify the direction of the joining media streams.
Each MediaParticipant encapsulates a Joinable defined by the Media Control API. It
is also possible to create a MediaParticipant using a pre-created Joinable. This allows
the application to specify advanced Media Control API parameters using SFT. The
Media Control API allows you to register an event listener to listen for media events.
For example, the media event “Playing Finished,” signaling the end of a media
stream’s playback. SFT has its own event annotations for common media events. SFT
also allows you to annotate a CommunicationBean as a MediaEventListener. This
enables all JSR 309 media events to be received by the Communication bean. Since
these events occur like any other SFT defined event, the CommunicationContext—and
hence the relevant Communication—are also available to the MediaEvent.

Media server configuration can be performed using the JNDI name of the
MediaSessionFactory in use by the CommunicationBean interface.

Searching Communications
The SFT API exposes the ability to search Communication interfaces, allowing
converged applications to locate the correct Communication object. Communication
objects can be searched based on the name of the participant(s) or the name of
communication itself. For example, an application might want to find a
communication session that is already underway.

Packaging and Deploying SFT Applications

17-8 Oracle Communications Converged Application Server Developer's Guide

Packaging and Deploying SFT Applications
SFT applications are packaged in the standard WAR file format. When a
@CommunicationBean annotation and sft.xml deployment descriptor is present in the
WAR file, SFT provisions an internal SIP Servlet to handle SIP requests. For composing
multiple applications, a standard JSR 289 application router is used, which treats the
SFT application as a SIP application.

See Chapter 18, "Packaging and Deploying SFT Applications," to learn more about
packaging and deploying SFT applications.

SFT Annotations
Annotations are a type of metadata that enable a declarative style of programming.
The CommunicationBean uses annotations to encapsulate common functions or roles
fulfilled by communication applications. Instead of specifying the code that performs
the function, you simply add the annotation to the source file. The SFT framework
expands the annotation to the appropriate code.

Annotations take the form of @annotation_name, where annotation_name identifies the
annotation. Some annotations take arguments, which you specify alongside the
annotation.

Table 17–3 lists the annotations available within SFT.

Using the @CommunicationBean Annotation
Example 17–5 illustrates the use of the com.oracle.sft.api.bean.CommunicationBean
class-level annotation. The type = Conversation.class argument specifies that this
CommunicationBean be applied to the Conversation class, which represents a
two-party communication. This example creates the Java class MyConversationBean.
The @Context annotation injects instances of the CommunicationContext and
CommunicationSession objects.

CommunicationContext provides information related to the current communication to
the application, and is linked to the event currently being handled by the
CommunicationBean. The CommunicationSession object creates Communication related
objects from the communication session. When an event—either a
CommunicationEvent or ParticipantEvent—is executed, the same
CommunicationSession object is injected into the CommunicationBean.

Table 17–3 SFT Annotations

Annotation Description

@Context Injects a CommunicationSession, CommunicationContext or
CommunicationService object into the CommunicationBean.

@CommunicationBean SFT scans Java classes for this annotation, and, when found,
instantiates the Java class and uses them as event listeners.
Methods using this annotation are invoked by SFT to listen for
the specified event types.

@CommunicationEvent Specifies events pertaining to a communication. Any method
using this annotation is invoked when a CommunicationEvent of
the specified type occurs.

@ParticipantEvent Specifies events pertaining to a participant. Any method using
this annotation is invoked when a ParticipantEvent of the
specified type occurs.

About Event Handling

Introduction to the Service Foundation Toolkit 17-9

Also shown is this example are two methods declared using the @CommunicationEvent
annotation: handleInit() and handleEstablish(). The handleInit() method listens
for communication events of Type.INITIALIZATION, which identifies the method as
the initializing event in a communication session. The handleEstablish() method
listens for communication events of Type.ESTABLISH, signifying events where a media
session is established. See "Using the @CommunicationEvent Annotation" to learn
more about event types.

Example 17–5 Using The @CommunicationBean Annotation

@CommunicationBean(type = Conversation.class)
public class MyConversationBean {
 @Context CommunicationContext ctx;
 @Context CommunicationSession session;

 @CommunicationEvent(type=CommunicationEvent.Type.INITIALIZATION)
 public void handleInit() {
 }

 @CommunicationEvent(type=CommunicationEvent.Type.ESTABLISHED)
 public void handleEstablish() {
 }
}
...

About Event Handling
As described earlier, SFT provides two method-level annotations by which you can
declare and instantiate methods that respond to events:

■ @ParticipantEvent specifies events pertaining to a participant in the
communication.

■ @CommunicationEvent specifies events pertaining to a communication session.

The @CommunicationEvent and @ParticipantEvent annotations define a number of
read-only constants that provide important information about an event. These
constants provide an easy way to refer to specific event types. The example below
illustrates the CommunicationEvent.Type.INITIALIZATION event, which initializes a
communication session.

@CommunicationEvent(type=CommunicationEvent.Type.INITIALIZATION)

Understanding Event Flow
The following example illustrates the event handling that occurs in a simple
Conversation (a two-party call). Figure 17–1 shows the flow of events as they are
triggered by the application.

About Event Handling

17-10 Oracle Communications Converged Application Server Developer's Guide

Figure 17–1 Event Handling Within A Two-Party Conversation

1. The caller initiates a call which invokes an INITIALIZATION event in the
CommunicationBean. All communication within an SFT application begins with
an INITIALIZATION event type—which as the name implies—initializes the
communication.

2. The CommunicationBean responds with SIP ACK messages, acknowledging
receipt of a SIP INVITE from the caller. The sending of ACKs is handled by the
STARTED communication event. If the application rejects the call, the
communication ends.

If the application redirects the call (for example, to voice mail) the Conversation
ends, and a ParticipantEvent event type is called by the application to create a
communication between the caller and the Recorder interface, which allows the
caller to record a voice message.

3. If ACKs are sent and received by both the caller and callee (the person being called
has answered the phone), the CommunicationBean invokes the ESTABLISHED
event, indicating that communication is established between the two parties.

4. If the callee chooses to reject the call (the person being called does not answer the
phone) the CommunicationBean invokes the FAILED event, indicating that the
communication has been rejected by the callee.

5. In cases where the CommunicationBean invokes the ESTABLISHED event, the
communication continues until one of the parties ends the call by hanging up the
phone. This invokes the FINISHED event, signifying that the communication has
ended.

About Event Handling

Introduction to the Service Foundation Toolkit 17-11

Event Walkthrough
The following examples step you through a simple CommunicationBean that handles
Conversation events.

All communication begins with an INITIALIZATION event. The handleInit() method
processes an incoming SIP INVITE, using the Conversation interface, which represents
a two-party call.

@CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
//Remaining code omitted for brevity

The CommunicationBean acknowledges receipt of the SIP INVITE from the caller,
sending an ACK message. The sending of ACKs is handled by the STARTED
communication event.

@CommunicationEvent(type = CommunicationEvent.Type.STARTED)
 void handleStart() {
//Remaining code omitted for brevity

When the callee (the person being called) answers the phones, ACKs are sent and
received by both the caller and callee, and the CommunicationBean invokes the
ESTABLISHED event, establishing communication between the two parties.

@CommunicationEvent(type = CommunicationEvent.Type.ESTABLISHED)
 void handleEstablish() {
//Remaining code omitted for brevity

The FINISHED event signifies that the communication has ended, and is only invoked
in cases where communication was established via the ESTABLISHED event, and the
communication continues until one of the parties ends the call by hanging up the
phone.

 @CommunicationEvent(type = CommunicationEvent.Type.FINISHED)
 void handleFinish() {
 System.out.println("Call Finished :" + ctx.getCommunication());
 }

Using the @CommunicationEvent Annotation
The @ComunicationEvent method-level annotation identifies events pertaining to a
communication. Methods declared with @ComunicationEvent are invoked when a
communication event of the specified type occurs.

Example 17–6 illustrates the use of the @CommunicationEvent annotation specifying an
Type.INITIALIZATION event type, which declares the handleInit() method as the
initializing event in a communication session. The initialization event occurs when a
Communication object is created as a result of SFT receiving a SIP message. For
example, when a SIP INVITE message reaches SFT, by default it creates a
Conversation object, and invokes the method associated with the
Type.INITIALIZATION event type so that the application can respond appropriately to
the communication session being established. In this example, the
createConference() method converts the Conversation object into a Conference
object via a method call using the sess object reference variable.

Example 17–6 The @CommunicationEvent Annotation

@CommunicationBean

About Event Handling

17-12 Oracle Communications Converged Application Server Developer's Guide

public class MyCommunicationBean {

 @Context CommunicationSession sess;
 @Context CommunicationContext ctx;

 @CommunicationEvent(type=CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 String confName = call.getCallee().getUserName();
 if (confName.equalsIgnoreCase("conf1@example.com")) {
 sess.createConference(confName, call);
 }
 }
}
...

About Communication and Participant Events
SFT applications listen for events that occur in response to SIP messages from the
network or a media server. Events mark a logical stage in a communication session.
For example, an initial SIP INVITE generates an INITIALIZATION event in the
CommunicationBean. From that initial event, the CommunicationBean generates an
event at each logical stage of the communication session. An INITIALIZATION event
might be followed by STARTED, ESTABLISHED, and FINISHED events.

Events pertaining to a communication are declared using the @CommunicationEvent
method level annotation, and those pertaining to a participant are declared using the
@ParticipantEvent method level annotation.

Example 17–7 The @CommunicationEvent Annotation

@CommunicationBean
public class MyCommunicationBean {

 @Context CommunicationSession sess;
 @Context CommunicationContext ctx;

 @CommunicationEvent(type=CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 String confName = call.getCallee().getUserName();
 if (confName.equalsIgnoreCase("conf1@example.com")) {
 sess.createConference(confName, call);
 }
 }
}

Since events are optional, you don't need to include each event type in your
application. Instead, you only need to include events relevant to the type of
communication session being established. When a particular event type is not
implemented in the application, SFT proceeds with the default behavior of that
communication session.

For example, in a two-party call, if a callee rejects an INVITE with the 486 Busy Here
SIP response code, SFT generates a REJECTED event, allowing the application to
remove the rejected callee participant, and add another participant as the callee. In
such an instance, SFT adds that party to the call (for example, using INVITE or
REINVITE). If the application does not override the default behavior of the REJECTED

About Event Handling

Introduction to the Service Foundation Toolkit 17-13

event, the 486 SIP response code is sent to the caller, and the communication session is
terminated.

Since events are optional, the simplest CommunicationBean does not need to have any
methods. Such a CommunicationBean acts as a back-to-back user agent (B2BUA)
facilitating a two-party call.

CommunicationEvent Enumeration Types
Table 17–4 lists the @CommunicationEvent enumeration types. To learn more about
@CommunicationEvent, its usage, and the event types it provides, refer to the Converged
Application Server API Reference.

Table 17–4 CommunicationEvent Enumeration Types

Enumeration Description

ABORTED Indicates that the Communication has been aborted by the
initiator.

CONFIRMATION_
FINISHED

Indicates that the End User Confirmation message has finished.

CONFIRMATION_
MESSAGEARRIVED

Indicates that an End User Confirmation message arrived
during an IMConversation.

CONFIRMATION_
RESPONDED

Indicates that an End User Confirmation response message
arrived during an IMConversation.

ERROR Indicates that an error occurred in the Communication.

ESTABLISHED Indicates that the Communication is established.

FAILED Indicates that the Communication has failed.

FINISHED Indicates that the Communication is finished.

FINISHING Indicates that the Participant is requesting to finish (or end) an
established Communication.

FORWARDING Indicates that a call is being forwarded.

HELD Indicates that a call is in a held state.

HOLDING Indicates that a call is being held.

INITIALIZATION Indicates that a Communication is being initialized.

MEDIA Generic event that act as a capture all for any media event in the
media server.

MEDIA_INFO_EARLY_
EXCHANGED

Indicates that end-to-end media information is to be exchanged
before the called party answers the call (picks-up the phone).
End-to-end refers to information being exchanged between the
calling party (the caller) to the called party (the callee).

MEDIA_RESOURCE_
RESERVED

Indicates that a media resource has been reserved. This event is
triggered after a media exchange between the calling and called
party when the media server finishes streaming content.

You can trigger this event by adding a MediaParticipant.

MEDIAENDED Indicates that media being streamed from the media server has
ended.

MESSAGE_FAILURE_
RESPONDED

A 4xx, 5xx, or 6xx response that an IM message has arrived.

MESSAGE_SUCCESS_
RESPONDED

A 2xx response of IM message arrived.

About Event Handling

17-14 Oracle Communications Converged Application Server Developer's Guide

Using the @ParticipantEvent Annotation
The @ParticipantEvent method-level annotation identifies events pertaining to a
participant in the communication. Methods declared with @ParticipantEvent are
invoked when a participant event of the specified type occurs.

Example 17–8 The @ParticipantEvent Annotation

@CommunicationBean
public class MyCommunicationBean {
 @Context CommunicationContext<Conversation,UserParticipant> ctx;

 @ParticipantEvent(type= ParticipantEvent.Type.JOINING, communicationType =
 Conversation.class)
 public void hanldeStatedEvent() {
 Conversation call = (Conversation) ctx.getCommunication();

ParticipantEvent Enumeration Types
Table 17–8 lists the @ParticipantEvent enumeration types. To learn more about
@ParticipantEvent, its usage, and the event types it provides, refer to the Converged
Application Server API Reference.

MESSAGEARRIVED Indicates that a message arrived. The message could be an IM
sent during an IMConversation, or a DTMF Signal message
during a Conversation or Conference.

MESSAGEINDICATION A Message Indication arrived during an IMConversation.

NOTIFICATION Indicates that a new notification has been created.

PICKUP Indicates that the called party has picked-up the phone
(answered the call).

QUERIED Indicates that the a query has responded.

QUERYING Indicates that the process of querying (such as for device
capability) has been initiated.

REFER Indicates a REFER event.

RESUMED Indicates that a call is already resumed.

RESUMING Indicates that a call is being resumed.

STARTED Indicates that a Communication has started.

SUBSCRIPTION Indicates that a new subscription is to be created.

WAITING Indicates that call is waiting.

Table 17–5 ParticipantEvent Enumeration Types

Enumeration Description

BEING_BANNED The participant is about to be rejected by the application server
(call barring).

ERROR An unexpected error happened pertaining to the Participant.

Table 17–4 (Cont.) CommunicationEvent Enumeration Types

Enumeration Description

SFT Sample Application

Introduction to the Service Foundation Toolkit 17-15

SFT Sample Application
The SFT sample application demonstrates the use the SFT APIs to create a
telecommunication service application. The example application allows you to build
and deploy a simple 411 directory assistance service that demonstrates the following:

■ Establish an audio conversation with another user.

■ Establish an audio conference with multiple users.

■ Play a call announcement and transfer the call to another callee.

■ Create a Message Session Relay Protocol (MSRP) conversation and conference in
which users can exchange Instant Messages (IMs) and share pictures or other files.

All source code, deployment descriptors, and build files for the examples are found in

MiddleWare_Home\occas_Version\samples\s4e

See Readme.htm for descriptions of the example, source code, and build files.

INITIALIZATION The first participant event during the entire Participant
life-cycle.

JOINED The Participant has joined the communication.

JOINING Participant is about to join the communication.

LEFT The Participant has left the communication.

REJECTED The Participant has refused to join the communication.

Table 17–5 (Cont.) ParticipantEvent Enumeration Types

Enumeration Description

SFT Sample Application

17-16 Oracle Communications Converged Application Server Developer's Guide

18

Packaging and Deploying SFT Applications 18-1

18Packaging and Deploying SFT Applications

In order to develop and deploy Converged Application Framework Essentials (SFT)
applications, you must package the applications using the configurations described in
this chapter.

Structure of a SFT Application
SFT applications consist of the following programming artifacts:

■ One or more Communication Beans

■ metadata and configuration files

Packaging SFT Applications
SFT applications are packaged in WAR (web archive) files. When deployed with the
SFT domain template, the .war extension is recognized and the application is scanned
to find SFT annotations. If a SFT specific annotation is found, the SFT framework is
enabled.

SFT applications may be packaged in WAR files, or the WAR file may itself be
packaged within an Enterprise archive (EAR), similar to a typical Java EE application.
This means a SFT application that has been packaged in a WAR may be packaged with
Enterprise Bean components, Java Persistence API JARs, and any other Java EE
component that is allowed to be packaged in EAR files.

Integrating SFT with SIP Servlets
SFT uses ServletContextListener as the trigger for annotation scanning. This event
class handles notifications about changes to the servlet context of the Web application
that it is part of. There is one ServletContextListener for each WAR application you
deploy. When ServletContextListener intercepts an event, the SFT annotations will
be scanned. For each SFT-enabled WAR file, a SIP Servlet is used by the SFT
framework. SIP messages from different SIP entities will be received by this SIP
Servlet. Example 18–1 illustrates the implementation the ServletContextListener
class in a SFT application by declaring it in the sip.xml deployment descriptor.

Example 18–1 Integrating SFT With OCCAS Using SIP.XML

<?xml version="1.0" encoding="UTF-8"?>
<sip-app xmlns:ee="http://java.sun.com/xml/ns/javaee"
 xmlns="http://www.jcp.org/xml/ns/sipservlet"
 version="1.1">
 <app-name>com.oracle.example.test</app-name>
 <servlet>

Structure of a SFT Application

18-2 Oracle Communications Converged Application Server Developer's Guide

 <ee:servlet-name>ExampleServlet</ee:servlet-name>
 <ee:servlet-class>com.oracle.SFT.core.Servlet<</ee:servlet-class>
 <ee:load-on-startup>0</ee:load-on-startup>
 </servlet>

 <listener>
 <ee:listener-class>
 com.oracle.sft.deployment.SFTContextListener
 </ee:listener-class>
 </listener>
</sip-app>

SFT.XML Deployment Descriptor
You use the sft.xml deployment descriptor to configure SFT applications. Much of the
information can be specified programmatically using the @ServiceAttributes
annotation. However, this information can also be overridden using the sft.xml
deployment descriptor. You can also specify which Java packages the SFT application
should scan for annotations, which may improve performance.

Example 18–2 illustrates the use of the annotation-scanning XML elements of the
sft.xml deployment descriptor. In this example, the configuration information
contained in the service-attributes element overrides the configuration information
in the ServiceAttributes annotation. If the annotation-scanning element is present in
sft.xml deployment descriptor, it will scan only the listed JAR files and Java packages
for SFT annotations.

Example 18–2 Annotation Scanning Using SFT.XML

<SFT-app>
 <service-attributes>
 <domain-proxy>sip:example.proxy.oracle.com:5060</domain-proxy>
 <domain-name>example.com</domain-name>
 <xcap-root>http://example.xdms.oracle.com:8080/xdmserver</xcap-root>

 <mediacontrol-jndi-name>mscontrol/dialogic1</mediacontrol-jndi-name>
 <allowed-javaee-modules>*</allowed-javaee-modules>
 </service-attributes>

 <annotation-scanning>
 <jars>
 <jar>example1.jar</jar>
 <jar>example2.jar</jar>
 </jars>
 <packages>
 <package>com.oracle.SFT.api</package>
 <package>com.oracle.SFT.api.bean</package>
 </packages>
 </annotation-scanning>
</SFT-app>

19

SFT Deployment Descriptor and Schema Reference 19-1

19SFT Deployment Descriptor and Schema
Reference

Deployment descriptors are XML Schema Definition-based (XSD). The following
sections describe XSD-based deployment descriptors and namespace declarations for
the Service Foundation Toolkit (SFT) for Converged Application Server.

Application-Based Deployment
An application is a logical collection of one or more modules joined by application
annotations or deployment descriptors. You assemble components into WAR or SAR
files which are then deployed within a Converged Application Server installation
using the SFT domain template.

XML Schema Definitions and Namespace Declarations
The contents and arrangement of elements in the sft.xml deployment descriptor file
must conform to the appropriate XSD. An XSD deployment descriptor file requires a
namespace declaration in the root element of the file. Namespace declarations in the
root element of a deployment descriptor file apply to all elements in the descriptor
unless a specific element includes another namespace declaration that overrides the
root namespace declaration.

Oracle recommends that you always include the schema location URL along with the
namespace declaration in your XML deployment descriptor files; if you do not include
the schema location in your XML deployment descriptor files, you may not be able to
edit the descriptor files with a third-party tool.

Annotation-based Configuration
An alternative to XML-based deployment descriptors is provided by annotation-based
configuration, which injects metadata for configuring components into the Java class
byte code instead of using XML-based deployment descriptors. Instead of using XML
to describe a Java bean, the configuration information is contained within the Java
class itself by using annotations on the relevant class, method, or field declaration.

This annotation indicates that the affected bean property be populated at runtime time
through an explicit property value in the bean definition.

Using the @ServiceAttributes Annotation
The @ServiceAttributes annotation is placed at top of a @CommunicationBean
annotation. There can only one @ServiceAttribute annotation in an application.

About the sft.xml Deployment Descriptor Elements

19-2 Oracle Communications Converged Application Server Developer's Guide

@ServiceAttributes defines the attributes of the application. Example 19–1 illustrates
the use of the @ServiceAttributes annotation to specify bandwidth usage
supplementary service. To lean about the @ServiceAttributes annotation, refer to the
Converged Application Server API Reference

Example 19–1 Specifying Bandwidth With The @ServiceAttributes Annotation

@ServiceAttributes(enableChangeBandwidth = true, sdpBandwidthAttributes =
{0, 800, 1600})

About the sft.xml Deployment Descriptor Elements
The following sections describe the elements in the Converged Application
Server-specific deployment descriptor sft.xml.

About the communication-bean Element
The communication-bean element describes the CommunicationBean and other
resources used by the SFT application. If a CommunicationBean using the class name
specified with the class-name element exists, then the name and type values override
the values specified using the annotations in the CommunicationBean’s Java class file.

If the event element specified in the communication-bean element matches the
CommunicationBean's annotated method (it uses the same communication-type and
event-type), then the orchestration priority value specified with the orchestration
element overrides the value specified in the CommunicationBean Java class file.

Table 19–1 describes the elements you can define within the communication-bean
element.

Table 19–1 Sub-Elements of the communication-bean Element

Element Description

name Name of the CommunicationBean. If a name is not specified, the
SFT container uses the fully-qualified class name as the
CommunicationBean name. This procedure is typically used to
enable configuration of Java beans within the application server.

class-name The fully-qualified name of the Java class. For example:

<class-name>com.oracle.sft.CommunicationBean</class-name>

About the sft.xml Deployment Descriptor Elements

SFT Deployment Descriptor and Schema Reference 19-3

type Identifies the type of CommunicationBean. If the type is specified,
the CommunicationBean is invoked only for the specified event
types. If the application does not specify an event type, then the
CommunicationBean is invoked for any type of communication
session. The type values are:

■ Conversation

■ Conference

■ IMConversation

■ IMConference

■ MSRPConversation

■ MSRPConference

■ MessageObservation

■ QueryInteraction

For example:

<type>Conversation</type>

event Identifies events pertaining to the type of communication. The
possible values are those defined using the following method-level
event annotations:

■ CommunicationEvent

■ ParticipantEvent

■ ProtocolEvent

Refer to the Converged Application Server API Reference for
information on the event types.

For example:

<event communication-type="Conversation"
event-type="ParticipantEvent.Type.JOINING">
</event>

communication-type Identifies the type of communication to which to apply the
communication event. The communication-type values are:

■ Conversation

■ Conference

■ IMConversation

■ IMConference

■ MSRPConversation

■ MSRPConference

■ MessageObservation

■ QueryInteraction

Table 19–1 (Cont.) Sub-Elements of the communication-bean Element

Element Description

About the sft.xml Deployment Descriptor Elements

19-4 Oracle Communications Converged Application Server Developer's Guide

Example 19–2 Example communication-bean Element

<communication-bean>
 <name>ConversationBean</name>
 <class-name>com.oracle.sft.ConversationBean</class-name>
 <type>Conversation</type>
 <event communication-type="Conversation"
 event-type="ParticipantEvent.Type.JOINING">
 <orchestration priority="10" />
 </event>
 </communication-bean>

The service-attributes Element
Service attributes define various configuration parameters for use by SFT applications.
You can specify these parameters using either the service-attributes element in the
sft.xml deployment descriptor, or using the @ServiceAttributes annotation placed in
the CommunicationBean’s Java class file. If you specify service parameters using the
service-attributes element in the sft.xml deployment descriptor, the values you
specify will override the values specified using the @ServiceAttributes annotation.

Table 19–2 describes the elements you can define within the service-attributes
element.

event-type Identifies events pertaining to the type of communication. The
possible values are those defined using the ParticipantEvent.Type
and CommunicationEvent.Type:

■ CommunicationEvent

■ ParticipantEvent

■ ProtocolEvent

Refer to the Converged Application Server API Reference for
information on the event types.

For example:

<event communication-type="Conversation"
event-type="ParticipantEvent.Type.JOINING">
</event>

Table 19–2 Sub-Elements of the service-attributes Element

Element Description

registrar The IP address or DNS name of the Registrar to use in conjunction with SFT.

domain-proxy The IP address or DNS name of the Domain Proxy to use in conjunction with
SFT.

domain-name Specifies the default domain name, which is appended to all user names.

xcap-root Specifies the HTTP URI representing the XCAP root. Although a syntactically
valid URI, the XCAP Root URI does not correspond to an actual resource on an
XCAP server. Actual resources are created by appending additional path
information to the XCAP Root URI.

mscontrol-jndi-name Java Naming and Directory Interface (JNDI) name with which to look up the
MsControlFactory object configured for use with the application server. This
allows you to use different Media Servers or configurations for the default
MsControlFactory object.

Table 19–1 (Cont.) Sub-Elements of the communication-bean Element

Element Description

About the sft.xml Deployment Descriptor Elements

SFT Deployment Descriptor and Schema Reference 19-5

enableChangeBandwidth Specifies whether or not to enable the alternate bandwidth settings specified by
the sdpBandwidthAttributes element (see below). By default,
enableChangeBandwidth is set to “true”:

<enableChangeBandwidth>true</enableChangeBandwidth>

The 3GPP TS 24.610 specification requires that the application server (AS) of
the User Equipment (UE) invoking a media stream whose SDP session attribute
is “recvonly” use a lower bandwidth. The 3GPP TS 24.610 specification
recommends these values to preserve network bandwidth when a
communication is placed on hold, however, you may need to adjust the
bandwidth to better suit the requirements of the Communication Hold
application.

See "Setting the Communication Hold Bandwidth" for more information.

sdpBandwidthAttributes The 3GPP 24.610 Communication HOLD specification specifies that, as a
network option, the AS of the UE that invokes Communication HOLD shall, for
each media stream marked “recvonly,” lower the bandwidth by setting the
“b=AS:” parameter to a lower value. For example, the “b=AS:0”. The “b=RR:”
and “b=RS:” parameters are set to values large enough to enable the
continuation of the RTCP flow. For example, “b=RR:800” and “b=RS:800”.

Elements you can define within the sdpBandwidthAttributes element are:

■ totalBandwidth

■ bandwidthForActiveDataSenders

■ bandwidthForOtherParticipants

For example:

<sdpBandwidthAttributes>
 <totalBandwidth>0</totalBandwidth>
 <bandwidthForActiveDataSenders>800</bandwidthForActiveDataSenders>
 <bandwidthForActiveDataSenders>800</bandwidthForActiveDataSenders>
</sdpBandwidthAttributes>

See "Setting the Communication Hold Bandwidth" for more information.

conferenceEventConfig Specifies the configuration parameters for a conference event. Elements you
can define within the conferenceEventConfig element are:

■ minExpirationTime

■ defaultExpirationTime

■ maxExpirationTime

■ maxNumOfSubscriptions

For example:

<conferenceEventConfig>
 <minExpirationTime>100</minExpirationTime>
 <defaultExpirationTime>1800</defaultExpirationTime>
 <maxExpirationTime>3600</maxExpirationTime>
 <maxNumOfSubscriptions>100</maxNumOfSubscriptions>
</conferenceEventConfig>

See "Configuring the Conference Event Package" for more information.

Table 19–2 (Cont.) Sub-Elements of the service-attributes Element

Element Description

About the sft.xml Deployment Descriptor Elements

19-6 Oracle Communications Converged Application Server Developer's Guide

messageObservationEventConf
ig

Specifies the configuration parameters for a message waiting event. Elements
you can define within the messageObservationEventConfig element are:

■ minExpirationTime

■ defaultExpirationTime

■ maxExpirationTime

■ maxNumOfSubscriptions

For example:

<messageObservationEventConfig>
 <minExpirationTime>100</minExpirationTime>
 <defaultExpirationTime>1800</defaultExpirationTime>
 <maxExpirationTime>3600</maxExpirationTime>
 <maxNumOfSubscriptions>100</maxNumOfSubscriptions>
</messageObservationEventConfig>

See "Configuring the Conference Event Package" for more information.

referEventConfig Specifies the configuration parameter for a refer event. Note that unlike
SUBSCRIBE, REFER does not contain a duration for the subscription in either
the request or the response. The application can specify the default expiration
time for a refer event. For example:

<referEventConfig>1800</referEventConfig>

terminatingOperator Represents the term-ioi parameter in P-Charging-Vector header.

The P-Charging-Vector header allows IMS signaling elements to generate
and/or query IMS Charging IDs (icid) and originating and terminating Inter
Operator Identifiers (ioi). For more information refer to the 3GPP TS 24.229 and
RFC 3455 specifications.

Table 19–2 (Cont.) Sub-Elements of the service-attributes Element

Element Description

About the sft.xml Deployment Descriptor Elements

SFT Deployment Descriptor and Schema Reference 19-7

Annotation Scanning
Annotation scanning can only be specified using the sft.xml deployment descriptor.

Example 19–3 The Annotation-Scanning Element

<annotation-scanning>
 <jars>
 <jar>Sample.jar</jar>
 </jars>
 <packages>
 <package>com.oracle.sft.samples</package>
 </packages>
 <beanclasses-from-descriptor>true</beanclasses-from-descriptor>
</annotation-scanning>

Overriding Annotations with the SFT.XML Deployment Descriptor
The following examples show the same configuration parameters specified using both
the sip.xml deployment descriptor and using annotations within the Java class file
SampleBean. The configuration parameters in the sft.xml deployment descriptor
always override the parameters specified using the @ServiceAttributes annotation in
a bean’s Java class file.

chargingCollectionFunction Represents the Charging Collection Function (CCF) charging functional entity
in P-Charging-Function-Addresses header. CCF is used for off-line charging
(for example, postpaid account charging). Elements you can define within the
chargingCollectionFunction element are

■ ccf

For example:

 <chargingCollectionFunction>
 <ccf>10.182.99.71</ccf>
 <ccf>10.182.99.72</ccf>
 </chargingCollectionFunction>

eventChargingFunction Represents the Event Charging Function (ECF) charging functional entity in
P-Charging-Function-Addresses header. ECF is used for on-line charging (for
example, pre-paid account charging). Elements you can define within the
eventChargingFunction element are:

■ ecf

For example:

 <eventChargingFunction>
 <ecf>10.182.99.71</ecf>
 </eventChargingFunction>

statusCode4InitiateEarlyMed
ia

Specifies the status code of the response through which the AS initiates early
media for certain instances of the UserParticipant as the caller. Converged
Application Server support two values: 183 (Session Progress) and 180
(Ringing). If a value is not specified, or the value is something other than either
183 or 180, 183 will be used by default.

<statusCode4InitiateEarlyMedia>183</statusCode4InitiateEarlyMedia>

Table 19–2 (Cont.) Sub-Elements of the service-attributes Element

Element Description

About the sft.xml Deployment Descriptor Elements

19-8 Oracle Communications Converged Application Server Developer's Guide

Example 19–4 shows a sft.xml deployment descriptor whose configuration parameters
would override the parameters specified using the @ServiceAttributes annotation in
the SampleBean Java code shown in Example 19–5.

Example 19–4 SFT.XML for SampleBean

<?xml version="1.0" encoding="UTF-8"?>
<sft-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/sdp/sft/sft.xsd"
 xmlns="http://www.oracle.com/sdp/sft">

 <communication-bean>
 <name>SampleBean</name>
 <class-name>com.oracle.sft.samples.SampleBean</class-name>
 <type>Conversation</type>
 <event communication-type="Conversation" event-type="ParticipantEvent.Type.JOINING">
 <orchestration priority="2" />
 </event>
 </communication-bean>

 <service-attributes>
 <registrar>10.182.99.70</registrar>
 <domain-proxy>10.182.99.70</domain-proxy>
 <domain-name>oracle.com</domain-name>
 <xcap-root>sample</xcap-root>
 <mscontrol-jndi-name>mscontrol.ocmp</mscontrol-jndi-name>
 <enableChangeBandwidth>true</enableChangeBandwidth>
 <sdpBandwidthAttributes>
 <totalBandwidth>0</totalBandwidth>
 <bandwidthForActiveDataSenders>800</bandwidthForActiveDataSenders>
 <bandwidthForActiveDataSenders>800</bandwidthForActiveDataSenders>
 </sdpBandwidthAttributes>
 <conferenceEventConfig>
 <minExpirationTime>100</minExpirationTime>
 <defaultExpirationTime>1800</defaultExpirationTime>
 <maxExpirationTime>3600</maxExpirationTime>
 <maxNumOfSubscriptions>100</maxNumOfSubscriptions>
 </conferenceEventConfig>
 <messageObservationEventConfig>
 <minExpirationTime>100</minExpirationTime>
 <defaultExpirationTime>1800</defaultExpirationTime>
 <maxExpirationTime>3600</maxExpirationTime>
 <maxNumOfSubscriptions>100</maxNumOfSubscriptions>
 </messageObservationEventConfig>
 <referEventConfig>1800</referEventConfig>
 <terminatingOperator>tester</terminatingOperator>
 <chargingCollectionFunction>
 <ccf>10.182.99.71</ccf>
 <ccf>10.182.99.72</ccf>
 </chargingCollectionFunction>
 <eventChargingFunction>
 <ecf>10.182.99.71</ecf>
 </eventChargingFunction>
 <statusCode4InitiateEarlyMedia>183</statusCode4InitiateEarlyMedia>
<restAuthorizationAdapter>PRINCIPAL_MATCHING</restAuthorizationAdapter>
<allowedModules></allowedModules>
 </service-attributes>

 <annotation-scanning>
 <jars>
 <jar>Sample.jar</jar>
 </jars>
 <packages>
 <package>com.oracle.sft.samples</package>
 </packages>
 <beanclasses-from-descriptor>true</beanclasses-from-descriptor>

SFT.XML Schema

SFT Deployment Descriptor and Schema Reference 19-9

 </annotation-scanning>
</sft-app>

Example 19–5 illustrate the use of the @ServiceAttributes annotation in the
SampleBean Java class.

Example 19–5 Code for SampleBean with @ServiceAttributes Annotation

package com.oracle.sft.samples;

import com.oracle.sft.api.bean.ParticipantEvent;
import com.oracle.sft.api.bean.ServiceAttributes;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.CommunicationSession;
import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.Communication;
import com.oracle.sft.api.Conversation;
import com.oracle.sft.api.Participant;
import com.oracle.sft.api.Message;
import com.oracle.sft.api.CommunicationService;

@ServiceAttributes(
 registrar = "10.182.99.70",
 domainProxy = "10.182.99.70",
 domainName = "oracle.com",
 xcapRoot = "sample",
 mscontrolJndiName = "mscontrol.ocmp",
 enableChangeBandwidth = true,
 sdpBandwidthAttributes = { 0, 800, 800 },
 conferenceEventConfig = { 100, 1800, 3600, 100 },
 messageObservationEventConfig = { 100, 1800, 3600, 100 },
 referEventConfig = 1800,
 terminatingOperator = "tester",
 chargingCollectionFunction = {"10.182.99.71", "10.182.99.72" },
 eventChargingFunction = { "10.182.99.73" },
 statusCode4InitiateEarlyMedia = 183,
 restAuthorizationAdapter = "PRINCIPAL_MATCHING",
 allowedModules = ""
)
@CommunicationBean(name = "SampleBean")
public class SampleBean {
 @Context CommunicationSession session;
 @Context CommunicationContext<Communication, Participant, Message> context;
 @Context CommunicationService service;

 @ParticipantEvent(type = ParticipantEvent.Type.JOINING,
 communicationType=Conversation.class)
 public void handleJoining() {
 System.out.println(context.getParticipant().getName() + " joining");
 }
}

SFT.XML Schema
Example 19–6 shows the sft.xml deployment descriptor schema.

Example 19–6 SFT.XML Deployment Descriptor Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/sdp/sft"

SFT.XML Schema

19-10 Oracle Communications Converged Application Server Developer's Guide

 xmlns="http://www.oracle.com/sdp/sft"
 elementFormDefault="qualified">
 <xs:element name="orchestrator-class-name" type="xs:token" />

 <xs:simpleType name="event-type-def">
 <xs:restriction base="xs:token">
 </xs:restriction>
 </xs:simpleType>
<xs:simpleType name="bandwidth">
 <xs:restriction base="xs:int">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>

<xs:complexType name="sdpBandwidthAttributes-type-def">
 <xs:sequence>
<xs:element name="totalBandwidth" type="bandwidth" minOccurs="0" maxOccurs="1" />
<xs:element name="bandwidthForActiveDataSenders" type="bandwidth" minOccurs="0" maxOccurs="1"
/>
<xs:element name="bandwidthForOtherParticipants" type="bandwidth" minOccurs="0" maxOccurs="1"
/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="eventConfig-type-def">
 <xs:sequence>
<xs:element name="minExpirationTime" type="xs:nonNegativeInteger" minOccurs="0" maxOccurs="1"
/>
<xs:element name="defaultExpirationTime" type="xs:nonNegativeInteger" minOccurs="0"
maxOccurs="1" />
<xs:element name="maxExpirationTime" type="xs:nonNegativeInteger" minOccurs="0" maxOccurs="1"
/>
<xs:element name="maxNumOfSubscriptions" type="xs:nonNegativeInteger" minOccurs="0"
maxOccurs="1" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ccfs-type-def">
 <xs:sequence>
<xs:element name="ccf" type="xs:token" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="ecfs-type-def">
 <xs:sequence>
<xs:element name="ecf" type="xs:token" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

<xs:element name="orchestration">
 <xs:complexType>
 <xs:attribute name="priority" type="xs:nonNegativeInteger" default="100"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="event">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="orchestration" />
 </xs:sequence>
 <xs:attribute name="communication-type" type="xs:token" />
 <xs:attribute name="event-type" type="event-type-def" />
 </xs:complexType>
 </xs:element>

 <xs:element name="communication-bean">

SFT.XML Schema

SFT Deployment Descriptor and Schema Reference 19-11

 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:token" minOccurs="0" />
 <xs:element name="class-name" type="xs:token" />
 <xs:element name="type" type="xs:token" minOccurs="0" />
 <xs:element ref="event" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="service-attributes">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="registrar" type="xs:token" minOccurs="0" />
 <xs:element name="domain-proxy" type="xs:token" minOccurs="0" />
 <xs:element name="domain-name" type="xs:token" minOccurs="0" />
 <xs:element name="xcap-root" type="xs:token" minOccurs="0" />
 <xs:element name="mscontrol-jndi-name" type="xs:token" minOccurs="0" />
 <xs:element name="enableChangeBandwidth" type="xs:boolean" default="true"
minOccurs="0" maxOccurs="1" />
 <xs:element name="sdpBandwidthAttributes"
type="sdpBandwidthAttributes-type-def" minOccurs="0" maxOccurs="1" />
 <xs:element name="conferenceEventConfig" type="eventConfig-type-def"
minOccurs="0" maxOccurs="1" />
 <xs:element name="messageObservationEventConfig" type="eventConfig-type-def"
minOccurs="0" maxOccurs="1" />
 <xs:element name="referEventConfig" type="xs:nonNegativeInteger"
minOccurs="0" maxOccurs="1" />
 <xs:element name="terminatingOperator" type="xs:token" minOccurs="0"
maxOccurs="1" />
 <xs:element name="chargingCollectionFunction" type="ccfs-type-def"
minOccurs="0" maxOccurs="1" />
 <xs:element name="eventChargingFunction" type="ecfs-type-def" minOccurs="0"
maxOccurs="1" />
 <xs:element name="statusCode4InitiateEarlyMedia" type="xs:int" default="183"
minOccurs="0" maxOccurs="1" />
 <xs:element name="restAuthorizationAdapter" type="xs:token" minOccurs="0" />
 <xs:element name="allowedModules" type="xs:token" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="packages">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="package" type="xs:token" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="jars">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="jar" type="xs:token" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="annotation-scanning">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="jars" minOccurs="0" />
 <xs:element ref="packages" minOccurs="0" />
 </xs:sequence>

SFT.XML Schema

19-12 Oracle Communications Converged Application Server Developer's Guide

 <xs:attribute name="beanclasses-from-descriptor" type="xs:boolean">
 <xs:annotation>
 <xs:documentation>

 Only communication beans listed in sft.xml will be
 processed for further annotation scanning if this attribute is
 set to "true".

 </xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>

 <xs:element name="sft-app">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="service-attributes" minOccurs="0" />
 <xs:element ref="communication-bean" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="annotation-scanning" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

20

Event Orchestration in the Service Foundation Toolkit 20-1

20Event Orchestration in the Service Foundation
Toolkit

Service Foundation Toolkit (SFT) defines the CommunicationBean as the programming
unit through which to implement communication logic. There may be many
CommunicationBeans in a single SFT application. A primary function of SFT is routing
events among CommunicationBeans, using an event routing module called the
orchestration module.

About Event Orchestration
By default, CommunicationBeans receive SFT events. If multiple CommunicationBeans
are interested in the same event, SFT sequentially forwards the event to the individual
CommunicationBeans. This default behavior does not allow you to customize the
invocation sequence.

The orchestration module lets you use one of two ways of defining the orchestration
order: an XML-based, or an annotation-based. Both of the orchestration mechanisms
allow you to customize the Communication bean’s invocation sequence.

When SFT is instantiated, the it performs the following checks to determine which way
the invocation order is defined:

1. SFT searches the WEB-INF directory for the application's deployment descriptor
file (sft.xml).

The sft.xml deployment descriptor is a standard XML file and contains markup
describing the attributes of all SFT-based applications. Converged Application
Server reads the sft.xml file during initialization of the application.

2. If Converged Application Server discovers the sft.xml deployment descriptor, this
one is used.

3. If there is no sft.xml file, the annotations are used.

Using Annotations to Define the Invocation Order
Use the @EventOrchestration annotation. This annotation must be used in
conjunction with the @CommunicationEvent and @ParticipantEvent annotations to
identify which events to prioritize.

To assign an event orchestration priority, specify a value using the priority attribute.
The orchestrator routes the SFT event according to the priority you specify.

Using XML to Define the Invocation Order

20-2 Oracle Communications Converged Application Server Developer's Guide

Example 20–1 The @EventOrchestration Annotation

@CommunicationBean()
public class MyExampleApplication {
 @Context
 CommunicationContext<?, UserParticipant,?> ctx;

 @EventOrchestration(priority=50)
 @ParticipantEvent(type= ParticipantEvent.Type.JOINING, communicationType =
Conversation.class)
 public void hanldeStatedEvent() {
 }
}

Using XML to Define the Invocation Order
To specify event orchestration using XML, you must deploy a SFT application with the
sft.xml deployment descriptor within the application’s WAR or SAR file.

Example 20–2 illustrates two instances of the communication-bean element with
orchestration priority set to “2” and “1” respectively. Both instances of the
CommunicationBean are defined with the ParticipantEvent.Type.JOINING event
type. Since the orchestration priority for Bean1 is set to 1, all
ParticipantEvent.Type.JOINING events will be directed to Bean1 first, and then to
Bean2, whose orchestration priority is set to 2.

Example 20–2 Specifying Orchestration Priority in the SFT.XML Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<sft-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oracle.com/sdp/sft sft.xsd"
 xmlns="http://www.oracle.com/sdp/sft">

 <communication-bean>
 <class-name>com.oracle.sft.test.Bean1</class-name>
 <event communication-type="Conversation"
event-type="ParticipantEvent.Type.JOINING">
 <orchestration priority="2" />
 </event>
 </communication-bean>

 <communication-bean>

Table 20–1 Attributes of the @EventOrchestration Annotation

Name Description Data Type Required?

priority Assigns an event orchestration priority. The default
value is 100, and the lower the numerical value the
higher the event orchestration priority. You can not
assign a negative value.

Integer Yes

Note: The event type you want the Communication bean to listen for
must be specified in both the bean’s Java source file using the
appropriate annotation, and the sft.xml deployment descriptor. In this
example, the ParticipantEvent.Type.JOINING event type must be
specified in sft.xml as shown in Example 20–2, and in the bean’s Java
code using the @ParticipantEvent annotation as shown in
Example 20–3.

Filtering and Overriding Communication Beans

Event Orchestration in the Service Foundation Toolkit 20-3

 <class-name>com.oracle.sft.test.Bean2</class-name>
 <event communication-type="Conversation"
 event-type="ParticipantEvent.Type.JOINING">
 <orchestration priority="1" />
 </event>
 </communication-bean>
</sft-app>

Example 20–3 shows the @CommunicationBean annotation with the @ParticipantEvent
event type JOINING specified. This must match the configuration specified in the
sft.xml deployment descriptor as illustrated in Example 20–2.

Example 20–3 @ParticipantEvent Whose Orchestration Priority

@CommunicationBean()
public class Bean1 {
 @Context
 CommunicationContext<?, UserParticipant,?> ctx;

 @ParticipantEvent(type= ParticipantEvent.Type.JOINING, communicationType =
 Conversation.class, priority = 1)
 public void hanldeStatedEvent() {
 }
}

Filtering and Overriding Communication Beans
CommunicationBeans are defined using the @CommunicationBean annotation,
however, SFT provides a mechanism to override or filter the annotation specified in
the bean’s Java code.

Filtering Communication Beans
SFT provides Communication beans suitable for most types of applications, however,
certain deployments may require a greater amount of flexibility in creating and
assigning beans for different event types. To accommodate this, you can filter beans
such that only beans with event types that you specify are given event orchestration
priority via the orchestration module, and beans with other event types sequentially
receive event notifications using the default event orchestration behavior.

To filter beans use the annotation-scanning element in the sft.xml deployment
descriptor’s to specify which JAR files and Java packages to load. Beans that are not
explicitly specified are discarded, even if they are present and in the class path.

Example 20–4 filters beans whose class files are contained in the sft-sample.jar file,
and whose package name is com.oracle.sft.MyCommunicationBean. Using these
parameters, the following filtering is performed:

■ If a bean's Java class file is not contained in the sft-sample.jar file, it will be
discarded.

■ If a bean's Java class file is contained in the sft-sample.jar file, and its package
name starts with com.oracle.sft.MyCommunicationBean, it will be retained and
initialized.

■ If a bean's Java class file is located in the /WEB-INF/classes directory of the
application folder structure, and its package name begins with
com.oracle.sft.MyCommunicationBean, it will be retained and initialized.

Filtering and Overriding Communication Beans

20-4 Oracle Communications Converged Application Server Developer's Guide

■ If no JAR files or packages are specified using the annotation-scanning element,
then all Communication beans contained in /WEB-INF/lib/*.jar or
/WEB-INF/classes/ are retained and initialized (e.g. no filtering using annotation
scanning is performed).

When a bean passes the filtering check performed by the annotation-scanning element,
it is initialized by SFT.

Example 20–4 The annotation-scanning element

<annotation-scanning>
 <jars>
 <jar>sft-sample.jar</jar>
 </jars>
 <packages>
 <package>com.oracle.sft.MyCommunicationBean</package>
 </packages>
</annotation-scanning>

Filtering Specific Communication Bean Annotations
You can further limit annotation scanning to CommunicationBeans specified in the
sft.xml deployment descriptor. SFT will only perform annotation scanning on the
beans specified in the sft.xml deployment descriptor. To enable annotation scanning,
set the beanclasses-from-descriptor attribute of the annotation-scanning element
to true, as shown in Example 20–5.

Example 20–5 Specifying annotation scanning for a Communication bean

<?xml version="1.0" encoding="UTF-8"?>
<sft-app xmlns="http://www.oracle.com/sdp/sft">
 <communication-bean>
 <name>MyCommunicationBean</name>
 <class-name>com.oracle.example.web.ExampleBean</class-name>
 <event communication-type="Conversation"
event-type="CommunicationEvent.Type.STARTED">
 <orchestration priority="0"/>
 </event>
 </communication-bean>
 <annotation-scanning beanclasses-from-descriptor="true"/>

</sft-app>

Overriding CommunicationBean Annotations
SFT uses the communication-bean element of the sft.xml deployment descriptor to
filter using the annotation specified for a given CommunicationBean. SFT can also
override a bean’s annotation as defined by the communication-bean element of the
sft.xml deployment descriptor. This allows you to override certain attributes of a
bean’s annotation using the definition of the communication-bean element.

The annotation override includes four bean-related attributes, which are overridden
by corresponding sub-elements (or the attribute of a sub-element) of the
communication-bean element.

Filtering and Overriding Communication Beans

Event Orchestration in the Service Foundation Toolkit 20-5

Using the sequence shown in Table 20–2, if both annotation-scanning and
communication-bean are explicitly defined in the sft.xml deployment descriptor, the
override sequence is as follows:

1. Filtering is performed as specified by the annotation-scanning element. If a
bean’s class name is discovered by the annotation-scanning element it overrides
sequence rules 2, 3, and 4.

2. If a bean’s class name is discovered by the communication-bean element, it
overrides sequence rule 1.

Table 20–2 Overriding CommunicationBean Annotations

Sequence Attribute defined by annotation Attribute defined in sft.xml Override condition

1 Priority of @EventOrchstration orchestration priority Explicitly defined in sft.xml

2 Name of @CommunicationBean name Explicitly defined in sft.xml

3 Type of @CommunicationBean communication-type Explicitly defined in sft.xml

4 Event type for each bean (e.g.
CommunicationEvent or
ParticipantEvent)

event-type Explicitly defined in sft.xml

Filtering and Overriding Communication Beans

20-6 Oracle Communications Converged Application Server Developer's Guide

21

Implementing Call Control Services 21-1

21Implementing Call Control Services

A key benefit of the Service Foundation Toolkit (SFT) is support for GSM Association's
(GSMA) IR.92 specifications for delivering Voice over LTE (VoLTE).

About Converged Application Framework and VoLTE
SFT provides enhanced APIs that you can use to quickly and easily implement
applications for delivering IR.92-compliant supplementary services over VoLTE. The
APIs provide support for supplementary services such as Call Forwarding, Incoming
and Outgoing Call Barring, ID Presentation and Restriction, Multi-Party Conferencing,
and Message Waiting Indication (MWI).

GSM Association's (GSMA) IR.92 specifications defines the IP Multimedia Subsystem
(IMS) profile for delivering Voice over LTE (VoLTE). The GSMA VoLTE initiative has
defined IMS as the common way to deliver voice and messaging services over mobile
broadband all-IP networks.

In September 2010, GSMA published the IREG Permanent Reference Document IR.92,
which outlines the specifications for migrating 2G and 3G mobile voice, video and
messaging services to 4G mobile broadband networks, such as LTE.

This chapter describes the following call control services:

■ Call Forwarding

■ Call Barring

■ Communication Hold

■ Identity Presentation and Restriction

■ Communication Waiting

■ Message Waiting Indication

Call Forwarding
Call Forwarding (also referred to as Call Diversion) lets users of the service (the called
party, or callee) forward incoming calls to another phone number (the third party). The
third party may be a mobile telephone, voice-mail box, or other telephone number
where the desired called party is situated.

With Call Forwarding activated:

■ Users can continue to make outgoing calls from their telephone while incoming
calls are forwarded.

Call Forwarding

21-2 Oracle Communications Converged Application Server Developer's Guide

■ When the telephone number the user’s calls are being forwarded to is busy, callers
to the forwarded number will receive a busy signal.

Converged Application Server supports the following IR.92 defined Call Forwarding
modes for VoLTE:

■ Communication Forwarding Unconditional 3GPP TS 24.604

■ Communication Forwarding on No Reply 3GPP TS 24.604

■ Communication Forwarding on not Logged in 3GPP TS 24.604

■ Communication Forwarding on Busy 3GPP TS 24.604

■ Communication Forwarding on not Reachable 3GPP TS 24.604

Call Forwarding applications forward calls by removing the callee (the person to
whom the call is being made), and adding a new participant (the third party) in the
calle’s place. How the SFT handles the call signaling depends on what stage the
conversation is at. For example, if the Call Forwarding application replaces the callee
during the STARTED event, SFT changes the callee to the new participant. However, if
the application replaces the callee during the JOINING event, SFT sends a CANCEL
event to the original callee before sending a SIP INVITE request to the new participant.

Example 21–1 illustrates the removal of a the callee during the INITILIZATION event,
who is then with the participant: alice@example.com.

Example 21–1 Replacing the Callee With A New Participant

...

@CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = ctx.getCommunication();
 call.removeParticipant(call.getCallee());
 call.addParticipant("alice@example.com");
 }
...

This example creates the handleInit() method which is annotated with
@CommunicationEvent, indicating that a communication session is being initialized (as
indicated by the Type.INITIALIZATION constant). The method declares the instance
variable call, which it initializes using the Conversation class. The Conversation
class represents a two-party call, and extends the Communication object which
represents the communication session. The call variable retrieves the context of the
communication via the @CommunicationContext object (stored in the previously
initialized ctx variable) using the getCommunication() method.

After instantiating call, the code calls the variable’s removeParticipant() method,
which in turn calls the getCallee() method to retrieve the identity of the callee from
the Conversation class and remove them. Once the callee is removed from the
conversation, the call variable can call the addParticpant() method (which the
Conversation class inherits from the Interaction class) and adds the new participant
(in this example, alice@example.com) to the communication.

Accessing Call Forwarding History
You can access a user's call forwarding (also referred to a call diversion) history and
use it to create a call forwarding policy. For example, you may want to limit the total
number of call forwarding diversions by looking at the caller's history.

Call Forwarding

Implementing Call Control Services 21-3

The SIP History-Info header (defined in RFC 4244) provides a way of capturing any
redirection information that may have occurred on a particular call. The SIP
History-Info header is generated when a SIP request is re-directed, and can appear in
any SIP request not associated with a dialog. The SIP History-Info header is generated
by a User Agent (UA) or proxy, and is passed from one entity to another through
requests and responses.

Example 21–1 illustrates how to retrieve call history information using the
HistoryInformation class. HistoryInformation encapsulates the call forwarding (call
diversion) history. In this example:

■ HistoryInformation accesses the call forwarding history. If the number of call
diversions is greater than 50, the call is rejected.

■ HistoryElement retrieves the call diversion history from the History-Info header,
which is maintained as a TreeSet representing the chronological order of the call
diversions (see Table 21–1 for more information). If the number of call diversions is
greater than 10, the call is rejected.

■ If the call is rejected due to too many call diversions, the initial participant (the
callee) is replaced with the participant: tom@example.com

Example 21–2 Accessing Call Forwarding History

@Context CommunicationContext<Conversation, UserParticipant, ?> ctx;
HistoryInformation hi = ctx.getContextElement(HistoryInformation.class);
TreeSet<HistoryElement> elements = hi.getElements();
int totalDiversions = elements.size();

if (totalDiversions > 50) {
//Reject the caller if the number of diversions is greater than 50.
Conversation call = ctx.getCommunication();
call.removeParticipant(call.getCaller());
}

//Get the history via elements.
TreeSet<HistoryElement> lastLegElements = (TreeSet) elements.tailSet(elements);
if (lastLegElements.size() > 10) {
//Reject the caller if the number of diversions is greater than 10.
 }

//Forward the caller if their call is rejected too many times.
Conversation call = ctx.getCommunication();
call.removeParticipant(call.getCallee());
call.addParticipant("tom@example.com");

Table 21–1 lists the methods defined by the HistoryInformation interface to access a
user’s call forwarding history.

Call Forwarding

21-4 Oracle Communications Converged Application Server Developer's Guide

Table 21–2 lists the methods defined by the HistoryElement interface to access a user’s
call forwarding history. The HistoryElement class represents an element of call
diversion history, and provides all the information about previous call diversions. SFT
injects an instance of this class each time a call is diverted.

Discovering Call Reject Reasons
You can discover the reason a callee rejects a call using the EventReason class to
retrieve information about reject events. EventReason implements the
getReasonData() method, which returns call reject information stored in the SIP
request’s Reason header. You can implement Call Forwarding in response to call
rejection, and forward the call to a voice mail box or other specified end point. See RFC
3326 to learn more about the Reason header field.

Example 21–3 shows how to discover call reject reasons using the EventReason class.

Example 21–3 Discovering Call Reject Reasons

@ParticipantEvent(type = ParticipantEvent.Type.REJECTED)
 void handleReject() {
 EventReason er = ctx.getContextElement(EventReason.class);
 ReasonData data = er.getReasonData();
 if (data.getReasonType() == Reason.BUSY) {
 //Followed by logic to forward the call if getREasonType() returns BUSY.
 }
 }
...

Table 21–1 Methods Defined by the HistoryElement interface

Method Description

getElements() Returns the HistoryElement as a TreeSet. The TreeSet is an
index (in chronological order) of the call diversion. An empty
TreeSet is returned if there is no prior history.

TreeSet provides an implementation of the Set interface that
uses a tree for storage. Objects are stored in sorted, ascending
order. Access and retrieval times are very fast, which makes
TreeSet an excellent choice when storing large amounts of
sorted information that must be found quickly.

Table 21–2 Methods Defined by the HistoryInformation Interface

Methods Description

getAlternateReasonData() A History element can have an alternate reason, which is
embedded in the message. Returns an instance of ReasonData.

getIndexAsArray() An index of the call history. The History is in the Augmented
BNF (ABNF) format. ABNF is a plain-text (non-XML)
representation that is similar to traditional BNF grammar.
1*DIGIT *(DOT 1*DIGIT).

getIndexString() Get the index of this call diversion history element.

getParameters() Retrieves all parameters as a Set of name-value pairs.

getReasonData() The reason associated with this call diversion history element.
Returns an instance of ReasonData.

getTargetHost() The host involved in the call diversion.

getTargetUser() The specific user involved in the call diversion.

Call Forwarding

Implementing Call Control Services 21-5

This example creates the method handleReject(), which uses the @ParticipantEvent
annotation to initialize it using the type.REJECTED constant. This method is called if a
participant refuses to join the communication.

The er reference variable points to the EventReason class, and is assigned the context
of the communication via the @CommunicationContext object (which is stored in the
ctx class variable) using the getContextElement(EventReason.class) method. The er
variable stores the context of the type.REJECTED communication event.

The data reference variable points to the ReasonData class, and is assigned the call
reject information from the SIP Reason header via the er variable’s to call the
getReasonData() method, which returns the reason for call rejection. If the returned
reason code is BUSY, you can implement call forwarding.

Call Forwarding Example
Example 21–4 shows the code for the Java class CallForwardBean.

■ All calls to Bob are unconditionally forwarded to Amy.

■ Calls to Amy are forwarded to Carol when Amy’s phone is busy.

■ Calls to Carol are forwarded to Tom when Carol is not available.

Additionally, this example implements the HistoryInformation and HistoryElement
interfaces to retrieve the call forwarding history.

Example 21–4 Call Forwarding

package com.oracle.sft.demo;

import java.util.Iterator;
import java.util.TreeSet;

import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.CommunicationSession;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.Conversation;
import com.oracle.sft.api.Reason;
import com.oracle.sft.api.UserParticipant;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.bean.CommunicationEvent;
import com.oracle.sft.api.bean.ParticipantEvent;
import com.oracle.sft.api.context.EventReason;
import com.oracle.sft.api.context.HistoryElement;
import com.oracle.sft.api.context.HistoryInformation;
import com.oracle.sft.api.context.ReasonData;

@CommunicationBean
public class CallForwardBean {

 @Context CommunicationSession session;
 @Context CommunicationContext<Conversation,UserParticipant,?> ctx;

 //Forward all incoming calls for Bob to Amy.
 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 if (call.getCallee().getName().equals("bob@example.com")) {
 call.removeParticipant(call.getCallee());
 call.addParticipant("amy@example.com");

Call Barring

21-6 Oracle Communications Converged Application Server Developer's Guide

 }
 }
 //Forward Amy’s calls to Carol when Amy’s phone is busy.
 //If Carol is not availalbe, forward calls to Tom
 @ParticipantEvent(type= ParticipantEvent.Type.REJECTED)
 void handleRejected() {
 Conversation call = (Conversation) ctx.getCommunication();
 EventReason er = ctx.getContextElement(EventReason.class);

 HistoryInformation hi = null;
 hi = ctx.getContextElement(HistoryInformation.class);
 printHistoryInformation(hi);
 if (er!=null){

 ReasonData rd = er.getReasonData();
 if (rd.getReasonType()==Reason.BUSY){
 if (call.getCallee().getName().equals("amy@example.com")) {
 call.removeParticipant(call.getCallee());
 call.addParticipant("carol@example.com");

 }
 }
 else if(rd.getReasonType()==Reason.NOT_FOUND){
 if (call.getCallee().getName().equals("carol@example.com")) {
 call.removeParticipant(call.getCallee());
 call.addParticipant("tom@example.com");
 }
 }
 else if(rd.getReasonType()==Reason.NO_RESPONSE){
 if (call.getCallee().getName().equals("carol@example.com")) {
 call.removeParticipant(call.getCallee());
 call.addParticipant("tom@example.com");
 }
 }
 }
 }
}

Call Barring
Call Barring lets users bar (or restrict) certain or all types of calls to and from their
phone. For example, a user can restrict outgoing calls, outgoing international calls, or
incoming calls from undesirable callers.

Converged Application Server supports the following IR.92 defined Call Barring
modes for VoLTE:

■ Barring of All Incoming Calls 3GPP TS 24.611

■ Barring of All Outgoing Calls 3GPP TS 24.611

■ Barring of Outgoing International Calls 3GPP TS 24.611

■ Barring of Outgoing International Calls—ex Home Country 3GPP TS 24.611

■ Barring of Incoming Calls When Roaming 3GPP TS 24.611

To implement international call barring, the Call Barring application must have access
to the phone number of the participant. To obtain the phone number, use the

Call Barring

Implementing Call Control Services 21-7

PhoneNumber class, which you can access via the UserParticipant interface. Similarly,
to decide the roaming status of the user, the Call Barring application must access the
private identity information available in the message. The IdentityInformation class
provides this information. Note that IdentityInformation only represents
information contained in the SIP Request that causes the current event. The
application can also access this information from other sources, such as the Registrar,
to determine roaming status. Similarly, the profile of the user—such as country of
origin—can be obtained by the application using other interfaces (for example, the
Diameter interface).

Table 21–3 lists the methods defined in the PhoneNumber interface to access a user’s
telephone number information.

Table 21–4 lists the methods defined in the IdentityInformation interface to access
the identity information available in the context of the Event. The identity information
is stored in the P headers of the SIP message.

Example 21–5 illustrates the use of the PhoneNumber and IdentityInformation classes
to bar international calls when roaming.

Example 21–5 Using The PhoneNumber And IdentityInformation Interfaces

 @ Context CommunicationContext<Conversation,UserParticipant> ctx =
 ...
 Conversation call = ctx.getCommunication();
 UserParticipant callee = (UserParticipant) ctx.getCallee();
 UserParticipant caller = (UserParticipant) ctx.getCaller();
 ...
 IdentityInformation ii = ctx.getContextElement(IdentityInformation.class);
 if (isRoaming(ii)) {
 caller.reject(Reason.DECLINE);
 }
 ...
 PhoneNumber ph = callee.getPhoneNumber();
 if (isInternationalCall(ph, caller)) {
 caller.reject(Reason.DECLINE);
 }

Table 21–3 Methods Defined In The PhoneNumber Interface

Method Description

getContext() Returns any phone-context present in the number as a string
value.

getNumber() Returns the phone number as a string value.

isGlobal() Returns if the number is a global number or local number. If the
number is global, it returns true; if the phone number is local it
returns false.

Table 21–4 Methods defined in the IdentityInformation interface

Method Description

getAssertedIdentity Represents P-Asserted-Id header value.

getServedUserIdentity Represents P-Served-User header value.

getVisitedNetworkIdentity Represents P-Visited-Network-Id header value.

getAccessNetworkInformation Represents P-AccessNetwork-Info header value.

Communication Hold

21-8 Oracle Communications Converged Application Server Developer's Guide

...

Example 21–6 shows code for the Java class CallBarBean, which creates rules for
barring incoming, outgoing, and roaming calls.

■ All outgoing calls made by alice@example.com are barred

■ All incoming calls to amy@example.com are barred

■ All incoming calls to tom@example.com are barred when Tom is roaming

Example 21–6 Call Barring For Outgoing, Incoming, And Roaming Calls

package com.oracle.sft.demo;
import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.Conversation;
import com.oracle.sft.api.Reason;
import com.oracle.sft.api.UserParticipant;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.bean.ParticipantEvent;
import com.oracle.sft.api.context.IdentityInformation;

@CommunicationBean
public class CallBarBean {
 @Context CommunicationContext<Conversation,UserParticipant> ctx;

@ParticipantEvent(type= ParticipantEvent.Type.JOINING,
communicationType = Conversation.class)
 public void hanldeStatedEvent() {
 Conversation call = (Conversation) ctx.getCommunication();
 UserParticipant callee = (UserParticipant) call.getCallee();
 UserParticipant caller = (UserParticipant) call.getCaller();
 if (caller.getName().equals("alice@example.com")) {
 caller.reject(Reason.DECLINE);
 }
 else if (callee.getName().equals("amy@example.com")) {
 caller.reject(Reason.DECLINE);
 }
 else if (callee.getName().equals("tom@example.com")) {
 IdentityInformation ii = ctx.getContextElement(IdentityInformation.class);
 if (isRoaming(ii)) {
 caller.reject(Reason.DECLINE);
 }
 }
 }

 boolean isRoaming(IdentityInformation pi) {
 boolean roaming = false;
 if (pi.getVisitedNetworkIdentity()!=null)
 roaming = true;
 return roaming;
 }
}

Communication Hold
Communication Hold (also referred to Call Hold) allows a user to suspend a
communication session—the reception of media stream(s) from an established IP

Communication Hold

Implementing Call Control Services 21-9

multimedia session—and resume the media stream(s) at a later time. Placing a
Communication Hold on an ongoing session is achieved by sending a Session
Description Protocol (SDP) offer where each of the communications (media streams) to
be held are marked with the sendonly attribute if they were previously bidirectional
media streams. To resume the session, a new SDP offer is issued in which each of the
held media streams is marked with the default sendrecv attribute.

Communication Hold also allows an AS to play music or an announcement to the held
party. This is achieved using an AS that acts as a third-party call controller (3PCC), and
replaces the existing session of one of the users with a session originating from an
application server that plays the announcement or music until the user’s session is
resumed. See the 3GPP TS 24.628 specification for more information on the playing of
announcements during Communication Hold.

Setting the Communication Hold Bandwidth
The 3GPP TS 24.610 specification requires that the AS of the User Equipment (UE)
invoking a media stream whose SDP session attribute is recvonly use a lower
bandwidth. The SDP specifies a lower bandwidth by setting the bandwidth (the b=
line in the SDP) to a lower value. The b= line contains two elements:

■ The bandwidth value expressed in kilo bits per second (kbps).

■ An alphanumeric modifier that indicates the communication session or media
stream to which to apply the specified bandwidth value.

The modifiers whose bandwidth values are specified by SFT are:

■ AS—Application Specific Maximum, which specifies the total bandwidth for a
single media stream from one source.

■ RS—RTCP bandwidth allocated to active data senders.

■ RR—RTCP bandwidth allocated to other participants (receivers) in the RTP
session.

When the bandwidth setting is enabled, SFT sets the default value for the AS
bandwidth to zero (b=AS:0). The b=RR: and b=RS: parameters are set to a value of 800
kbps, which is high enough to allow the continuation of the RTCP flow: b=RR:800 and
b=RS:800

Example 21–7 Bandwidth Line in the Session Description Protocol

v=0
o=alice 2890844526 2890842807 IN IP4 126.16.64.4
s=SDP Seminar
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
m=audio 49170 RTP/AVP 0
b=AS:0
b=RR:800
b=RS:800

Note: The 3GPP TS 24.610 specification recommends that the AS
modify the bandwidth for media streams whose SDP session attribute
is recvonly. Media streams whose SDP session attribute are inactive,
sendonly, and sendrecv are not affected.

Identity Presentation and Restriction

21-10 Oracle Communications Converged Application Server Developer's Guide

While the 3GPP TS 24.610 specification recommends these values to preserve network
bandwidth when a communication is placed on hold, you may need to adjust the
bandwidth to better suit the requirements of the Communication Hold application.
You can specify a network bandwidth for use with Communication Hold using:

■ The enableChangeBandwidth and sdpBandwidthAttributes elements of the
sft.xml deployment descriptor.

■ The @ServiceAttributes annotation.

■ The conversation.setBandWidth() method.

Example 21–8 specifies alternate bandwidth settings using the
enableChangeBandwidth and sdpBandwidthAttributes elements of the sft.xml
deployment descriptor.

Example 21–8 Specifying Bandwidth Using the SFT.XML Deployment Descriptor

<service-attributes>
 <enableChangeBandwidth>true</enableChangeBandwidth>
 <sdpBandwidthAttributes>
 <totalBandwidth>0</totalBandwidth>
 <bandwidthForActiveDataSenders>800</bandwidthForActiveDataSenders>
 <bandwidthForOtherParticipants>1600</bandwidthForOtherParticipants>
 </sdpBandwidthAttributes>
 </service-attributes>

The enableChangeBandwidth element is set to true, which enables the alternate
bandwidth settings specified by the sdpBandwidthAttributes element. In this example
the bandwidthForActiveDataSenders sub-element specifies a bandwidth of 800 for
users sending active media streams, while the bandwidthForOtherParticipants
sub-element specifies a bandwidth of 1600 for all other participants.

Example 21–9 specifies alternate bandwidth settings using the @ServiceAttributes
annotation. Use this annotation in the CommunicationBean Java class you create to
implement the Communication Hold application.

Example 21–9 Specifying Bandwidth Using the @ServiceAttributes Annotation

@ServiceAttributes(enableChangeBandwidth = true, sdpBandwidthAttributes = {0, 800, 1600})

Identity Presentation and Restriction
Converged Application Server supports the following Identity Presentation and
Restriction services:

■ Originating Identification Presentation (OIP): Enables the called party to receive
a network generated and trusted identity of the calling user on the screen of the
mobile device. The originating user may also present a custom identity to be seen
at the called party. The user generated identity is usually screened by the network
of the originating user.

■ Originating Identification Restriction (OIR): Invoked when the calling user does
not want their identity to be shown to the called party. In such cases, the network
of the originating user signals to the network of the called user, to withhold the
identity of the calling user.

■ Terminating Identification Presentation (TIP): Enables the calling party to receive
the identification information of the remote party from the network. This
information is provided to the originating party once the IMS communication has

Identity Presentation and Restriction

Implementing Call Control Services 21-11

been accepted between the endpoints. The information is delivered regardless of
the capability of the handset to process such information at the originating end.

■ Terminating Identification Restriction (TIR): Provides the terminating party with
an option to restrict the identity to be presented to the originating party of the IMS
communication. Logically speaking, TIR is the opposite of TIP.

To support the Identity Presentation and Restriction services listed above:

■ UE and IMS core network must support the SIP procedures described in the 3GPP
TS 24.607 specification. Service configuration, as described in Section 4.10 of 3GPP
TS 24.607, is optional.

■ UE and IMS core network must support the SIP procedures in the 3GPP TS 24.608
specification. Service configuration, as described in section 4.9 of 3GPP TS 24.608,
is optional.

Identity Presentation and Restriction Interfaces
Table 21–5 lists the interfaces used to implement the Identity Presentation and
Restriction services.

Table 21–5 Identity and Presentation Interfaces

Interface Description

PrivacyPolicy Provides information about the privacy policy, and
whether it is enabled or disabled. The default value is
disabled.

The following classes extend the PrivacyPolicy interface:
PrivacyValuePolicy, AnonymizeFromHeaderPolicy,
RemovePAIheaderPolicy, RemoveFromChangeTagPolicy
and ObscureIdentificationPolicy.

PrivacyValuePolicy Provides information about privacy values. Enabling this
policy modifies or adds the PrivacyValues field to the
message’s Privacy Header.

■ If this policy is disabled, no change is made to the
Privacy Header.

■ If the handling message includes a Privacy header,
this policy is enabled by default.

■ If the handling message does not include a Privacy
header, the PrivacyValues policy is disabled by
default.

■ The policy to enable the Privacy header is not added
to the message when ObscureIdentificationPolicy is
enabled.

RFC 3323 states that, when a privacy service performs one
of the functions corresponding to a privacy level listed in
the Privacy header, it should remove the corresponding
priv-value from the Privacy header.

AnonymizeFromHeaderPolicy Represents a PrivacyPolicy that specifies whether or not to
anonymize the From header prior to the message being
sent. The default value is disabled.

RemovePAIheaderPolicy Represents a PrivacyPolicy that specifies whether or not to
remove the P-Asserted-Identity header prior to the
message being sent. The default value is disabled.

RemoveFromChangeTagPolicy Represents a PrivacyPolicy that specifies whether or not to
remove the From-Change tag prior sending the message.
The default value is disabled.

Identity Presentation and Restriction

21-12 Oracle Communications Converged Application Server Developer's Guide

Privacy Service Behavior
The privacy service role is instantiated by a network intermediary. Typically this
function is performed by entities that act as SIP proxy servers. The privacy service is
designed to provide privacy functions for SIP messages that cannot otherwise be
provided by the UAs themselves. Table 21–6 lists the semantics of each priv-value,
and the RFC that defines them.

RFC 5379 describes privacy considerations and the recommended treatment of each
SIP header that may reveal user-privacy information. Section 5, “Recommended
Treatment of User-Privacy-Sensitive Information” of RFC 5379 describes how each

ObscureIdentificationPolicy Represents a PrivacyPolicy that specifies whether or not to
obscure identification according to the privacy header.
Disabling this policy does not obscure identification
contained in the Privacy header prior to the message being
sent. The default value is disabled.

RFC 3323, RFC 3325, and RFC 4244 define specific
behaviors for each privacy value. RFC 5379 provides
guidelines that are specified in RFC 3323, and
subsequently extended in RFC 3325 and RFC 4244.

PrivacyInformation Encapsulates Privacy information. You can use
PrivacyInformation methods to return information about
the privacy policy.

Table 21–6 Types of Privacy Service Behaviors

Privacy Type Description

user Request that privacy services provide a user-level privacy function.

See RFC 3323, “A Privacy Mechanism for the Session Initiation Protocol
(SIP)” for more information.

header Request that privacy services modify headers that cannot be set arbitrarily
by the user. For example, the Contact and Via headers.

See RFC 3323, “A Privacy Mechanism for the Session Initiation Protocol
(SIP)” for more information.

session Request that privacy services provide privacy for session media.

See RFC 3323, “A Privacy Mechanism for the Session Initiation Protocol
(SIP)” for more information.

none Privacy services must not perform any privacy function.

See RFC 3323, “A Privacy Mechanism for the Session Initiation Protocol
(SIP)” for more information.

critical Privacy service must perform the specified services or fail the request.

See RFC 3323, “A Privacy Mechanism for the Session Initiation Protocol
(SIP)” for more information.

id Privacy requested for Third-Party Asserted Identity.

See RFC 3325, “Private Extensions to the Session Initiation Protocol (SIP)
for Asserted Identity within Trusted Networks” for more information.

history Privacy requested for History-Info headers.

See RFC 4244, “An Extension to the Session Initiation Protocol (SIP) for
Request History Information” for more information.

Table 21–5 (Cont.) Identity and Presentation Interfaces

Interface Description

Identity Presentation and Restriction

Implementing Call Control Services 21-13

header affects privacy, the desired treatment of the value by the user agent and privacy
service, and other details needed to ensure privacy.Table 21–7 lists the recommended
treatment for each priv-value contained in the SIP header. See “Section 5" of RFC 5379
“Guidelines for Using the Privacy Mechanism for SIP” for more information.

Enabling User-Level Privacy
Example 21–10 illustrates how to enable user-level privacy by anonymizing the From
header, and removing the Call-Info, In-Reply-To, Organization. Reply-To, Subject,
User-Agent, P-Asserted-Identity, and Privacy headers from the Session Initiation
Protocol. In this example:

1. PrivacyInformation—the Java class that encapsulates Privacy information—is
stored in the pI variable.

2. The PrivacyInformation.getPolicy(class) method retrieves the privacy policy
information from the removePAIHeaderPolicy, anonymizeFromHeaderPolicy,
obscuringIdentificationPolicy, and privacyValuePolicy objects.

3. To enable user-level privacy, the removePAIHeaderPolicy,
anonymizeFromHeaderPolicy, and obscuringIdentificationPolicy objects
implement the enable() method inherited from
com.oracle.sft.api.context.PrivacyPolicy.

Example 21–10 Providing User-Level Privacy

@CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 public void handleInitEvent() {

 PrivacyInformation pI = ctx.getContextElement(PrivacyInformation.class);

 removePAIHeaderPolicy = pI.getPolicy(RemovePAIHeaderPolicy.class);

Table 21–7 Treatment of User-Privacy Information in Target SIP Headers

Target SIP Headers Where User Header Session ID History

Call-ID R Anonymize

Call-Info Rr Delete Not added

Contact R Anonymize

From R Anonymize

History-Info Rr Delete Delete Delete

In-Reply-To R Delete

Organization Rr Delete Not added

P-Asserted-Identity Rr Delete Delete

Record-Route Rr Anonymize

Referred-By R Anonymize

Reply-To Rr Delete

Server r Delete Not added

Subject R Delete

User-Agent R Delete

Via R Anonymize

Warning r Anonymize

Communication Waiting

21-14 Oracle Communications Converged Application Server Developer's Guide

 anonymizeFromHeaderPolicy = pI.getPolicy(AnonymizeFromHeaderPolicy.class);
 obscuringIdentificationPolicy = pI.getPolicy(ObscureIdentificationPolicy.class);
 privacyValuePolicy = pI.getPolicy(PrivacyValuePolicy.class);

 removePAIHeaderPolicy.enable();
 anonymizeFromHeaderPolicy.enable();
 obscuringIdentificationPolicy.enable();

 printPrivacyInformation();
 }

Providing Privacy for the History-Info Header
The History-Info header (defined in RFC 4244) provides a way of capturing any
redirection information that may have occurred during a particular call. Without the
History-Info header the redirecting information would be lost. The History-Info
header is generated when a SIP request is re-directed, and can appear in any SIP
request not associated with a dialog. The History-Info header is generated by a User
Agent or proxy and is passed from one entity to another through requests and
responses.

Example 21–11 adds history to the privacy policy, and then modifies the contents of
the PRIVACY header by calling the PrivacyValuePolicy.enable() method. The
PrivacyValuePolicy.enable() method adds a Privacy header with PrivacyValues to
the message.

Example 21–11 Removing the History-Info Header

privacyValuePolicy.addPrivacyValue(ValueType.HISTORY);
privacyValuePolicy.enable();

Communication Waiting
Communication Waiting (also referred to as Call Waiting) informs a user (or the user
equipment) that limited resources are available for incoming calls. Typically this
means that the callee is involved in a communication session with another caller, and
is not able to answer the incoming call from the second caller. Communication Waiting
provides a mechanism by which you can create an application to inform a user that
there is a second incoming call. The user then has the choice of accepting, rejecting, or
ignoring the waiting call. Converged Application Server supports the 3GPP TS 24.615
and the GSMA IR.92 specifications.

Supporting Network- and Terminal-based Communication Waiting
When using SFT to develop Communication Waiting services, Converged Application
Server supports both network- and terminal-based Communication Waiting.

About Network-based Communication Waiting
Network-based Communication Waiting occurs when the AS determines that one of
the following conditions has occurred:

■ The SIP INVITE request fulfills the Network Determined User Busy (NDUB)
condition for the callee.

■ The caller receives a SIP message 486 Busy Here (indicating that the callee is busy)
with a 370 Warning in the SIP header field indicating that there is insufficient
bandwidth for the call to complete.

Communication Waiting

Implementing Call Control Services 21-15

To support network-based Communication Waiting, the AS performs the following
functions in response to receiving an appropriate Communication Waiting condition:

1. Modifies the SIP INVITE request and forwards or re-sends it to User B.

2. Provides an announcement to User C upon receipt of a 180 Ringing response from
User B.

3. Inserts an Alert-Info header field set to urn:alert:service:call-waiting in the
180 Ringing response and forwards it to User C

4. Rejects the communication by sending a 486 Busy Here response to User C upon
receipt of a 415 Unsupported Media Type response.

About Terminal-based Communication Waiting
Terminal-based Communication Waiting occurs when the AS receives the SIP message
180 Ringing with the Alert-Info header URN Indication Values set to
urn:alert:service:call-waiting.

To support terminal-based Communication Waiting, the application server performs
the following functions in response to receiving an appropriate Communication
Waiting condition:

1. Sends an announcement to the calling user (the caller).

2. Sends a 180 Ringing response to the caller.

3. Initiates the Telephony Application Server-Communication Waiting (TAS-CW)
timer. This optional timer specifies the amount of time the network will wait for a
response from User B, in response to the communication from User C. The value of
the timer is between 0.5 and 2 minutes.

If the TAS-CW timer expires, the AS sends a CANCEL request to User B with a
Reason header field set to “SIP,” and the cause set to 408 Request Time-out,
indicating that the user could not be found in the allotted time. A 480 Temporarily
Unavailable response is sent to User C, including a Reason header field set to ISUP
Cause Code 19, indicating that these was no answer from the callee.

About the Communication Waiting Interfaces
Communication Waiting makes use of the following classes in the
com.oracle.sft.api package. For more information on these interfaces and their
usage, refer to the Converged Application Server API Reference.

Creating a Communication Waiting Application
The following examples decompose the CallWaitingBean Java class. See
"CallWaitingBean Example Code" to view the code in its entirety.

Example 21–12 creates CallWaitingBean, a Java class that responds to Communication
Waiting events.

Example 21–12 Creating the CallWaitingBean Java Class

@CommunicationBean
public class CallWaitingBean {

@Context CommunicationContext<Conversation,UserParticipant> ctx;
...

Communication Waiting

21-16 Oracle Communications Converged Application Server Developer's Guide

The @CommunicationBean annotation creates CallWaitingBean. The @Context
annotation injects an instance of the CommunicationContext object, which in turn calls
instances of the Conversation and UserParticipant classes. These interfaces represent
a two-party call and a participant within the communication, and are cast in the ctx
instance variable.

Creating a Network-based Communication Waiting Event
Example 21–13 illustrates the handleInit() method, which listens for and responds to
network-based communication waiting events.

Example 21–13 Network-based Communication Waiting

@CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 if (call.getCaller().getName().contains("user1")) {
 call.indicateCallWaiting();
 }
 }
...

The @CommunicationEvent annotation instantiates this method with the
Type.INITIALIZATION constant. When an initialization event occurs, handleInit()
uses the Conversation interface to retrieve the name of the communication.

The getCommunication() method returns the CommunicationContext object (via the
ctx instance variable) to the Conversation interface via the call variable. The call
variable—which now contains the state of the communication session— invoke the
indicateCallWaiting() method which will forward the invite with call waiting
indication. The Communication Waiting event will be triggered when a 180 response
arrives.

Creating a Terminal-based Communication Waiting Event
Example 21–14 illustrates the use of the hanldeRejectEvent() method to reject events.
This method uses the EventReason interface to retrieve the cause of the
Communication Waiting reject event, and then triggers Terminal-based
Communication Waiting.

Example 21–14 Terminal-based Communication Waiting

...
@ParticipantEvent(type = ParticipantEvent.Type.REJECTED)
 public void hanldeRejectEvent() {
 EventReason eventReason = ctx.getContextElement(EventReason.class);
 List<ReasonData> reasonData = eventReason.getReasonData();
 ReasonData reasonData = reasonData.get();
 Reason reason = reasonData.getReasonType();

 List<WarningData> warningData = eventReason.getWarningData();
 WarningData warningData = warningData.get();

 if (reasonData.getReasonCode() == 486 &&
 warningData.getWarningCode() == 370) {
 Conversation call = (Conversation) ctx.getCommunication();
 call.indicateCallWaiting();
 }
 }

Communication Waiting

Implementing Call Control Services 21-17

The @ParticipantEvent annotation—which specifies events pertaining to a participant
within a given communication session—listens for an event type of REJECTED,
indicating that the participant has refused to join the communication. The
hanldeRejectEvent()method calls the EventReason interface to get the cause of the
REJECTED event. List<WarningData> returns the list of WarningData for the event,
and the getWarningCode() method returns the warning codes.

If the status code of the response is 486 Busy Here and the warning code is 370
Insufficient Bandwidth, the getCommunication() method returns the
CommunicationContext object (via the ctx instance variable) to the Conversation
interface via the call variable. The call variable invoke the indicateCallWaiting()
method, which re-sends the INVITE. The Communication Waiting event will be
triggered when 180 response arrives.

Handling the Communication Waiting Event
Example 21–15 creates the method handleCallWaiting(), which uses the
@CommunicationEvent annotation’s type.WAITING constant to indicate that a call is
waiting. The application receives a notification that an incoming call is waiting, and
can play announcements to the caller.

Example 21–15 Handling the Call Waiting Event

 @CommunicationEvent(type = CommunicationEvent.Type.WAITING)
 void handleCallWaiting() {

CallWaitingBean Example Code
Example 21–16 shows the code for the previously described CallWaitingBean in its
entirety.

Example 21–16 CallWaitingBean Example Java Code

package com.oracle.sft.demo;
import java.util.List;

import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.Conversation;
import com.oracle.sft.api.Reason;
import com.oracle.sft.api.UserParticipant;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.bean.CommunicationEvent;
import com.oracle.sft.api.bean.ParticipantEvent;
import com.oracle.sft.api.context.EventReason;
import com.oracle.sft.api.context.ReasonData;
import com.oracle.sft.api.context.WarningData;

//Create the CallWaitingBean Java class using the @CommunicationBean annotation.
@CommunicationBean
public class CallWaitingBean {
 // @Context injects an instance of CommunicationContext,
 // which retrives instances of Conversation and UserParticipant.
 @Context CommunicationContext<Conversation,UserParticipant> ctx;

//Annotate handleInit() with @CommunicationEvent.
 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 if (call.getCaller().getName().contains("user1")) {
 call.indicateCallWaiting();
 }

Message Waiting Indication

21-18 Oracle Communications Converged Application Server Developer's Guide

 }

//Annotate hanldeRejectEvent() with @ParticipantEvent.
 @ParticipantEvent(type = ParticipantEvent.Type.REJECTED)
 public void hanldeRejectEvent() {
 EventReason eventReason = ctx.getContextElement(EventReason.class);
 List<ReasonData> reasonDatas = eventReason.getReasonData();
 ReasonData reasonData = reasonDatas.get(0);
 Reason reason = reasonData.getReasonType();

//Get the warning data and codes from the EventReason interface.
 List<WarningData> warningDatas = eventReason.getWarningData();
 WarningData warningData = warningDatas.get(0);
 // If the warning code is 486 Busy Here and 370 Insufficient Bandwidth,
 // resend the INVITE using the indicateCallWaiting() method.
 if (reasonData.getReasonCode() == 486 &&
 warningData.getWarningCode() == 370) {
 Conversation call = (Conversation) ctx.getCommunication();
 call.indicateCallWaiting();
 }
 }
 //
 @CommunicationEvent(type = CommunicationEvent.Type.WAITING)
 void handleCallWaiting() {
 }

Message Waiting Indication
Message Waiting Indication (MWI) is a service that informs a user about the status of
recorded messages. To use the notification feature, the user must subscribe to a
notification service that makes use of the Message Waiting Indication status messages.
With the Message Waiting Indication feature you can:

■ Send notification when a new subscription arrives.

■ Specify when notifications are sent in response to subscriptions.

■ Reject subscriptions.

■ Terminate subscriptions.

Message Waiting Indication lets the AS notify a subscriber that there is a message
waiting for them. The indication is delivered to the subscriber's UE after they have
successfully subscribed to the Message Waiting Indication service as defined in the
3GPP TS 24.606 specification.

When Converged Application Server receives a SUBSCRIBE message, SFT notifies the
MWI application via a SUBSCRIPTION event. Once notification is received the MWI
application calls instances of the MessageObservation and ActivityParticipant
interfaces—which identify the current subscriber—using the CommunicationContext
interface.

Note: Typically a voice-mail server manages Message Waiting
Indication accounts. When a new message arrives, the voice-mail
server typically provides a listener or API that you can resister with to
receive notification of new messages. How the application manages
the message account is beyond the scope of the SFT Message Waiting
Indication APIs.

Message Waiting Indication

Implementing Call Control Services 21-19

RFC 3842 specifies that a NOTIFY message must be sent when accepting new
subscriptions, the subscription has expired, or an unsubscribe event occurs.
Converged Application Server’s Event Notification Service sends these NOTIFY
messages automatically, and application updates the MessageSummary object during
the initial SUBSCRIPTION event to ensure that the correct NOTIFY message is sent.

Configuring Message Waiting Indication
To configure Message Waiting Indication, use either the sft.xml deployment
descriptor, or the CommunicationBean’s @ServiceAttributes annotation. The
parameters you specify corollate to the incoming SUBSCRIBE request's
Subscription-State Expires header parameter, which contains an expiration time.

■ If the expiration time is less than zero (> 0) but greater than the minimum
expiration time, Converged Application Server rejects the SUBSCRIBE request
with the 423 Interval Too Brief response code.

■ If the expiration time is greater than zero (< 0), Converged Application Server uses
the default expiration time.

■ If the specified expiration time in greater (>) than the maximum expiration time,
Converged Application Server uses the maximum expiration time.

■ If the maximum number of subscriptions is reached, the next SUBSCIRBE request
is rejected with the 503 Service Unavailable response code.

Example 21–17 illustrates the use of the @ServiceAttributes annotation to configure
Message Waiting Indication events. The configuration parameters are listed in the
order in which you specify them:

■ Minimum expiration time allowed for subscriptions. The default value is 100.

■ Default expiration time for subscriptions. The default value is 1800.

■ Maximum expiration time allowed for subscriptions. The default value is 3600.

■ Maximum number of subscriptions per resource allowed for the service. The
default value is 100.

Example 21–17 Using @ServiceAttribute to Configure MWI Events

...
@ServiceAttributes(messageObservationEventConfig = {100, 1800, 3600, 100})
@CommunicationBean
public class MWIBean
...

About the Message Waiting Indication Interfaces
Message Waiting Indication makes use of the following classes in the
com.oracle.sft.api package. For more information on these interfaces and their
usage, refer to the Converged Application Server API Reference.

Table 21–8 Message Waiting Indication classes

Class Description

UserActivity UserActivity extends the Communication class, and
encapsulates the participant’s activity. UserActivity provides
several ActivityParticipant() methods.

Message Waiting Indication

21-20 Oracle Communications Converged Application Server Developer's Guide

Creating a Message Waiting Indication Application
The following examples decompose the MWIBean Java class, which responds to
Message Waiting Indication events. See "Message Waiting Indication Example" to view
the application’s Java code in its entirety.

Example 21–19 creates MWIBean, a Java class whose methods handle and respond to
Message Waiting Indication events.

Example 21–18 Creating the MWIBean Java Class

@CommunicationBean
@ServiceAttributes(messageObservationEventConfig = {100, 1800, 3600, 100})
public class MWIBean {

 @Context CommunicationContext<MessageObservation,ActivityParticipant> ctx;
 @Context CommunicationService service;
 private String subscriberName;
 private String resourceId;

...

MWIBean uses the @SerivceAttributes annotation to configure the Message Waiting
Indication event expiration times. This example configures the service using the
default values. The @Context annotation injects an instance of the
CommunicationContext, which in turn calls instances of MessageObservation and
ActivityParticipant. These interfaces identify the user initiating the subscription
request, and are stored in the ctx instance variable.

The @Context annotation injects an instance of CommunicationService, which is
referred to with the service instance variable. CommunicationService lets you create
objects that are not related to a CommunicationSession, such as groups.

MessageObservation MessageObservation extends the UserActivity class, and
encapsulates the resource and subscribers. Using
MessageObservation applications can get and notify subscribers
(ActivityParticipants), and terminate subscriptions. The
getMessageSummary() method returns a MessageSummary, which
contains message information that is sent in NOTIFY messages.
The application must update MessageSummary before sending a
NOTIFY message to subscribers.

MessageSummary Before sending a notification, the MWI application must update
the MessageSummary object, which encapsulates the NOTIFY
body according to RFC 3842. MessageSummary is obtained via
the MessageObservation class.

MessageSummaryLine MessageSummaryLine encapsulates the message summary line as
defined in RFC 3842. MessageSummaryLine is obtained via
MessageSummary.

MessageSummaryExtensionH
eader

MessageSummaryExtensionHeader encapsulates a message
summary extension header as defined by RFC 3842.
MessageSummaryExtensionHeader is obtained via
MessageSummary.

ActivityParticipant ActivityParticipant extends Participant. In the context of
the MessageObservation class, ActivityParticipant represents
a subscriber. Applications can obtain an instance of
ActivityParticipant via MessageObservation.

Table 21–8 (Cont.) Message Waiting Indication classes

Class Description

Message Waiting Indication

Implementing Call Control Services 21-21

 Finally, two private instance variables are created: subscriberName and resourceId.

Updating MessageSummary Before Sending Notifications
Example 21–19 illustrates the hanldeSubscriptionEvent() method. This method is
annotated with the @CommunicationEvent annotation’s Type.SUBSCRIPTION constant.
When Converged Application Server receives a SIP SUBSCRIBE message, the MWI
application receives notification via the SUBSCRIPTION event.

A NOTIFY message is sent when accepting new subscriptions. Converged Application
Server’s Event Notification Service sends these NOTIFY messages automatically, and
the MWI application updates the MessageSummary object during the initial
SUBSCRIPTION event to ensure that the correct NOTIFY message is sent. Before
sending a notification, the MWI application updates the MessageSummary object.
MessageSummary is obtained via the MessageObservation interface.

Example 21–19 Updating the MessageSummary Class

...
@CommunicationEvent(type = CommunicationEvent.Type.SUBSCRIPTION)
public void hanldeSubscriptionEvent() {

 MessageObservation messageObservation = (MessageObservation)ctx.getCommunication();
 ActivityParticipant currentSubscriber = (ActivityParticipant)ctx.getParticipant();

 MessageSummary messageSummary = messageObservation.getMessageSummary();
 messageSummary.setMessageAccount(URI.create("sip:alice@example.com"));
 messageSummary.setStatusLine(true);
 messageSummary.setMessageSummaryLine(MessageContextClass.VOICEMESSAGE, 1, 2, 3, 4);

 }
...

The hanldeSubscriptionEvent() method declares and initializes the following object
reference variables:

■ The getCommunication() method returns the CommunicationContext object
(via the ctx instance variable) to the MessageObservation interface using the
messageObservation variable.

■ The getParticiapnt() method returns subscriber information from the
CommunicationContext object (via the messageObservation instance variable).
MessageSummary is to the ActivityParticipant interface using the
currentSubscriber variable.

■ The getMessageSummary() method returns message summary information
from MessageObservation (via the messageObservation object reference
variable).

MessageObservation acts as a resource which receives notifications from the
server managing the message account (for example, a voice-mail server). Users
(ActivityParticipants) subscribe to the message account. When new
messages arrive the state of the MessageSummary object is updated, and
notifications are sent to all ActivityParticipants subscribed to the account,
alerting them that new messages are waiting.

The messageSummary object variable, which serves as a reference to the
MessageSummary object, makes a series of method calls which updates the NOTIFY
body with the following information:

Message Waiting Indication

21-22 Oracle Communications Converged Application Server Developer's Guide

■ The account to which the message-summary body corresponds. This is
specified by the Message Waiting Indication application to indicate the
resource. For example, the user’s voice-mail account: alice@example.com

■ The setStatusLine(true) method specifies that messages are waiting.

■ The setMessageSummaryLine() method indicates that the waiting message
types are voice messages.

As defined in RFC 3458 and RFC 3938, the following message types can
provide notifications: voice-message, video-message, fax-message,
pager-message, multimedia-message, text-message, or none (no message).

Sending MWI Notifications to Subscribers
To send MWI notifications to subscribers, first locate the resource (for example, the
voice-mail account), and then update MessageSummary with the status of the message
account. To do this you use the MessageObservation interface to look up accounts, and
the MessageSummary class to send the notifications. Once MessageSummary references
the status of the message account, invoke resource.process() to send NOTIFY
messages to the subscribers.

Example 21–20 creates the updateResourceInfo(String resourceId) method. This
method is invoked when the status of a mail account changes. (How to get this change
is beyond the scope of the SFT Message Waiting Indication APIs). This customer
defined method updates messageSummary, and sends a NOFITY message to all
subscribers.

Example 21–20 Sending Notification to all Subscribers

...
void updateResourceInfo(String resourceId) {
 MessageObservation resource = service.findByName(MessageObservation.class, resourceId);

 MessageSummary messageSummary = resource.getMessageSummary();
 MessageSummaryLine messageSummaryLine =
 messageSummary.getMessageSummaryLine(MessageContextClass.VOICEMESSAGE);
 messageSummaryLine.setNewMessageCount(1);
 messageSummaryLine.setOldMessageCount(2);
 resource.process();
 }
...

To begin the method declares and initializes the following object reference variables:

■ The resource variable serves as a container for the list of subscribers (or resources)
obtained via the MessageObservation.class.

MessageObservation resource =
service.findByName(MessageObservation.class, resourceId);

■ The getMessagesummary() method returns the message summary information to
the messsageSummary variable via a method call to the MessageObservation class.

MessageSummary messageSummary = resource.getMessageSummary();

Note: This method may be a callback method to the server managing
the message account, or another application’s APIs that notify MWI
application that a message has arrived and is waiting. These
parameters are defined by your message server’s APIs.

Message Waiting Indication

Implementing Call Control Services 21-23

■ The getMessageSummaryLine() method returns a reference to a
MessageSummaryLine which ContextClass is specified. In this example, the type is
VOICEMESSAGE

MessageSummaryLine messageSummaryLine =
messageSummary.getMessageSummaryLine(MessageContextClass.VOICEMESSAGE);

■ The messageSummaryLine variable, which stores message summary line
information from the MessageSummaryLine object, makes method calls to set the
old and new message counts using the setNewMessageCount(int count) and
setOldMessageCount(int count) methods.

Finally, the resource variable storing the subscriber list calls
MessageObservation.process(), which sends NOTIFY messages containing the
updated message summary information to all of the subscribers.

messageSummaryLine.setNewMessageCount(1);
messageSummaryLine.setOldMessageCount(2);
resource.process();

Removing a Subscription
Example 21–21 illustrates the use of the UserActivity interface in removing a
subscription (which is a type of UserActivity). UserActivity extends the
Communication, and provides the removeActivityParticipant() method, which lets
you remove the ActivityParticipant from the UserActivity.

This example declares and initializes the variable resource, which serves as a source
for the list of subscribers (or resources) obtained via the MessageObservation class.
The service session attribute—which was declared earlier in the program—lets you
call an instance of CommunicationSession. When responding to an event, the service
session attribute injects an instance of CommunicationSession into the
CommunicationBean.

Example 21–21 Removing a Subscriber

...
void removeSubscriber(String resourceId, String subscriberName) {
 MessageObservation resource = service.findByName(MessageObservation.class, resourceId);
 resource.removeActivityParticipant(subscriberName);
 }
}

Message Waiting Indication Example
Example 21–22 shows the code for the previously described MWIBean in its entirety.

Example 21–22 Message Waiting Indication Scenarios

package com.oracle.sft.MWIBean;

import com.oracle.sft.api.ActivityParticipant;
import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.CommunicationService;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.MessageObservation;
import com.oracle.sft.api.ProtocolMessage;
import com.oracle.sft.api.MessageContextClass;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.bean.CommunicationEvent;

Message Waiting Indication

21-24 Oracle Communications Converged Application Server Developer's Guide

import com.oracle.sft.api.bean.ProtocolEvent;
import com.oracle.sft.api.bean.ServiceAttributes;
import com.oracle.sft.api.context.MessageObservationResource;
import com.oracle.sft.api.MessageSummary;
import com.oracle.sft.api.MessageSummaryLine;

@CommunicationBean
@ServiceAttributes(messageObservationEventConfig = {31, 61, 91, 2})
public class MWIBean {

 @Context CommunicationContext<MessageObservation,ActivityParticipant,?> ctx;
 @Context CommunicationService service;
 private String subscriberName;
 private String resourceId;

//Receiving the SUBSCRIPTION Event
 @CommunicationEvent(type = CommunicationEvent.Type.SUBSCRIPTION)

 public void hanldeSubscriptionEvent() {
 MessageObservation messageObservation = (MessageObservation)ctx.getCommunication();
 ActivityParticipant currentSubscriber = (ActivityParticipant)ctx.getParticipant();
 subscriberName = currentSubscriber.getName();
 resourceId = messageObservation.getName();

 if (currentSubscriber.getName().contains("subscriberA")) {
 MessageSummary messageSummary = messageObservation.getMessageSummary();
 messageSummary.setMessageAccount(URI.create("sip:alice@example.com"));
 messageSummary.setStatusLine(true);
 messageSummary.setMessageSummaryLine(MessageContextClass.VOICEMESSAGE, 1, 2, 3, 4);
 messageSummary.setMessageSummaryLine(MessageContextClass.FAX, 10, 20, 30, 40);
 messageSummary.setExtensionHeader("messageID", "to", "from",
 "subject", "date", "priority");
 } else {
 //System.out.println("###### Reject the subscription. ######");
 currentSubscriber.reject();
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.NOTIFICATION)
 public void hanldeNotificationEvent() {
 System.out.println("###### Receive NOTIFICATION Event ######");
 System.out.println("");
 }

 /**
 * Update resource info and send NOTIFY message to all subscribers.
 */

 void updateResourceInfo(String resourceId) {
 MessageObservation resource = service.findByName
 (MessageObservation.class, resourceId);
 MessageSummary messageSummary = resource.getMessageSummary();
 messageSummary.setStatusLine(false);
 MessageSummaryLine messageSummaryLine =
 messageSummary.getMessageSummaryLine(MessageContextClass.VOICEMESSAGE);
 if (messageSummaryLine != null) {
 messageSummaryLine.setNewMessageCount(messageSummaryLine.getNewMessageCount() + 1);
 messageSummaryLine.setOldMessageCount(messageSummaryLine.getOldMessageCount() + 1);
 }
 resource.process();
 }

 /**
 * Send NOTIFY message to a specified subscriber to end the Subscription.
 */
 void removeSubscriber(String resourceId, String subscriberName) {

Message Waiting Indication

Implementing Call Control Services 21-25

 MessageObservation resource = service.findByName(MessageObservation.class, resourceId);
 System.out.println("###### remove Subscriber " + subscriberName);
 resource.removeActivityParticipant(subscriberName);
 }
}

Message Waiting Indication

21-26 Oracle Communications Converged Application Server Developer's Guide

22

Using Announcements 22-1

22Using Announcements

This chapter describes how to implement announcement support as defined in IR.92
Supplementary Services using the Service Foundation Toolkit (SFT).

About Announcements
Announcements are service-related messages played to a recipient to inform them
about the state of a call. Announcements can be provided using either audio or video
content.

SFT supports the following approaches to playing announcements:

■ Send the media stream to the recipient of the announcement for playback.

This approach uses a media server and Media Resource Function Processor
(MRFP). The media is streamed to the recipient using the Real-time Transport
Protocol (RTP) after establishing a media session with the media server. Based on
the point-in-time at which the media session is initiated, an early- or non-early
media session can be used.

SFT reserves a media resource using the JSR 309 API (the JSR 309 driver used by
the media server). The underlying mechanism between the JSR309 driver and
MRFP is protocol agnostic.

■ Send information about the media content that lets the recipient retrieve and
playback the announcement.

This approach sends a URI identifying the media to the recipient, allowing them to
determine whether or not to play the announcement.

APIs for Announcement Support
Announcement support makes use of the following classes in the com.oracle.sft.api
package. For more information on these interfaces and their usage, refer to the
Converged Application Server API Reference.

Table 22–1 lists the methods defined by the Interaction interface to replace a
participant in a communication with another participant. In the context of
announcement support, the other participant you add to the communication is the
media server.

APIs for Announcement Support

22-2 Oracle Communications Converged Application Server Developer's Guide

Table 22–2 lists the methods defined by the Conversation interface.

Table 22–3 lists the methods defined by the Participant interface.

Table 22–4 lists the methods defined by the ConversationParticipantExtension
interface

Table 22–1 Methods Defined by the Interaction Interface

Method Description

addParticipant(Class<P>
type, String name)

addParticipant(Class<P>
type, String name,
javax.media.mscontrol.jo
in.Joinable j)

addParticipant(Participa
nt p)

addParticipant(String
name)

Adds a participant to the interaction.

removeParticipant(Partic
ipant p)

removeParticipant(String
name)

Removes a participant from the interaction.

replaceParticipant(Parti
cipant replaced,
Participant replacing

replaceParticipant(Parti
cipant replaced,
Participant replacing,
boolean purge)

Enhanced function for participant replacement. If purge is set to
false, the two methods provides the same are functionality.

IMConversation, IMConference and QueryInteration do not
support this function

Table 22–2 Methods Defined by the Conversation Interface

Method Description

getOtherParty() Gets the other party of the specified participant in the
Conversation.

getMediaPartner() Returns the MediaPartner joined in the Conversation instance if
such a MediaPartner exists.

Table 22–3 Methods Defined by the Participant Interface

Method Description

getExtension(Conversatio
nParticipantExtension.cl
ass)

Gets a ConversationParticipantExtension.

APIs for Announcement Support

Using Announcements 22-3

MediaPartner
The MediaPartner interface extends the MediaParticpant interface, and allows you to
add a Mediapartner, which represents a media server that will play an announcement.
Table 22–5 lists the methods defined by the MediaPartner interface.

CommunicationEvent Enumeration Types
The following @CommunicationEvent enumeration types are used in the playing of
announcements.

Table 22–4 Methods Defined by the ConversationParticipantExtension Interface

Method Description

deferMediaInfoExchange() Decides if media information exchange of this participant
involved need to be deferred. Only effective on the called party.
When this method is invoke, the media information exchange
between the called part and the calling party is deferred. A use
case is when the called party needs to exchange media
information with a third party, for example a media server.

Table 22–5 Methods Defined by the MediaPartner Interface

attach(UserParticipant
up)

Attaches with the specified UserParticipant, and acts as each
other's partner.

detach() Detach from the user partner and restore Communication to the
original state prior to the attach operation.

getUserPartner() Return the UserParticipant if the MediaPartner have already
attached with a UserParticipant using
attach(UserParticipant) method.

play(String... uris)

play(URI... uris)

Start playing the announcement from the specified URI.

record(String uri)

record(URI uri)

Record to the specified URI.

setExclusive(boolean
exclusive)

Purges the party when it is replaced by this MediaPartner if
exclusive is true. Useful in situations where the number of user
participants is limited.

This method must be invoked before calling attach(...).

stop(MediaPartner.MediaO
peration operation)

Stop the specified operation this MediaPartner is related to.

Table 22–6 CommunicationEvents for Announcements

Enumeration Description

FINISHING Indicates that the Participant is requesting to finish (or end) an
established Communication.

FORWARDING Indicates that a call is being forwarded.

HELD Indicates that a call is in a held state.

HOLDING Indicates that a call is being held.

PICKUP Indicates that the called party has picked-up the phone
(answered the call).

About the MediaPartner and UserPartner Interfaces

22-4 Oracle Communications Converged Application Server Developer's Guide

ParticipantEvent Enumeration Types
The following @ParticipantEvent enumeration types are used in the playing of
announcements.

About the MediaPartner and UserPartner Interfaces
The MediaPartner allows the UserPartner to access media-related functions such as
the playing or recording of announcements. A Conversation can have one
MediaPartner in addition to the maximum two UserParticipant objects. Each
MediaPartner interacts with one UserParticipant.
MediaPartner.attach(UserParticipant) establishes a relationship between the
MediaPartner and the UserParticipant. Before it attaches to the UserParticpant, the
MediaPartner must first be added to the Conversation.

Assume that a MediaPartner has been added to a Conversation, and that User A
represents a member of the Conversation. If the MediaPartner attaches to User A via
MediaPartner.attach(UserA), it starts the process of reserving the media resource.
During the set-up process there is an SDP exchange between User A and the media
server that will play the announcement. If in addition to User A, the Conversation has
another member identified as User B, then the MediaPartner replaces User B. If the
MediaPartner is exclusive, then User B will be purged (using a
BYE/CANCEL/REJECTED message) from the Conversation.

If User B is not purged, the called party (callee) or calling party (caller) is temporarily
replaced by another participant. In the case of playing an announcement the other

MEDIA_INFO_EARLY_
EXCHANGED

Indicates that end-to-end media information is to be exchanged
before the called party answers the call (picks-up the phone).
End-to-end refers to information being exchanged between the
calling party (the caller) to the called party (the callee).

MEDIA_RESOURCE_
RESERVED

Indicates that a media resource has been reserved. This event is
triggered after a media exchange between the calling and called
party when the media server finishes streaming content.

You can trigger this event by adding a MediaParticipant.

RESUMED Indicates that a call is already resumed.

RESUMING Indicates that a call is being resumed.

Table 22–7 ParticipantEvents for Announcements

Enumeration Description

INITIALIZATION This is the first Participant event during the Participant's
life-cycle. This event allows the CommunicationBean to set the
Participant's attributes and properties, altering it's subsequent
behaviors. Operations that lead to the state transition of the
Communication or Participant are not permitted to use this
event.

Although this event occurs prior to any other disposal on this
participant, however it occurs later than the INITIALIZATION
event used by the CommunicationEvent. A typical use case is to
invoke deferMediaInfoExchange() on a called party during this
event.

BEING_BANNED Indicates that the Participant is to be rejected by the AS (call
barring).

Table 22–6 (Cont.) CommunicationEvents for Announcements

Enumeration Description

Callout Announcement

Using Announcements 22-5

participant is represented by the MediaPartner. When the announcement is finished
and the MediaPartner terminates, the participant that was temporarily replaced is
restored as the callee or caller, and participates in any subsequent stages of the
conversation.

MediaPartner.play(uri) invokes the play operation of the underlying JSR309 API.
Once a media resource is reserved, SFT throws a corresponding event in which
MediaPartner.play(uri) is invoked to play an announcement. Note that
MediaPartner.play(url) must co-operate with
MediaPartner.attach(UserParticipant).

When MediaPartner.detach() is invoked, the MediaPartner is removed from the
Conversation and purged, the temporarily replaced participant is restored, and both
UserPartner attached to the MediaPartner and the MediaPartner of User A are purged.

Callout Announcement
Callout announcements play an announcement to the calling party when initiating a
call, but prior to the call being forwarded to the called party. For example, a Change of
Service announcement that informs the caller that the phone number they are calling
has been changed, recites the new phone number, and then forwards the call to the
new number.

Callout announcement is defined in section of A.1.1 of TS 24.628.

Example 22–1 shows the example code for a Communication Bean that plays a call out
announcement. The trigger to play the announcement is defined in the method using
CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED.

Example 22–1 Callout Announcement

@ServiceAttributes(mscontrolJndiName = "mscontrol/dlg309")
@CommunicationBean(type = Conversation.class)
public class CalloutAnnouncementBean {

 @Context CommunicationContext<Conversation, UserParticipant> ctx;
 @Context CommunicationSession session;

 String userSubsCalloutPrompt = "bob@example.com";
 String uriStr = "file://prompts/generic/en_US/num_dialed.wav";

 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 public void handleInit() {
 Conversation conv = (Conversation)ctx.getCommunication();
 if(conv.getCaller().getName().equals(userSubsCalloutPrompt)) {
 UserParticipant caller = (UserParticipant)conv.getCaller();
 conv.addParticipant(MediaPartner.class, "theMP");
 MediaPartner mediaPartner = conv.getMediaPartner();
 mediaPartner.attach(caller);
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED)
 public void handleEarlyEstablished() {
 Conversation conv = (Conversation)ctx.getCommunication();
 conv.getMediaPartner().play(media_file_uri);
 }

 //Handle end of the announcement playback
 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){

Call Barring Announcement

22-6 Oracle Communications Converged Application Server Developer's Guide

 Conversation conv = ctx.getCommunication();
 //Media partner quit the call, restore former call process.
 conv.getMediaPartner().detach();
 }

 @ParticipantEvent(type = ParticipantEvent.Type.INITIALIZATION)
 public void handlePartInit(){
 Participant currPart = ctx.getParticipant();
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant callee = conv.getCallee();
 if (currPart.equals(callee)){
 if(conv.getCaller().getName().equals(userSubsCalloutPrompt)) {
 callee.getExtension(ConversationParticipantExtension.class).
 deferMediaInfoExchange();
 }
 }
 }
}

Call Barring Announcement
SFT supports the following call barring announcements, which are defined in Section
4.2.4 of the 3GPP TS 24.628 specification:

■ Call Barring Announcement by Error-Info

■ Call Barring Announcement by Early Media

■ Call Barring Announcement by Established Session

Call Barring Announcement Using Error-Info
When rejecting the calling party, this scenario inserts an Error-Info header in the error
response field (3xx, 4xx, 5xx, or 6xx). This header can also carry a media URI, allowing
the calling party to play an announcement, or carry an indication about the call
barring.

You can populate the Error-Info header with a response code using the
EventReason.createReasonData(Reason reason) method. Each of the reason types is
translated into a corresponding SIP response code by SFT. See the Converged Application
Server API Reference for more information.

Example 22–2 illustrates how to initiate a call barring announcement using the
Error-Info event when a call barring event is identified, but before invoking the
UserParticipant.reject event.

Example 22–2 Call Barring Announcement by Error-Info

 @ParticipantEvent(type = ParticipantEvent.Type.JOINING)
 void handleJoining() {
 Conversation conv = (Conversation) ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 if(conv.getCaller().equals(currPart)){
//Application initiates call barring.
 UserParticipant caller = (UserParticipant)conv.getCaller();
 String promptTone = "http://localhost/media/nopermission.wav";
 AnnouncementIndication ai =
 ctx.getContextElement(AnnouncementIndication.class);
 ai.createErrorIndication(promptTone);

Call Barring Announcement

Using Announcements 22-7

 caller.reject(Reason.DECLINE);
 }
 }

In Example 22–3 the ParticipantEvent.Type.BEING_BANNED event occurs after the
UserParticipant.reject(Reason.DECLINE) method is invoked by the application, but
prior to the call barring service being activated. This scenario also lets you play an
announcement using the Error-Info header.

Example 22–3

@ParticipantEvent(type = ParticipantEvent.Type.JOINING)
 void handleJoining() {
 Conversation conv = (Conversation) ctx.getCommunication();
 Participant currPart = ctx.getParticipant();

//Application initiates call barring via the Reason.DECLINE reject event.
 if(conv.getCaller().equals(currPart)){
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.reject(Reason.DECLINE);
 }
 }

 @ParticipantEvent(type = ParticipantEvent.Type.BEING_BANNED)
 void handleBarring() {
 String promptTone = "http://localhost/media/wav/nopermission.wav";
 AnnouncementIndication ai =
 ctx.getContextElement(AnnouncementIndication.class);
 ai.createErrorIndication(promptTone);
 }

Call Barring Announcement Using Early Media
Early media is the ability to play an announcement prior to establishing a SIP session
(before sending a 2xx response code). In conjunction with call barring, the early media
announcement plays, and when it finishes playback the incoming call is barred

Audible announcements can be also provided when an Application Server is rejecting
the establishment of a session (before sending a 2xx response code). In this scenario a
caller sends an INVITE request that is received by the AS, which determines to reject
the call. Before barring the call, the AS can provide an audible announcement to the
caller, potentially indicating the reasons for the call rejection.

Example 22–4 shows how to initiate playback of the announcement prior to rejecting
the call using the ParticipantEvent.Type.BEING_BANNED event.

■ During the ParticipantEvent.Type.JOINING method, the application invokes
caller.reject(Reason.DECLINE), initiating call barring.

■ When the ParticipantEvent.Type.BEING_BANNED event is subsequently thrown,
the MediaParticipant.getMediaPartner() method plays the announcement.

■ After the announcement plays, the CommunicationEvent.Type.MEDIAENDED event
signifies that the media playback from the media server is over, releasing the
media resource. Call barring can then be completed.

Example 22–4 Call Barring Announcement Using Early Media

@ParticipantEvent(type = ParticipantEvent.Type.JOINING)
 void handleJoining() {

Call Barring Announcement

22-8 Oracle Communications Converged Application Server Developer's Guide

 Conversation conv = (Conversation) ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 if(conv.getCaller().equals(currPart)){
 //Initiate call barring using Reason.DECLINE
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.reject(Reason.DECLINE);
 }
 }

 @ParticipantEvent(type = ParticipantEvent.Type.BEING_BANNED)
 void handleBarring() {
 Conversation conv = (Conversation) ctx.getCommunication();
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.getMediaPartner().play(uri);
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 MediaParticipant mp = (MediaParticipant)ctx.getParticipant();
 //MediaParticipant is released from the communication
 mp.unjoin();
 }
//Call reject process can now resume.

Another possibility is to play the announcement upon determining that the calling
party is to be barred, and then invoking the caller reject event after removing the
media resource.

Example 22–5 invokes the getMediaPartner() method during the
ParticipantEvent.Type.JOINING event. Once the announcement is finished playing,
the caller.reject() method performs the call barring.

Example 22–5 Call Barring Announcement Using Early Media

@ParticipantEvent(type = ParticipantEvent.Type.JOINING)
 void handleJoining() {
 Conversation conv = (Conversation) ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 if(conv.getCaller().equals(currPart)){
 //Application determines to bar the caller...
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.getMediaPartner().play(uri);
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 Conversation conv = ctx.getCommunication();
 //Release media resource.
 MediaParticipant mp = (MediaParticipant)ctx.getParticipant();
 conv.removeParticipant(mp);
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.reject(Reason.DECLINE);
 }

Playing a Call Barring Announcement With Established Sessions
In this scenario the call is barred not by an error response, but with a BYE request in
the Reason header. When the application determines the call is to be barred, a media

Call Barring Announcement

Using Announcements 22-9

session to play the announcement is established for the calling party. When the
announcement finishes playing, the application releases the communication and
includes an appropriate Reason header as the reject code in the BYE request.

Example 22–6 calls the EventReason.createReasonData(Reason reason) method,
which inserts a BYE request in the Reason header. The communication is then
terminated with a method call to Communication.end().

Example 22–6 Playing an Announcement Before Rejecting the Call

@ParticipantEvent(type = ParticipantEvent.Type.JOINING)
 void handleJoining() {
 Conversation conv = (Conversation) ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 if(conv.getCaller().equals(currPart)){
 //Application determines to bar the caller.
 UserParticipant caller = (UserParticipant)conv.getCaller();
 //Create a media partner to play the announcement.
 caller.getMediaPartner(true).play(uri);
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 Conversation conv = ctx.getCommunication();
 //Insert a BYE request in the Reason header.
 EventReason er = ctx.getContextElement(EventReason.class);
 er.createReasonData(Reason.DECLINE);
 //End the call.
 conv.end();
 }

Example 22–7 shows how an application can terminate an established communication
using caller.reject(Reason), and play an announcement. The application bars the
calling party, and in the subsequent ParticipantEvent.Type.BEING_BANNED event,
plays an announcement with an exclusive media partner. After the announcement
plays, the communication ends.

Example 22–7 Terminating a Communication and playing an Announcement

@ParticipantEvent(type = ParticipantEvent.Type.JOINING)
void handleJoining() {
 Conversation conv = (Conversation) ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 if(conv.getCaller().equals(currPart)){
 //Application determines to bar the caller.
 UserParticipant caller = (UserParticipant)conv.getCaller();
 //The caller is rejected.
 caller.reject(Reason.DECLINE);
 }
 }
//The participant will be rejected by the AS (call barring).
@ParticipantEvent(type = ParticipantEvent.Type.BEING_BANNED)

Note: Unlike the early media scenario described earlier in this
chapter, playing an announcement in an established session requires
that you create an exclusive media partner for the caller to play the
announcement.

Playing a Colorful Ring Tone

22-10 Oracle Communications Converged Application Server Developer's Guide

void handleBarring() {
 Conversation conv = (Conversation) ctx.getCommunication();
 UserParticipant caller = (UserParticipant)conv.getCaller();
 //Create a media partner to play the announcement.
 caller.getMediaPartner(true).play(uri);
 }
//When the announcement ends, unjoin the MediaParticipant.player.
@CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
void handleMediaEnded(){
 MediaParticipant player = (MediaParticipant)ctx.getParticipant();
 player.unjoin();
 }

Playing a Colorful Ring Tone
Colorful Ring Tone (CRT) (defined in RFC 3959) allows an application to play a
distinctive audio or video announcement to the called party to replace the default ring
tone. SFT supports CRT by adding an Alert-Info header to the SIP INVITE sent to the
callee. The Alert-Info header value is a media URI that the UE of the callee can play as
an announcement. SFT adds the media URI to the Alert-Info header using the
AnnouncementIndication.createDRIndication(uri) method.

To specify an announcement as a CRT, use the
ParticipantEvent.Type.INITIALIZATION event to identify the callee. In this way the
callee is subscribed to the CRT announcement.

Example 22–8 creates a method to handle the INITIALIZATION event, in which the
callee (alice@example.com) will receive the URI identifying the audio file
ringtone.wav to be played as an announcement indication.

Example 22–8

@ParticipantEvent(type= ParticipantEvent.Type.INITIALIZATION)
void handleInit() {
 Participant currPart = ctx.getParticipant();
 Conversation conv = (Conversation) ctx.getCommunication();
 UserParticipant callee = (UserParticipant)conv.getCallee();
 if(currPart.equals(callee)){
 //Alice subscribes to the CRT service, which plays the specifed ringtone.
 if(conv.getCaller().getName().equals("alice@example.com")){
 String url = "http://localhost/media/ringtone.wav";
 //Add the media URI to the Alert-Info header.
 AnnouncementIndication ai =
 ctx.getContextElement(AnnouncementIndication.class);
 ai.createDRIndication(url);
 }
 }
 }

Playing Colorful Ring Back Tone
Colorful Ring Back Tone, (also referred to as Caller Ring Back Tone), allows an
application to play a distinctive audio or video announcement to the calling party to
replace the default ring tone. SFT supports the following methods to create a Colorful
Ring Back Tone (CRBT):

■ CRBT by Alert-Info

Playing Colorful Ring Back Tone

Using Announcements 22-11

■ CRBT using early media, however, there is no early media exchange between the
original calling and called parties

■ CRBT using early media after the early media is exchanged between original
calling and called parties

The above approaches for creating a CRBT application are defined in Section 4.2.2 of
the 3GPP TS 24.628 specification. CRBT is also described in RFC 5009.

Colorful Ring Back Tone by Alert-Info
In this scenario, an Alert-Info header containing a media URI is inserted into the SIP
message in response to the 180 Ringing response code. The Alert-Info header value can
be a media URI that the UE of the calling party plays as announcement, or a
conventional indication by which the UE of the calling party determines what media
to play. SFT adds the media URI to the Alert-Info header using the
AnnouncementIndication.createDRIndication(uri) method.

To specify an announcement as a CRBT, use the ParticipantEvent.Type.JOINING
event to identify the callee. In this way the callee is subscribed to the CRBT
announcement.

Example 22–9 creates a method to handle the JOINING event, in which the callee
(bob@example.com) receives the URI identifying the audio file ringtone.wav to be
played as an announcement indication.

Example 22–9 CRBT Using a Media URI in the Alert-Info Header

@ParticipantEvent(type= ParticipantEvent.Type.JOINING)
 void handleJoining() {
 Conversation conv = (Conversation) ctx.getCommunication();
 Participant callee = conv.getCallee();
 Participant currPart = ctx.getParticipant();
 if(currPart.equals(callee)){
 //Bob subscribes to the CRBT service, which plays the specifed ringtone.
 if(callee.getName().equals("bob@example.com")){
 String url = "http://localhost/media/ringtone.wav";
 AnnouncementIndication ai =
 ctx.getContextElement(AnnouncementIndication.class);
 ai.createDRIndication(url);
 }
 }
 }

Colorful Ring Back Tone Without Early Media Exchange
To specify an announcement as a CRBT without early media exchange, use the
ParticipantEvent.Type.JOINING event to identify the callee. In this way the callee is
subscribed to the CRBT announcement.

Example 22–10 CRBT Without Early Media Exchange

@ServiceAttributes(mscontrolJndiName = "mscontrol/dlg309")
@CommunicationBean(type = Conversation.class)
public class ColorRingBackToneBean {
 @Context CommunicationContext<Conversation, UserParticipant> ctx;
 @Context CommunicationSession session;

 @ParticipantEvent(type = ParticipantEvent.Type.INITIALIZATION)

Playing Colorful Ring Back Tone

22-12 Oracle Communications Converged Application Server Developer's Guide

 public void handlePartInit(){
 Conversation conv = ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 Participant callee = conv.getCallee();
 //Bob subscribes to the CRBT service.
 if (callee.equals(currPart)&& callee.getName().equals("bob@example.com")) {
 callee.deferMediaInfoExchange();
 }
 }

 @ParticipantEvent(type = ParticipantEvent.Type.JOINING)
 public void handleJoining() {
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant callee = conv.getCallee();
 Participant currPart = ctx.getParticipant();
 if (callee.equals(currPart)&& callee.getName().equals("bob@example.com")) {
 String uriStr = "file://prompts/generic/en_US/numDialed.wav";
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.getMediaPartner().play(uriStr);
 }
 }

 //End announcement and release the media resource.
 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 MediaParticipant mp = (MediaParticipant)ctx.getParticipant();
 mp.unjoin();
 }

CRBT After Early Media Exchange
To specify an announcement as a CRBT after early media exchange, use the
ParticipantEvent.Type.MEDIA_INFO_EARLY_EXCHANGED event to identify the callee. In
this way the callee is subscribed to the CRBT announcement.

Example 22–11 CRBT After Early Media Exchange

@ServiceAttributes(mscontrolJndiName = "mscontrol/dlg309")
@CommunicationBean(type = Conversation.class)
public class ColorRingBackToneBean02 {
 @Context CommunicationContext<Conversation, UserParticipant> ctx;
 @Context CommunicationSession session;

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIA_INFO_EARLY_EXCHANGED)
 public void handleMediaEarlyExchange() {
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant callee = conv.getCallee();
 //Bob subscribes to the CRBT service.
 if(callee.getName().equals("bob@example.com")){
 String uriStr = "file://prompts/generic/en_US/numDialed.wav";
 UserParticipant caller = (UserParticipant)conv.getCaller();
 caller.getMediaPartner().play(uriStr);
 }
 }

 //End announcement and release the media resource.
 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 MediaParticipant mp = (MediaParticipant)ctx.getParticipant();

Playing a Call Rejection Announcement

Using Announcements 22-13

 mp.unjoin();
 }
}

Playing a Call Rejection Announcement
Call rejection announcements play when a callee rejects a caller. SFT supports the
following methods to create a call rejection announcement:

■ Reject announcement using Error-Info

■ Reject announcement using early media

Call Rejection Using Error-Info
In this scenario, an Error-Info header containing a media URI is inserted into the SIP
message in response to a 480 Temporarily Unavailable response code. The Error-Info
header value can be a media URI that the UE of the calling party plays as
announcement, or a conventional indication by which the UE of the calling party
determines what media to play. SFT adds the media URI to the Error-Info header using
the AnnouncementIndication.createDRIndication(uri) method.

To play an announcement in response to a call rejection, use the
ParticipantEvent.Type.REJECTED event to identify the callee. If the EventReason
interface returns NOTAVAILABLE, BUSY, or DECLINE reason types, then a call
rejection announcement can be played in response.

Example 22–12 creates a method to handle the REJECTED event, in which the callee
(bob@example.com) receives the URI identifying the audio file reject.wav to be played
as a rejection announcement.

Example 22–12 Call Rejection Using Error-Info

@ParticipantEvent(type= ParticipantEvent.Type.REJECTED)
void handleRejected() {
 Conversation conv = (Conversation) ctx.getCommunication();
 EventReason er = ctx.getContextElement(EventReason.class);
 if (er!=null){
 ReasonData rd = er.getReasonData().get(0);
 if(rd.getReasonType()==Reason.NOTAVAILABLE||
 rd.getReasonType()==Reason.BUSY||
 rd.getReasonType()==Reason.DECLINE){
 UserParticipant caller = (UserParticipant)conv.getCaller();
 if(caller.getName().equals("bob@example.com")){
 String promptTone = "http://localhost/media/reject.wav";
 AnnouncementIndication ai =
 ctx.getContextElement(AnnouncementIndication.class);
 ai.createErrorIndication(promptTone);
 }
 }
 }
 }

Call Rejection Announcements Using Early Media
To specify an announcement as a call rejection after early media exchange, use the
ParticipantEvent.Type.REJECTED event to identify and reject the callee.

Call Forwarding Announcements

22-14 Oracle Communications Converged Application Server Developer's Guide

Example 22–13 Call Rejection Announcement Using Early Media

@ParticipantEvent(type= ParticipantEvent.Type.REJECTED)
 void handleRejected() {
 Conversation conv = (Conversation) ctx.getCommunication();
 EventReason er = ctx.getContextElement(EventReason.class);
 if (er!=null){
 ReasonData rd = er.getReasonData().get(0);
 if(rd.getReasonType()==Reason.NOT_AVAILABLE||
 rd.getReasonType()==Reason.BUSY||
 rd.getReasonType()==Reason.DECLINE){
 if(conv.getCaller().getName().equals("bob@example.com")){
 UserParticipant caller = (UserParticipant)conv.getCaller();
 conv.addParticipant(MediaPartner.class, "theMP");
 conv.getMediaPartner().attach(caller);
 }
 }
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED)
 public void handleEarlyEstablished() {
 Conversation conv = (Conversation)ctx.getCommunication();
 String uri = "file:///prompts/en_US/rejected.wav";
 conv.getMediaPartner().play(uri);
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 MediaPartner player = ctx.getParticipant();
 player.detach();
 }

Call Forwarding Announcements
For all supported call forwarding modes, SFT supports announcements to the calling
party using early media prior to forwarding the call. Call Forwarding announcements
are referenced in RFC 5009.

Un-Conditional Call Forwarding Announcement
Unconditional forwarding routes all incoming calls to a second phone number
specified by the user of the service. The second number can be a work phone,
voice-mail account, or other end-point in the network where the user would like their
incoming calls to be received. In contrast, conditional call forwarding occurs when the
user’s phone is out of the service area, on another call, or the phone is turned off, and
the call is forwarded to a secondary number.

SFT supports Unconditional Call Forwarding announcements using the following
event types:

■ ParticipantEvent.Type.JOINING (Caller side)

■ CommunicationEvent.Type.STARTED

■ CommunicationEvent.Type.INITIALIZATION

Example 22–14 shows how to implement a Direct Call Forwarding Announcement by
initiating the announcement without first triggering the Call Forwarding event. In this

Call Forwarding Announcements

Using Announcements 22-15

example Call Forwarding is triggered using the
CommunicationEvent.Type.MEDIAENDED event.

Example 22–14 Direct Call Forwarding Announcement Without A Call Forwarding Event

@CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 public void handleInit() {
 Conversation conv = (Conversation)ctx.getCommunication();
 UserParticipant caller = (UserParticipant)conv.getCaller();
 // Bob subscribes to call forwarding service.
 // Opensp subscribes to call forwarding announcement service.
 if(caller.getName().equals("opensp@example.com") &&
 conv.getCallee().getName().equals("bob@example.com")) {
 conv.addParticipant(MediaPartner.class, "theMP");
 conv.getMediaPartner().attach(caller);
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED)
 public void handleMediaResourceReserved() {
 Conversation conv = (Conversation)ctx.getCommunication();
 String uri = "file://prompts/generic/en_US/num_changed.wav";
 conv.getMediaPartner().play(uri);
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 Conversation conv = ctx.getCommunication();
 UserParticipant p = session.createParticipant(UserParticipant.class,
 "amy@example.com");
 MediaParticipant mp = conv.getMediaPartner();
 conv.replaceParticipant(mp, p);
 }

 @ParticipantEvent(type = ParticipantEvent.Type.INITIALIZATION)
 public void handlePartInit(){
 Participant currPart = ctx.getParticipant();
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant callee = conv.getCallee();
 if (currPart.equals(callee)){
 if(conv.getCaller().getName().equals("opensp@example.com")
 &&callee.getName().equals("amy@example.com"))

callee.getExtension(ConversationParticipantExtension.class).deferMediaInfoExchange
();
 }
 }
 }

Conditional Call Forwarding
Conditional call forwarding (also referred to as call diversion) routes all incoming calls
to the specified phone number when a corresponding condition is met. Common call
forwarding conditions include:

■ No answer after specified period of time

■ Unreachable due to no signal or phone powered off

■ Busy on another call

Call Forwarding Announcements

22-16 Oracle Communications Converged Application Server Developer's Guide

Example 22–15 shows how to initiate the call forwarding announcement in the
CommunicationEvent.Type.FORWARDING event.

Example 22–15 Call Forwarding Announcement During
CommunicationEvent.Type.FORWARDING

 @ParticipantEvent(type= ParticipantEvent.Type.REJECTED)
 void handleIncomingResponse() {
 Conversation call = (Conversation) ctx.getCommunication();
 EventReason er = ctx.getContextElement(EventReason.class);
 if (er!=null){
 ReasonData rd = er.getReasonData().get(0);
 if(rd.getReasonType()==Reason.NOTAVAILABLE||
 rd.getReasonType()==Reason.BUSY||
 rd.getReasonType()==Reason.DECLINE){
 if(call.getCallee().getName().equals("bob@example.com")){
 Participant newCallee = session.createParticipant
 (UserParticipant.class, "amy@example.com");
 //Use not removeParticipant+addParticipant but
 //replaceParticipant to assure both CF and announcement work fine.
 call.replaceParticipant(call.getCallee(), newCallee, true);
 }
 }
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.FORWARDING)
 void handleForwarding(){
 Conversation conv = (Conversation) ctx.getCommunication();
 if(conv.getCaller().getName().equals("opensp@example.com")){
 UserParticipant caller = (UserParticipant)conv.getCaller();
 conv.addParticipant(MediaPartner.class, "theMP");
 conv.getMediaPartner().attach(caller);
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED)
 public void handleEarlyEstablished() {
 Conversation conv = (Conversation)ctx.getCommunication();
 String uri = "file:////opt/snowshore/prompts/generic/en_US/num_changed.wav";
 conv.getMediaPartner().play(uri);
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded() {
 MediaPartner player = (MediaPartner)ctx.getParticipant();
 player.detach();
 }

 @ParticipantEvent(type = ParticipantEvent.Type.INITIALIZATION)
 public void handlePartInit(){
 Participant currPart = ctx.getParticipant();
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant callee = conv.getCallee();
 if (currPart.equals(callee)){

if(conv.getCaller().getName().equals("opensp@example.com")&&callee.getName().equal
s("amy@example.com")) {

callee.getExtension(ConversationParticipantExtension.class).deferMediaInfoExchange

Call Waiting Announcement

Using Announcements 22-17

();
 }
 }
 }

Call Waiting Announcement
Call waiting announcement plays an announcement to the calling parties in a
communication waiting state. SFT supports call waiting announcement for all call
waiting scenarios (including NDUB and UDUB). SFT provides two methods by which
to implement communication waiting announcement:

■ Call waiting announcement by Alert-Info

■ Call waiting announcement by early media

When implementing either of these approaches, the announcement logic should be in
the CommunicationEvent.Type.WAITING event.

Call Waiting Announcement Using ALERT-INFO
SFT’s implementation of call waiting announcement using the Alert-Info header
complies with RFC 3261, TS 24.628, TS 24.615, and the Alert-Info URNs for the Session
Initiation Protocol (SIP).

Example 22–16 plays a Distinctive Ringing announcement (Alert-Info) to the calling
party held in the call waiting state. The Alert-Info header is carried in the 180 response
which forwards the calling party. The code example shown below is common for
different call waiting scenarios.

Example 22–16

//Communication waiting logic appears pior to this.

@CommunicationEvent(type = CommunicationEvent.Type.WAITING)
void handleCallWaiting() {
 String uri = "http://localhost/myapp/media/wav/busy.wav";
 AnnouncementIndication ai =
 ctx.getContextElement(AnnouncementIndication.class);
 ai.createDRIndication(uri);
 }

Call Waiting Announcement Using Early Media
Example 22–17 shows how to initiate playback of an announcement to a calling party
in a call waiting state using early media. The code example shown below is common to
different call waiting scenarios using early media to play announcements.

Example 22–17 Call Waiting Announcement Using Early Media

@ParticipantEvent(type = ParticipantEvent.Type.INITIALIZATION)
public void handlePartInit(){
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 Participant callee = conv.getCallee();
 if (currPart.equals(callee)&& callee.getName().equals(userSubsCWPrompt)) {
 callee.getExtension(ConversationParticipantExtension.class)

Pickup Announcement

22-18 Oracle Communications Converged Application Server Developer's Guide

 .deferMediaInfoExchange();
 }
 }
//Add the MediaPartner as a Participant to the call.
@CommunicationEvent(type = CommunicationEvent.Type.WAITING)
void handleCallWaiting() {
 Conversation conv = (Conversation) ctx.getCommunication();
 UserParticipant caller = (UserParticipant)conv.getCaller();
 conv.addParticipant(MediaPartner.class, "theMP");
 conv.getMediaPartner().attach(caller);
 }
//
@CommunicationEvent(type = CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED)
public void handleEarlyEstablished() {
 Conversation conv = (Conversation)ctx.getCommunication();
 String uri = "file:////prompts/generic/en_US/circuit_busy.wav";
 conv.getMediaPartner().play(uri);
 }
//This method is optional to this Call Waiting case.
@CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
void handleMediaEnded(){
 MediaPartner mp = (MediaPartner)ctx.getParticipant();
 mp.detach();
 }

Pickup Announcement
Pickup announcements play an announcement to the called party when they pickup
the phone (answer the call). Pickup Announcement is defined in Section 4.2.6 of the
3GPP TS 24.628 specification.

SFT supports Pickup Announcement using a media session. When the called party (the
callee) answers the phone, the CommunicationEvent.Type.PICKUP event is triggered;
the SFT application must initiate pickup announcement during this event.

Example 22–18 illustrates the use of the CommunicationEvent.Type.PICKUP event to
play an announcement to a callee when they answer the phone. In this example the
callee—identified by the SIP URI bob@example.com—will be played an
announcement when he answers the incoming call.

Example 22–18 Pickup Announcement

@ParticipantEvent(type = ParticipantEvent.Type.INITIALIZATION)
 public void handlePartInit(){
 Conversation conv = (Conversation)ctx.getCommunication();
 Participant currPart = ctx.getParticipant();
 Participant callee = conv.getCallee();
 if (currPart.equals(callee)&& callee.getName().equals("bob@example.com")) {

callee.getExtension(ConversationParticipantExtension.class).deferMediaInfoExchange
();
 }
 }

 @CommunicationEvent(type= CommunicationEvent.Type.PICKUP)
 void handlePickup() {
 UserParticipant pickupParty = ctx.getParticipant();
 //The bob@exmaple.com is subscribed to the pickup announcement.
 if(pickupParty.getName().equals("bob@example.com")){

Pickup Announcement

Using Announcements 22-19

 Conversation conv = ctx.getCommunication();
 conv.addParticipant(MediaPartner.class, "theMP");
 conv.getMediaPartner().attach(pickupParty);
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIA_RESOURCE_RESERVED)
 public void handleEarlyEstablished() {
 Conversation conv = ctx.getCommunication();
 String uri = "file:////opt/snowshore/prompts/generic/en_US/pickup_who.wav";
 conv.getMediaPartner().play(uri);
 }

 @CommunicationEvent(type = CommunicationEvent.Type.MEDIAENDED)
 void handleMediaEnded(){
 MediaPartner player = (MediaPartner)ctx.getParticipant();
 player.detach();
 }

Pickup Announcement

22-20 Oracle Communications Converged Application Server Developer's Guide

23

Conferencing With Media Control 23-1

23Conferencing With Media Control

This chapter describes how to implement conferencing applications with media server
interactions using Service Foundation Toolkit (SFT).

Conferencing with Media Control
A common use of a media server is to provide multi-user conferences that incorporate
audio and video conferencing features. A conference is a unique instance of a
multi-party conversation, and consists of a Focus and a Mixer.

The Focus identifies a conference. It acts as a SIP UA and is addressed by SIP URI. The
Focus maintains a SIP signaling relationship with each participant in the conference,
and is responsible for ensuring that each participant receives the media that makes up
the conference. The Focus implements conference policies, such as determining who
can join a conference, and is responsible for interpreting the media policies.

The Mixer is responsible for mixing all members’ data streams and sending them back
to all conference members via an RTP channel. Data streams may be text, audio, and
video. A Mixer is always under the control of the Focus. The Mixer enforces the
appropriate media policies. The Mixer represents a JSR 309 compliant media server.

About the Conferencing and Media Control Interfaces
The Focus interface let’s you create a voice conference with a Mixer, such that you can
use the JSR 309 APIs to create a Mixer, and encapsulate the Mixer within the Focus
interface to create a conference.

Conferencing and Media Control makes use of the following classes in the
com.oracle.sft.api package. For more information on these interfaces and their
usage, refer to the Converged Application Server API Reference.

Table 23–2 lists methods accessed from the CommunicationSession interface that you
can use to create a conference.

Table 23–1 Focus Interfaces

Class Description

Focus Focus extends the Participant class, and represents a
participant in a conference. Applications use the Focus interface
to initialize the media server using JSR309 API, and create a
Mixer.

Conferencing with Media Control

23-2 Oracle Communications Converged Application Server Developer's Guide

Creating a Conference With the Focus Interface
Example 23–1 creates a JSR 309-compliant Mixer which is encapsulated by the Focus
interface. The Mixer is created using the javax.media.mscontrol.mixer.MediaMixer
class, which serves as the base for a conferencing service. When a conference is
instantiated, JSR 309 objects are created using MsControlFactory. The Focus interface
encapsulates the Mixer, and connects and mixes multiple participants in a conference.

Example 23–1 Creating a Mixer And Encapsulating It Within A Focus

...
String msJndiName = "mediaServerJNDIName";
MsControlFactory msFactory = (MsControlFactory)(new InitialContext()).lookup(msJndiName);
MediaSession mSession = msFactory.createMediaSession();
MediaMixer mixer = (MediaMixer) mSession.createMediaMixer(MediaMixer.AUDIO_VIDEO);
Focus focus = sess.createParticipant(Focus.class, "FOCUS_AUDIO_VIDEO", mixer);
Conference conf = sess.createConference(null, call, focus);
...

Example 23–2 creates the Java class ConfFocusBean, which is a JSR 309 conference
application. ConfFocusBean encapsulates the Mixer within the Focus interface, and
illustrates the use of the @CommunicationEvent annotation in creating and establishing
communication within the conference, and @ParticpantEvent annotation in joining
SIP dialogs within the conference.

Example 23–2 Creating A JSR 309 Conference Using The Focus Interface

package com.oracle.sft.testapp;

import javax.media.mscontrol.MediaSession;
import javax.media.mscontrol.MsControlException;
import javax.media.mscontrol.MsControlFactory;
import javax.media.mscontrol.join.Joinable;
import javax.media.mscontrol.mixer.MediaMixer;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.oracle.sft.api.Communication;
import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.CommunicationService;
import com.oracle.sft.api.CommunicationSession;
import com.oracle.sft.api.Conference;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.Conversation;
import com.oracle.sft.api.Focus;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.bean.CommunicationEvent;
import com.oracle.sft.api.bean.ParticipantEvent;

@ServiceAttributes(mscontrolJndiName = "mscontrol.OCMP")
@ServiceAttributes(mscontrolJndiName = "mscontrol.dlg309")

Table 23–2 Methods Defined by the CommunicationSession Interface

Method Description

createConference(Focus f) Creates a conference without a specified name.

createConference(String
name, Focus f)

Creates a conference with a specified name and focus
instance.

createConference(String
name, Conversation c,
Focus f)

Create a conference from a Conversation instance using the
focus instance. If no name is specified (null), the conference
name will use the name assigned to the focus.

Conferencing with Media Control

Conferencing With Media Control 23-3

@CommunicationBean
public class ConfFocusBean {

 @Context CommunicationSession sess;
 @Context CommunicationContext ctx;
 @Context CommunicationService service;

 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {

 Conversation call = (Conversation) ctx.getCommunication();
 String calleeName = call.getCallee().getName();

 if(calleeName.equals("conf1@example.com")) {
 MediaMixer mixer = this.createMixer();
 Focus focus = sess.createParticipant(Focus.class, "FOCUS_AUDIO_VIDEO", mixer);
 // The Conference name is set to null, and uses the Focus's name.
 Conference conf = sess.createConference(null, call, focus);
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.STARTED)
 void handleStarted() {
 Joinable j = ctx.getParticipant().getJoinable();
 Communication c = ctx.getCommunication();
 }

 @CommunicationEvent(type = CommunicationEvent.Type.ESTABLISHED)
 void handleEstablised() {
 Joinable j = ctx.getParticipant().getJoinable();
 Communication c = ctx.getCommunication();
 }

 @ParticipantEvent(type = ParticipantEvent.Type.JOINED)
 void handleJoin() {
 Communication c = ctx.getCommunication();
 }

 private MediaMixer createMixer() {
 String msJndiName = "__SYSTEM.resource.jvb-ra#javax.media.mscontrol.MsControlFactory";
 MsControlFactory msFactory;
 try {
 msFactory = (MsControlFactory)(new InitialContext()).lookup(msJndiName);
 MediaSession mSession = msFactory.createMediaSession();
 MediaMixer mixer = (MediaMixer) mSession.createMediaMixer(MediaMixer.AUDIO_VIDEO);
 return mixer;
 } catch (NamingException e) {
 e.printStackTrace();
 } catch (MsControlException e) {
 e.printStackTrace();
 }
 return null;
 }
}

Creating Conferences Using Resource-Contained Lists
In certain types of multimedia communications, a SIP request is distributed to a group
of SIP User Agents (UAs). The sender sends a single SIP request to a server which
further distributes the request to the group. This SIP request contains a list of Uniform
Resource Identifiers (URIs). The URI list is expressed as an XML document that allows
the sender of the request to qualify a recipient using a copy control level similar to the
copy control level of existing e-mail systems.

Conferencing with Media Control

23-4 Oracle Communications Converged Application Server Developer's Guide

The XML resource list (defined in RFC 4826) provides a mechanism for describing a
list of resources, however, there is a need for a copy control attribute to determine
whether a resource is receiving a SIP request as a primary recipient, a carbon copy, or a
blind carbon copy. This is similar to e-mail systems where the sender can categorize
each recipient as “to”, “cc”, or “bcc.” RFC 5366 defines the copy control XML extension
to the XML resource list format. Example 23–3 shows a list that follows the XML
resource list document extended with format extension for representing copy control
attributes in resource lists.

Example 23–3 URI List for Conference Establishment Contained in the SIP Header

<?xml version="1.0" encoding="UTF-8"?>
<resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists"
 xmlns:cp="urn:ietf:params:xml:ns:copycontrol">
 <list>
 <entry uri="sip:bill@example.com" cp:copyControl="to"/>
 <entry uri="sip:joe@example.com" cp:copyControl="cc" />
 <entry uri="sip:ted@example.net" cp:copyControl="bcc"/>
 </list>
</resource-lists>

A conference server supporting RFC 5366, in which a received INVITE triggers the
conference focus UAS to initiate multiple INVITEs as a UAC, operates as a media
termination B2BUA when performing that function.

When an incoming INVITE request with the SIP Content-Type header containing
either of:

■ Content-Type: application/resource-lists+xml

■ Content-Type: multipart/mixed;boundary="boundary1" with sub
Content-Type: application/resource-lists+xml

is received the com.oracle.sft.api.ResourceListsMessage interface creates the
message, and sets it to the current CommunicationContext.

The ResourceListsMessage interface represents the ProtocolMessage (the actual SIP
Message) interface. Like other types of Message interfaces, ProtocolMessage is
available to the application from the CommunicationContext.getMessage() method.
Note that ProtocolMessage is expected to be used only by advanced users. Also,
changes made to the actual protocol objects may impact the behavior of the SFT
runtime. Typically an SFT application adds or removes custom headers or parameters
needed by a specific application.

com.oracle.sft.api.UserParticipant contains recipient list history information.

The interface defines the methods setRecipientListHistory(ResourceLists
recipientLists) and getRecipientListHistory() that you can use to set and
retrieve recipient list history information contained by the URI list in the INVITE to
the user participant.

 When an INVITE is sent to the user participant, the SIP Content-Type is
multipart/mixed.

Table 23–3 lists the interfaces defined in the com.oracle.sft.api.rls package to
handle the XML resource list carried in the INVITE request. For more information on
these interfaces and their usage, refer to the Converged Application Server API Reference.

Conferencing with Media Control

Conferencing With Media Control 23-5

Example 23–4 illustrates how to create a conference using a resource list provided in
the SIP message from the conference initiator.

Example 23–4 Using the ResourceLists Interface

...
Message msg = ctx.getMessage();
if (msg instanceof ResourceListsMessage) {
 ResourceLists rlss = ((ResourceListsMessage) msg).getResourceLists();
}
...

ResourceListsFactory rlssFactory = service.createResourceListsFactory();
ResourceLists recipientLists = rlssFactory.createRecipientLists(rlss);
ResourceLists recipientHistoryLists = rlssFactory.createRecipientHistoryLists(rlss);

 List<ResourceList> dataList = recipientLists.getResourceList();
 for (ResourceList rls : dataList) {
 List<Entry> entryList = rls.getResourceListData();
 for (Entry entry: entryList) {
 String userName = entry.getName();
 UserParticipant up = sess.createParticipant(UserParticipant.class, userName);
 up.setRecipientHistoryList(recipientHistLists);
 comm.addParticipant(up);
 }
 }

Example 23–5 creates a conference using a resource-contained list. A
CommunicationBean named ConfRLSBean is created, which creates a conference and
distributes the request to a group using a resource-contained list to specify copy
control to the individual UAS receiving the INVITE. This SIP request contains a list of
Uniform Resource Identifier (URI) requests— expressed as an XML document—that
allows the sender of the request to qualify a recipient using a copy control level similar
to the copy control level of existing e-mail systems.

Example 23–5 Creating a Conference using a Resource-Contained List

package com.oracle.sft.testapp;

import java.util.List;
import java.util.logging.Logger;

Table 23–3 Interfaces for Handling XML Resource Lists

Interfaces Description

DisplayName Represents the display-nameType complex type.

Entry Represents the entryType complex type

EntryRef Represents the entry-refType complex type.

External Represents the externalType complex type.

ResourceList Represents the resource-list contained in a resource-lists.

ResourceListData Represents the data carried in the ResourceList.

ResourceLists Represents the resource-lists defined in RFC 4826 and RFC
5364.

ResourceListsFactory Factory interface for creating resource lists elements.

Conferencing with Media Control

23-6 Oracle Communications Converged Application Server Developer's Guide

import com.oracle.sft.api.Agent;
import com.oracle.sft.api.Communication;
import com.oracle.sft.api.CommunicationContext;
import com.oracle.sft.api.CommunicationService;
import com.oracle.sft.api.CommunicationSession;
import com.oracle.sft.api.Conference;
import com.oracle.sft.api.Context;
import com.oracle.sft.api.Conversation;
import com.oracle.sft.api.Message;
import com.oracle.sft.api.ResourceListsMessage;
import com.oracle.sft.api.UserParticipant;
import com.oracle.sft.api.bean.CommunicationBean;
import com.oracle.sft.api.bean.CommunicationEvent;
import com.oracle.sft.api.bean.ParticipantEvent;
import com.oracle.sft.api.rls.Entry;
import com.oracle.sft.api.rls.ResourceList;
import com.oracle.sft.api.rls.ResourceLists;
import com.oracle.sft.api.rls.ResourceListsFactory;

// @ServiceAttributes(mscontrolJndiName = "mscontrol.OCMP")
// @ServiceAttributes(mscontrolJndiName = "mscontrol.dlg309")

@CommunicationBean
public class ConfRLSBean {

 @Context CommunicationSession sess;
 @Context CommunicationContext<> ctx;
 @Context CommunicationService service;
 private Logger logger = Logger.getLogger("sft.test");

 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 Conversation call = (Conversation) ctx.getCommunication();
 String calleeName = call.getCallee().getName();
 logger.info(call.getCaller().getName() + " call " + calleeName);

 if(calleeName.equals("conf1@example.com")) {
 Conference conf = sess.createConference(calleeName, call);
 Message msg = ctx.getMessage();
 ResourceLists rlss = handleMsg(msg);
 if (conf.getAgent("test") == null) {
 conf.addAgent("test", new TestAgent(rlss));
 }
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.STARTED)
 void handleStart() {
 String confName = ctx.getCommunication().getName();
 logger.info(confName + " is started.");
 }

 @CommunicationEvent(type = CommunicationEvent.Type.ESTABLISHED)
 void handleEstablished() {
 Communication comm = ctx.getCommunication();
 logger.info(comm.getName() + " established");

 Agent<ResourceLists> testAgent = comm.getAgent("test");
 ResourceLists incomingRlss = testAgent.get();

 System.out.println("incomingRlss size : ");
 List<ResourceList> resourceList = incomingRlss.getResourceList();
 for (ResourceList rls: resourceList) {
 System.out.println(rls.getResourceListData().size());
 }
 System.out.println(incomingRlss.toString());

Conferencing with Media Control

Conferencing With Media Control 23-7

 ResourceListsFactory rlssFactory = service.createResourceListsFactory();

 ResourceLists recipientLists = rlssFactory.createRecipientLists(incomingRlss);
 resourceList = recipientLists.getResourceList();
 System.out.println("recipientLists size : ");
 for (ResourceList rls: resourceList) {
 System.out.println(rls.getResourceListData().size());
 }
 System.out.println(recipientLists.toString());

 ResourceLists recipientHistLists = rlssFactory.createRecipientHistoryLists(incomingRlss);
 System.out.println("recipientHistLists size : ");
 resourceList = recipientHistLists.getResourceList();
 for (ResourceList rls: resourceList) {
 System.out.println(rls.getResourceListData().size());
 }
 System.out.println(recipientHistLists.toString());

 List<ResourceList> dataList = recipientLists.getResourceList();

 for (ResourceList rls : dataList) {
 List<Entry> entryList = rls.getResourceListData();
 for (Entry entry: entryList) {
 String userName = entry.getName();
 UserParticipant up = sess.createParticipant(UserParticipant.class, userName);
// up.setRecipientHistoryList(recipientHistLists);
 comm.addParticipant(up);
 }
 }
 }

 @CommunicationEvent(type = CommunicationEvent.Type.FINISHED)
 void handleEnd() {
 String confName = ctx.getCommunication().getName();
 logger.info(confName + " is finished.");
 }

 // Handle ParticipantEvent

 @ParticipantEvent(type = ParticipantEvent.Type.JOINED)
 void handleJoin() {
 logger.info(ctx.getParticipant().getName() + " joined");
 }

 private ResourceLists handleMsg(Message msg) {
 if (msg instanceof ResourceListsMessage) {
 ResourceLists rlss = ((ResourceListsMessage) msg).getResourceLists();
 return rlss;
 }
 return null;
 }
}

class TestAgent extends Agent<ResourceLists> {
 private static final long serialVersionUID = 1L;

 TestAgent(ResourceLists rls) {
 super(false);
 super.set(rls);
 }
}

Ad-Hoc Conferencing

23-8 Oracle Communications Converged Application Server Developer's Guide

Ad-Hoc Conferencing
RFC 4575 defines an event package for conferencing. The conference event package
allows a user to subscribe to information relating to a conference.

The conference event package allows a user to subscribe to information relating to a
conference. Within the SIP protocol, conferences are represented by URIs. These URIs
identify the Focus, a SIP user agent (UA), that is responsible for ensuring that all users
in the conference can communicate with each other. The Focus has sufficient
information about the state of the conference to inform subscribers about it.

The following is supported for event notifications via the conference event package:

■ Converged Application Server only supports a SUBSCRIPTION event without
body, which is the default subscription filtering policy. See RFC 4575, Section 3.2.

■ The default expiration time for a subscription to a conference is one hour. Once the
conference ends, all subscriptions to that conference are terminated, with a reason
of “no resource” as defined in RFC 3265.

■ The body of the conference event package notification contains a conference
information document that describes the state of a conference. All subscribers and
notifiers must support the application/conference-info+xml data format. See
RFC 4575, Section 3.4.

■ The conference information contains sensitive information. Therefore, all
subscriptions should be authenticated and authorized before approval.
Authorization policy is at the discretion of the administrator, as always. See RFC
4575, Section 3.5.

Configuring the Conference Event Package
You can configure a conference with:

■ Miminum expiration time

■ Maximum expiration time

■ Default expiration time

■ Maximum number of participants

The configuration is done using:

■ The minExpirationTime, defaultExpirationTime, maxExpirationTime, and
maxNumOfSubscriptions elements of the sft.xml deployment descriptor.

■ The @ServiceAttributes annotation.

The times are given in seconds.

Example 23–6 illustrates event notification expiration times and the maximum number
of subscribers to a conference using the conferenceEventConfig element of the sft.xml
deployment descriptor.

Example 23–6 Conference Event Expiration in SFT.XML Deployment Descriptor

<service-attributes>
 <conferenceEventConfig>
 <minExpirationTime>100</minExpirationTime>
 <defaultExpirationTime>1800</defaultExpirationTime>
 <maxExpirationTime>3600</maxExpirationTime>
 <maxNumOfSubscriptions>100</maxNumOfSubscriptions>
 </conferenceEventConfig>

Ad-Hoc Conferencing

Conferencing With Media Control 23-9

</service-attributes>

Example 23–7 specifies event notification expiration times and the maximum number
of subscribers using the @ServiceAttributes annotation. Use this annotation in the
CommunicationBean Java class you create to implement the conferencing application.

Example 23–7 Specifying Bandwidth Using the @ServiceAttributes Annotation

@ServiceAttributes (conferenceEventConfig = {100, 3600, 3600, 100})
@CommunicationBean
public class ConferenceBean
...

To learn more about configuring event notification for conferences with the
@ServiceAttributes annotation, see the Converged Application Server API Reference.

Handling Subscription and Notification Events
The conference notification service allows conference-aware participants to subscribe
to it, and receive notifications that contain a list of participants. Subscribers are
notified when a participant joins or leaves a conference. The conference notification
service also allows a user to obtain a list of current subscribers.

The conference notification service uses the @CommunicationEvent annotation’s
SUBSCRIPTION and NOTIFICATION event types.

Handling Conference Subscription Events
Example 23–8 illustrates the use of the SUBSCRIPTION event type in conjunction with
the SubscriptionPolicy interface to perform authorization. SubscriptionPolicy gets
the subscription information from @CommunicationContext using the
ContextElement interface.

■ If the application sets the Policy to SubscriptionPolicy.ACCEPTED, the
subscription will be created successfully, and a SIP 200 OK response sent to the
subscriber.

■ If the application sets the Policy to SubscriptionPolicy.FORBIDDEN, a SIP 403 -
Forbidden response is sent to the subscriber.

■ If the application does not change the Policy, the default value is set to
SubscriptionPolicy.NONE. In this case, if the subscriber is authenticated by
Converged Application Server, the SFT application accepts the request.

Example 23–8 Handling SUBSCRIPTION Type

...
@CommunicationEvent(type = CommunicationEvent.Type.SUBSCRIPTION)
 void handleSub() {
 // The communication name is the same as the resourceId
 String confName = ctx.getCommunication().getName();
 //Get Subscription information from CommunicationContext.
 ContextElement SubsElement =
 ctx.getContextElement(SubscriptionPolicy.class);

 if (SubsElement != null) {
 SubscriptionPolicy subsPolicy = (SubscriptionPolicy)SubsElement;
 // Get information about the subscription for authorization.
 List<String> accepList = subsPolicy.getAccept();
 String contentType = subsPolicy.getContentType();

Ad-Hoc Conferencing

23-10 Oracle Communications Converged Application Server Developer's Guide

 Map<String, String> parameters = subsPolicy.getEventHeaderParameters();
 String resourceId = subsPolicy.getResourceId();
 String subscriber = subsPolicy.getSubscriber();
 String eventName = subsPolicy.getEventName();

 /* Perform authorization and reject alice@example.com
 * subscription to conf1@example.com
 */
 if (subscriber.equals("alice@example.com")) {
 if (resourceId.equals("conf1@example.com")) {
 subsPolicy.reject();
 }
 }
 }
 }
...

Handling Conference Notification Events
Indicates a new notification has been created. The conference application can change
the notification content in this event.

Example 23–9 illustrates the use of the NOTIFICATION event type. The subscriber
Alice is removed from the list of subscribers that get notifications about the conference.
Alice’s info is explicitly removed from the notification details sent to Bob.

Example 23–9 Handling the NOTIFICATION Type

...
 @CommunicationEvent(type = CommunicationEvent.Type.NOTIFICATION)
 void handleNotify() {
 // The communication name is the same as the resourceId
 String confName = ctx.getCommunication().getName();
 // Get ConferenceResource from CommunicationContext.
 ContextElement element = ctx.getContextElement(ConferenceResource.class);
 if (element != null) {
 ConferenceResource confrenceRes = (ConferenceResource) element;
 // Get all the information about the Resource. Application can
 // use them to do the authorization for notifications.
 ConferenceInfo defaultConferenceInfo =
 confrenceRes.getDefaultConferenceInfo();
 Collection<String> subscribers = confrenceRes.getSubscribers();
 String resourceId = confrenceRes.getResourceId();
 // *******************************
 // An example of authorization *
 // *******************************
 if (resourceId.equals("aConference@example.com")) {
 // Alice can not get notification.
 if (subscribers.contains("alice@example.com")) {
 confrenceRes.removeSubscriber("alice@example.com");
 }
 // Bob can not get Alice's state from conference.
 if (subscribers.contains("alice@example.com")) {
 ConferenceInfo confInfoToBob =
 defaultConferenceInfo.clone();
 Users users = confInfoToBob.getUsers();
 if (users != null) {
 List<User> userList = users.getUserList();
 ListIterator<User> it = userList.listIterator();
 while (it.hasNext()) {
 User user = it.next();

Ad-Hoc Conferencing

Conferencing With Media Control 23-11

 if (user.getEntity().contains("alice@example.com")) {
 it.remove();
 confrenceRes.setDistinctConferenceInfo(
 "sipp2@example.com", confInfoToBob);
 }
 }
 }
 }
 }
 }
 }
...

Ad-Hoc Conferencing

23-12 Oracle Communications Converged Application Server Developer's Guide

24

Using the XCAP Interfaces 24-1

24Using the XCAP Interfaces

Oracle Communications Converged Application Server provides APIs that let you
access an XML Document Management Server (XDMS). The XDMS handles the
management of user-generated XML documents stored on the network, such as
authorization rules and contact and group lists (also referred to as resource lists).

The XML Configuration Access Protocol Server (XCAP server), provides an interface
that allows for the manipulation of service-related data stored as XML documents
within the XDMS. The XCAP specification defines how an HTTP address (or URI) can
identify the way XML documents are stored on an XCAP server. It also defines how
the URI can be used to identify entire XML documents, individual elements, or XML
attributes that can be retrieved, updated, or deleted.

Each XCAP resource on a XCAP server has an associated application. For the
associated application to use the XCAP resources, the application must have the
following information:

■ An Application Unique ID (AUID), which uniquely identifies the application
usage, must be created.

■ The XML schema must be defined.

■ The default namespace binding, which maps the namespace prefixes to the
namespace URIs, must be set.

■ The MIME type of the document must be defined.

■ The XCAP server must be able to validate the content of each XCAP document
that is being modified.

■ The data in the XML document must have a well defined semantic.

■ Naming conventions for XCAP client URIs must be set.

■ Resource interdependencies, how changes to one resource will effect other
resources, has to be determined.

The following operations are supported using XCAP:

■ Retrieve an item

■ Delete an item

■ Modify an item

■ Add an item

The XCAP addressing mechanism is based on XML Path Language (XPath), a query
language for selecting nodes in XML documents. The operations above can be
executed on XML documents and elements. Operations to XML attributes are not

About XCAP and VoLTE

24-2 Oracle Communications Converged Application Server Developer's Guide

supported, however, attributes can be handled indirectly by modifying the elements
that contain them.

About XCAP and VoLTE
Converged Application Server provides two levels of XCAP support: Access to the
XDMS using a base XCAP API that is not specific to any schema, and a high level API
providing support for GSMA IR.92 supplementary services using VoLTE as supported
by the Service Foundation Toolkit (SFT). The VoLTE version of the XCAP API supports
the following supplementary services:

■ 3GPP TS 24.611 Communications Diversion

■ 3GPP TS 24.604 Communication Barring

■ 3GPP TS 24.607 Originating Identification Presentation and Originating
Identification Restriction

■ 3GPP TS 24.608 Terminating Identification Presentation and Terminating
Identification Restriction

■ 3GPP TS 24.615 Communication Waiting

The supported RFC 4825 functions are:

■ Partial operations (adding and removing XML elements)

■ Data validation

■ Support for 409 XCAP error responses as defined in Section 11 of RFC 4825

Creating and Accessing an XCAP Client
XCAPClient is the main Java class for accessing an XDMS with XCAP. The XCAPClient
class functions as a gateway to create XCAP connections, documents, and the XCAP
root of the requesting URI. Any Java class that has access to the
CommunicationService can obtain an instance of XCAPClient and establish a
connection to an XDMS.

Example 24–1 illustrates the usage of XCAPClient.

Example 24–1 Creating an XCAP Connection Using XCAPClient

@CommunicationBean
public class MyCommunicationBean {

 @Context CommunicationService service;

 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION, communicationType =
 Conversation.class)
 public void init() throws NamingException {
 XCAPClient client = service.getXcapClient();
 XcapRoot root = client.createXcapRoot("http://example.com/xcap");
 XcapConnection connection = client.createConnection(root);
 }

In this example the CommunicationService calls getXcapClient(), which returns a
reference via the client object variable. XCAPClient is the starting point from which to
create XCAP connections.

XCAPClient client = service.getXcapClient();

The createXcapRoot() method creates the XCAP root of the requesting URI.

Fetching, Creating, and Deleting Resources With XCAP

Using the XCAP Interfaces 24-3

XcapRoot root = client.createXcapRoot("http://example.com/xcap");

To create an HTTP connection to an XDMS, use an instance of XCAPConnection. You
can use XCAPConnection to send a request to the XDMS, and perform the following
functions:

■ Authenticate the request with the XDMS.

■ Send the request to the XDMS.

■ Receive the response from the XDMS.

To create the connection, use the createConnection(root) method. The example
below returns the XCAP root to XCapConnection via the connection object reference
variable.

XcapConnection connection = client.createConnection(root);

Fetching, Creating, and Deleting Resources With XCAP
The following examples fetch, remove, and modify the simservs XML document,
which contains data associated with one or more supplementary services
(SimservTypes). You can also perform these actions on the simserv XML document’s
elements.

XCAP resources are analogous to HTTP resources, and can be XML documents, an
element in an XML document, or an attribute of an element. You use the HTTP GET,
PUT, and DELETE methods to fetch, create, or replace and remove XCAP resources.
The following sections describe the steps required to create, fetch, or delete a resource
from an XDMS using XCAP:

■ Fetching Documents from the XDMS

■ Creating or Replacing Documents in the XDMS

■ Deleting a Document from the XDMS

Fetching Documents from the XDMS
To fetch (or retrieve) an XCAP resource:

1. Create the XCAP URI of the resource.

The URI must identify the XCAP resource.

2. Authenticate the XCAP request against the XDMS.

3. Create the HTTP GET request.

4. Send the XCAP request to the XDMS.

5. Process the HTTP response from the XDMS.

The request is successfully processed when it returns a HTTP status code of 200.

Example 24–2 shows the code to fetch a document from an XDMS.

Example 24–2 Fetching XDMS Document

 ...
 @CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION, communicationType =
 Conversation.class)
 public void init() throws NamingException {
 XCAPClient client = service.getXcapClient();

Fetching, Creating, and Deleting Resources With XCAP

24-4 Oracle Communications Converged Application Server Developer's Guide

 XcapDocumentSelector selector = client.createDocumentSelector(AUID, XUI, documentName);
 SimServsDocument document = client.createDocument(selector, contentType);
 XcapRequest request = client.createRequest(document, XcapRequest.Operation.FETCH);
 XcapConnection conn = client.createConnection(client.createXcapRoot(XCAP_ROOT));
 XcapResponse resp = conn.send(request);
 if (resp.getStatus() == 200) {
 }
 }
...

The method in this example performs the following actions:

The client object reference variable—which refers to the XCapClient class—makes a
series of method calls to createDocumentSelector(), createDocument(),
createRequest(), and createConnection(), and returns arguments as shown. Of
these statements, the following fetches the XDMS document via the XcapRequest
object’s Operation.FETCH, which fetches the resource.

XcapRequest request = client.createRequest(document, XcapRequest.Operation.FETCH);

If the request is successful, the response data populates XCAPDocument, and the FETCH
operation retrieves the specified XML document.

Creating or Replacing Documents in the XDMS
The process to create an XDMS document is similar to the fetch operation shown in
Example 24–2. The difference is that you use the Operation.SYNC argument to create
or replace the simserv document in the XDMS.

To create or replace a document:

1. Create a local representation of the XCAP resource, including a representation of
the XML content, an XCAP URI, and the content type.

2. Authenticate the XCAP request against the XDMS.

3. Create the HTTP PUT request.

4. Send the XCAP request to the XDMS.

5. Process the HTTP response from the XDMS.

Example 24–3 creates a document in the XDMS by converting an XML input stream.

Example 24–3 Creating or Replacing XCAP Documents

...
@CommunicationEvent(type = CommunicationEvent.Type.INITIALIZATION, communicationType =
Conversation.class)
public void createDocument() throws XcapException, IOException {
 XCAPClient client = service.getXcapClient();
 XcapDocumentSelector selector = client.createDocumentSelector(AUID, XUI, documentName);
 SimServsDocument document = client.createDocument(selector, contentType);
 XcapRequest request = client.createRequest(document, XcapRequest.Operation.SYNC);
 XcapConnection conn = client.createConnection(client.createXcapRoot(XCAP_ROOT));
 XcapResponse resp = conn.send(request);
 if (resp.getStatus() == 201) {
 }
 }

Example 24–4 creates a simserv document of the specified MIME type (Internet media
type).

Using XCAP for IR.92 Supplementary Services

Using the XCAP Interfaces 24-5

Example 24–4 Creating XCAP Documents Using the XCAP API

public void createByApi() throws XcapException, IOException { String XUI =
"sip:bob@oracle.com";
 XCAPClient client = service.getXcapClient();
 XcapDocumentSelector selector = client.createDocumentSelector(SimServsDocument.AUID, XUI,
 SimServsDocument.FILENAME);
 SimServsDocument document = xcapClient.createDocument(Selector, SimServsDocument.MIMETYPE);
...

Deleting a Document from the XDMS
To delete a simserv document you construct an XCAP URI identifying its location in
the XDMS. To delete a simserv document from the XDMS:

1. Create the XCAP URI of the resource.

The URI must identify the XCAP resource.

2. Authenticate the XCAP request against the XDMS.

3. Create the HTTP DELETE request.

4. Send the XCAP request to the XDMS.

5. Process the HTTP response from the XDMS.

The request is successfully processed when it returns a HTTP status code of 2xx or
4xx.

Example 24–5 removes the element from the XML document stored in the XDMS using
the XcapRequest class’s Operation.DELETE argument.

Example 24–5 Deleting Documents From the XDMS

...
XcapRequest request = client.createRequest(rule, XcapRequest.Operation.DELETE);
XcapConnection conn = client.createConnection(client.createXcapRoot(XCAP_ROOT));
XcapResponse resp = conn.send(request);
...

Using XCAP for IR.92 Supplementary Services
The 3GPP TS 24.623 specification defines usage of the XCAP protocol for the
manipulation of XML data related to the following IR.92 supplementary services:

■ 3GPP TS 24.604: Communication Diversion

3GPP TS 24.607: Originating Identification Presentation and Originating
Identification Restriction

■ 3GPP TS 24.608: Terminating Identification Presentation and Terminating
Identification Restriction

■ 3GPP TS 24.611: Anonymous Communication Rejection and Communication
Barring.

■ 3GPP TS 24.615: Communication Waiting

The 3GPP TS 24.623 specification defines the above supplementary services are as
sub-trees of the simservs XML document. XCAP maps XML document sub-trees and
element attributes to HTTP URIs so that these components can be directly accessed by
clients using the HTTP protocol. In order to maintain synchronization with the
network elements and other terminals that the user might be using, the UE subscribes
to changes in the XCAP simserv documents.

Using XCAP for IR.92 Supplementary Services

24-6 Oracle Communications Converged Application Server Developer's Guide

The following examples illustrate the sub-trees defining the supplementary services in
the simserv XML document schema.

3GPP TS 24.607 Originating Identity
Example 24–6 illustrates the Originating Identity sub-tree of the simservs XML
document defined by the 3GPP TS 24.623 specification.

Example 24–6 Originating Identity Sub-Tree

<?xml version="1.0" encoding="UTF-8"?>
<simservs xmlns="http://uri.etsi.org/ngn/params/xml/simservs/xcap"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <originating-identity-presentation active="true"/>

 <originating-identity-presentation-restriction active="true">
 <default-behaviour>presentation-restricted</default-behaviour>
 </originating-identity-presentation-restriction>

</simservs>

3GPP TS 24.608: Terminating Identification Presentation and Restriction
Example 24–7 illustrates the Terminating Identification Presentation and Restriction
sub-tree of the simservs XML document defined by the 3GPP TS 24.623 specification.

Example 24–7 Terminating Identification Presentation and Restriction Sub-Tree

<?xml version="1.0" encoding="UTF-8"?>
<simservs xmlns="http://uri.etsi.org/ngn/params/xml/simservs/xcap"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <terminating-identity-presentation active="true"/>

 <terminating-identity-presentation-restriction active="true">
 <default-behaviour>presentation-restricted</default-behaviour>
 </terminating-identity-presentation-restriction>

</simservs>

3GPP TS 24.615 Communication Waiting
Example 24–8 illustrates the Communication Waiting sub-tree of the simservs XML
document defined by the 3GPP TS 24.623 specification.

Example 24–8 Communication Waiting Sub-Tree

<?xml version="1.0" encoding="UTF-8"?>
<simservs xmlns="http://uri.etsi.org/ngn/params/xml/simservs/xcap"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <communication-waiting active="true"/>
</simservs>

XCAP Supplementary Service APIs
Table 24–1 lists the supplementary service Java classes available in the
com.oracle.sft.xcap.client.simservs package. Refer to the Converged Application
Server API Reference to learn more about these Java classes and their usage.

Using XCAP for IR.92 Supplementary Services

Using the XCAP Interfaces 24-7

Creating Supplementary Service Rules
To create or modify a supplementary service’s sub-tree in the simserv XML, use the
appropriate supplementary service Java class in combination with the SimServs class’s
createAbsService() method.

Example 24–9 disables the Communication Waiting service. In this example the
simServs.createAbsService() returns a CommunicationWaiting instance object. The
object is assigned to the cw variable. The SimServ object’s setActive(false) method
disables the service.

Example 24–9 Creating a CommunicationWaiting Service

CommunicationWaiting cw = simServs.createAbsService(CommunicationWaiting.class);
cw.setActive(false);

Example 24–10 implements the following services:

■ Communication Waiting is set to false, disabling the service.

■ Originating Identification Presentation is enabled.

■ Originating Identification Restriction uses its default behavior, which does not
restrict the presentation of the caller’s identity.

■ Terminating Identity Presentation allows the callee (the terminating identity) to
receive the caller’s (the originating identity) identification.

Example 24–10 Implementing Supplementary Service Rules with XCAP

...
//Disable the Communication Waiting service
CommunicationWaiting cw = simServs.createAbsService(CommunicationWaiting.class);
cw.setActive(false);

//Enable Originating Identity Presentation
OriginatingIdentityPresentation oip =
simServs.createAbsService(OriginatingIdentityPresentation.class);
oip.setActive(true);

//The caller’s ID is not restricted
OriginatingIdentityPresentationRestriction oipr =
simServs.createAbsService(OriginatingIdentityPresentationRestriction.class);
oipr.setDefaultBehaviour(DefaultBehaviour.PRESENTATION_NOT_RESTRICTED);

Table 24–1 Java Classes To Create Supplementary Service Rules

Class Description

CommunicationDiversion Describes a ruleset and no-reply timer for communication
diversion.

CommunicationWaiting Describes a ruleset for the communication waiting service.

IncomingCommunicationBarring Describes a ruleset for barring of incoming communication.

OriginatingIdentityPresentation Describes a ruleset for barring of originating requests.

OriginatingIdentityPresentationRestriction Describes a ruleset for restriction of originating identity
presentation.

OutgoingCommunicationBarring Describes a ruleset for barring of outgoing communication.

TerminatingIdentityPresentation Describes a ruleset for terminating identity presentation.

TerminatingIdentityPresentationRestriction Describes a ruleset for restriction of terminating identity
presentation.

Adding and Editing Elements

24-8 Oracle Communications Converged Application Server Developer's Guide

//Enable the calling party to receive identification information
TerminatingIdentityPresentation tip =
simServs.createAbsService(TerminatingIdentityPresentation.class);
TerminatingIdentityPresentationRestriction tipr =
simServs.createAbsService(TerminatingIdentityPresentationRestriction.class);
...

Adding and Editing Elements
XCAP maps XML document sub-trees and elements to HTTP URIs so that these
components can be directly accessed by clients using the HTTP protocol. You can
perform get, fetch, and delete operations on XML elements containing the specified
attributes. The com.oracle.sft.xcap.client.Attributable interface identifies an
element as having attributes.

Example 24–11 illustrates the use of the setByAttrName() method to set the name of an
XML attribute’s predicate. A predicate is similar to an If/Then statement. If the
predicate is TRUE, the element is selected. If the predicate is FALSE, it is excluded. The
result of the predicate is only valid if the result is unique, and the uniqueness must be
enforced. Element selection without predicates returns a list.

In this example two Communication Diversion rules are stored in the XDMS, and are
identified using the IDs rule66 and rule88. The code shown in Example 24–11 creates a
Communication Diversion rule using the rule66 identifier, which it stores in the r1
variable. The r1 variable is then used to call the setByAttrName() method, to set the
attribute using the rule66 identifier. The example code then performs a FETCH
operation using the XcapRequest interface to retrieve the element whose ID is labelled
rule66 from the XDMS.

Example 24–11 Fetching a Specific Element From the XDMS

XcapDocumentSelector ds = client.createDocumentSelector(SimServsDocument.AUID,
XUI, SimServsDocument.FILENAME);
SimServsDocument d = client.createDocument(ds, SimServsDocument.MIMETYPE);
SimServs ss = d.getSimservs();
CommunicationDiversion cd1 = ss.createAbsService(CommunicationDiversion.class);
RuleSet rs1 = cd1.createRuleset();
Rule r1 = rs1.createRule("rule66");

// Set attribute tester
r1.setByAttrName("id");
XcapRequest req1 = client.createRequest(r1, XcapRequest.Operation.FETCH);
XcapConnection conn1 = client.createConnection(client.createXcapRoot(XCAP_ROOT));
XcapResponse resp1 = null;
 try
{
 resp1 = conn1.send(req1);
} catch (XcapException e) {
 e.printStackTrace();
 fail("Exception when send FETCH request: " + req1.getResource().getUrl());
}
assertThat(resp1, notNullValue());
assertThat(resp1.getStatus(), is(200));
assertThat(r1.getId(), is("rule66"));
assertThat(r1.getConditions(), notNullValue());
assertThat(r1.getConditions().getConditions(Identity.class).size(), is(1));
Condition cccc =
r1.getConditions().getConditions(Identity.class).iterator().next();

Validating Data

Using the XCAP Interfaces 24-9

assertThat(cccc, instanceOf(Identity.class));
List<One> theOnesss = ((Identity) cccc).getOnes();
assertThat(theOnesss.get(0).getId(), is("sip:bob@example.com"));
assertThat(rs1.getRules().size(), is(1));
assertThat(rs1.getRule("rule88"), nullValue());

// Fetch from Busy
rs1 = cd1.createRuleset();
r1 = rs1.createRule("rule66");
r1.setByAttrName("id");
Busy b = null;
try {
 b = r1.createConditions().createCondition(Busy.class);
 } catch (XcapException e) {
 e.printStackTrace();
 fail("Exception");
 }
 req1 = client.createRequest(b, FETCH);
 try {
 resp1 = conn1.send(req1);
 } catch (XcapException e) {
 e.printStackTrace();
 fail("Exception when send FETCH request: " + req1.getResource().getUrl());
 }
 assertThat(resp1.getStatus(), is(200));
 }

Validating Data
Proper URI generation and XML data validation are key to working with XCAP
documents. When a client performs an XCAP operation, it must use the proper HTTP
request. In the case of document/node creation or updates, the client should ensure
that the resulting document remains consistent with the data constraints imposed by
the application. An XCAP server must not allow any modification that breaks any data
constraint, and an XCAP client must not make any modification that will lead to issues
with the application-defined schema. While data validation sent and received using
XCAP is optional, it is strongly recommended that you use data validation to ensure
that the resulting XCAP documents retain their integrity.

Example 24–12 creates the AllMedia, NoMedia and Media elements, however, only one
of them can legally exist in the XCAP document. The code below illustrates the use of
an exception which, when validation fails, prevents the creation or modification of the
XML file in the XDMS. Example 24–13 illustrates the XML document containing the
AllMedia, NoMedia and Media sub-elements.

Example 24–12 Create and Validate the AllMedia, NoMedia, and Media Elements

. . .
SupportedMediaType smt = mc.getMediaType();
smt.setAllMedia();
smt.setNoMedia();

Note: The XCAP API does not cache any data fetched from the
XCAP server. Validation is only performed using related schemas.
When validating data, the entire XML document is validated even if
only a single element is being fetched or updated.

XCAP Authentication and Authorization

24-10 Oracle Communications Converged Application Server Developer's Guide

smt.createMedia().setValue("audio");
smt.createMedia().setValue("video");

XcapRequest reqCC = client.createRequest(cc, XcapRequest.Operation.SYNC);
XcapConnection connCC = client.createConnection(client.createXcapRoot(XCAP_ROOT));

/**
* Set to validate. If there are no validation errors, the XCAP connection
* requestis made, and a new document is created.
*/
connCC.setValidation(true);

XcapResponse respCC = null;
try {
 respCC = connCC.send(reqCC);
 fail("Exception when send SYNC request: " + reqCC.getResource().getUrl());
} catch (XcapException e) {
 e.printStackTrace();
}
. . .

Example 24–13 Simserv Supported-Media-Type Element

. . .
<xs:complexType name="supported-media-type">
 <xs:choice>
 <xs:element name="all-media" type="ss:empty-element-type" />
 <xs:element name="no-media" type="ss:empty-element-type" />
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="media" type="ss:media-type" />
 </xs:sequence>
<xs:any namespace="##other" processContents="lax" />
 </xs:choice>
</xs:complexType>
. . .

XCAP Authentication and Authorization
Authentication consists of determining whether a user wishing to perform certain
operations is who he or she claims to be. Authorization consists of determining
whether an authenticated user is allowed to perform the requested operation. User
authorization is performed by the relevant XDMS the processes requests coming from
authenticated users. XCAP user authentication uses XCAP User Identity (XUI) to
perform authentication. The XUI typically takes the form of a TEL URI or SIP URI.

Using Digest Authentication
The XCAP APIs provide support for both Basic and Digest authentication (as defined
in RFC 2617). Digest authentication uses a simple challenge-response mechanism to
verify the identity of a user over SIP or HTTP, and requires a user name and password.
Clients must implement digest authentication, assuring interoperability with servers
that challenge the client.

Table 24–2 lists the method to create a an XCAP connection using Basic/Digest
authentication available via com.oracle.sft.xcap.client.XcapConnection.

XCAP Authentication and Authorization

Using the XCAP Interfaces 24-11

Example 24–14 illustrates the use of the Basic/Digest authentication APIs.

Example 24–14 Basic/Digest Authentication

 ...
XCAPClient xcapClient = new XcapClientImpl();
XcapRequest request = xcapClient.createRequest(document,
 XcapRequest.Operation.SYNC);
XcapConnection conn = xcapClient.createConnection(xcapClient
String userName = "alice";
String password = "myPassword";
conn.setCredentials(userName, password);
XcapResponse resp = conn.send(request);
...

Using Transport Layer Security
Section 14 of RFC 4825 specifies that XCAP clients must implement Transport Layer
Security (TLS), ensuring interoperability with servers that challenge the client. TLS is a
cryptographic protocol that provides communication security over the Internet. TLS
encrypts segments of network connections at the Application Layer for the Transport
Layer, using asymmetric cryptography for key exchange, symmetric encryption for
privacy, and message authentication codes for message integrity.

To implement TLS, refer to the chapter on configuring Secure Sockets Layer (SSL) in
Oracle Fusion Middleware Securing Oracle WebLogic Server for more information.

Using X-3GPP-Asserted-Identity Header Authentication
The X-3GPP-Asserted-Identity header functions for HTTP requests in the same
manner that the P-Asserted-Identity header functions for SIP requests. When the
XCAP server receives an incoming HTTP request having a X-3GPP-Asserted-Identity
header, it first verifies that the request was received from a trusted host. If the host was
trusted, the server asserts the user's identity using the information in the header,
authenticates the user, and logs the user in if that user is authorized to access the
requested resource.

To insert X-3GPP-Asserted-Identity headers into the HTTP request, use the
addHeader() or addHeaders() methods. X-3GPP-Asserted-Identity headers are sent to
the XCAP server, and, if authenticated, are put into effect. If the
X-3GPP-Asserted-Identity header fails to authenticate the request, the XCAP request
may revert to Digest authentication if the XCAP server is configured to do so.

To use X-3GPP-Asserted-Identity authentication you must configure Converged
Application Server to handle this header type for authentication. To learn more, see the
chapter on configuring 3GPP HTTP authentication assertion providers in Converged
Application Server Security Guide.

Table 24–2 XCAP Basic/Digest Authentication in XcapConnection Interface

Method Description

setCredentials(String userName, String
password)

Sets the user name and password for Basic/Digest
authentication.

XCAP Authentication and Authorization

24-12 Oracle Communications Converged Application Server Developer's Guide

Table 24–3 lists the methods to insert X-3GPP-Asserted-Identity headers into an HTTP
via com.oracle.sft.xcap.client.XcapRequest. The value used is the XCAP User
Identifier (XUI), such as sip:bob@example.com. Refer to the Converged Application
Server API Reference to learn more about these methods and their usage.

Note: In order to use X-3GPP-Asserted-Identity header
authentication, the XCAP server must also support the use of this
header type. If you enable X-3GPP-Asserted-Identity header
authentication, and the XCAP server is unable to use it, the header is
ignored.

Table 24–3 Methods to Insert 3GPP-Asserted-Identity Authentication Headers

Method Description

addHeader(String name,
String value)

Inserts a single header containing a single value into the HTTP
request.

addHeader(String name,
<List>String values)

Inserts a single header containing a list of values into the HTTP
request.

addHeaders(Map<String,
List<String> aHeaders)

Inserts a series of headers containing a list of values into the
HTTP request.

Map<String,
List<String>>
getHeaders()

Returns an unmodifiable map of the headers for the request.
The map keys are strings that represent the request-header field
names. Each map value is a unmodifiable list of strings that
represents the corresponding header field values.

removeHeader(String
aHeaderName)

Removes the header whose name you supply using the string
argument.

25

Creating Instant Messaging and Rich Media Services 25-1

25Creating Instant Messaging and Rich Media
Services

Converged Application Server provides APIs that allow you to create rich messaging
and media services for subscribers. This chapter describes the APIs provided by the
Service Foundation Toolkit (SFT) that can be used to create Instant Message (IM)
servers. The high level APIs abstract the protocol level details of SIP, IMS, and MSRP
(and their inherent complexity), simplifying development of IM services.

About Rich Communication Services
Rich Communication Suite (RCS) provides rich messaging and media services for
subscribers. The specification includes support for RCS-e (“e” for enhanced), which
introduces IMS voice sessions (VoIP/VoLTE) that can be enriched for IM and chat, file
transfer, and image sharing. RCS-e is designed to lower the entry barrier for RCS by
providing operators and developers with a framework in which to deploy RCS
functionality without needing to implement the full RCS profiles.

Converged Application Server provides APIs that can be used to create RCS-e
compliant Instant Message (IM) servers. The high level APIs abstract the protocol level
details of SIP, IMS, and MSRP (and their inherent complexity), simplifying
development of RCS-e services.

Discovering Device Capability
The capability discovery process in RCS-e is handled using SIP OPTIONS and is the
process by which a user is able to understand what RCS-e services are available on
another user’s equipment. In comparison to RCS, which only has feature tags for
Image and Video Share, there are several more feature tags that are possible with
RCS-e. The feature tags are sent in the Accept-Contact header of the SIP OPTIONS
message by the requesting user equipment. The responding user equipment sends the
response in the Contact header of the 200 OK message.

Figure 25–1 shows the RCS-e capabilities exchange signalling process.

Discovering Device Capability

25-2 Oracle Communications Converged Application Server Developer's Guide

Figure 25–1 Capability Discovery Call Flow

1. End-user A, using device A, sends a SIP REGISTER request to the IMS core
network.

2. The IMS core responds with a SIP 200 OK to the SIP REGISTER request. At this
point, User A restarts its registration timer.

3. User A sends a SIP PUBLISH message with its capabilities to the IMS core.

4. The IMS core responds with a SIP 200 OK.

5. When User A decides that they wish to exchange device capabilities with User B,
their device (user equipment) sends a SIP OPTIONS request to the IMS core.

6. The IMS core routes the SIP OPTIONS request to User B.

7. User B responds to User A with an SIP 200 OK message, containing the
capabilities of User B’s device.

If the terminating user has multiple devices, the terminating network applies a SIP-AS
that sends multiple OPTIONS AS to each device, and aggregates the capabilities into a
single OPTIONS response back to the user that sent the OPTIONS request.

About the Capability Discovery Interfaces
Capability discovery uses the following event types in the @CommunicationEvent
annotation in the com.oracle.sft.api.bean package. For more information on these
interfaces and their usage, refer to the Converged Application Server API Reference.

Capability discovery uses of the following interfaces in the com.oracle.sft.api
package. For more information on these interfaces and their usage, refer to the
Converged Application Server API Reference.

Table 25–1 @CommunicationEvent Event Types for Capability Discovery

Event Type Description

QUERIED Specifies that the query process has returned a response, and
can be appropriately handled.

QUERYING Specifies that the process of querying (such as querying for
device capabilities) is started.

Discovering Device Capability

Creating Instant Messaging and Rich Media Services 25-3

Using the Capability Discovery Interfaces
The following sections illustrate the use of the QueryInteraction and
CapabilityMessage interfaces.

Example 25–1 queries for the capabilities of a device by sending SIP OPTIONS, which
allows a UA to query another UA or proxy server for its capabilities.
QueryInteraction gets the context of the communication via the
CommunicationContext interface’s getCommunication()method.

The CapabilityMessage interface makes a call to the @CommunicationContext
interface’s getMessage() method, which passes the SIP OPTIONS message from the
current communication session to the optionsMsg object variable.

Example 25–1 Querying to Determine Device Capabilities

 @CommunicationEvent(type = CommunicationEvent.Type.QUERYING)
 void handleOptions() {
 // Retrieve SIP message exchange information from CommunicationContext.
 QueryInteraction ui = (QueryInteraction)ctx.getCommunication();
 CapabilityMessage optionMsg = (CapabilityMessage)ctx.getMessage();

Upon receiving the user’s capabilities via SIP OPTIONS, you can use the Capability
interface’s getCapabilites() method to retrieve the capabilities of the user’s
equipment. Example 25–2 retrieves the user’s contact capabilities, and then accepts
them using the getAvailableCapabilities() method.

Example 25–2 Check If User Is Registered and RCS-e Capable

 boolean isRegistered = true;
 boolean isRcseEnabled = true;

 if (isRegistered && isRcseEnabled) {
 // Get the contact capabilities and accept-accept capability
 Capability senderCapability = optionMsg.getCapabilities();
 Capability senderAcceptedCapability = optionMsg.getAvailableCapabilities();

If the application is functioning as a User Agent Client (UAC), the application
responds with SIP 200 OK message and its RCS-e capabilities. Example 25–3 illustrates
how a response message is created.

Example 25–3 Client RCS-e Capability Response

...
@Context CommunicationService service;

...
Capability myCapability = service.createCapability();

Table 25–2 Capability Discovery Interfaces

Class Description

QueryInteraction Queries for a message exchange (or interaction) between two
user agents—such as SIP OPTIONS—via the AS.

QueryInteraction extends the Interaction interface.

Capability Represents the data structure of the RCS-e capabilities.

CapabilityMessage Allows the application to process the incoming SIP OPTIONS
200 OK message with either a QUERYING or QUERIED event,
and represents the capability between participants in a
QueryInteraction message exchange.

CapabilityMessage extends the Message interface.

Discovering Device Capability

25-4 Oracle Communications Converged Application Server Developer's Guide

List<Feature> myRcse = new ArrayList<RcseFeature> ();
myRcse.add(Feature.RCSE_CHAT);
myRcse.add(Feature.RCSE_FT);
myRcse.add(Feature.VIDEO_SHARE_3GPP);
myRcse.add(Feature.RCSE_IMAGE_SHARE);
myCapability.setFeatures(myRcse);

optionMsg.consume(myCapability);

...

Example 25–4 shows a CommunicationBean in which Converged Application Server
acts as both a User Agent Client (UAC) and User Agent Server (UAS). The
CommunicationBean in this example performs the following functions:

■ The SIP OPTIONS message from the requesting user (User A) carries the
capability tags in both the Contact and Accept-Contact header.

■ The SIP 200 OK response from a receiving user carries the capability tags in the
Contact header.

■ If a receiving user is not registered, User A receives a SIP 480 TEMPORARILY
UNAVAILABLE or SIP 408 REQUEST TIMEOUT response.

■ If a receiving user is not provisioned to use RCS-e, User A receives a 404 NOT
FOUND response.

Example 25–4 Capability Discovery Using a UAC and UAS

@CommunicationBean
public class MyCommunicationBean {
 @Context CommunicationSession session;
 @Context CommunicationContext ctx;
 @Context CommunicationService service;

 @CommunicationEvent(type = CommunicationEvent.Type.QUERYING)
 void handleOptions() {
 // Retrieve option information from CommunicationContext.
 QueryInteraction ui = (QueryInteraction)ctx.getCommunication();
 CapabilityMessage optionMsg = (CapabilityMessage)ctx.getMessage();

 /** The application checks whether the receiver is registered, and if
 * they are RCS-e enabled.

 boolean isRegistered = true;
 boolean isRcseEnabled = true;

 if (isRegistered && isRcseEnabled) {
 // Get the contact capabilities and accept the capability
 Capability senderCapability = optionMsg.getCapabilities();
 Capability senderAcceptedCapability = optionMsg.getAvailableCapabilities();

/** The application acts as a UAS, forwarding the SIP OPTIONS message by default
 * When acting as a UAC, the application responds with SIP 200 OK with its RCS-e features.
*/
 Capability myCapability = service.createCapability();

 List<Feature> myRcse = new ArrayList<RcseFeature> ();
 myRcse.add(Feature.RCSE_CHAT);
 myRcse.add(Feature.RCSE_FT);
 myRcse.add(Feature.VIDEO_SHARE_3GPP);
 myRcse.add(Feature.RCSE_IMAGE_SHARE);
 myCapability.setFeatures(myRcse);

Using In-dialog, SIP Options-based Capability Discovery

Creating Instant Messaging and Rich Media Services 25-5

 optionMsg.consume(myCapability);

 ui.end();
 }else if (!isRegistered){
 optionMsg.reject(Reason.NOT_AVAILABLE);
 ui.end();
 }else if (!isRcseEnabled){
 optionMsg.reject(Reason.NOT_FOUND);
 ui.end();
 }
 }

/** On receiving a SIP 200 OK response in the SIP Options header, the application gets
* the received user’s capabilites, then forwards the SIP 200 OK or ends the SIP dialog.
*/
 @CommunicationEvent(type = CommunicationEvent.Type.QUERIED)
 void handleOptionsResponse() {

 QueryInteraction ui = (QueryInteraction)ctx.getCommunication();
 CapabilityMessage optionMsg = (CapabilityMessage)ctx.getMessage();
 Capability myCapability = optionMsg.getCapabilities();

 /** If the application is acting as a UAS, it does nothing, and the
 * response is forwarded by default.
 * If the application is acting as a UAC, it terminates communication.

 ui.end();
}

Using In-dialog, SIP Options-based Capability Discovery
Using SIP OPTIONS, an application can discover service capabilities before
establishing a communication session. This discovery mechanism allows users to
determine what services are available prior to establishing a call or IM session. A SIP
OPTIONS message is sent in-dialog during the establishment of a voice call or IM
session to obtain the real-time capabilities of the service. Converged Application
Server supports in-dialog SIP OPTIONS-based capability discovery and capability
update during 1-to-1 chat and 1-to-1 call.

Example 25–5 illustrates how to retrieve the SIP OPTIONS message containing service
capabilities information from the CommunicationContext interface using
CapabilityMessage.

Example 25–5 In-Dialog SIP OPTIONS-based Capability Discovery

@CommunicationBean
public class MyCommunicationBean {
 @Context CommunicationSession session;
 @Context CommunicationContext ctx;
 @Context CommunicationService service;

 @CommunicationEvent(type = CommunicationEvent.Type.QUERYING)
 void handleOptions() {
 //Get SIP OPTION information from CommunicationContext.
 Conversation ui = (Conversation)ctx.getCommunication();

Note: SFT provides APIs to obtain service capabilities from a
received SIP OPTIONS 200 OK message, but does not provide APIs to
create or send in-dialog SIP OPTIONS messages.

Using End User Confirmation Request

25-6 Oracle Communications Converged Application Server Developer's Guide

 CapabilityMessage optionMsg = (CapabilityMessage)ctx.getMessage();

 //Receive the contact and accept-accept capabilities
 Capability senderCapability = optionMsg.getCapabilities();
 Capability senderAcceptedCapability = optionMsg.getAcceptCapabilities();

 }

//Receive 200 OK response via SIP OPTIONS.
//The application gets the receiving user’s capability, then forwards this 200 OK
//or terminates this SIP dialog.
 @CommunicationEvent(type = CommunicationEvent.Type.QUERIED)
 void handleOptionsResponse() {

 Conversation ui = (Conversation)ctx.getCommunication();
 CapabilityMessage optionMsg = (CapabilityMessage)ctx.getMessage();
 Capability myCapability = optionMsg.getCapabilities();
 }
...

Using End User Confirmation Request
End User Confirmation Request (EUCR) is a mechanism by which an application
server communicates with a user about a service, and queries for confirmation as to
what actions to take. In the client device’s user interface (UI) this might equate to a
pop-up menu or similar UI element that the user can interact with to confirm or deny a
specific service request.

The sequence of steps to perform a EUCR is as follows:

1. The end user confirmation request is implemented using a SIP MESSAGE method
containing an XML payload of type
application/end-user-confirmation-request+xml that is sent by the application
server to the end user’s RCS-e client (for example, a mobile phone).

2. Upon receipt of the SIP MESSAGE, the end user’s device checks the
P-Asserted-Identity of the incoming message, and matches it against the
configured URI for the service, and extracts the request information from the XML
payload body. A dialog or notification is displayed on the end user’s device (UX
dependant) displaying the confirmation request and any related information.

3. The end user’s confirmation response is encapsulated in an XML body with a
payload of type application/end-user-confirmation-response+xml, and
returned either in the SIP MESSAGE response back to the MNO, or in a new SIP
MESSAGE.

The information contained in the end user confirmation request is:

■ id: Unique identifier of the request.

■ type: Determines the behavior of the receiving device. The type can take one
of the following two values:

– volatile—the answer is returned in the SIP 200 OK response. If the SIP
INFO message times out without end user input, the request is discarded.

– persistent—the answer is returned in a new SIP MESSAGE request. The
confirmation request does not time out.

■ pin: Determines whether a pin number is requested of the end user. It can take
one of the following two values: true or false. If the attribute is not present it is

Using End User Confirmation Request

Creating Instant Messaging and Rich Media Services 25-7

considered false. Pin requests can be used to add a higher degree of
confirmation authentication, and can be used to allow operations such as
parental control or other security features.

■ Subject: Text to display within the notification, or as a dialog box title.

■ Text: Text to display within the body of the dialog box.

4. (Optional) If the type of the confirmation request is persistent, the MNO can send
an optional acknowledgement message of the transaction back to the user with a
welcome message, an error message, or additional instructions. The
acknowledgement message is encapsulated in an XML body with a payload of
type application/end-user-confirmationack+ xml and returned in the SIP 200
OK body of the confirmation SIP MESSAGE.

The end user confirmation response is:

■ id: Unique identifier of the request.

■ value: Specifies if the end user accepts or declines the request. It takes one of
the following two values: accept or decline

The information contained in the end user acknowledgement response is:

■ id: Unique identifier of the request.

■ status: with the end user confirmation. It can take one of the following two
values: ok or error

■ Subject: Text to display within the notification, or as a dialog box title.

■ Text: Text to display within the body of the dialog box.

About the EUCR Interfaces
EUCR makes use of the following classes in the com.oracle.sft.api package. For
more information on these interfaces and their usage, refer to the Converged Application
Server API Reference.

Table 25–3 Interfaces for EUCR

Class Description

EndUserConfirmationData Represents the data structure for the End User Confirmation
Request, End User Confirmation Response, and End User
Confirmation Acknowledgement messages.

EndUserConfirmationDisplay Represents the Subject and Text message displayed on the
end user client during EUCR exchange.

EndUserConfirmationMessage The extended Message for EUCR exchange.

IMConversation Represents a two party IM conversation. The application
uses this communication type to send and receive messages.
For EUCR, IMConversation provides the following methods:

■ createEndUserConfirmRequestMessage()

■ createEndUserConfirmResponseMessage()

Using End User Confirmation Request

25-8 Oracle Communications Converged Application Server Developer's Guide

Using EUCR in Response to a File Transfer
Example 25–6 shows the code to sends a EUCR in response to initiating a file transfer.
If the user chooses to confirm the request, they will be charged an additional amount
on their bill.

Example 25–6 EUCR In Response to a File Transfer

@CommunicationBean
public class MyCommunicationBean {

 @Context CommunicationSession session;
 @Context CommunicationContext ctx;
 @Context CommunicationService service;

 private boolean authorization = false;
 private Message origMsg;

 @CommunicationEvent(type=CommunicationEvent.Type.INITIALIZATION)
 void handleInit() {
 origMsg = ctx.getMessage();
 Interaction ii = (Interaction) ctx.getCommunication();
 if (ii instanceof MSRPConversation){
 MSRPConversation MSRPConv = (MSRPConversation) ii;
 Participant receiver = MSRPConv.getParticipant();
 Participant sender = MSRPConv.getInitiator ();
 IMConversation newIM = session.createIMConversation("imserver@example.com");
 newIM.addParticipant(sender.getName());
 /**
 *
 EndUserConfirmationData request = service.createEndUserConfirmationData();
 request.setId("EucrTest1");
 request.setPinRequired(true);
 request.setBehaviour(Behaviour.Persistent);

 // Constructor to create a new IMConversation, and send the EUCR.
 newIM.createEndUserConfirmationRequestMessage(request).send();

 EndUserConfirmationDisplay display;
 display = request.createDisplayText("Extra Charge","Charing Conditions", "en");
 request.setCondition(display);

 display = request.createDisplayText("????,"0?1?/M", "ch");
 request.setCondition(display);

 try {
 } catch (InterruptedException e) {

CommunicationEvent Specifies events pertaining to a Communication. Any
method using this annotation is invoked when the
CommunicationEvent of the specified type occurs. For EUCR,
CommunicationEvent provides the following events:

■ CONFIRMATION_MESSAGEARRIVED

■ CONFIRMATION_RESPONDED

■ CONFIRMATION_FINISHED

CommunicationService A utility class to create objects that are not related to a
CommunicationSession, for example groups. For EUCR,
CommunicationService provides the method:
createEndUserConfirmationData()

Table 25–3 (Cont.) Interfaces for EUCR

Class Description

Using Instant Message Disposition Notification

Creating Instant Messaging and Rich Media Services 25-9

 e.printStackTrace();
 }
 if(!authorization){
 origMsg.reject(Reason.DECLINE);
 MSRPConv.end();

 }

 }
 }

 //**
 * Handles SIP MESSAGE 200 OK containing the EUCR response is received by IMConversation
 *
 @CommunicationEvent(type=CommunicationEvent.Type.CONFIRMATION_RESPONDED)
 void handleEUCResponseMessage() {

 IMConversation IMConv = (IMConversation) ctx.getCommunication();
 byte[] content = ctx.getMessage().getContent().toString().getBytes();
 EndUserConfirmationMessage msg = (EndUserConfirmationMessage) ctx.getMessage();
 EndUserConfirmationData resp = msg.getData();
 EndUserConfirmationData ack = resp.createAcknowledgement();
 if (resp.getAction().equalsIgnoreCase("accept")){
 resp.setAcknowledgement(resp.createDisplayText("Welcome", "Hello", "en"));
 msg.consume();
 this.authorization = true;
 IMConv.end();
 }else {
 resp.setAcknowledgement(resp.createDisplayText("Sorry", "Can Not Access", "en"));
 msg.consume()
 this.authorization = false;
 IMConv.end();

 }
 }
}

Conferencing Using MSRP
Message Session Relay Protocol (MSRP) is a protocol for transmitting a series of
related instant messages in the context of a session. Message sessions are treated like
any other media stream when set up via a rendezvous or session creation protocol
such as the Session Initiation Protocol (SIP). MSRP Sessions are defined in RFC 4975.

Using Instant Message Disposition Notification
To support store and forward status reporting and message disposition, RCS-e uses
Instant Message Disposition Notification (IMDN) to request and forward dispositions
of all exchanged messages. Converged Application Server supports Page Mode instant
messaging, which uses the SIP method MESSAGE as defined in RFC 3428. Page Mode
instant messaging establishes no sessions. Instant Message Disposition Notification
(IMDN) is defined in RFC 5438.

Instant messages are constructed using the Common Presence and Instant Messaging
(CPIM) message format defined in RFC 3862. Converged Application Server supports
the following aspects of RFC 5438 when constructing Instant Messages in the CPIM
message format:

■ Adding a Message-ID header field

Using Instant Message Disposition Notification

25-10 Oracle Communications Converged Application Server Developer's Guide

If the IM Sender requests the reception of IMDNs, the IM Sender must include a
Message-ID header field. The Message-ID header field enables the IM Sender to
match any IMDNs with their corresponding IMs. See Section 7.1.1.1 for more
information.

■ Automatically adding a DataTime header field

Some devices are not able to retain state over long periods of time. For example,
mobile devices may have memory limitations. These limitations mean that these
devices may not be able to, or may choose not to, keep sent messages for the
purposes of correlating IMDNs with sent IMs. To make some use of IMDN in this
case, a time stamp is added to the IM to indicate when the user sent the message.
The IMDN returns the time stamp to enable the user to correlate the IM with the
IMDN. The DateTime CPIM header field for this purpose. Thus, if the IM Sender
wants an IMDN, the IM Sender must include the DateTime CPIM header field. See
Section 7.1.1.2 for more information.

■ Adding a Disposition-Notification header field

The Disposition-Notification header field conveys the type of disposition
notification requested by the IM Sender. There are three types of disposition
notification: delivery, processing, and display. The delivery notification is further
subdivided into failure and success delivery notifications. An IM Sender requests
failure delivery notification by including a Disposition-Notification header field
with a value of negative-delivery. A success notification is requested by
including a Disposition-Notification header field with the value
positive-delivery. The IM Sender can request both types of delivery
notifications for the same IM.

The IM Sender can request a processing notification by including a
Disposition-Notification header field with value processing.

The IM Sender can also request a display notification. The IM Sender MUST
include a Disposition-Notification header field with the value display to request a
display IMDN.

The absence of this header field, or the presence of the header field with an empty
value, indicates that the IM Sender is not requesting any IMDNs.
Disposition-Notification header field values are comma-separated. The IM Sender
may request more than one type of IMDN for a single IM.

See Section 7.1.1.2 for more information.

■ Parsing aggregated IMDNS

An IM Sender may send an IM to multiple recipients in one Transport Protocol
Message (typically using a URI-List server) and request IMDNs. An IM Sender
that requests IMDNs must be able to receive multiple aggregated or
non-aggregated IMDNs. See Section 8.3 for more information.

Converged Application Server supports following aspects of RFC 5438 when
constructing the IMDN:

■ Constructing Delivery notifications

■ Constructing Display notifications

■ Constructing Processing notifications

■ Constructing Aggregated IMDNs

Refer to RFC 5438 for more information on these aspects of creating IMDNs.

Using Instant Message Disposition Notification

Creating Instant Messaging and Rich Media Services 25-11

About the IMDN Interfaces
IMDN makes use of the following classes in the com.oracle.sft.api package. For
more information on these interfaces and their usage, refer to the Converged Application
Server API Reference.

Creating an Instant Message with IMDN Request
Example 25–7 creates an instant message with an IMDN in the message header for a
two-party IM conversation.

Example 25–7 Creating an Instant Message With an IMDN Request

public class CpimServlet extends HttpServlet{
/**
CommunicationSession session =
(CommunicationSession)request.getSession().getAttribute(CommunicationSession.NAME);

CommunicationService service =
(CommunicationService)request.getSession().getAttribute(CommunicationService.NAME);
 java.io.PrintWriter out = response.getWriter();
 String party1 = request.getParameter("Party1");
 String party2 = request.getParameter("Party2");
 try {

 out.println("<html>");

 IMConversation conv = session.createIMConversation(party1);
 conv.addParticipant(party2);

Table 25–4 IMDN Interfaces

Class Description

CommonPresenceInstantMessage The extension to TextMessage for message/CPIM format,
you can use CommonPresenceInstantMessage to construct
common IM messages using the CPIM format, IM
message requesting disposition notifications, and IMDN
messages.

DispositionContext Represents the data carried in the Disposition message.

DispositionNotification The data structure for disposition notification. You use
this interface to construct and parse IMDN payloads.

CommunicationEvent Specifies events pertaining to a Communication. Any
method using this annotation is invoked when the
CommunicationEvent of the specified type occurs. For
IMDN, CommunicationEvent provides the following
events:

■ MESSAGE_SUCCESS_RESONDED

■ MESSAGE_FAILUER_RESONDED

■ DISPOSITION_REQUEST_SUCCESS_RESPONDED

■ DISPOSITION_REQUEST_FAILURE_RESPONDED

IMConversation Represents a two party IM conversation. The application
uses this communication type to send and receive
messages. For IMDN, IMConversation provides the
createCommonPresenceInstantMessage() method to
create CPIM messages.

IMConference Represents a multi-party, Page Mode instant message
session. For IMDN, IMConference provides the
createCommonPresenceInstantMessage() method to
create CPIM messages.

Using Instant Message Disposition Notification

25-12 Oracle Communications Converged Application Server Developer's Guide

 CommonPresenceInstantMessage cpimReq = conv.createCommonPresenceInstantMessage ();
 cpimReq.setHeader(Header.Subject.toString(), "imdn test");
 DispositionContext disposCxt =
 cpimReq.buildDispositionContext("hello world!", "text/plain");

 disposCxt.setDispositionRequest(RequestType.negative_delivery);
 disposCxt.setDispositionRequest(RequestType.processing);
 cpimReq.setDispositionContext(disposCxt);
 cpimReq.send();
 }

Creating an IMDN With CommunicationBean
Example 25–8 creates a CommunicationBean that acts as an intermediary server (a
store-and-forward server) for a two-party conversation using the IMConversation
interface. The actual IMDN message is not stored, but content disposition is performed
so that Store/Forward information status reporting can be done according to RFC
5438.

Example 25–8 Creating an IMDN with CommunicationBean

@ServiceAttributes(domainName = "example.com")
@CommunicationBean
public class CpimBean {

 @Context CommunicationSession session;
 @Context CommunicationContext ctx;
 @Context CommunicationService service;

 private DispositionContext aggregationContext;
 @CommunicationEvent(type=CommunicationEvent.Type.MESSAGEARRIVED)
 void handleMessage (){

 //** If the message contains a disposition request, the server forwards the message
 * to the recipient. If the message is sent to multiple recipients, the server
 * behaves as specifed RFC 5365.
 /*

 IMConversation conv = (IMConversation) ctx.getCommunication();
 CommonPresenceInstantMessage msg = (CommonPresenceInstantMessage)conv.getMessage();

 DispositionContext getImdns = msg.getDispositionContext();
 if (getImdns == null){
 System.out.println("Received CPIM message ");

 }

 if (getImdns != null && getImdns.getDispositionNotifications()== null){
 System.out.println("Received Disposition Request ");
 msg.consume();
 CommonPresenceInstantMessage imdnMsg = conv .createCommonPresenceInstantMessage();
 imdnMsg.setDispositionContext(getImdns());
 imdnMsg.send();

 }

 }

 @CommunicationEvent(type=CommunicationEvent.Type.DISPOSITION_REQUEST_SUCCESS_RESPONDED)
 void handleImdnSuccessResponse (){

 IMConversation conv = (IMConversation) ctx.getCommunication();
 CommonPresenceInstantMessage msg = (CommonPresenceInstantMessage)conv.getMessage();

Using Instant Message Disposition Notification

Creating Instant Messaging and Rich Media Services 25-13

 DispositionContext origCxt = msg.getDispositionContext();
 CommonPresenceInstantMessage newMsg = conv.createCommonPresenceInstantMessage ();
 if (origCxt.isDispositionRequest(RequestType.positive_delivery){
 newMsg.buildDispositionContext(msg,Type.delivery ,Status.delivered);
 }
 if(imdnMsg.getDispositionContext()!= null &&
imdnMsg.getDispositionContext().getDispositionNotifications() != null)
 newMsg.send(conv.getParticipant());
 }
 @CommunicationEvent(type=CommunicationEvent.Type.DISPOSITION_REQUEST_FAILURE_RESONDED)
 void handleImdnFailureResponse(){

 IMConversation conv = (IMConversation) ctx.getCommunication();
 CommonPresenceInstantMessage msg = (CommonPresenceInstantMessage)conv.getMessage();
 DispositionContext origCxt = msg.getDispositionContext();
 CommonPresenceInstantMessage newMsg = conv.createCommonPresenceInstantMessage ();
 if (origCxt.isDispositionRequest(RequestType.negative_delivery){

 newMsg.buildDispositionContext(msg, Type.delivery ,Status.failed);
 }

 // If the message is stored,
 if (origCxt.isDispositionRequest(RequestType.processing){
 newMsg.buildDispositionContext(nsg,Type.processing ,Status.stored);
 }
 if(imdnMsg.getDispositionContext()!= null &&
imdnMsg.getDispositionContext().getDispositionNotifications() != null)
 newMsg.send(conv.getParticipant());

 }

 @CommunicationEvent(type=CommunicationEvent.Type.MESSAGE_SUCCESS_RESPONDED)
 void handleResponse() {
 System.out.println(" Enter MESSAGE_SUCCESS_RESONDED event ");

 IMConversation conv = (IMConversation) ctx.getCommunication();
 CommonPresenceInstantMessage msg = (CommonPresenceInstantMessage)ctx.getMessage();
 if (msg!= null && msg.getDispositionContext()!= null &&
msg.getDispositionContext().getDispositionNotifications()!=null){
 System.out.println(" Disposition Notification Message is Responed ");
 conv.end();
 }
 }

 @CommunicationEvent(type=CommunicationEvent.Type.MESSAGE_FAILURE_RESPONDED)
 void handleErrorResponse() {
 System.out.println(" Enter MMESSAGE_FAILUER_RESPONDED event ");
 }

Using Instant Message Disposition Notification

25-14 Oracle Communications Converged Application Server Developer's Guide

	Contents
	Preface
	Audience
	Related Documents
	Documentation Accessibility

	Part I Introduction to Developing Applications for Converged Application Server
	1 About Developing Applications for the Converged Application Server
	About Converged Application Server APIs
	About this Book

	Part II Developing Applications with the Service Creation Environment
	2 Getting Started
	About the Service Creation Environment
	SCE Workflow Overview

	About Converged Application Projects
	Converged Application Project Configuration
	Converged SIP Diameter Project Configuration

	Before Starting
	Enabling Converged Application Server Debug Option
	Installing the Converged Application Service Creation Environment
	Creating a Converged Application Project
	Adding Converged Application Project Facets to an Existing Project
	Creating an Ant Build File
	Deploying SIP Applications from Eclipse

	3 Creating Applications with the Converged Application SCE Wizards
	About SCE Wizards
	About SIP Servlet Templates

	Using the SIP Servlet Wizard
	Creating a SIP Servlet
	Creating a SIP Servlet Based on a Template

	Using the SIP Listener Wizard
	Using the SFT Communication Bean Wizard

	4 Using Simulators and Other Testing Tools
	About the SCE Tools
	Using the XDMS Simulator
	Deploying and Starting the XDMS Simulator
	Using the XCAP Interface to Populate and Query the XDMS

	Configuring the Media Server Driver
	Configuring the Diameter Simulator Settings
	Extending Domains with Diameter Capabilities
	Using the SIPp Plug-in

	Part III Developing SIP Applications
	5 Overview of SIP Servlet Application Development
	About the SIP Protocol
	SIP Requests
	SIP Responses

	What are SIP Servlets?
	Differences Between HTTP Servlets and SIP Servlets
	Differences from HTTP Servlets
	Multiple Responses
	Receiving Responses
	Proxy Functions
	Message Body
	Servlet Request
	Servlet Response
	SipServletMessage

	Role of a Servlet Container
	Application Management
	SIP Messaging
	Utility Functions

	6 Porting Existing Applications to Oracle Communications Converged Application Server
	Application Router and Legacy Application Composition
	SipSession and SipApplicationSession Not Serializable
	SipServletResponse.setCharacterEncoding() API Change
	Transactional Restrictions for SipServletRequest and SipServletResponse
	Immutable Parameters for New Parameterable Interface
	Stateless Transaction Proxies Deprecated
	Backward-Compatibility Mode for v1.0 Deployments
	Validation Warnings for v1.0 Servlet Deployments
	Modifying Committed Messages
	Path Header as System Header
	SipServletResponse.createPrack() Exception
	Proxy.proxyTo() Exceptions
	Changes to Proxy Branch Timers

	Deprecated APIs
	SNMP MIB Changes
	Renamed Diagnostic Monitors and Actions

	7 Requirements and Best Practices for SIP Applications
	Overview of Developing Distributed Applications for Converged Application Server
	Applications Must Not Create Threads
	Servlets Must Be Non-Blocking
	Store all Application Data in the Session
	All Session Data Must Be Serializable
	Use setAttribute() to Modify Session Data in “No-Call” Scope
	send() Calls Are Buffered
	Mark SIP Servlets as Distributable
	Use SipApplicationSessionActivationListener Sparingly
	Session Expiration Best Practices
	Observe Best Practices for Java EE Applications
	Optimizing Memory Utilization and Performance with Serialization

	8 Using Compact and Long Header Formats for SIP Messages
	Overview of Header Format APIs and Configuration
	Summary of Compact Headers
	Assigning Header Formats with WlssSipServletMessage
	Summary of API and Configuration Behavior

	9 Composing SIP Applications
	Using the Application Router
	Using the Default Application Router
	Configuring a Custom Application Router
	Using the Built-in Custom Application Router
	Configuring the Custom Application Router

	Working with SIP and HTTP Sessions
	Modifying the SipApplicationSession
	Synchronous Access
	Asynchronous Access

	Session Key-Based Request Targeting
	Join and Replaces Header Support
	About the Join Header
	About the Replaces Header
	Enabling Support for Join and Replaces Headers

	API to Set Transport Parameter on Record-Route Header
	Setting Content in SIP Responses

	10 Developing Converged Applications
	Overview of Converged Applications
	Assembling and Packaging a Converged Application
	Converged Application Samples

	11 Developing Custom Profile Service Providers
	Overview of the Profile Service API
	Implementing Profile Service API Methods
	Configuring and Packaging Profile Providers
	Mapping Profile Requests to Profile Providers

	Configuring Profile Providers Using the Administration Console

	12 Using Content Indirection in SIP Servlets
	Overview of Content Indirection
	Using the Content Indirection API
	Additional Information

	13 Securing SIP Servlet Resources
	Overview of SIP Servlet Security
	Triggering SIP Response Codes
	Specifying the Security Realm
	Converged Application Server Role Mapping Features
	Using Implicit Role Assignment
	Assigning Roles Using security-role-assignment
	Important Requirements
	Assigning Roles at Deployment Time
	Dynamically Assigning Roles Using the Administration Console

	Assigning run-as Roles
	Role Assignment Precedence for SIP Servlet Roles
	Debugging Security Features
	weblogic.xml Deployment Descriptor Reference

	14 Enabling Message Logging
	Overview
	Enabling Message Logging
	Specifying a Predefined Logging Level
	Customizing Log Records

	Specifying Content Types for Unencrypted Logging
	Example Message Log Configuration and Output
	Configuring Log File Rotation

	15 Generating SNMP Traps from Application Code
	Overview
	Requirement for Accessing SipServletSnmpTrapRuntimeMBean
	Obtaining a Reference to SipServletSnmpTrapRuntimeMBean
	Generating an SNMP Trap

	16 Using the Location Service RESTful Interface
	About the Location Service RESTful Interface
	About REST
	About JSON Body Parameters
	About the Context Root
	Using Authentication and Authorization
	RESTful APIs for the Location Service
	Store Registrations for Address-of-Record
	Lookup an Address-of-Record
	Clear All Address of Record Bindings

	Part IV Developing Applications With the Service Foundation Toolkit
	17 Introduction to the Service Foundation Toolkit
	The Service Foundation Toolkit Programming Model
	About the Communication Interface
	About Communication Beans
	About Participants
	About SIP Messages and SFT
	About Communication Context Types
	About Agents
	About Media Control
	Searching Communications
	Packaging and Deploying SFT Applications
	SFT Annotations
	Using the @CommunicationBean Annotation

	About Event Handling
	Understanding Event Flow
	Event Walkthrough
	Using the @CommunicationEvent Annotation
	About Communication and Participant Events
	CommunicationEvent Enumeration Types

	Using the @ParticipantEvent Annotation
	ParticipantEvent Enumeration Types

	SFT Sample Application

	18 Packaging and Deploying SFT Applications
	Structure of a SFT Application
	Packaging SFT Applications
	Integrating SFT with SIP Servlets
	SFT.XML Deployment Descriptor

	19 SFT Deployment Descriptor and Schema Reference
	Application-Based Deployment
	XML Schema Definitions and Namespace Declarations
	Annotation-based Configuration
	Using the @ServiceAttributes Annotation

	About the sft.xml Deployment Descriptor Elements
	About the communication-bean Element
	The service-attributes Element
	Annotation Scanning
	Overriding Annotations with the SFT.XML Deployment Descriptor

	SFT.XML Schema

	20 Event Orchestration in the Service Foundation Toolkit
	About Event Orchestration
	Using Annotations to Define the Invocation Order
	Using XML to Define the Invocation Order
	Filtering and Overriding Communication Beans
	Filtering Communication Beans
	Filtering Specific Communication Bean Annotations
	Overriding CommunicationBean Annotations

	21 Implementing Call Control Services
	About Converged Application Framework and VoLTE
	Call Forwarding
	Accessing Call Forwarding History
	Discovering Call Reject Reasons
	Call Forwarding Example

	Call Barring
	Communication Hold
	Setting the Communication Hold Bandwidth

	Identity Presentation and Restriction
	Identity Presentation and Restriction Interfaces
	Privacy Service Behavior
	Enabling User-Level Privacy
	Providing Privacy for the History-Info Header

	Communication Waiting
	Supporting Network- and Terminal-based Communication Waiting
	About Network-based Communication Waiting
	About Terminal-based Communication Waiting

	About the Communication Waiting Interfaces
	Creating a Communication Waiting Application
	CallWaitingBean Example Code

	Message Waiting Indication
	Configuring Message Waiting Indication
	About the Message Waiting Indication Interfaces
	Creating a Message Waiting Indication Application
	Sending MWI Notifications to Subscribers
	Removing a Subscription

	Message Waiting Indication Example

	22 Using Announcements
	About Announcements
	APIs for Announcement Support
	MediaPartner
	CommunicationEvent Enumeration Types
	ParticipantEvent Enumeration Types

	About the MediaPartner and UserPartner Interfaces
	Callout Announcement
	Call Barring Announcement
	Call Barring Announcement Using Error-Info
	Call Barring Announcement Using Early Media
	Playing a Call Barring Announcement With Established Sessions

	Playing a Colorful Ring Tone
	Playing Colorful Ring Back Tone
	Colorful Ring Back Tone by Alert-Info
	Colorful Ring Back Tone Without Early Media Exchange
	CRBT After Early Media Exchange

	Playing a Call Rejection Announcement
	Call Rejection Using Error-Info
	Call Rejection Announcements Using Early Media

	Call Forwarding Announcements
	Un-Conditional Call Forwarding Announcement
	Conditional Call Forwarding

	Call Waiting Announcement
	Call Waiting Announcement Using ALERT-INFO
	Call Waiting Announcement Using Early Media

	Pickup Announcement

	23 Conferencing With Media Control
	Conferencing with Media Control
	About the Conferencing and Media Control Interfaces
	Creating a Conference With the Focus Interface
	Creating Conferences Using Resource-Contained Lists

	Ad-Hoc Conferencing
	Configuring the Conference Event Package
	Handling Subscription and Notification Events
	Handling Conference Subscription Events
	Handling Conference Notification Events

	24 Using the XCAP Interfaces
	About XCAP and VoLTE
	Creating and Accessing an XCAP Client
	Fetching, Creating, and Deleting Resources With XCAP
	Fetching Documents from the XDMS
	Creating or Replacing Documents in the XDMS
	Deleting a Document from the XDMS

	Using XCAP for IR.92 Supplementary Services
	XCAP Supplementary Service APIs
	Creating Supplementary Service Rules

	Adding and Editing Elements
	Validating Data
	XCAP Authentication and Authorization
	Using Digest Authentication
	Using Transport Layer Security
	Using X-3GPP-Asserted-Identity Header Authentication

	25 Creating Instant Messaging and Rich Media Services
	About Rich Communication Services
	Discovering Device Capability
	About the Capability Discovery Interfaces
	Using the Capability Discovery Interfaces

	Using In-dialog, SIP Options-based Capability Discovery
	Using End User Confirmation Request
	About the EUCR Interfaces
	Using EUCR in Response to a File Transfer

	Conferencing Using MSRP
	Using Instant Message Disposition Notification
	About the IMDN Interfaces
	Creating an Instant Message with IMDN Request
	Creating an IMDN With CommunicationBean

