Getting Started with Oracle Data Integrator
11g Release 1 (11.1.1)
E12641-02
April 2011
Oracle Fusion Middleware Getting Started with Oracle Data Integrator, 11g Release 1 (11.1.1)
E12641-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Laura Hofman Miquel
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual describes how to get started with Oracle Data Integrator. It provides general background information and detailed examples to help you learn how to use Oracle Data Integrator
This preface contains the following topics:.
This document is intended for users interested in learning how to use Oracle Data Integrator as a development tool for their integration processes.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see the following Oracle resources:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter provides an introduction to Oracle Data Integrator, the technical architecture, and the contents of this Getting Started guide.	
This chapter includes the following sections:	
A widely used data integration software product, Oracle Data Integrator provides a new declarative design approach to defining data transformation and integration processes, resulting in faster and simpler development and maintenance. Based on a unique E-LT architecture (Extract - Load Transform), Oracle Data Integrator not only guarantees the highest level of performance possible for the execution of data transformation and validation processes but is also the most cost-effective solution available today.	
Oracle Data Integrator provides a unified infrastructure to streamline data and application integration projects.	
In today's increasingly fast-paced business environment, organizations need to use more specialized software applications; they also need to ensure the coexistence of these applications on heterogeneous hardware platforms and systems and guarantee the ability to share data between applications and systems. Projects that implement these integration requirements need to be delivered on-spec, on-time and on-budget.	
Oracle Data Integrator employs a powerful declarative design approach to data integration, which separates the declarative rules from the implementation details. Oracle Data Integrator is also based on a unique E-LT (Extract - Load Transform) architecture which eliminates the need for a standalone ETL server and proprietary engine, and instead leverages the inherent power of your RDBMS engines. This combination provides the greatest productivity for both development and maintenance, and the highest performance for the execution of data transformation and validation processes.	
Here are the key reasons why companies choose Oracle Data Integrator for their data integration needs:	
The Oracle Data Integrator platform integrates in the broader Fusion Middleware platform and becomes a key component of this stack. Oracle Data Integrator provides its run-time components as Java EE applications, enhanced to fully leverage the capabilities of the Oracle WebLogic Application Server. Oracle Data Integrator components include exclusive features for Enterprise-Scale Deployments, high availability, scalability, and hardened security. Figure 1-1 shows the ODI component architecture.	
The central component of the architecture is the Oracle Data Integrator Repository. It stores configuration information about the IT infrastructure, metadata of all applications, projects, scenarios, and the execution logs. Many instances of the repository can coexist in the IT infrastructure, for example Development, QA, User Acceptance, and Production. The architecture of the repository is designed to allow several separated environments that exchange metadata and scenarios (for example: Development, Test, Maintenance and Production environments). The repository also acts as a version control system where objects are archived and assigned a version number.	
The Oracle Data Integrator Repository is composed of one Master Repository and several Work Repositories. Objects developed or configured through the user interfaces are stored in one of these repository types.	
There is usually only one master repository that stores the following information:	
The work repository is the one that contains actual developed objects. Several work repositories may coexist in the same ODI installation (for example, to have separate environments or to match a particular versioning life cycle). A Work Repository stores information for:	
When the Work Repository contains only the execution information (typically for production purposes), it is then called an Execution Repository.	
Administrators, Developers and Operators use the Oracle Data Integrator Studio to access the repositories. This Fusion Client Platform (FCP) based UI is used for administering the infrastructure (security and topology), reverse-engineering the metadata, developing projects, scheduling, operating and monitoring executions.	
ODI Studio provides four Navigators for managing the different aspects and steps of an ODI integration project:	
Oracle Data Integrator also provides a Java API for performing all these run-time and design-time operations. This Oracle Data Integrator Software Development Kit (SDK) is available for standalone Java applications and application servers.	
At design time, developers generate scenarios from the business rules that they have designed. The code of these scenarios is then retrieved from the repository by the Run-Time Agent. This agent then connects to the data servers and orchestrates the code execution on these servers. It retrieves the return codes and messages for the execution, as well as additional logging information – such as the number of processed records, execution time and so forth - in the Repository.The Agent comes in two different flavors:	
Both these agents are multi-threaded java programs that support load balancing and can be distributed across the information system. This agent holds its own execution schedule which can be defined in Oracle Data Integrator, and can also be called from an external scheduler. It can also be invoked from a Java API or a web service interface.	
Business users (as well as developers, administrators and operators), can have read access to the repository, perform topology configuration and production operations through a web based UI called Oracle Data Integrator Console. This web application can deployed in a Java EE application server such as Oracle WebLogic.	
To manage and monitor the Java EE and Standalone Agents as well as the ODI Console, Oracle Data Integrator provides a new plug-in that integrates in Oracle Fusion Middleware Control Console.	
Table 1-1 summarizes the contents of this guide.	
Table 1-1 Content Summary	
This chapter	Describes how to...
---	---
Chapter 2, "Installing Oracle Data Integrator and the Demonstration Environment"	Install Oracle Data Integrator and the demonstration environment
Chapter 3, "Working with the ETL Project"	Provides an introduction to the demonstration environment delivered with Oracle Data Integrator Studio
Chapter 4, "Starting Oracle Data Integrator"	Start the demonstration environment and Oracle Data Integrator Studio
Chapter 5, "Implementing Data Quality Control"	Implement data quality control
Chapter 6, "Working with Integration Interfaces"	Create and work with integration interfaces in Oracle Data Integrator
Chapter 7, "Working with Packages"	Create and work with Packages in Oracle Data Integrator
Chapter 8, "Executing Your Developments and Reviewing the Results"	Execute your developments, follow the execution, and interpret the execution results
Chapter 9, "Deploying Integrated Applications"	Run an ODI Package automatically in a production environment
Chapter 10, "Going Further with Oracle Data Integrator"	Perform advanced tasks with Oracle Data Integrator
This chapter provides an overview of how to install Oracle Data Integrator and the demonstration environment. The instructions in this chapter are the instructions required for using the demonstration environment with Oracle Data Integrator Studio.	
This chapter includes the following sections:	
Note: Oracle Data Integrator Studio and the demonstration environment must be installed on your system to perform the tasks described in this Getting Started guide.	
Review the information in this section before you begin:	
Before installing any Oracle Data Integrator (ODI) components, you should read the system requirements and certification documentation to ensure that your environment meets the minimum installation requirements. Both of these documents are available on Oracle Technology Network (OTN).	
The system requirements document covers information such as hardware and software requirements, minimum disk space and memory requirements, and required system libraries, packages, or patches:	
The certification document covers supported installation types, platforms, operating systems, databases, JDKs, and third-party products:	
Note: If you are installing the 32-bit version of the product, the system on which you are installing must also be a supported 32-bit system. Installing a 32-bit version of the product on a 64-bit system is not supported.	
If you are using a 64-bit Java Virtual Machine (JVM) in your environment, ensure that all your Oracle Fusion Middleware components are using the 64-bit JVM. You cannot mix components using a 32-bit JVM with those using a 64-bit JVM.	
Refer to the Oracle Fusion Middleware Certifications matrix for information on the platforms that support a 64-bit JDK:	
You do not need to create ODI repositories for using the demonstration environment in ODI Studio. The demonstration environment provides the necessary preconfigured repositories.	
This section contains information and instructions for installing Oracle Data Integrator Studio. The installation instructions in this chapter are the instructions required for using the demonstration environment in Oracle Data Integrator Studio.	
For detailed installation instructions, see the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator.	
This section contains the following topics:	
Note: If you are installing on a UNIX system for the first time, you may be asked to run theORACLE_HOME /oracleRoot.sh script as root user to create all of the necessary installation directories.	
The installer and the demo environment are available on the Oracle Data Integrator Downloads page on Oracle Technology Network (OTN).	
To download the installer and the demo environment:	
http://www.oracle.com/technetwork/middleware/data-integrator/downloads/index.html	
To start the installer, uncompress the Oracle Data Integrator Media Pack you have downloaded in a temporary folder and run the following command from this folder:	
Note: The minimum JDK required for Oracle Data Integrator is JDK 1.6. Refer to the Oracle Fusion Middleware Certification documentation to see the JDKs supported for your system:	
You need to install the following components to work with the demo environment:	
This corresponds to the Developer and the Standalone installation type.	
Follow these instructions to install and configure Oracle Data Integrator Studio:	
Note: If you need additional help with any of the installation screens, refer to the Oracle Fusion Middleware Installation Guide for Oracle Data Integrator or click Help to access the online help.	
ODI_HOME	
). For example: C:\oracle\ODI_HOME1	
Note: The specified directory must be an empty directory or an existing Oracle Data Integrator home location.	
DemoAgent	
20910	
Note that the port number should not be used by any other process and that the agent name cannot be the same as another agent already declared in the topology.	
The Specify Agent Details screen is shown in Figure 2-2.	
Oracle Data Integrator is now installed.	
The Oracle Data Integrator demonstration environment is delivered on the Oracle Data Integrator companion CD and can be downloaded from the Oracle Data Integrator Downloads page on Oracle Technology Network (OTN) at	
http://www.oracle.com/technetwork/middleware/data-integrator/downloads/index.html	
The demonstration files and samples of the demonstration environment are located in the /demo	
folder of the companion CD.	
Note: The demonstration (demo) environment should be installed with an existing installation that includes the ODI Studio component.	
To manually install the Demonstration environment, do the following:	
oracledi-demo.zip	
in the ODI_HOME	
folder. JAVA_HOME	
environment variable is set and contains the path of a JVM suitable for Oracle Data Integrator. If this variable is not set correctly, set it to a valid java machine location.	
For example:	
On UNIX operating systems:	
setenv JAVA_HOME/usr/local/java	
On Windows operating systems:	
Set the JAVA_HOME	
variable graphically	
For a list of certified JVM versions, see http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
.	
You can now use the demonstration environment in Oracle Data Integrator Studio.	
This chapter provides an introduction to the ETL (Extract Transform Load) project that is delivered in the demonstration environment with Oracle Data Integrator Studio.	
This chapter includes the following sections:	
The ETL project is an example to help you understand how to transform and check the integrity of the data in your information systems.	
The examples in this getting started guide track sales from various heterogeneous data sources issued from the production systems. Figure 3-1 shows the example environment.	
The example environment uses the following elements:	
The demonstration environment includes three ODI data models:	
This section provides the schema diagrams for these data models.	
The Orders Application data model is based on the HSQL technology and includes five datastores:	
Figure 3-2 shows the schema diagram of this data model.	
Note that this data model does not enforce any foreign key constraints, even if some functional relations exist between the data.	
The Parameters data model is based on the File technology and includes two datastores:	
Figure 3-3 shows the schema diagram of this data model.	
The Sales Administration data model is based on the HSQL technology and includes six datastores:	
Figure 3-4 shows the schema diagram of this data model.	
The challenges common to all data integration and transformation projects are:	
The examples used in this guide illustrate how to address these issues. During this getting started guide, you will learn how to:	
By implementing two examples, you will learn how Oracle Data Integrator enables you to ensure the quality of the data in your applications while segregating invalid rows. The Orders Application tables contain a number of data inconsistencies that you will detect.	
Two simple examples will show you how to improve productivity by loading the data from the Orders Application and Parameters (File) applications into the Sales Administration data warehouse.	
This part of the Getting Started guide will show you how to automate your Oracle Data Integrator processes. The aim of this exercise is to load the entire Sales Administration data warehouse with a single click.	
You will learn how to execute the Load Sales Administration Package and the integration interfaces Pop. TRG_CUSTOMER and Pop. TRG_SALES you have created and how to review the results of these executions.	
You will learn how to run the Load Sales Administration Package automatically in a production environment.	
Note: In this guide, we will be looking at processes that focus on ETL. While it is beyond the scope of this document, implementing different integration patterns (real-time, for example) can be carried out in the same fashion. For more information on this, see the Oracle Data Integrator documentation after completing this guide.	
Now that you have been introduced to the concepts of the ETL-Project and its components, you can move on to Starting Oracle Data Integrator.	
This chapter describes how to start the demonstration environment and the first steps in Oracle Data Integrator Studio.	
This chapter includes the following sections:	
Oracle Data Integrator demonstration environment provides the initial repository and the databases that contain the data used in the examples of this Getting Started guide.	
To start the demonstration environment:	
ODI_HOME/oracledi/demo/bin	
directory. ./startdemo.sh	
startdemo.bat	
The source and target data servers as well as the demo repository data server are started.	
To stop these database servers, you can use the stopdemo command in the same directory:	
Enter the following command:	
./stopdemo.sh	
stopdemo.bat	
Caution: Do not shut down the databases by using the [CTRL-C] keyboard shortcut, or by closing their execution windows. This may leave the source, target, and repository databases in an unstable state. Always use the stopdemo scripts.	
This section describes how to start Oracle Data Integrator Studio.	
Note: Before starting ODI Studio, the demonstration environment must be started as described in Section 4.1, "Starting the Demonstration Environment".	
In the demonstration environment, the connection to the demonstration repository is already defined. To perform the tasks of this getting started guide, you only need to login as SUPERVISOR to start Oracle Data Integrator Studio.	
To connect to the demonstration repository and launch ODI Studio:	
ODI_HOME/oracledi/client directory/	
odi.sh	
ODI_HOME\oracledi\client\odi.exe	
Note: On Windows, you can launch ODI Studio from the Start menu:On the Start menu, select All Programs > Oracle > Oracle Data Integrator > ODI Studio.	
The Oracle Data Integrator Login Dialog is displayed	
Note: If this Login Name does not exist, go to Section 4.2.2, "Defining a new Getting Started Login".	
SUPERVISOR	
. Note that the username is case sensitive. SUNOPSIS	
. Note that the password is case sensitive ODI Studio connects to the demonstration environment repository. You can now work in the Oracle Data Integrator demonstration environment.	
This section describes how to define a new connection to the demonstration repository and how to create a new ODI login.	
You only need to perform the tasks described in this section, if the Getting Started - ETL Project Login Name does not appear in the Login Name list of the Oracle Data Integrator Login Dialog shown in Figure 4-1.	
To define a new connection to the demonstration repository:	
Figure 4-2 shows the Oracle Data Integrator Login Dialog.	
The Repository Connection Information Dialog is displayed.	
The Repository Connection Information Dialog is displayed.	
Getting Started - ETL Project	
SUPERVISOR	
SUNOPSIS	
Note that username and password are case sensitive.	
sa	
This is the database user ID/login of the schema (database, library) that contains the ODI master repository	
This driver is required to connect to the DBMS supporting the master repository.	
org.hsqldb.jdbcDriver	
jdbc:hsqldb:hsql://localhost	
This URL is used to establish the JDBC connection to the database hosting the repository. Note that the driver name is case sensitive and make sure that the URL does not contain any extra characters, in particular spaces.	
WORKREP	
in the Work Repository field. The Repository Connection Information Dialog should look as shown in Figure 4-3.	
The Information dialog opens and informs you if the connection has been established. If the connection fails, fix the connection parameters to your repository and make sure that the startdemo script is running (see Section 4.1, "Starting the Demonstration Environment") before moving to next step.	
The SUPERVISOR user and the SUNOPSIS password are automatically set.	
The Oracle Data Login Dialog should look as shown in Figure 4-1.	
ODI Studio connects to the demonstration environment repository. You can now work in the Oracle Data Integrator demonstration environment	
ODI Studio provides four Navigators for managing the different aspects and steps of an ODI integration project:	
The tasks performed in this getting started guide take place in Designer Navigator (to create and execute your developments) and in Operator Navigator (to monitor the execution of your developments). This section only describes the Navigators that are used in this getting started guide. See the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for information about the Topology and Security Navigators.	
Designer Navigator is used to manage metadata, to design data integrity checks, and to build transformations.	
The main objects you handle through Designer Navigator are models and projects.	
The Designer Navigator appears as shown in Figure 4-4.	
The Designer Navigator has the following accordions:	
The Projects accordion contains the developments made with Designer Navigator.	
The Models accordion contains the descriptions of the data and applications structures.	
The Others accordion contains the Global User Functions, Variables, Markers, and Sequences.	
The Solutions accordion contains the Solutions that have been created when working with version management.	
The demonstration repository provides the objects you will need in this Getting Started guide:	
Operator Navigator is the production management and monitoring tool. It is designed for IT production operators and can be used by developers to check code execution and perform debugging operations. Through Operator Navigator, you can manage your development executions in the sessions, as well as the scenarios in production.	
The Operator Navigator appears as shown in Figure 4-5.	
The Operator Navigator has the following accordions:	
The Session List accordion displays all sessions organized per date, physical agent, status, keywords, and so forth.	
The Hierarchical Sessions accordion displays the execution sessions organized in a hierarchy with their child sessions.	
The Scheduling accordion displays the list of physical agents and schedules.	
The Scenarios accordion displays the list of scenarios available	
The Solutions accordion contains the Solutions that have been created when working with version management.	
Now that the demonstration environment and Oracle Data Integrator are started, you can move on to Implementing Data Quality Control.	
This chapter describes how to implement data quality control. An introduction to data integrity control is provided.	
This chapter includes the following sections:	
Data integrity control is essential in ensuring the overall consistency of the data in your information system's applications.	
Application data is not always valid for the constraints and declarative rules imposed by the information system. You may, for instance, find orders with no customer, or order lines with no product, and so forth.	
Oracle Data Integrator provides a working environment to detect these constraint violations and to store them for recycling or reporting purposes.	
There are two different types of controls: Static Control and Flow Control. We will examine the differences between the two.	
Static Control	
Static Control implies the existence of rules that are used to verify the integrity of your application data. Some of these rules (referred to as constraints) may already be implemented in your data servers (using primary keys, reference constraints, etc.)	
With Oracle Data Integrator, you can enhance the quality of your data by defining and checking additional constraints, without declaring them directly in your servers. This procedure is called Static Control since it allows you to perform checks directly on existing - or static - data.	
Flow Control	
The information systems targeted by transformation and integration processes often implement their own declarative rules. The Flow Control function is used to verify an application's incoming data according to these constraints before loading the data into these targets. The flow control procedure is detailed in the "Interfaces" chapter.	
Benefits	
The main advantages of performing data integrity checks are the following:	
Ensuring data integrity is not always a simple task. Indeed, it requires that any data violating declarative rules must be isolated and recycled. This implies the development of complex programming, in particular when the target database incorporates a mechanism for verifying integrity constraints. In terms of operational constraints, it is most efficient to implement a method for correcting erroneous data (on the source, target, or recycled flows) and then to reuse this method throughout the enterprise.	
This example guides you through the data integrity audit process (Static Control).	
The Orders Application - HSQL application contains data that do not satisfy business rule constraints on a number of different levels. The objective is to determine which data in this application does not satisfy the constraints imposed by the information system.	
This section includes the following topics:	
Some data in our source may be inconsistent. There may be constraints in the target table that are not implemented in the source table or there may be supplementary rules that you wish to add. In our case we have two constraints that we want to enforce on the SRC_CUSTOMER table:	
We want to determine which rows do not satisfy these two constraints and automatically copy the corresponding invalid records into an error table for analysis.	
Enforcing these types of rules requires the use of a check constraint (also referred to as a condition), as well as a reference constraint between the SRC_CITY and SRC_CUSTOMER tables.	
This section describes how to create the following constraints:	
Creating an age constraints consists in adding a data validity condition on a column.	
To create the age constraint:	
AGE > 21	
. Notes:	
This section describes how to create a reference constraint based on the CITY_ID column between the SRC_CUSTOMER table and the SRC_CITY table.	
This constraint allows checking that customers are located in a city that exists in the SRC_CITY table.	
To create the reference constraint:	
Figure 5-4 shows the Reference Editor.	
A new row is inserted in the columns table.	
Figure 5-6 shows the Columns tab of the Reference Editor with the selected matching columns.	
Note that in this example the Foreign Table is SRC_CUSTOMER and the Primary Table is SRC_CITY. Note also that it is not required for foreign keys that the column names of the Foreign Table and the Primary Table match. It just happens that they do in this example.	
Tip: You can alternately use the [CTRL - S] shortcut to save the current Editor.	
Running the static control verifies the constraints defined on a datastore. You can now verify the data in the SRC_CUSTOMER datastore against the constraints defined in Section 5.2.3, "Creating Constraints".	
To run the static control:	
Oracle Data Integrator automatically generates all of the code required to check your data and start an execution session.	
Through Operator Navigator, you can view your execution results and manage your development executions in the sessions.	
To view the execution results of your control:	
The Session List displays all sessions organized per date, physical agent, status, keywords, and so forth.	
The log comprises 3 levels:	
This section describes how to determine the invalid records. These are the records that do not satisfy the constraints and has been rejected by the static control.	
This section includes the following topics:	
To determine the number of invalid records:	
Figure 5-10 shows the Session Step Editor of the SRC_CUSTOMER step.	
The number of invalid records is listed in the No. of Errors field. Note that the static control of the SRC_CUSTOMER table has revealed 9 invalid records. These records have been isolated in an error table. See Section 5.2.6.2, "Reviewing the Invalid Records" for more information.	
You can access the invalid records by right-clicking on the table in your model and selecting Control > Errors...	
To review the error table of the static control on the SRC_CUSTOMER table:	
The records that were rejected by the check process are the following:	
You can view the entire record in this Editor. This means that you can instantly see which values are incorrect, for example the invalid CITY_ID value in the top record.	
Note that the error message that is displayed is the one that you have defined when setting up the AGE > 21 constraint in Section 5.2.3.1, "Age Constraint".	
Now that the static controls have been run on the source data, you are ready to move on to the implementation of integration interfaces.	
This chapter describes how to work with integration interfaces in Oracle Data Integrator. The demonstration environment includes several example interfaces. In this chapter you learn how to create the following interfaces:	
This chapter includes the following sections:	
This section contains the following topics:	
This section describes the integration features and requirements the integration interface Pop. TRG_CUSTOMER is expected to meet.	
The purpose of the Pop. TRG_CUSTOMER interface is to load the data from the SRC_CUSTOMER table in the Orders Application - HSQL model into the TRG_CUSTOMER target table in the Sales Administration - HSQL model.	
However, the SRC_CUSTOMER table does not contain all of the data that is required for this operation. The following information has to be added to the target table:	
The source data is not always consistent with the integrity rules implemented in the target environment. For this interface, the data has to be cleansed by verifying that all constraints are satisfied and by storing invalid rows in an error table rather than in our target database. In this example, two important integrity rules must be satisfied:	
The functional details for these rules and the procedure to follow are given in Section 6.1.3, "Creating the Integration Interface".	
This section describes the integration interface Pop. TRG_CUSTOMER that will be created in this example. See Section 6.1.3, "Creating the Integration Interface" for more information.	
The Pop. TRG_CUSTOMER interface uses the following data and transformations:	
Table 6-2 Source Datastore Details of Pop. TRG_CUSTOMER	
Model	Datastore
---	---
Orders Application - HSQL	SRC_CUSTOMER
Parameters - FILE	SRC_AGE_GROUP
Parameters - FILE	SRC_SALES_PERSON
Table 6-5 Transformation Rules used in Pop. TRG_CUSTOMER	
Target Column	Origin
---	---
CUST_ID	SRC_CUSTOMER.CUSTID
Source	
DEAR	If SRC_CUSTOMER.DEAR = 0 then 'MR' If SRC_CUSTOMER.DEAR = 1 then 'MRS' else 'MS'
Source	
CUST_NAME	Concatenation of SRC_CUSTOMER.FIRST_NAME and SRC_CUSTOMER.LAST_NAME in upper case
Source	
ADDRESS	SRC_CUSTOMER.ADDRESS
Source	
CITY_ID	SRC_CUSTOMER.CITY_ID
Source	
PHONE	SRC_CUSTOMER.PHONE
Source	
AGE	SRC_CUSTOMER.AGE
Source	
AGE_RANGE	SRC_AGE_GROUP.AGE_RANGE
Staging area	
SALES_PERS	Concatenation of SRC_SALES_PERSON.FIRST_NAME and SRC_SALES_PERSON.LAST_NAME in uppercase
Staging area	
CRE_DATE	Today's date
Target	
UPD_DATE	Today's date
Target	
This section describes how to create the Pop. TRG_CUSTOMER integration interface. To create the Pop. TRG_CUSTOMER interface perform the following procedure:
To create a new integration interface:
The Interface Editor is displayed.
The target datastore is the element that will be loaded by the interface.
To insert the target datastore in the Pop. TRG_CUSTOMER interface:
The source datastores contain data used to load the target datastore. Two types of datastores can be used as an interface source: datastores from the models and temporary datastores that are the target of an interface. This example uses datastores from the Orders Application - HSQL and Parameters - FILE models.
To add source datastores to the Pop. TRG_CUSTOMER interface:
Click Yes to confirm the use of automatic field to field mapping by Oracle Data Integrator. The automatic mapping is performed when you drop a source datastore in the Source Diagram.
This section describes how to create a lookup that defines that the customer's age must be between the minimum and maximum ages in the file.
A lookup is a datastore (from a model or the target datastore of an interface) - called the lookup table - associated to a source datastore - the driving table - via a join expression and from which data can be fetched and used in mappings.
Lookup tables are added with the Lookup Wizard.
To create a lookup in the Pop. TRG_CUSTOMER interface:
The Lookup Wizard opens.
Note that source datastores for the current diagram appear here and that lookups do not appear in the list.
The SRC_AGE_GROUP datastore will be used as a lookup table.
Figure 6-8 shows the first screen of the Lookup Wizard.
=
) with the string between
and SRC_AGE_GROUP.AGE_MAX
This adds the AGE_MAX column from the SRC_AGE_GROUP datastore.
SRC_CUSTOMER.AGE between SRC_AGE_GROUP.AGE_MIN and SRC_AGE_GROUP.AGE_MAX
This corresponds to a join between the SRC_CUSTOMER and the SRC_AGE_GROUP datastore and defines that the customer's age must between the minimum and maximum ages in the file. Figure 6-10 shows the Expression Editor with the lookup condition.
The Source Diagram appears as shown in Figure 6-12.
Note: If references were already defined in the models to link the source datastores, these references would have appeared automatically as joins in the source diagram. |
This section describes how to define a join between the source datastores.
To create the join defined in Table 6-3:
In the Target Datastore panel of your interface, columns with names that match their sources are automatically mapped. The automatic mapping is done by the matching of the column names. Most of the transformation rules listed in Table 6-5 have been defined by the automatic mapping. In addition to this automatic mappings, you have to define the transformation rules for the following fields: CUST_ID, DEAR, CUST_NAME, AGE_RANGE, SALES_PERS, CRE_DATE and UPD_DATE.
The transformation rules, also called mappings, are defined on the target column.
CUST_ID Mapping
The CUST_ID mapping maps the SRC_CUSTOMER.CUSTID source column to the TRG_CUSTOMER.CUST_ID target column. Note that these 2 columns have not been automatically mapped, since their names are slightly different.
To define the mapping for the CUST_ID target column:
Note: Possible execution locations are: Source, Target, and Staging Area. Make sure that you select the environment in which your transformation will be executed as specified in Table 6-5. Select this environment by clicking on one of the radio buttons as shown in Figure 6-15. |
DEAR Mapping
This transformation rule maps the source datastore's DEAR column (numeric) as a string expression (0 -->'MR', 1 -->'MRS', 2 -->'MS').
To define the mapping for the DEAR target column:
Tip: Click Freeze View in the Property Inspector toolbar to continue displaying the current contents of the Property Inspector even if you select a different component that would normally change the contents of the Property Inspector. The Freeze View button is: To unfreeze a frozen instance of the Property Inspector and allow it to track the active selection, click Freeze View again. |
CASEWHEN(SRC_CUSTOMER.DEAR=0, 'MR', CASEWHEN(SRC_CUSTOMER.DEAR=1, 'MRS', 'MS'))
Tip: You can drag source columns, for example the SRC_CUSTOMER.DEAR column, into the Implementation field. |
CUST_NAME Mapping
This transformation rule maps the concatenated value of the first name and uppercase last name of each customer.
To define the mapping for the CUST_NAME target column:
SRC_CUSTOMER.FIRST_NAME || ' ' || UCASE(SRC_CUSTOMER.LAST_NAME)
Tip: Use the Expression Editor to create this rule. By using the Expression Editor, you can avoid most common syntax errors. |
AGE_RANGE Mapping
This mapping maps the SRC_AGE_GROUP.AGE_RANGE to the TRG_CUSTOMER.AGE_RANGE.
To define the mapping for the AGE_RANGE target column:
SRC_AGE_GROUP.AGE_RANGE
Note: This rule must be executed in the staging area! The source in this example is a flat file, and as such is not associated to an engine that supports concatenation. |
SALES_PERS Mapping
This will map the concatenated value of the first name and uppercase last name of each salesperson.
To define the mapping for the SALES_PERS target column:
SRC_SALES_PERSON.FIRST_NAME || ' ' || UCASE(SRC_SALES_PERSON.LAST_NAME)
Note: This rule must be executed in the staging area! The source in this example is a flat file, and as such is not associated to an engine that supports concatenation. |
CRE_DATE Mapping
To define the mapping for the CRE_DATE target column:
CURDATE()
UPD_DATE Mapping
To define the mapping for the UPD_DATE target column:
CURDATE()
Notes on the Expression Editor
The Target Datastore Panel
Your transformation rules appear in the Target Datastore panel as shown in Figure 6-18.
Two types of icons are used in the Indicators column of the Target Datastore panel:
Table 6-6 Execution Location Icons
Icon | Description |
---|---|
 | Source |
 | Staging area |
 | Target |
 | Error in the mapping. If this icon appears, select the target column in error and verify your input in the Property Inspector. |
Note that you can also use the Quick-Edit Editor to create and view an integration interface. See "Using the Quick-Edit Editor" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information.
The data loading strategies are defined in the Flow tab of the Interface Editor. Oracle Data Integrator automatically computes the flow depending on the configuration in the interface's diagram. It proposes default KMs for the data flow. The Flow tab enables you to view the data flow and select the KMs used to load and integrate data.
Loading Knowledge Modules (LKM) are used for loading strategies and Integration Knowledge Modules (IKM) are used for integration strategies.
You have to define the way to retrieve the data from the SRC_AGE_GROUP, SRC_SALES_PERSON files and from the SRC_CUSTOMER table in your source environment.
To define the loading strategies:
After defining the loading phase, you need to define the strategy to adopt for the integration of the data into the target table.
To define the integration strategies:
The KM options enable to control certain aspects of the integration strategy. For example, the FLOW_CONTROL option triggers the flow control operations of the data before inserting it into the target table.
Note: Only Knowledge Modules imported to your Project appear in the KM Selector lists. The demonstration environment already includes the Knowledge Modules required for the getting started examples. You do not need to import KMs into the demonstration Project.For more information on importing KMs into your Projects, see "Importing a KM" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator. |
In Section 6.1.3.7, "Define the Data Loading Strategies (LKM)" and Section 6.1.3.8, "Define the Data Integration Strategies (IKM)" you have specified the data flow from the source to the target. You must now define how to check your data (CKM) and the constraints and rules that must be satisfied before integrating the data.
To define the data control strategy:
true
. The Controls tab appears as shown in Figure 6-21.
The Pop. TRG_CUSTOMER interface is now ready to be executed.
This section contains the following topics:
This section describes the integration features and requirements the integration interface Pop. TRG_SALES is expected to meet.
The purpose of this interface is to load the SRC_ORDERS table of orders and the SRC_ORDER_LINES table of order lines from the Orders Application - HSQL model into the TRG_SALES target table in the Sales Administration - HSQL model. The data must be aggregated before it is integrated into the target table. Only orders whose status is CLO
are to be used.
However, the source data is not always consistent with the integrity rules present in the target environment. For this transformation, we want to cleanse the data by verifying that all of the constraints are satisfied. We want to place any invalid rows into an error table rather that into our target database. In our case, two important integrity rules must be satisfied:
The functional details for these rules and the procedure to follow are given in Section 6.2.3, "Creating the Integration Interface".
This section describes the integration interface Pop. TRG_SALES that will be created in this example. See Section 6.2.3, "Creating the Integration Interface" for more information.
The Pop.TRG_SALES interface uses the following data and transformations:
Table 6-11 Transformation Rules used in Pop. TRG_CUSTOMER
Target Column | Origin | SQL Rule | Execution Location |
---|---|---|---|
CUST_ID | CUST_ID from SRC_ORDERS | SRC_ORDERS.CUST_ID | Source |
PRODUCT_ID | PRODUCT_ID from SRC_ORDER_LINES | SRC_ORDER_LINES.PRODUCT_ID | Source |
FIRST_ORD_ID | Smallest value of ORDER_ID | MIN(SRC_ORDERS.ORDER_ID) | Source |
FIRST_ORD_DATE | Smallest value of the ORDER_DATE from SRC_ORDERS | MIN(SRC_ORDERS.ORDER_DATE) | Source |
LAST_ORD_ID | Largest value of ORDER_ID | MAX(SRC_ORDERS.ORDER_ID) | Source |
LAST_ORD_DATE | Largest value of the ORDER_DATE from SRC_ORDERS | MAX(SRC_ORDERS.ORDER_DATE) | Source |
QTY | Sum of the QTY quantities from the order lines | SUM(SRC_ORDER_LINES.QTY) | Source |
AMOUNT | Sum of the amounts from the order lines | SUM(SRC_ORDER_LINES.AMOUNT) | Source |
PROD_AVG_PRICE | Average amount from the order lines | AVG(SRC_ORDER_LINES.AMOUNT) | Source |
This section describes how to create the Pop. TRG_SALES integration interface. To create the Pop. TRG_SALES interface perform the following procedure:
Note that you can also use the Quick-Edit Editor to create an integration interface. See "Using the Quick-Edit Editor" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information.
To create a new integration interface:
The Interface Editor is displayed.
To insert the target datastore in the Pop. TRG_SALES interface:
The Pop. TRG_SALES interface example uses datastores from the Orders Application - HSQL model.
To add source datastores to the Pop. TRG_SALES interface:
This section describes how to define joins between the source datastores.
To create the join defined in Table 6-9:
A join linking the two datastores appears. This is the join on the order number.
The join has the following expression:
SRC_ORDERS.ORDER_ID=SRC_ORDER_LINES.ORDER_ID
In this example, only completed orders should be retrieved. A filter needs to be defined on the SRC_ORDERS datastore.
To define the filter:
SRC_ORDERS.STATUS = 'CLO'
In the Target Datastore panel of your interface, columns with names that match their sources are automatically mapped. The automatic mapping is done by the matching of the column names. Most of the transformation rules listed in Table 6-11 have been defined by the automatic mapping. In addition to this automatic mappings, you have to define the transformation rules for the following fields: FIRST_ORD_ID, FIRST_ORD_DATE, LAST_ORD_ID, LAST_ORD_DATE, QTY, AMOUNT, and PROD_AVG_PRICE.
To manually define a mapping of the target column:
Implement the following rules in the mappings:
MIN(SRC_ORDERS.ORDER_ID)
This transformation rule maps the minimum value of the ORDER_ID column in your SRC_ORDERS table to the FIRST_ORD_ID column in your target table.
MIN(SRC_ORDERS.ORDER_DATE)
This transformation rule maps the minimum value of the ORDER_DATE column in your SRC_ORDERS table to the FIRST_ORD_DATE column in your target table.
MAX(SRC_ORDERS.ORDER_ID)
This transformation rule maps the maximum value of the ORDER_ID column in your SRC_ORDERS table to the LAST_ORD_ID column in your target table.
MAX(SRC_ORDERS.ORDER_DATE)
This transformation rule maps the maximum value of the ORDER_DATE column in your SRC_ORDERS table to the LAST_ORD_DATE column in your target table.
SUM(SRC_ORDER_LINES.QTY)
This transformation rule maps the sum of the product quantities to the QTY column in your target table.
SUM(SRC_ORDER_LINES.AMOUNT)
This transformation rule maps the sum of the product prices to the AMOUNT column in your target table.
AVG(SRC_ORDER_LINES.AMOUNT)
This transformation rule maps the average of the product prices to the PROD_AVG_PRICE column in your target table.
Review carefully your mapping rules and make sure that you have defined the rules as shown in Figure 6-23.
Note that even though this example uses aggregation functions, you do not have to specify the group by rules: Oracle Data Integrator will infer that from the mappings, applying SQL standard coding practices.
In the Flow tab, Oracle Data Integrator indicates the various steps that are performed when the interface is executed.
In the Flow tab you define how to load the result of the orders and order line aggregates into your target environment with a Loading Knowledge Module (LKM).
To define the loading strategies:
After defining the loading phase, you need to define the strategy to adopt for the integration of the data into the target table.
To define the integration strategies:
In Section 6.2.3.7, "Define the Data Loading Strategies (LKM)" and Section 6.2.3.8, "Define the Data Integration Strategies (IKM)" you have specified the data flow from the source to the target. You must now define how to check your data (CKM) and the constraints and rules that must be satisfied before integrating the data.
To define the data control strategy:
true
: The Controls tab appears as shown in Figure 6-25.
The Pop. TRG_SALES interface is now ready to be executed.
This chapter describes how to work with Packages in Oracle Data Integrator. The Load Sales Administration package is used as an example. An introduction to Packages and automating data integration between applications is provided.
This chapter includes the following sections:
This section provides an introduction to automating data integration using packages in Oracle Data Integrator.
The automation of the data integration flows is achieved by sequencing the execution of the different steps (interfaces, procedures, and so forth) in a package and by producing a production scenario containing the ready-to-use code for each of these steps.
This chapter describes how to sequence the execution of the different steps. How to produce the production scenario is covered in Chapter 9, "Deploying Integrated Applications".
A Package is made up of a sequence of steps organized into an execution diagram. Packages are the main objects used to generate scenarios for production. They represent the data integration workflow and can perform, for example, the following jobs:
In this Getting Started exercise, you will load your Sales Administration application using a sequence of interfaces. Since referential constraints exist between tables of this application, you must load target tables in a predefined order. For example, you cannot load the TRG_CUSTOMER table if the TRG_CITY table has not been loaded first.
In the Section 7.2, "Load Sales Administration Package Example", you will create and run a package that includes interfaces that are included in the Demo project and interfaces that you've created in Chapter 6, "Working with Integration Interfaces".
A scenario is designed to put a source component (interface, package, procedure, variable) into production. A scenario results from the generation of code (SQL, shell, and so forth) for this component.
Once generated, the code of the source component is frozen and the scenario is stored inside the Work repository. A scenario can be exported and then imported into different production environments.
Note: Once generated, the scenario's code is frozen, and all subsequent modifications of the package and/or data models which contributed to its creation will not affect it. If you want to update a scenario - for example because one of its interfaces has been changed - then you must generate a new version of the scenario from the package. |
See "Working with Scenarios" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information.
In Chapter 9, "Deploying Integrated Applications", you will generate the LOAD_SALES_ADMINISTRATION scenario from a package and run this scenario from Oracle Data Integrator Studio.
This section contains the following topics:
The purpose of the Load Sales Administration package is to define the complete workflow for the loading of the Sales Administration application and to set the execution sequence.
The demo repository is delivered with a number of developments. The Demo project now contains the following developments as shown in Figure 7-1:
The Delete Targets procedure empties all of the tables in the Sales Administration application. This operation is performed by using a Delete statement on each table.
In order to load the Sales Administration application correctly (in accordance with the referential integrity constraints), the tasks must be executed in the following order:
Such an integration process is built in Oracle Data Integrator in the form of a Package.
This section describes how to create the Load Sales Administration Package. To create the Load Sales Administration Package perform the following procedure:
To create a new Package:
The Package Editor is displayed.
To insert the steps in the Load Sales Administration Package:
These components are inserted in the Package and appear as steps in the diagram. Note that the steps are not sequenced yet.
Once the steps are created, you must reorder them into a data processing chain. This chain has the following rules:
A Package has one entry point, the First Step, but several possible termination steps.
The Load Sales Administration Package contains only steps on Success.
Defining the First Step
To define the first step in the Load Sales Administration Package:
Note: If you have dragged and dropped the Package components in the order defined in Section 7.2.4.2, "Insert the Steps in the Package", the Delete Target procedure is already identified as the first step and the first step symbol is displayed on the step's icon. If this is the case, define the next steps on success. |
A small green arrow appears on this step.
Defining the Next Steps on Success
To define the next steps on success:
A green arrow representing the success path between the steps, with an ok label on it appears.
The resulting sequence appears in the Package diagram as shown in Figure 7-3.
The package is now ready to be executed.
This chapter describes how to execute the Load Sales Administration Package you have created in Chapter 7, "Working with Packages" and the intergration interfaces Pop. TRG_CUSTOMER and Pop. TRG_SALES you have created in Chapter 6, "Working with Integration Interfaces". This chapter also describes how to follow the execution and how to interpret the execution results.
This chapter includes the following sections:
This section contains the following topics:
To run the Load Sales Administration Package:
Oracle Data Integrator now starts an execution session.
Through Operator Navigator, you can view your execution results and manage your development executions in the sessions.
To view the execution results of the Load Sales Administration Package:
This section describes how to determine the invalid records detected by the Pop. TRG_CUSTOMER interface. These are the records that do not satisfy the constraints and have been rejected by the flow control of the Pop. TRG_CUSTOMER interface.
This section includes the following topics:
To determine the number of records that have been processed by the Pop. TRG_CUSTOMER interface (this is the number of inserts, updates, deletes, and errors):
Figure 8-2 shows the Record Statistics section of the Session Step Editor:
In this example, the resulting data are the 25 rows that have been inserted in the TRG_CUSTOMER table during the interface execution.
To view the data resulting of your interface execution:
Note that you can also select Data... to view and edit the data of the target table.
The View Data Editor is displayed as shown in Figure 8-3.
You can access the invalid records by right-clicking on the datastore in your model and selecting Control > Errors...
To review the error table of the TRG_CUSTOMER datastore:
The interface that you have executed has identified and isolated 9 invalid records in an error table that was automatically created for you.
In this error table, you can see that the interface rejected:
The invalid records were saved into an error table and were not integrated into the target table.
To rectify invalid data:
In the Data table, search for the client row having a CUSTID equal to 203
.
Note that you can sort the table by clicking on the column headers. If the customer 203 is not visible, click Refresh data in the menu toolbar to refresh the display.
208
. This CITY_ID is not listed in the SRC_CITY table. Double-click on the value of the CITY_ID column for this customer in order to modify it. Enter 107
in the CITY_ID field. The Pop. TRG_CUSTOMER interface is executed.
To review the processed records:
Figure 8-8 shows the Record Statistics section of the Session Step Editor.
Figure 8-7 Record Statistics of the Session Step Editor
This section contains the following topics:
The Pop. TRG_SALES integration interface has already been executed by the Load Sales Administration package in Section 8.1.1, "Run the Package". This section describes how to execute only the Pop. TRG_SALES interface.
To run the Pop. TRG_SALES integration interface:
Oracle Data Integrator now starts an execution session.
To view the execution results of your integration interface:
This section describes how to determine the invalid records. These are the records that do not satisfy the constraints and has been rejected by the flow control.
This section includes the following topics:
To determine the number of processed records:
Figure 8-9 shows the Record Statistics section of the Session Step Editor:
These 5 inserts are the 5 rows that have been inserted because of the changes you have performed in Section 8.1.3.4, "Correcting Invalid Data". Changing the CITY_ID of the customer with the CUST_ID = 203 to a CITY_ID that is listed in SRC_CITY table, adds the sales performed by the customer 203 to the TRG_SALES table. These 5 sales operations are highlighted in Figure 8-12.
Note that the customer with the CUST_ID = 203 actually performed 7 sales operations. You can identify these 7 operations as follows:
The highlighted order lines have the same PRODCT_ID and are merged into one line (line 23) in the TRG_SALES table shown in Figure 8-12.
Note that the Pop. TRG_SALES interface has already been executed in the Load Sales Administration package. This is why the TRG_SALES table now contains 62 rows and not only 5 inserts as shown in Figure 8-9.
To view the data resulting of your interface execution:
Note that you can also select Data... to view and edit the data of the target table.
The View Data Editor is displayed as shown in Figure 8-12.
You can access the invalid records by right-clicking on the datastore in your model and selecting Control > Errors...
To review the error table of the TRG_SALES datastore:
The interface that you have executed has identified and isolated 32 invalid records in an error table that was automatically created for you.
In this error table, you can see that the interface rejected:
The invalid records were saved into an error table and not integrated into the target table.
This chapter describes how to run the Load Sales Administration Package in a production environment.
This chapter includes the following sections:
The automation of the data integration flows is achieved by sequencing the execution of the different steps (interfaces, procedures, and so forth) in a package and by producing a production scenario containing the ready-to-use code for each of these steps.
Chapter 7, "Working with Packages" describes the first part of the automation process: sequencing the execution of the different processes in a Package.
This chapter describes the second part: how to produce a scenario that runs automatically the Load Sales Administration Package in a production environment.
To generate the LOAD_SALES_ADMINISTRATION scenario that executes the Load Sales Administration Package:
Scenarios can be executed in several ways:
This Getting Started describes how to execute a scenario from ODI Studio. See "Executing a Scenario" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator for more information about how to execute a scenario from a command line and a web service.
You can start a scenario from Oracle Data Integrator Studio from Designer or Operator Navigator.
To start the LOAD_SALES_ADMINISTRATION scenario from Oracle Data Integrator Studio:
The scenario is executed.
You can review the scenario execution in Operator Navigator, and find the same results as those obtained when the package was executed as described in Section 8.1.1, "Run the Package".
It is also possible to review the scenario execution report in Designer Navigator.
To view the execution results of the LOAD_SALES_ADMINISTRATION scenario in Designer Navigator:
This chapter provides information for going further with Oracle Data Integrator.
This chapter includes the following sections:
Congratulations! You have now completed an ETL project and learned about the fundamentals of Oracle Data Integrator.
In this Getting Started guide, you learned how to:
You have learned how to use Oracle Data Integrator for a typical Data Warehousing project. But Oracle Data Integrator is capable of addressing any type of data-driven integration, from batch to near-real-time, as for example:
Furthermore, in this Getting Started guide you have only seen Oracle Data Integrator connecting to a relational database and files. Oracle Data Integrator can also access and integrate all database systems, ERPs and CRMs, mainframes, flat files, LDAP directories, XML data sources, and so forth - all within the same toolset and using the same methodology.
Oracle Data Integrator is the only integration platform that unifies data, event, and service-based integration with a common declarative rules driven approach. It enables the enterprise to present a single view of its Information System, with a single, unified access model.
Some of the benefits that you will find from using Oracle Data Integrator include:
You can learn more about creating your own integration projects with Oracle Data Integrator in the guides listed in Table 10-1.
Table 10-1 Oracle Data Integrator Documentation
Document | Description |
---|---|
Oracle Fusion Middleware Installation Guide for Oracle Data Integrator | Provides Oracle Data Integrator installation information including pre-installation requirements and troubleshooting. |
Oracle Fusion Middleware Upgrade Guide for Oracle Data Integrator | Provides 11g upgrade information for Oracle Data Integrator. |
Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator | Provides guidelines for developers interested in using Oracle Data Integrator for integration projects. |
Oracle Fusion Middleware Connectivity and Knowledge Modules Guide for Oracle Data Integrator | Describes Oracle Data Integrator Knowledge Modules and technologies and how to use them in integration projects. |
Oracle Fusion Middleware Knowledge Module Developer's Guide for Oracle Data Integrator | Describes ho to develop your own Knowledge Modules for Oracle Data Integrator. |
You can find all Oracle Data Integrator documentation on the Oracle Data Integrator documentation page on the Oracle Technology Network, at:
http://www.oracle.com/technetwork/middleware/data-integrator/documentation/index.html
The Oracle Data Integrator home page on the Oracle Technology Network also provides the following resources to learn more about other features of Oracle Data Integrator:
To learn more about the new features that have been introduced in Oracle Data Integrator 11g, see "What's New in Oracle Data Integrator?" in the Oracle Fusion Middleware Developer's Guide for Oracle Data Integrator and the Release Notes.
Thank you for choosing Oracle Data Integrator!
 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. |