detectOmissions
FeatureOutputCompletedXml
FeatureUser's Guide for Technology Adapters
11g Release 1 (11.1.1.6.2)
E10231-10
March 2012
Documentation for Oracle SOA (Service-Oriented Architecture) developers that describes underlying concepts, context within SOA, and developng and deploying SOA JCA technology adapters.
Oracle Fusion Middleware User's Guide for Technology Adapters, 11g Release 1 (11.1.1.6.2)
E10231-10
Copyright © 2007, 2012 Oracle and/or its affiliates. All rights reserved.
Primary Author: Bob May
Contributor: Amandeep Mahajan, Bo Stern, Srimant Misra, Deepak Agarwal, Raghavendra Chandrashekar, Stephen Mcritchie, Michael Chiocca, Rod Fernandez, Sunil Gopal, Manas Panda, Sagar Shiruguppi, Vikas Anand, Sujay Bandyopadhyay, Syed Zarina, Anuj Kaushal, Ashish Mathur, Prateek Maheshwari, Dhaval B Shah, Sandeep Jain
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Fusion Middleware User's Guide for Technology Adapters is intended for anyone who is interested in using these adapters.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Fusion Middleware 11g Release 1 (11.1.1.4.1) documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.1.6.1, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.0, the last columns denote which documentation release contains the update.	
For a list of known issues (release notes), see the "Known Issues for for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html	
.	
Sections	Changes Made
---	---
Chapter 1 Introduction	
Section 1.1, "Features of Oracle JCA Adapters"	Added paragraph at beginning of chapter to provide a high level overview summary of Adapters
Chapter 2 Life Cycle	
Example 2-2, "Log Error When CorrelationId of the Receive Does not Match any Earlier Invoke"	Modifed text in this example to clarify how example works.
Table 2-2, "Translation Scenarios Supported for Oracle JCA Adapters"	Changed title to specify the scenarios are "Translation" scenarios and changed a row in the table from "Case" to "Scenarios"
Section 2.19.3, "Use the Web Logic Server Console to Create a New Connection"	Added subsection
Chapter 4 File ad FTP Adapter	
Section 4.5.12, "Creating a Synchronous BPEL Composite using File Adapter"	Added subsection, "Creating a Synchronous BPEL Composite using File Adapter"
Section 4.5.12, "Creating a Synchronous BPEL Composite using File Adapter"	Added subsection "Changing the Connection Factory JNDI Dynamically in Ftp Adapter"s
Section 4.5.13, "Changing the Sequencing Strategy for FILE/Ftp Adapter"	Added subsection, "Changing the Sequencing Strategy for FILE/Ftp Adapter"
Section 4.5.12.2, "Retrieving the Details of the File from an Outbound Write Operation"	Added subsection, "Retrieving the Details of the File from an Outbound Write Operation"
Section 4.4.3.2.3, "Creating an Oracle Wallet"	New subsection relating secure FTP and Oracle Wallet.
Section 4.4.3.2.4, "Setting Up the Oracle FTP Adapter"	Revised table in section to reference Oracle Wallet and clarified additional definitions.s
Chapter 6 Native Format Builder Wizard	
Changes to text for clarification	X
Section 6.5, "Command Line Tool for Testing NXSD Translator"	Added section to provide information on Command Line Tool for Testing NXSD Translators
Chapter 8 Oracle JCA Adapter for JMS	
Revised Chapter for clarity.	
Section 8.4.10.5, "Configuring Request-Reply in JMS Adapter"	Added this section
Chapter 9 Oracle JCA Adapter for Database	
Modifications to wording for clarity.	X
Section 9.3.1, "Transaction Support"	Added specifics about samples related to this subsection, specifically Transaction Support.
Section 9.8.3, "Database Adapter/Coherence Integration"	Added section on Coherence Integration with Database Adapter.
Appendix A Oracle JCA Adapter Properties	
Added additional summary paragraph at beginning of Appendix to clarify purpose of Appendix.	X
Section A.4, "JCA Properties for Oracle JMS Adapter: Normalized Properties"	Added more text to the description of jca.jms.JMSProperty.name
This chapter provides an introduction to Oracle JCA-compliant adapters, which enable you to integrate your business applications, and which provide a robus, lightweight, highly-scalable and standards-based integration framework for disparate applications to communicate with each other. The chapter provides context for the JCA Adapters within today's business application processing.	
With the growing need for business process optimization, efficient integration with existing back-end applications has become the key to success. To optimize business processes, you can integrate applications by using JCA 1.5 compliant resource adapters. Adapters support a robust, light weight, highly scalable, and standards-based integration framework, which enables disparate applications to communicate with each other. For example, adapters enable you to integrate packaged applications, legacy applications, databases, and Web services. Using Oracle JCA Adapters, you can ensure interoperability by integrating applications that are heterogeneous, provided by different vendors, based on different technologies, and run on different platforms.	
For more information on Open Service Bus-specific adapter configuration, see the Oracle® Fusion Middleware Developer's Guide for Oracle Service Bus, JCA Transport section:	
http://docs.oracle.com/cd/	
E23943_01/dev.1111/e15866/jca.htm#OSBDV924	
This chapter includes the following sections:	
Oracle JCA Adapters provide the following benefits:	
For more information, see Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server.	
In addition, adapters can be deployed on the JBoss and WebSphere platforms.	
Oracle JCA Adapters include:	
Figure 1-1 illustrates the different types of adapters.	
Oracle technology adapters integrate Oracle Application Server and Oracle Fusion Middleware components such as Oracle BPEL Process Manager (Oracle BPEL PM) or Oracle Mediator components to file systems, FTP servers, database queues (advanced queues, or AQ), Java Message Services (JMS), database tables, and message queues (MQ Series).	
These adapters include:	
Oracle technology adapters are installed as part of Oracle Fusion Middleware.	
This section includes the following topics:	
For more information, see:	
Oracle technology adapters are based on J2EE Connector Architecture (JCA) 1.5 standards and deployed as a resource adapter in the same Oracle WebLogic Server as Oracle Fusion Middleware. Oracle Adapter for Oracle Applications consists of the same architecture as Oracle technology adapters. Figure 1-2 illustrates the architecture of Oracle technology adapters.	
Figure 1-2 Oracle Technology Adapters Architecture	
During design time, Oracle technology adapters use Oracle JDeveloper (JDeveloper) to generate the adapter metadata. Binding configuration files consist of J2CA-centric XML markup. The J2CA binding configuration files are used by the JCA Binding Component to seamlessly integrate the J2CA 1.5 resource adapter with Oracle Fusion Middleware.	
For more information about integration of Oracle technology adapters with Oracle Fusion Middleware, see Section 3.2, "Adapter Integration with Oracle Fusion Middleware."	
Example 1-1 Generating WSDL and Binding Configuration Files for Oracle JCA Adapter for Database	
By using JDeveloper, you can configure Oracle JCA Adapter for Database. This adapter helps you to perform data manipulation operations, call stored procedures or functions, and publish database events in real time. To configure adapter definitions, drag and drop Database Adapter from the Component Palette to the External References swim lane.	
Figure 1-3 shows how to browse through the Import Tables window to select the required tables for the adapter.	
Figure 1-4 shows how to specify the WSDL settings for Oracle JCA Adapter for Database.	
Next, you must establish a database connection, select an operation type, and select the required tables. The run-time connection parameters are specified in the weblogic-ra.xml	
file and linked to a Java Naming and Directory Interface (JNDI) name, which is specified during design time. Figure 1-5 shows the creation of a new database connection.	
Figure 1-5 Creating a New Database Connection	
Finally, JDeveloper generates a WSDL file and a binding configuration file with the J2CA binding for the Oracle JCA Adapter for Database, as shown in Figure 1-6.	
The run-time component of Oracle technology adapters is the J2CA 1.5 resource adapter for the specific back-end application. Oracle technology adapters are deployed in the J2CA container of the Oracle WebLogic Server. Oracle Fusion Middleware integrates with these J2CA 1.5 adapters through the JCA Binding Component, which converts Web service messages into J2CA interactions and back.	
Oracle Fusion Middleware uses the JCA Binding Component to integrate the request-response service (J2CA outbound interaction) with a SCA composite reference and publish the adapter events to a SCA composite service.	
For more information about integration with Oracle Fusion Middleware, see Chapter 3, "Adapter Integration with Oracle Application Server Components".	
Oracle technology adapters are deployed as J2CA 1.5 resource adapters within the same Oracle WebServer container as that of Oracle Fusion Middleware during installation. Although Oracle technology adapters are physically deployed as J2CA 1.5 resource adapters, their logical deployment involves creating the connection factory entries for the J2CA 1.5 resource adapter by editing the weblogic-ra.xml	
file and using JDeveloper during design time. By using JDeveloper, you specify the JNDI name, which acts as a placeholder for the connection used when your composite is deployed to the Oracle WebLogic Server. This placeholder enables you to use different databases for development and later production. However, for the logical deployment changes (that is, only if you are creating a new outbound connection) to take effect, the WebLogic Server container process should be updated. However, if you are updating any outbound connection property for an existing JNDI, then you must restart the Oracle WebLogic Server. To avoid a server restart when you update an outbound connection property for an existing JNDI, refer to Section 2.19, "Adding or Updating an Adapter Connection Factory."	
Legacy adapters integrate Oracle Application Server with legacy and mainframe applications using legacy communication protocols.	
These adapters include:	
Legacy adapters are available as part of the OracleAS Adapters CD.	
This section includes the following topics:	
For more information, see:	
Legacy adapters include the following components in the architecture	
Figure 1-7 illustrates the architecture of legacy adapters.	
Changed Data Capture (CDC) adapters also have the same architecture.	
Oracle Connect is a component that resides on the legacy and mainframe platforms. It consists of native adapters for communicating with the mainframe application and data stores. Oracle Connect consists of the following components:	
Server Processes	
Oracle Connect consists of multiple servers to process client requests.	
Native Adapters	
Oracle Connect consists of various embedded native adapters to communicate with Tuxedo and IMS-TM transaction systems, and database drivers to communicate with various databases and file systems on mainframe systems such as VSAM and IMS-DB. The native adapters convert application structures, such as the legacy COBOL applications data, to and from XML. The XSD schema is used for precise mapping between mainframe data and standard XML data.	
Daemon	
Daemon is an RPC-based listener that manages and maintains multiple server configurations. It runs on every computer running Oracle Connect and handles user authentication and authorization, connection allocation, and server process management.	
When a client requests for a connection, the daemon allocates a server process to handle this connection. The allocated server process may be a new process or any process that has been running. Further communication between the client session and the server process is direct and does not involve the daemon. However, the daemon is notified when the connection ends and the server process is either killed or being used by another client.	
The daemon supports multiple server configurations called workspaces. Each workspace defines accessible data sources, applications, environment settings, security requirements, and server allocation rules. The daemon authenticates clients, authorizes requests for a server process within a certain server workspace, and provides clients with the required servers. The allocation of servers by the daemon is based on the workspace that the client uses. Thus, a client can access a data source using one workspace, where a server process is allocated from an existing pool of servers, or the client can access a data source using a different workspace, where a new server process is allocated for each client request. A fail-safe mechanism enables the specification of alternate daemons, which function as a standby for high availability.	
Repository	
Oracle Connect supports a repository for storing the XML-based schema and configuration information. There is a single repository for each Oracle Connect instance. The repository stores the following information:	
Oracle Studio is the design-time tool for configuring the Oracle AS Adapters for mainframes. It enables you to configure the services, events, and connection information for native adapters. The configuration information is stored in the Oracle Connect repository on the legacy or mainframe application. In addition, it enables you to do management and monitoring of Oracle Connect. The Oracle Studio is available only on the Windows platform. The Oracle Studio is based on the Eclipse GUI framework.	
The J2EE Connector Architecture (J2CA) adapter forwards the WebLogic Server application client requests to the Oracle Connect application. Oracle Connect communicates with the mainframe application and forwards the response back to the J2CA adapter. The response might contain the transaction data or might contain the exception data if the request generated an error. Oracle Fusion Middleware integrates with Oracle Connect through the J2CA Legacy adapter.	
To configure legacy adapters during design time, use Oracle Studio, as shown in Figure 1-8.	
Example 1-2 Configuring OracleAS Adapter for Tuxedo	
Using Oracle Studio, you can configure OracleAS adapter for Tuxedo, as shown in Figure 1-9 and Figure 1-10.	
Figure 1-9 Configuring OracleAS Adapter for Tuxedo	
Figure 1-10 Selecting the Types of Interactions for OracleAS Adapter for Tuxedo	
During run time, WSDL files generated during design time are consumed by the integrating components. For example, Oracle Fusion Middleware uses the JCA Binding Component to integrate the request-response service (J2CA outbound interaction) with a BPEL Invoke activity and to publish the events to a BPEL process receive activity.	
For more information, see Section 3.2, "Adapter Integration with Oracle Fusion Middleware."	
Packaged-application adapters integrate the Oracle Application Server with various packaged applications, such as SAP and Siebel.	
These adapters include:	
Packaged-application adapters are available as part of the OracleAS Adapters CD.	
This section includes the following topics:	
For more information, see:	
Packaged-application adapters can be deployed as J2EE Connector Architecture (J2CA) 1.5 resource adapters or as Web service servlets within the Oracle WebLogic Server container. Packaged-application adapters support the Web Service Definition Language (WSDL) and Simple Object Access Protocol (SOAP) interface, in addition to a J2CA interface. J2CA and Web service deployments of packaged-application adapters should have a repository project. In J2CA deployment, the resource adapter points to a repository project that can contain multiple back-end connection objects. The deployment descriptor, weblogic-ra.xml	
, points to the J2CA repository project and the connection name to access within the J2CA repository project. In the WSDL deployment, the WSDL repository project consists of a set of WSDL files that describe the adapter metadata.	
Note: Only the following packaged-application adapters support WSDL and SOAP extensions in this release:	
The architecture of packaged-application adapters consists of OracleAS Adapter Application Explorer (Application Explorer), J2CA 1.5 resource adapter, and Business Services Engine (BSE).	
Figure 1-11 illustrates the architecture of packaged-application adapters:	
Figure 1-11 Packaged-Application Adapters Architecture	
This section describes the components of the packaged-application adapter architecture.	
This section includes the following topics:	
Application Explorer is a Java swing-based design-time tool for configuring packaged-application adapters. Using Application Explorer, you can configure the back-end application connection, browse the back-end application schemas, and expose these schemas as adapter services. Application Explorer is shipped with packaged application-specific plug-ins for browsing the back-end application-specific metadata.	
You can use Application Explorer to create repository projects for either OracleAS Adapter J2CA or BSE. Each repository project can consist of multiple back-end application connections. The schemas are represented as either XML Schema Definition (XSD) for the OracleAS Adapter J2CA interface or as a WSDL with SOAP binding.	
Application Explorer works with BSE, which is deployed in the Oracle WebLogic Server container of the Oracle Application Server. BSE uses SOAP as a protocol for accepting requests from clients, interacting with the back-end application, and sending responses from the back-end application back to clients.	
The J2CA 1.5 resource adapter consists of a Channel component for receiving back-end events.	
Application Explorer is used to configure packaged-application adapters during design time. This tool is used to create a repository project for the J2CA 1.5 resource adapter, which contains a list of back-end connections. Application Explorer exposes back-end metadata as XSD and WSDL with J2CA extensions. The XSD metadata is used by the Oracle WebLogic Server application clients for integration through the J2CA Common Client Interface (CCI) Application Programming Interface (API). The WSDL with J2CA extension is used for integration with Business Process Execution Language for Web Services (BPEL) Process Manager. The BSE metadata can be defined as WSDL or SOAP.	
Figure 1-12 shows the Application Explorer.	
Example 1-3 Generating XML Request Schema for OracleAS Adapter for SAP	
You can use Application Explorer to establish a connection for OracleAS Adapter for SAP. To establish such a connection, you must first define a target to OracleAS Adapter for SAP, as shown in Figure 1-13 and Figure 1-14.	
Figure 1-13 Selecting OracleAS Adapter for SAP	
Figure 1-14 Defining a Target to OracleAS Adapter for SAP	
After you have explored the SAP business function library and have selected an object, you can use Application Explorer to create the XML request schema and the XML response schema for that function. To view the XML for each schema type, select the required tab, as shown in Figure 1-15:	
The run-time components of packaged-application adapters include J2CA 1.5 resource adapter, BSE, and servlet. The WebLogic Server application clients use the CCI API to directly interface with the J2CA 1.5 resource adapter. The J2CA 1.5 resource adapter integrates with Oracle Fusion Middleware through the JCA Binding Component. During run time, the JCA Binding Component translates the Oracle Fusion Middleware service requests to J2CA calls and back based on the adapter metadata (WSDL and binding configuration) configured during design time.	
During run time, the WSDL files generated during design time are consumed by the integrating components. For example, Oracle Fusion Middleware uses the JCA Binding Component to integrate the request-response service (J2CA outbound interaction) with a BPEL process invoke activity and to publish adapter events to a BPEL process receive activity.	
For more information about integrating with Oracle Fusion Middleware, see Section 3.2, "Adapter Integration with Oracle Fusion Middleware".	
Packaged-application adapters are deployed as J2CA 1.5 resource adapters within the WebLogic Server J2CA container during installation. The adapter must be in the same WebLogic Server container as Oracle BPEL PM for integration.	
You can integrate any Web service client with the BSE servlet. The BSE exposes the underlying back-end functionality as Web services, which can be either WSDL or SOAP. Oracle BPEL PM can integrate with the BSE layer, as well, through WSDL and SOAP binding.	
BSE is deployed as a servlet within the WebLogic Server container during installation. BSE can be remotely located and need not be in the same container as the Oracle BPEL PM.	
Oracle Applications are built on a unified information architecture that consolidates data from Oracle and non-Oracle applications and enables a consistent definition of customers, suppliers, partners, and employees across the entire enterprise. This results in a suite of applications that can give you information, such as current performance metrics, financial ratios, profit and loss summaries. To connect Oracle Applications to non-Oracle applications, you use Oracle Adapter for Oracle Applications.	
Note: Adapter for Oracle Applications is also informally known as Oracle E-Business Suite Adapter	
Oracle Adapter for Oracle Applications provides comprehensive, bidirectional, multimodal, synchronous, and asynchronous connectivity to Oracle Applications. The adapter supports all modules of Oracle Applications in Release 12 and Release 11i including selecting custom integration interface types based on the version of Oracle E-Business Suite.	
The architecture of the Oracle Adapter for Oracle Applications is similar to Oracle technology adapters.	
For more information, see:	
Adapters provide the following types of services to facilitate communication between applications:	
Adapters support the synchronous request-response service. The adapters receive requests from adapter clients, translate these requests into the native back-end data format, and call the appropriate method in the back-end application. In addition, the request-response service retrieves the back-end response to the JCA Binding Component after performing reverse translation. In J2CA terminology, this type of service is also known as outbound interaction.	
You can use the request-response service to create, delete, update, and query back-end data, and to call back-end workflows and transactions. For example, a WebLogic Server application client can use OracleAS Adapter for SAP to create a customer within the SAP application.	
Figure 1-16 illustrates the request-response service.	
Adapters support the event-notification service, which is an asynchronous communication paradigm. In J2CA terminology, this type of service is also known as inbound interaction.	
Adapters either listen or poll for back-end event changes. When listening for events, an adapter registers as a listener for the back-end application that is configured to push events to the adapter. The adapter can also poll the back-end application, which is usually a database or file, for the events required by the client application.	
You can use the event-notification service to keep a track of back-end events associated with successful back-end transactions for creating, deleting, and updating back-end data.	
Figure 1-17 illustrates the event-notification service.	
The adapter metadata definition stores information about the back-end connection and schemas for business objects and services. Adapters consist of a design-time component for browsing and storing metadata and a run-time component for running services. The adapter metadata definitions are generated as XML Schema Definition (XSD), WSDL, and binding configuration files. Figure 1-18 illustrates the metadata interaction.	
This chaper describes the installation, starting and stopping, error handling, configuration and deployment of Oracle JCA Adapters that integrate with Oracle Fusion Middleware through the JCA Binding Component.	
Oracle JCA Adapters are based on J2EE Connector Architecture (J2CA) 1.5 standards and deployed in the Oracle Containers for Java EE. The life cycle of Oracle JCA Adapters depend on Oracle Fusion Middleware. These adapters integrate with Oracle Fusion Middleware through the JCA Binding Component.	
This chapter includes the following sections:	
Oracle Technology Adapters and Oracle Adapter for Oracle Applications are available as part of the Oracle Fusion Middleware install. These adapters support both Oracle Containers for Java EE and middle tier deployments. For more information, see the Oracle Fusion Middleware Installation Planning Guide.	
Legacy adapters and packaged-application adapters are available as part of the Oracle Fusion Middleware Adapters and Connectors CD. These adapters support middle tier deployment only.	
Note: Before installing any adapter, "System Requirements and Supported Platforms for Oracle Fusion Middleware 11gR1" document on the following page:	
Oracle JCA Adapters are deployed as JCA 1.5 resource adapters. Therefore, to start or stop an adapter, every resource adapter must implement the start	
(BootstrapContext)	
and stop	
methods as part of the SPI interface. Oracle JCA Adapters are started when an SOA composite using them starts a JCA outbound interaction. Adapters can also be started when an SOA composite is itself loaded for inbound interactions or when adapters publish events to the Oracle BPEL process.	
Once you have started an adapter, you can stop the adapter by shutting down the Oracle Containers for Java EE or by stopping the J2EE application within Oracle Fusion Middleware. In this release, the JCA Binding Component acts as a part of the JCA 1.5 container.	
You can define an adapter interface in the Adapter Configuration Wizard Adapter Interface page, as shown in Figure 2-1, by using either of the following methods:	
Figure 2-1 The Adapter Configuration Wizard Adapter Interface Page	
This section describes how to define an adapter interface by importing an existing WSDL. You can use this feature to create an adapter service or reference by using existing WSDLs. The option to choose an existing WSDL is supported for the following adapters only:	
If you select the option of defining the adapter interface by importing an existing WSDL, then some functionalities on subsequent wizard pages are disabled. For example, since the WSDL defines the operation name and the message schema, the subsequent operation name and schema element fields are automatically filled in and you cannot modify it, as shown in Figure 2-2. However, if you do not choose to use an existing WSDL, then the adapter wizards behaves exactly as before.	
Figure 2-2 Operation Page for Oracle AQ Adapter with Fields Automatically Populated	
The Adapter Configuration Wizard for Oracle MQ Series Adapter, Oracle JMS Adapter, and the Oracle AQ Adapter appears different from the other adapters. These adapters have the additional option to select a callback including the port type and operation.	
Subsequent options in the Adapter Configuration Wizard are enabled or disabled depending on the port types and operations you select.	
For example, while using the Adapter Configuration Wizard for defining the Oracle MQ Series Adapter, if a callback is selected, only the Send Message to MQ and Get Reply/Reports and the Get Message from MQ and Send Reply/Reports Asynchronous options are enabled.	
If a callback is not selected, only the Put Message into MQ and Get Message from MQ options are enabled.	
If a WSDL operation that has a synchronous reply is selected, only the Get Message from MQ and Send Reply/Reports Synchronous option are enabled. When you use an existing WSDL, the options to use CICS or IMS schemas are disabled.	
Note: The most common approach to importing an existing WSDL is to first create an Oracle BPEL process or a Mediator, and then define their WSDL files from schemas (or NXSD). After this is done, adapter services are created, and the WSDL file generated for the BPEL process or the Mediator component is imported as the existing WSDL file. However, you must keep in mind that this feature works only for those messages which use schema element. Simple and complex types are not supported.	
Oracle JCA Adapters expose the underlying back-end operation-specific properties as message header elements and enable the manipulation of these elements within a business process.	
As the properties are exposed, you can add, delete, or revert Oracle JCA Adapters properties from the Fusion Middleware Control Console. However, depending on the type of property, you must redeploy your composite application to apply the property change.	
Table 2-1 lists the types of message header properties you can configure and whether redeployment is required.	
Table 2-1 Oracle JCA Adapters Property Types	
Property Type	Description
---	---
Activation specification and interaction specification	Activation specification properties operate as services and interaction specification properties operate as references in a SOA composite application.
Endpoint	These are tuning-related properties that are not exposed through the activation or interaction specification properties, such as specifying time outs, thresholds, maximum intervals, and so on.
For more information, see Appendix A, "Oracle JCA Adapter Properties".	
Oracle JCA Adapters are deployed as JCA 1.5 resource adapters in an Oracle Containers for Java EE container. Adapters are packaged as Resource Adapter Archive (RAR	
) files using the Java Archive (JAR) format.	
The physical deployment of adapters involves using the RAR	
file to register the adapters as connectors with the underlying WebLogic Server or the middle tier platform.	
The RAR	
file contains the ra.xml	
file, which is the deployment descriptor XML file containing deployment-specific information about the resource adapter. In addition, the RAR	
file contains declarative information about the contract between Oracle Containers for Java EE and the resource adapter.	
In addition to the ra.xml	
file in the.rar	
file, adapters package the weblogic-ra.xml	
template file. The weblogic-ra.xml	
file is used to define resource adapter ConnectorFactory	
objects (logical deployment). The weblogic-ra.xml	
file is the Oracle Containers for EE-specific deployment descriptor for a resource adapter. It contains deployment configurations for deploying resource adapters to the WebLogic Server, which includes the back-end application connection information as specified in the deployment descriptor of the resource adapter, Java Naming and Directory Interface (JNDI) name to be used, connection pooling parameters, resource principal mapping mechanism, and configurations.	
File	Contents
---	---
RAR file	Contains deployment-specific information about resource adapter Contains declarative information about the contract between the Oracle Containers for Java EE and the resource adapters
Defines resource adapter Contains deployment configurations for deploying resource adapters to the WebLogic Server Provides back-end application connection information as specified in the deployment descriptor of the resource adapter Provides the Java Naming and Directory Interface (JNDI) name to be used Provides the connection pooling parameters Provides a resource principal mapping mechanism Provides configuration information	
For more information, see:	
You must establish connectivity between the design-time environment and the server to which you want to deploy. To establish such connectivity, you must create an application server connection.	
The following are the steps to create an application server connection:	
The New Gallery page is displayed, as shown in Figure 2-3.	
A list of the different connections that you can make is displayed in the Items pane on the right side of the New Gallery page.	
The Create Application Server Connection page is displayed, as shown in Figure 2-4.	
Figure 2-4 The Create Application Server Connection Name and Type Page	
AppsServerConnection1	
. The Authentication page is displayed, as shown in Figure 2-5.	
Figure 2-5 The Create Application Server Connection Authentication Page	
The Create Application Server Connection Configuration page is displayed, as shown in Figure 2-6.	
Figure 2-6 The Create Application Server Connection Configuration Page	
The Create Application Server Connection Test page is displayed, as shown in Figure 2-7.	
Figure 2-7 The Create Application Server Connection Test Page	
You have created a server connection.	
You deploy an SOA composite application from JDeveloper.	
JDeveloper requires the use of profiles for the SOA projects and applications to be deployed. This section describes how to create and deploy such profiles with JDeveloper.	
This section specifically describes how you deploy an application profile for the SOA project and the application. To deploy the application, you must perform the following steps:	
The SOA Deployment Configuration dialog is displayed.	
Figure 2-8 Application Profile Deployment	
Figure 2-9 The SOA Deployment Configuration Dialog	
The Authorization request dialog is displayed.	
Enter the user name and password, and then click OK.	
The project is compiled and deployed to the Managed Server. You can view the deployment log clicking the Deployment tab in the design area.	
To redeploy the same version of a SOA composite application, you cannot change the composite name. You can deploy with the same revision number if you selected the Overwrite any existing composites with the same revision ID check box on the SOA Deployment Configuration dialog. However, if you do not do so, then the following error message is deployed in the deployment log:	
This section describes how to manually deploy any adapter RAR file that does not have a jar file associated with it.	
If you deploy any adapter RAR file that only contains META-INF/ra.xml	
and META-INF/weblogic-ra.xml	
and also does not contain the jar file adapter required for creating JNDIs, then while deploying, you must change the deployment order to a higher value (say 500) so the Oracle WebLogic Server can deploy this RAR file after the jar file of this adapter is loaded.	
For example, to deploy the DBAdapter_NewJndis.rar	
file that contains only META-INF/ra.xml	
and META-INF /weblogic-ra.xml	
and does not contain the jar file adapter (DbAdapter.jar	
) required while instantiating the new JNDIs, you can follow a specific procedure.	
Note: In this case, after deploying the	
Use the following steps to manually deploy an adapter RAR file that does not have a jar file associated with it:	
http://	
servername	
:	
portnumber	
/console	
. The Home page of the Oracle WebLogic Server Administration Console is displayed.	
The Oracle WebLogic Server Administration Console Summary of Deployments page is displayed.	
The Install Application Assistant page is displayed.	
The Optional Settings page is displayed.	
The Review your choices and click Finish page is displayed.	
The Settings page is displayed.	
500	
. This ensures that the newly deployed RAR file is always loaded after the supporting classes are loaded by the Oracle WebLogic Server.	
If the Adminserver is running on computer A and the Oracle SOA server is running on computer B, you must copy the deployment plan file to computer B before you activate changes made on the Oracle SOA server.	
If you try to activate changes without copying the deployment plan to the Oracle SOA Server computer, a NullPointerException	
is thrown.	
All the JCA files generated by the Adapter Configuration Wizard have a reference to the JNDI name. The reference is defined in the weblogic-ra.xml	
file, which is the adapter's deployment descriptor.	
The JNDI name is the key when you want to migrate from a development environment to a test environment to a production environment.	
You must update the weblogic-ra.xml	
file to have the same JNDI name in all three environments: development, testing, and production.	
You should specify values for deployment time properties, such as retry interval and retry count, and then redeploy to testing environment or production environment.	
The weblogic-ra.xml	
identifies the end point as a development EIS or testing EIS or production EIS. For example, consider that when running through the Database Adapter Service Wizard, you specify eis/DB/custStore	
as the JNDI name for the createCustomer	
service.	
After modeling the composite by using this adapter service, you should deploy it to the development, test, or production environments without making any changes. But before you deploy, ensure that you have a corresponding JNDI entry for eis/DB/custStore	
in each of your various environments pointing to the right EIS instance.	
To summarize:	
weblogic-ra.xml	
file weblogic-ra.xml	
file to have the same JNDI name in all your environments in which it is deployed. weblogic-ra.xml	
deployment descriptor to specify values for deployment time properties, such as retry interval and retry count. This file also identifies the end point's environment. This section describes how adapters ensure that messages are not lost.	
Transactional adapters allow the Enterprise Information System (EIS) to participate in one-phase or two-phase commits (local transactions or global/distributed transactions).	
Non-transactional adapters implement their own schemes to ensure delivery, without the use of transactional semantics.	
This section describes:	
For more information, see:	
The goal of XA is to allow multiple resources (such as databases, application servers, message queues, transactional caches) to be accessed within the same transaction. XA uses a two-phase commit to ensure that all resources either commit or rollback any particular transaction consistently.	
The XA specification describes what a resource manager must do to support transactional access. Resource managers that follow this specification are said to be XA-compliant.	
XA transactions are part of the scenario you use when you want to work with multiple resources: for example, or two or more databases, or a database and a JMS connection, or all of these plus the adapter, all in a single transaction.	
Transactional adapters enable XA transaction support, which, along with the inherent data processing, ensures that each modification has a clearly defined outcome, resulting in either success or failure, thus preventing potential corruption of data, It ensures execution independently from other changes, and, when completed, leaves underlying data in the same state until another transaction takes place.	
XA is a two-phase commit protocol, more robust than a one-phase commit or emulated protocol. With a one-phase, or emulated, protocol, you can see message loss or other rollback/commit inconsistency.	
An XA transaction is a transaction started by an application server's transaction manager. All XA resources must participate in any active global transaction, and only commit or rollback when provided a signal by the transaction manager. If a failure to commit occurs after the signal is received, a recovery mechanism must also exist to ensure the commit eventually happens.	
A non-participating local resource can start and end a local transaction irrespective of an active global transaction. The commit can be done immediately and is not in response to a signal from the transaction manager. If the commit fails, the transaction is rolled back instead, with an exception thrown. No special recovery is required for that transaction because there is no other resource with which to synchronize its commit.	
Adapters define the type of transaction support by specifying the transaction-support element in the ra.xml	
deployment descriptor file.	
Adapters support global transactions in the JCA 1.5 XA contracts that leverage the underlying application server transaction manager.	
The types of adapters that leverage the underlying application transaction manager includes Oracle Adapter for Oracle Applications, Database, Advanced Queuing, JMS and MQSeries Adapters.	
Non-transactional adapters, which do not leverage the underlying transaction manager, include Oracle File Adapter and Oracle FTP Adapter.	
A global transaction can be marked rolled back by any parties that participate in the global transaction. Once a party marks the global transaction for rollback, other parties cannot revoke the rollback,	
The fault type indicates if the errors are retryable. If retryable, the retries are governed by the JCA retry properties. Refere to the error handling section. If the error is deemed unretryable, the handling of such an error is governed by the fault policy, in which case the fault policy gets executed. This is the same for both inbound and outbound adapters.	
Actions performed by a fault policy are in its local transaction and not in the global transaction.	
Specifically, the fault policy, running in its own transaction, commits any existing JTA transaction before it starts executing a particular Reference (for example, in Oracle BPEL PM it is an Invoke activity). The pre-existing JTA transaction is not suspended and then committed.	
Exercise care when using non-transactional adapters, including Oracle File Adapter and Oracle FTP Adapter, with transactional adapters, as retries can affect non-transactional data, including creating duplicate messages. The type of care you need to exercise can include, for example, modelling business processes so message duplicates do not occur.	
For additional information on topics related to retryability, see Section 2.21.1, "Handling Rejected Messages," and following sections.	
jca.count.retry	
indicates. Prior to the retry, a rollback can occur. An example could be where there is a BPEL fault in a synchronous process, or where there is a partial update to a database with master and child records and a temporary database fault occurs, and the toplink mapping logic decides a retry is acceptable. In other words, a global retry can occur if data is not tainted and it can be considered an explicit retry, where a rollback is needed. In the following sections, asynchronous and synchronous transactions are illustrated through a canonical combination set of adapters, JMS and DB, with BPEL technology intermediary. The example could employ other adapters, and other intermediaries, for example, the Mediator.	
For an asynchronous service entry point, a transactional adapter initiates a global JTA transaction before sending an inbound message to the composite.	
The example described below uses a test composite bound to the JMS adapter, which is bound to a composite bound in this example to BPEL which in turn is wired to a DB Adapter. BPEL dispatches messages to the DB adapter.	
In this example, messages are read from JMS by the polling JMS Adapter and written to the BPEL process, where there the transaction commits. This is JTA1, the first XA transaction.	
For any BPEL activity errors that, however, could not be retried or which exhausted their retry count, BPEL writes to its recovery table to store information. This information includes BPEL errors.	
The second transaction, JTA2, begins with the DB Adapter reading from the BPEL dispatch table, obtaining the database insert argument. and writing an update message to the DB Adapter. This transaction, JTA 2, proceeds Outbound from the reference endpoint DB Adapter (that is, Outbound from SOA) to the Database itself. Retry situations from a duplicate data situation in the Database are retried either back from the DB Adapter to BPEL's table, or from the database back to the DB Adapter.	
Global retries for any error handling are returned to the BPEL Receive activity instance, for example, or, more generally, to the point at which the transaction started. Such a retry could occur if there was an error such as a temporary database fault. The default retry count is by default indefinite, or specified in the jca.retry.count	
property.	
If any errors are caught as part of the second XA transaction, JTA2, a rollback occurs.	
For a synchronous process, the global transaction initiated by the adapter spans both:	
As with asynchronous transaction flow, the default retry count is indefinite, but can be specified through jca.count.retry	
.	
Synchronous transaction flow is similar to the asynchronous flow, with these differences:	
Using a similar example as that used in the synchronous example, and keeping in mind that an example synchronous message flow, parallel to the one used in the asynchronous example, consists of only one JTA transaction, JTA 1, throughout the transaction, processing is straightforward. The transaction starts with a polled message Inbound to the service endpoint, a JMS read message that then writes to the BPEL process.	
Unlike the situation with the asynchronous transaction, with a synchronous transaction, the JTA transaction does not commit at this point.	
Instead, the same JTA transaction proceeds Outbound from the reference endpoint DB Adapter to the Database itself. The message is then read from BPEL, and the DB Adapter is invoked with the insert argument from BPEL.At this point the JTA transaction commits.	
As with asynchronous transactions, retries can be global and subject to a count indicated in the jca.retry.count	
property. In this example, faults which are locally retryable are tried either from the database back to the BPEL process or from the Database back to the DB Adapter.	
Inbound the adapter runs in an autonomous work thread; the adapter is in charge of connection recovery, and uses its own retry properties (for example, adapter.jms.retry.interval	
).	
A transactional adapter initiates a global JTA transaction before sending an inbound message to a composite.	
For transactional adapters, retries can either be local retries (for example, a BPEL remote fault), global, or no retry (similar to a binding fault). Global retries are returned to the location where the transaction started. The default retry count is again, by default, indefinite, but are retriable only as the jca.retry.count	
specifies.	
When control returns to the adapter, the adapter commits the JTA transaction, and executes the following set of actions as an atomic unit of work.The adapter:	
If anything fails during this set of commit actions, that is, in removing the message and executing the composite instance, both actions are rolled back.	
All outbound transaction composite activities, including Oracle JCA adapter invocations, are part of a global transaction, and if an error occurs the default behavior is that all activities are either committed or rolled back.	
For example, a BPEL process can insert data into several tables (on different databases) through different Invoke activities (invoking the Database adapter).	
When the BPEL instance is about to finish, the JTA transaction is committed.	
Only at that point are the database insert operations be committed.	
However, if errors occur during the BPEL instance execution, all activities (and thus database operations) are rolled back to the last BPEL dehydration point (the last time the BPEL instance was stored to a database.)	
Whether an outbound transaction is retryable depends on the nature and scope of a specific interaction. Specifically:	
jca.retry	
but also could be subject to any BPEL fault handling retry parameters. jca.retry.count).	
An example for a connectivity retryable error related to an outbound interaction is where a database listener might not have started and, accordingly, that state might be issuing connection errors.	
Oracle WebLogic Server migration is used on WebLogic platform so that if a managed server fails, the server automatically restarts on the same or another physical system and inbound adapters specific to a composite on the failed server resume functioning.	
Meanwhile, inbound adapters in other cluster members continue working servicing messages.	
For more information, see:	
The JCA Binding Component supports active fail over of inbound Adapter Services.	
To enable this fail over feature for a given inbound adapter endpoint, you must add the singleton	
JCA service binding property in the composite.xml	
within the <binding.jca>	
element and set it to a value of true	
as Example 2-1 shows.	
To disable this feature, set the singleton	
property to a value of false	
(or remove the property from the <binding.jca>	
element).	
Example 2-1 singleton Property in composite.xml	
In an Oracle WebLogic cluster, multiple activations of the same (for example, JMS) adapter (inbound) endpoint (for a specific composite service) are detected implicitly and automatically by all instances of the adapter framework active in that cluster.	
However, only one activation is allowed to start the reading or publishing of messages.	
The JCA Binding Component instances choose one among the activations, randomly the activation that assumes the Primary Activation responsibility.	
The other activations (also called instances) in the Oracle WebLogic cluster initiate to a hot stand-by state, without invoking EndpointActivation	
on the JCA resource adapter. These activations can be reassigned primary activation responsibility.	
If a primary activation at some point becomes unresponsive, is deactivated manually, or crashes or exits, any of the remaining JCA Binding Component members of the Oracle WebLogic cluster immediately detect the deactivation, and reassign the primary activation responsibility to an activation agent that is in stand-by state.	
For more information, see Section 2.12, "Composite Availability and Inbound Adapters".	
You can use Native Correlation to correlate an inbound asynchronous message with a previous outbound message, by defining a callback interface (for a Reference) or by a mid-process BPEL Receive:	
For example, the following composite defines such a correlation:	
The jca	
file must contain both JCA interaction and JCA activation.	
The correlation between the request and the response is done transparently by the JCA binding run-time.	
For a JMS use case, the third party application must copy the JMS message ID from the request message to the JMS CorrelationID of the response message.	
For the Oracle AQ Adapter and Oracle JMS Adapter use cases, if an external application copies the MessageId	
from the request (Invoke) message to the CorrelationId	
of the response (Receive) message, the adapter framework ensures that the BPEL correlation occurs.	
However, when the CorrelationId	
of the Receive message does not match any earlier Invoke message, the message is mapped to a BPEL conversation that does not actually exist.	
In this case, although the message is persisted in the database, the SEVERE	
log message can occur, as Example 2-2 shows:	
Example 2-2 Log Error When CorrelationId of the Receive Does not Match any Earlier Invoke	
You can explicitly alter the adapter framework behavior so that it rejects nonmatching native correlation IDs by adding the rejectUncorrelatedMessages	
service binding property to the composite.xml	
file as shown in Example 2-3.	
Example 2-3 Setting the rejectUncorrelatedMessages Property	
When rejectUncorrelatedMessages	
is set to true	
, uncorrelatable Receive messages are rejected by the adapter framework; that is, the messages are pushed back to the publishing JCA resource adapter.	
By default, this property is set to false	
.	
For more information, see:	
System resources are finite and have a threshold limit for processing. The Oracle SOA Suite, dependent on system resources, also has certain size limitations, largely due to the underlying resources beyond which the system cannot process incoming requests.	
For example, Oracle JCA Adapters can process large payloads but the Oracle BPEL PM consumes huge memory when processing large payloads, which can cause OutOfMemory	
conditions and affect the whole system.	
You must set the payload threshold for Oracle JCA Adapters to avoid errors such as OutOfMemory	
. Setting the payload threshold helps ensure that Oracle JCA Adapters process payloads that are less than the threshold limit and reject others that are not less than the threshold limit. This section provides information relative to your consideration of the relative size of payloads.	
If the native size of the payload is available, then the pertinent adapters use the native size of the payload to limit the payload size below the threshold limit.	
For example, with Oracle File Adapter, the native size (size of file polled) is available to the adapter, and if it is greater than the payload size threshold then the file is rejected.	
If the native size of payload is not available, for example, as is the case for the Oracle Socket Adapter, the adapter must calculate the native size of the payload internally.	
Native size can be determined internally if you use the native translation library to translate non-XML or parse serialized XMLs.	
The Oracle Database Adapter does not rely on the translation framework but has a special inbuilt handling mechanism to calculate the size of native messages.	
Caution: In case of debatching with error recovery, payload size threshold must be used carefully. Payload size violations might lead to unwarranted rejections while skipping the stream in case of erroneous records.	
You can set the payload threshold by using the knob exposed by Oracle JCA Adapters. The knob can be set in the composite.xml	
file as a binding property for the adapter service, as shown in the following sample:	
Where the native size of the payload is not available and if the specific adapter does not use the native translation library, you cannot enforce the payload size threshold limit. For example, in case of xml-debatching, where the Oracle File and FTP Adapters pass a chunk of file content and the actual native size is not known, payload size threshold limit cannot be used. Also, where there are serialized XML payloads and where XDK parser that lacks the feature to calculate native size is used for parsing instead of the native translation library, you cannot use payload size threshold limit.	
XSD and Opaque translator scenarios can only be handled in adapters where the payload size is deterministic. For more information on the scenarios that are supported for specific Oracle JCA Adapters, refer to Table 2-2.	
Table 2-2 Translation Scenarios Supported for Oracle JCA Adapters	
Scenario	Oracle File and FTP Adapters
---	---
NXSD	Yes
XSD	Yes
Opaque	Yes
DTD	No
Also, you can set the global property for capping payload size to change the default value of payloadSizeThreshold	
(from indefinite) to a finite number. In this case, where you set the default value of payloadSizeThreshold	
to a finite number, even if you do not explicitly configure a value for the payloadSizeThreshold	
property for a particular inbound adapter endpoint, the global default takes effect. If you specify the global default along with the value in composite.xml	
, then the value specified in composite.xml	
overrides the global value.	
You can modify this global property using the MBeans browser (Adapter Mbean) of the Oracle Enterprise Manager. This change takes immediate effect for all current and future endpoints	
Oracle JCA Adapters support large payload processing for both inbound and outbound processing. However, only the following adapters support the streaming feature explicitly:	
For more information, see Section 4.5.4, "Oracle File Adapter Scalable DOM".	
For more information, see Section 7.2.11, "Stream Payload Support".	
For more information, see "Supports Streaming Large Payload".	
For more information, see Section 9.3.5, "Streaming Large Payload".	
The other adapters do not have explicit support for both.	
The batching and debatching functionality is supported for these adapters:	
Oracle JCA Adapter for File and Oracle JCA Adapter for FTP consist of a Reader	
to debatch a single large file into several batches. You must specify the batch size during the design-time configuration. In addition, the adapter includes a Writer to batch a set of messages into a single file. For more information, see Section 4.2.4, "File Debatching".	
Oracle JCA Adapter for Databases consists of a Publish component to poll a set of tables to detect events. This component can raise events to the BPEL process one record at a time or multiple records at a time. For more information, see Section 9.4.2.2, "Polling Strategies".	
The logical deployment of adapters implies the creation of ConnectionFactory	
objects in the weblogic-ra.xml	
deployment descriptor file. The weblogic-ra.xml	
file contains run-time connection parameters for an adapter.	
To add the connection information and assign to a JNDI name, you must edit the corresponding weblogic-ra.xml	
file of the resource adapter by either using Oracle WebLogic Server Administration Console or WLST scripts.	
For more information about creating a connection factory, see Oracle Fusion Middleware Installation Guide for Oracle WebLogic Server.	
The following steps describe how to set up a Database connection factory in the Oracle WebLogic Server Administration Console.	
This section includes the following topics:	
To create a data source:	
http://	
servername	
:	
portnumber	
/console	
. The Home page of the Oracle WebLogic Server Administration Console is displayed.	
The Summary of JDBC Data Sources page is displayed.	
Enter the following values for the properties to be used to identify your new JDBC data source:	
Retain the default value for Database driver.	
The Create a New JDBC Data Source Test Database Connection page is displayed.	
The Summary of JDBC Data Sources page is displayed. This page summarizes the JDBC data source objects that have been created in this domain. The Data Source that you created is displayed in this list.	
To create a connection pool:	
http://	
servername	
:	
portnumber	
/console	
. The Home page of the Oracle WebLogic Server Administration Console is displayed.	
The Summary of Deployments page is displayed.	
The Settings for DbAdapter page is displayed.	
The Outbound Connection Pool Configuration Table is displayed.	
The Create a New Outbound Connection page is displayed.	
eis/DB/soademoDatabase	
. Note: The JNDI value that you enter in this step is different from the same value that you entered in Step 5 in Section 2.18.1, "Creating a Data Source." The JNDI name specified in this step must match the value you enter in your database connection you create when building your application later.	
The Settings for DbAdapter page showing a table of Outbound Connection Pool groups and instances for this resource adapter is displayed.	
The configuration changes that you made must be stored in a new deployment plan. You do this in the next step.	
Note: If the Adminserver is running on computer A and the Oracle SOA server is running on computer B, then you must copy the deployment plan file to computer B before you activate changes made on the Oracle SOA server. If you try to activate changes without copying the deployment plan to the Oracle SOA Server computer, a	
In the Properties field, enter the value for xADataSourceName	
as jdbc/soademoDatabase	
Note: The properties do not get saved when you click Save as mentioned in this step. Instead, you must press Enter in the keyboard to save the changes you made.	
The Summary of Deployments is displayed.	
The Update Application Assistant page is displayed.	
The Summary of Deployments page stating that the deployment you selected is updated is displayed.	
Notice that the value of the xADataSource	
property that you entered in Step 11 is displayed in the Connection Factory Interface tab.	
Note: If you are adding a new value for the outbound connection pool, then you do not have to restart the Managed server or the Admin server. However, if you edit any property of an existing connection pool, you must restart the server.	
You can add a new adapter connection factory or update an existing adapter connection factory.	
If you add or update an adapter connection factory, you must perform any of the following procedures to ensure that the composite uses the new adapter connection factory properties.	
Follow these steps:	
The composite takes the properties from the newly-created JNDI.	
To create a Config Plan, right-click composite.xml in the JDeveloper design area. From the menu that appears, click Generate Config Plan. The Config Plan is generated.	
For example, in the following sample, jndi-name	
is the logical JNDI name:	
For example, in the following sample, the logical JNDI name, jndi-name	
is replaced by the absolute value, eis/MQ/MQSeriesAdapter7	
:	
When a composite uses new adapter connection factory properties, you must perform the following steps to avoid an Oracle Containers for Java EE restart:	
The Oracle WebLogic Server Administration Console Summary of Deployments page is displayed.	
The Update Application Assistant page is displayed.	
The Summary of Deployments page stating that the deployment you selected is updated is displayed. You can use this procedure to change adapter endpoints, for example, without having to perform a restart.	
You can use the Web Logic Console to create connection factories for use with JMS. Refer to Section 8.4.1.4.1, "Creating a New Connection by Using the Oracle WebLogic Server Administration Console"	
This section describes the recommended setting for non-XA and XA data sources used by Oracle JCA Adapters.	
The following are the recommended settings for multi data sources:	
test-frequency-seconds	
should be 5 algorithm-type	
should be Load-Balancing data-source-list	
should point to a list of comma-delimited child data sources. For example, ("JDBC Data Source-0,JDBC Data Source-1")	
If your endpoint property resides in an Oracle RAC database, use multi-data sources.	
Table 2-3 lists the recommended setting for XA and non-XA data sources used by Oracle JCA Adapters.	
Table 2-3 Recommended Setting For XA and Non-XA Data Sources	
XA Data Sources	Non-XA Data Sources
---	---
The driver used is	The driver used is
The JDBC URL should be in the following format: jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=host-vip)(PORT=1521))(CONNECT_DATA=(SERVICE_NAME=service_name)(INSTANCE_NAME=inst1)))	Same as that of XA data source.
You must set the following property <property> <name>oracle.net.CONNECT_TIMEOUT</name> <value>10000</value> </property>	Same as that of XA data source.
The value of	Same as that of XA data source.
The value of	Same as that of XA data source.
The value of	Same as that of XA data source.
The value of	Same as that of XA data source.
The value of	Same as that of XA data source.
The value of	Same as that of XA data source.
The value of	The value for
The value of	NA
The value of	NA
The value of	NA
Note: The settings mentioned in Table 2-3 are applicable to both types of database, single instance and an Oracle RAC database. In case of an Oracle RAC database, these settings must be used for constituent data sources for multi data sources created for endpoints. See the Oracle RAC Documentation at	
In addition to applying the settings mentioned in Table 2-3, you must perform the steps documented in "Using Oracle Thin/XA Driver" in the Oracle Fusion Middleware Programming JTA for Oracle WebLogic Server	
These steps are required for data sources using XA driver. After performing the steps mentioned in the preceding link, you must run the following SQL statements to enable WLS JTA recovery to work:	
The Oracle JCA Adapters provide error handling capabilities, as listed in the following sections. These rejection handlers are applicable in synchronous processes only. They do not apply to asynchronous or one-way processes.	
This section includes the following topics:	
The messages that error out before being posted to the service infrastructure are referred to as rejected messages. For example, the Oracle File Adapter selects a file having data in CSV format and tries to translate it to XML format (using NXSD). If there is any error in the translation, this message is rejected and are not be posted to the target composite.	
Primarily, adapters and binding components are the generators of rejected messages.	
Errors or faults that arise downstream in a synchronized flow are handled in the following manner by the inbound adapter:	
jca.retry.count	
(if configured) and then rejected when the retries are exhausted. Adapters reject messages that error out at the binding level; that is, they error out before entering the Service Infrastructure layer.	
All rejected messages are stored in the Database with the payload. The rejected messages can later be queried against.	
This section includes the following topics:	
For more information, see Section 2.14, "Correlation Support Within Adapters".	
In the 10.x release, rejection handlers were defined in the deployment descriptor (bpel.xml	
) of an Oracle BPEL process.	
However, in the 11g release, you must define rejection handlers by using fault policies.	
You can specify only one action handler for inbound rejection handlers.	
You must create two files named fault-policies.xml	
and fault-bindings.xml	
, and copy them to the SOA project directory in JDeveloper, as described in the following steps:	
fault-policies.xml	
file, stored with the composite.xm	
l file in the JDeveloper project directory. The following is an example of a fault policy:	
fault-bindings.xml	
, as is done in the following example: fault-policies.xml	
and the fault-bindings.xml	
files to your SOA composite project directory. Note: If you do not configure rejection handlers as mentioned in Section 2.21.1.1, "Configuring Rejection Handlers", a default file-based rejection handler starts processing and the rejected messages is directed to Also, you can configure rejected messages with a Mediator Component in the same fault policy as that of Oracle BPEL Process Manager (Oracle BPEL PM).	
Rejected messages are stored in the rejected_message	
table.	
You can check for rejected messages by using either of the following steps. You can obtain the messages and perform additional processing on them, according to your own implementation.	
To check from the database, you must connect to the database as soainfra schema, and run the following SQL command:	
You can view the rejected messages in the Recent Faults and Rejected Messages section of the Dashboard tab or in the Faults and Rejected Messages tab.	
For more information about using the Fusion Middleware Control Console for checking for rejected messages, see:	
This section describes how to handle message errors through a sample scenario.	
There are two composites, Composite 1 and Composite 2 each having an Oracle BPEL process and there is a mix of local and XA resources, as shown in Figure 2-10.	
Figure 2-10 Sample Scenario: Handling Message Errors	
When the message is successfully delivered to all the queues (Q1, Q2 and Q3), the transaction commits successfully.	
If the message cannot be delivered to Q1 (or to any queue) but the message is delivered to queues Q2 and Q3, the transaction must roll back all the three messages because all are XA resources and there is an exception in an XA unit.	
The rollback exception is thrown only for the second composite where Q1 failed, and the transactions commits Q2 and Q3 instead of rolling back the messages for all the three queues.	
To have the transaction roll back all the queues even if only one fails, and for the other two have messages successfully delivered to them, you must make the change in the composite.xml	
file of the called composite (Composite2) as Example 2-4 shows:	
Example 2-4 Changes in composite.xml of Composite2	
This sets the property bpel.config.transaction	
to the value of required	
, which causes the transaction to roll back all the queues even if only one fails.	
If you set property bpel.config.transaction	
to a value of required	
, the Oracle BPEL engine effectively processes the synchronous request without creating a new transaction; rather, it uses the caller's transaction. Therefore, if at any point the transaction gets rolled back, nothing done in that transaction commits.	
You can indicate the way inbound adapters should handle errors by specifying rejected message handlers.	
You can create rejection handlers to handle message errors. Message errors include those that occur during translation, correlation ID mismatch and XML parsing after message reception.	
Before considering error handling in terms of retryability, it is important to understand the error handlers that are available.	
The following are the system-defined error handlers, which you can configure through fault policies:.	
A rejected message can be handled by calling a Web Service. If you choose to use a Web Service to handle these errors, you should implement a predefined WSDL interface implemented by the target service, SOAP bindings for the Web service invocaiton, and native payloads passed as WebService-attachments, as shown in the following example:	
You can enqueue a rejected message to a JMS queue as a JMS message with the appropriate context and payload, as shown in the following two examples.	
The first example uses a standalone database:	
The second example is used with an Oracle RAC database:	
You create an error handler for messages by storing a rejected message in a file. You can store the payload with the proper context, as shown in the following example. The Payload file is created at the configured location.	
Error payload persistence in the Database is available by default. Only the File Adapter handler creates a metadata file that contains all the properties of the rejected message.	
For example, for the Oracle File Adapter, this metadata file could include information such as the inbound direction and file name. The location of metadata file is same as the payload file and the naming pattern is <FILE_NAME>_metadata	
.	
For resubmitting rejected messages, payload persistence is imperative. Payloads are stored in the Database and a facility to view the payloads is available through the Fusion Middleware Control Console. The message/payload is provided in full to each configured error handler, in addition to providing the payload to the default error handler.	
Inbound retryable errors are typically transient connectivity errors. Only retryable errors for a synchronous process thrown by the outbound binding is subject to retry by the inbound adapter (an indefinite number of times by default, which is limited by setting the jca.retry.count	
property). Any JTA transaction is rolled back before a retry.	
Examples of retryable errors thrown by outbound adapters include connection errors but include also termporary permission errors or resource constraint errors, or both.	
Errors such as "Data already exists" (for example, Primary Key Errors) are not retryable. In addition, message correlation ID errors are not retryable.	
When a set number of retries have been exhausted, the rejection mechanism handles the error.	
You can configure inbound adapters to handle inbound retryable errors. The following properties, which you can specify in the composite.xml	
file, are supported for retryable exceptions for inbound interactions:	
By default, there is unlimited retry for inbound errors; however, adapter retry is either at the level of the composite (local) application or at the global level.	
Once you have configured properties in the composite, at the service level, the configuration of the properties has meaning. (For example, when you configure the number of retries before rejection, the value of the interval property takes its default value.)	
Properties you can specify in the composite.xml file include:	
jca.retry.count	
Specifies the maximum number of retries before rejection. Again, specifying this value is a pre-requisite to specifying the other property values.	
jca.retry.interval	
Specifies the time interval between retries (measured in seconds.)	
jca.retry.backoff	
Specifies the retry interval growth factor (positive integer.)	
jca.retry.maxInterval	
Specifies the maximum value of retry interval, that is, a cap if backoff > 1	
You can modify the composite application's xml descriptor to specify properties that apply to retries. The preceding list of properties are specified in the composite.xml file in JDeveloper, as shown in the following example:	
For retryable exceptions, you must set the value of jca.retry.count	
to the number of times the retry is to be carried out.	
For example, if you set the value of jca.retry.count	
to 10, the retry occurs 10 times.	
However, if you have not set any value for jca.retry.count	
, the retry is carried out indefinitely, which is the default for retryable errors.	
Note: Infinite retries by inbound adapters for errors results in the creation of multiple composite instances, because for every retry a separate composite instance is created.	
You can change the global property for capping retries to alter the default value of jca.retry.count	
from an indefinite to a finite number.	
In this case, where you set the default value of jca.retry.count	
to a finite number, even if you do not explicitly configure a value for the jca.retry.count	
property for a particular inbound adapter endpoint, the global default takes effect.	
If you specify the global default along with the value in the composite.xml, the value specified in the composite.xml	
overrides the global value.	
You can modify the global property using the MBeans browser (Adapter Mbean) of the Oracle Enterprise Manager. Any change you do through the MBeans browser takes immediate effect for all current and future endpoints.	
To modify the global property using the MBeans browser (Adapter Mbean) of the Oracle Enterprise Manager, you must use the following procedure:	
http://	
servername	
:	
portnumber	
/em	
. The Fusion Middleware Control Console displays its home page.	
The soa-infra page is displayed.	
The System Mbean Browser page is displayed.	
Figure 2-12 The soa-infra Page: System MBean Browser	
Typically non-retryable errors are a result of either transformation or message parsing.	
Inbound adapters handle non-retryable errors thrown from the Enterprise Information System by rejecting the inbound messages. If the error is a non-retryable error, you must use the rejection handler to handle the non-retryable error.	
Examples of non-retryable errors thrown from interaction with an Enterprise Information System include the following:	
Non-retryable errors do not resolve themselves until after the operation is retried. For example, messages can be sent from a file to an inbound file adapter through a Mediator. The Mediator, in turn, has sequential routing to an outbound Database Adapter that inserts data to a database table. The DB adapter might encounter a unique constraint error as it is performing the insert operation. This unique constraint error is:	
A mediator could have errors on a transformation. This type of error is a non-retryable error. The error returns to the inbound adapter where it is handled, depending on the signature of the WSDL.	
Outbound Interaction errors occur with messages that have interactions outbound from an adapter.	
This section addresses the retryability and non-retryability of these Outbound Interaction errors and provides a basis for understanding the related properties you can set.	
Outbound retryable errors can be retried based on the value of jca.retry.count	
in the composite.xml	
file.	
For retryable exceptions for outbound error handling, you must set the value of jca.retry.count	
to the number of times the retry is to be carried out.	
For example, if you set the value of jca.retry.count	
to 10, the retry occurs 10 times.	
However, if you have not set any value for jca.retry.count	
, the retry is carried out by the fault policy, if you have included the fault policy as part of the composite.	
The following code snippet is an example of how to set values in the composite.xml	
file for retryable exceptions for outbound interactions.	
The retry is set to 5 minutes with an interval of 1 minute, and the other properties are appropriately configured. As stated before, the additional properties have meaning when the jca.retry.count	
property is specified.	
You can handle non-retryable exceptions for outbound interactions by defining the maximum number of reconnection attempts that can be made in the fault-policy.xml	
file, which establishes the expected behavior for non-retryable errors.	
In this fault policy file, you specify the parameters for reconnection attempts, as shown in the following example. This includes:	
retryCount	
) retryInterval	
) exponentialBackoff	
) All time measurements are specified in seconds.	
<condition>	
<action ref="ora-retry"/>	
</faultName>	
</condition>	
<Actions>	
<retry>	
<retryCount>10</retryCount>	
<retryInterval>2</retryInterval>	
<exponentialBackoff>2</exponentialBackoff>	
</retry>	
</Action>	
</Actions>	
You must associate a fault policy with a reference end point of the composite in fault-bindings.xml	
file, as shown in the following example, with the faultPolicy	
ConnectionFaults	
and the reference name writeMessageToQueue	
.	
After the configured number of retries is reached without a positive result, the Service Infrastructure Invocation exception is thrown.	
The propagation of the type of the Service Infrastructure Invocation exception is important to allow inbound adapters to respond to errors reported by outbound adapters.	
Figure 2-13, "Fault Propagation" shows the fault propagation when an adapter calls the service infrastructure synchronously, after which the Oracle BPEL Process Manager calls a down-stream adapter.	
In this figure, a Service Infrastructure Invocation exception propagates from the down-stream adapter, through Oracle BPEL Process Manager, and to the caller adapter.	
There are two cases where the fault policy mechanism does not work:	
The fault policy mechanism does not work for outbound adapters in XA mode.	
For example, in XA mode, if you want the fault policy to retry when the outbound adapter fails, it does not retry and any outbound adapter that has been successful before this failure occurred does not rollback messages.	
Fault policies also do not work for the outbound adapter that is invoked in Mediator sequential routing, because the mediator fault policies are applicable to parallel routing rules only.	
You can run and test instances of deployed SOA composite applications from Oracle Enterprise Manager Grid Control Console. Running and testing your instances this way enables you to:	
For more information about testing applications, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.	
Set the trace level for the following types of adapters as follows:	
TRACE:32	
in the logger oracle.soa.adapter	
. For more information about setting trace levels for adapters, see Oracle Fusion Middleware Administrator's Guide.	
Loglevel	
property for packaged-application adapters in the weblogic-ra.xml	
file. To set the trace level by using the Fusion Middleware Control Console:	
http://	
servername	
:	
portnumber	
/em	
. The Fusion Middleware Control Console home page is displayed.	
The console displays a menu.	
Figure 2-14 Navigating to the Log Configuration Page	
The Log Configuration page is displayed.	
Note: To ensure that log levels persist across component restarts, select Loggers With Persistent Log Level State from the View list. By default, the log level is set for run-time loggers. Run-time loggers do not persist across component restarts.	
For more information, see Section 2.24, "Viewing Adapter Logs".	
You can view the logs for Oracle JCA Adapters as follows:	
LogManager	
interface of the JCA Binding Component, which redirects log files in the Oracle Diagnostic Logging (ODL) format. For both outbound and inbound interactions, the log files are redirected to the soa-diagnostic.log	
file. The log files for the Oracle SOA Suite that is deployed to the server-soa	
managed server are located in:	
MW_HOME/user_projects/domains/domain_name/servers/server-soa/logs/soa-diagnostic.log	
For more information about searching and viewing log files, see Oracle Fusion Middleware Administrator's Guide.	
LogManager	
interface because it is not part of the J2CA 1.5 standard. Therefore, for system components the log outputs are redirected to ORACLE_INSTANCE	
\diagnostics\logs\component_type\component_name	
. For outbound interactions, the logs are directed to the same location. On the other hand, for inbound interactions, logs are redirected to soa-diagnostic.log	
.	
For more information, see Section 2.23, "Setting the Trace Level of Oracle JCA Adapters".	
You can configure a Custom JCA Adapter wizard as a generic adapter wizard within the JDev IDE that reads and displays its interaction/activation specs, properties and default values from a configuration file. The wizard enables you to select the specs, override the default property values, and add new properties. The Custom Adapter wizard has several purposes:	
customAdapter-config.xml	
to use the Custom Adapter. After the SOA jdev extension is installed, the Custom Adapter java source files can be found in <JAVA_HOME>	
/jdeveloper/integration/adapters/samples/custom	
When you select SOA as an installable option with JDev, by default the Custom Adapter is not available. To ensure that the Custom Adapter is available, edit the<JDEV_HOME>\jdeveloper\integration\seed\soa\configuration\ soa-config.xml	
file, search for "custom", and uncomment its <adapterType>	
element. The JDEV Component Palette displays the Custom Adapter for the SOA Diagram.	
The <JDEV_HOME>\jdeveloper\integration\seed\soa\configuration\ customAdapter-config.xml	
file contains the detailed options for the Custom Adapter (connection-factory location, interaction-spec className, activation-spec className, and properties).	
The properties within an activation-spec are properties that are specific to an inbound adapter. The properties within an interaction-spec are the properties specific to an outbound adapter. The property values are the default values shown by the Custom Adapter. See the screenshots below for examples.	
You can modify the contents of the customAdapter-config.xml	
to match options needed by your custom run-time adapter. For example, you can change all property names and their default values, add new properties, or add multiple activation or interaction specs.	
The displayResourceKey	
and resourceBundle	
attributes are optional. If an activation-spec, interaction-spec, or property element has a displayResourceKey	
, the attribute value is used as a key to retrieve displayable text from a resource bundle. If a resource bundle is not available or the key is not found in the bundle, the key itself is used as the displayable text (it is not required to have a resource bundle). The resource bundle you want to use can be specified by putting the resourceBundle	
attribute on the connection-factory element.	
Here is an example of a customAdapter-config.xml	
that has been modified.	
When you drag-and-drop the Custom JCA Adapter icon to the Exposed Service or External Reference swimlane within JDev, the IDE displays the Adapter Configuration Welcome Page. You can then select Next to begin the Custom Adapter Configuration Wizard workflow.	
The next screen displays the service type and name, similar to the way it occurs with the Configuration Wizards of other adapters. This screen enables you to provide the name of a Service that makes sense in the Adapter you are configuring.	
If the config.xml	
file contains a <connection-factory>	
entry (as required by the custom run-time adapter), the Wizard displays the Connection Information page displaying the default Connection Factory Location. If the config.xml	
does not contain a <connection-factory>	
entry (not required by the custom run-time adapter), the Wizard does not display this page.	
Figure 2-18 Adapter Configuration Wizard Connection Information Screen	
The next screen is the Adapter Interface Screen, which displays information in a similar manner to the configuration wizard for other Adapters. This screen provides you a way to either define a new WSDL from an operation and schema you provide later, or import an existing WSDL, using the WSDL name, port type and operation.	
Figure 2-19 Custom Adapter Wizard Adapter Interface Screen	
The next screen enables the user to choose the type of interaction: Inbound or Outbound. If Outbound Interaction is selected, the Wizard provides a list of Interaction Class names (or translated display names as seen in this example) from which to choose. You earlier provided these names in the customAdapter-config.xml	
file.	
Figure 2-20 Custom Adapter Configuration Wizard Operation Screen (Inbound Choice)	
The following screen enables you to specify the name and value of JCA properties. Depending on the Class Name chosen, the screen displays the properties associated with that class in the customAdapter-config.xm	
l file. You can use this screen to change any of the default values and to add or delete properties.	
Figure 2-21 Custom Adapter Configuration Wizard JCA Properties Screen	
The next screen is the Custom Adapter Wizard Messages Screen, which behaves in a way similar to that of other Adapter Configuration Wizards, enabling you to define the message for the Read File operation, by either specifying a Schema or by declaring that the schema is opaque.	
Figure 2-22 Customer Adapter Configuration Wizard Messages Screen	
The next page is the Final screen for the Custom Adapter Configuration Wizard. The name of the WSDL files you created is displayed on the screen.	
Figure 2-23 Custom Adapter Configuration Wizard Final Screen	
Following are some frequently asked questions about adapters.	
Why would composite applications are time out? Enough time has been provided for your composite applications to execute with adapters, but applications are still timing out.	
A contributing factor is the WebLogic timeout value. The timeout value of the WebLogic Server JTA must be taken into account when you use adapters with your business processing.	
For example, you have set the Timeout Seconds	
value at 30 seconds. You should increase the value of the Oracle WebLogic JTA attribute Timeout Seconds	
from its default of 30 to something greater, something that makes sense in the overall context of your business processing. You can use the WebLogic Server Console to change the JTA transaction timeout value by navigating in this fashion: WLS Console -> SOADomain -> Configuration -> JTA	
Transactional Adapters, such as the Oracle JMS Adapter execute within a JTA transaction. A transaction ensures that one or more operations execute as an atomic unit of work.	
If an operation within a transaction fails, all operations are rolled-back so that the application is returned to its prior state. Depending on whether the business process logic is defined as stateful or stateless, there may be one or more transactions in a given business process.	
Non-transactional adapters implement their own schemes to ensure delivery, without the use of transactional semantics.	
The Service Engine obtains a file from an inbound directory, processes the file, and sends the processed file to an output directory. The inbound adapter is limited to translation (if there is one configured) and publishing the translated content which is processed as a part of the business scenario. The business scenario can use the adapter to write to an output directory. However, during this process, if a failover occurs in as a response to a disaster, the file may be lost because of the nontransactional nature of the Oracle File Adapter. As a result, some files read by the inbound adapter might not be sent to the output directory. Of course, when you have a a single node cluster (or no cluster), failover is not an option.	
The file adapter is not configured for high availability to avoid message loss, but rather to ensure consistent access to the file system and load balancing across cluster nodes. If you have a single node setup, you do not need a high availability setup for the File adapter, and it does not loose messages.	
Consequently, because it is non-transactional, you must configure the Oracle File Adapter for high availability, to ensure that files are not duplicated during a failover. The file adapter never loses messages, but might duplicate some (during disaster recovery).	
Additionally, if you have processing scenarios that include Transactional and Non-Transactional Adapters, you must ensure file integrity within the part of your processing that is Non-Transactional.	
The JMS adapter can also function with just local transactions; that is, a transaction that begins and commits independently from and within the boundary of a (global) JTA transaction, that is. the local transaction only spans the actual invocation of the adapter.	
Rejected messages are stored in the database (specifically, in the rejected_message	
table) by default. A default rejected message handler, which stores them on the file system, participates if you have not defined any policy to handle the rejected messages explicitly. This handler stores the payload and properties of the message on the file system at a predefined location in WLS_HOME	
. Currently, the Oracle SOA suite does not provide the capability to resubmit rejected messages; consequently it is your responsibility to take care of the resubmission.	
This chapter discusses how to integrate adapters with Oracle WebLogic Server and Oracle Fusion Middleware.	
Oracle Application Server adapters can be integrated with various components of Oracle WebLogic Server and Oracle Fusion Middleware.	
This chapter includes the following topics:	
Oracle JCA Adapters are based on the J2CA 1.5 specification and are deployed to the Oracle WebLogic Server. The resource adapter is used within the address space of the Oracle Fusion Middleware. This section provides an overview of the Oracle WebLogic Server and design-time and run-time integration with an adapter.	
This section includes the following topics:	
Oracle WebLogic Server is the core J2EE run-time component of Oracle Application Server. Oracle WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise Edition (Java EE) application server. The WebLogic Server infrastructure supports the deployment of many types of distributed applications. It is an ideal foundation for building applications based on Service Oriented Architecture (SOA).	
All client applications run within the Oracle WebLogic Server environment. To integrate an Oracle WebLogic Server client application with a resource adapter, use the common client interface (CCI). The Oracle WebLogic Server adapter clients include a servlet, EJB, or Java application client that implements the CCI Application Programming Interface (API). The CCI defines a standard client API for application components to access the back-end application.	
On the other hand, the contract between the Oracle WebLogic Server container and the resource adapter is defined by the service provider interface (SPI). Contracts define a standard between Oracle WebLogic Server and adapters. The system handles these contracts automatically and hides them from the application developer. Figure 3-1 illustrates the CCI and SPI contracts:	
Figure 3-1 Contracts Between Oracle WebLogic Server and Resource Adapter	
The Oracle WebLogic Server architecture includes the following set of system-level contracts:	
The following adapters support XA transactions:	
The following adapters do not support XA transactions:	
All Oracle JCA Adapters are preconfigured with the correct value for transaction, and you must not change this configuration in the Oracle WebLogic Server Administration Console.	
Oracle JCA Adapters are based on the J2CA 1.5 specification and are deployed as the J2CA resource adapter within the Oracle WebLogic Server container in this release. The J2CA resource adapter is packaged into a Resource Adapter Archive (RAR) file using the Java Archive (JAR) format. A RAR file contains a correctly formatted deployment descriptor (/META-INF/ra.xml)	
. In addition, it contains declarative information about the contract between the Oracle WebLogic Server and resource adapter.	
Oracle WebLogic Server generates the corresponding weblogic-ra.xml	
file during the deployment of the J2CA adapter. The weblogic-ra.xml	
file is the deployment descriptor for a resource adapter. It contains deployment configurations for deploying resource adapters to Oracle WebLogic Server, which includes the back-end application connection information as specified in the deployment descriptor of the resource adapter, Java Naming and Directory Interface (JNDI) name to be used, connection pooling parameters, and resource principal mapping mechanism and configurations.	
Use the adapter design-time tool to generate XML Schema Definition (XSD) files for the adapter request-response service. The Oracle WebLogic Server clients use these XSD files during run time for calling the J2CA outbound interaction. Packaged-application adapters use OracleAS Adapter Application Explorer (Application Explorer), Legacy adapters use OracleAS Studio, and technology adapters use Oracle JDeveloper (JDeveloper).	
For more information, see Section 3.2.3.1, "Design Time".	
Oracle JCA Adapters are based on the J2CA 1.5 specification but are deployed as the J2CA 1.5 resource adapter within the Oracle WebLogic Server container in this release. The J2CA 1.5 specification addresses the life-cycle management, message-inflow (for Adapter Event publish), and work management contracts.	
Adapters integrate with the JCA Binding Component of the Oracle Fusion Middleware platform, thereby seamlessly integrating with service engines, such as Oracle BPEL Process Manager (Oracle BPEL PM) and Oracle Mediator.	
Figure 3-2 shows the architecture of Oracle JCA Adapters.	
Figure 3-2 Oracle Adapter Architecture in Oracle Fusion Middleware	
The Adapter Configuration Wizard generates a WSDL and a JCA properties file, which contain the binding information for that service.	
Oracle technology adapters gather and publish statistics for every inbound and outbound message they process. For more information, see Section 3.3, "Monitoring Oracle JCA Adapters".	
This section includes the follows topics:	
Oracle BPEL PM is a comprehensive solution for creating, deploying, and managing Oracle BPEL PM business processes. Oracle BPEL PM is based on the Service Oriented Architecture (SOA) to provide flexibility, interoperability, reusability, extensibility, and rapid implementation. Oracle BPEL PM reduces the overall cost of management, modification, extension, and redeployment of existing business processes. Each business activity is a self-contained, self-describing, modular application with an interface that is defined by a WSDL file and the business process that is modeled as a web service.	
Oracle Mediator provides a lightweight framework to mediate between various producers and consumers of services and events. In most business environments, customer data resides in disparate sources including business partners, legacy applications, enterprise applications, databases, and custom applications. The challenge of integrating this data can be met by using Oracle Mediator to deliver appropriate real-time data access to all applications that update or have a common interest in the same data. For example, a Mediator can accept data contained in a text file from an application or service, transform it to a format appropriate for updating a database that serves as a customer repository, and then route and deliver the data to that database.	
The JCA Binding Component is used for the bidirectional integration of the J2CA 1.5 resource adapters with Oracle BPEL PM and Oracle Mediator. Oracle JCA Adapters generate a WSDL file and a JCA binding, and expose the underlying interactions as web Services.	
The interface (input/output XML elements) to an adapter service is described through a WSDL file. However, in the 11g release, the binding element has been removed, making the WSDL file abstract. Instead the binding information, that the JCA Binding Component (referred to as adapter framework in the previous releases) and adapters must invoke for a particular call on a particular EIS, is stored in a separate binding.jca	
file.	
This section describes:	
While integrating adapters with Oracle BPEL PM and Oracle Mediator, the underlying adapter services are exposed as WSDL files with the J2CA extension. The following table lists the design-time tools used for generating WSDL and JCA files for various types of adapters.	
Adapter	Tool
---	---
Oracle Technology Adapters	Oracle JDeveloper
Legacy Adapters	Oracle Studio
Packaged-Application Adapters	Application Explorer
Oracle Adapter for Oracle Applications	Oracle JDeveloper
WSDL files are created for both request-response and event-notification services of an adapter. The J2CA extension contains J2CA elements that are required by the JCA Binding Component during run time to convert web service messages to J2CA Interactions and back. The J2CA WSDL extension elements contain the metadata for the JCA Binding Component to call any request-response service and activate any inbound J2CA 1.5 endpoint to receive inbound events. The J2CA extension elements for the request-response service contains the JNDI location and InteractionSpec	
details for calling an outbound interaction. The J2CA extension elements for the event-notification service contains the resource adapter class name and ActivationSpec	
parameters for publishing an adapter event through the J2CA inbound interaction.	
Figure 3-3 illustrates the design-time tool, JDeveloper, used by Oracle JCA Adapters.	
Figure 3-3 Design Time Configuration of Technology Adapters	
Figure 3-4 illustrates the design-time tool for configuring packaged-application adapters. In this figure, the design-time tools are used to expose adapter metadata as WSDL files. The WSDL files are consumed by BPEL Process Manager during run time.	
Figure 3-4 Configuring Packaged-Application Adapters	
Oracle Application Server adapters are based on the J2CA 1.5 specification, and BPEL is deployed on the 11g run-time on the Oracle WebLogic Server. The JCA Binding Component acts as a glue layer that integrates the standard J2CA 1.5 resource adapter with the Oracle BPEL Process Manager and Oracle Mediator during run time. The JCA Binding Component acts as a pseudo J2CA 1.5 container.	
The web service invocation launched by the BPEL Invoke activity is converted to a J2CA CCI outbound interaction, and the J2CA response is converted back to a web service response. This end-to-end invocation is synchronous.	
You could also wrap up your custom adapter as a web Service, and expose this to BPEL Process Manager. This is a loose coupling strategy and does not need an Adapter SDK. Both these approaches (JCA/web service) are suitable for outbound invoke operations referred to as reference. Only the JCA 1.5 integration allows the Oracle BPEL PM to receive inbound events (from EIS to J2EE/Oracle BPEL PM). The Oracle BPEL PM acts as a pseudo JCA 1.5 container and implements the JCA 1.5-specific System Contracts.	
You can use any custom design tool for the configuration of the adapter, but a WSDL file must be generated at the end of the design-time phase for consumption by the Oracle BPEL PM design-time (JDeveloper). The WSDL file for the JCA interactions have a JCA extension. The Adapter is a JCA 1.5 resource adapter deployed in the same Oracle WebLogic Server container as that of the Oracle BPEL PM product. The JCA 1.5 Resource Adapter and the Oracle BPEL PM instance must be deployed in the same Oracle WebLogic Server container.	
The JCA Binding Component is the glue layer that integrates the standard JCA 1.5 Resource Adapter seamlessly with the Oracle BPEL PM product at run time. The JCA Binding Component has a JCA Provider for wrapping the JCA interactions as web Services and performs the translation between web Service messages to JCA interaction messages based on the WSDL files generated at design time.	
The following is a snippet of the composite.xml	
file for an outbound invoke (referred to as reference in the 11g release):	
The following list summarizes the process of BPEL Process Manager integration with the outbound interaction:	
PartnerLink	
activity of the BPEL process. .jca	
file contains the JNDI address of the resource adapter, InteractionSpec	
class name, InteractionSpec	
parameters. PartnerLink	
activity, which is a J2CA Resource Adapter outbound interaction. Note: The outbound interaction with Oracle Mediator is the same as that of Oracle BPEL PM.	
BPEL Process Manager receives events from the J2CA 1.5 resource adapter through the JCA Binding Component, which is the pseudo J2CA 1.5 container and implements the message inflow contracts for receiving events from the adapter. The J2CA inbound interaction is captured in a WSDL file during design time. The J2CA inbound WSDL binding section contains the J2CA 1.5 ActivationSpec	
parameter. The ActivationSpec	
parameter captures the inbound connectivity and inbound interaction details (according to J2CA 1.5 specification). The J2CA Inbound WSDL Service section contains the J2CA 1.5 ResourceAdapter	
class name. In addition, the Service section can optionally contain a JNDI location.	
The following list summarizes the process of BPEL Process Manager integration with the inbound interaction:	
ResourceAdapter	
class name and the ActivationSpec	
parameter are captured in the WSDL extension section of the J2CA inbound interaction WSDL during design time and made available to BPEL Process Manager and the JCA Binding Component during run time. ResourceAdapter	
class is created, and the Start	
method of the J2CA ResourceAdapter	
class is called. EndPointActivation	
method of the J2CA 1.5 ResourceAdapter	
instance. The JCA Binding Component creates the ActivationSpec	
class (Java bean) based on the ActivationSpec	
details present in the WSDL extension section of the J2CA inbound interaction and activates the endpoint of the J2CA 1.5 resource adapter. MessageEndpoint	
implementation implements the javax.resource.cci.MessageListener	
interface. The J2CA 1.5 resource adapter calls the onMessage()	
method in this MessageEndpoint	
when it receives a back-end application event. The J2CA 1.5 resource adapter creates an instance of the MessageEndpoint	
implementation through MessageEndpointFactory	
provided to the resource adapter during endpointActivation	
. MessageListener	
class and forwards it to the Receive activity of the BPEL Process Manager instance. endPointDeactivation	
method implemented by the resource adapter. In the case of J2CA adapters, particularly the JDBC based ones, such as Oracle Database Adapter and Oracle AQ Adapter, there are two kinds of connection management at play:	
In the case of inbound activations, the J2CA adapter is fully in charge of connection creation and recovery. The JCA Binding Component can only be requested to lookup and provide a J2CA ConnectionFactory	
handle to the adapter through its ActivationSpec	
. This is possible only if it implements a certain interface, which it can use to create connections, thereby going through the Application Server connection manager. Whenever a managed (JDBC) connection goes bad, the adapter must close the J2CA connection handle (and subsequently the managed connection if destroy()	
is called by the Application Server), enter a temporary recovery loop, and then try to reestablish a new connection.	
In the case of outbound interactions (J2CA), each port caches tuples of the following:	
ConnectionFactory	
ConnectionSpec	
Connection	
Interaction	
InteractionSpec	
As the BPEL engine typically invokes the port concurrently with any number of threads, the size of the cache reflect the highest concurrency level at any given time. The cache can be tuned to automatically expire unused tuples after a configured idle period (interactions and connection handles are then closed). The cache greatly improves performance in high load environments, for example, Retek (8 million transactions every hour).	
If just one JCA adapter interaction using the cache throws a ResourceException	
, then all members of the cache are closed and released immediately (purged), so new interactions have to re-create (fresh) members to the cache. The BPEL engine has a feature known as PartnerLink retry which can be configured for each invoke. Thus, any JCA adapter invoke or interaction which throws a ResourceException	
exception marked as Retryable	
make the engine retry the Invoke (Database update) which then repopulate the port cache (if the Database has become available again: typically immediately the case with Oracle RAC).For non-transactional adapters (adapterMetadata.supportsLocalTransactionDemarcation() == false	
), such as File adapter, the J2CA connection cache contains only one member. Thus all threads coming through multiplex over the same CCI Connection handle.	
The JCA connection cache can be enabled or configured explicitly by using the following bpel.xml	
partnerlink properties:	
Generally, this property is derived from the declared transactional support of the adapter. For example, the File adapter does not use this connection pool because it is multi thread safe, but that can be overridden through the following property:	
If the property mentioned in the preceding example is not specified, then the size of the connection pool is assumed to be unbounded. This applies for each partnerlink.	
The maximum age of idle connections in the pool is important because some type of connections hold on to expensive external resources, for example DB shadow processes which is measured in ms, as shown in the following example:	
Finally, the property mentioned in the preceding example determines how frequently the connection pool should be scanned for idle connections, also measured in ms.	
The following is a code snippet of the composite.xml	
file for an inbound polling receive operation (referred to as service in the 11g release):	
Note how the composite.xml	
file links the WSDL interface (the interface.wsdl	
file), the name of the component which is handling the request (the binding.jca	
file), and the binding information required to invoke a particular call (the config	
file). Hence the JCA Binding Component is registered in SCA as the implementation of the binding.jca	
file (others include binding.ejb	
and binding.java	
), while in the 10.1.3 release it was registered as a WSIF provider.	
In the current release the <binding.jca>	
element is in the composite.xml	
file, which explicitly indicates that the JCA Binding Component is handling the invoke activity. Whereas in the 10.1.3 release you had to look at the concrete binding in the WSDL to see whether it was an adapter invoke or not, as shown in the following example:	
From the Partner Link dialog in Oracle BPEL PM, shown in Figure 3-5, you can access the adapters that are provided with Oracle BPEL PM.	
Click the Define Service icon, shown in Figure 3-6, to access the Configure Service or Adapter dialog.	
This dialog enables you to configure the types of adapters shown in Figure 3-7 for use with Oracle BPEL processes.	
When you select an adapter type (Oracle AQ Adapter in this example), and then click OK, the Adapter Configuration Wizard - Welcome page appears, as shown in Figure 3-8.	
Figure 3-8 The Adapter Configuration Wizard- Welcome Page	
Click Next, and the Service Name page appears, as shown in Figure 3-9. You are prompted to enter a name for the service.	
For this example, AQ Adapter is selected, as shown in Figure 3-7. When the wizard completes, a WSDL file by this service name appears in the Application Navigator for the BPEL process (for this example, named DequeueDemo.wsdl	
). This file includes the adapter configuration settings you specify with this wizard. Other configuration files (such as header properties and files specific to the adapter) are also created and displayed in the Application Navigator.	
Figure 3-9 The Adapter Configuration Wizard- Service Name Page	
The Adapter Configuration Wizard windows that appear after the Service Name window are based on the adapter type you selected. These configuration windows and the information you must provide are described in later chapters of this guide.	
Oracle JCA Adapters can be integrated with Oracle SOA Suite.	
This section includes the following:	
An SOA composite application is an assembly of services, service components, references, and wires designed and deployed to meet a business need.	
SOA provides an enterprise architecture that supports building connected enterprise applications. SOA facilitates the development of enterprise applications as modular business web services that can be easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.	
A composite is an assembly of services, service components, wires, and references designed and deployed in a single application. The composite processes the information described in the messages.	
For example, a composite includes an inbound service binding component (an inbound adapter), a BPEL process service component, and an outbound reference binding component (an outbound adapter). The details of this composite are stored in the composite.xml	
file.	
An Oracle SOA composite typically comprises the following parts:	
The binding component establishes the connectivity between a SOA composite and the external world. There are two types of binding components:	
Provide the outside world with an entry point to the SOA composite application. The WSDL file of the service informs external applications of its capabilities. These capabilities are used for contacting the SOA composite application components. The binding connectivity of the service describes the protocols that can communicate with the service, for example, Oracle JCA adapter.	
Enable messages to be sent from the SOA composite application to external services in the outside world.	
The Oracle SOA Suite provides web Services, such as Oracle JCA adapters for integrating services and references with technologies (for example, databases, file systems, FTP servers, messaging: JMS, IBM WebSphere MQ, and so on) and applications (Oracle E-Business Suite, PeopleSoft, and so on). This includes Oracle AQ Adapter, Oracle Database Adapter, Oracle File Adapter, Oracle FTP Adapter, Oracle JMS Adapter, Oracle MQ Series Adapter, and Oracle Socket Adapter.	
Provides internal message transport. For example, receives the message from an inbound adapter and posts the message for processing to the BPEL process service engine.	
Host the business logic or processing rules of the service components. Each service component has its own service engine. For example, an Oracle BPEL process engine or an Oracle Mediator Component.	
For more information about adapter integration with service engines, see Section 3.2, "Adapter Integration with Oracle Fusion Middleware."	
The MDS (Metadata Service) repository stores descriptions of available services. The UDDI advertises these services and enables discovery and dynamic binding at run time.	
The deployment unit that describes the composite application.	
A composite is an assembly of services (for example, inbound adapters), service components, wires, and references (for example, outbound adapters) designed and deployed in a single application. The composite processes the information described in the messages. A composite.xml	
file is automatically created when you create a SOA project. This file describes the entire composite assembly of services, service components, references, and wires. The composite.xml	
file describes the entire SOA composite.	
The following is a sample composite.xml	
file:	
For more information about Oracle SOA composite and its integration with various service engines, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
In Oracle BPEL Process Manager and Oracle Mediator, Oracle JCA adapters such as File, JMS, and Database, gather and publish statistics for every message they process, either inbound or outbound. The statistics are broken down into categories and individual tasks. The following is an example of how statistics are broken down in an outbound (reference) process:	
InteractionSpec	
The adapter statistics can be viewed in the Fusion Middleware Control Console. The following are the steps to view the adapter statistics:	
http://	
servername	
:	
portnumber	
/em	
. SOA	
folder in the Target Navigation tree (in the extreme left pane), click soa_infra	
. The soa-infra page is displayed.	
Figure 3-10 Viewing the Adapter Statistics in the Fusion Middleware Control Console	
The SOA Infrastructure Home > Interfaces page is displayed, as shown in Figure 3-11.	
This page shows a list of all currently active inbound (services) and outbound adapter interactions (references), and the average execution time for the various steps each adapter performs.	
Figure 3-11 The SOA Infrastructure Home > Interfaces Page	
This chapter describes how to use the Oracle File and FTP Adapters, which work with Oracle BPEL Process Manager and Oracle Mediator. Information on concepts, features, configuration and use cases for the Oracle File and FTP Adapters is also provided.	
This chapter includes the following sections:	
Note: The term Oracle JCA Adapter for Files/FTP is used for the Oracle File and FTP Adapters, which are separate adapters with very similar functionality.	
Oracle BPEL PM and Mediator include the Oracle File and FTP Adapters. The Oracle File and FTP Adapters enable a BPEL process or a Mediator to exchange (read and write) files on local file systems and remote file systems (through use of the file transfer protocol (FTP)). The file contents can be both XML and non-XML data formats.	
This section includes the following topics:	
The Oracle File and FTP Adapters are based on JCA 1.5 architecture. JCA provides a standard architecture for integrating heterogeneous enterprise information systems (EIS). The JCA Binding Component of the Oracle File and FTP Adapters expose the underlying JCA interactions as services (WSDL	
with JCA binding) for Oracle BPEL PM integration. For details about Oracle JCA Adapter architecture, see Chapter 1, "Introduction to Oracle JCA Adapters."	
The Oracle File and FTP Adapters are automatically integrated with Oracle BPEL PM. When you drag and drop File Adapter for FTP Adapter from the Component Palette of JDeveloper BPEL Designer, the Adapter Configuration Wizard starts with a Welcome page, as shown in Figure 4-1.	
Figure 4-1 The Adapter Configuration Wizard - Welcome Page	
This wizard enables you to select and configure the Oracle File and FTP Adapters. The Adapter Configuration Wizard then prompts you to enter a service name, as shown in Figure 4-2.	
Figure 4-2 The Adapter Configuration Wizard - Service Name Page	
When configuration is complete, a WSDL	
and JCA	
file pair is created in the Application Navigator section of Oracle JDeveloper. (JDeveloper) This JCA	
file contains the configuration information you specify in the Adapter Configuration Wizard.	
The Operation Type page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information. Table 4-1 lists the available operations and provides references to sections that describe the configuration information you must provide.	
Table 4-1 Supported Operations for Oracle BPEL Process Manager	
Operation	Section
---	---
Oracle File Adapter	-
Section 4.3.1, "Oracle File Adapter Read File Concepts"	
Section 4.3.2, "Oracle File Adapter Write File Concepts"	
Section 4.3.3, "Oracle File Adapter Synchronous Read Concepts"	
Section 4.3.4, "Oracle File Adapter File Listing Concepts"	
Oracle FTP Adapter	-
Section 4.3.5, "Oracle FTP Adapter Get File Concepts"	
Section 4.3.6, "Oracle FTP Adapter Put File Concepts"	
Section 4.3.7, "Oracle FTP Adapter Synchronous Get File Concepts"	
Section 4.3.8, "Oracle FTP Adapter File Listing Concepts"	
For more information about Oracle JCA Adapter integration with Oracle BPEL PM, see Chapter 1, "Introduction to Oracle JCA Adapters."	
The Oracle File and FTP Adapters are automatically integrated with Mediator. When you create an Oracle File or FTP Adapter service in JDeveloper Designer, the Adapter Configuration Wizard is started.	
This wizard enables you to select and configure the Oracle File and FTP Adapters. When configuration is complete, a WSDL	
, JCA	
file pair is created in the Application Navigator section of JDeveloper. This JCA	
file contains the configuration information you specify in the Adapter Configuration Wizard.	
The Operation Type page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information. Table 4-2 lists the available operations and provides references to sections that describe the configuration information you must provide. For more information about Adapters and Mediator, see Chapter 1, "Introduction to Oracle JCA Adapters."	
Table 4-2 Supported Operations for Oracle Mediator	
Operation	Section
---	---
Oracle File Adapter	-
Section 4.3.1, "Oracle File Adapter Read File Concepts"	
Section 4.3.2, "Oracle File Adapter Write File Concepts"	
Section 4.3.3, "Oracle File Adapter Synchronous Read Concepts"	
Section 4.3.4, "Oracle File Adapter File Listing Concepts"	
Oracle FTP Adapter	-
Section 4.3.5, "Oracle FTP Adapter Get File Concepts"	
Section 4.3.6, "Oracle FTP Adapter Put File Concepts"	
Section 4.3.7, "Oracle FTP Adapter Synchronous Get File Concepts"	
Section 4.3.8, "Oracle FTP Adapter File Listing Concepts"	
A composite is an assembly of services, service components (Oracle BPEL PM and Mediator), wires, and references designed and deployed in a single application. The composite processes the information described in the messages. The details of the composite are stored in the composite.xml
file. For more information about integration of the Oracle File and FTP Adapters with SOA composite, see Section 3.2.4, "Oracle SOA Composite Integration with Adapters."
The Oracle File and FTP Adapters enable you to configure a BPEL process or a Mediator to interact with local and remote file system directories. This section explains the following features of the Oracle File and FTP Adapters:
Note: For composites with Oracle File and FTP Adapters, which are designed to consume very large number of concurrent messages, you must set the number of open files parameter for your operating system to a larger value. For example, to set the number of open files parameter to |
The Oracle File and FTP Adapters can read and write the following file formats and use the adapter translator component at both design time and run time:
The Oracle File and FTP Adapters can also treat file contents as an opaque object and pass the contents in their original format (without performing translation). The opaque option handles binary data such as JPGs and GIFs, whose structure cannot be captured in an XSD or data you do not want to have translated.
The translator enables the Oracle File and FTP Adapters to convert native data in various formats to XML. The native data can be simple (just a flat structure) or complex (with parent-child relationships). The translator can handle both XML and non-XML (native) formats of data.
Oracle FTP Adapter supports most RFC 959 compliant FTP servers on all platforms. It also provides a pluggable mechanism that enables Oracle FTP Adapter to support additional FTP servers. In addition, Oracle FTP Adapter supports FTP over SSL (FTPS) on Solaris and Linux. Oracle FTP Adapter also supports SFTP (Secure FTP) using SSH transport.
Note: Oracle FTP Adapter supports SFTP server version 4 or later. |
The Oracle File and FTP Adapters exchange files in the inbound and outbound directions. Based on the direction, the Oracle File and FTP Adapters perform different sets of tasks.
For inbound files sent to Oracle BPEL PM or Mediator, the Oracle File and FTP Adapters perform the following operations:
This functionality of the Oracle File and FTP Adapters is referred to as the file read operation, and the component that provides this function is the file reader. This operation is known as a Java Connector Architecture (JCA) inbound activation.
For outbound files sent from Oracle BPEL PM or Mediator, the Oracle File and FTP Adapters perform the following operations:
This functionality of the Oracle File and FTP Adapters is referred to as the file write operation. This operation is known as a JCA outbound interaction.
For the inbound and outbound directions, the Oracle File and FTP Adapters use a set of configuration parameters. For example:
Note: You must use the Adapter Configuration Wizard to modify the configuration parameters, such as publish size, number of messages, and polling frequency. You must not manually change the value of these parameters in JCA files. |
The file reader supports polling conventions and offers several postprocessing options. You can specify to delete, move, or leave the file as it is after processing the file. The file reader can split the contents of a file and publish it in batches, instead of as a single message. You can use this feature for performance tuning of the Oracle File and FTP Adapters. The file reader guarantees once and once-only delivery.
following sections for details about the read and write functionality of the Oracle File and FTP Adapters:
When a file contains multiple messages, you can choose to publish messages in a specific number of batches. This is referred to as debatching. During debatching, the file reader, on restart, proceeds from where it left off in the previous run, thereby avoiding duplicate messages. File debatching is supported for files in XML and native formats. You must not manually change the value of the publish size parameter in JCA
files. You must use the Adapter Configuration Wizard to modify this parameter.
You can register a batch notification callback (Java class) which is invoked when the last batch is reached in a debatching scenario.
where com.acme.batchHandler
must implement
This is a feature of Oracle File and FTP Adapters that uses an invoke activity within a while loop to process the target file. This feature enables you to process arbitrarily large files.
If an invalid payload is provided, then ChunkedRead scenarios do not throw an exception. When a translation exception (bad record violating the NXSD specification) is encountered, the return header is populated with the translation exception message that includes details such as line and column where the error occurred. All translation errors do not result in a fault. These errors are manifested as a value in the return header. You must check the jca.file.IsMessageRejected
and jca.file.RejectionReason
header values to ascertain whether an exception has occurred. Additionally, you can also check the jca.file.NoDataFound
header value.
When files must be processed by Oracle File and FTP Adapters in a particular order, you must configure the sorting parameters. For example, you can configure the sorting parameters for Oracle File and FTP Adapters to process files in ascending or descending order by time stamps.
You must meet the following prerequisites for sorting scenarios of Oracle File and FTP Adapters:
The Oracle File and FTP Adapters enable you to dynamically specify the logical or physical name of the outbound file or outbound directory. For information about how to specify dynamic outbound directory, see Section 4.3.2.2, "Outbound File Directory Creation."
The Oracle FTP Adapter supports FTP over SSL (FTPS) and Secure FTP (SFTP) to enable secure file transfer over a network.
For more information, see Section 4.4.3, "Using Secure FTP with the Oracle FTP Adapter" and Section 4.4.4, "Using SFTP with Oracle FTP Adapter."
The Oracle File Adapter picks up a file from an inbound directory, processes the file, and sends the processed file to an output directory. However, during this process if a failover occurs in the Oracle RAC back end or in an SOA managed server, then the file is processed twice because of the nontransactional nature of Oracle File Adapter. As a result, there can be duplicate files in the output directory.
You can use the proxy support feature of the Oracle FTP Adapter to transfer and retrieve data to and from the FTP servers that are located outside a firewall or can only be accessed through a proxy server. A proxy server enables the hosts in an intranet to indirectly connect to hosts on the Internet. Figure 4-3 shows how a proxy server creates connections to simulate a direct connection between the client and the remote FTP server.
Figure 4-3 Remote FTP Server Communication Through a Proxy Server
To use the HTTP proxy feature, your proxy server must support FTP traffic through HTTP Connection. In addition, only passive data connections are supported with this feature. For information about how to configure the Oracle FTP Adapter, see Section 4.4.5, "Configuring Oracle FTP Adapter for HTTP Proxy."
For Oracle BPEL PM and Mediator, the Oracle File and FTP Adapters provide support for publishing only file metadata such as file name, directory, file size, and last modified time to a BPEL process or Mediator and excludes the payload. The process can use this metadata for subsequent processing. For example, the process can call another reference and pass the file and directory name for further processing.You can use the Oracle File and FTP Adapters as a notification service to notify a process whenever a new file appears in the inbound directory. To use this feature, select the Do not read file content check box in the JDeveloper wizard while configuring the "Read operation."
For Oracle BPEL PM and Mediator, the Oracle File Adapter provides support for transferring large files as attachments. To use this feature, select the Read File As Attachment check box in the JDeveloper wizard while configuring the "Read operation." This option opaquely transfers a large amount of data from one place to another as attachments. For example, you can transfer large MS Word documents, images, and PDFs without processing their content within the composite application. For information about how to pass large payloads as attachments, see Section 4.5.6, "Oracle File Adapter Read File As Attachments."
Note: You must not pass large payloads as opaque schemas. |
You can use the Oracle File and FTP Adapters, which provide support for file-based triggers, to control inbound adapter endpoint activation. For information about how to use file-based triggers, see Section 4.3.1.4, "File Polling."
The process modeler may encounter situations where files must be pre-processed before they are picked up for processing or post-processed before the files are written out to the destination folder. For example, the files that the Oracle File and FTP adapters receive may be compressed or encrypted and the adapter must decompress or decrypt the files before processing. In this case you must use a custom code to decompress or decrypt the files before processing. The Oracle File and FTP Adapters supports the use of custom code that can be plugged in for pre-processing or post-processing of files.
The implementation of the pre-processing and post-processing of files is restricted to the following communication modes of the Oracle File and FTP Adapters:
This section contains the following topics:
The mechanism for pre-processing and post-processing of files is configured as pipelines and valves. This section describes the concept of pipelines and valves.
A pipeline consists of a series of custom-defined valves. A pipeline loads a stream from the file system, subjects the stream to processing by an ordered sequence of valves, and after the processing returns the modified stream to the adapter.
A valve is the primary component of execution in a processing pipeline. A valve processes the content it receives and forwards the processed content to the next valve. For example, in a scenario where the Oracle File and FTP Adapters receive files that are encrypted and zipped, you can configure a pipeline with an unzip valve followed by a decryption valve. The unzip valve extracts the file content before forwarding it to the decryption valve, which decrypts the content and the final content is made available to the Oracle File or FTP Adapter as shown in Figure 4-4.
Figure 4-4 A Sample Pre-Processing Pipeline
Configuring the mechanism for pre-processing and post-processing of files requires defining a pipeline and configuring it in the corresponding JCA
file.
To configure a pipeline, you must perform the following steps:
All valves must implement Valve
or StagedValve
interface.
Tip: You can extend either the |
Example 4-1 is a sample valve interface.
Example 4-1 The Valve Interface
The StagedValve
stores intermediate content in staging files. Example 4-2 shows the StagedValve
interface extending the Valve
interface.
Example 4-2 The StagedValve Interface Extending the Valve Interface
Example 4-3 is a sample of an AbstractValve
class implementing the Valve
interface.
Example 4-3 The AbstractValve Class Implementing the Valve Interface
Example 4-4 shows the AbstractStagedValve
class extending the AbstractValve
class.
Example 4-4 The AbstractStagedValve Class Extending the AbstractValve Class
For more information on valves, see Appendix B, "Oracle JCA Adapter Valves."
You must use the bpm-infra.jar
file to compile the valves. The bpm-infra.jar
file is located at $MW_HOME/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
.
bpm-infra.jar
file, by using the following procedure: bpm-infra.jar
file. The Bpm-infra.jar
file is located at $MW_HOME/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
. bpm-infra.jar
file is listed under Classpath Entries. bpm-infra.jar
file. JAR
file containing the compiled valves available to the Oracle WebLogic Server classpath by adding the jar file to the soainfra
domain classpath. For example, $MW_HOME/user_projects/domains/soainfra/lib
. Note: Ensure that you compile |
To configure a pipeline, you must create an XML file that conforms to the following schema:
The following is a sample XML file configured for a pipeline with two valves, SimpleUnzipValve
and SimpleDecryptValve
:
You must add the pipeline
.xml
file to the SOA project directory. This step is required to integrate the pipeline with the Oracle File or FTP Adapter. Figure 4-6 shows a sample pipeline
.xml
file (unzippipeline.xml
) added to the InboundUnzipAndOutboundZip
project.
Figure 4-6 Project with unzippipeline.xml File
The pipeline that is a part of the SOA project must be registered by modifying the inbound JCA file, by adding the following property:
For example, in the JCA file shown in Figure 4-6, FileInUnzip_file.jca
, the following property has been added to register an Unzip
pipeline with an Oracle File Adapter:
There may be scenarios involving simple valves. A simple valve is one that does not require additional metadata such as reentrancy, and batchNotificationHandlers
. If the scenario involves simple valves, then the pipeline can be configured as an ActivationSpec
or an InteractionSpec
property as shown in the following sample:
Note: There is no space after the comma (|
Note: If you configure a pipeline using the |
The re-entrant valve enables you to process individual entries within a zip file. In a scenario that involves processing all entries within a zip file, wherein each entry is encrypted using the Data Encryption Standard (DES), you can configure the valve by adding the reentrant="true"
attribute to the unzip valve as follows:
In this example, the pipeline invokes the ReentrantUnzipValve
and then the SimpleDecryptValve
repeatedly in the same order until the entire zip file has been processed. In other words, the ReentrantUnzipValve
is invoked first to return the data from the first zipped entry, which is then fed to the SimpleDecryptValve
for decryption, and the final content is returned to the adapter. The process repeats until all the entries within the zip file are processed.
Additionally, the valve must set the message key using the setMessageKey()
API. For more information refer to Appendix B, "An Unzip Valve for processing Multiple Files."
Error Handling For Zip Files
If there are translation errors for individual entries within the zip file, then entries with the translation errors are rejected and the other entries are processed.
If there are errors during the publish operation, then the publish operation is retried and the retry semantic holds. If the retry semantic does not hold, then the original file is rejected and the pipeline ends.
The BatchNotificationHandler
API is used with the Oracle File and FTP Adapter inbound de-batchability. In a de-batching scenario, each file contains multiple messages, and some sort of bookkeeping is required for crash-recovery. This is facilitated by the BatchNotificationHandler
API, which lets you receive notification from the pipeline whenever a batch begins, occurs, or ends. The following is the BatchNotificationHandler
interface:
To use a pipeline with de-batching, you must configure the pipeline with a BatchNotificationHandler
instance as follows:
The Oracle File Adapter and Oracle FTP Adapter provide inbound error handling capabilities, such as the uniqueMessageSeparator
property.
In the case of debatching (multiple messages in a single file), messages from the first bad message to the end of the file are rejected. If each message has a unique separator and that separator is not part of any data, then rejection can be more fine grained. In these cases, you can define a uniqueMessageSeparator
property in the schema element of the native schema to have the value of this unique message separator. This property controls how the adapter translator works when parsing through multiple records in one file (debatching). This property enables recovery even when detecting bad messages inside a large batch file. When a bad record is detected, the adapter translator skips to the next unique message separator boundary and continues from there. If you do not set this property, then all records that follow the record with errors are also rejected.
The following schema file provides an example of using the uniqueMessageSeparator
property:
For information about handling rejected messages, connection errors, and message errors, see Section 2.21.1, "Handling Rejected Messages".
During an Inbound Read operation, if a malformed XML file is read, the malformed file results in an error. The errored file is by default sent to the remote file system for archival.
The errored file can be archived at a local file system by specifying the useRemoteErrorArchive
property in the jca
file and setting that property to false
.
The default value for this property is true
.
This section describes the threading models that Oracle File and FTP Adapters support. An understanding of the threading models is required to throttle or de-throttle the Oracle File and FTP Adapters. The Oracle File and FTP Adapters use the following threading models:
In the default threading model, a poller is created for each inbound Oracle File or FTP Adapter endpoint. The poller enqueues file metadata into an in-memory queue, which is processed by a global pool of processor threads. Figure 4-7 shows a default threading model.
The following steps highlight the functioning of the default threading model:
PollingFrequency
parameter in the inbound JCA
file. Note: New files are ones that are not being processed. |
You can modify the default threading behavior of Oracle File and FTP Adapters. Modifying the threading model results in a modified throttling behavior of Oracle File and FTP Adapters. The following sections describe the modified threading behavior of the Oracle File and FTP Adapters:
Single Threaded Model
The single threaded model is a modified threaded model that enables the poller to assume the role of a processor. The poller thread processes the files in the same thread. The global pool of processor threads is not used in this model. You can define the property for a single threaded model in the inbound JCA file as follows:
Partitioned Threaded Model
The partitioned threaded model is a modified threaded model in which the in-memory queue is partitioned and each composite application receives its own in-memory queue. The Oracle File and FTP Adapters are enabled to create their own processor threads rather than depend on the global pool of processor worker threads for processing the enqueued files. You can define the property for a partitioned model in the inbound JCA file as follows:
In the preceding example for defining the property for a partitioned model:
ThreadCount
property is set to 0
, then the threading behavior is like that of the single threaded model. ThreadCount
property is set to -1
, then the global thread pool is used, as in the default threading model. ThreadCount
property is 40
. The Oracle File and FTP Adapters support the performance tuning feature by providing knobs to throttle the inbound and outbound operations. The Oracle File and FTP Adapters also provide knobs that you can use to tune the performance of outbound operations.
For more information about performance tuning, see "Oracle JCA Adapters for Files/FTP" in the Oracle Fusion Middleware Performance and Tuning Guide.
The Oracle File and FTP Adapters support the high availability feature for the active-active topology with Oracle BPEL Process Manager and Mediator service engines. It supports this feature for both inbound and outbound operations.
The Oracle File and FTP Adapters support polling multiple directories within a single activation. You can specify multiple directories in JDeveloper as opposed to a single directory. This is applicable to both physical and logical directories.
Note: If the inbound Oracle File Adapter is configured for polling multiple directories for incoming files, then all the top-level directories (inbound directories where the input files appear) must exist before the file reader starts polling these directories. |
After selecting the inbound directory or directories, you can also specify whether the subdirectories must be processed recursively. If you check the Process Files Recursively option, then the directories would be processed recursively. By default, this option is selected, in the File Directories page, as shown in Figure 4-8.
When you choose multiple directories, the generated JCA files use semicolon(;) as the separator for these directories. However, you can change the separator to something else. If you do so, manually add DirectorySeparator="
chosen separator
"
in the generated JCA file. For example, to use comma (,) as the separator, you must first change the separator to "," in the Physical directory and then add <property name="DirectorySeparator" value=","/>
, in the JCA file.
Additionally, if you choose to process directories recursively and one or more subdirectories do not have the appropriate permissions, the inbound adapter throws an exception during processing. To ignore this exception, you must define a binding property with the name ignoreListingErrors
in your composite.xml
as shown in the following example:
Figure 4-8 The Adapter Configuration Wizard - File Directories Page
The Oracle File and FTP Adapters enable you to configure outbound interactions that append to an existing file. The Append to Existing File option enables the outbound invoke to write to the same file. There are two ways in which you can append to a file name:
Note: The append mode is not supported for SFTP scenarios, where instead of appending to the existing file, the file is overwritten. |
When you select the Append to existing file option in the File Configuration page, the batching options such as Number of Messages Equals, Elapsed Time Exceeds, File Size Exceeds options are disabled. Figure 4-9 displays the Append to Existing File option.
Figure 4-9 The Adapter Configuration Wizard - File Configuration Page
Batching option is disabled if "Append" is chosen in the wizard. In addition, the following error message is displayed if the user specifies a dynamic file naming convention as opposed to a static file naming convention:
If you are using the "Append" functionality in Oracle FTP Adapter, ensure that the FTP server supports the "APPE" command.
In earlier versions of the Oracle SOA Suite, the inbound Oracle FTP Adapter used the NLST
(Name List) FTP command to read a list of file names from the FTP server. However, the NLST command does not return directory names and therefore does not allow recursive processing within directories. In the 11g release, the Oracle FTP Adapter uses the LIST
command, instead.
However, the response from the LIST
command is different for different FTP servers. To incorporate the subtle differences in results from the LIST
command in a standard manner, the following parameters are added to the deployment descriptor for Oracle FTP Adapter:
MMM d yyyy
as most UNIX-type FTP servers return the last modified time stamp for older files in the MMM d yyyy
format. For example, Jan 31 2006
. You can find the default date format for your FTP server by using the ls -l
command by using a FTP command-line client. For example, ls -l
on a vsftpd server running on Linux returns the following:
For Microsoft Windows NT FTP servers, the defaultDateFormat
is MM-dd-yy hh:mma
, for example, 03-24-09 08:06AM <
DIR
> oracle
.
The default value for this parameter is MMM d HH:mm
as most UNIX-type FTP servers return the last modified date for recently created files in MMM d HH:mm
format, for example, Jan 31 21:32
.
You can find the default date format for your FTP server by using the ls -l
command from an FTP command-line client. For example, ls -l
on a vsftpd server running on Linux returns the following:
For Microsoft Windows NT FTP servers, the recentDateFormat
parameter is in the MM-dd-yy hh:mma
, format, for example, 03-24-09 08:06AM <
DIR
> oracle
.
LIST
command. The default value is UNIX, in which case the Oracle FTP Adapter uses a generic parser for UNIX-like FTP servers. Apart from UNIX
, the other supported values are WIN
and WINDOWS
, which are specific to the Microsoft Windows NT FTP server. Note: The locale language for the FTP server can be different from the locale language for the operating system. Do not assume that the locale for the FTP server is the same locale for the operating system it is running on. You must set the |
Configure the Parameters in the Deployment Descriptor
The standard date formats of an FTP server are usually configured when the FTP server is installed. If your FTP server uses a format "MMM d yyyy" for defaultDateFormat and "MMM d HH:mm" for recentDateFormat, then your Oracle FTP Adapter must use the same formats in its corresponding deployment descriptor.
If you enter "ls -l" from a command-line FTP, then you can see the following:
This is the recentDateFormat parameter for your FTP server, for example MMM d HH:mm (Jan 22 21:32). Similarly, if your server has an old file, then the server does not show the hour and minute part and it shows the following:
This is the default date format, for example MMM d yyyy (Jan 22 2005).
Additionally, the serverTimeZone parameter is used to by the Oracle FTP Adapter to parse time stamps for FTP server running in a specific time zone. The value for this is either an abbreviation such as "PST" or a full name such as "America/Los_Angeles".
Additionally, the FTP server might be running on a different locale. The serverLocaleLanguage, serverLocaleCountry, and serverLocaleVariant parameters are used to construct a locale from language, country, variant where
If these locale parameters are absent, then the Oracle FTP Adapter uses the system locale to parse the time stamp.
Additionally, if the FTP server is running on a different system than the SOA suite, then you must handle the time zone differences between them. You must convert the time difference between the FTP server and the system running the Oracle FTP Adapter to milliseconds and add the value as a binding property:"timestampOffset" in the composite.xml
.
For example, if the FTP server is six hours ahead of your local time, you must add the following endpoint property to your service or reference:
Some FTP servers do not work well with the LIST
command. In such cases, use the NLST
command for listing, but you cannot process directories recursively with NLST
.
To use the NLST
command, then you must add the following property to the JCA file, for example:
When a resource adapter makes an outbound connection with an Enterprise Information System (EIS), it must sign on with valid security credentials. In accordance with the J2CA 1.5 specification, Oracle WebLogic Server supports both container-managed and application-managed sign-on for outbound connections. At run time, Oracle WebLogic Server determines the chosen sign-on mechanism, based on the information specified in either the invoking client component's deployment descriptor or the res-auth
element of the resource adapter deployment descriptor. This section describes the procedure for securing the user name and password for Oracle JCA Adapters by using Oracle WebLogic Server container-managed sign-on.
Both, Oracle WebLogic Server and EIS maintain independent security realms. A container-managed sign-on enables you to sign on to Oracle WebLogic Server and also be able to use applications that access EIS through a resource adapter without having to sign on separately to the EIS. Container-managed sign-on in Oracle WebLogic Server uses credential mappings. The credentials (user name/password pairs or security tokens) of Oracle WebLogic security principals (authenticated individual users or client applications) are mapped to the corresponding credentials required to access EIS. You can configure credential mappings for applicable security principals for any deployed resource adapter.
To configure credential mappings, you can specify the user names and passwords in the weblogic-ra.xml
file for the corresponding adapter or perform the following procedure by accessing the Oracle WebLogic Server Administration Console:
Figure 4-10 The Oracle WebLogic Server Administration Console - Summary of Deployments Page
FtpAdapter
. The Settings for FtpAdapter page is displayed, as shown in Figure 4-11. Figure 4-11 The Oracle WebLogic Server Administration Console - Settings for FTPAdapter Page
Figure 4-12 The Oracle WebLogic Server Administration Console - Settings for FTPAdapter Page
Figure 4-13 The Oracle WebLogic Server Administration Console - Create a New Security Credential Mapping Page
Figure 4-14 The Oracle WebLogic Server Administration Console - Create a New Security Credential Mapping Page
Figure 4-15 The Oracle WebLogic Server Administration Console - Create a New Security Credential Mapping Page
Note: Credential mapping is not supported for the User for creating initial connections and Unauthenticated WLS User options. |
weblogic
, which is the default user name. Figure 4-16 The Oracle WebLogic Server Administration Console - Create a New Security Credential Mapping Page
Figure 4-17 The Oracle WebLogic Server Administration Console - Create a New Security Credential Mapping Page
Figure 4-18 The Oracle WebLogic Server Administration Console - Settings for FTPAdapter Page
The Oracle File and FTP Adapters concepts are discussed in the following sections:
In the inbound direction, the Oracle File Adapter polls and reads files from a file system for processing. This section provides an overview of the inbound file reading capabilities of the Oracle File Adapter. You use the Adapter Configuration Wizard to configure the Oracle File Adapter for use with a BPEL process or a Mediator. Configuring the Oracle File Adapter creates an inbound WSDL
and JCA
file pair.
The following sections describe the Oracle File Adapter read file concepts:
For inbound operations with the Oracle File Adapter, select the Read File operation, as shown in Figure 4-19.
Figure 4-19 Selecting the Read File Operation
The File Directories page of the Adapter Configuration Wizard shown in Figure 4-20 enables you to specify information about the directory to use for reading inbound files and the directories in which to place successfully processed files. You can choose to process files recursively within directories. You can also specify multiple directories.
Figure 4-20 The Adapter Configuration Wizard - Specifying Incoming Files
The following sections describe the file directory information to specify:
You can specify inbound directory names as physical or logical paths in the composite involving Oracle BPEL PM and Mediator. Physical paths are values such as c:\inputDir
.
Note: If the inbound Oracle File Adapter is configured for polling multiple directories for incoming files, then all the top-level directories (inbound directories where the input file appears) must exist before the file reader starts polling these directories. |
In the composite, logical properties are specified in the inbound JCA
file and their logical-physical mapping is resolved by using binding properties. You specify the logical parameters once at design time, and you can later modify the physical directory name as needed.
For example, the generated inbound JCA
file looks as follows for the logical input directory name InputFileDir
.
In the composite.xml
file, you then provide the physical parameter values (in this case, the directory path) of the corresponding logical ActivationSpec
or InteractionSpec
. This resolves the mapping between the logical directory name and actual physical directory name.
This option enables you to specify a directory in which to place successfully processed files. You can also specify the archive directory as a logical name. In this case, you must follow the logical-to-physical mappings described in Section 4.3.1.2.1, "Specifying Inbound Physical or Logical Directory Paths in SOA Composite."
This option enables you to specify whether to delete files after a successful retrieval. If this check box is not selected, processed files remain in the inbound directory but are ignored. Only files with modification dates more recent than the last processed file are retrieved. If you place another file in the inbound directory with the same name as a file that has been processed but the modification date remains the same, then that file is not retrieved.
The File Filtering page of the Adapter Configuration Wizard shown in Figure 4-21 enables you to specify details about the files to retrieve or ignore.
The Oracle File Adapter acts as a file listener in the inbound direction. The Oracle File Adapter polls the specified directory on a local or remote file system and looks for files that match specified naming criteria.
Figure 4-21 The Adapter Configuration Wizard-File Filtering Page
The following sections describe the file filtering information to specify:
Specify the naming convention that the Oracle File Adapter uses to poll for inbound files. You can also specify the naming convention for files you do not want to process. Two naming conventions are available for selection. The Oracle File Adapter matches the files that appear in the inbound directory.
po*.txt
) Retrieves all files that start with po
and end with .txt
. This convention conforms to Windows operating system standards.
po.*\.txt
) Retrieves all files that start with po
and end with .txt
. This convention conforms to Java Development Kit (JDK) regular expression (regex) constructs.
Notes:
|
If you use regular expressions, the values you specify in the Include Files and Exclude Files fields must conform to JDK regular expression (regex) constructs. For both fields, different regex patterns must be provided separately. The Include Files and Exclude Files fields correspond to the IncludeFiles
and ExcludeFiles
parameters, respectively, of the inbound WSDL
file.
Note: The regex pattern complies with the JDK regex pattern. According to the JDK regex pattern, the correct connotation for a pattern of any characters with any number of occurrences is a period followed by a plus sign |
For the inbound Oracle File Adapter to pick up all file names that start with po
and which have the extension txt
, you must specify the Include Files field as po.*\.txt
when the name pattern is a regular expression. In this regex pattern example:
.)
indicates any character. *
) indicates any number of occurrences. The Exclude Files field is constructed similarly.
If you have Include Files field and Exclude Files field expressions that have an overlap, then the exclude files expression takes precedence. For example, if Include Files is set to abc*.txt
and Exclude Files is set to abcd*.txt
, then no abcd*.txt
files are received.
Note: You must enter a name pattern in the Include Files with Name Pattern field and not leave it empty. Otherwise, the inbound adapter service reads all the files present in the inbound directory, resulting in incorrect results. |
Table 4-3 lists details of Java regex constructs.
Note: Do not begin JDK regex pattern names with the following characters: plus sign (|
Table 4-3 Java Regular Expression Constructs
Matches | Construct |
---|---|
Characters | - |
The character |
|
The backslash character |
|
The character with octal value |
|
The character with octal value |
|
The character with octal value |
|
The character with hexadecimal value |
|
The character with hexadecimal value |
|
The tab character |
|
The new line (line feed) character |
|
The carriage-return character |
|
The form-feed character |
|
The alert (bell) character |
|
The escape character |
|
The control character corresponding to |
|
- | - |
Character classes | - |
|
|
Any character except |
|
|
|
|
|
|
|
|
|
|
|
- | - |
Predefined character classes | - |
Any character (may or may not match line terminators) | - |
A digit: |
|
A nondigit: |
|
A white space character: |
|
A nonwhitespace character: |
|
A word character: |
|
A nonword character: |
|
Greedy quantifiers | - |
|
|
|
|
|
|
|
|
|
|
|
|
For details about Java regex constructs, go to
The FileList operation does not expose the java.file.IncludeFiles property. This property is configured while designing the adapter interaction and cannot be overridden through headers, for example:
<property name="Recursive" value="true"/>
<property name="Recursive" value="true"/>
<property name="IncludeFiles" value=".*\.txt"/>
</interaction-spec>
</endpoint-interaction>
</adapter-config>
In this example, after you set the IncludeFiles, they cannot be changed.
You can select whether incoming files have multiple messages, and specify the number of messages in one batch file to publish. When a file contains multiple messages and this check box is selected, this is referred to as debatching. Nondebatching is applied when the file contains only a single message and the check box is not selected. Debatching is supported for native and XML files.
The File Polling page of the Adapter Configuration Wizard shown in Figure 4-22 enables you to specify the following inbound polling parameters:
Figure 4-22 The Adapter Configuration Wizard-File Polling Page
Note: You must not manually change the value of polling parameters in |
Using Trigger Files
By default, polling by inbound Oracle File and FTP Adapters start as soon as the endpoint is activated. However, to obtain more control over polling, you can use a file-based trigger. Once the Oracle File or FTP Adapter finds the specified trigger file in a local or remote directory, it starts polling for the files in the inbound directory.
For example, a BPEL process is writing files to a directory and a second BPEL process is polling the same directory for files. To have the second process start polling the directory only after the first process has written all the files, you can use a trigger file. You can configure the first process to create a trigger file at the end. The second process starts polling the inbound directory after it finds the trigger file.
The trigger file directory can be the same as the inbound polling directory or different from the inbound polling directory. However, if your trigger file directory and the inbound polling directory are the same, then you should ensure that the name of the trigger file is not similar to the file filter specified in the Adapter Configuration page shown in Figure 4-21.
The content of a trigger file is never read and therefore should not be used as payload for an inbound receive activity.
Table 4-4 lists the parameters that you must specify in the inbound service JCA file:
Table 4-4 Trigger File Parameters
Parameter | Description | Example |
---|---|---|
or
| The physical or logical name of the directory in which the Oracle File and FTP Adapters look for the trigger file. The |
|
| The name of the trigger file. |
|
| Strategy that is used as the triggering mechanism. The value can be: EndpointActivation: The adapter looks for the trigger file every time the composite is activated. Note: The composite gets activated every time you start the container or redeploy the application, or retire or activate the composite application from Oracle Enterprise Manager. Every time you restart the container, the composite application is not triggered until it sees the trigger file in the specified directory. OnceOnly: The adapter looks for the trigger file only once in its lifetime. After it finds the trigger file, it remember that across restarts and redeployments. EveryTime: The adapter looks for the trigger file on each polling cycle.The default value for |
|
The following is a sample JCA file for the inbound service:
The Oracle File Adapter supports several postprocessing options. After processing the file, files are deleted if specified in the File Polling page shown in Figure 4-22. Files can also be moved to a completion (archive) directory if specified in the File Directories page shown in Figure 4-20.
The next Adapter Configuration Wizard page that appears is the Messages page shown in Figure 4-23. This page enables you to select the XSD schema file for translation.
Figure 4-23 Specifying the Schema - Messages Page
If native format translation is not required (for example, a JPG or GIF image is being processed), then select the Native format translation is not required check box. The file is passed through in base-64 encoding.
XSD files are required for translation. To define a new schema or convert an existing data type definition (DTD) or COBOL Copybook, then select Define Schema for Native Format. This starts the Native Format Builder wizard. This wizard guides you through the creation of a native schema file from file formats such as comma-delimited value (CSV), fixed-length, DTD, and COBOL Copybook. After the native schema file is created, the Messages page is displayed, with the Schema File URL and Schema Element fields filled in. For more information, see Section 6.1.1, "Supported File Formats".
When you finish configuring the Oracle File Adapter, a JCA
file is generated for the inbound service. The file is named after the service name you specified on the Service Name page of the Adapter Configuration Wizard. You can rerun the wizard later to change your operation definitions.
The ActivationSpec
parameter holds the inbound configuration information. The ActivationSpec
and a set of inbound Oracle File Adapter properties are part of the inbound JCA
file.
Table 4-5 lists the properties of a sample inbound JCA file.
Table 4-5 Sample JCA Properties for Inbound Service
Property | Sample Value |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The ActivationSpec
property values are specified in the Adapter Configuration Wizard during design time and, as shown in Table 4-5. The inbound Oracle File Adapter uses the following configuration properties:
PollingFrequency
MinimumAge
PhysicalDirectory
LogicalDirectory
PublishSize
PhysicalArchiveDirectory
LogicalArchiveDirectory
IncludeFiles
ExcludeFiles
UseHeaders
ListSorter
ThreadCount
Recursive
MaxRaiseSize
For a description of these configuration properties, see Appendix A of this book.
Apart from the payload, Oracle File Adapter publishes the following header metadata, from the inbound service, as shown in Figure 4-24:
jca.file.FileName
: file name jca.file.Directory
: directory name jca.file.Batch
: a unique name for a batch in case of debatching jca.file.BatchIndex
: the batch index for each message within the batch for debatching jca.file.Size
: the file size jca.file.LastModifiedTime
: the last modified time for the file In the outbound direction, the Oracle File Adapter receives messages from the service engine and writes the messages to a file in a file system. This section provides an overview of the outbound file writing capabilities of the Oracle File Adapter. You use the Adapter Configuration Wizard to configure the Oracle File Adapter for use with a BPEL process or a Mediator Service. This creates an outbound WSDL
and a JCA
file pair.
This section includes the following topics:
For outbound operations with the Oracle File Adapter, select the Write File operation, as shown in Figure 4-25.
Figure 4-25 Selecting the Write File Operation
The Add Output Header check box is visible when you select File Write. When you select this check box, the adapter WSDL has an output message pointing to a header schema, shown by the bold highlight below.
xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
xmlns:FILEAPP="http://xmlns.oracle.com/pcbpel/adapter/file/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:opaque="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
<plt:role name="Write_role" >
<plt:portType name="tns:Write_ptt" />
</plt:role>
</plt:partnerLinkType>"
<wsdl:types>
</wsdl:types>
<wsdl:message name="Write_msg">
<wsdl:part name="opaque" element="opaque:opaqueElement"/>
</wsdl:message>
<wsdl:portType name="Write_ptt">
<wsdl:operation name="Write">
<wsdl:input message="tns:Write_msg"/>
</wsdl:operation>
</wsdl:portType>
</wsdl:definitions>
You can select the 'Update Output Header' check box in edit mode, and the output message/ header schema is removed from the adapter WSDL.
For the outbound operation, you can specify the outbound directory, outbound file naming convention to use, and, if necessary, the batch file conventions to use.
The File Configuration page of the Adapter Configuration Wizard shown in Figure 4-26 enables you to specify the directory for outgoing files and the outbound file naming convention.
Figure 4-26 The Adapter Configuration Wizard-Parameters for Outgoing Files
The following sections describe the file configuration information to specify:
You can specify outbound directory names as physical or logical paths. Physical paths are values such as c:\outputDir
.
If you specify logical parameters, then the generated JCA
file looks as follows for the logical outbound directory name OutputFileDir
.
Select the outbound adapter in the "External References" swim lane in JDeveloper wizard (it is present in the composite.xml tab). Create a "Binding Property" in the Property Inspector for the outbound adapter (you must scroll down to find it). Once the Create Property box appears, enter OutputFileDir
in the Name field and the actual output dir name, example, C:\outputDir
in the Value field. The composite.xml file appears as follows:
You can specify outbound directory names as physical or logical paths in Mediator. Physical paths are values such as c:\inputDir
.
You can specify the logical names at design time in the File Directories page shown in Figure 4-20 and then provide logical-physical mapping by using the Endpoint properties. For example, WriteFile
is an outbound adapter service. You have specified OutDir
as the logical directory name during design time.
For outbound operation, you can specify a dynamic outbound directory name. You can set variables to specify dynamic outbound directory names.
In the preceding example, in the JCA
file, the physical directory is set to "C:\foo"
but during run time it is dynamically changed to the assigned value. In this example, the physical directory is dynamically changed to "C:\out".
You must perform the following steps to specify the dynamic outbound directory name:
Create a variable MyDir
of type xsd:string
, as shown in Figure 4-27.
.bpel
page is displayed. jca.file.Directory
property from the Properties column and set the Value as MyDir
(the directory that you created in Step 4.) Ensure that the Type column is set to input
, as shown in Figure 4-29. Note: When using dynamic directories, ensure that parameters such as |
Specify the naming convention to use for outgoing files. You cannot enter completely static names such as po.txt
. This is to ensure the uniqueness in names of outgoing files, which prevents files from being inadvertently overwritten. Instead, outgoing file names must be a combination of static and dynamic portions.
The prefix and suffix portions of the file example shown in Figure 4-26 are static (for example, po_
and .xml
). The %SEQ%
variable of the name is dynamic and can be a sequence number or a time stamp (for example, po_%yyMMddHHmmss%.xml
to create a file with a time stamp).
If you choose a name starting with po_
, followed by a sequence number and the extension txt
as the naming convention of the outgoing files, then you must specify po_%SEQ%.txt
.
If you choose a name starting with po_
, followed by a time stamp with the pattern yyyy.MM.dd
and the extension txt
as the naming convention of the outgoing file, then you must specify po_%yyyy.MM.dd%.txt
. For example, the outgoing file name can be po_2004.11.29.txt
.
Additionally, you can combine file naming conventions. For example, you can specify the file naming convention as po_%SEQ%_%yyyy.MM.dd%_%SEQ%.txt
.
Note: When you use the time stamp pattern, the same time stamp may be generated on subsequent calls and you may lose messages. The workaround is to combine the time-stamp pattern with a sequence pattern. Alternatively, you can use a time-stamp pattern closest to a millisecond, in which case the adapter handles the uniqueness of the file names. |
You cannot use a regular expression for outbound synchronous reads. In these cases, the exact file name must be known.
A time stamp is specified by date and time pattern strings. Within date and time pattern strings, unquoted letters from 'A'
to 'Z'
and from 'a'
to 'z'
are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotation marks ('
) to avoid interpretation. The characters "''"
represent single quotation marks. All other characters are not interpreted.
The Java pattern letters are defined in Table 4-6.
Table 4-6 Java Pattern Letters
Letter | Date or Time Component | Presentation | Examples |
---|---|---|---|
| Era designator | Text |
|
| Year | Year |
|
| Month in year | Month |
|
| Week in year | Number |
|
| Week in month | Number |
|
| Day in year | Number |
|
| Day in month | Number |
|
| Day of week in month | Number |
|
| Day in week | Text |
|
| AM/PM marker | Text |
|
| Hour in day (0-23) | Number |
|
| Hour in day (1-24) | Number |
|
| Hour in AM/PM (0-11) | Number |
|
| Hour in AM/PM (1-12) | Number |
|
| Minute in hour | Number |
|
| Second in minute | Number |
|
| Millisecond | Number |
|
| Time zone | General Time Zone |
|
| Time zone | RFC 822 Time Zone |
|
Different presentations in the pattern are as follows:
For formatting, if the number of pattern letters is four or more, then the full form is used; otherwise, a short or abbreviated form is used if available. For parsing, both forms are accepted, independent of the number of pattern letters.
For formatting, the number of pattern letters is the minimum number of digits, and shorter numbers are zero-padded to this number. For parsing, the number of pattern letters is ignored unless it is needed to separate two adjacent fields.
For formatting, if the number of pattern letters is two, then the year is truncated to two digits; otherwise, it is interpreted as a number.
For parsing, if the number of pattern letters is more than two, then the year is interpreted literally, regardless of the number of digits. Using the pattern MM/dd/yyyy
, 01/11/12
parses to Jan 11, 12 A.D
.
For parsing with the abbreviated year pattern (y
or yy
), the abbreviated year is interpreted relative to some century. The date is adjusted to be within 80 years before and 20 years after the time instance is created. For example, using a pattern of MM/dd/yy
and Jan 1, 1997
is created; the string 01/11/12
is interpreted as Jan 11, 2012
, while the string 05/04/64
is interpreted as May 4, 1964
. During parsing, only strings consisting of exactly two digits are parsed into the default century. Any other numeric string, such as a one-digit string, a three-or-more-digit string, or a two-digit string that is not all digits (for example, -1
), is interpreted literally. So, 01/02/3
or 01/02/003
is parsed using the same pattern as Jan 2, 3 AD
. Likewise, 01/02/-3
is parsed as Jan 2, 4 BC
.
If the number of pattern letters is 3
or more, then the month is interpreted as text; otherwise, it is interpreted as a number.
Time zones are interpreted as text if they have names. For time zones representing a GMT
offset value, the following syntax is used:
GMT
Sign Hours :
Minutes+ -
0 1 2 3 4 5 6 7 8 9
Hours
must be between 0
and 23
, and Minutes
must be between 00
and 59
. The format is locale-independent and digits must be taken from the Basic Latin block of the Unicode standard.
For parsing, RFC 822 time zones are also accepted.
For formatting, the RFC 822 4-digit time zone format is used:
TwoDigitHours
must be between 00
and 23
. Other definitions are the same as for general time zones.
For parsing, general time zones are also accepted.
For outbound operation, you can specify a dynamic outbound file name. You can set variables to specify dynamic outbound file names.
In the preceding example, in the JCA file, the physical directory is set to "C:\foo"
but during run time it is dynamically changed to the assigned value. In this example, the physical directory is dynamically changed to "C:\out".
You must perform the following steps to specify the dynamic outbound directory name:
file
of type xsd:string
, as shown in Figure 4-27. jca.file.FileName
property from the Properties column and set the Value as file
(the file that you created in Step 4.) Ensure that the Type column is set to input
, as shown in Figure 4-30. Note: When using dynamic files, ensure that parameters such as |
In the simplest scenario, you specify writing a single file to a single message. You can also specify the outbound method for batch file writing. This method enables you to specify the number of messages to publish in one batch file. The following batch file settings are provided in the File Configuration page shown in Figure 4-26:
Specify a value which, when equaled, causes a new outgoing file to be created.
Specify a time which, when exceeded, causes a new outgoing file to be created.
Note: The Elapsed Time Exceeds batching criteria is evaluated and a new outgoing file is created, only when an invocation happens. |
For example, if you specify that elapsed time exceeds 15 seconds, then the first message that is received is not written out, even after 15 seconds, as batching conditions are not valid. If a second message is received, then batching conditions become valid for the first one, and an output file is created when the elapsed time exceeds 15 seconds.
Specify a file size which, when equaled, causes an outgoing file to be created. For example, assume that you specify a value of 3
for the number of messages received and a value of 1 MB for the file size. When you receive two messages that when combined equal or exceed 1 MB, or three messages that are less than 1 MB, an output file is created.
Note: You must not manually change the file configurations specified in the preceding list in the |
If the Oracle File Adapter encounters some problem during batching, then it starts batching at the point at which it left off on recovery.
The next Adapter Configuration Wizard page that appears is the Messages page shown in Figure 4-31. This page enables you to select the XSD schema file for translation.
As with specifying the schema for the inbound direction, you can perform the following tasks in this page:
For more information about Messages page, see Section 4.3.1.6, "Native Data Translation."
When you complete configuration of the Oracle File Adapter with the Adapter Configuration Wizard, a WSDL
and a JCA
file pair is generated for the outbound operation. The files are named after the service name you specified on the Service Name page of the Adapter Configuration Wizard shown in Figure 2-8, "Application Profile Deployment". You can rerun the wizard later to change your operation definitions.
A sample outbound JCA
file includes the information listed in Table 4-7:
Table 4-7 Sample JCA Properties for Outbound Service
Property | Sample Value |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
The outbound Oracle File Adapter uses the following configuration parameters:
PhysicalDirectory
LogicalDirectory
NumberMessages
ElapsedTime
FileSize
FileNamingConvention
Append
For a description of these configuration properties, see Appendix A of this book.
In the outbound direction, the Oracle File Adapter polls and reads the current contents of files. This section provides an overview of the outbound synchronous file reading capabilities of the Oracle File Adapter. For reading a file synchronously, you select Synchronous Read File operation, as shown in Figure 4-32.
Figure 4-32 Synchronous Read Operation Page
All the pages of the Adapter Configuration Wizard are similar to the Read File operation except the File Name page. You can specify the name of the file to be read in the File Name field, as shown in Figure 4-33.
This feature of the Oracle File Adapter lets you use a BPEL activity to retrieve a list of files from a target directory. This list of files is returned as an XML document and contains information such as file name, directory name, file size, and last modified time. This section provides an overview of the file listing capabilities of the Oracle File Adapter. You use the Adapter Configuration Wizard to configure the Oracle File Adapter for use with a BPEL process or a Mediator service. This creates an outbound WSDL
and JCA
file pair.
Note: The file creation time property, For example, <creationTime xmlns="http://xmlns.oracle.com/pcbpel/adapter/file/FAListFiles/FAListFilesTest/ReadS/">0</creationTime> |
This section includes the following topics:
For listing files, you must select the List Files operation, as shown in Figure 4-34.
The File Directories page of the Adapter Configuration Wizard shown in Figure 4-35 enables you to specify information about the directory to use for reading files names for the list operation. You can choose to list files recursively within directories.
Figure 4-35 The Adapter Configuration Wizard-Specifying Incoming Files
The following section describes the file directory information to specify:
You can specify directory names as physical or logical paths for composites involving Oracle BPEL PM and Mediator. Physical paths are values such as C:\inputDir
.
In the composite, logical properties are specified in the JCA
file, and their logical-physical mapping is resolved by using binding properties. You specify the logical directory once at design time, and you can later modify the directory name as needed.
For example, the generated JCA
file looks as follows for the logical input directory name C:\inputDir
:
The File Filtering page of the Adapter Configuration Wizard shown in Figure 4-36 enables you to specify details about the files to retrieve or ignore.
The Oracle File Adapter acts as a file listener and polls the specified directory on a local or remote file system and looks for files that match specified naming criteria.
Figure 4-36 The Adapter Configuration Wizard - File Filtering
The following sections describe the file filtering information to specify:
Specify the naming convention that the Oracle File Adapter uses to poll for inbound files. You can also specify the naming convention for files you do not want to process. Two naming conventions are available for selection. The Oracle File Adapter matches the files that appear in the inbound directory.
po*.txt
) Retrieve all files that start with po
and end with .txt
. This convention conforms to operating system standards.
po.*\.txt
) Retrieve all files that start with po
and end with .txt
. This convention conforms to Java Development Kit (JDK) regular expression (regex) constructs.
Notes:
|
If you use regular expressions, the values you specify in the Include Files and Exclude Files fields must conform to JDK regular expression (regex) constructs. For both fields, different regex patterns must be provided separately. The Include Files and Exclude Files fields correspond to the IncludeFiles
and ExcludeFiles
parameters, respectively, of the inbound WSDL
file.
Note: The regex pattern complies with the JDK regex pattern. According to the JDK regex pattern, the correct connotation for a pattern of any characters with any number of occurrences is a period followed by a plus sign |
To have the inbound Oracle File Adapter to pick up all file names that start with po
and which have the extension txt
, you must specify the Include Files field as po.*\.txt
when the name pattern is a regular expression. In this regex pattern example:
.)
indicates any character. *
) indicates any number of occurrences. The Exclude Files field is constructed similarly.
If you have Include Files field and Exclude Files field expressions that have an overlap, then the exclude files expression takes precedence. For example, if Include Files is set to abc*.txt
and Exclude Files is set to abcd*.txt
, then you receive any files prefixed with abcd*
.
Note: Do not begin JDK regex pattern names with the following characters: plus sign (|
For details about Java regex constructs, go to
http://java.sun.com/j2se/1.5.0/docs/api
Note: Files are not read and therefore there is no native data translation. |
In the inbound direction, the Oracle FTP Adapter works the same way as the Read File operations of the Oracle File Adapter in that it polls and gets files from a file system for processing. The major difference is that the Oracle FTP Adapter is used for remote file exchanges. To configure the FTP adapter for remote file exchanges, the Adapter Configuration Wizard asks for connection information to an FTP server to be used later, as shown in Figure 4-37.
Figure 4-37 Specifying FTP Server Connection Information
The default adapter instance JNDI name is eis/Ftp/FtpAdapter
, or use a custom name. This name connects to the FTP server during run time.
After logging in, you select the Get File (read) operation and the type of file to deliver. Figure 4-38 shows this selection.
Figure 4-38 Selecting the Get File Operation
The serverType
property in the deployment descriptor is used to determine line separators when you transfer data. You can specify unix
, win
, or mac
as property values. These values represent the operating system on which the FTP server is running. By default, the serverType property contains unix
.
When you specify mac
as the value, \r
is used as line separator. For unix
, \n
is used and for win
, \r\n
is used. You must note that this property is used by the NXSD translator component to write the line separator during an outbound operation.
From this point onwards, pages of the Adapter Configuration Wizard for the Get File operation are the same as those for the Read File operation of the file. Table 4-8 lists the pages that are displayed and provides references to sections that describe their functionality.
Table 4-8 Adapter Configuration Wizard Windows for Get File Operation
Page | See Section... |
---|---|
File Directories (Figure 4-20) | Section 4.3.1.2, "Inbound File Directory Specifications" |
File Filtering (Figure 4-21) | Section 4.3.1.3, "File Matching and Batch Processing" |
File Polling (Figure 4-22) | Section 4.3.1.4, "File Polling" |
Messages (Figure 4-23) | Section 4.3.1.6, "Native Data Translation" |
An additional Adapter Configuration Wizard page is also available for advanced users. This page is shown in Figure 4-39 and appears only after you make either or both of the following selections on the File Polling page shown in Figure 4-22:
This page enables you to specify a method for obtaining the modification time of files on the remote FTP server:
Note: The Oracle FTP Adapter uses the
This note is not applicable if your case does not fall under neither of these categories. |
This option enables you to obtain the date/time format of the file modification time with the file system listing command. However, this option is rarely used and is not supported by all FTP servers. See your FTP server documentation to determine whether your server supports the file system listing command, which command-line syntax to use, and how to interpret the output.
For example, if the file system listing command quote mdtm
filename
is supported and returns the following information:
specify the start index, end index, and date/time format of the file modification time in the Data/Time Format field as a single value separated by commas (for example, 4,18,yyyyMMddHHmmss).
Where:
quote mdtm
filename
command. The resulting JCA file includes the following parameters and values:
To handle the time zone issue, you must also be aware of the time stamp difference. The time zone of the FTP server is determined by using the Windows date/time properties (for example, by double-clicking the time being displayed in the Windows task bar). You must then convert the time difference between the FTP server and the system on which the Oracle FTP Adapter is running to milliseconds and add the value as a binding property in the composite.xml
file:
This option enables you to obtain the date/time format from the file modification time with the FTP directory listing command. For example, if the directory listing command (ls -l
) returns the following information:
specify the start index, end index, and date/time format of the file modification time as a single value separated by commas in either the Old File Date/Time Format field or the Recent File Date/Time Format field (for example, 0
,17
, MM-dd-yy hh:mma
).
Where:
0
is the start index of the file modification time. 17
is the end index of the file modification time. ls -l
command. For this example, the value is entered in the Recent File Date/Time Format field. This field indicates that the format is obtained from the most recent file adhering to the naming convention, whereas the Old File Date/Time Format field obtains the format from the oldest file. The resulting JCA file includes the following parameters and values:
To handle the time zone issue, you must also be aware of the time stamp difference. The time zone of the FTP server is determined by using the Windows date/time properties (for example, by double-clicking the time being displayed in the Windows task bar). You must then convert the time difference between the FTP server and the system on which the Oracle FTP Adapter is running to milliseconds and add the value as a binding property in the composite.xml
file:
This option enables you to obtain the modification time from the file name. For example, if the name of the file is fixedLength_20050324.txt
, you can specify the following values:
12
) 20
) SimpleDateFormat
to indicate the file modification time in the file name (for example, yyyyMMdd
) The resulting JCA file includes the following parameters and values:
After the completion of the Adapter Configuration Wizard, configuration files are created in the Applications section of JDeveloper.
See Figure 2-21, "Custom Adapter Configuration Wizard JCA Properties Screen" for more information about error handling.
You must also add the DefaultDateFormat
and the RecentDateFormat
parameters to the deployment descriptor for Oracle FTP Adapter, as shown in the following sample:
For more information on the DefaultDateFormat
and the RecentDateFormat
parameters, refer to Section 4.2.21, "Recursive Processing of Files Within Directories in Oracle FTP Adapter."
In the outbound direction, the Oracle FTP Adapter works the same as the Write File operations of the Oracle File Adapter. The Oracle FTP Adapter receives messages from a BPEL process or a Mediator service and writes the messages in a file to a file system (in this case, remote). Because the messages must be written to a remote system, the Adapter Configuration Wizard prompts you to connect to the FTP server with the adapter instance JNDI name, as shown in Figure 4-37.
After logging in, you select the Put File (write) operation and the type of file to deliver. Figure 4-40 shows this selection.
Figure 4-40 Selecting the Put File Operation
From this point onwards, pages of the Adapter Configuration Wizard for the Put File operation are the same as those for the Write File operation of the Oracle File Adapter. Table 4-9 lists the pages that display and provide references to sections that describe their functionality.
Table 4-9 The Adapter Configuration Wizard Pages for Put File Operation
Page | See Section... |
---|---|
File Configuration (Figure 4-26) | Section 4.3.2.2, "Outbound File Directory Creation" |
Messages (Figure 4-31) | Section 4.3.2.3, "Native Data Translation" |
After the completion of the Adapter Configuration Wizard, configuration files are created in the Applications section of JDeveloper.
In the outbound direction, the Oracle FTP Adapter works the same way as the Synchronous Read File operations of the Oracle File Adapter in that it polls and gets files from a file system and reads the current contents of the file. The major difference is that the Oracle FTP Adapter is used for remote file exchanges. Because of this polling, the Adapter Configuration Wizard asks for connection information to an FTP server to be used later. For reading a file synchronously, you select Synchronous Get File operation, as shown in Figure 4-41.
Figure 4-41 Selecting the Synchronous Get File Operation
The Oracle FTP Adapter file listing concepts are similar to the Oracle File Adapter file listing concepts discussed in Section 4.3.4, "Oracle File Adapter File Listing Concepts." The Oracle FTP Adapter polls for files in a target directory and lists files from the target directory to specified FTP locations. The contents of the files are not read. This feature of the Oracle FTP Adapter lets you use an invoke activity to retrieve a list of files from a target directory. This list of files is returned as an XML document and contains information such as file name, directory name, file size, and last modified time.
Note: The file creation time property, The |
You use the Adapter Configuration Wizard to configure the Oracle FTP Adapter for use with a BPEL process or a Mediator service. This creates an outbound WSDL
and JCA
file pair.
For listing files, you must select the List Files
operation from the Operation Type page of the Adapter Configuration Wizard. In the File Directories page of the Adapter Configuration Wizard, you must specify information about the directory to use for reading file names for the list operation. You can choose to list files recursively within directories. The File Filtering page of the Adapter Configuration Wizard enables you to specify details of the files to retrieve or ignore.
The Oracle FTP Adapter acts as a listener and polls the specified directory on a local or remote file system and looks for files that match specified naming criteria.
Various configuration tasks for Oracle File and FTP Adapters are discussed in the following sections:
To access a remote FTP server, you must configure the following credentials:
You must configure these credentials by modifying the weblogic-ra.xml
file using the Oracle WebLogic Server console.
To do so, in the Oracle WebLogic Server Admin Console:
javax.resource.cci.ConnectionFactory
and then select the instance that you are modifying. (For example, choose the eis/Ftp/FtpAdapter
instance for the non-HA use case.) The requirements and procedure to configure the Oracle File and FTP Adapters for high availability for an active-active topology are discussed in the following sections:
Before you configure the Oracle File or FTP Adapter for high availability, you must ensure that the following prerequisites are met:
/shared/control_dir
as the value for controlDir
, then the other deployment descriptor must also have the same value. MaxRaiseSize
property must be set in the inbound JCA file. Note: For large payloads, you must increase the transaction time out for the <xa-set-transaction-timeout>true</xa-set-transaction-timeout> <xa-transaction-timeout>1000</xa-transaction-timeout> |
Note: For Windows platforms, you must ensure that the input and output directories are canonicalized. For example, you must use |
Note: On all platforms, you must not end input or output directory names with the Java system property file.separator value. For example, |
The Oracle File and FTP Adapters must ensure that only one node processes a particular file in a distributed topology. You can use the database table as a coordinator to ensure that Oracle File and FTP Adapters are highly available for inbound operations.
Using Database Table as a Coordinator
You must use the following procedure to make an inbound Oracle File or FTP Adapter service highly available by using database table as a coordinator:
Note: You must increase global transaction timeouts if you use database as a coordinator. |
You are not required to perform this step because the database schemas are pre-created as a part of soainfra.
Modify Oracle File Adapter deployment descriptor for the connection-instance corresponding to eis/HAFileAdapter
from the Oracle WebLogic Server Administration Console:
http://
servername
:portnumber
/console
. Figure 4-42 Oracle WebLogic Server Administration Console - Settings for FileAdapter Page
Figure 4-43 Oracle WebLogic Server Administration Console - Settings for javax.resource.cci.ConnectionFactory Page
The new parameters in connection factory for Oracle File and FTP Adapters are as follows:
controlDir
- Set it to the directory structure where you want the control files to be stored. You must set it to a shared location if multiple WebLogic Server instances run in a cluster.
inboundDataSource
- Set the value to jdbc/SOADataSource
. This is the data source, where the schemas corresponding to high availability are pre-created. The pre-created schema file can be found under $BEA_HOME/AS11gR1SOA/rcu/integration/soainfra/sql/adapter/createschema_adapter_oracle.sql
. To create the schemas elsewhere, use this script. You must set the inboundDataSource property accordingly if you choose a different schema.
Note: The location attribute is set to |
The Oracle File and FTP Adapters must ensure that if multiple references write to the same directory, then these do not overwrite each other. The following locking capabilities you can use to make Oracle File and FTP Adapters highly available for outbound operations:
Using a Database Mutex
You must use the following procedure to make an outbound Oracle File or FTP Adapter service highly available by using database table as a coordinator:
Note: You must increase global transaction timeouts if you use the database as a coordinator. |
You are not required to perform this step as the database schemas are precreated as a part of soainfra.
Modify Oracle File Adapter deployment descriptor for the connection-instance corresponding to eis/HAFileAdapter
from the Oracle WebLogic Server Administration Console:
http://
servername
:portnumber
/console
. Figure 4-44 Oracle WebLogic Server Administration Console - Settings for javax.resource.cci.Connectionfactory Page
The new parameters in connection factory for Oracle File and FTP Adapters are as follows:
controlDir
- Set it to the directory structure where you want the control files to be stored. You must set it to a shared location if multiple WebLogic Server instances run in a cluster.
inboundDataSource
- Set the value to jdbc/SOADataSource
. This is the data source, where the schemas corresponding to high availability are precreated. The precreated schemas can be found under $BEA_HOME/AS11gR1SOA/rcu/integration/soainfra/sql/adapter/createschema_adapter_oracle.sql
. To create the schemas elsewhere, use this script. You must set the inboundDataSource property accordingly if you choose a different schema.
outboundDataSource
- Set the value to jdbc/SOADataSource
. This is the data source where the schemas corresponding to high availability are precreated. The precreated schemas can be found under $BEA_HOME/AS11gR1SOA/rcu/integration/soainfra/sql/adapter/createschema_adapter_oracle.sql
. To create the schemas elsewhere, use this script. You must set the outboundDataSource property if you choose to do so.
outboundLockTypeForWrite
- Set the value to oracle
if you are using Oracle Database. By default the Oracle File and FTP Adapters use an in-memory mutex to lock outbound write operations. You must choose from the following values for synchronizing write operations:
memory
- The Oracle File and FTP Adapters use an in-memory mutex to synchronize access to the file system.
oracle - The adapter uses the Oracle Database sequence.
db
- The adapter uses a precreated database table (FILEADAPTER_MUTEX
) as the locking mechanism. You must use this option only if you are using a schema other than the Oracle Database schema.
user-defined
- The adapter uses a user-defined mutex. To configure the user-defined mutex, you must implement the mutex interface "oracle.tip.adapter.file.Mutex"
and then configure a new binding-property with the name "oracle.tip.adapter.file.mutex"
and value as the fully qualified class name for the mutex for the outbound reference.
Note: The location attribute is set to |
The Oracle FTP Adapter supports the use of the secure FTP feature on Windows, Solaris, and Linux. For Windows, this feature is certified on FileZilla FTP server with OpenSSL. This section provides an overview of secure FTP functionality and describes how to install and configure this feature.
This section includes the following topics:
In environments in which sensitive data is transferred to remote servers (for example, sending credit card information to HTTP servers), the issue of security is very important. Security in these cases primarily refers to two requirements:
Secure socket layer (SSL) certificates and encryption focus on satisfying these two security requirements. When SSL is used for FTP, the resulting security mechanism is known as FTPS (or FTP over SSL).
To gain the trust of clients in SSL environments, servers obtain certificates (typically, X.509 certificates) from recognized certificate authorities. When you set up the FTP server, you use openSSL to create a certificate for the server. Every client trusts a few parties, to begin with. If the server is one of these trusted parties, or if the server's certificate was issued by one of these parties, then you have established trust, even indirectly. For example, if the server's certificate was issued by authority A, which has a certificate issued by authority B, and the client trusts B, that is good enough. For the setup shown in Figure 4-45, the server's certificate is directly imported into the client's certificate store (or Oracle Wallet) as a trusted certificate.
You make the data being transferred immune to spying by encrypting it before sending it and decrypting it after receiving it. Symmetric encryption (using the same key to encrypt and decrypt data) is much faster for large amounts of data than the public key and private key approach. Symmetric encryption is the approach used by FTPS. However, before the client and server can use the same key to encrypt and decrypt data, they must agree on a common key. This client typically does this by performing the following tasks:
The server decrypts this session key by using its private key and subsequently uses it to encrypt file data before sending it to the client.
The following subsections describe how to install and configure secure FTP for Solaris and Linux:
OpenSSL is an open source implementation of the SSL protocol. OpenSSL implements basic cryptographic functions and provides utility functions. Install and configure OpenSSL on the Solaris or Linux host to be used as the FTP server.
openssl-0.9.7g.tar.gz
in the list of available files. For example: openssl-0.9.7g.tar.gz
MD5
link) PGP sign
link gunzip
. PATH
variable: The vsftpd server is a secure and fast FTP server for UNIX systems. Install and configure vsftpd on the Solaris or Linux host to be used as the FTP server.
vsftpd-2.0.5
(You need the tar and signature file (.asc
file)). For example: gunzip
. builddefs.h
file: to
Create a file named vsftpd.conf
with the following settings in the /etc
directory:
Note: Copies of the |
Run the following command:
vsftpd
daemon from the vsftpd-2.0.5
directory: s
Oracle Wallet Manager is an application for managing and editing security credentials in Oracle wallets. A wallet is a password-protected container that stores authentication and signing credentials, including private keys, certificates, and trusted certificates, all of which are used by SSL for strong authentication.
vsftpd.pem
from Step 11 of Section 4.4.3.2.2, "Installing and Configuring vsftpd" as a trusted certificate in this wallet. .p12
) format. See Oracle Fusion Middleware Administrator's Guide for details about using Oracle Wallet Manager.
Perform the following tasks to set up the Oracle FTP Adapter:
Where... | Is... |
---|---|
| Set to |
| The location of the wallet created in Section 4.4.3.2.3, "Creating an Oracle Wallet." |
| The password of the wallet. |
| The type of channel: control channel or data channel. Possible values are |
| The port for FTP over SSL. The default is |
| The keystore provider class. The default is |
| The keystore type. The default is |
| The keystore algorithm. The default is |
| List of comma separated cipher suites. The default is blank, in which case the default list of cipher suites are used. For most cases, you are not required to change this. |
| The PKI provider name. The default is |
| The JSSE provider name. The default is |
You have now installed and configured secure FTP and are ready to use this feature with the Oracle FTP Adapter.
The FTPS feature is certified on FileZilla FTP server with OpenSSL. You must follow the procedure in the following subsections for installing and configuring OpenSSL for FileZilla on Windows:
OpenSSL is an open source implementation of the SSL protocol. OpenSSL implements basic cryptographic functions and provides utility functions. Perform the following steps to install and configure OpenSSL on the Windows host to be used as the FTP server.
Visual C++ 2008 Redistributables
. Win32 OpenSSL v0.9.8k Light
. To create the server key and certificate files, you must perform the following steps:
OpenSSL\bin
directory. A sample command output is as follows:
Enter a PEM pass phrase when prompted.
The server key (mykey.pem
) and certificate (mycert.pem
) are generated in the OpenSSL\bin
directory.
To import the server key and certificate into FileZilla, you must perform the following steps:
The FileZilla Server Options dialog is displayed.
Figure 4-46 The FileZilla Server Options Dialog
Note: In the Key password field, you must use the PEM pass phrase generated in Step 3 of Section 4.4.3.3.2, "Generating OpenSSL Server Key and Certificate." |
You must convert the server key and the server certificate from the PEM format to the PKCS#12 format as the Oracle FTP Adapter does not recognize the PEM format. To convert the server key and certificate to the PKCS#12 format, you must perform the following steps:
OpenSSL\bin
directory. The command output is as follows:
Enter an export password for the PKCS#12 file.
The mykeyz.p12
file is generated in the OpenSSL\bin
directory.
mykeyz.p12
file to the managed Oracle WebLogic Server instance running the Oracle FTP Adapter. For example,
You must perform the following steps to configure the Oracle FTP Adapter deployment descriptor:
http://
servername:portnumber
/console
. The Oracle WebLogic Server Administration Console - Summary of Deployments page is displayed.
The Oracle WebLogic Server Administration Console - Settings for FtpAdapter page is displayed.
The Outbound Connection Pool Configuration table is displayed.
"eis/Ftp/FtpAdapter"
. Table 4-10 JCA Properties for Oracle File and FTP Adapters
Property Name | Property Value |
---|---|
| Set the value to |
| Set it to the location of the PKCS#12 file in the managed Oracle WebLogic Server instance: |
| Set the value to the export password generated in Step 4 of Section 4.4.3.3.4, "Converting the Server Key From PEM to PKCS12 Format." |
| Set the value to |
| Set the value to |
| Set the value to |
| Must be left blank. |
| Must be left blank. |
SSH file transfer protocol (SFTP) is a network protocol that enables secure file transfer over a network. Oracle FTP Adapter supports the use of the SFTP feature on Windows and Linux. This section provides an overview of the SFTP functionality and describes how to install and configure this feature.
This section includes the following tasks:
FTP is the network protocol that enables clients to securely transfer files over the underlying SSH transport. SFTP is not similar to FTP over SSH or File Transfer Protocol (FTP). Figure 4-47 displays the communication process between an SSH client and an SSH server. SFTP is supported in Windows and Linux.
SFTP has the following features:
The SSH protocol uses public key cryptography for encryption. This section explains how data is encrypted:
The SSH protocol inherently supports password authentication by encrypting passwords or session keys as they are transferred over the network. In addition, the SSH protocol uses a mechanism known as 'known hosts' to prevent threats such as IP spoofing. When this mechanism is used, both the client and the server have to prove their identity to each other before any kind of communication exchange.
The SSH protocol uses widely trusted bulk hashing algorithms such as Message Digest Algorithm 5 (MD5) or Secure Hash Algorithm (SHA-1) to prevent insertion attacks. Implementation of data integrity checksum by using the algorithms mentioned in Section 4.4.4.1.1, "Encryption" prevents deliberate tampering of data during transmission.
The SSH protocol supports zlib, an open-source cross-platform algorithm for data compression. SSH uses zlib
to compress in-flight data to reduce network bandwidth.
OpenSSH for Windows is the free implementation of the SSH protocol on Windows. Perform the following steps to install and configure OpenSSH on Windows XP:
setup.exe
from the following location: setup.exe
. The Cygwin Net Release Setup window is displayed. CYGWIN
in the Variable Name field and ntsec
in the Variable Value field. C:\cygwin\bin
to the system path. ssh-host-config
. Shall privilege separation be used? (yes/no)
Enter yes
.
Shall this script create a local user 'sshd' on this machine?
Enter yes
.
Do you want to install sshd as service?
(Say "no" if it's already installed as service) (yes/no)
Enter yes
.
Which value should the environment variable CYGWIN have when sshd starts? It's recommended to set at least "ntsec" to be able to change user context without password. Default is "binmode ntsec tty".
Enter ntsec
.
net start sshd
to start the sshd service. ssh localhost
in the cygwin window. To use the SFTP functionality, you must modify the deployment descriptor for Oracle FTP Adapter.
Table 4-11 lists the properties for which you must specify a value in the deployment descriptor. The values of these properties depend on the type of authentication and the location of OpenSSH.
Table 4-11 SFTP Properties
Property | Description |
---|---|
| Specify Mandatory: Yes Default value: |
| Specify For password-based authentication, the user name and password specified in the For public key authentication, the Mandatory: Yes |
| Specify This is an optional parameter where the user can select the default key exchange protocol for negotiating the session key for encrypting the message. Mandatory: No Default value: |
| Specify This parameter enables the user to choose whether in-flight data should be compressed or not. Mandatory: No |
| Specify This parameter enables the user to select the bulk-hashing algorithm for data integrity checks. Mandatory: No Default value: |
| Specify This parameter enables the user to configure the asymmetric cipher for the communication. Mandatory: No Default value: |
| Specify the path to the private key file. This is required if the Mandatory: No |
| Specify a cipher from the following list:
Mandatory: No Default value: blowfish-cbc |
| Specify Specify If you select HTTP, then you must provide values for the following parameters:
Mandatory: Yes |
To set up the Oracle FTP Adapter for password authentication, the deployment descriptor for Oracle FTP Adapter must specify the values of the properties listed in Table 4-11. Ensure that the authenticationType
property is set to password
.
Specify the following properties and values listed in Table 4-12:
Table 4-12 Sample SFTP Properties and Values
Property | Value |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
| - |
|
|
|
|
For public key authentication, you must first configure OpenSSH and then set up the Oracle FTP Adapter. The Oracle FTP Adapter setup depends on whether the OpenSSH is running inside a firewall or outside a firewall. If OpenSSH is running inside the firewall, then see the following sections:
If OpenSSH is running outside the firewall, then see the following sections:
Perform the following steps:
C:\cygwin\etc
directory. If required, configure the sshd_config
file to force public key authentication. For more information, see openssh help or manual. C:\cygwin\bin
directory. /etc/id_rsa
when prompted for the file in which the key should be saved. /etc
directory and verify that both the public key file (id_rsa.pub
) and the private key file (id_rsa
) are generated. C:\my-secured-folder\
. The Oracle FTP Adapter configuration refers to this private key file. To set up the Oracle FTP Adapter for public key authentication, you must specify the values of the parameters listed in Table 4-11 in the deployment descriptor. Ensure that the authenticationType
parameter is set to publickey
and the transportProvider
parameter is set to socket
. The privateKeyFile
parameters should contain the location of the private key file.
A sample list of public key authentication properties and their values is shown in Table 4-13.
Table 4-13 Sample SFTP Properties and Values
Property | Value |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
| C:\my-secured-folder\id_rsa |
| blowfish-cbc |
|
|
Perform the following steps to set up the Oracle FTP Adapter for public key authentication when OpenSSH is running outside the firewall:
authenticationType
property is set to publickey
and the transportProvider
property is set to HTTP
. The privateKeyFile
property contains the location of the private key file. proxyHost
: The name of the proxy host. proxyPort
: The port number of the proxy. proxyUsername
: The user name for the proxy. proxyPassword
: The password for the proxy. useProxy
: Specify true
to use proxy. A sample list with public key authentication properties and proxy properties is shown in Table 4-14.
Table 4-14 Sample SFTP Properties and Values
Property | Value |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| C:\my-secured-folder\id_rsa |
| blowfish-cbc |
|
|
The Oracle FTP Adapter provides proxy support for HTTP proxy only. The HTTP proxy support is available in the following two modes, plain FTP mode and SFTP mode. This section explains how to configure the Oracle FTP Adapter for running in plain FTP mode and SFTP mode. It contains following sections:
For running the Oracle FTP Adapter in plain FTP mode, you must specify the value of certain parameters in the Oracle FTP Adapter deployment descriptor. Table 4-15 lists the properties that you must modify.
Table 4-15 Plain FTP Mode Properties
Property | Description |
---|---|
| The remote FTP server name. |
| The FTP control port number. |
| The FTP user name. |
| The FTP password. |
| The proxy host name. |
| The proxy port number. |
| The proxy user name. |
| The proxy password. |
| The proxy type. Only HTTP proxy type is supported. |
| The absolute path of the proxy definition file. This parameter is not mandatary. See Section 4.4.5.1.1, "Proxy Definition File" for more information. |
| Specify |
A sample list of Oracle FTP Adapter descriptor properties and their values is shown in Table 4-16.
Table 4-16 Sample Plain FTP Mode Properties and Values
Property | Value |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
You can specify all proxy-specific information in a proxy definition file and configure the adapter to use this file with the proxyDefinitionFile
property of the Oracle FTP Adapter deployment descriptor file. A proxy definition file is written in XML format and is based on XML schema. The XML schema for the proxy definition file is shown in Example 4-5. Your proxy definition file must be based on this XML schema.
Example 4-5 Proxy Definition File XML Schema
A sample proxy definition file, based on the XML schema in Example 4-5, would look as shown in Example 4-6:
Example 4-6 Proxy Definition File
When you use the file in Example 4-6, the Oracle FTP Adapter sends the following sequence of commands to log in:
You can also direct the proxy definition file to pick values from the deployment descriptor for Oracle FTP Adapter. You can use the following expressions for this:
$proxy.user
: This corresponds to the value of the proxyUsername
parameter in the Oracle FTP Adapter deployment descriptor. $proxy.pass
: This corresponds to the value of the proxyPassword
parameter in the Oracle FTP Adapter deployment descriptor. $remote.user
: This corresponds to the value of the username
parameter in the Oracle FTP Adapter deployment descriptor. $remote.pass
: This corresponds to the value of the password
parameter in the Oracle FTP Adapter deployment descriptor. $remote.host
: This corresponds to the value of the host
parameter in the Oracle FTP Adapter deployment descriptor. $remote.port
: This corresponds to the value of the port
parameter in the Oracle FTP Adapter deployment descriptor. A sample proxy definition file based on the XML schema in Example 4-6 and taking values from the weblogic-ra.xml
file is shown in Example 4-7:
Example 4-7 Proxy Definition File Taking Values from the Deployment Descriptor
For running the Oracle FTP Adapter in SFTP mode, you must specify the value of certain properties in the Oracle FTP Adapter deployment descriptor. Table 4-17 lists the properties that you must modify.
Table 4-17 SFTP Mode Properties
Property | Description |
---|---|
| The remote FTP server name. |
| The FTP control port number. |
| The SFTP user name. |
| The SFTP password. |
| The proxy server host name. |
| The proxy port number. |
| The proxy user name. |
| The proxy password. |
| Specify |
| Specify either |
| Specify |
A sample list of deployment descriptor properties is shown in Table 4-18.
This section includes the following Oracle File and FTP Adapters use cases:
This is an Oracle File Adapter feature that debatches large XML documents into smaller individual XML fragments.
In this use case, the Debatching XML process uses the Oracle File Adapter to debatch an XML file containing a batch of employees occurring in the XML file as repeating nodes. The Adapter then processes the nodes and writes separate output files to every individual node.
This use case includes the following sections:
To perform debatching, you require the following files from the artifacts.zip
file contained in the Adapters-102FileAdapterXMLDebatching
sample:
artifacts/input/emps.xml
artifacts/schemas/employees.xsd
You can obtain the Adapters-102FileAdapterXMLDebatching
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-XMLDebatching
in the Application Name field, as shown in Figure 4-48, and click Next. The Create Generic Application - Name your project page is displayed. Figure 4-48 The Generic Create Application - Name your application Page
XMLDebatching
in the Project Name field. Figure 4-49 The Create Generic Application - Name your project Page
Figure 4-50 The Create Generic Application - Configure SOA settings Page
BPELXMLDebatching
in the Name field, select Define Service Later from the Template box, as shown in Figure 4-51. Figure 4-51 The Create BPEL Process - BPEL Process Page
Figure 4-52 The JDeveloper - Composite.xml
employees.xsd
file to the xsd directory in your project (see Section 4.5.1.1, "Prerequisites" for the location of this file). Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory:
XMLDebatchingIn
in the Service Name field and, as shown in Figure 4-53. Figure 4-53 The Adapter Configuration Wizard - Service Name Page
Figure 4-54 The Adapter Configuration Wizard Operation Page
Figure 4-55 The Adapter Configuration Wizard - File Directories Page
*.xml
in the Include Files With Name Pattern field, select Files Contain Multiple Messages check box, specify 1
as the value for Publish Messages in Batches Of box, as shown in Figure 4-56. Figure 4-56 The Adapter Configuration Wizard File Filtering Page
Figure 4-58 The Adapter Configuration Wizard File Messages Page
Figure 4-59 The JDeveloper - Composite.xml
Perform the following steps to create an outbound file adapter service to write the file from a local directory to the FTP server:
XMLOut
in the Service Name field. emp_%SEQ%.xml
in the File Naming Convention (po_%SEQ%.txt) field, as shown in Figure 4-60. 1
. Figure 4-60 The Adapter Configuration Wizard - File Configuration Page
Figure 4-62 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 4-63.
Figure 4-63 The JDeveloper - Composite.xml
Add a Receive Activity
ReceiveEmployee
in the Name field, as shown in Figure 4-64. Figure 4-64 The JDeveloper - BPELXMLDebatching.bpel
Figure 4-65 The Partner Link Chooser Dialog
Figure 4-67 The JDeveloper - BPELXMLDebatching.bpel
Add an Invoke Activity
WriteEmployee
in the Name field, as shown in Figure 4-68. Figure 4-69 The Partner Link Chooser Dialog
Figure 4-71 The JDeveloper - BPELXMLDebatching.bpel
Add a Transform Activity
TransformPayload
in the Name field, as shown in Figure 4-72. Figure 4-73 The Transform Dialog - Transformation Tab
Figure 4-75 The JDeveloper - Transformation_2.xsl
Figure 4-76 The JDeveloper - XML Debatching Complete
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This use case demonstrates how a flat structure business process uses the Oracle File Adapter to process address book entries from a Comma Separated Value (CSV) file. This is then transformed and written to another file in a Fixed Length format.
This use case includes the following sections:
To perform the flat structure business process, you require the following files from the artifacts.zip
file contained in the Adapters-101FileAdapterFlatStructure
sample:
artifacts/input/address-csv.txt
artifacts/schemas/address-csv.xsd
artifacts/schemas/address-fixedLength.xsd
artifacts/xsl/addr1Toaddr2.xsl
You can obtain the Adapters-101FileAdapterFlatStructure
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-FlatStructure
in the Application Name field, and click OK. The Create Generic Application - Name your project page is displayed. FlatStructure
in the Project Name. BPELFlatStructure
in the Name field, select Define Service Later from the Template box. Figure 4-77 The JDeveloper - Composite.xml
Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory:
FlatStructureIn
in the Service Name field. *.txt
in the Include Files With Name Pattern field, click Next. The File Polling page is displayed. address-csv.xsd
file. composite.xml
appears, as shown in Figure 4-78. Figure 4-78 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle File Adapter service to write the file from a local directory to the FTP server:
FlatStructureOut
in the Service Name field. address_%SEQ%.data
in the File Naming Convention(po_%SEQ%.txt) field. Figure 4-79 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 4-80.
Figure 4-80 The JDeveloper - Composite.xml
Add a Receive Activity
ReceiveCSV
in the Name field. Figure 4-81 The JDeveloper - BPELFlatStructure.bpel
Add an Invoke Activity
InvokeWrite
in the Name field. Figure 4-82 The JDeveloper - BPELFlatStructure.bpel
Add a Transform Activity
TransformPayload
in the Name field. Figure 4-83 The JDeveloper - BPELFlatStructure.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
In this use case, Mediator receives the customer data from a file system as a text file, through an inbound Oracle File Adapter service named ReadFile
. The ReadFile
adapter service sends the message to a routing service named ReadFile_RS
. The ReadFile_RS
sends the message to the outbound adapter service WriteFTP
. The WriteFTP
service delivers the message to its associated external application.
This use case includes the following sections:
This example assumes that you are familiar with basic Mediator constructs, such as services, routing service, and JDeveloper environment for creating and deploying Mediator services.
To perform the flat structure for Mediator business process, you require the following files from the artifacts.zip
file contained in the Adapters-101FileAdapterFlatStructure
sample:
artifacts/schemas/address-csv.xsd
You can see the Adapters-101FileAdapterFlatStructure
sample by accessing the Oracle SOA Sample Code site.
To create an application and a project for the use case, follow these steps:
FileFTP_RW
in the Application Name field and click Next. The Create Generic Application - Name your project page is displayed. FileRead_FTPWrite
in the Project Name field. FileRead_RS
in the Name field. FileFTP_RW
application and the FileRead_FTPWrite
project appear in the design area. Perform the following steps to import the XSD files that define the structure of the messages:
Schema
directory and copy the address-csv.xsd
file to this directory (see Section 4.5.3.1, "Prerequisites" for the location of this file). Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory
ReadFile
in the Service Name field. *.txt
in the Include Files with Name Pattern field and click Next. The File Polling page is displayed. Perform the following steps to create an outbound Oracle FTP Adapter service to write the file to an FTP server:
WriteFTP
in the Service Name field. po_%SEQ%.txt
. You have to assemble or wire the three components that you have created: Inbound Oracle File Adapter service, Mediator component, Outbound Oracle FTP Adapter reference. Perform the following steps to wire the components:
Figure 4-84 The JDeveloper - Composite.xml
Perform the following steps to create a routing service:
Figure 4-85 The JDeveloper - ReadFile_RS Routing Service Page
Figure 4-86 The Request Transformation Map Dialog
A Root-Element_To_Root-Element.xsl tab is added to JDeveloper. This tab enables you to graphically create a document transformation file to convert the structure of the file data to a canonical data structure.
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
At run time, copy a text file to the polling directory. Once the Oracle File Adapter picks the file,it writes the file to the directory that you specified at design time.
This use case demonstrates how a scalable DOM process uses the streaming feature to copy/move huge files from one directory to another.
The streaming option is not supported with DB2 hydration store.
This use case includes the following sections:
To perform the streaming large payload process, you require the following files from the artifacts.zip
file contained in the Adapters-103FileAdapterScalableDOM
sample:
artifacts/schemas/address-csv.xsd
artifacts/input/address-csv-large.txt
You can obtain the Adapters-103FileAdapterScalableDOM
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-ScalableDOM
in the Application Name field, and click Next. The Create Generic Application - Name your project page is displayed. ScalableDOM
in the Project Name field. BPELScalableDOM
in the Name field, select Define Service Later from the Template box. Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory:
ScalableDOMIn
in the Service Name field. *.txt
in the Include Files With Name Pattern field, click Next. The File Polling page is displayed. address-csv.xsd
file. Figure 4-88 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle File Adapter service to write the file from a local directory to the FTP server:
ScalableDOMOut
in the Service Name field. address-csv_%SEQ%.xml
in the File Naming Convention (po_%SEQ%.txt) field. address-csv.xsd
file. Figure 4-89 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper composite.xml appears, as shown in Figure 4-90.
Figure 4-90 The JDeveloper - Composite.xml
Add a Receive Activity
ReceiveFile
in the Name field. Figure 4-91 The Partner Link Chooser Dialog
Figure 4-92 The JDeveloper - BPELScalableDOM.bpel
Add an Invoke Activity
WriteFile
in the Name field. Figure 4-93 The JDeveloper - BPELScalableDOM.bpel Page
Add an Assign Activity
AssignPayload
in the Name field. Figure 4-94 The Assign Dialog - Copy Operation Tab
Figure 4-95 The Create Copy Operation Dialog
Figure 4-97 The JDeveloper - BPELScalableDOM.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. address-csv-large.txt
file to the input directory and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This is an Oracle File Adapter feature that uses an invoke activity within a while loop to process the target file. This feature enables you to process arbitrarily large files.
This use case includes the following sections:
To perform the Oracle File Adapter ChunkRead, you require the following files from the artifacts.zip
file contained in the Adapters-106FileAdapterChunkedRead
sample:
artifacts/schemas/address-csv.xsd
artifacts/schemas/address-fixedLength.xsd
artifacts/xsl/addr1Toaddr2.xsl
artifacts/input/address-csv.txt
You can obtain the Adapters-106FileAdapterChunkedRead
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-ChunkedRead
in the Application Name field, and click Next. The Create Generic Application - Name your project page is displayed. ChunkedRead
in the Project Name field. BPELChunkedRead
in the Name field, select Define Service Later from the Template box. Figure 4-98 The JDeveloper - Composite.xml
Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory:
FileInNoPayloadIn
in the Service Name field. *.txt
in the Include Files With Name Pattern field, click Next. The File Polling page is displayed. Figure 4-99 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle File Adapter service to write the file from a local directory to the FTP server:
ReadAddressChunk
in the Service Name field. ChunkedRead
in the Operation Name field, and then click Next. The File Directories page is displayed. dummy.txt
in the File Name field. address-csv.xsd
file. composite.xml
appears, as shown in Figure 4-100. Figure 4-100 The JDeveloper - Composite.xml
Open ReadAddressChunk_file.jca
file and modify the metadata as shown below:
Add Another Outbound Oracle File Adapter Service
AppendChunk
in the Service Name field. Write
in the Operation Name field, and then click Next. The File Configuration page is displayed. dummy.txt
in the File Naming Convention (po_%SEQ%.txt) and select Append to Existing File. address-fixedLength.xsd
file. Figure 4-101 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, two Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper composite.xml
appears, as shown in Figure 4-102.
Figure 4-102 The JDeveloper - Composite.xml
Add a Receive Activity
Note: All variables are Simple Types of type xsd:string. |
ReceiveFileDetails
in the Name field. jca.file.Directory
is set to dir
. jca.file.FileName
property and set the value to file. The Receive dialog is displayed, as shown in Figure 4-104. Figure 4-105 The JDeveloper - BPELChunkedRead.bpel
Add an Assign Activity
AssignChunkedRead
in the Name field. Figure 4-107 The JDeveloper - BPELChunkedRead.bpel
Add an Invoke Activity
InvokeReadAddress
in the Name field. Figure 4-109 The JDeveloper - BPELChunkedRead.bpel
The invoke activity appears as follows:
CopyHeaders
, as given in Add an Assign Activity, to copy the return parameters from the invoke activity. The Assign dialog is displayed, as shown in Figure 4-110. Figure 4-111 The JDeveloper - BPELChunkedRead.bpel
Add a Switch Activity
DATA FOUND
in the Name field and select the returnNoDataFound expression in the Expression box. The Switch Case dialog is displayed, as shown in Figure 4-112. InvokeAppend
in the Name field. Add a Transform Activity
TransformPayload
in the Name field. Figure 4-114 The JDeveloper - BPELChunkedRead.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. address-csv.txt
file to the input directory (see Section 4.5.5.1, "Prerequisites" for the location of this file) and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This is an Oracle File Adapter feature to opaquely copy or move large amount of data, from a source directory on your file system to a destination directory, as attachments. For example, you can transfer large MS Word documents, images, and PDFs without processing their content within the composite application. The read file as attachment feature is available only when the Read File option is chosen.
This use case demonstrates the ability of the Oracle File Adapter to process a large *.doc
file as an attachment. This feature of reading files as attachments is very similar to Opaque
translation. However, attachments can be of the order of gigabytes depending on database limitations.
To perform Oracle File Adapter read file as attachments, you require a large MS Word document (*.doc
file).
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
AttachmentApp
in the Application Name field, and click Next. The Create Generic Application - Name your project page is displayed. Attachment
in the Project Name field. BPELAttachment
in the Name field, select Define Service Later from the Template list. AttachmentApp
application and the Attachment
project appear in the design area, as shown in Figure 4-115. Figure 4-115 The JDeveloper - Composite.xml
Perform the following steps to create an inbound Oracle File Adapter service to read a large file from a local directory:
AttachmentIn
in the Service Name field. Note: You must ignore Character Set, Encoding, and Content Type fields. These fields must be populated with values only if you are using third-party applications that must read this attachment. The attachment in this use case is finally consumed by an outbound Oracle File Adapter, hence these values are not required. |
Figure 4-116 The Adapter Configuration Wizard Operation Page
*.doc
in the Include Files With Name Pattern field, as shown in Figure 4-56. Figure 4-117 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle File Adapter service to write the file from a local directory to the FTP server:
AttachmentOut
in the Service Name field. attachment_%SEQ%.doc
in the File Naming Convention(po_%SEQ%.txt) field, as shown in Figure 4-60. Figure 4-119 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper composite.xml appears, as shown in Figure 4-120.
Figure 4-120 The JDeveloper - Composite.xml
Add a Receive Activity
ReceiveInput
in the Name field. Figure 4-121 The Partner Link Chooser Dialog
Figure 4-123 The JDeveloper - BPELXMLDebatching.bpel
Add an Invoke Activity
Write_Attachment
in the Name field. Figure 4-124 The Partner Link Chooser Dialog
Figure 4-126 The JDeveloper - BPELXMLDebatching.bpel
Add an Assign Activity
AssignReference
in the Name field. Figure 4-127 The Assign Dialog - Copy Operation Tab
Figure 4-128 The Create Copy Operation Dialog
Note: In the case of variables defined by reference to an element, both the source and the target must be the same element. |
Figure 4-130 The JDeveloper - BPELScalableDOM.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. attachment.doc
file to the input directory (see Section 4.5.6.1, "Prerequisites" for details) and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This is an Oracle File Adapter feature that lets you use an invoke activity to retrieve a list of files from a target directory. This list of files is returned as an XML document and contains information such as file name, directory name, file size, and last modified time.
This use case includes the following sections:
To perform Oracle File Adapter Listing, you require *.txt
files. You must create and save the *.txt
files in the target directory.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
FileListingApp
in the Application Name field, and click Next. The Create Generic Application - Name your project page is displayed. FileListing
in the Project Name field. BPELFileListing
in the Name field, select One Way BPEL Process from the Template box. Figure 4-131 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle File Adapter service to list the file from a target directory:
ListFiles
in the Service Name field. FileListing
in the Operation Name field, and then click Next. The File Directories page is displayed. *.txt
in the Include Files with Name Pattern field. Figure 4-132 The JDeveloper - Composite.xml
You have to assemble or wire the two components that you have created: BPEL process, and the Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 4-133.
Figure 4-133 The JDeveloper - Composite.xml
Create a String Variable
MyDir
of type xsd:string
, as shown in Figure 4-134, for later use. Figure 4-135 The JDeveloper - BPELFileListing.bpel
Add an Invoke Activity
InvokeListFiles
in the Name field. jca.file.Directory
is set to Mydir
. Figure 4-137 The JDeveloper - BPELFileListing.bpel
Add an Assign Activity
AssignDirName
in the Name field. Figure 4-139 The JDeveloper - BPELFileListing.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. *.txt
files to the input directory (see Section 4.5.7.1, "Prerequisites" for details) and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This use case demonstrates the ability of the Oracle File Adapter to process native data defined in a custom format. In this sample, the custom format represents an invoice defined in invoice-nxsd.xsd
. The Oracle File Adapter processes the invoice.txt
file and publishes this to the ComplexStructure BPEL process. This is then transformed to a PurchaseOrder and written out as an xml file.
This use case includes the following sections:
To perform the complex structure business process, you require the following files from the artifacts.zip
file contained in the Adapters-104FileAdapterComplexStructure
sample:
artifacts/schemas/invoice-nxsd.xsd
artifacts/schemas/po.xsd
artifacts/xsl/InvToPo.xsl
artifacts/input/invoice.txt
You can obtain the Adapters-104FileAdapterComplexStructure
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-ComplexStructure
in the Application Name field, and click Next. The Create Generic Application - Name your project page is displayed. ComplexStructure
in the Project Name field. BPEComplexStructure
in the Name field, select Define Service Later from the Template box. Figure 4-140 The JDeveloper - Composite.xml
Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory:
Complex Structure In
in the Service Name field. *.txt
in the Include Files With Name Pattern field, click Next. The File Polling page is displayed. Figure 4-141 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle File Adapter service to write the file from a local directory to the FTP server:
ComplexStructureOut
in the Service Name field. invoice_%SEQ%.txt
in the File Naming Convention(po_%SEQ%.txt) field. Figure 4-142 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 4-143.
Figure 4-143 The JDeveloper - Composite.xml
Add a Receive Activity
ReceiveInvoice
in the Name field. Add an Invoke Activity
InvokeWrite
in the Name field. InvokeWrite_Write_OutputVariable
in the variable name field and click OK. The Invoke dialog is displayed. Add a Transform Activity
TransformPayload
in the Name field. Figure 4-144 The JDeveloper - BPELComplexStructure.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. invoice.txt
file to the input directory (see Section 4.5.8.1, "Prerequisites" for the location of this file) and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This is an Oracle FTP Adapter feature that debatches a large XML document into smaller individual XML fragments. This use case demonstrates how the debatching business process sample uses the Oracle FTP Adapter to process a file containing a batch of business records such as one or more invoice and purchase orders. The PurchaseOrders (POs) are then debatched and written to separate output files.
This use case includes the following sections:
To perform the complex structure business process, you require the following files from the artifacts.zip
file contained in the Adapters-101FTPAdapterDebatching
sample:
artifacts/schemas/container.xsd
artifacts/schemas/po.xsd
artifacts/xsl/InvToPo.xsl
artifacts/xsl/PoToPo.xsl
artifacts/input/container.txt
You can obtain the Adapters-101FTPAdapterDebatching
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-FTPDebatching
in the Application Name field, and click OK. The Create Generic Application - Name your project page is displayed. FTPDebatching
in the Project Name. BPELFTPDebatching
in the Name field, select Define Service Later from the Template box. Figure 4-145 The JDeveloper - Composite.xml
container.xsd
and po.xsd
files to the xsd
directory of your project (see Section 4.5.9.1, "Prerequisites" for the location of these files). InvToPo.xsl
and PoToPo.xsl
files to the xsl directory of your project (see Section 4.5.9.1, "Prerequisites" for the location of these files). Perform the following steps to create an inbound Oracle FTP Adapter service to read the file from a local directory:
FTPDebatchingIn
in the Service Name field. Note: Ensure that you have configured the jndi-name in the deployment descriptor for Oracle FTP Adapter before deploying this application. |
Figure 4-146 The Adapter Configuration Wizard FTP Server Connection Page
Figure 4-147 The Adapter Configuration Wizard Operation Page
*.txt
in the Include Files With Name Pattern field, select Files Contain Multiple Messages check box, specify 1
as the value for Publish Messages in Batches Of box. Figure 4-148 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle FTP Adapter service to write the file from a local directory to the FTP server:
PurchaseOrderOut
in the Service Name field. po_%SEQ%.txt
in the File Naming Convention(po_%SEQ%.txt) field. 1
. Figure 4-149 The JDeveloper - Composite.xml
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 4-150.
Figure 4-150 The JDeveloper - Composite.xml
Add a Receive Activity
BPELFTPDebatching.bpel
page is displayed. Receive
in the Name field. BPELFTPDebatching.bpel
page appears with the Receive activity added. Add an Invoke Activity
Write
in the Name field. Write_Put_OutputVariable
in the Variable field and click OK. The Invoke dialog is displayed. BPELFTPDebatching.bpel
page appears with the invoke activity added. Add a Switch Activity
<case>
section, click the View Condition Expression icon, as shown in Figure 4-151. The Condition Expression pop-up window is displayed. starts-with(local-name(ora:getNodes('receive_Get_InputVariable','body','/ns3:container/child::*[position()=1]')),'invoice')
as the expression, as shown in Figure 4-152, and click OK. The screen returns to the Condition Expression pop-up window. Figure 4-152 The Expression Builder Dialog
InvToPo
in the Name field. PoToPo.xsl
as the Mapper File for this transform activity. The BPELFTPDebatching.bpel page is displayed, as shown in Figure 4-153.
Figure 4-153 The BPELFTPDebatching.bpel Page
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. container.txt
file to the input directory (see Section 4.5.9.1, "Prerequisites" for the location of this file) and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This use case demonstrates the ability of the Oracle FTP Adapter to perform a mid-process synchronous read operation using an Invoke activity. This use case illustrates the following adapter functionality:
Ability to specify the file name to be read during run-time
The process is initiated by the presence of a trigger file appearing in a local directory monitored by the inbound Oracle File Adapter. The trigger file contains the name of the file to be read by the synchronous read operation. This file name is passed through headers to the adapter. This can be done using the Properties tab for the Invoke activity. This synchronous read file operation is performed against a remote directory on a FTP server. The result of the read is then transformed and written out to a local directory through the outbound Oracle File Adapter. This section includes the following topics:
To perform FTP Dynamic Synchoronous Read, you require the following files from the artifacts.zip
file contained in the Adapters-102FTPAdapterDynamicSynchronousRead
sample:
artifacts/schemas/address-csv.xsd
artifacts/schemas/address-fixedLength.xsd
artifacts/schemas/trigger.xsd
artifacts/xsl/addr1Toaddr2.xsl
artifacts/input/address_csv.txt
artifacts/input/trigger.trg
You can obtain the Adapters-102FTPAdapterDynamicSynchronousRead
sample by accessing the Oracle SOA Sample Code site, and selecting the Adapters tab.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
SOA-FTPDynamicSynchronousRead
in the Application Name field, and click OK. The Create Generic Application - Name your project page is displayed. FTPDynamicSynchronousRead
in the Project Name. BPELDynamicSynchronousRead
in the Name field, select Define Service Later from the Template box. Figure 4-154 The JDeveloper - Composite.xml
address-csv.xsd
, address-fixedLength.xsd,
and trigger.xsd
files to the xsd directory of your project (see Section 4.5.10.1, "Prerequisites" for the location of these files). addr1Toaddr2.xsl
file to the xsl directory of your project (see Section 4.5.10.1, "Prerequisites" for the location of this file). Perform the following steps to create an inbound Oracle File Adapter service to read the file from a local directory:
ReadTrigger
in the Service Name field. *.trg
in the Include Files With Name Pattern field, click Next. The File Polling page is displayed. Figure 4-155 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle FTP Adapter service to write the file from a local directory to the FTP server:
SyncRead
in the Service Name field. dummy.txt
in the File Name field and click Next. The Messages page is displayed. Figure 4-156 The JDeveloper - Composite.xml
Add An Outbound Oracle File Adapter Service
WriteFile
in the Service Name field. Write
in the Operation Name field, and then click Next. The File Configuration page is displayed. address_%SEQ%.txt
in the File Naming Convention (po_%SEQ%.txt). Figure 4-157 The JDeveloper - Composite.xml
You have to assemble or wire the four components that you have created: Inbound adapter service, BPEL process, two Outbound adapter references. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 4-158.
Figure 4-158 The JDeveloper - Composite.xml
Add a Receive Activity
ReceiveTrigger
in the Name field. Create a Variable and add an Invoke Activity
Invoke_SyncRead
in the Name field. jca.ftp.FileName
property. Double-click in the corresponding value column. The Adapter Property value dialog is displayed. jca.ftp.FileName
is set to file
. Add another Invoke Activity
InvokeWrite
in the Name field. Figure 4-160 The JDeveloper - BPELDynamicSynchronousRead.bpel Page
Add an Assign Activity
AssignFileName
in the Name field. Figure 4-161 The Create Copy Operation Dialog
Figure 4-162 The JDeveloper - BPELDynamicSynchronousRead.bpel
Add a Transform Activity
TransformPayload
in the Name field. addr1Toaddr2.xsl
file from the xsl directory in your project. Figure 4-163 The JDeveloper - BPELDynamicSynchronousRead.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. address-csv.txt
file to the input directory (see Section 4.5.10.1, "Prerequisites" for the location of this file) and ensure it gets processed. Check the output directory to ensure that an output file has been created. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
The Oracle File and FTP Adapters let you copy or move a file from one location to another, or delete a file from the target directory. Additionally, the Oracle FTP Adapter lets you move or copy files from a local file system to a remote file system and from a remote file system to a local file system. This feature is implemented as a interaction specification for outbound services. So, this feature can be accessed either by using a BPEL invoke activity or a Mediator routing rule.
At a high level, you must create an outbound service and configure this service with the source and target directories and file names.
The following use cases demonstrate the new functionality supported by Oracle File and FTP Adapters that allow you to copy, move, and delete files by using an outbound service:
You can model only a part of this procedure by using the wizard because the corresponding Adapter Configuration Wizard is not available. You must complete the remaining procedure by manually configuring the generated JCA file.
You must perform the following steps to move a file from a local directory on the file system to another local directory:
FileMove
in the Operation Name field, and then click Next. The File Directories page is displayed. Note: You have selected Synchronous Read File as the operation because the |
Note: The dummy directory is not used. You must manually change the directory in a later step. |
Note: The dummy file name you enter is not used. You must manually change the file name in a later step. |
FileMove
in the External References area. The BPEL component is connected to the Oracle File Adapter outbound service. FileMove
service that you just created by selecting the default settings. The next step is to modify the generated WSDL
file for MoveFileService
service and configure it with the new interaction specification for the move operation.
Open the FileMove_file.jca
file and modify the endpoint interaction, as shown in the following example.
You must configure the JCA file with the source and target directory and file details. You can either hardcode the source and target directory and file details in the JCA file or use header variables to populate them. In this example, header variables are used.
Note: You have modified the The |
sourceDirectory
, sourceFileName
, targetDirectory
, and targetFileName
variables. The assign operation appears in the BPEL source view as in the following example: In the preceding example, input.txt
is moved from /home/alex
to output.txt
in /home/alex
.
Note: The source and target details are hardcoded in the preceding example. You can also provide these details as run-time parameters. |
You have completed moving a file from a local directory on the file system to another local directory.
Perform the following procedure to copy a file from a local directory on the file system to another local directory:
TYPE
attribute to COPY
instead of MOVE
in the endpoint interaction, in Step 14 of Section 4.5.11.1, "Moving a File from a Local Directory on the File System to Another Local Directory" as shown in the following example: To delete a file, you require TargetPhysicalDirectory
and TargetFileName
parameters.
Note: You do not require |
To delete a file, delete_me.txt
, from /home/alex
directory, you must perform the following:
TYPE
attribute to DELETE
in the endpoint interaction in Step 14 of Section 4.5.11.1, "Moving a File from a Local Directory on the File System to Another Local Directory", as shown in the following example: Consider the following scenario, where you have a large CSV file of size 1 gigabyte coming on the source directory, and you must perform the following:
This use case is similar to the FlatStructure
sample in the BPEL samples directory. The difference is that the three steps occur in a single File I/O interaction.
Note: All the three steps occur in a single File I/O interaction. This works only if all the records in the data file are of the same type. |
To use a large CSV file and perform the operations listed in the preceding scenario, you must perform the following steps:
address-csv.xsd
and address-fixedLength.xsd
files from the FlatStructure sample into the xsd
directory of your project. addr1Toaddr2.xsl
from the FlatStructure sample into the xsl
directory of your project. You have provided the following additional parameters:
SourceSchema
: Relative path to the source schema. SourceSchemaRoot
: The root element in the source schema. SourceType
: The type of data. The other possible type is XML. TargetSchema
: Relative path to the target schema. TargetSchemaRoot
: The root element in the target schema. TargetType
: The type of data. The other possible type is XML. Xsl
: Relative path to the Xsl file. The I/O use cases for the Oracle FTP Adapter are very similar to those for Oracle File Adapter. However, there are a few nuances that need attention.
In this use case you move a file within the same directory, which is similar to a rename operation on the same server. Most FTP servers support the RNFR
/RNTO
FTP commands that let you rename a file on the FTP server.
However, even if the RNFR
/RNTO
commands are not supported, moving a file within the same directory is still possible because of a binding property, UseNativeRenameOperation
. By default, this property is set to TRUE
, and in this case the Oracle FTP Adapter uses the native RNFR
/RNTO
commands. However, if this property is set to FALSE
, then the Oracle FTP Adapter uses the Get
and Put
commands followed by a Delete
command to emulate a move operation.
You can model only a part of this procedure by using the wizard because the corresponding Adapter Configuration Wizard is not available. You must complete the remaining procedure by manually configuring the generated JCA file.
You must perform the following steps to move a file from a remote directory to another remote directory on the same FTP server:
FTPMove
in the Operation Name field, and then click Next. The File Directories page is displayed. Note: You have selected Synchronous Get File as the operation because the |
Note: The dummy directory is not used. You must manually change the directory in a later step. |
Note: The dummy file name you enter is not used. You must manually change the file name in a later step. |
FTPMove
in the External References area. The BPEL component is connected to the Oracle FTP Adapter outbound service. FTPMove
service that you just created. The next step is to modify the generated WSDL
file for FTPMove
service and configure it with the new interaction specification for the move operation.
FTPMove_ftp.jca
file and modify the interaction-spec
, as shown in the following example. You must configure the JCA file with the source and target directory and file details. You can either hardcode the source and target directory and file details in the JCA file or use header variables to populate them. In this example, header variables are used.
Note: You have modified the The |
sourceDirectory
, sourceFileName
, targetDirectory
, and targetFileName
variables. The assign operation appears in the BPEL source view as in the following example: In the preceding example, input.txt
is moved or renamed from /home/ftp
to output.txt
in /home/ftp/out
.
Note: The source and target details are hardcoded in the preceding example. You can also provide these details as run-time parameters. |
You have completed moving or renaming a file from a remote directory to another remote directory on the same FTP server.
Note: If the FTP server does not support the <reference name="FTPMove" ui:wsdlLocation="FTPMove.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/ftp/SOAFtpIO/SOAFtpIO/FTPMove/#wsdl.interface(FTPMove_ptt)"/> <binding.jca config="FTPMove_ftp.jca"> <property name="UseNativeRenameOperation" type="xs:string" many="false" override="may">false</property> </binding.jca> </reference> |
The steps for this use case are the same as the steps for the use case in Section 4.5.11.5, "Moving a File from One Remote Directory to Another Remote Directory on the Same FTP Server" except that you must configure the source directory as local and the target directory as remote.
Use the SourceIsRemote
and TargetIsRemote
properties to specify whether the source and target file are on the local or remote file system, as shown in the following example:
Note: In this example, you have configured |
The steps for this use case are the same as the steps for the use case in Section 4.5.11.6, "Moving a File from a Local Directory on the File System to a Remote Directory on the FTP Server" except that you must configure the source directory as remote and the target directory as local, as shown in the following example:
Note: In this example, you have configured |
To move a file from one FTP server to another FTP server you must sequentially perform the use cases documented in the following sections:
By default, the JDeveloper Adapter Wizard generates asynchronous WSDLs when you use technology adapters. Typically, you follow these steps when creating an adapter scenario in 11g:
You arrive at the screen below where you fill in the process details. You are required to choose Define Service Later as the template.
Figure 4-165 Cresting the Inbound Serv ice and Outbound References
This is how most BPEL processes that use Adapters are modeled. The generated WSDL implies one-way directionally one way and that makes the BPEL process asynchronous:
In other words, the inbound File Adapter polls for files in the directory and for each file that it finds there, it translates the content into XML and publishes to BPEL.
However, because the BPEL process is asynchronous, the File Adapter returns immediately after the publish and performs the required post processing-for example. deletion/archival of data.
The disadvantage with such asynchronous BPEL processes is that it becomes difficult to throttle the inbound adapter. In otherwords, the inbound adapter would keep sending messages to BPEL without waiting for the downstream business processes to complete. This can lead to issues such as higher memory usage and CPU usage.
To mitigate the occurrence of these problems, you can manually change the WSDL and BPEL artifacts into synchronous processes. Once you have changed the synchronous to synchronous BPEL processes, the inbound File Adapter automatically throttles itself because the File Adapter is forced to wait for the downstream process to complete with a <reply> before processing the next file or message.
Refer to the altered WSDL below. Here, you convert the one-way WSDL to a two-way WSDL-- thereby making the WSDL synchronous.
Figure 4-168 Asynchronous WSDL Altered to be Two-Way WSDL
The next step is to add a <reply> activity to the inbound adapter partnerlink at the end of your BPEL process, for example:
Figure 4-169 Specifying a Reply to the Inbound Adapter
Finally, the process looks like this:
Figure 4-170 The Synchronous File Adapter Process with Receive and Reply BPEL Activities
This type of exercise is not required for the Mediator because the Mediator routing rules are sequential by default. In other words, the Mediator uses the caller thread (inbound file adapter thread) for processing routing rules. This is the case even if the WSDL for mediator is one-way..
Where there is a requirement to send the same file to five different FTP servers, you could create, for example, five FtpAdapter references, one for each connection-factory location. However, this is not the most optimal approach; instead, you can use the concept of "Dynamic Partner Links".
If you're running the adapter in managed mode, it requires you to configure the connection factory JNDI in the WebLogic Server console for the FtpAdapter.
In the sample below, the connection-factory JNDI location "eis/Ftp/FtpAdapter" has been mapped with the Ftp server running on localhost.
Description of the illustration jca.gif
After you've configured the connection factory on your application server, you must refer to the connection-factory JNDI in the jca artifact of your SCA process. In the example below, the FTPOut reference in the following .jca file uses the FTP server corresponding to eis/Ftp/FtpAdapter
You can change this connection-factory location dynamically using JCA header properties in both BPEL and Mediator service engines. To do so, the business scenario involving BPEL or Mediator is required to use a reserved JCA header property jca.jndi
as shown in the following.
Similarly, for the Mediator, the mplan is:
You must remember the following when using dynamic partner links:
eis/Ftp/FtpAdater1
and eis/Ftp/FtpAdater2
must be configured in the WebLogic Server deployment descriptor for the FtpAdapter before your deployment of the scenario. You can capture the details of the file that was written out as a part of a BPEL process that is invoking a File/FTP Adapter
For example, using FileNamingConvention
as PurchaseOrder_%SEQ%.txt,
you might be required to perform post processing based on the file that was written out (the name of the file is not known until the adapter invocation completes for example, PurchaseOrder_1.txt,
PurchaseOrder_2.txt
...)
To provide for the capture of metadata, you must edit the WSDL so the File/Ftp Adapter can return the metadata of the file being written. In general, the File/Ftp Write/Put WSDL operations are one way as shown below.
Figure 4-171 Editing the WSDL File So the File/FTP Adapter Returns File Metadata
In general, the File/FTP Write/Put WSDL operations, as inserted in the .jca file, are one way of enabling the return of the metadata, as shown below.
The File/TP Adapters are designed to return the metadata back if the WSDL is tweaked into a two-way WSDL. In addition, the </wsdl.output>
must import the fileread.xsd
schema. You must copy the fileread.xsd
schema from the following location:
http://blogs.oracle.com/adapters/resource/2010-04-12/fileread.xsd
The next step is to edit the WSDL to ensure it is changed into a two-way WSDL.
Figure 4-173 Editing the WSDL to Change It Into a Two-Way WSDL
Specify an Invoke WSDL statement through the BPEL Invoke statement panel.The file metadata would be returned as a part of the BPEL output variable:
Figure 4-174 Specifying an Invoke WSDL Statement through the BPEL Invoke Statement Panel
The File/Ftp Adapter enables you to configure outbound writes to use a sequence number. For example, if you choose address-data_%SEQ%.txt
as the FileNamingConvention, all files would be generated as address-data_1.txt
, address-data_2.txt,
..
The sequence number comes from the control directory for the particular adapter project(or scenario). For each project that use the File or Ftp Adapter, a unique directory is created for book-keeping purposes. Because this control directory must be unique, the adapter uses a digest to ensure that no two control directories are the same.
For example, for the FlatStructure sample in the example above, the control information for my project would go under FMW_HOME/user_projects/domains/soainfra/fileftp/controlFiles/[DIGEST]/outbound
where the value of DIGEST
would differ from one project to another.
Within this directory, there is a file control_ob
.properties
file where the sequence number is maintained. The sequence number is maintained in binary form and you might need a hexadecimal editor to view its content. There is another zero byte file, SEQ_nnn
. This extra file is maintained as a backup.
One of the challenges faced by the adapter run time is to guard all writes to the control files so no two threads inadverently attempt to update the control files at the same time. It does this guarding with the help of a "Mutex". The mutex is of different types:
There might be scenarios, particularly when the Adapter is under heavy tranactional load, where the mutex is a bottleneck. The Adapter, however, enables you to change the configuration so the adapter sequence value is derived from a database sequence or a stored procedure. In such a situation, the mutex is by-passed, and the process results in improved throughput.
The simplest way to achieve improved throughput is by switching your JNDI connection factory location for the outbound JCA file to use the eis/HAFileAdapter
:
Figure 4-176 Switching the JNDI Connection Factory to Use the HAFileAdapter
With this change, the Adapter run time creates a sequence on the Oracle database. For example, if you do a select * from user_sequences
in your soa-infra schema, you see a new sequence being created with name as SEQ_<GUID>__
(where the GUID
differs by project).
However, to use your own sequence, you must add a new property to your JCA file called SequenceName
. You must create this sequence on your soainfra schema beforehand.
Figure 4-177 Adding the SequenceName Property
Using DB2 or MSSQL Server as the dehydration support is a bit different. DB2 supports sequences natively but MSSQL Server does not. The Adapter run time uses a natively generated sequence for DB2, but, for MSSQL server, the Adapter relies on a stored procedure that ships with the product.To achieve the same result for a SOA Suite running DB2 as the dehydration store, change the connection factory JNDI name in the JCA file to eis/HAFileAdapterDB2
. For MSSQL, use eis/HAFileAdapterMSSQL
. To use a stored procedure other than the one that ships with the product, you must rely on binding properties to override the adapter behavior; specifically, you must instruct the adapter to use a stored procedure:
When the File/Ftp Adapter is used in Append mode, the adapter run time degrades the mutex to use pessimistic locks to prevent writers from different nodes appending to the same file at the same time.
By default, the JDeveloper Adapter wizard generates asynchronous WSDLs when you use technology adapters. Typically, you follow the following steps when creating an adapter scenario in Release 11g:
This is how most BPEL processes that use Adapters are modeled. The generated WSDL is one-way, which makes the BPEL process asynchronous.
The inbound File Adapter polls for files in the directory and for each file it finds there, the Adapter translates the content into XML and publishes to BPEL. But, because the BPEL process is asynchronous, the Adapter returns immediately after the publish operation and performs the required post processing, for example, deletion/archival.
The disadvantage with such asynchronous BPEL processes is that it becomes difficult to throttle the inbound adapter. In other words, the inbound adapter keeps sending messages to BPEL without waiting for the downstream business processes to complete. This can lead to several issues including higher memory usage, and CPU usage.
To alleviate these problems, manually tweak the WSDL and BPEL artifacts into synchronous processes. Oncet here are synchronous BPEL processes, the inbound adapter automatically throttles itself as the adapter is forced to wait for the downstream process to complete with a <reply> before processing the next file or message.
In the following WSDL, the one-way WSDL has been converted to a two-way WSDL, thereby making the WSDL synchronous:
Figure 4-179 One-Way WSDL Converted Into a Two-Way WSDL
Add a <reply> activity to the inbound adapter partnerlink at the end of your BPEL process, for example:
Finally, the process resembles the following process, shown in the swim-lane format:
Figure 4-180 The Synchronous BPEL Process
The File/FTP Adapter enables you to control the order in which files get processed. For example, you might want the files to be processed in sequience of their modified times/ file sizes , or other determiners.
The File/FTP adapter enables you to achieve controlling the order in which files gets processed through a FileSorter attribute that you can define in the JCA file for your inbound File/Ftp Adapter service.
The File/FTP Adapter provides two predefined sorters that use the last modified times--or example:
However, there are times when you would like to define the order yourself. You can implement a Java Comparator and register that with the File Adapter as described below:
FileSizeSorter
comparator below sorts the files in descending order of their sizes: fileAdapter
.jar in the classpath. From [FMW_HOME]/AS11gR1SOA/soa/connectors
, expand FileAdapter.rar
, for example, jar xvf FileAdapter.rar
to extract fileAdapter.jar
. You must place fileAdapter.jar
in your classpath to compile the FileSizeSorter.java
class, for example: fileadapter-sorter.jar
in the FileAdapter.rar
, for example, This step is required since the fileadapter-sorter.jar
becomes visible to the ClassLoader that loads FileAdapter.rar
. Though, there are other ways for example, copying the fileadapter-sorter.jar
and fileadapter.jar
under [DOMAIN_HOME]/lib
, but the one above is the simplest and easiest to do.
SingleThreadModel
as true
in the JCA file (see image at the beginning of this section.) This chapter describes how to use Oracle JCA Adapter for Sockets (Oracle Socket Adapter), which works with Oracle BPEL Process Manager (Oracle BPEL PM) and Oracle Mediator (Mediator) as an external service.
This chapter includes the following sections:
Oracle Socket Adapter is a JCA 1.5 compliant adapter for modeling standard or nonstandard protocols for communication over TCP/IP sockets. You can use an Oracle Socket Adapter to create a client or a server socket, and establish a connection. The data that is transported can be text or binary.
This section includes the following topics:
Oracle Socket Adapter is based on the JCA 1.5 architecture. JCA provides a standard architecture for integrating heterogeneous enterprise information systems (EIS). The JCA Binding Component of the Oracle Socket Adapter exposes the underlying JCA interactions as services (WSDL
with JCA binding) for Oracle BPEL PM integration. Figure 5-1 illustrates the architecture of Oracle Socket Adapter. For details about the Oracle JCA Adapter architecture, see Section 1.2.1.1, "Architecture."
Figure 5-1 Oracle Socket Adapter Architecture
Oracle Socket Adapter is automatically integrated with Mediator. When you create an Oracle Socket Adapter service in JDeveloper Designer, the Adapter Configuration Wizard is started. This wizard enables you to configure the Oracle Socket Adapter. When configuration is complete, a WSDL file of the same name is created in the Application Navigator section of Oracle JDeveloper (JDeveloper). This WSDL file contains the configuration information you specify in the Adapter Configuration Wizard.
The Operation Type page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information.
For more information about Oracle JCA Adapter integration with Mediator, see Section 3.2, "Adapter Integration with Oracle Fusion Middleware."
Oracle Socket Adapter is automatically integrated with Oracle BPEL PM. When you drag and drop Socket Adapter from the Component Palette of JDeveloper BPEL Designer, the Adapter Configuration Wizard starts with a Welcome page, as shown in Figure 5-2.
Figure 5-2 The Adapter Configuration Wizard - Welcome Page
This wizard enables you to configure an Oracle Socket Adapter. The Adapter Configuration Wizard then prompts you to enter a service name, as shown in Figure 5-3.
Figure 5-3 The Adapter Configuration Wizard Service Name Page
When configuration is complete, a WSDL file of the same name is created in the Application Navigator section of JDeveloper. This WSDL file contains the configuration information you specify in the Adapter Configuration Wizard.
The Operation Type page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information.
For more information about Oracle JCA Adapter integration with Oracle BPEL PM, see Section 3.2, "Adapter Integration with Oracle Fusion Middleware."
A composite is an assembly of services, service components (Oracle BPEL PM and Mediator), wires, and references designed and deployed in a single application. The composite processes the information described in the messages. The details of the composite are stored in the composite.xml
file. For more information on integration of the Oracle Socket Adapter with SOA composite, see Section 3.2.4, "Oracle SOA Composite Integration with Adapters."
Oracle Socket Adapter enables you to configure a BPEL process or a Mediator service to read and write data over TCP/IP sockets. It includes the following features:
This section describes the following Oracle Socket Adapter concepts:
Oracle Socket Adapter supports inbound and outbound communication over sockets that can be unidirectional or bidirectional. The communication modes of Oracle Socket Adapter are discussed in the following sections:
As part of inbound activation, the Oracle Socket Adapter opens a server socket and waits for incoming connections. The adapter uses the connection to the server socket and reads the request message, which is published to BPEL or Mediator. The Oracle Socket Adapter then uses the same connection to send the response back synchronously.
Figure 5-4 illustrates an inbound synchronous request/response scenario.
Figure 5-4 BPEL Scenario of Inbound Synchronous Request/Response
In the case of outbound synchronous request/response, a request comes from BPEL or Mediator. The Oracle Socket Adapter connects to the server socket to send the request message to the server socket on the output stream. The Oracle Socket Adapter then blocks the response from the server socket on the input stream and publishes the response back to BPEL or Mediator.
Figure 5-5 illustrates an outbound synchronous request/response scenario.
Figure 5-5 BPEL Scenario of Outbound Synchronous Request/Response
As part of inbound activation, the Oracle Socket Adapter opens a server socket and waits for incoming connections. The adapter uses the connection to the server socket and reads the request message, which is published to BPEL or Mediator. In this scenario, no reply is sent.
Communication protocols or handshakes consist of different discrete steps such as authentication procedures, acknowledgments, and sending or receiving data depending on conditions. Oracle Socket Adapter supports the following mechanisms to define the protocol handshakes.
Oracle Socket Adapter can be configured to use a protocol designed with a handshake mechanism, defined using style sheets that use XPath Extension functions exposed by the adapter. This can be granular read and write operation on the socket I/O stream or till the end of the stream. These functions also enable you to use native format constructs for reading and writing data. This handshake mechanism uses XSLT constructs to define operations such as assignments, validations, and control flow.
You can use the XPath Extension functions with the translator infrastructure in the following ways:
socketRead(nxsdStyle:String, nxsdStyleAttributes:String):String
You can use this method to read from the socket input stream.
socketWrite(value:String, nxsdStyle:String, nxsdStyleAttributes:String):String
You can use this method to write to the socket output stream.
The XSLT shown in Figure 5-6 demonstrates the usage of extension functions that use StyleReader.
Figure 5-6 XSLT with Extension Functions That Use StyleReader
socketReadWithXlation():DocumentFragment
You can use this method to read from the socket input stream by using the schema and schema element configured for input.
socketWriteWithXlation(xml:NodeList)
You can use this method to write to the socket output stream by using the schema configured for output.
The XSD file shown in Figure 5-7 demonstrates the usage of extension functions by annotating the schema, which defines the input and output variables, using NXSD constructs.
Figure 5-7 XSD with Extension Functions That Do Not Use StyleReader
To define a handshake using style sheet, you must select Use XSLT to define the handshake and browse to select the XSL file in the Protocol page, as shown in Figure 5-8.
Figure 5-8 Defining a Protocol with Handshake Mechanism By Using a Style Sheet
Oracle Socket Adapter can be configured to use a protocol with a customized handshake mechanism, defined by plugging in custom Java code. The custom Java code must implement oracle.tip.pc.services.translation.util.ICustomParser
, the ICustomParser interface, provided by Oracle Socket Adapter, which enables custom implementation of handshakes.
Note: The ICustomParser interface files are in the
|
The following methods must be implemented based on the appropriate communication paradigm:
public Element executeOutbound(InputStream in, OutputStream out, Element payLoad) throws Exception;
The outbound handshake must implement this method.
Example:
public Element executeInboundRequest(InputStream in) throws Exception;
The inbound request must implement this method.
Example:
public void executeInboundReply(Element payLoad, OutputStream out) throws Exception;
The inbound reply must implement this method.
Example:
Note:
|
To use a custom Java code to define a handshake, you must select Use Custom Java Code to define the handshake and specify the Java class implementing the handshake in the Java Class field, as shown in Figure 5-9.
Figure 5-9 Defining a Protocol with Handshake Mechanism By Using Custom Java Code
Oracle Socket Adapter can be configured to use protocols that do not require handshakes involving translation to and from the socket I/O stream.
To use a protocol that does not require a handshake, you must select No Handshake in the Protocol page, as shown in Figure 5-10.
Figure 5-10 Defining a Protocol without a Handshake Mechanism
The Encoding property represents the character encoding in which native data is stored, and the ByteOrder property is the byte order of the native data, which is either BIG_ENDIAN
or LITTLE_ENDIAN
.
Character encoding and byte order can be specified in the schema file (NXSD), using the Native Format Builder wizard. You can also specify the encoding and the byte order to be used, by using the Adapter Configuration Wizard. When encoding and byte order are not specified, the default values are US-ASCII
and BIG_ENDIAN
.
To specify the encoding and byte order values, which are applicable only if you are using translation, you must perform the following steps in the Protocol page of the Adapter Configuration Wizard:
Figure 5-11 The Adapter Configuration Wizard - Protocol Page
Note: If you select Encoding, then the encoding type specified using the Adapter Configuration Wizard takes precedence over the encoding type specified in the NXSD file. |
The Oracle Socket Adapter supports performance tuning features, including:
For more information about performance tuning, see "Oracle Socket Adapter Tuning" in the Oracle Fusion Middleware Performance and Tuning Guide.
One way to optimize Oracle Socket Adapter performance is by using a Connection Pool. You can use a connection pool while the socket server you are connecting to does not close the socket with each interaction. A connection pool lets you use a socket connection repeatedly, avoiding the overhead of creating a new socket for each interaction. You must configure the connection pool for the Oracle Socket Adapter using the Oracle WebLogic Server console.
Note: The Connection Pool feature is applicable to outbound interactions only. |
How to configure Oracle Socket Adapter connection pooling:
http://
servername
:portnumber
/console
. Figure 5-12 Oracle WebLogic Server Console - Summary of Deployments Page
Figure 5-13 Oracle WebLogic Server Console - Settings for SocketAdapter Page
KeepAlive
connection factory property to true
, as shown in Figure 5-14. The connection pool feature for the Oracle Socket Adapter is enabled. Figure 5-14 Oracle WebLogic Server Console - Settings for javax.resource.cci.Connectionfactory Page
Deployment plan has been successfully updated
, as shown in Figure 5-15. Figure 5-15 Oracle WebLogic Server Console - Settings for javax.resource.cci.Connectionfactory Page
Note: You can modify connection pool parameters by using the Connection Pool tab of Oracle WebLogic Server Administration Console. |
The following tasks are required for configuring Oracle Socket Adapter:
To configure Oracle Socket Adapter, you must specify the value of the properties listed in Table 5-1 in the weblogic-ra.xml
file. You can update these properties from the Oracle WebLogic Server Administration Console. For more information, see Section 2.18, "Adding an Adapter Connection Factory."
Table 5-1 Oracle Socket Adapter Configuration Properties
Property | Description |
---|---|
Host | In case of outbound interaction, the system name on which the socket server is running, to which you want to connect. In case of inbound interaction, it is always |
Port | In case of outbound interaction, it is the port number on which a socket server is running, to which an adapter connects. In case of inbound interaction, it is the port number on which the socket adapter listens for incoming connections. |
Timeout | With this value set to a nonzero timeout interval, a |
KeepAlive | Applicable only in case of outbound interactions. Should be set to |
BacklogQueue | Applicable in case of inbound interactions. This value indicates the maximum queue length for incoming connection indications (a request to connect). If a connection indication arrives when the queue is full, then the connection is refused. |
The following is a sample weblogic-ra.xml
file:
Note: To set up connection pooling, you must set the |
A handshake may be required to negotiate a connection with a client or a server socket.
The outbound XSLT uses an input corresponding to the invoked message. The outbound XSLT writes to the socket output stream by using extension functions. The output is dummy for unidirectional or a response for bidirectional communication.
The following example demonstrates the modeling of a Synchronous Request/Response communication paradigm:
The inbound XSLT uses a dummy input, reads the socket input stream through extension functions, and constructs the XML record to be published.
The following example demonstrates a handshake in which the client sends across a user identification terminated by a comma (,) and a password terminated by a semicolon (;) for validation, and then sends the message payload:
You can design an XSL file by using the XSL mapper tool for Oracle Socket Adapter. The following sections describe the procedure for designing XSL for different communication scenarios:
This section describes the procedure for designing XSL for an inbound synchronous request/reply scenario by using the XSL mapper tool:
Note: To perform this use case, you require the following files from the
You can access the Copy this file to the |
Design an SOA Composite
To design an SOA composite, perform the steps described in Section 5.5.1.2, "Designing the SOA Composite."
Note: The steps provided in Section 5.5.1.2, "Designing the SOA Composite" are applicable to a composite with Oracle BPEL PM. Alternatively, you can create a composite with Mediator. |
Create an Inbound Oracle Socket Adapter Service
To create an inbound Oracle Socket Adapter service, perform the following steps:
HelloWorld
in the Service Name field and then click Next. The Adapter Interface page is displayed. Figure 5-16 The Adapter Configuration Wizard - Adapter Interface Page
eis/socket/InboundSocketAdapter
in the Socket Connection JNDI Name field, as shown in Figure 5-17, and click Next. The Messages page is displayed. Figure 5-17 The Adapter Configuration Wizard Socket Connection Page
Figure 5-19 The Adapter Configuration Wizard File Messages Page
Figure 5-20 The Adapter Configuration Wizard - Protocol Page
Figure 5-21 The input Dialog of the Protocol Page
Figure 5-22 shows the request.xsl page.
Figure 5-22 The JDeveloper - request.xsl Page
Note: A In an inbound request scenario, Oracle Socket Adapter reads native data that is received by the socket and converts it to an XML format. That is, on the source side there is no XML file. Because the XSLT mapper always needs source and target XSD files, a dummy XSD file appears in the mapper tool. |
Figure 5-23 shows the reply.xsl page.
Figure 5-23 The JDeveloper - reply.xsl Page
Note: A |
Figure 5-24 The JDeveloper - request.xsl Page
Figure 5-25 The Edit Function - socketRead Dialog
Note: The |
sockRead
function in the middle pane to the target input
node on the right pane. The request.xsl (XSL mapper tool) with the XSL mapping is displayed, as shown in Figure 5-26. Figure 5-26 The JDeveloper - request.xsl Page
Figure 5-27 The Edit Function - socketWrite Dialog
Note: The |
sockWrite
function in the middle pane to the target input
node on the right pane. The reply.xsl (XSL mapper tool) with the XSL mapping is displayed, as shown in Figure 5-28. Figure 5-28 The JDeveloper - reply.xsl Page
This section describes the procedure for designing XSL for an outbound synchronous request/reply scenario by using the XSL mapper tool:
Note: To perform this use case, you require the following files from the
You can access the Copy the |
Design an SOA Composite
To design an SOA composite, perform the steps described in Section 5.5.1.2, "Designing the SOA Composite.".
Note: The steps provided in Section 5.5.1.2, "Designing the SOA Composite" are applicable to a composite with Oracle BPEL PM. Alternatively, you can create a composite with Mediator. |
Create an Outbound Oracle Socket Adapter Reference
To create an outbound Oracle Socket Adapter reference, perform the following steps:
HelloWorld
in the Service Name field and then click Next. The Adapter Interface page is displayed. eis/socket/OutboundSocketAdapter
in the Socket Connection JNDI Name field and click Next. The Messages page is displayed. HelloWorld.xsd
file. HelloWorld.xsd
files, as shown in Figure 5-19. invoke.xsl
, as the name of the XSL file and click OK. Figure 5-29 The JDeveloper - invoke.xsl Page
Figure 5-30 The JDeveloper - invoke.xsl Page
var1
in the Local Name field, and click OK. The var1 variable is added to the target pane of the XSL mapper tool. Figure 5-32 The JDeveloper - invoke.xsl Page
Figure 5-33 The JDeveloper - invoke.xsl Page
Figure 5-34 The Edit Function - socketWriteWithXlation Dialog
Note: The The dot (.) specified in the NodeList field signifies writing the HelloWorldProcessRequest to the top level node. |
Figure 5-35 The JDeveloper - invoke.xsl Page
Figure 5-36 The JDeveloper - invoke.xsl Page with Copy-of Type Dialog
Figure 5-37 The JDeveloper - invoke.xsl Page
Figure 5-38 The JDeveloper - invoke.xsl Page
To specify a TCP port in a configuration plan for an Oracle Socket Adapter, perform the following steps (where <service-name> is Service name):
<property name="Port" value="Port"/>
When deployed, the Oracle Socket Adapter listens on port 2222, as provided in the configuration plan.
If you deploy the composite without a configuration plan or if the configuration plan does not override the Port property, then the Oracle Socket Adapter listens on the socket that the composite.xml file's default Port property specifies (in this example, port 1111).
This section includes the following Oracle Socket Adapter use cases:
This is a simple HelloWorld use case, which demonstrates the synchronous inbound request/response and synchronous outbound request/response modes of communication using Oracle Socket Adapter. The HelloWorld business process takes an input string from the Oracle Socket Adapter inbound service and publishes the message to the BPEL process. The BPEL process invokes the Oracle Socket Adapter outbound service (a simple HelloWorld Server, which adds a prefix ?Hello? to the input string and returns it) and returns the received string using a synchronous reply.
This use case includes the following sections:
To perform this use case, you require the following files from the artifacts.zip
file contained in the Adapters-101SocketAdapterHelloWorld
sample:
artifacts/schemas/HelloWorld.xsd
artifacts/xsl/request.xsl
artifacts/xsl/reply.xsl
artifacts/xsl/invoke.xsl
You can access the Adapters-101SocketAdapterHelloWorld
sample on the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
helloworld-socket
in the Application Name field, as shown in Figure 5-39, and then click Next. The Name your project page is displayed. Figure 5-39 The Create SOA Application Dialog
HelloWorldComposite
in the Project Name field, and then select SOA under Project Technologies and move it to the Selected box by clicking the right-arrow, as shown in Figure 5-40. The HelloWorld application and the HelloWorldComposite project appear in the Application Navigator.
Figure 5-41 The Configure SOA Settings Dialog
HelloWorldFlow
in the Name field and select Define Service Later from the Template box, as shown in Figure 5-42. Figure 5-42 The Create BPEL Process Dialog
Figure 5-43 The JDeveloper - composite.xml
HelloWorld.xsd
file to the xsd directory in your project (see Section 5.5.1.1, "Prerequisites" for the location of this file). request.xsl
, reply.xsl
, and invoke.xsl
files to the xsl directory in your project (see Section 5.5.1.1, "Prerequisites" for the location of these files). Perform the following steps to create an inbound Oracle Socket Adapter service:
HelloWorldClient
in the Service Name field, as shown in Figure 5-44. Figure 5-44 The Adapter Configuration Wizard Service Name Page
Figure 5-45 The Adapter Configuration Wizard - Adapter Interface Page
Figure 5-46 The Adapter Configuration Wizard Operation Page
eis/socket/InboundSocketAdapter
in the Socket Connection JNDI Name field, as shown in Figure 5-47, and click Next. The Messages page is displayed. Figure 5-47 The Adapter Configuration Wizard Socket Connection Page
HelloWorld.xsd
file. HelloWorld.xsd
files, as shown in Figure 5-49. Figure 5-49 The Adapter Configuration Wizard File Messages Page
Figure 5-50 The SOA Resource Browser Dialog
Figure 5-51 The Adapter Configuration Wizard Protocol Page
Figure 5-52 The JDeveloper - composite.xml Page
Perform the following steps to create an outbound Oracle Socket Adapter service:
HelloWorldServer
in the Service Name field. Figure 5-53 The Adapter Configuration Wizard Operation Type Page
eis/socket/OutboundSocketAdapter
in the Socket Connection JNDI Name field, as shown in Figure 5-54, and click Next. The Messages page is displayed. Figure 5-54 The Adapter Configuration Wizard Socket Connection Page
HelloWorld.xsd
file. HelloWorld.xsd
files, as shown in Figure 5-49. Figure 5-55 The SOA Resource Browser Dialog
Figure 5-56 The JDeveloper - composite.xml Page
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper composite.xml appears, as shown in Figure 5-57.
Figure 5-57 The JDeveloper - composite.xml
Add a Receive Activity
Figure 5-58 The JDeveloper - HelloWorldFlow.bpel
ReceiveInput
in the Name field, as shown in Figure 5-59. Figure 5-60 The Partner Link Chooser Dialog
Figure 5-62 The JDeveloper - HelloWorldFlow.bpel
Add an Invoke Activity
Figure 5-63 The JDeveloper - HelloWorldFlow.bpel
WriteHelloWorld
in the Name field, as shown in Figure 5-64. Figure 5-64 The JDeveloper - HelloWorldFlow.bpel
Figure 5-65 The Partner Link Chooser Dialog
Figure 5-67 The JDeveloper - HelloWorldFlow.bpel
Add a Reply Activity
Figure 5-68 The JDeveloper - HelloWorldFlow.bpel
Reply
in the Name field. Figure 5-70 The JDeveloper - HelloWorldFlow.bpel
Add Assign Activities
Figure 5-71 The Assign Dialog - Copy Operation Tab
Figure 5-72 The Create Copy Operation Dialog
Figure 5-73 The JDeveloper - HelloWorldFlow.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. Note your Instance ID in the Recent Instances area.
The flight information display system use case demonstrates the various modes of defining handshakes by using Oracle Socket Adapter.A flight information display server (FIDS) is started by an FIDS client requesting information on flight status for flights originating from a particular source, JFK, or SFO. The FIDS, in turn, invokes flight data requests for three airlines, Airline1, Airline 2, and Airline 3. The FIDS then collates the information received and replies to the FIDS client by using the HTTP protocol.
This use case includes the following sections:
To perform this use case, you require the following files from the artifacts.zip
file contained in the Adapters-102SocketAdapterFlightInformationDisplaySystem
sample:
artifacts/schemas/Airline1.xsd
artifacts/schemas/Airline2.xsd
artifacts/schemas/Airline3.xsd
artifacts/schemas/FIDS.xsd
artifacts/xsl/request.xsl
artifacts/xsl/reply.xsl
artifacts/xsl/invoke.xsl
To obtain the Adapters-102SocketAdapterFlightInformationDisplaySystem
sample, access the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following steps:
FIDSApp
in the Application Name field, and then click Next. The Name your project page is displayed. FIDSComposite
in the Project Name field, and then select SOA under Project Technologies and move it to the Selected box by clicking the right-arrow. The FIDSApp application and the FIDSComposite project appear in the Application Navigator.
BPEL_FIDS
in the Name field and select Define Service Later from the Template box. Figure 5-74 The JDeveloper - composite.xml
Airline1.xsd
, Airline2.xsd
, Airline3.xsd
, and FIDS.xsd
files to FIDSComposite\xsd
under the project FIDSComposite
(see Section 5.5.2.1, "Prerequisites" for the location of these files). invoke.xsl
, request.xsl
, and reply.xsl
to FIDSComposite\xsl
under the project FIDSComposite
(see Section 5.5.2.1, "Prerequisites" for the location of these files). Perform the following steps to create an inbound Oracle Socket Adapter service that would be used to expose the FIDSApp application:
FIDS
in the Service Name field. eis/socket/InboundSocketAdapter
in the Socket Connection JNDI Name field and then select Specify Host and Port, as shown in Figure 5-75. Figure 5-75 The Adapter Configuration Wizard Socket Connection Page
9000
in the PortNumber field and click Next. The Messages page is displayed. Figure 5-77 The Adapter Configuration Wizard - Messages Page
Figure 5-78 The Adapter Configuration Wizard - Protocol Page
Figure 5-79 The JDeveloper - composite.xml Page
Perform the following steps to create an outbound Oracle Socket Adapter service for the Airline1 server socket:
Airline1
in the Service Name field. eis/socket/OutboundSocketAdapter
in the Socket Connection JNDI Name field, as shown in Figure 5-80, and then select Specify Host and Port. Figure 5-80 The Adapter Configuration Wizard - Socket Connection Page
9001
in the PortNumber field, and click Next. The Messages page is displayed. Airline1.xsd
files, as shown in Figure 5-81. Figure 5-81 The Adapter Configuration Wizard - Messages Page
Figure 5-82 The SOA Resource Browser Dialog
Figure 5-83 The JDeveloper - composite.xml Page
Perform the following steps to create an outbound Oracle Socket Adapter service for the Airline2 server socket:
Airline2
in the Service Name field. eis/socket/OutboundSocketAdapter
in the Socket Connection JNDI Name field and then select Specify Host and Port. 9002
in the PortNumber field, and click Next. The Messages page is displayed. Airline2.xsd
file. Airline2.xsd
files. Figure 5-84 The JDeveloper - composite.xml Page
Perform the following steps to create an outbound Oracle Socket Adapter service for the Airline3 server socket:
Airline3
in the Service Name field. eis/socket/OutboundSocketAdapter
in the Socket Connection JNDI Name field and then select Specify Host and Port. 9003
in the PortNumber field, and click Next. The Messages page is displayed. Airline3.xsd
file. Airline3.xsd
files. com.oracle.socket.fids.custom.Airline3Custom
in the Java Class field. Figure 5-85 The JDeveloper - composite.xml Page
You have to assemble or wire the components that you have created: Inbound adapter service, BPEL process, Outbound adapter references. Perform the following steps to wire the components:
The JDeveloper composite.xml file appears, as shown in Figure 5-86.
Figure 5-86 The JDeveloper - composite.xml
Add a Receive Activity
Receive_1
in the Name field. Figure 5-87 The Partner Link Chooser Dialog
Figure 5-89 The JDeveloper - BPEL_FIDS.bpel
Add a Reply Activity
Figure 5-90 The JDeveloper - BPEL_FIDS.bpel
Reply_1
in the Name field. Figure 5-92 The JDeveloper - BPEL_FIDS.bpel
Add a Flow Activity
Figure 5-93 The JDeveloper - BPEL_FIDS.bpel
Design the Flow for Airline1 Server
Figure 5-94 The JDeveloper - BPEL_FIDS.bpel Page
<case>
section, click the View Condition Expression icon, as shown in Figure 5-95. The Condition Expression pop-up window is displayed. Figure 5-95 The JDeveloper - BPEL_FIDS.bpel Page
boolean(bpws:getVariableData('Receive_1_InboundRequestReply_InputVariable','FIDSProcessRequest','/ns5:FIDSProcessRequest/ns5:AirlineName')='Airline1')
as the expression, as shown in Figure 5-96, and click OK. The screen returns to the Condition Expression pop-up window. Note: This expression ensures that this flow is executed only when information for Airline1 is requested. |
Figure 5-96 The Expression Builder Dialog
Figure 5-97 The JDeveloper - BPEL_FIDS.bpel
Figure 5-98 The Create Copy Operation Dialog
The BPEL_FIDS.bpel page is displayed, as shown in Figure 5-99.
Figure 5-99 The JDeveloper - BPELFIDS.bpel
tns:Flight
node from the source, on the left pane to the target FlightDetails
node on the right pane. The Auto Map Preferences dialog appears. Figure 5-100 The JDeveloper - Transformation_1.XSL Page
Figure 5-101 The JDeveloper - BPEL_FIDS.bpel
Design the Flow for Airline2 Server
Sequence_2
in the Name field. <case>
section, click the View Condition Expression icon. The Condition Expression pop-up window is displayed. boolean(bpws:getVariableData('Receive_1_InboundRequestReply_InputVariable','FIDSProcessRequest','/ns5:FIDSProcessRequest/ns5:AirlineName')='Airline2')
as the expression, and click OK. The screen returns to the Condition Expression pop-up window. Note: This expression ensures that this flow is executed only when information for Airline2 is requested. |
Figure 5-102 The Create Copy Operation Dialog
Note: The temporary variable is used for storing flight details from the Airline2 server, which would later be appended to the reply variable. |
tns:flight
node from the source, on the left pane to the target FlightDetails
node on the right pane. The Auto Map Preferences dialog appears, as shown in Figure 5-106. Figure 5-106 The Transformation_2.XSL Page With Auto Map Preference Dialog
The BPEL_FIDS.bpel page is displayed, as shown in Figure 5-107, with the flow defined for the Airline2 server.
Figure 5-107 The JDeveloper - BPEL_FIDS.bpel
Design the Flow for Airline3 Server
Sequence_3
is added. <case>
section, click the View Condition Expression icon. The Condition Expression pop-up window is displayed. boolean(bpws:getVariableData('Receive_1_InboundRequestReply_InputVariable','FIDSProcessRequest','/ns5:FIDSProcessRequest/ns5:AirlineName')='Airline3')
as the expression, and click OK. The screen returns to the Condition Expression pop-up window. Note: This expression ensures that this flow is executed only when information for Airline3 is requested. |
Figure 5-108 The Create Copy Operation Dialog
Note: The temporary variable is used for storing flight details from the Airline3 server, which would later be appended to the reply variable. |
tns:flight
node from the source, on the left pane to the target FlightDetails
node on the right pane. The Auto Map Preferences dialog appears. Figure 5-110 The Transformation_3.XSL Page
Figure 5-111 The JDeveloper - BPEL_FIDS.bpel
Add an Assign Activity
Figure 5-112 The Assign Dialog - Copy Operation Tab
Variable_1
, to the reply variable, Reply_1_InboundRequestReply_OutputVariable
, as shown in Figure 5-113. Figure 5-113 The Create Append Operation Dialog
Variable_2
, to the reply variable, Reply_1_InboundRequestReply_OutputVariable
, as shown in Figure 5-114. Figure 5-114 The Create Append Operation Dialog
Figure 5-115 The JDeveloper - HelloWorldFlow.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, perform the following steps:
You must run the Server and Client java programs to test the application. For more information, see the associated README file.
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed appears in the application navigator. Click the SOA composite that you deployed. The Dashboard is displayed.
Note your Instance ID in the Recent Instances area.
This chapter describes the Native Format Builder wizard, which enables you to create native schemas used for translation. It includes use cases and constructs for the schema.
This chapter includes the following sections:
Oracle JCA Adapters are software components that enable the integration between various enterprise information systems (EIS) and Oracle BPEL Process Manager (Oracle BPEL PM), or Oracle Mediator (Mediator). Adapters accept native messages in XML or non-XML format and publish them to Oracle BPEL PM or Mediator as XML messages. Adapters can also accept XML messages and convert them back to native EIS format. This translation from native data format to XML and back is performed using a definition file (non-XML schema definition), which itself is defined in XML schema format. The Native Format Builder wizard enables you to sample native data and create the native XSD (NXSD) grammar for translation of native data.
When you click the Define Schema for Native Format button in the Messages page of the Adapter Configuration Wizard shown in Figure 6-1, the Native Format Builder wizard is displayed. The Messages page is the last page that is displayed in the Adapter Configuration Wizard before the Finish page.
Figure 6-1 Starting the Native Format Builder Wizard
The Native Format Builder wizard guides you through the creation of a native schema file from the following file formats shown in Figure 6-2. You must have a sample data file format for the selected type to create a native schema. You can also select the option for editing an existing native schema created with this wizard, except for those generated from a Document Type Definition (DTD) or COBOL Copybook file types. For information on editing the native schema file, see Section 6.1.2, "Editing Native Schema Files."
This option enables you to create native schemas for records, where the fields are separated by a value such as a comma or number sign (#).
This option enables you to create native schemas for records, where all fields are of fixed lengths.
This option enables you to create native schema for records, where the fields may themselves be records having multiple delimiter types.
This option enables you to generate native schema from the user-supplied DTD, which contains information about the structure of an XML document.
This option enables you to generate native schema from the user-supplied COBOL Copybook definition.
A COBOL mainframe application typically uses a COBOL Copybook file to define its data layout. The converter creates a native schema from a COBOL Copybook so that the run-time translator can parse the associated data file.
A COBOL Copybook is typically a collection of group items (structures). These group items contain other items, which can be groups or elementary items. Elementary items are items that cannot be further subdivided. For example:
Purchase-order
is a group item with two child group items (Buyer
, Seller
). The numbers 01
, 05
, 04
, and so on indicate the level of the group (that is, the hierarchy of data within that group).
Groups can be defined that have different level-numbers for the same level in the hierarchy. For example, Buyer
and Seller
have different level numbers, but are at the same level in the hierarchy. A group item includes all group and elementary items that follow it until a level number less than or equal to the level number of that group is encountered.
Each of the group items (Buyer
and Seller
) has a child elementary item. The PIC
or PICTURE
clause defines the data layout. For example, BuyerName
defines an alphanumeric type of size equal to five characters. SellerName
has the same data layout as BuyerName
.
Group items in COBOL can be mapped to elements in XML schema with the complexType
type. Similarly, elementary items can be mapped to elements of type simple type
with certain native format annotations to help the run-time translator parse the corresponding data file. For example, the Buyer
item can be mapped to the following definition:
User Inputs
You are expected to provide the following information:
ebcdic-cp-us
). Root-Element
. Table 6-1 describes COBOL clauses. The numeric types covered in Table 6-1 are stored as one character per digit. Support for clauses is defined as follows:
Y
indicates that the clause is supported. N
indicates that the clause is not supported. I
indicates that the clause is ignored. Table 6-1 COBOL Clauses (Numeric Types Stored as One Character Per Digit)
COBOL Clause | Design-Time Support | Run-Time Support | Supported Synonyms | Comments |
---|---|---|---|---|
|
|
|
| Alphanumeric – An allowable character from the character set of the computer. Each X corresponds to one byte. |
|
|
|
| Alphabetic – Any letter of the alphabet or space. Each A corresponds to one byte. |
|
|
|
| Any character position that contains a numeral. Each nine is counted in the size of the item. |
|
|
| Fixed-length array | |
|
|
| For | |
|
|
| Allows the same computer memory area to be described by different data items. | |
|
|
| Size = | |
|
|
| NA | |
|
|
| Ignored | | | |
| N | N | This is rarely seen in COBOL Copybooks | |
| N | N | Four-byte index | |
|
| I |
| NA |
|
|
| NA | |
| NA | |||
|
|
| NA |
The numeric types described in Table 6-1 are stored as one character per digit. Table 6-2 describes the numeric types that are stored in a more efficient manner.
Table 6-2 COBOL Clauses (Numeric Types Stored More Efficiently)
COBOL Clause | Design-Time Support | Run-Time Support | Supported Synonyms | Comments |
---|---|---|---|---|
| Y | Y | Both these keywords are optional. | |
| Y | Y |
| Length varies with
|
| Y | Y |
| Single precision, floating point number that is four bytes long. |
|
|
|
| Double precision, floating point number that is eight bytes long. |
|
|
|
| Two digits are stored in each byte. An additional half byte at the end is allocated for the sign, even if the value is unsigned. |
|
|
|
| Treated the same as a |
|
|
| Capacity of the native binary representation. | |
|
|
|
| Sign nibble in the rightmost zone by default. |
|
|
| Same as | |
|
|
| NA | |
|
|
| Length is the same as | |
|
|
| Length = |
The following clauses can be added to impact the sign position.
SIGN IS LEADING
Used with signed zoned numerics.
SIGN IS TRAILING
Used with signed zoned numerics.
SIGN IS LEADING SEPARATE
The character S
is counted in the size.
SIGN IS TRAILING SEPARATE
The character S
is counted in the size.
Note: These assume that the numerics are stored using IBM COBOL format. If these are generated for other platforms with different data storage formats, then a custom data handler for that type must be written. |
Table 6-3 describes picture editing types.
Table 6-3 Edited Pictures
Edited Pictures | Supported Editing Types | Unsupported Editing Types |
---|---|---|
Edited alphanumeric | Simple Insertion: B(blank) | |
Edited float numeric | Special insertion: | |
Edited numeric |
|
|
Edited pictures are more for presentation purposes and are rarely seen in data files. It is assumed that the editing symbols are also present in the data. For example, if you have:
then, this field is six bytes wide and has a decimal point in the data.
Simple, special, and fixed insertions are handled by this method. Floating insertion, zero suppression, and replacement insertion are not supported.
You can edit an existing native schema generated using the Native Format Builder wizard by sampling a delimited, fixed length, or complex type file. To edit an existing native schema select the Edit existing option in the Choose Type page of the Native Format Builder wizard, and click Browse to navigate to the location of the existing schema file and then select the native schema file that must be edited. The Native Format Builder wizard guides you through the editing of the native schema file.
Note: You cannot edit native schemas generated from a Document Type Definition (DTD) or COBOL Copybook file types. |
Figure 6-3 shows the Native Format Builder - Choose Type page with the Edit existing option selected.
Figure 6-3 The Native Format Builder Wizard - Choose Type Page
Before you edit a native schema file, you must ensure that the sample file specified in the annotation within the schema exists. This annotation is automatically added when the native schema is generated the first time from the sample file.
For example, if the specified sample file path in the annotation is <!--NXSDWIZ:C:\Temp\Book1Out.csv:-->
and if the file is not located at the path specified, then the wizard displays an error.
This section provides an overview of the various constructs of native schema used to translate the native format data to XML and also explains the usage of these native schema constructs.
This section includes the following topics:
Table 6-4 shows the constructs applicable only on the <schema>
tag.
Table 6-4 Constructs Applicable Only on the <schema> Tag
Construct | Description |
---|---|
The byte order of the native data as | |
The encoding in which the actual data is stored. UTF-8 is typically recommended for interoperability and Unicode support. You can specify any legal encoding supported by the Java run-time environment. For a complete listing of supported encodings, visit | |
| Set to true if quotes must be forced around native non-xml data in the outbound. |
A positive integer specifying the number of lines to be skipped, before translating the native data. | |
Skip until the specified string, before translating the native data. | |
If declared, adds the standalone attribute in the XML declaration prolog of the translated XML, with the actual value as that specified in | |
Whether the data is stored as characters or bytes. Allowed values are | |
String specifying the unique message separator in the native data, in a batch of messages. | |
The type of native data. Possible values are | |
If declared, adds the XML declaration prolog to the translated XML with the actual value as that specified in | |
String specifying the header value to be inserted in the outbound message. | |
Integer specifying the number of lines to process in the native file. | |
If set to The field | |
If set to | |
If set to | |
If set to | |
If set to | |
If set to |
Table 6-5 shows the constructs applicable on all tags other than the <schema>
tag.
Table 6-5 Constructs Applicable On All Tags Other Than the <schema> Tag
Construct | Description |
---|---|
The length of the array being stored in the native data occupying the specified length | |
The value of this construct is used as the length of the array, which can also be a variable resolved to a valid number. This value overrides any nxsd:style="array" nxsd:arrayLength="10" This indicates that the array length is | |
The last item in the array being terminated by the specified string | |
Assigns a value to the variable that is declared | |
The cells of the array in the native data being separated by the specified string | |
Either | |
Matches the string read from the native stream for the | |
| The value specified in this construct is used to translate only a portion of the data and not the entire data. |
A valid Java date format representing the date in the native data | |
The number of characters and bytes in which the actual length of the data is stored | |
The items in the list being separated by the specified string | |
The native data surrounded | |
The length of the native data to be read. Used with fixed-length style. | |
The last item in the list being terminated by the specified string | |
Looks for a match ahead of the current position in the input stream. If a match is found, then the node on which this construct is specified is processed; otherwise, it is skipped. Use this feature as follows: nxsd:lookAhead="20" nxsd:lookFor="abc" This indicates to skip | |
The string used for padding | |
| |
The native data being quoted by the specified string. By default, the specified string is | |
Skips the specified number of bytes or characters | |
Skips the number of lines specified | |
Skips until the string specified | |
Looks for the specified string in the native data. If it exists, then proceeds with the element where it is specified; otherwise, skips and processes the next element. | |
The style used to read the native data from the input stream. Allowed values are | |
The native data being surrounded by the specified string | |
The native data being terminated by the string specified | |
Declares a single variable | |
Declares a set of variables or assigns the declared variables a valid value |
This section includes the following topics:
Fixed-length data in the native format can be defined in the native schema by using the fixed-length style. There are three types of fixed length:
Native Data Format to Be Translated: With Padding
The actual data may be less than the length specified. In this case, you can specify paddedBy
and padStyle
as head
or tail
. When the data is read, the pads are trimmed accordingly. The following is a sample native data to be translated:
Native Schema: With Padding
Translated XML Using the Native Schema: With Padding
Native Data Format to Be Translated: Without Padding
To define a fixed-length data in native schema, you can use the fixed-length style. In case the actual data is less than the length specified, the white spaces are not trimmed. The following is a sample native data to be translated:
Native Schema: Without Padding
Translated XML Using the Native Schema: Without Padding
Native Data Format to Be Translated: Actual Length Also Being Read from the Native Data
When the length of the data is also stored in the native stream, this style is used to first read the length, and subsequently read the data according to the length read. The following is a sample native data to be translated:
Native Schema: Actual Length Also Being Read from the Native Data
Translated XML Using the Native Schema: Actual Length Also Being Read from the Native Data
This format is used when the terminating mark itself is supposed to be treated as part of the actual data and not as a delimiter. When it is not clear whether the mark is part of actual data or not, you can use nxsd:quotedBy
to be safe. Specifying nxsd:quotedBy
means that the corresponding native data may or may not be quoted. If it is quoted, then the actual data is read from the begin quotation to the end quotation as specified in nxsd:quotedBy
. Otherwise, it is read until the terminatedBy
character is found.
By default, the terminating mark is "
("
). If your data includes this character, you must override this default even if the field is not quoted. For more information, see "Native Data Format to Be Translated: Data Includes Default Quote Character".
Examples for the Optionally quoted, Not quoted, and Includes default quote character scenarios are provided in the following sections:
Native Data Format to Be Translated: Optionally Quoted
The following is a sample native data to be translated:
Native Schema: Optionally Quoted
Translated XML Using the Native Schema: Optionally Quoted
Native Data Format to Be Translated: Not Quoted
This is used when the data is terminated by a particular string or character. The following is a sample native data to be translated:
Native Schema: Not Quoted
Translated XML Using the Native Schema: Not Quoted
Native Data Format to Be Translated: Data Includes Default Quote Character
The following is a sample native data to be translated:
In this case, fields are terminated by commas, the "
character is part of the data in the second field, and the [
character is part of the data in the third field.
Because the default nxsd:quotedBy
terminating mark is "
("
), the Oracle File Adapter fails to translate field two even if you specify that this field is terminated by a comma character. To successfully translate this data, you must override the default nxsd:quotedBy
terminating mark to any character that is not be part of the data for this field. In this example, you override the default nxsd:quotedBy
terminating mark to <
(<
) because this character never appears in field two:
By contrast, for field three, you must only specify nxsd:terminatedBy=","
because the [
character does not conflict with the default nxsd:quotedBy
terminating mark:
Native Schema: Data Includes Default Quote Character
Translated XML Using the Native Schema: Data Includes Default Quote Character
This is used when the native data is surrounded by a mark.
The following are types of surrounded data:
Native Data Format to Be Translated: Left and Right Surrounding Marks Are Different
The following is a sample native data to be translated for which the left and the right surrounding marks are different:
Native Schema: Left and Right Surrounding Marks Are Different
Translated XML Using the Native Schema: Left and Right Surrounding Marks Are Different
Native Data Format to Be Translated: Left and Right Surrounding Marks Are the Same
The following is a sample native data to be translated for which the left and the right surrounding marks are the same:
Native Schema: Left and Right Surrounding Marks Are the Same
Translated XML Using the Native Schema: Left and Right Surrounding Marks Are the Same
This format applies to lists with the following characteristics:
All Items Separated by the Same Mark, but the Last Item Terminated by a Different Mark (Bounded)
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema
All Items Separated by the Same Mark, Including the Last Item (Unbounded)
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
This is for an array of complex types where the individual cells are separated by a separating character and the last cell of the array is terminated by a terminating character.
The following are examples of array types:
All Cells Separated by the Same Mark, but the Last Cell Terminated by a Different Mark (Bounded)
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
All Cells Separated by the Same Mark, Including the Last Cell (Unbounded)
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
Cells Not Separated by Any Mark, but the Last Cell Terminated by a Mark (Bounded)
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
The Number of Cells Being Read from the Native Data
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema
Explicit Array Length
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
This section provides the following examples of conditional processing:
Processing One Element Within a Choice Model Group Based on the Condition
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
Processing Elements Within a Sequence Model Group Based on the Condition
The following sections explain the format of the data to be translated, the native schema, and the translated XML.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
This example shows how to define dates.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
Note:
|
The following example depicts the use of nxsd:dateParsingMode="lax/strict"
and locale support.
Native Data Format to Be Translated:
Native Schema:
Translated XML:
This example shows how to use variables.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
In native format, when data is read, the specified data is prefixed, suffixed, or both, as shown in the following example.
Native Data to Be Translated:
Native Schema:
Translated XML Using the Native Schema:
Translator skips, before or after the data is read, depending on the skipMode
construct, as shown in the following example:
Native Data to Be Translated:
Native Schema:
Translated XML Using Native Schema:
When an element is declared without nxsd
annotations but the value specified is either fixed
or default
, the translator uses the value provided and does not throw any exceptions.
Native Data to Be Translated:
Native Schema:
Translated XML Using Native Schema:
The write
construct writes the literal at the current position in the output stream, either before writing the actual data or after writing it.
Input XML:
Native Schema:
Translated Data Using Native Schema:
The LookAhead
construct is of the following types:
LookAhead
X chars, read the value from a position using a style, and match against the specified literal. LookAhead
X chars, read the value from a position using a style, and store that value in a variable to be used later. LookAhead: Type 1
LookAhead
X chars, read the value from a position using a style, and match against the specified literal.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using Native Schema:
LookAhead: Type 2
In native schema, LookAhead
X chars, read the value from a position using a style, and store that value in a variable to be used later.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using Native Schema:
The actual content of outboundHeader
can use variables, specifically ${eol}
. When headerLines
and outboundHeader
both are available, outboundHeader
takes precedence in the outbound.
Note: In the inbound direction, the Skipping Headers feature is supported. Only predefined variables can be used in a header because other variables might either not be accessible or would have only literals. |
Input XML:
Native Schema:
Translated Data:
When you use the conditionValue
construct along with the choiceCondition
construct, you can specify match criteria such as equals (==) and not equals (!=), along with the Boolean operators AND and OR, for comparison between the value read and the value specified in the conditionValue
construct.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using Native Schema:
The choiceCondition
construct is used along with the conditionValue construct for records that are complex and may have fields delimited by multiple delimiter types. The other choiceCondition types available are FixedLength
, Variable
, and Ad hoc
. The following example is for the variable choiceCondition type.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using Native Schema:
If the requirement is to translate only a portion of the data and not the entire data, then you can specify the number of lines to be ignored from the beginning of the file and the number of lines to be translated from that point onwards by using the dataLines
construct.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using Native Schema:
In the translator, the date or time must be associated with a time zone. The translator supports the date formats with time zone for both, the date in native data and for the date in XML.
There are two parts when translating a date/time string. First, the format of the date in the native data (dateformat
), second is the time zone to use when parsing that date (timeZone
or useTimeZone
). The translator uses these details while parsing the date/time string.
After the parsing, by default, the date string is converted to the ISO-8601 format in an XML. You can override the defaults by using XMLDateFormat
and XMLTimeZone
, or useTimeZone
.
Native Data Format to Be Translated:
Native Schema:
Translated XML Using Native Schema:
You must configure Oracle JCA Adapters to implement validation during translation. Validation helps ensure that Oracle JCA Adapters do not publish invalid messages during translation.
You can implement either one or both of the following types of validation:
Payload validation involves validating the input and output XML messages that are processed by Oracle JCA Adapters. You can set payload validation at one of the these levels:
Top-Level Validation
In top-level validation, the DOMResult (result in the form of a Document Object Model) is validated against the XML schema. This form of validation is implemented on both inbound and outbound payloads. This form of validation can control the publishing of invalid records and provide information about XML validation errors. However, it does not provide translation context. For example, information about the line and column in the native stream where the error was encountered is not provided by top-level validation.
To implement top-level validation of XML messages:
true
as follows: For example:
Field-Level Validation
In field-level validation, the individual fields are validated against the XML schema. This form of validation is implemented only on inbound payloads, not on outbound payloads.
If the XML message does not conform to the XML schema, then information about the exact line and character where the error was encountered is displayed.
To implement field-level validation of XML messages:
true
as follows: For example:
Schema validation involves validating the schema (native schemas or XML schemas) that you define for the native or XML data formats to be translated by the Oracle JCA Adapters.
To enable schema validation:
true
as follows: For example:
Note: The |
The byte order mark (BOM) is a special U+FEFF Unicode character that describes the encoding of a byte sequence. The Native Format Translator can be configured to use BOM for determining the character encoding of the native input data. By default, BOM is not used. If your input data uses BOM, then set the nxsd:parseBom
attribute to true
in the native schema. Otherwise, the translator throws a parsing error.
The following is a sample nxsd file:
The translator XPath functions can translate data from a native format (such as CSV, fixed-length, tab-delimited, and COBOL Copybook formats) to an XML format and from an XML format to a native format. The translator XPath functions are of two types, streaming and non-streaming. The difference is that the streaming translator XPath functions implement the batching transformation approach while the non-streaming XPath functions do not implement the batching transformation approach. With the batching transformation approach, files that are of the order of a few gigabytes (GB) can be processed without running into memory issues.
This section includes the following topics:
This section describes the terminologies that you must understand for using translation XPath functions.
Attachment Element
An attachment element unusually refers to the actual content elsewhere by using an "href"
attribute. The actual content may be present in a file system or in a database table. An attachment is usually represented by using the following schema construct:
The "href"
attribute contains the actual location of the data being referred to. It can contain the path to a file in the file system or a pointer (primary key) to a database entity.
Scalable DOM
Scalable DOM (SDOM), from Oracle XML Developer Kit (Oracle XDK), provides scalable and pluggable support for DOM. This removes problems of memory inefficiency, limited scalability, and lack of control over the DOM configuration. Using the lazy materialization mechanism, Oracle XDK only creates nodes that are accessed and frees unused nodes from memory. Applications can process very large XML documents with improved scalability.
A translator may be required while reading and writing files. This section discusses the following translator XPath functions:
The doTranslateFromNative XPath function translates input data into XML. The input data can be a string, an attachment element, or a base64Binary element.
ora:dotranslateFromNative('
input
','
nxsdTemplate
','
nxsdRoot
','
targetType
','
attachment element
?'
)
The following table describes the parameters used in the syntax for using this function:
Parameter | Description |
---|---|
| Input data for the XPath function; the data can either be a string data that must be translated, an Oracle File or FTP Adapter attachment, an attachment referring to an external file path, or a base64Binary element. |
nxsdTemplate | NXSD schema to use to translate the input data into XML format. |
nxsdRoot | Root element in the NXSD schema. |
targetType | This parameter decides how the XPath function translates the native data into XML. Must be set to either
|
attachmentElement | This parameter is optional. This is the attachment for the returned XML file. |
Example 6-1 Configuring the XPath Function When the Input Data Is of String Type and Must Be Converted to an XML DOM
In this example:
csv_data
is a BPEL variable containing CSV data to be translated into XML. xsd/address-csv.xsd
is relative path to the NXSD schema in the project. Root-Element
is a root element in the NXSD schema (This is optional.) returnVariable
is the returned XML data as DOM. Example 6-2 When the Input data is an Attachment, Which Must Be Translated to a DOM
attachmentElement
in the schema of the BPEL process, as follows: In this example:
attachmentVariable
is an attachment variable in BPEL referring to the source file path. xsd/address-csv.xsd
is the relative path to the NXSD schema in the project. Root-Element
is a root element in the NXSD schema. returnVariable
is the XML data returned as DOM. Example 6-3 Configuring XPath Function When the Input Data Is Base64-encoded and Must Be Translated to DOM
In this example:
mtomElement
is a BPEL variable containing base64-encoded data to be translated into XML. xsd/address-csv.xsd
is the relative path to the NXSD schema in the project. Root-Element
is a root element in the NXSD schema. returnVariable
is the XML data returned as DOM. Example 6-4 Configuring XPath Function When the Input Data Is of String Type, Which Must Be Translated to an Attachment Referred to by a File-Path
attachmentElement
in the schema of the BPEL process, as follows: In this example:
csv_data
is a BPEL string variable containing CSV data to be translated into XML. xsd/address-csv.xsd
is the relative path to the NXSD schema in the project. Root-Element
is a root element in the NXSD schema. returnAttachmentVariable
is the returned attachment. Note: In this example, targetType
is set to ATTACHMENT
, and returnAttachmentVariable
points to the file path where the translated XML is to be written.
However, the fifth parameter (bpws:getVariableData('returnAttachmentVariable')
) is optional. If this parameter is missing, then the XPath function creates a database-backed attachment and returns it. In such a case, the XPath function is configured, as follows:
attachmentElement
in the schema of the BPEL process, as follows: After the XPath call returns, the returnAttachmentVariable
variable is populated with the href
attribute pointing to the GUID representing the database-backed attachment.
Note: If the data being translated is huge, then you must use either ATTACHMENT
or SDOM
as the targetType parameter for the XPath function.
The doTranslateToNative
XPath function translates an input DOM into string data or an attachment.
Syntax:
ora:dotranslateToNative('
input
','
nxsdTemplate
','
nxsdRoot
','
targetType
','
attachmentElement
?'
)
The following table describes the parameters used in the syntax for using this function:
Parameter | Description |
---|---|
| Input data for the XPath function; the data can either be DOM or SDOM data that must be translated to a native format such as CSV. |
| NXSD schema to be used to translate the input data into XML format. |
| Name of the root element in the NXSD schema. |
| This parameter decides how the XPath function translates the XML data into native formats. Must be set to either
|
| This parameter is optional. This is the attachment to which the translated data is written. |
Example 6-5 Configuring the XPath Function When the Input Data Is of XML Format and Must Be Translated Into CSV String Format
In this example:
inputDOM
is a BPEL DOM variable containing XML data to be translated into string data representing the translated CSV. xsd/address-csv.xsd
is the relative path to the NXSD schema in the project. Root-Element
is a root element in the NXSD schema. return_csv_data
is the string variable that contains the translated CSV data. Example 6-6 Configuring XPath Function to Translate an Incoming XML DOM into an Attachment Representing the Target File-Path for the Translated CSV
attachmentElement
in the schema of the BPEL process, as follows: attachmentElement
in the schema of the BPEL process, as follows: In this example:
inputDOM
is a BPEL DOM variable containing XML data to be translated into a CSV output file represented by /tmp/xpath/out/address.csv
. xsd/address-csv.xsd
is the relative path to the NXSD schema in the project. Root-Element
is a root element in the NXSD schema. AttachmentElement
points to the target output file path represented by /tmp/xpath/out/address.csv
. Note: In this example, targetType
is set to ATTACHMENT
, and AttachmentVariable
points to the file path where the translated CSV file is to be written.
However, the fifth parameter (bpws:getVariableData('attachmentVariable')
) is optional. If this parameter is missing, then the XPath function creates a database-backed attachment and returns it. In such a case, the XPath function is configured as follows:
attachmentElement
in the schema of the BPEL process, as follows: attachmentElement
in the schema of the BPEL process, as follows: After the XPath call returns, attachmentVariable
is populated with the href
attribute pointing to the GUID representing the database-backed attachment.
XPath functions implement the batching transformation approach. With this approach, files that are of the order of a few gigabytes (GB) can be processed without running into memory issues. Arbitrarily large payloads can be handled because the transformation engine does not store the result of the transformation in its memory. The transformation engine flushes its memory after a batch of elements of the large file is processed. The default batch size is 10000, which is the number of elements after which the transformation engine flushes its memory. This parameter is used internally and is optional.
Note: Batching transformation approach is supported for XML documents that have repeating structures only. |
Syntax:
ora:doStreamingTranslate('
input
','
streamingXpathContext
','
targetType
','
attachmentElement
?'
)
The following table describes the parameters used in the syntax for using this function:
Parameter | Description |
---|---|
| Input data for the XPath function; the data can either be SDOM or an Attachment element. |
streamingXpathContext | DOM representing the XPath context. |
targetType | This parameter decides how the XPath function translates the input data into an attachment. This must be set to either |
attachmentElement | This parameter is optional. This is the attachment to which the data is streamed. |
The streamingXPathContext
parameter specifies the context for the streaming transformation and, it must conform to the following schema element:
In context:
Schema Element | Description |
---|---|
| Source NXSD schema used to translate a native data to XML. |
| Name of root element in source NXSD schema. |
| Set this to either |
| Relative path of the XSL file. |
| Target NXSD schema used to translate an XML into native data. |
| Name of root element in target NXSD schema. |
| Set this to either |
| The number of elements after which the transformation engine flushes its memory. |
This section discusses the following features of batching transformation:
Applicability
Batching transformation is applicable to:
Batched Invocation of XSLT Engine
The following procedure highlights the batched invocation of the XSLT engine:
Splitting or Combining Performed on the Fly
The source documents are split and the results are combined into a target document:
Low In-Memory Footprint
Batching transformation method uses low memory for the following tasks:
Example 6-7 implements the FlatStructure FileAdapter sample using streaming transformation XPath functions. This sample use case translates the inbound native attachment from a CSV format to an XML format, and then applies the user-supplied XSL file to the resulting XML file. The transformed XML file is then translated into a fixed-length content represented by an attachment.
Example 6-7 Using Streaming Transformation XPath Function
This section describes the following use cases:
Note: Sampling the data with multi-character delimiter in Native Format Builder is not supported currently. The same can be achieved through hand coding the NXSD with the appropriate Delimited By string. |
A comma-separated value (CSV) file is a common non-XML file structure.
Use the Delimited option in the Native Format Builder wizard, when creating the XML schema for this native file.
The nxsd:headerLines="1"
schema attribute signifies that the first line must be treated as a header row and skipped in the native data before actually translating the rest of the data. The nxsd:stream="chars"
schema attribute signifies that the data should be read as characters. If nxsd:stream
is set as bytes
, nxsd:stream="bytes"
, then this schema attribute signifies that the native data should be read as bytes. For each of the element declarations, Name
, Street
, City
, State
, and Country
, which have a corresponding scalar data, the nxsd:style="terminated"
attribute defines that the corresponding data is stored in terminated style. The actual terminator is then defined by the nxsd:terminatedBy=","
attribute specified at that construct. See Section 6.2.2.2, "Defining Terminated Data" for details on the terminated style.
In this use case, the Native Format Builder uses a delimited sample file type that contains the address details, such as name, street, city, state, and country. Every element in this sample native file is delimited by a comma (,). You can generate the corresponding NXSD and also test it. Perform the following steps to run the use case:
address-csv.txt
, appears as below: Figure 6-4 Starting the Native Format Builder Wizard
The Native Format Builder Welcome page is displayed, as shown in Figure 6-5.
Figure 6-5 Native Format Builder Wizard Welcome Page
Figure 6-6 Native Format Builder Wizard Choose Type Page
address-csv.txt
file, as shown in Figure 6-7. Figure 6-7 Native Format Builder Wizard File Description Page
Figure 6-8 Native Format Builder Wizard Record Organization Page
AddressBook
in the Enter name of element containing multiple records field and enter Address
in the Enter a name for element that will represent record field, as shown in Figure 6-9. Figure 6-9 Native Format Builder Wizard Specify Elements Page
Figure 6-10 Native Format Builder Wizard Specify Delimiters Page
Figure 6-11 Native Format Builder Wizard Field Properties Page
Note: The first record is used as the field name, is also treated as a header record, and is skipped during translation. |
Figure 6-12 Native Format Builder Wizard Generated Native Format File Page
The corresponding native schema definition is as follows:
The native data using the corresponding native schema format is translated into the following XML:
Figure 6-15 Native Format Builder Wizard Finish Page
Figure 6-16 Adapter Configuration Wizard Messages Page
The use case defined in the previous example is just one specific case of the *SV class, where the wildcard can be substituted by any character or string. For example, for the native data containing a plus (+)
separated value, substitute the wildcard with the plus (+) character.
Use the Delimited type option in the Native Format Builder wizard when creating the XML schema for this native file.
Native Data Format to Be Translated
The following native data format is provided:
Native Schema
The corresponding native schema definition is similar to the one in the previous use case except that instead of nxsd:terminatedBy=","
you now define the terminated by format as nxsd:terminatedBy="+"
. See Section 6.2.2.2, "Defining Terminated Data" for details about the terminated style.
In this example, the native data used is the same as in the CSV case, but the data used is of type fixed length and not CSV.
Use the Fixed Length option in the Native Format Builder wizard, to create the XML schema for this native file.
In this use case, the Native Format Builder uses a fixed-length file type called address
that contains the address details such as name, street, city, state, and country. Every element in this address
native file has a fixed length. You can generate the corresponding NXSD and also test it. Perform the following steps to run the use case:
address.txt
, appears as below: Figure 6-17 Native Format Builder Wizard Choose Type Page
address.txt
file, as displayed in Figure 6-18. Figure 6-18 Native Format Builder Wizard File Description Page
Figure 6-19 Native Format Builder Wizard Record Organization Page
AddressBook
in the Enter name of element containing multiple records field, and enter Address
in the Enter a name for element that will represent record field, as shown in Figure 6-20. Figure 6-20 Native Format Builder Wizard Specify Elements Page
Figure 6-21 Native Format Builder Wizard Field Lengths for Multiple Record Files Page
Figure 6-22 Native Format Builder Wizard Field Properties Page
Figure 6-23 Native Format Builder Wizard Native Format Schema File Page
The corresponding native schema definition is similar to the definition of the CSV, file but style
changes from nxsd:style="terminated"
to nxsd:style="fixedLength"
along with the relevant attributes for the fixed-length style. For the fixed-length style, the one mandatory attribute is the length: nxsd:length
. The value of nxsd:length
is the actual length of the data to be read.
The native data using the corresponding native schema format is translated into the following XML:
The file structure of an invoice is more complex than the structure of CSV, *SV, and fixed-length files discussed in the preceding use cases. An invoice usually contains buyer information, seller information, and line items. Each of these elements, in turn, can be of complex type. For example, the buyer element can be defined as a partner-type, where partner-type consists of three elements - id, name, and address.
Use the Complex Type option in the Native Format Builder wizard when creating the XML schema for this native file.
In this use case, the Native Format Builder uses invoice.txt
, a complex file type called invoice, which contains multiple records such as buyer, seller, and items. Also, using this use case, you can generate the NXSD and test it. Perform the following steps to run this use case:
invoice.txt
, appears as below: Figure 6-26 Native Format Builder Wizard Choose Type Page
invoice.txt
file, and enter Invoice
in the Root Element field, as displayed in Figure 6-27. Figure 6-27 Native Format Builder Wizard File Description Page
Figure 6-28 Native Format Builder Wizard Design Schema Page
Create the partner-type Complex Type
The schema structure that you can build using the invoice.txt
sample is as follows:
Invoice
Buyer => partner-type
Seller => partner-type
Items => item-type
Invoice-total => double
The first line in the native data consists of buyer details, followed by seller details, followed by line items, and finally the total for the line items. Both buyer and seller elements have the same complex structure, as follows:
^
". Click the Add Complex Type icon. A Complex Type, <new_complex_type>
is created in the Schema Tree under Invoice
, as shown in Figure 6-29.
Figure 6-29 Native Format Builder Wizard Design Schema Page
partner-type
in the Complex Type Name field, as shown in Figure 6-30. Figure 6-30 Native Format Builder Wizard Design Schema Page - Complex Type Details Dialog
Note: For the Fixed Length or Mixed Delimiter type options, a ruler-based text area is displayed. You have to use the rulers to identify fields within the sample text. In case of delimited data, select or enter the appropriate delimiter in the Delimited By field. |
In this example, select surrounded.
The field properties displayed on this panel correspond to the NXSD attributes used in the schema.
id
and address
Name fields. Figure 6-33 Native Format Builder Wizard Design Schema Page - partner-type Complex Type
Create an address-type Complex Type
The address element can be further defined as another complex-type that contains a fixed-length street, city, and so on.
<new_complex_type>
. The Complex Type Details dialog is displayed. Figure 6-34 Native Format Builder Wizard Design Schema Page - Complex Type Details Dialog
Figure 6-35 Native Format Builder Wizard Design Schema Page
Assign the address-type Complex Type to address field of partner-type Complex Type
You must assign the address-type complex type to the address field of the partner-type complex type. You can assign a complex type to an element by using one of the following methods:
The Edit Field Details dialog is displayed, as shown in Figure 6-36.
Figure 6-37 Native Format Builder Wizard Design Schema Page
Create 'buyer' and 'seller' Global Elements
<new_element>
, is created in the Schema Tree under the root element, Invoice. <new_element>
, is created in the Schema Tree under Invoice. Now, drag and drop the partner-type node on each of the buyer and seller nodes, to assign the partner-type complex type to these nodes. The Schema Tree appears, as shown in Figure 6-38.
Figure 6-38 Native Format Builder Wizard Design Schema Page
Create item-type Complex Type, and items and invoice-total Element Nodes
The items element can be considered an array of item-types. The last line item in the native file ends with the number sign (#
), followed by the line-item total.
<new_element>
, is created in the Schema Tree under Invoice. Figure 6-39 Native Format Builder Wizard Design Schema Page
Note: The element |
Figure 6-41 Element Details Dialog - Alert Message
If a single field is identified in the sampled data for a global element, then the properties of this data are applied to the global element itself.
Figure 6-42 Native Format Builder Wizard Design Schema Page - Complete Schema Tree
Figure 6-43 Native Format Builder Wizard Generated Native Format File Page
The native schema definition corresponding to the preceding native data can be defined as follows:
Figure 6-45 Test NXSD Schema Dialog - Result XML
The translated XML looks as follows:
When the native data is XML and that XML has no namespace, you can use the Native Format Translator to add a namespace to an inbound XML document and remove the namespace from an outbound XML document.
The XML has no namespace when either of the following is true:
In both cases, you must create a wrapper schema with targetNamespace
specified, and the wrapper schema must include the actual schema. In addition, the wrapper schema must also have the nxsd:version
attribute set to DTD. For example:
Note: Ensure that |
Using this wrapper.xsd
file for the original .xsd
file would add the myNamespace
namespace to the inbound XML and would remove the myNamespace
namespace from the outbound XML.
In this use case, the Native Format Builder uses order.txt, a complex type file, which contains multiple record types such as order, customer, and items. Also, using this use case you can generate the NXSD and test it. Perform the following steps to run this use case:
For more information about creating a complex type, see Section 6.4.3, "Defining the Schema for a Complex File Structure".
The Native Format Builder Design Schema page is displayed, as shown in Figure 6-46.
Figure 6-46 Native Format Builder Design Schema Page
Figure 6-47 The Choice Option Type Dialog
Select choice and click the Add Element icon. A <new_element> is added to the choice node.
Enter Order
in the Choice Value field, as shown in Figure 6-48, and then click OK.
Note: You should specify four characters in Choice Value field as the Length field has the value 4 in it. |
Figure 6-49 Native Format Builder Design Schema Page
Figure 6-50 Generated Native Format Schema File Page
Native Schema
The native schema definition corresponding to the preceding native data can be defined as follows:
Translated XML Using the Native Schema
The translated XML looks as follows:
Click OK. The Generated Native Format File page is displayed.
In this use case, the Native Format Builder uses address.txt
, a complex type file, which contains multiple records with different addresses. In this use case, you would build a schema which has 2 record types. The RecOne record takes data for records ending with text "YES" and the RecTwo record takes data for records ending with text "NO ".
Also, using this use case you can generate the NXSD and test it. Perform the following steps to run this use case:
RECORD1
in the Complex Type Name field and select Comma (,) in the Delimited By list. Figure 6-52 Native Format Builder Design Schema Page
Figure 6-53 Native Format Builder Design Schema Page
Figure 6-54 The Choice Option Type Dialog
Select choice and click the Add Element icon. A <new_element> is added to the choice node.
Enter RECONE
in the Element Name field and select RECORD1 as the Data Type set choice condition as "YES", and then click OK.
RECTWO
choice element for the choice node and set choice condition as "NO ". Note: There is one space after chars "NO", since you must match the total no. of characters to three. |
The Native Format Builder Design Schema dialog is displayed, as shown in Figure 6-55.
Figure 6-55 Native Format Builder Design Schema Page
Figure 6-56 Generated Native Format Schema File Page
Native Schema
The native schema definition corresponding to the preceding native data can be defined as follows:
Translated XML Using the Native Schema
The translated XML looks as follows:
Note: There are 2 recordtypes: RECONE and RECTWO. RECONE takes records that end with character YES and RECTWO takes records that end with character NO. |
In this use case, the Native Format Builder uses array.txt, a complex type file, which contains an array of items. The sample data has four names which are separated by a semicolon and ending with a period. In this use case, you would create a schema with array type which has member names separated by a semicolon and array terminated by a period. Also, using this use case you can generate the NXSD and test it.
Perform the following steps to run this use case:
Figure 6-58 Native Format Builder File Description Page
Figure 6-59 Native Format Builder Design Schema Page
The Native Format Builder Design Schema dialog is displayed.
Figure 6-61 Generated Native Format Schema File Page
Native Schema
The native schema definition corresponding to the preceding native data can be defined as follows:
Translated XML Using the Native Schema
The translated XML looks as follows:
This use case takes you through the procedure for defining the schema for the native data type, DTD file.
Use the DTD to be converted to XSD option in the Native Format Builder wizard when creating the XML schema for this native file.
In this use case, the Native Format Builder uses a DTD file type *.dtd
. You can generate the corresponding NXSD and also test it. Perform the following steps to run the use case:
Figure 6-63 Native Format Builder Wizard Choose Type Page
db.dtd
file, and select DatabaseInventory from the Root Element list, as displayed in Figure 6-64. Figure 6-64 Native Format Builder Wizard File Description Page
Figure 6-65 Native Format Builder Wizard Field Properties Page
The following is the sample native schema that is generated:
This use case shows how the Oracle File and FTP Adapters process a file in COBOL Copybook format (through use of the Native Format Builder wizard) to create a native schema file for translation.
The following COBOL Copybook examples are provided:
A COBOL Copybook can have multiple root levels. If all root levels are at 01
level, then each such group implicitly redefines the other.
In this use case, the Native Format Builder uses a fixed-length file type, po-ccb.cpy
, that contains the purchase order details such as buyer name, address, and items. Every element in this po-ccb.cpy
native file has a fixed length. The data in the sample text file, po-ccb.cpy
, appears as follows:
You can generate the corresponding NXSD and also test it. Perform the following steps to run the use case:
artifacts.zip
file contained in the Adapters-105CobolCopyBook
sample. artifacts/samples/po-ccb.cpy
artifacts/samples/po-ebcdic.data
You can obtain the Adapters-105CobolCopyBook
sample by accessing the Oracle SOA Sample Code site.
Copy these files to your samples directory.
Figure 6-66 Native Format Builder Wizard Choose Type Page
po-ccb.cpy
file, as shown in Figure 6-67. Figure 6-67 Native Format Builder Wizard File Description Page
PurchaseOrder
in the Root-Element field, and click Next. The Generated Native Format File page is displayed, as shown in Figure 6-68. Figure 6-68 Native Format Builder Wizard Generated Native Format File Page
The top level payroll records are enclosed in a choice model group. Each payroll record also has two attributes, nxsd:lookAhead
and nxsd:lookFor
that help identify the type of record during run-time processing of the data file. So, you must add values for these attributes. For example, assume PAYROLL-F-RECORD occurs when the PAYROLL-F-TRANS-CODE field has a value of FR. The record element then looks as follows:
The value 10 indicates the position of the lookahead field. The following COBOL Copybook has multiple root elements at the 05 level:
Native Schema
po-ebcdic.data
file in the File Name field. The Test NXSD Schema dialog is displayed, as shown in Figure 6-69. The native data using the corresponding native schema format is translated to the following XML:
In this (non-01
level) case, an unbounded sequence of the root level items is generated.
Single Root Level, Virtual Decimal, Fixed-Length Array
The following COBOL Copybook has a single root level item PO-RECORD
. In a single root level case, the level number does not matter because the converter works in the same way. This COBOL Copybook also shows an example of a field declared as a virtual decimal (PO-ITEM-PRICE
).
The generated schema looks as follows:
Variable Length Array
The generated schema looks as follows:
Numeric Types
The generated schema looks as follows:
In this case, all the numeric types follow formats specified according to IBM COBOL formats. If the data file originates from a different system by using different layouts, the generated schema requires modification.
You might want to test your nXSD schema to ensure that nXSD annotations are correct and that generated XML/native data conforms to your business semantics. If you want to do that currently, you must write a BPEL process with an inbound or outbound File Adapter partner link, or both, configured with the appropriate nXSD schema and test them on the SOA server. This is both time-consuming and error prone.
A simple standalone test client that can enable you to verify your nXSD schemas.
Before you use the test client to verify your nXSD schemas, add the following jars in the classpath. These jars (except for test-translator.jar
) are available as a part of your SOA installation. You must use Java 6 to run the test client.
bpm-infra.jar
. This is the nXSD run-time jar available under$SOA_HOME/soa/modules/oracle.soa.fabric_11.1.1
xmlparserv2.jar
. This is the Oracle XDK library for parsing available under$FMW_HOME/oracle_common/modules/oracle.xdk_11.1.0
xml.jar
This is the Oracle XDK library for schema validation available under$FMW_HOME/oracle_common/modules/oracle.xdk_11.1.0
mail.jar
.This is the Java mail API. test-translator.jar
. You must rename the extension from jarr to jar. Now you can run java xlator.util.Translate -help
and the usage should be displayed as shown below. When supply the -help
option, the tool supplies a list of options and defaults.
Figure 6-71 Running java xlator.util.Translate -help
The following example sample execution of the test client converts the address-csv.tx
t file to address-csv.xml.
The command is:
java xlator.util.Translate -inbound -schema address-csv.xsd -root Root-Element -input address-csv.txt -output address-csv.xml
Figure 6-72 Using the Test Tool to Convert txt to xml
Sample execution of the test client to convert address-csv.xml
to address-csv.txt
:
Figure 6-73 Using the Test Tool to Convert xml to txt
The following sample execution of the test client converts address-csv.txt
to a series of address-csv.xml_batch_%SEQ%.xml files
using de-batching.
Figure 6-74 Using the Test Tool to Convert address-csv.txt to a Series of batch xml Files
This chapter describes how to use the Oracle JCA Adapter for AQ (Oracle AQ Adapter), which enables an Oracle BPEL Process Manager (Oracle BPEL PM) or an Oracle Mediator to interact with a single consumer or a multiconsumer queue.
This chapter includes the following sections:
Oracle Streams Advanced Queuing (AQ) provides a flexible mechanism for bidirectional, asynchronous communication between participating applications. Advanced queues are an Oracle database feature, and are therefore scalable and reliable. Other features of Oracle database, such as backup and recovery (including any-point-in-time recovery), logging, transactional services, and system management, are also inherited by advanced queues. Multiple queues can also service a single application, partitioning messages in a variety of ways and providing another level of scalability through load balancing.
This section includes the following sections:
For more information on Oracle AQ, see "Introduction to Oracle Streams AQ" in the Oracle Streams Advanced Queuing User's Guide.
JCA Binding Component is used for the bidirectional integration of the JCA 1.5 resource adapters with Oracle BPEL Process Manager. JCA Binding Component is based on standards and employs the Web service Invocation Framework (WSIF) technology for exposing the underlying JCA interactions as Web services.
For more information about Oracle AQ Adapter architecture, adapter integration with Oracle BPEL Process Manager, and adapter deployments, see Chapter 3, "Adapter Integration with Oracle Application Server Components."
The Mediator Server supports Oracle AQ Adapter and enables you to define inbound and outbound adapter services for each. An inbound adapter service receives data from an Oracle AQ Adapter and transforms it into an XML message. An outbound adapter service sends data to a target application by transforming an XML message into the native format of the given adapter.
Using the Mediator Server, you can send or receive messages from Oracle Advanced Queuing single or multiconsumer queues.
Note: Oracle BPEL PM pre-dates Mediator and most of this guide and the samples implicitly assume use with Oracle BPEL PM. However, the Oracle AQ Adapter works equally well with either Oracle BPEL PM or Mediator. For any mention of Oracle BPEL PM here, you may substitute Mediator, instead. |
The Oracle AQ Adapter is both a producer and a consumer of AQ messages. The enqueue operation is exposed as a JCA outbound interaction. The dequeue operation is exposed as a JCA inbound interaction.
The Oracle AQ Adapter supports ADT (Oracle object type), XMLType
, and RAW
queues as payloads. It also supports extracting a payload from one ADT member column.
The Oracle AQ Adapter supports normalized properties for enqueue and dequeue operations.
For more information about the properties supported by Oracle AQ Adapter, see Appendix A, "Oracle AQ Adapter Properties."
You can obtain the Oracle AQ Adapter samples by accessing the Oracle SOA Sample Code site.
This section includes the following topics:
The Oracle AQ Adapter supports the following features of Oracle Streams AQ:
In the Adapter Configuration Wizard, you can specify a correlation identifier when defining an enqueue operation, which you use to retrieve specific messages.
In Oracle Streams AQ, multiple consumers can process and consume a single message. To use this feature, you must create multiconsumer queues and enqueue the messages into these queues. In this configuration, a single message can be consumed by multiple AQ consumer (dequeue operation), either through the default subscription list or with an override recipient list. Under this scenario, a message remains in the queue until it is consumed by all of its intended consumer agents. The Oracle AQ Adapter enqueue header property (jca.aq.RecipientList
) enables you to specify the override recipient list (string values separated by commas) that can retrieve messages from a queue. All consumers that are added as subscribers to a multiconsumer queue must have unique values for the Recipient
parameter. Two subscribers cannot have the same values for the NAME
, ADDRESS
, and PROTOCOL
attributes.
If you specify the priority of enqueued messages, then the messages are dequeued in priority order. If two messages have the same priority, then the order in which they are dequeued is determined by the enqueue time. You can also create a first-in, first-out (FIFO) priority queue by specifying the enqueue time priority as the sort order of the messages. This priority is a property of the Oracle AQ Adapter enqueue header. The enqueue time is set automatically by the underlying AQ application.
Here is an example of how to create the FIFO queue:
In Oracle Streams AQ, you can specify a delay interval and an expiration interval. The delay interval determines when an enqueued message is marked as available to the dequeuers after the message is enqueued. When a message is enqueued with a delay time set, the message is marked in a WAIT
state. Messages in a WAIT
state are masked from the default dequeue calls. The expiration time property is used to specify an expiration time, and the message is automatically moved to an exception queue if the message is not consumed before its expiration.
Oracle Streams AQ provides the following dequeuing options:
The poll option involves processing the messages as they arrive and polling repeatedly for messages. The Oracle AQ Adapter supports a polling mechanism for consuming AQ messages.
The Oracle AQ Adapter supports the following features of Oracle Streams AQ:
The Oracle AQ Adapter can retrieve messages from a multiconsumer queue.
Messages do not have to be dequeued in the same order in which they were enqueued. You can use a correlation identifier to specify dequeue order. The Adapter Configuration Wizard defines the correlation ID for the dequeue operation.
The number of retries is a property of the Oracle AQ Adapter dequeue header. If the number of retries exceeds the limit, then the message is moved to an exception queue that you specify. The exception queue is a property of the Oracle AQ Adapter enqueue header.
Oracle Streams AQ provides content-based message filtering and subject-based message filtering. A rule defines one or more consumers' interest in subscribing to messages that conform to that rule. For a subject-based rule, you specify a Boolean expression using syntax similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on message properties (current priority and correlation ID), user data properties (object payloads only), and functions (as specified in the WHERE
clause of a SQL query).
For more information about Oracle AQ Adapter header properties, see Appendix A, "Oracle AQ Adapter Properties."
The Dequeue condition is an advanced queuing product feature that Oracle AQ Adapter uses. If a dequeue condition is specified and no messages meet the specified condition, then no dequeue happens.
A dequeue condition element is a Boolean expression using syntax similar to the WHERE
clause of a SQL query. This Boolean expression can include conditions on message properties, user object payload data properties, and PL/SQL or SQL functions. Message properties include priority
, corrid
, and other columns in the queue table.
When a dequeue is performed from a multisubscriber queue, it is sometimes necessary to screen the messages and accept only those that meet certain conditions. These conditions may concern header information, such as in selecting messages of only priority 1, or some aspect of the message payload, such as in selecting only loan applications above $100,000.
The Message Selector Rule field is displayed in Step 15 if you select a multisubscriber queue. Enter a subscription rule in the form of a Boolean expression using syntax similar to a SQL WHERE
clause, such as priority = 1
, or TAB.USER_DATA.amount > 1000
. The adapter dequeues only those messages for which this Boolean expression is true.
You must select the Access to non-payload fields also needed check box to access header information.
When this check box is selected, the generated WSDL file has additional code in the type
section:
Note that PayloadHeader
is the type for the whole ADT of the queue. The payload contains only the chosen payload field. If you selected Access to non-payload fields also needed, then the PayloadHeader
(. jca.aq.HeaderDocument
) contains the whole ADT (including the payload field, which is also present in the header, but ignored by the adapter.)
For more information about Oracle AQ Adapter architecture, adapter integration with Oracle BPEL Process Manager, and adapter deployments, see Chapter 1, "Introduction to Oracle JCA Adapters."
The Oracle AQ Adapter supports the following RAW
types:
BLOB
CHAR
CLOB
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
NUMBER
REAL
SMALLINT
TIMESTAMP
VARCHAR2
In addition to the RAW
types mentioned in the preceding list, the Oracle AQ Adapter supports primitive types and varrays of objects.
Note: The Oracle AQ Adapter does not currently support the following data types for ADT columns: |
If you choose a payload field instead of the whole ADT, then choose one of the following data types as the payload field:
CLOB
, either XSD or opaque schema VARCHAR2
, either XSD or opaque schema BLOB
, opaque schema only XMLTYPE
, either XSD or opaque schema JDeveloper BPEL Designer provides the Native Format Builder Wizard to define XSD
files of various formats, including for the AQ RAW
payload.
For more information about the Native Format Builder wizard, see Chapter 6, "Native Format Builder Wizard."
To obtain sample code that demonstrates usage of the Native Format Builder access the Oracle SOA Sample Code site.
The payload schemas depend on the payload type. In the whole ADT case, the schema is completely generated by the Adapter Configuration Wizard. In an ADT case where the payload case selected is BLOB
, an opaque schema as defined in the following example must be used:
<element name="opaqueElement" type="base64Binary" />
In all other cases, you can either provide a schema or use an opaque schema, as shown in Table 7-1.
Table 7-1 Payload Schema
Payload Type | Supported Schema |
---|---|
| User-provided schema or opaque schema. |
Whole | Must use a schema generated by the Adapter Configuration Wizard, which is based on the queue structure. |
| User-provided schema or opaque schema. |
| User-provided schema or opaque schema. |
| Opaque schema. |
| User-provided schema or opaque schema. |
If you do not have an XSD file but the payload data is formatted (for example, in a comma-delimited value (CSV) format), you can use the Native Format Builder wizard to generate an appropriate XSD. The Adapter Configuration Wizard is integrated with the Native Format Builder wizard. In the Adapter Configuration Wizard Messages window, click Define Schema for Native Format to access the Native Format Builder wizard.
Header manipulation and propagation is a key business integration messaging requirement. Oracle BPEL PM, Mediator, Oracle JCA, and B2B rely extensively on header support to solve customers' integration needs. For example, you can preserve a file name from the source directory to the target directory by propagating it through message headers. In Oracle BPEL PM and Mediator, you can access, manipulate, and set headers with varying degrees of UI support.
Note: AQ Adapter inbound and outbound headers supported in the 10.1.3 release are supported in 11g through normalized message properties. |
For more information, see Section 2.14, "Correlation Support Within Adapters"
Propagating Headers in a Normalized Message:
A normalized message is simplified to have only two parts, properties and payload.Typically, properties are name-value pairs of scalar types. To fit the existing complex headers into properties, properties are flattened into scalar types.
Manipulating Headers in Design Time:
The user experience is simplified while manipulating headers in design time, because the complex properties are predetermined. In the Mediator or BPEL designer, you can manipulate the headers with some reserved key words. For example, currently in Mediator, you can access an inbound File adapter, fileName header using the following expression:
However, this method does not address the properties that are dynamically generated based on your input. For example, in the AQ Adapter Wizard, you can propagate some fields from an AQ object as headers. Based on your choice, the header definitions are defined. These definitions are not predetermined and hence cannot be accounted for in the list of predetermined property definitions. You cannot design header manipulation of the dynamic properties before they are defined. To address this limitation, you must generate all the necessary services (composite entry points) and references. This restriction applies to services that are expected to generate dynamic properties. Once dynamic properties are generated, they must be stored for each composite. Only then you can manipulate the dynamic properties in Mediator or BPEL designer.
Identifying Properties That Must Be Propagated over the Life Cycle of the Normalized Message:
Some properties must be propagated across the life cycle of the message, whereas some must not be propagated. The properties that must be propagated are referred to as propagatable properties, whereas properties that must not be propagated are referred to as non-propagatable properties.
Oracle AQ Adapter is Document Object Model Level 2 (DOM 2) compliant, that is, the AQ adapter can generate document objects that are compliant with DOM2 specification.
Oracle AQ Adapter is message-size aware, that is, Oracle AQ Adapter calculates the message size and reports the size back to JCA Binding Component. The API, related to size, exposed by JCA Binding Component can be used for reporting purposes.
Oracle AQ Adapter supports an activation endpoint property, "adapter.aq.dequeue.threads
". Setting this property is a preferred way to spawn multiple threads for the inbound message flow between the adapter and the Enterprise Information System (EIS). Earlier versions of the Oracle AQ Adapter relied on the activationInstances
endpoint property, which was used by JCA Binding Component to initiate multiple endpoints.
The DequeueTimeOut
property supports multiple inbound dequeue threads. The value for this property determines how many seconds the dequeue()
API waits for messages before it returns and the next polling cycle begins.
Add this property to the composite.xml
file, as shown in the following example:
Oracle AQ Adapter provides system properties to control dequeue timeout and multiple inbound polling threads for each Java Virtual Machine (JVM), systemwide, instead of for each process.
The system property provided by Oracle AQ Adapter to control dequeue timeout is oracle.adapter.aq.wait
, and the property that controls inbound polling threads is adapter.aq.dequeue.threads
.
Oracle AQ Adapter provides support to stream payload. When you enable this feature, the payload is streamed to a database instead of getting manipulated in SOA run time as in a memory DOM. You use this feature while handling large payloads. To enable support to stream payload, you must select the Enable Streaming check box while defining the dequeue operation parameters in Oracle JDeveloper (JDeveloper). When you select the Enable Streaming check box, a corresponding Boolean property EnableStreaming
is appended to the ActivationSpec
properties defined in the respective .jca
file, as shown in the following example. If the EnableStreaming property does not exist, then the default value false
is assumed. The property is applicable when processing Raw
messages, XMLType
messages, and ADT
type messages for which a payload is specified though an ADT
attribute.
If you configure the Oracle AQ Adapter inbound retries to retry for more than 5 times by using the jca.retry.count
service binding property for a retryable exception, then ensure that the queue is created with max_retries value that is greater then the value used for jca.retry.count
. If nothing is specified, then the queue is created with a max_retries
value of 5 which would mean that the message ends up in the exception queue after 5 retries and is not be delivered to adapter for further processing. If jca.retry.count
is specified with a value of 5 or less, then you do not have to change the queue max_retries
property.
Use the following code to change the max_retries
property when creating a queue:
For information about error handling, see Section 2.21, "Error Handling."
Oracle AQ Adapter supports performance tuning features.
For more information, see "Oracle AQ Adapter Tuning" in the Oracle Fusion Middleware Performance and Tuning Guide.
The Oracle AQ Adapter comes deployed to the application server as part of the install. It contains a single adapter instance entry eis/AQ/aqSample
, which points to the data source jdbc/aqSample
. The data source is not created as part of install and must be created manually. The connection information to the database is inside the data source definition.
When deploying a SOA project that uses the Oracle AQ Adapter instance eis/AQ/aqSample
that exists at the time of installation, you must first create a data source at jdbc/aqSample
. On the other hand, if a new adapter instance is preferred, then you must add a new adapter instance and restart the application server. This is because you want to point to a data source other than the one referred in the existing adapter instance jdbc/aqSample
, or because you chose a name for the adapter instance that does not yet exist. For instance, if you create a connection in JDeveloper named DBConnection1
, then by default the AQ Adapter service points to eis/AQ/DBConnection1
, as shown in Figure 7-6.
You can also check which adapter instance the service is pointing to by looking at the .jca
file, as shown in the following code snippet:
In the preceding example, the location is the JNDI name of the adapter instance at run time.
You can create a new AQ Adapter instance through the Oracle WebLogic Server Administration Console, as mentioned in Section 2.18, "Adding an Adapter Connection Factory" or by directly editing the weblogic-ra.xml
file. The following are the steps to edit weblogic-ra.xml
:
fmwhome
/ for AqAdapter.rar
. META-INF
/weblogic-ra.xml
(and possibly ra.xml
.) The following is a sample adapter instance in weblogic-ra.xml
:
The mandatory properties are: jndi-name
, XADataSourceName
or DataSourceName
. The jndi-name
property must match the location attribute in the .jca
file, and is the name of the adapter instance. The XADataSourceName
or DataSourceName
property is the name of the underlying data source (which has the connection information). Specify one of the properties XADataSourceName
or DataSourceName
. The usage depends on if the scenario involves and would require adapter to participate in global transaction or if local transaction semantics are sufficient. In the former case XADataSourceName
must be specified while in the latter case DataSourceName
must be specified. When specifying XADataSourceName
property ensure that the physical data source it refers to is XA enabled while when specifying DataSourceName
property the physical data source it refers to might or might not be XA enabled.
Most Common Mistakes
The following are the two most common mistakes with deployment:
.jca
file (or not creating one at all.) .jca
file to the name of the data source directly. For the latter, there is a level of indirection in that you give the name of the adapter instance (eis/AQ/...
), which itself points to the data source pool (jdbc/...
). It is a common mistake to miss this indirection and give the name jdbc/...
directly in the location attribute.
Additional Adapter Instance Properties
There are additional properties in the AQ Adapter instance beyond xADataSourceName
, dataSourceName
.
For information about the Oracle AQ Adapter instance properties, see Appendix A, "Oracle AQ Adapter Properties."
This section includes the following topics:
The following use cases include a general walkthrough of the Adapter Configuration Wizard, followed by examples of how you can modify the general procedure in different situations. Each example shows relevant parts of the generated WSDL and JCA files.
This section includes the following topics:
In this example, you create an Oracle AQ Adapter service that dequeues messages to the service_in_queue
queue, with a payload that is one field within the service_type
object, and with a user-defined schema.
This section describes the tasks required to configure Oracle AQ Adapter by using the Adapter Configuration Wizard in JDeveloper.
This section includes the following topics:
This example assumes that you are familiar with basic BPEL constructs, such as activities and partner links, and JDeveloper environment for creating and deploying BPEL composite.
You must have access to a database with the SCOTT schema.
To perform this use case, you require the following files from the artifacts.zip
file contained in the adapters-aq-103-adtclobpayload
sample:
artifacts/sql/setup_user.sql
artifacts/sql/create_type_service.sql
artifacts/sql/create_queues.sql
artifacts/sql/dequeue_service.sql
artifacts/sql/enqueue_service.sql
To obtain the adapters-aq-103-adtclobpayload
sample, access the Oracle Sample SOA Code site.
You must create a JDeveloper application to contain the SOA composite. Perform the following steps to create an application, a SOA project:
Figure 7-1 The Create Generic Application Name your application Page
The Create Generic Application Name your project page is displayed, as shown in .
For example, SOAComposite
.
Figure 7-2 The Create Generic Application Name your Generic project Page
The Create Generic Application Configure SOA settings page is displayed, as shown in Figure 7-3.
Figure 7-3 The Create Generic Application Configure SOA settings Page
You have created a new application and an SOA project. This automatically creates an SOA composite.
The Create BPEL Process page is displayed, as shown in Figure 7-4.
CustomerDetails
. You have created the CustomerDetails
BPEL process.
The next step is to define an Oracle AQ Adapter service. Perform the following steps to create an Oracle AQ Adapter service:
The Adapter Configuration Wizard Welcome page is displayed.
The Adapter Configuration Wizard Service Name page is displayed, as shown in Figure 7-5.
Figure 7-5 The Adapter Configuration Wizard Service Name Page
The Adapter Configuration Wizard Service Connection page is displayed, as shown in Figure 7-6.
Figure 7-6 Adapter Configuration Wizard Service Connection Page
The Create Database Connection page is displayed.
Note: You must connect to the database where Oracle Applications is running. |
Enter the following information:
In this example, type DBConnection1.
In this example, type scott
.
This must be a specific database role, such as SYSDBA
, as defined in the database. This field is optional. In this example, leave the Role field blank.
In this example, type tiger
.
Use an IP address or a host name that can be resolved by TCP/IP, for example, myserver
. The default value is localhost
.
1521
. The default is XE
.
A Success message is displayed.
The Connection you created is displayed in the Connection field in the Service Name page.
Notice that the Java Naming and Directory Interface (JNDI) name in the JNDI Name field is populated after you have created the database connection. The JNDI name acts as a placeholder for the connection used when your service is deployed to the BPEL server. Using JNDI as a placeholder enables you to use different databases for development and later production.
The value specified in the JNDI name must exist in the Oracle AQ Adapter weblogic-ra.xml
file to ensure that the adapter runs in managed mode. A default connection instance eis/AQ/aqSample
is shipped and can be used as the default value for this field. To use this connection instance, it would still require that a data source is created with the JNDI name jdbc/aqSample
.
The Adapter Configuration Wizard Adapter Interface page is displayed, as shown in Figure 7-7.
Figure 7-7 The Adapter Configuration Wizard Adapter Interface Page
The Operation page is displayed.
Oracle AQ Adapter supports three operations:
In this example, select Dequeue, as shown in Figure 7-8.
The operation is automatically named after the operation that you selected. However, you can edit the Operation Name field.
Figure 7-8 The Adapter Configuration Wizard Operation Page
Note: When creating an SOA composite that uses Oracle AQ Adapter with ADT data type if the |
The Adapter Configuration Wizard Queue Name page is displayed, as shown in Figure 7-9.
Figure 7-9 The Adapter Configuration Wizard Queue Name Page
The Select Queue dialog is displayed, as shown in Figure 7-10.
Select the required queue, and then click OK.
In this example, select SERVICE_IN_QUEUE. The Queue Name page is displayed again with the Queue Name field populated with SERVICE_IN_QUEUE, as shown in Figure 7-11.
Figure 7-11 The Adapter Configuration Wizard Queue Name Page
The Adapter Configuration Wizard Queue Parameters page is displayed, as shown in Figure 7-12.
Figure 7-12 The Adapter Configuration Wizard Queue Parameters Page
Enter values for the parameters, and then click Next.
Correlation ID: Enter an optional correlation ID from 1 to 30 characters in length. This is used to identify messages that can be retrieved at a later time by a dequeue activity using the same correlation ID.
The value to enter is agreed upon between the enqueuing sender and the dequeuing receiver for asynchronous conversations. The correlation ID maps to an AQ header property. Correlation IDs in the inbound direction enable you to be selective about the message to dequeue. This field is optional. If you do not enter a value, then all the messages in the queue are processed.
If you enter a value for the Correlation ID in the outbound direction, then all outbound messages have the correct ID set to the value entered. You can override this value on a per message basis in the correlation field of the outbound header.
Enter a Boolean expression similar to the WHERE
clause of a SQL
query. This expression can include conditions on message properties, user data properties (object payloads
only), and PL/SQL or SQL functions. If more than one message satisfies the dequeue condition, then the order of dequeuing is indeterminate, and the sort order of the queue is not honored.
This field is displayed for inbound single consumer and multiconsumer queues.
Click Next.
The Adapter Configuration Wizard Object Payload page is displayed, as shown in Figure 7-13.
Figure 7-13 The Adapter Configuration Wizard Object Payload Page
The Select Payload Field dialog is displayed, as shown in Figure 7-14.
Figure 7-14 The Select Payload Field Dialog
In this example, select PAYLOAD (CLOB).
The Object Payload field is displayed with all the payload details filled up, as shown in Figure 7-15.
Figure 7-15 The Adapter Configuration Wizard Object payload Page
The Messages page is displayed.
The Message page has the following options:
The Type Chooser dialog is displayed, as shown in Figure 7-16.
The Messages page reappears, with the Schema Location and Schema Element fields populated, as shown in Figure 7-17.
Figure 7-17 The Adapter Configuration Wizard Messages Page
Click Next.
The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.
You have created an AQ Adapter service with dequeue operation.
The adapter service generates a WSDL and a JCA file to serve as the defined adapter interface.
The following is the WSDL file generated for the dequeue operation:
Note that the element name QueueHeader, formerly required, is no longer required. Set the QueueHeader properties using Normalized properties jca.aq.xxxx
. You can set these properties from the BPEL dialog for the Receive and Invoke activities.
Dequeuing and enqueuing is covered in Section 7.4.2, "Oracle AQ Adapter ADT Queue".
To enqueue or dequeue the entire object as the payload, perform the following:
For a working example of an ADT payload use case, refer to any of the following samples:
adapters-aq-102-adt
adapters-aq-110-supportedadttypes
You can obtain these samples by accessing the Oracle SOA Sample Code site.
Note: If you create an ADT type queue and drop both the queue and the data types created for that queue and redeploy the process, then it throws a SQL exception and you must restart the Database. Instead, drop only the queues and not the data types. |
The walkthrough is an example of dequeuing one field or column within an object payload.
To create an Oracle AQ Adapter that dequeues one field in an object, you must perform the following steps in the Adapter Configuration Wizard Object Payload page:
The Select Payload Field dialog is displayed.
The Adapter Configuration Wizard Object Payload page with Field Name field populated with the field that you selected is displayed, as shown in Figure 7-18.
Figure 7-18 The Adapter Configuration Wizard Object Payload Page
The following segment of the generated JCA file specifies that one field, in this case the field named PAYLOAD
, is dequeued in addition to payload header fields.
For a working example of an ADT CLOB
use case where one field or column within an object payload is dequeued, refer to the following samples:
adapters-aq-103-adtclobpayload
adapters-aq-105-adtclobopaquepayload
You can obtain these samples by accessing the Oracle SOA Sample Code site.
This use case walks you through the procedure for configuring the Enqueue/Dequeue operation type of the Oracle AQ Adapter, which lets the Oracle AQ Adapter put outgoing messages on a queue and expect response messages on a different queue.
This section includes the following topics:
To perform this use case, you must have access to a database with the SCOTT schema. Also, you require the following files from the artifacts.zip
file contained in the adapters-aq-104-requestreply
sample:
create_queues.sql
drop_queues.sql
enqueue.sql
SendReply.sql
setup_user.sql
To obtain the adapters-aq-104-requestreply sample code, access the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. Follow the steps documented in Section 7.4.1.1.2, "Creating an Application and an SOA Project" to create an application, and an SOA project.
Perform the following steps to create an Oracle AQ Adapter service to put outgoing messages on a queue and expect response messages on a queue:
The Adapter Configuration Wizard Welcome page is displayed.
The Adapter Configuration Wizard Service Name page is displayed, as shown in Figure 7-5.
The Adapter Configuration Wizard Service Connection page is displayed.
The Create Database Connection page is displayed.
Note: You must connect to the database where Oracle Applications is running. |
In this example, type scott
.
This must be a specific database role, such as SYSDBA
, as defined in the database. This field is optional. In this example, leave the Role field blank.
In this example, type tiger
.
Use an IP address or a host name that can be resolved by TCP/IP, for example, myserver
. The default value is localhost
.
1521
. The default is XE
.
A Success message is displayed.
The Connection you created is displayed in the Connection field in the Service Connection page.
Also, the JNDI Name field is populated after you created the database connection.
The value specified in the JNDI name must exist in the Oracle AQ Adapter weblogic-ra.xml
file to ensure that the adapter runs in managed mode. A default connection instance eis/AQ/aqSample
is shipped and can be used as the default value for this field. To use this connection instance, it would still require that a data source is created with the JNDI name jdbc/aqSample
.
The Adapter Configuration Wizard Adapter Interface page is displayed.
The Operation page is displayed.
Figure 7-19 The Adapter Configuration Wizard Operation Page
The Adapter Configuration Wizard Queue Name page is displayed, as shown in Figure 7-9.
Figure 7-20 The Adapter Configuration Wizard Queue Name Page
Click Browse to browse for a request queue.
The Select Queue dialog is displayed, as shown in Figure 7-21.
Select the required queue, and then click OK.
In this example, select CORRELATION_REQUEST. The Queue Name page is displayed with the Queue Name field populated with CORRELATION_REQUEST, as shown in Figure 7-22.
The Queue Name page is displayed, as shown in Figure 7-22.
Figure 7-22 The Adapter Configuration Wizard Queue Name Page
The Adapter Configuration Wizard Queue Parameters page is displayed, as shown in Figure 7-23.
Figure 7-23 The Adapter Configuration Wizard Queue Parameters Page
The Adapter Configuration Wizard Object Payload page is displayed, as shown in Figure 7-24.
Figure 7-24 The Adapter Configuration Wizard Object Payload Page
The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.
You have created an AQ Adapter service for synchronous enqueue/dequeue operations.
You must assemble or wire the BPEL process and the Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 7-25.
Figure 7-25 The JDeveloper - Composite.xml
Add Invoke Activity
Figure 7-26 The Partner Link Chooser Dialog
Figure 7-28 The JDeveloper - BPELProcess1.bpel Page
Add an Assign Activity
Figure 7-29 The Create Copy Operation Dialog
Figure 7-30 The Create Copy Operation Dialog
Figure 7-31 The JDeveloper - BPELProcess1.bpel
Add a Receive Activity
Figure 7-32 The JDeveloper - BPELProcess1.bpel
You must deploy the application profile for the SOA project and the application you created in the preceding steps.
The following are the steps to deploy the application profile by using JDeveloper:
You can monitor the deployed composite by using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed is displayed in the Application Navigator. The following WSDL file is generated for the Enqueue/Dequeue operation:
The element name QueueHeader is no longer required. As Aman mentioned earlier, the QueueHeader properties are now set using Normalized properties jca.aq.xxxx. You can set these properties from the BPEL dialog for the Receive and Invoke activities.
The following JCA file is generated for the Enqueue/Dequeue operation:
Perform the following steps to set up an adapter that dequeues messages with a certain correlation ID only.
The adapter dequeues messages enqueued with that same correlation ID only.
For a working example of this use case where an Oracle AQ Adapter dequeues messages enqueued with that same correlation ID, refer to the following samples:
adapters-aq-106-messagerejection
adapters-aq-109-nativecorrelation
adapters-aq-112-prioritymessageselector
adapters-aq-113-payloadbasedmessageselector
You can obtain these samples by accessing the Oracle SOA Sample Code site.
Multisubscriber queues are accessible by multiple users, and sometimes, those users are concerned only with certain types of messages within the queue. For example, you may have a multiuser queue for loan applications where loans below $100,000 can be approved by regular loan-approval staff, whereas loans over $100,000 must be approved by a supervisor. In this case, the BPEL process can use one adapter to enqueue loan applications for big loans for supervisors, and another adapter to enqueue loan applications for smaller loans for regular staff in the same multisubscriber queue.
Specify an adapter that enqueues to a multisubscriber queue, and include queue parameters in the Recipients field.
In Step 15, specify Bob in the Recipients field.
The following code is from a JCA file generated by defining an Oracle AQ Adapter that enqueues with a recipient list of Bob
:
When dequeuing from a multisubscriber queue, the Queue Parameters window is displayed.
The Consumer field is where you specify the consumer name, or the name of the queue subscriber. This must match the Recipient entry on the enqueue process for the message to be dequeued. When subscribing to a multiconsumer queue, this field is required.
The following code is from a JCA file generated by defining an Oracle AQ Adapter with a consumer name:
For a working example of this use case which demonstrates enqueuing and dequeuing from multisubscriber queues, refer to the following samples:
adapters-aq-114-multiconsumeroutbound
You can obtain these samples by accessing the Oracle SOA Sample Code site.
In this sample, the business process receives a message from the AQ Adapter, copies the payload to an outbound message, and invokes the AQ Adapter with the outbound message.The queues involved are ADT queues. In this scenario, where the user has chosen to use whole ADT as the payload, the AQ Adapter Wizard has generated the schema in SCOTT_CUSTOMER_TYPE.xsd
, according to the queue structure. During run time, an XML file that matches the schema is created by the adapter for each message.
This section includes the following topics:
You must have access to a database with the SCOTT schema.
To perform this use case, you require the following SQL files from the artifacts.zip
file contained in the adapters-aq-102-adt
sample. These files are located in the artifacts/sql
subdirectory of the artifacts.zip
fle. Execute the SQL files in the order shown below:
setup_user.sql
create_type_customer.sql
create_queues.sql
enqueue_customer.sql
dequeue_customer.sql
To obtain the adapters-aq-102-adt sample code, access the Oracle SOA Sample Code site
You must create an JDeveloper application to contain the SOA composite. Use the following steps to create an application and an SOA project:
The Create Generic Application Name your application page is displayed.
ADT
in the Application Name field, and click Next. The Create Generic Application Name your project page is displayed.
ADT
in the Project Name field. The Create Generic Application Configure SOA settings page is displayed.
You have created a new application and an SOA project.
The Create Mediator page is displayed, as shown in Figure 7-33.
Mediator1
. You have created a mediator component.
The following are the steps to create an inbound Oracle AQ Adapter service:
The Adapter Configuration Wizard is displayed.
The Service Name page is displayed.
dequeue
. The Service Connection page is displayed. A database connection is required to configure an Oracle AQ Adapter. You can either create a new connection or select an existing database connection.
The Create Database Connection page is displayed.
The Service Connection page is displayed, providing a summary of the database connection.
The Adapter Interface page is displayed.
The Operation page is displayed.
The Queue Name page is displayed.
The Select Queue dialog is displayed.
Figure 7-34 shows the Select Queue dialog.
Figure 7-34 Selecting a Queue for the Inbound Operation
The Queue Name dialog with all the fields populated is displayed, as shown in Figure 7-35.
The Queue Parameters page is displayed.
The Object Payload page is displayed.
In this example, select Whole Object CUSTOMER_TYPE.
The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.
You have defined an inbound Oracle AQ Adapter
The following are the steps to create an outbound Oracle AQ Adapter service:
The Adapter Configuration Wizard is displayed.
The Service Name page is displayed.
enqueue
and click Next. The Service Connection page is displayed.
The Adapter Interface page is displayed.
The Operation page is displayed.
The Queue Name page is displayed.
The Select Queue dialog is displayed.
Figure 7-36 Selecting a Queue for the Outbound Operation
The Queue Name page with all the fields populated is displayed, as shown in Figure 7-37.
The Queue Parameters page is displayed.
The Object Payload page is displayed.
The Finish screen is displayed. This page shows the path and name of the adapter file that the wizard creates.
You have defined an outbound Oracle AQ Adapter.
You must assemble or wire the three components that you have created: Inbound adapter service, Mediator component, and Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper composite.xml is displayed, as shown in Figure 7-38.
The following are the steps to configure the routing service:
The Mediator1.mplan window is displayed.
The Request Transformation Map dialog is displayed, as shown in Figure 7-39.
Figure 7-39 The Request Transformation Map Dialog
The Transformation window is displayed, as shown in Figure 7-40.
The Auto Map Preferences dialog is displayed, as shown in Figure 7-41.
Figure 7-41 The Auto Map Preferences Dialog
The middle pane of the application window appears as shown in Figure 7-42.
Figure 7-42 The Application Window After Setting the Map Preferences
http://
servername
:
portnumber
/console
. The Home page of the Oracle WebLogic Server Administration Console is displayed, as shown in Figure 7-43.
Figure 7-43 Oracle WebLogic Server Administration Console Home Page
The Summary of JDBC Data Sources page is displayed, as shown Figure 7-44.
Figure 7-44 The Summary of JDBC Data Sources Page
Figure 7-45 The Create a New JDBC Data Source Page
Figure 7-46 The Create a New JDBC Data Source Transaction Options Page
Figure 7-47 The Create a New JDBC Data Source Connection Properties Page
Figure 7-48 The Create a New JDBC Data Source Test Database Connection Page
Figure 7-49 The Create a New JDBC Data Source Select Targets Page
The Summary of JDBC Data Sources page is displayed, as shown in Figure 7-50. This page summarizes the JDBC data source objects that have been created in this domain. The data source that you created appears in this list.
Figure 7-50 The Summary of JDBC Data Sources Page
You must deploy the application profile for the SOA project and the application you created in the preceding steps.
The following are the steps to deploy the application profile by using JDeveloper:
You can monitor the deployed composite by using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed is displayed in the Application Navigator. This use case demonstrates how to use Oracle AQ Adapter to dequeue from and enqueue to an AQ RAW queue.
This section includes the following topics:
You must have access to a database with the SCOTT
schema.
To perform this use case, you require the following SQL files from the artifacts.zip
file contained in the adapters-aq-101-raw
sample. These files are located in the artifacts/sql
subdirectory of the artifacts.zip
fle. Execute the SQL files in the order shown below:
setup_user.sql
create_queues.sql
enqueue_raw.sql
dequeue_raw.sql
artifacts/schemas/emp.xsd
To obtain the artifacts.zip
contained in the adapters-aq-101-raw
sample code, access the Oracle SOA Sample Code site.
To obtain the adapters-aq-101-raw
sample code, access the Oracle SOA Sample Code site.
You must create an JDeveloper application to contain the SOA composite. To create an application and an SOA project, perform the following steps:
The Create Generic Application Name your Application page is displayed.
Rawqueue
in the Application Name field. The Create Generic Application Name your project page is displayed.
Raw
. The Create Generic Application Configure SOA settings page is displayed.
You have created a new application and an SOA project. This automatically creates an SOA composite.
The Create BPEL Process page is displayed.
BPELRawqueue
. The Rawqueue
application and the Raw
project appear in the design area.
emp.xsd
file to the XSD
folder in your project (see Section 7.4.3.1, "Prerequisites" for the location of this file). Perform the following steps to create an inbound Oracle AQ Adapter service that dequeues the message to a queue:
The Adapter Configuration Wizard is displayed.
The Service Name page is displayed.
Raw-Dequeuer
, and then click Next. The Service Connection page is displayed.
The Adapter Interface page is displayed.
The Operation page is displayed.
The Queue Name page is displayed.
Figure 7-51 The Adapter Configuration Wizard Operation Page
Figure 7-52 The Adapter Configuration Wizard Queue Name Page
The Queue Parameters page is displayed.
The Messages page is displayed.
The Type Chooser dialog is displayed.
The emp.xsd
schema file is displayed in the URL field in the Message dialog, as shown in Figure 7-54.
Figure 7-54 The Adapter Configuration Wizard Messages Page
composite.xml
page is displayed, as shown in Figure 7-55. Figure 7-55 The JDeveloper Window Composite.xml Page
Perform the following steps to create an adapter service that enqueues the request messages and dequeue the corresponding response messages (report) from a queue:
The Adapter Configuration Wizard Welcome page is displayed.
Raw-Enqueuer
in the Service Name field, and click OK. The Service Connection page is displayed.
The Operation page is displayed.
The Queue Name page is displayed.
Figure 7-56 The Adapter Configuration Wizard Queue Name Page
The Queue Parameters page is displayed.
The Messages page is displayed.
The Type Chooser dialog is displayed.
The emp.xsd schema file is displayed in the URL field in the Message dialog, as shown in Figure 7-54.
The Finish page is displayed.
You have configured the Oracle AQ Adapter service, and the composite.xml page is displayed, as shown in Figure 7-57.
Figure 7-57 The JDeveloper Window Composite.xml Page
You must assemble or wire the three components that you have created: Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:
Similarly, drag the small triangle in the BPEL process in the Components area to the drop zone in OutboundService in the External References.
The JDeveloper composite.xml
file is displayed, as shown in Figure 7-58.
Figure 7-58 The JDeveloper- Composite.xml
The BPELRawqueue.bpel page is displayed.
The JDeveloper BPELRawqueue.bpel
page is displayed, as shown in Figure 7-59.
The Receive dialog is displayed.
The Partner Link Chooser dialog is displayed.
The Receive dialog is displayed with the Partner Link field populated with the value Raw-Dequeuer.
The Create Variable dialog is displayed.
The Invoke dialog is displayed.
The Partner Link Chooser dialog is displayed.
The Invoke dialog is displayed with the Partner Link field populated with the value Raw-Enqueuer.
The Invoke dialog is displayed, as shown in Figure 7-61.
The Assign dialog is displayed.
The Create Copy Operation dialog is displayed.
Figure 7-62 The Create Copy Operation Dialog
The JDeveloper BPELRawqueue.bpel
page is displayed, as shown in Figure 7-63.
http://
servername
:
portnumber
/console
. The Summary of JDBC Data Sources page is displayed.
The Summary of JDBC Data Sources page is displayed. This page summarizes the JDBC data source objects that have been created in this domain. The Data Source that you created is displayed in this list.
You must deploy the application profile for the SOA project and the application you created in the preceding steps.
The following are the steps to deploy the application profile using JDeveloper:
You can monitor the deployed composite by using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed is displayed in the Application Navigator.
This is the instance that triggered when you enqueued a message.
The Flow Trace page is displayed.
The Audit page is displayed.
This chapter describes how to use the Oracle JCA Adapter for JMS (Oracle JMS Adapter), which enables an Oracle BPEL process or an Oracle Mediator component to interact with Java Messaging Service.
This chapter includes the following topics:
The JMS architecture uses one client interface to many messaging servers. The JMS model has two messaging domains, point-to-point and publish-subscribe. In the point-to-point domain, messages are exchanged through a queue and each message is delivered to only one receiver. In the publish-subscribe model, messages are sent to a topic and can be read by many subscribed clients.
You can obtain JMS adapter sample files by accessing the Oracle SOA Sample Code site.
This section includes the following topics:
The JCA Binding Component is used for the bidirectional integration of the JCA 1.5 resource adapters with BPEL Process Manager. The JCA Binding Component is based on standards and employs the Web service Invocation Framework (WSIF) technology for exposing the underlying JCA interactions as Web services.
For information on Oracle JMS Adapter architecture, adapter integration with Oracle BPEL Process Manager (Oracle BPEL PM), and adapter deployments, see Chapter 3, "Adapter Integration with Oracle Application Server Components."
Mediator supports Oracle JCA Adapters and enables you to define inbound and outbound adapter services for each. An inbound adapter service receives data from an external messaging system and transforms it into an XML message. An outbound adapter service sends data to a target application by transforming an XML message into the native format of the given adapter.
In the case of Oracle JMS Adapter service, by using Mediator, you can send or receive messages from a JMS queue or topic.
Oracle BPEL PM pre-dates Mediator, and most of this guide and the samples implicitly assume use with Oracle BPEL PM. However, the adapters work equally well with either Oracle BPEL PM or Mediator. For any mention of Oracle BPEL PM in this chapter, you may substitute Mediator, instead.
The Oracle JMS Adapter includes the following features:
Works with any JMS provider. It has been certified against AQ JMS (JMS providers OJMS 8.1.7, 9.0.1.4, and 9.2), TIBCO JMS, IBM Websphere MQSeries (IBM MQSeries JMS 6.0), Weblogic JMS, Apache, and Active MQ.
Supports these data types only for this release. The Adapter Configuration Wizard provides the Native Format Builder wizard for consuming native data payloads at run time. The Native Format Builder wizard creates XSD definitions for the underlying native data.
The Oracle JMS Adapter supports the jca.message.encoding
property for inbound and outbound payloads. If the jca.message.encoding
property is used along with the adapter.jms.encoding
property and the nxsd:encoding
attribute, then the jca.message.encoding
property takes precedence over the adapter.jms.encoding
property, and the nxsd:encoding
attribute is given the last preference. The nxsd:encoding
value can be UTF, which-8 is typically recommended for interoperability and Unicode support. However, you can specify any legal encoding supported by the Java run-time environment. For a complete listing of supported encodings, visit http://www.oracle.com/technetwork/java/index.html
. You can specify the encoding in the (N)XSD associated with the adapter proxy meta data. For example, you can specify the following attribute, nxsd:encoding="iso-8859-1
The jca.message.encoding
property is supported as an endpoint yu76y76 defined in composite.xml
You can define this property using the Properties tab of the Adapter Configuration Wizard or by editing the composite.xml
file. The jca.message.encoding
property can be passed as a normalized message property for both inbound and outbound interactions.
The following code snippet is an example of setting values in the composite.xml file for message encoding for an inbound service:
The following code snippet is an example of setting values in the composite.xml file for message encoding for an outbound reference:
Supports the JMS message selector for performing filtering while subscribing to JMS topics and queues. This parameter is based on the SQL 92 language for filtering messages based on fields present in the JMS header and properties section.
The Oracle JMS Adapter can process and generate document objects that are compliant with DOM2 specification.
Header manipulation and propagation is a key business integration messaging requirement. Oracle BPEL PM, Mediator, Oracle JCA, and Oracle B2B rely extensively on header support to solve customers' integration needs. For example, a user can preserve a file name from the source directory to the target directory by propagating it through message headers. Another example: the outbound Oracle JMS Adapter facilitates asynchronous request/response by propagating the correlationId
and the JMSReplyTo
address as JMS headers. In Oracle BPEL PM and Mediator, users can access, manipulate, and set headers with varying degrees of UI support.
For more information, see Section 2.14, "Correlation Support Within Adapters".
Propagating Headers in a Normalized Message:
Normalized Message is simplified to have only two parts, properties and payload.Typically, properties are name-value pairs of scalar types. To fit the existing complex headers into properties, they are flattened into scalar types.
Manipulating Headers in Design-Time:
The user experience while manipulating headers in design time is simplified, because the complex properties are predetermined. In Mediator or Oracle BPEL designer, you can manipulate the headers with some reserved key words. For example, in Mediator designer, you can access an inbound Oracle File Adapter, fileName
header by using the following expression:
However, this method does not address the properties that are dynamically generated based on your input. For example, in the Oracle AQ Adapter Wizard, you are allowed to propagate some of the fields from an AQ object as headers. Based on this user choice, the header definitions are generated. These definitions are not predetermined and hence cannot be accounted for in the list of predetermined property definitions. The user cannot design header manipulation of the dynamic properties before they are defined. To address this limitation, you must generate all the necessary services (composite entry points) and references. This restriction applies only to those services that are expected to generate dynamic properties. Once dynamic properties are generated, they must be captured in some given location for each composite. Only then can the user manipulate the dynamic properties in the Oracle Mediator or Oracle BPEL designer.
Note: When you use the Oracle JMS Adapter to connect to an AQ-JMS provider, and if the database that hosts the AQ destination is 10.1.0.4, then the adapter retry mechanism on the outbound direction fails to reconnect to the database server if the database server goes down. This is because of a client JDBC issue with |
DUPS_OK_ACKNOWLEDGE
, for consumers that are not concerned about duplicate messages AUTO_ACKNOWLEDGE
, in which the session automatically acknowledges the receipt of a message CLIENT_ACKNOWLEDGE
, in which the client acknowledges the message by calling the message's acknowledge method The Oracle JMS Adapter is message size aware. The Oracle JMS Adapter calculates the message size and reports the size back to the JCA Binding Component. The API, related to size, exposed by the JCA Binding Component can be used for reporting purposes.
A MapMessage
is used to send a set of name-value pairs where names are strings and values are Java primitive types. The entries can be accessed sequentially or randomly by name. The order of the entries is undefined. It inherits from a message and adds a map message body.
Oracle JMS adapter provides support for processing MapMessage
. It now supports one new ActivationSpec and InteractionSpec property each namely JmsMapMessageConsumeActivationSpec
and JmsMapMessageProduceInteractionSpec
.
The PayloadEntry
property specifies that the MapMessage
entry is used as the payload. Users have the option to send payload as an attachment if the AttachmentList
property is defined.
All other MapMessage
entries are converted to adapter properties identified by jca.jms.Map.xxxx
, where xxxx
is name of the MapMessage
entry.
If both PayloadEntry
and AttachmentList
properties are not defined, then the entire MapMessage
is converted to XML and the XML file is transferred as the payload.
The Oracle JMS Adapter supports securing of the Enterprise Information System (EIS) credentials such as the user name and password, whenever it establishes an outbound connection with EIS. You can secure the user name and password for Oracle JMS Adapter by using Oracle WebLogic Server container-managed sign-on.
For more information about support for securing of the Enterprise Information System (EIS) credentials, see Section 4.2.22, "Securing Enterprise Information System Credentials."
Supports Streaming Large Payload
Oracle JMS Adapter provides support to stream payload. When you enable this feature, the payload is streamed to a database instead of getting manipulated in the SOA run time as in a memory DOM. This feature can be used while handling large payloads. To enable support to stream payload, ensure that you select the Enable Streaming check box while defining the consume operation parameters on the Consume Operation Parameters page in Oracle JDeveloper (JDeveloper). When the Enable Streaming check box is selected, a corresponding Boolean property EnableStreaming
is appended to the ActivationSpec
properties defined in the respective .jca
file, as shown in the following example. If the EnableStreaming
property does not exist, then the default value of false is assumed.
A transaction enables an application to coordinate a group of messages for production and consumption, treating messages sent or received as a single unit. When an application commits a transaction, all messages it received within the transaction are removed by the JMS provider. The messages it sent within the transaction are delivered as one unit to all JMS consumers. If the application rolls back the transaction, then the messages it received within the transaction are returned to the messaging system and the messages it sent are discarded. The Oracle JMS Adapter supports JMS transactions. A JMS-transacted session supports transactions that are located within the session. A JMS-transacted session's transaction does not have any effects outside of the session.
For information about error handling, refer to Section 2.21, "Error Handling."
The Oracle JMS Adapter supports an activation endpoint property, "adapter.jms.receive.threads"
. Setting this property in composite.xml is a preferred way to spawn multiple poller threads for the inbound message flow between the adapter and the Enterprise Information System (EIS). This helps improve performance because multiple poller threads dequeue messages in a round robin fashion; this assists in Distributed scenarios as well.
The Oracle JMS Adapter supports performance tuning.
For more information, see "Oracle SOA JMS Adapter Tuning" in the Oracle Fusion Middleware Performance and Tuning Guide.
Note: Oracle JMS Adapter cannot be used programmatically inside an EJB or JMS client. |
Messaging is any mechanism that enables communication between programs. Messages are structured data that one application sends to another. Message-oriented middleware (MOM) is an infrastructure that supports scalable enterprise messaging. MOM ensures fast, and reliable asynchronous communication, guaranteed message delivery, receipt notification, and transaction control. JMS is a Java interface developed by Sun Microsystems for producing, sending, and receiving messages of an enterprise messaging system. JMS is an API that JMS vendors implement. Oracle provides two implementations of JMS, WLS JMS and Oracle JMS based on Oracle advanced queues. A JMS producer creates JMS messages and a JMS consumer consumes JMS messages.
JMS supports two messaging paradigms, point-to-point (queues) and publish/subscribe (topics).
This section includes the following topics:
In point-to-point messaging, the messages are stored in a queue until they are consumed. One or more producers write to the queue and one or more consumers extract messages from the queue. The JMS consumer sends an acknowledgment after consumption of a message; this results in purging of the message from the queue.
In publish/subscribe messaging, producers publish messages to a topic, and the consumer subscribes to a particular topic. Many publishers can publish to the same topic, and many consumers can subscribe to the same topic. All messages published to the topic by the producers are received by all consumers subscribed to the topic. By default, subscribers receive messages only when the subscribers are active. However, JMS API supports durable subscriptions that ensure that consumers receive messages that were published even when the subscribers are not up and running. The durable subscription involves registering the consumer with a unique ID for retrieving messages that were sent when the consumer was inactive. These messages are persisted by the JMS provider and are either sent to the consumer when it becomes active again or purged from storage if the message expires. The JMS producer can be set either to persistent or nonpersistent mode. The messages are not persisted in the latter case and can be used only for nondurable subscriptions.
For scenarios that requires you to work with durable subscriptions on Oracle WebLogic Server, a connector factory with ClientID
property defined is required, as shown in the following example:
When defining multiple durable subscriber it would entail you to define multiple connector factory each with a unique ClientID
property specified. You must take care to not use the same connector factory for any other adapter interaction (such as outbound interaction if it is used for processing inbound messages) because Oracle WebLogic Server allows a clientid
to be bound only once. For a scenario in which a connector factory with ClientId
defined is used on the inbound to process incoming messages a different connector factory should be used for the outbound adapter interactions.
Note: You must manually remove durable subscribers that are not used by the BPEL partner link. Oracle JMS Adapter does not automatically remove these durable subscriptions. |
The JMS API supports both synchronous and asynchronous communication for message consumption. In the synchronous case, the consumer explicitly calls the receive()
method on the topic or queue. In the asynchronous case, the JMS client registers a message listener for the topic or queue and the message is delivered by calling the listener's onMessage()
method.
The destination property contains the addressing information for a JMS queue or topic.Connections represent a physical connection to the JMS provider. The connection factory is used to create JMS connections. A session is used to create a destination, JMS producer, and JMS consumer objects for a queue or topic.
The JMS message has a mandatory standard header element, an optional properties element, and an optional standard payload element. The payload can be a text message, byte message, map message, stream message, or object message. The properties element is JMS provider-specific and varies from one JMS provider to another.
For information about the Oracle JMS Adapter header properties, see Appendix A, "Oracle JMS Adapter Properties."
This section includes the following topics:
The following use case demonstrates the procedure for configuring Oracle JMS Adapter and examines the resulting WSDL files and associated weblogic-ra.xml
files.
This section includes the following topics:
You must first create an JDeveloper application to contain the SOA composite. Use the following steps to create a new application and a SOA project:
The Create Generic Application - Name your Application page is displayed, as shown in Figure 8-1.
AQQueue2Queue
. Figure 8-1 The Create Generic Application - Name your application Page
The Name your project dialog is displayed, as shown in Figure 8-2.
AQQueue2Queue
. Figure 8-2 The Create Generic Application - Name your Generic project Page
The Create Generic Application - Configure SOA settings page is displayed, as shown in Figure 8-3.
Figure 8-3 The Create Generic Application - Configure SOA Settings Page
You have created a new application, and an SOA project. This automatically creates an SOA composite.
The Create BPEL Process page is displayed, as shown in Figure 8-4.
You have created a BPEL process.
The following are the steps to configure an Oracle JMS Adapter by using the Adapter Configuration Wizard:
The Adapter Configuration Wizard is displayed.
The Adapter Configuration Wizard - Service Name page is displayed, as shown in Figure 8-5.
The Adapter Configuration Wizard - JMS Provider page is displayed, as shown in Figure 8-6.
Figure 8-6 The Adapter Configuration Wizard - JMS Provider Page
The Adapter Configuration Wizard - Service Connection page is displayed.
Perform the steps mentioned in Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters" to create an application server connection.
Figure 8-7 The Adapter Configuration Wizard - Adapter Interface Page
The Adapter Configuration Wizard- Operation page is displayed.
The operation name is filled in automatically, as shown in Figure 8-8.
Figure 8-8 The Adapter Configuration Wizard - Operation Page
The Consume Message option enables the adapter to consume (receive) inbound messages from a JMS destination.
The Adapter Configuration Wizard - Consume Operation Parameters page is displayed, as shown in Figure 8-9.
Figure 8-9 The Adapter Configuration Wizard - Consume Operation Parameters Page
This is the JNDI name of the JMS queue or topic from which to receive the message. This is not an editable field. You must click Browse to browse for the queue or topic. The queue or topic to be chosen is based on the type of JMS provider you are using.
For more information, see the following sections:
The supported values are TextMessage
, BytesMessage
, MapMessage
. The StreamMessage
message type is not supported in this release.
This field is optional. If you are setting up a durable subscriber, then the durable subscriber ID is required. Generally, a subscriber loses messages if the subscriber becomes disconnected, but a durable subscriber downloads stored messages when it reconnects.
Note: When the JMS provider is Oracle Weblogic JMS or Oracle Advanced queueing messaging service, then the Durable Subscriber option appears only when a topic is selected. However, the Durable Subscriber option always appears when the JMS provider is a third party. |
This field is also optional. It filters messages based on header and property information. The message selector rule is a Boolean expression. If the expression is true
, then the message is consumed. If the expression is false
, then the message is rejected.
For example, you can enter logic, such as:
This field is always set to False
by default.
The value specified in the JNDI name should exist in the Oracle JMS Adapter weblogic-ra.xml file to ensure that the adapter runs in managed mode.
Note: This example shows a consume message operation. For a produce message operation, this page is different. See Section 8.4.1.5, "Produce Message Procedure" to see how this part of the procedure differs. |
After you enter the appropriate parameters, click Next.
You can perform one of the following:
The following steps demonstrate the last option: browsing for the schema file URL.
Figure 8-10 The Adapter Configuration Wizard - Messages Page
The Type Chooser dialog is displayed, with the Type Explorer navigation tree, as shown in Figure 8-11.
Figure 8-11 Selecting a Schema from the Type Chooser Dialog
The Messages page is displayed again, this time with the Schema File URL field and the Schema Element field filled up, as shown in Figure 8-12.
The Finish page is displayed. This box shows the path and name of the adapter file that the wizard creates.
The composite.xml page is displayed.
The following composite file is generated by the Adapter Configuration Wizard:
The following code segment defines the name of the adapter and the locations of various necessary schemas and other definition files.
This code segment imports the necessary namespace.
This code segment defines the message type, name, and the port type for the partner link.
The weblogic-ra.xml
file defines the endpoints for the JMS connection factories. The connection factories include configuration properties for each endpoint. Endpoints are added to accommodate different types of connections, as demonstrated in the following sections. The following example is from the generic weblogic-ra.xml
file:
You can also create a new connection by using the Oracle WebLogic Server Administration Console. The following are the steps for creating a new connection by using the Oracle WebLogic Server Administration Console:
http://
servername
:
portnumber
/console
. The Home page of the Oracle WebLogic Server Administration Console is displayed.
The Oracle WebLogic Server Administration Console - Summary of Deployments page is displayed.
Under Deployments, click any JMS adapter that you have deployed. For example, click JmsAdapter.
The Oracle WebLogic Server Administration Console - Settings for JmsAdapter page is displayed.
The Outbound Connection Pool Configuration Table is displayed.
The Create a New Outbound Connection page is displayed.
eis/wls/Queue
. You can specify any name for the JNDI field. However, you must ensure that you use the same JNDI name while defining the consume or produce operation parameters in JDeveloper.
The Save Deployment Plan Assistant page is displayed.
The configuration changes that you made must be stored in a new deployment plan.
You have created a new connection. After you have done this, you must verify whether the properties you have created are correct.
The connection that you created is listed in this page. Verify whether this value is correct. For example, if you are connecting to a third-party JMS server, then ensure that the Connection Factory Location field has the correct value applicable for a third-party JMS server.
Note: In this example, you created a new connection for Oracle JMS Adapter by using the Oracle WebLogic Server Administration Console. To create connection for other adapters, you must follow the same steps. However, ensure that you select the appropriate adapter for which you want to create a connection in Step 4. |
You can specify that the adapter uses a third-party JMS Provider for non-Web Logic Server JMS and non-AQJMS connection instances, by supplying a value to the FactoryProperties parameter in the weblogic-ra.xml file. Specifically, you can provide the ThirdPartyJMSProvider
value to the FactoryProperties parameter. This property is required only when you deploy an adapter to the WebLogic Server.
When this value is set to true, the JMS Adapter does not use DestinationAvailabilityListener
for creating consumers for processing of JMS messages. The default is false. You must ensure you employ code similar to the following snippet:
Note: All pre-populated connection instances on a WebLogic Server reflect the change and consequently, no further tuning is required for those instances. Only when a new non WLS JMS or AQJMS provider access is required do you must add new connection instance and therefore the ThirdPartyJMSProvider property. |
A produce message operation has certain differences in the definition procedure, particularly in Step 13 of Section 8.4.1.2, "Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter." Instead of specifying consume operation parameters, you specify the following produce operation parameters. This enables the adapter to produce (send) outbound messages for a JMS destination. The Produce Operation Parameters page is shown in Figure 8-13.
The JNDI name of the JMS queue or topic to which the message must be delivered. The name to enter is based on the type of JMS provider you use.
For more information about destination name, see the following:
The supported values are TextMessage
, BytesMessage
, and MapMessage
. StreamMessage
is not supported in this release.
The values are Persistent
or Nonpersistent
. A persistent delivery mode specifies a persistent JMS publisher; that is, a publisher that stores messages for later use by a durable subscriber. A durable subscriber is a consume message with a durable subscriber ID in the corresponding field in Step 15 of Section 8.4.1.2, "Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter." A nondurable subscriber loses any messages that are produced when the adapter is not active. A durable subscriber downloads messages that have been stored in the persistent publisher, and therefore does not have to remain active at all time to receive all the messages.
Select a priority value, with 9
representing the highest priority and 0
representing the lowest priority. The default is 4
.
The amount of time before the message expires and is no longer available to be consumed.
Enables a message producer or group of message producers acting as one, to group messages into a single unit that is processed sequentially in the order the messages were created. The message processing of a single message is complete when a message is acknowldged, committed, recovered, or rolled back. Until message processing for a message is complete, the remaining unprocessed messages for that Unit of Order are blocked. This unit of order property enables you to set the unit-of-order value for the MessageProducer when producing a message.
Figure 8-13 Produce Operation Parameters Page
This section describes how to configure Oracle JMS Adapter with Tibco JMS for direct connection and nondirect connection.
Perform the following steps:
<SOAInstall_DIR>/user_projects/domains/<DOMAIN_NAME>/lib
folder: /<YOUR-TIBCO-INSTALL-LOCATION>/clients/java/tibjms.jar
weblogic-ra.xml
file in AS11gR1SOA/soa/connectors/JmsAdapter.rar
, as shown in the following example: Note that the default <USERNAME> and <PASSWORD> are admin
and password
, respectively.
Alternatively, to configure a new connection factory by using the Oracle WebLogic Server Administration Console, use the steps mentioned in Section 2.18, "Adding an Adapter Connection Factory."
Perform the following steps:
<SOAInstall_DIR>/user_projects/domains/<DOMAIN_NAME>/lib
folder: weblogic-ra.xml
file in AS11gR1SOA/soa/connectors/JmsAdapter.rar
, as shown in the following example: Note that the default <USERNAME> and <PASSWORD> are admin
and password
, respectively.
Alternatively, to configure a new connection factory by using the Oracle WebLogic Server Administration Console, use the steps mentioned in Section 2.18, "Adding an Adapter Connection Factory."
This section describes how to configure Oracle JMS Adapter with IBM WebSphere MQ JMS for non-XA and XA data sources.
Perform the following steps:
<SOAInstall_DIR>/user_projects/domains/<DOMAIN_NAME>/lib
folder: /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mq.jar
/<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mqjms.jar
/<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/dhbcore.jar
weblogic-ra.xml
file in AS11gR1SOA/soa/connectors/JmsAdapter.rar
, as shown in the following example: Note that the default <USERNAME> and <PASSWORD> are MUSR_MQADMIN
and password
, respectively.
Alternatively, to configure a new connection factory by using the Oracle WebLogic Server Administration Console, use the steps mentioned in Section 2.18, "Adding an Adapter Connection Factory."
Perform the following steps:
the <SOAInstall_DIR>/user_projects/domains/<DOMAIN_NAME>/lib
folder: /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mq.jar
/<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mqjms.jar
/<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/dhbcore.jar
com.ibm.mqetclient.jar
This is an IBM-extended transactional client, which is an optional component that requires separate licensing.
weblogic-ra.xml
file in AS11gR1SOA/soa/connectors/JmsAdapter.rar
, as shown in the following example: Note that the default <USERNAME> and <PASSWORD> are MUSR_MQADMIN
and password
, respectively.
Alternatively, to configure a new connection factory by using the Oracle WebLogic Server Administration Console, use the steps mentioned in Section 2.18, "Adding an Adapter Connection Factory."
This WLS JMS text message use case for Oracle BPEL PM demonstrates how the Oracle JMS Adapter dequeues from and enqueues to the WLS JMS Queue.
In the case of a WLS JMS text message scenario for a Mediator business process, you need the following files from the artifacts.zip
file contained in the adapters-jms-101-wlsjms-textmessageusingqueues
sample:
artifacts/schemas/expense.xsd
You can obtain the adapters-jms-101-wlsjms-textmessageusingqueues
sample by accessing the Oracle SOA Sample Code site.
This section includes the following topics:
You must perform the following prerequisite for the WLS JMS text message use case for Oracle BPEL PM:
Perform the following steps to create queues required for this use case:
http://
servername
:portnumber
/console
The Home page of the Oracle WebLogic Server Administration Console is displayed, as shown in Figure 8-14.
Figure 8-14 The Oracle WebLogic Server Administration Console Home Page
The Oracle WebLogic Server Administration Console - JMS Modules page is displayed.
The Oracle WebLogic Server Administration Console - Settings for SOAJMSModule page is displayed.
The Oracle WebLogic Server Administration Console - Create a New JMS System Module Resource page is displayed.
You have created the queue, ReceiveQueue
.
SendQueue
. Create the Q2Qorders.xsd file by using the following code:
You must establish connectivity between the design-time environment and the server you want to deploy to. Perform the steps mentioned in Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters" to create an application server connection.
You must create an JDeveloper application to contain the SOA composite. Use the following steps to create an application and an SOA project:
queue2queue
. The Name your project page is displayed.
queue2queue
. You have created a new application, and an SOA project.
The Create BPEL Process page is displayed.
queue2queue
. You have created a BPEL process.
The queue2queue
application, queue2queue
project, and the SOA composite appear in the design area.
Q2Qorders.xsd
file to the XSD folder in your project. Perform the following steps to create an adapter service that dequeues the message to a queue:
The Adapter Configuration Wizard Welcome page is displayed.
The Service Name page is displayed.
Inbound
in the Service Name field, and click OK. The JMS Provider page is displayed.
Figure 8-15 The Adapter Configuration Wizard JMS Provider Page
Figure 8-16 The Adapter Configuration Wizard Service Connection Page
The Consume Operation Parameters page is displayed.
Figure 8-17 The Adapter Configuration Wizard Operation Page
The Consume Operation Parameters page is displayed.
The Messages page is displayed.
Note: The value specified in the JNDI name should exist in the Oracle JMS Adapter |
The Type Chooser dialog is displayed.
Figure 8-19 The Adapter Configuration Wizard - Message Page
Perform the following steps to create an adapter service to enqueue the request messages and dequeue the corresponding response messages (report) from a queue:
You must wire the three components that you have created, Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire components:
The JDeveloper Composite.xml is displayed, as shown in Figure 8-20.
Figure 8-20 The JDeveloper - Composite.xml
The queue2queue.bpel page is displayed.
The Receive dialog is displayed.
The Partner Link Chooser dialog is displayed.
The Receive dialog is displayed with the Partner Link field populated with the value Inbound.
The Create Variable dialog is displayed.
The Invoke dialog is displayed.
The Partner Link Chooser dialog is displayed.
The Invoke dialog is displayed with the Partner Link field populated with the value Outbound.
The Create Variable dialog is displayed.
The Invoke dialog is displayed, as shown in Figure 8-23.
The Assign dialog is displayed.
Figure 8-24 The Create Copy Operation Dialog
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, use the following steps:
You can monitor the deployed composite by using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. The composite you deployed is displayed in the Application Navigator.
.java
. You can use the Oracle JMS Adapter to access remote WLS JMS destinations. Remote destinations refer to queues or topics that are defined in a WLS JMS server, which is part of a remote Oracle WebLogic Server domain.
To do so, ensure that you use the connector factory configured to interact to the remote WLS JMS server. You can achieve this by setting the <FactoryProperties> property of the connector factory defined in weblogic-ra.xml to remote server configuration, as shown in the following example:
To enable Oracle JMS Adapter to read from a remote queue that is present in a remote WLS JMS server, you must configure the following:
Refer to the following link for information about how to enable global trust between servers:
This configuration is appropriate when you connect to queues or topics present in WLS9.2 server.
The JMS Adapter enables you to interact with WebLogic Server JMS destination locations in a domain that are remote to the WebLogicServer domain where SOA is installed.
Two options are supported that enable you to access remote destinations via the JMS adapter:
FactoryProperties
property in the weblogic-ra.xml file, with access parameters indicating the remote domain. For inbound use cases, both options are supported. For outbound use cases only, direct access is supported, but configuring the foreign server is not supported.
Oracle JMS Adapter supports both synchronous and asynchronous request reply interaction pattern.
You can use the Adapter Configuration Wizard to model a process that enables Oracle JMS Adapter to be used in a synchronous request reply interaction pattern. In this case, the Oracle JMS Adapter sends a request to the request queue and waits for a response from the reply queue before further execution continues. Underneath, the Oracle JMS Adapter uses a new interaction pattern JmsRequestReplyInteractionSpec
. This interaction spec allows for a request and reply destination name to be configured.
A variation, new to 11g Release 1 (11.1.1.4.0), allows usage of temporary destination as part of the reply queue. Basically, this pattern allows an Oracle JMS Adapter to send a message to a JMS destination. In turn, the adapter sets the JMSReplyTo
header to the reply destination. This value is then used by a third party client to send the message to the reply destination which is then dequeued by the Oracle JMS Adapter.
When using the Oracle JMS Adapter in a synchronous pattern ensure that you use a non-XA connection factory and set the connector factory isTransacted
property to true
in weblogic-ra.xml
.
When you use the Oracle JMS Adapter in a synchronous pattern with Oracle WebLogic Server JMS, the connection factory must be weblogic.jms.ConnectionFactory
or any other non-XA connection factory. Also, if Oracle WebLogic Server JMS is running in the local JVM (the same JVM as the adapter), then you must ensure that the connector factory isTransacted
property is set to false
in weblogic-ra.xml
. You can obtain the following samples by accessing the Oracle sample code site:
adapters-jms-106-wlsjms-syncrequestreply
adapters-jms-107-wlsjms-syncrequestreplywithtemporaryreplydestination
You can use the Adapter Configuration Wizard to model a process that allows Oracle JMS Adapter to be used in an asynchronous request reply interaction pattern.
Basically this pattern allows an Oracle JMS Adapter to send a message to a JMS destination. When a message is received on the reply queue, the Oracle JMS Adapter can route messages to the correct composite or the component instance. The correlation is done based on the JMSMessageID
of the request message, which becomes the JMSCorrelationID
of the reply message, and the conversation ID of the underlying component.
For more information, you can obtain the following samples by accessing the Oracle SOA Sample Code site.
adapters-jms-105-wlsjms-nativecorrelation
This use case demonstrates how the Oracle JMS Adapter dequeues from and enqueues to the AQ JMS Queue.
You can obtain the adapters-jms-108-aqjms-textmessageusingqueues
sample by accessing the Oracle SOA Sample Code site.
This section includes the following topics:
You must perform the following prerequisites to complete this use case:
To configure AQ JMS in Oracle WebLogic Server Administration Console, you must perform the following steps:
Adding an Oracle WebLogic JMS Module
Note that adding an Oracle WebLogic JMS module is optional. You can also create an AQJMS foreign server in a preexisting JMS module.
http://
servername
:
portnumber
/console
. The Home page of the Oracle WebLogic Server Administration Console is displayed.
The Oracle WebLogic Server Administration Console - JMS Modules page is displayed.
The Oracle WebLogic Server Administration Console - Create JMS System Module page is displayed.
The Oracle WebLogic Server Administration Console - Create JMS System Module page is displayed.
The Oracle WebLogic Server Administration Console - Create JMS System Module page is displayed.
You have created a JMS module.
Adding an AQJMS Foreign Server to the JMS Module
The next step is to add an AQ JMS foreign server to the JMS module by performing the following:
The Oracle WebLogic Server Administration Console - Settings for AQJMSModule page is displayed.
The Oracle WebLogic Server Administration Console - Create a New JMS System Module Resource page is displayed.
The Oracle WebLogic Server Administration Console - Create a New JMS System Module Resource page is displayed.
The Oracle WebLogic Server Administration Console - Settings for <JMS Module Name> page is displayed.
Configuring the AQJMS Foreign Server
The next step is to configure the AQJMS foreign server that you created:
The Oracle WebLogic Server Administration Console - Settings for TestAQJMS_ForeignServer page is displayed.
oracle.jms.AQjmsInitialContextFactory
If the AQJMS Foreign Server is used by the WebLogic server side components, then you must configure a data source with this AQ JMS Foreign Server, by specifying the following values:
In the JNDI Properties field, enter datasource=<datasource jndi location>. Replace the place holder with the JNDI location of your data source.
However, if the AQJMS Foreign Server is used by WebLogic application client, then you must configure the JDBC URL with the AQ JMS foreign server you created.
This value is required only if the AQJMS foreign server is used by the WebLogic application client.
This value is required only if the AQJMS foreign server is used by the Weblogic application client.
Note: If you want to use an Oracle RAC database as adapter endpoint, then the datasource pointed by the JNDI property, mentioned in the preceding step, must point to a multi data source. Individual data sources and multi data sources used for such endpoints must use the recommended setting listed in Section 2.20, "Recommended Setting for Data Sources Used by Oracle JCA Adapters." |
Adding Connection Factories to the AQ JMS Foreign Server
To add connection factories to the AQJMS foreign server:
The Oracle WebLogic Server Administration Console - Create a New Foreign JMS Connection Factory page is displayed.
Note: Ensure that you specify Else, specify |
QueueConnectionFactory
TopicConnectionFactory
ConnectionFactory
XAQueueConnectionFactory
XATopicConnectionFactory
XAConnectionFactory
Adding Destinations to the AQJMS Foreign Server
To add destinations to the AQJMS foreign server:
Queues/<queue name>
if the destination is a queue, or enter Topics/<topic name>
if the destination is a topic. You have configured AQJMS in an Oracle WebLogic Server.
To create queues:
setup_user.sql
script. create_start_queues.sql
script. These scripts are located in the adapters-jms-108-aqjms-textmessageusingqueues
sample artifacts/sql
directory. You can obtain the adapters-jms-108-aqjms-textmessageusingqueues
sample by accessing the Oracle SOA Sample Code site.
You must establish connectivity between the design-time environment and the server you want to deploy to. Perform the steps mentioned in Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters" to create an application server connection.
You must create an JDeveloper application to contain the SOA composite. Use the following steps to create a new application and an SOA project:
AQQueue2Queue
. The Name your project page is displayed.
AQQueue2Queue
. You have created a new application and an SOA project.
The Create BPEL Process page is displayed.
You have created a BPEL process.
The AQQueue2Queue
application, the AQQueue2Queue
project, and the SOA composite appear in the design area.
expense.xsd
file to the XSD folder in your project. This file is located in the adapters-jms-108-aqjms-textmessageusingqueues
sample artifacts/schemas
directory. You can obtain the adapters-jms-108-aqjms-textmessageusingqueues
sample by accesing the Oracle SOA Sample Code site, and selecting the Adapters tab.
Perform the following steps to create an adapter service to dequeue the message to a queue:
Perform the following steps to create an adapter service that enqueues the request messages and dequeue the corresponding response messages (report) from a queue:
You must wire the three components that you have created: Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml is displayed, as shown in Figure 8-25.
The Receive dialog is displayed.
The Partner Link Chooser dialog is displayed.
The Receive dialog is displayed with the Partner Link field populated with the value Outbound.
The Invoke dialog is displayed.
The Partner Link Chooser dialog is displayed.
The Invoke dialog is displayed with the Partner Link field populated with the value Outbound.
The Assign dialog is displayed.
The Create Copy Operation dialog is displayed.
Note: When using Oracle JMS Adapter to dequeue from AQ JMS Topics with durable subscriptions, if you notice that the dequeue operation exhibits slow performance, then you can speed up the entire performance by using multiple inbound threads for each adapter service. Oracle JMS Adapter allows multiple inbound threads if you specify an endpoint property However, note that this workaround is not applicable when using non-durable subscriptions because doing so results in duplicate messages. |
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile by using JDeveloper, perform the following steps:
You can monitor the deployed composite by using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:portnumber
/em
. The composite you deployed is displayed in the Application Navigator. .java
. This section describes the procedure for accessing queues and topics you created in Oracle Application Server 11g from OC4J 10.1.3.4. To do this, you must configure Oracle BPEL PM JMS adapter with Oracle WebLogic Server.
The following are the steps to configure Oracle BPEL PM JMS adapter with Oracle WebLogic Server:
wlfullclient.jar
file using the following steps: server/lib
directory, as shown in the following example: WL_HOME
/server/libwlfullclient.jar
file in the server/lib
directory: where X.X.X.X
is the version number of the jarbuilder module in the WL_HOME
/server/lib
directory. For example:
wlfullclient.jar
file to the 10.1.3.4. server at the following location: oc4j-ra.xml
file, as shown in the following example: Note: The |
server.xml
file of the 10.1.3.4 server to include the environment-naming-url-factory-enabled="true"
property, as shown in the following example: You can configure your 11G server to access queues present in 10.1.3.x OC4J with the following steps.
Copy the following jar files under the domains/<DOMAIN_NAME>/lib
folder of the WebLogic Server:
$J2EE_HOME/lib/jms.jar
$J2EE_HOME/lib/jta.jar
$J2EE_HOME/oc4jclient.jar
$AS_HOME/opmn/lib/optic.jar
The next step is to add the Connector Factory in the weblogic-ra.xml
file:
<jndi-name>eis/oc4jjms/Queue</jndi-name>
<connection-properties>
<properties>
<property>
<name>ConnectionFactoryLocation</name>
<value>jms/XAQueueConnectionFactory</value>
</property>
<property>
<name>FactoryProperties</name>
<value>java.naming.factory.initial=com.evermind.server.rmi.RMIInitialContextFactory;java.naming.provider.url=
<PROVIDER_URL>;java.naming.security.principal=oc4jadmin;
java.naming.security.credentials=welcome1</value>
</property>
<property>
<name>AcknowledgeMode</name>
<value>AUTO_ACKNOWLEDGE</value>
<value>false</value>
</property>
<property>
<name>Password</name>
</properties>
where <PROVIDER_URL>=opmn://localhost:6003
or, ormi://localhost:12401
to use against a specific node or, opmn:ormi://localhost:6003:oc4j_soa
to use against the
oc4j_soa
instance.
A distributed destination is a set of destinations (queues, set of physical JMS queue members, or topics, set of physical JMS topic members) that are accessible as a single, logical destination to a client.
The JMS Adapter can process messages addressed to a distributed destination member after receiving available notification; it can process available, unavailable, and failure notifications related to a distributed destination member.To have the JMS Adapter process such messages, you must provide additional properties to provide access to distributed destinations (queues or topics) with the JMS Adapter.
When you provide additional queues or topics, you can separate multiple FactoryProperty values with a semicolon. See the following example.
You use three FactoryProperty parameter values to provide adapter access to distributed destinations, to specifically enable the Client ID to be shared by multiple connections, to enable the sharing of Durable subscriptions among multiple subscribers, and to specify whether you want one copy of a message per application or per endpoint. The properties include:
ClientIDPolicy
Use the FactoryProperties parameter ClientIDPolicy
property with a value of UNRESTRICTED
to enable the Client ID to be shared by multiple connections. The default, if no value is specified, is UNRESTRICTED
. The non-default value is RESTRICTED
. The default is used in almost all uses, so typically you do not have to set it. See the following example:
SubscriptionSharingPolicy
Use the FactoryProperties parameter with a value of SHARABLE
to enable the sharing of Durable Subscriptions among multiple subscribers.
A value of SubscriptionSharingPolicy EXCLUSIVE
means you cannot share Durable Subscriptions among multiple subscribers. If you do not specify a value, the default is SHARABLE
; in most cases, you do not have to change the value.
TopicMessageDistributionAll
See the section on Distirbuted Topics for more information on the TopicMessageDistributionAll
FactoryProperties parameter. You can set it as in the following example:
Specific inbound and outbound queue and error handling behaviors apply to the JMS Adapter with JMS Distributed Queues and Distributed Topics.
For inbound queues, the JMS Adapter creates an inbound poller thread and registers a notification listener with the WebLogic Server JMS on endpoint activation; it unregisters notification listener upon endpoint deactivation.
The JMS Adapter handles errors in the Distributed environment in the same fashion as such errors are handled in a non-Distributed environment: retriable exceptions lead to message retry; non-retriable exceptions lead to message rejection.
There is no change from the behavior of other Adapters to JMS adapter behavior when the Adapter produces a message to a Distributed Queue.
JMS messages for Distributed Destinations are produced by creating a MessageProducer for the Distributed Destination and not for a specific member.
Outbound errors are processed based on fault-policies previously defined for the outbound reference.
For inbound adapters with distributed topics, the JMS Adapter registers a notification listener with the WebLogic Server JMS on endpoint activation. The JMS Adapter creates an inbound poller thread for each available notification received from WebLogic Server JMS for a Distributed Topic member.
The inbound poller thread stops working and necessary cleanup is performed if an unavailable notification is received for the member for which the poller thread was created. The durable subscription is maintained in a similar fashion as in a non-Distributed topic scenario.
The Adapter unregisters the notification listener upon endpoint deactivation. Any message arriving at a Distributed Topic is processed based on the various settings used and the type of Distributed Destination in use: either one copy of a message per application, or one copy of a message per adapter endpoint.
The behaviors for each of these types of Distributed Destination are provided below.
The default behavior for WebLogic Server Partitioned Distributed Topics when used with the JMS Adapter is to provide one copy of a message per application. Each message must be processed exactly once (that is, there is no duplicate processing.). In this scenario, where there is one copy of a message per application, the client id and subscription name are the same for every Distributed Destination and each adapter instance creates subscriptions on every member. The name is unique and immutable across server restarts.When using Partitioned Distributed Topics you must configure the JMS adapter to use unrestricted clientid and shared subscription policy. These two are the default settings for Distributed Destinations.When using Replicated Distributed Topics, you must configure JMS adapter to use the unrestricted clientid and shared subscription policy, which are the default settings. To achieve better performance you should use Partitioned Distributed Topics.In addition, you must specify the following message selector, NOT JMS_WL_DDForwarded
when defining an activation spec.
Refer to the following example, consisting of a snippet of a connection instance from the weblogic-ra.xml
file for a local cluster:
The second type of scenario you can employ with Distributed Topics is to have one copy of message per adapter endpoint. In this case, either the client id or the subscription name is unique for each adapter instance. The unique part of the member name is immutable across server restarts.
When using Partitioned Distributed Topics you have to configure the JMS adapter to use unrestricted clientid and shared subscription policy, which are the default settings. At the same time, to achieve subscription name uniqueness, JMS adapter requires that the property TopicMessageDistributionAll
(default value of false) is set to true. You can define this property by setting the FactoryProperties
property of the connection instance in the weblogic-ra.xml
file. An example usage (a snippet of connection instance from a weblogic-ra.xml
file for a local cluster) is shown below.
In addition, specify the message selector (NOT_JMS_WL_DDForwarded)
when defining an activation spec.
To achieve better performance, you should use Partitioned Distributed Topics.
When using Replicated Distributed Topics, configure the JMS adapter to use unrestricted clientid and shared subscription policy, which are the default settings. At the same time, to achieve subscription name uniqueness, the JMS adapter requires that the property TopicMessageDistributionAll
(default value of false) is set to true. You can define this property by setting the FactoryProperties
property of the connection instance in weblogic-ra.xml
. An example usage (snippet of connection instance from weblogic-ra.xml
for a local cluster) is as shown below:
Specify a message selector when defining an activation spec. The message selector is required when you create one copy of message per adapter Endpoint.
To specify the selector, use the Adapter Wizard when modeling a composite application that reads from Replicated Distributed Topic The metadata for the message selector you specify are captured in the .jca
file.
Below is an example of a message selector defined in an activation spec.This message selector filters out the copy of the forwarded message when sending a message to a destination subscriber. This message selector is only applicable for when using Replicated Distributed Topics.
With Distributed Topics, retriable exceptions lead to message retry, while non- retriable exceptions lead to message rejection.
Available/Unavailable/Failure notification does not impact the working of the outbound adapter reference. The message is produced by creating a MessageProducer for the Distributed Destination and not for a specific member.
In the Distributed Topics environment, as elsewhere, an error is processed based on the fault policies defined for the outbound reference.
Remote Distributed Queue support is feasible all the way back to WLS JMS version 9.0 using the new DestinationAvailabilityListener API. A remote Distributed Topic cannot be supported if it is older than WebLogic 10.3.4, as “shared subscriptions”, “unrestricted client ids”, the “not forwarded” selector, and even “partitioned” Distributed Topics are not supported. Users will need to instead directly reference a DT member JNDI name, and deal with the single subscriber per subscription limitation.
The Request-Reply configuration feature enables you to perform the following:
To configure the JMSAdapter Request-Reply feature:
Figure 8-26 Dragging and Dropping a JMS Adapter into External References Swimlane
Figure 8-27 Operations Screen for Request/Reply
Figure 8-28 The Request Operation Parameters Screen
Figure 8-29 Reply Operation Parameters Screen
The reason we have used such a selector is that the back-end system that reads from the request queue and generates the response in the response queue actually generates more than one response and hence we must use a filter to exclude the unwanted responses.
Figure 8-30 Selecting Message Schema for Request and for Response
Figure 8-31 Invoke BPEL Properties Dialog Corresponding to the JMS Adapter Link
Add a <receive> activity just after the <invoke> activity, and select the Reply operation. Please ensure that the Create Instance option is unchecked.
Figure 8-32 Receive Dialog for Reply Operation
This chapter describes the Oracle JCA Adapter for Database (Oracle Database Adapter), which works with Oracle BPEL Process Manager and Oracle Mediator (Mediator). This chapter also includes support for stored procedures and functions (for Oracle databases only). In addition, it contains references to use cases for the Oracle Database Adapter and for stored procedures.
This chapter includes the following topics:
The Oracle Database Adapter enables a BPEL process to communicate with Oracle databases or third party databases through JDBC. The Oracle Database Adapter service is defined within a BPEL process partner link by using the Adapter Configuration Wizard of Oracle BPEL Process Manager (Oracle BPEL PM).
This section includes the following topics:
This section provides a functional overview of the Oracle Database Adapter. The Oracle Database Adapter enables Oracle SOA Suite and Oracle Fusion Middleware to communicate with database end points. These include Oracle database servers and any relational databases that follow the ANSI SQL standard and which provide JDBC drivers.
The principle of the tables and views in the Oracle Database Adapter is to expose to SOA tables and SQL as transparently and non-intrusively as possible. From an integration standpoint, tables and SQL are what relational database products have in common, so a generic solution focused on what is standard has the greatest reach. In exposing databases to SOA, it is also about combining the technologies of SQL and XML, the former an ideal language for querying information, the latter an ideal format for transporting and representing information. While stored procedure support is less standard across databases, Oracle Database Adapter provides support for stored procedures as the guide describes.
The Oracle Database Adapter is a JCA 1.5 connector, which runs on the Oracle Application Server. It relies on an underlying JDBC connector/driver to enact the database communication. In contrast to JDBC, it is non-programmatic. The interaction (series of SELECT
, UPDATE
, INSERT
) is loosely modeled using the Adapter Configuration Wizard. The inputs/outputs are XML, most easily seen as input parameters and result sets converted to XML. These XML inputs and outputs allow the Oracle Database Adapter services to be plugged into Oracle Fusion Middleware.
To access an existing relational schema, you must create an application and an SOA project to use the Adapter Configuration Wizard to perform the following:
For more information, see Section 9.4.1, "Relational-to-XML Mapping."
SELECT
, INSERT
, and UPDATE
as Web services For more information, see Section 9.4.2, "SQL Operations as Web Services."
The Oracle Database Adapter can currently be used only within the context of an SOA process as Section 9.1.1.1, "Oracle Database Adapter Integration with Oracle BPEL PM" describes.
Although Oracle Streams Advanced Queuing (Oracle AQ) is an Oracle Database feature, you use the separate, specialized Oracle JCA Adapter for AQ to integrate with Oracle AQ. For more information, see Chapter 7, "Oracle JCA Adapter for AQ".
For non-relational and legacy systems (with a few exceptions such as DB2 on AS/400), application and mainframe adapters are available. For more information about application and mainframe adapters, see:
For more information on the Oracle Database Adapter, see:
When the Oracle Database Adapter is used to poll for database events (usually an INSERT
operation on an input table) and initiate a process, in a Mediator component or an SOA composite it is called an exposed service. In Oracle BPEL process it is a partner link tied to a Receive activity. The expression inbound
(from database into SOA) is commonly used.
When the Oracle Database Adapter is used to invoke a one-time DML statement such as INSERT
or SELECT
, in a Mediator component or an SOA composite, it is called a service reference. In Oracle BPEL process, it is a partner link tied to an Invoke activity. The expression outbound
(from SOA out to the database) is used.
This section provides an overview of the design of the Oracle Database Adapter. Figure 9-1 shows how the Oracle Database Adapter interacts with the various design-time and deployment artifacts.
Figure 9-1 How the Oracle Database Adapter Works
The Oracle Database Adapter is a JCA 1.5 connector, which is deployed to the application server during installation.
The Oracle Database Adapter consists of multiple instances; each instance represents a connection to a database end point. Different SOA processes may point to the same adapter instance (database), while different service endpoints in a SOA process may point to different adapter instances (databases).
Because each adapter instance points to a single database, there is a one-to-one correspondence from adapter instances to application server data sources. Out of the box there is a single Oracle Database Adapter instance named eis/DB/SOADemo
, which points to the data source jdbc/SOADataSource
.
The list of adapter instances is stored in a deployment descriptor file, weblogic-ra.xml
on Oracle WebLogic Server. (It is inside of DbAdapter.rar
, which contains also the Java class files in DBAdapter.jar
). Configuring an Oracle Database Adapter instance is more about creating the underlying data source: getting the correct JDBC driver and connection URL.
For more information, see Section 9.6, "JDBC Driver and Database Connection Configuration."
However weblogic-ra.xml
entries occasionally have more than simply the name of the underlying data source. These properties are detailed further under Section 9.5, "Deployment".
While at run time you have Oracle Database Adapter instances, at design time you have the Adapter Configuration Wizard (link). You can run it once to generate a single adapter service end point, and then multiple times in edit mode to make incremental changes to each. It generates all the adapter related artifacts needed when deploying a SOA composite as Table 9-1 lists.
Table 9-1 Adapter Configuration Wizard Generated SOA Composite Adapter Artifacts
File | Description |
---|---|
| This is an abstract WSDL, which defines the service end point in terms of the name of the operations and the input and output XML elements. |
| This contains the XML file schema for these input and output XML elements. Both these files form the interface to the rest of the SOA project. |
| This is an internal file. It is a TopLink specific file, which is used to describe the mapping between a relational schema and the XML schema. It is used at run time. |
| This contains the internal implementation details of the abstract WSDL. It has two main sections, location and operations. Location is the JNDI name of an adapter instance, that is, |
| This is also an internal file. It is created when tables are imported, and information about them is saved. It is used only at design time. At run time, the location is used to look up the adapter instance which executes the service. Based on the properties in the |
This section describes the Adapter Configuration Wizard and how you can define an Oracle Database Adapter by using the Adapter Configuration Wizard.
This section describes the various Oracle Database Adapter concepts through a use case, which is, a complete walkthrough of the Adapter Configuration Wizard. In addition, this use case also describes how by using the Adapter Configuration Wizard, you can import tables from the database, specify relationships spanning multiple tables, generate corresponding XML schema definitions, and create services to expose the necessary SQL or database operations. These services are consumed to define partner links that are used in the BPEL process. You use the Adapter Configuration Wizard to both create and edit adapter services.
You must create an Oracle JDeveloper (JDeveloper) application to contain the SOA composite. Perform the following steps to create an application, and an SOA project:
The Create Generic Application - Name your application page is displayed, as shown in Figure 9-2.
Figure 9-2 The Create Generic Application - Name your application Page
The Create Generic Application - Name your project page is displayed, as shown in Figure 9-3.
Figure 9-3 The Create Generic Application - Name your Generic project Page
Figure 9-4 The Create Generic Application - Configure SOA settings Page
You have created a new application and an SOA project. This automatically creates an SOA composite.
The Create BPEL Process page is displayed, as shown in Figure 9-5.
You have created a BPEL process.
The next step is to define an Oracle Database Adapter service. Perform the following steps to create an Oracle Database Adapter service:
The Adapter Configuration Wizard is displayed.
Note: To create an Oracle Database Adapter service as part of a BPEL process, drag and drop a BPEL process from Service Components onto Components. Double-click it. Then, in the BPEL Component Palette, drag and drop Database Adapter from BPEL Services onto a Partner Links swim lanes. |
See Section 9.2.3, "Connecting to a Database" to continue using the Adapter Configuration Wizard.
Figure 9-7 shows where you select the database connection that you are using with the service. This is the database from which you import tables to configure the service. This is the database from which you import tables to configure the service. You can re-create it here in each new JDeveloper application you create.
You can provide a Java Naming and Directory Interface (JNDI) name to identify the database connection, as the default name that is provided is eis/DB/<ConnectionNameInJDev>
.
For more information, see Section 9.5, "Deployment."
Figure 9-7 The Adapter Configuration Wizard: Service Connection Page
Note the following:
weblogic-ra.xml
). This way, the Oracle Database Adapter is more performant by working in a managed mode. For information about creating a data source and an outbound connection pool, see Section 2.18, "Adding an Adapter Connection Factory."
See Section 9.2.4, "Selecting the Operation Type" to continue using the Adapter Configuration Wizard.
Figure 9-8 shows where you indicate the type of operation you want to configure for this service.
Figure 9-8 The Adapter Configuration Wizard: Operation Type Page
The following operation types are available:
Select this option if you want the service to execute a stored procedure or function. For more information, see Section 9.7, "Stored Procedure and Function Support."
Select this option for outbound operations. You can select Insert or Update, Insert Only, Update Only, Delete, Select, or any combination of the six. These operations loosely translate to SQL MERGE
, INSERT
, UPDATE
, DELETE
, and SELECT
operations.
For more information, see Section 9.4.2.1, "DML Operations."
Note: The operation |
Select this option for an inbound operation (that is, an operation that is associated with a Receive activity). This operation type polls a specified table and returns for processing any new rows that are added. You can also specify the polling frequency.
For more information, see Section 9.4.2.2, "Polling Strategies."
The following is a list of polling operations that you can perform after the data is read from the database, as shown in Figure 9-9:
Useful when dealing with arbitrarily complex statements, aggregate queries (result is not row-based), and XMLType
columns. See Section 9.3.2, "Pure SQL - XML Type Support" to follow this usage of the Adapter Configuration Wizard.
Note: Schema Bound XML tables are not supported. |
Otherwise, see Section 9.2.5, "Selecting and Importing Tables" to continue using the Adapter Configuration Wizard.
Figure 9-10 shows where you select the root database table for your operation. If you are using multiple related tables, then this is the highest-level table (or highest parent table) in the relationship tree.
Figure 9-10 The Adapter Configuration Wizard: Select Table
Selecting Import Tables launches a sub-wizard, which lets you search for and select multiple tables to import from the database. Removing a table removes (or undoes) any relationships on related tables that remain. If any underlying tables have changed when running this wizard in edit mode, you get a warning showing you what changes have occurred. To reconcile, import the tables again. If you click Import Tables and select multiple tables, then relationships between these tables are inferred based on the foreign key constraints. However if you launch Import Tables once for each table imported, then no relationships are inferred.
Note: If you reimport a table, you lose any custom relationships you may have defined on that table and any custom |
See Section 9.2.6, "Defining Primary Keys" to continue using the Adapter Configuration Wizard.
If any of the tables you have imported do not have primary keys defined on the database, you are prompted to provide a primary key for each one, as shown in Figure 9-11. You must specify a primary key for all imported tables. You can select multiple fields to specify a multipart primary key.
Figure 9-11 The Adapter Configuration Wizard: Define Primary Keys Page
The primary key that you specify here is recorded on the offline database table and is not persisted back to the database schema; the database schema is left untouched.
See Section 9.2.7, "Creating Relationships" to continue using the Adapter Configuration Wizard.
Note: Note that the Oracle Database Adapter only supports tables where there is a primary key defined. If primary key constraints have not been defined on a table explicitly, then you must provide one at design time while defining the Oracle Database Adapter by using the Adapter Configuration Wizard. If you do not provide a valid primary key, then the unique constraint is not guaranteed, and this could result in possible loss of messages at run time. That is, rows with duplicate primary key values are likely to be lost. To obtain a sample that describes how to use the |
Note: Oracle recommends that you use |
Figure 9-12 shows the relationships defined on the root database table and any other related tables. You can click Create Relationships… to create a relationship between two tables, or click Remove Relationship to remove it. To rename a relationship, click Rename Relationship.
Figure 9-12 The Adapter Configuration Wizard: Relationships Page
Note the following regarding creating relationships:
A --1:1--> B --1:1--> C --1:M--> D --1:1--> E --1:M--> F
(1) (2) (3) (4) (5)
If you remove relationship 3, then you see only:
A --1:1--> B
B --1:1--> C
If you remove relationship 2, then you see only:
A --1:1--> B
If you remove relationship 1, you no longer see any relationships.
Figure 9-13 shows where you can create a relationship.
Figure 9-13 The Create Relationship Dialog
To create a relationship:
Note: Only tables that are reachable from the root table can be selected as a parent. |
When tables are initially imported into the Adapter Configuration Wizard, a TopLink direct-to-field mapping corresponding to each field in the database is created. Consider the schemas shown in Figure 9-14 and Figure 9-15:
Immediately after importing these two tables, the following mappings in the Employee
descriptor are created:
Employee:
id
(direct mapping to the ID
field, for example, 151) name
(direct mapping to the NAME
field, for example, Stephen King) addrId
(direct mapping to the ADDR_ID
field, for example, 345) When creating a relationship mapping, the direct-to-field mappings to the foreign key fields are removed and replaced with a single relationship (one-to-one, one-to-many) mapping. Therefore, after creating a one-to-one relationship between Employee
and Address
called homeAddress
, the Employee
descriptor appears, as shown in the following example:
Employee:
id
name
homeAddress
(one-to-one mapping to the ADDRESS
table; this attribute now represents the entire Addres
s object.) When a relationship is removed, the direct mappings for the foreign keys are restored.
When relationships are auto created, the one-to-many relationship is from the table without the foreign key. However, you can declare this mapping, which is technically 1-many, as a 1-1. For that, choose 1-1 (foreign key on target).
Not all tables imported are in the third normal form (3NF). In rare cases, you may have two or more tables which share the same primary key but no separate foreign key columns exist. It is recommended to create 1-1 (foreign key on target) relationships from the root table to all related tables. The reason is two fold. First, if you were to declare the primary key on the root as a foreign key (1-1, foreign key on source), then that mapping would be removed, so you would not see the primary key in the root record, only in the child record. Second, a foreign key can only point to a single table. Once you declare a column to be part of a foreign key, it is removed, so it cannot be used again in a new relationship. Creating a 1-1 (foreign key on source) on the root table not only makes the primary key column disappear but prevents you from joining the root table to the remaining tables.
Figure 9-16 shows the attribute filter that is created from the imported table definitions, including any relationships that you may have defined.
Figure 9-16 The Adapter Configuration Wizard: Attribute Filtering Page
If your object filter contains self-relationships (for example, the employee-to-employee manager relationship), then you see these as loops in the tree. These loops are not present in the XSD file. This is the descriptor object model, not the XSD file.
In this page, you select those columns that appear in the XML file, whether for input (MERGE
, INSERT
) or output (SELECT
). Columns you are not interested in or which are to be read-only (should not be modified) can be deselected here.
See Section 9.2.9, "Defining a WHERE Clause" to continue using the Adapter Configuration Wizard.
If your service contains a SELECT
query (that is, inbound polling services, or outbound services that contain a SELECT
), then you can customize the WHERE
clause of the SELECT
statement.
Note: When using polling with |
Figure 9-17 shows where you define a WHERE
clause for an outbound service.
Figure 9-17 The Adapter Configuration Wizard: Define Selection Criteria Page
Note: The |
The most basic expression in a WHERE
clause can be one of the following three cases, depending on what the right-hand side (RHS) is:
EMP.ID = 123
In this case, the RHS is a literal value. This RHS is the Literal option shown in Figure 9-18.
EMP.ADDR_ID = ADDR.ID
In this case, the RHS is another database field. This RHS is the Query Key option shown in Figure 9-18.
EMP.ID = ?
In this case, the RHS value must be specified at run time. This is the Parameter option shown in Figure 9-18.
You can create the parameters that you need in the WHERE
clause by clicking Add before you move on to build the WHERE
clause. To build the WHERE
clause, click Edit… to launch the Expression Builder, as shown in Figure 9-18.
To model more complex WHERE
clauses (sub selects and functions), and to add ORDER BY
clauses, you can edit the SQL procedure manually and click Next. However, this creates maintenance overhead later on, due to hard-coded SQL
, and you may lose platform independence.
You can change the columns listed in the FROM
clause when the number of columns and the types of each remain unchanged. For more complex changes consider using the Execute Pure SQL option directly where you can type any SQL
.
Return Single Result Set
You must select Use Outer Joins to return a Single Result Set for both Master and Detail Tables in the Define Selection Criteria page to use an advanced feature that influences how many total statements TopLink
uses when querying against multiple related tables. The safest method is to use the default (1 per table), and this feature attempts 1 total, by outer joining all related tables into a single result set.
See Section 9.2.10, "Choosing an After-Read Strategy" to continue using the Adapter Configuration Wizard.
If you selected Perform an Operation on a Table, then you can skip ahead to the Section 9.2.12, "Specifying Advanced Options.".
When configuring an inbound operation, you have the following options about what to do after a row or rows have been read:
Figure 9-19 shows these options.
Figure 9-19 The Adapter Configuration Wizard: After Read Page
See Section 9.4.2.2, "Polling Strategies" to continue using the Adapter Configuration Wizard.
With this option, the rows are deleted from the database after they have been read and processed by the adapter service.
With this option, you update a field in the root database table to indicate that the rows have been read. The WHERE
clause of the query is updated automatically after you complete the configuration, as shown in Figure 9-20.
Figure 9-20 The Adapter Configuration Wizard: Logical Delete Page
When you use this approach, your database table appears, as shown in Figure 9-21.
Note the following:
UNPROCESSED
in the Status column. Because an explicit Unread Valu
e was provided, row 151 is not read. LOCKED
and is not read. You can use this reserved value if your table is used by other processes. With this option, you are keeping track of the last-read rows in a separate sequence table. Figure 9-22 shows the information you provide. The WHERE
clause of your query is updated automatically after you complete the configuration.
Figure 9-22 The Adapter Configuration Wizard: Sequencing Table Page
When you use these settings, your sequence table appears, as shown in Figure 9-23.
Whenever a row is read, this table is updated with the ID that was just read. Then, when the next polling event occurs, it searches for rows that have an ID greater than the last-read ID (154).
Typical columns used are event_id
, transaction_id
, scn
(system change number), id
, or last_updated
. These columns typically have (monotonically) increasing values, populated from a sequence number or sysdate
.
Choose this operation to employ the sequencing table: last updated strategy. Figure 9-24 shows the Adapter Configuration Wizard - External Sequencing Table page in which you specify the details required to perform this operation.
Figure 9-24 The Adapter Configuration Wizard - External Sequencing Table page
Use this option to update a sequencing file. Figure 9-25 shows the Adapter Configuration Wizard - Update a Sequencing File page where you specify the details for performing this operation.
Figure 9-25 Adapter Configuration Wizard - Update a Sequencing File Page
You can specify additional polling options, if any, in this page. Figure 9-26 shows the Adapter Configuration Wizard - Polling Options page.
In this page, you specify details about how to poll the database table for new rows or events.
From the Polling Frequency list, select how frequently to poll for new records or events.
In the Database Rows per XML Document field, specify the number of rows per XML document when sending events to Oracle BPEL PM or Mediator. This is the batch setting between the database adapter and its consumer: Oracle BPEL PM or Mediator.
In the Database Rows per Transaction field, select Unlimited or enter a value to indicate the number of table rows to process during a single transaction.
When polling the database for events, you can order the returned rows by the selected column by using the Order By list. The best practice is to choose <No Ordering>, as message ordering regardless is not guaranteed without extra configuration.
In the SQL field, if the SQL syntax is incorrect, then a message is displayed in red.
For more information about specifying polling options, click Help in the Polling Options page or press F1.
You can specify advanced options, if any. Figure 9-27 shows the Adapter Configuration Wizard - Advanced Options page. In this page, you can specify advanced JDBC and DBAdapter options, configure retries, and configure native sequencing.
You must specify JDBC options in the JDBC Options section. Set low-level JDBC options on calls to the database. The operation you selected determines which options may appear here.
In the Auto-Retries section, specify the value for auto-retry incase of time out. In case of a connection related fault, the Invoke activity can be automatically retried a limited number of times. You can specify the following values in the fields in this section:
unlimited
in the Attempts field. In the Interaction Options, specify the interaction options, as follows:
MERGE
and INSERT
, all changes are not written until the global transaction commits, so this setting also changes the timing of when WRITE
operations occur. MERGE
and INSERT
operations to ignore empty or missing XML elements in the input payload. For a MERGE
operation, this prevents valid but unspecified values from being overwritten with NULL. For INSERT
operations, they are omitted from the INSERT
statement, allowing default values to take effect. MERGE
performance (using an in query for the primary key existence check). Native Sequencing (Oracle only) allows you to specify that the primary key are assigned from a sequence on any insert. Click Search and then select a sequence from the Sequence list, or type the name and click Create.
For more information about specifying advanced options, click Help in the Advanced Options page or press F1.
You can enter a SQL string for performing the Execute Pure SQL operation in the Custom SQL page. Figure 9-28 shows the Adapter Configuration Wizard - Custom SQL page.
In the SQL field, enter a custom SQL string. An XSD schema of your SQL input is automatically created in the XSD field.
The XSD field displays the XSD schema of the custom SQL string you entered. You can directly edit the resulting XSD. However, if you make subsequent changes to the SQL string, then your XSD changes are lost.
For more information about entering a SQL string, click Help in the Custom SQL page or press F1.
This section discusses the Oracle Database Adapter features.
It includes the following topics:
detectOmissions
Feature" OutputCompletedXml
Feature" The Oracle Database Adapter enables transaction support, which, along with the inherent data processing, ensures that each modification has a clearly defined outcome, resulting in either success or failure, thus preventing potential corruption of data, executes independently from other changes, and, once completed, leaves underlying data in the same state until another transaction takes place.
There are two types of transaction support, XA Transaction support and Local Transaction support. XA transaction support allows a transaction to be managed by a transaction manager external to a resource adapter, whereas, a local transaction support allows an application server to manage resources that are local to the resource adapter.
To ensure two Oracle Database Adapter invokes commit or rollback as a unit, you must perform the following:
The transaction support is demonstrated in the following tutorial files:
XAInsert
InsertWithCatch
DirectSQLPerformance
To obtain the tutorial sample code, access the Oracle SOA Sample Code site.
Note: You must use a non-XA driver with the |
In the deployment descriptor (weblogic-ra.xml
file), you must set the xADataSourceName
parameter. Additionally, the referenced DataSource must be configured for transaction participation by creating a data source in Oracle WebLogic Server Console.
You must create a data source and choose a XA data sources from the list.
Note: True Database XA is only certified on Oracle 10.2.0.4 or 11.1.0.7. For earlier versions, you are safer picking a non-XA data source implementation and selecting Emulated Two-phase commit on the next page. |
For information about the recommended setting for non-XA and XA data sources used by Oracle JCA Adapters, see Section 2.20, "Recommended Setting for Data Sources Used by Oracle JCA Adapters."
You cannot edit the data-sources.xml
file in the Oracle WebLogic Server. You must create a data source by using the Oracle WebLogic Server Administration Console, as mentioned in Section 2.18.1, "Creating a Data Source."
Once both the Oracle Database Adapter invokes participate in global transactions, to commit or rollback as a unit, they must be participating in the same global transaction. In BPEL, this requires the understanding of where the transaction boundaries are, at what points does a checkpoint have to write to the dehydration store, commit the current global transaction, and start a new one.
The transaction boundaries in a BPEL process occur either before a Receive activity or wait activity, or before an onMessage
or pick activity. This may also occur when invoking a synchronous child BPEL process, unless the bpel.config.transaction
property is set on the partnerlink, as shown in the following code sample.
Otherwise, the parent process is broken into two transactions and the child process runs in its own transaction.
Finally, even if both Oracle Database Adapter invokes participate in the same global transaction, the failure of either invoke may not cause the global transaction to rollback.
The only cases where a failure can actually cause a global rollback are:
bpelx:rollback
fault is thrown from within the BPEL process. You must set the GetActiveUnitOfWork
JCA parameter to true to enable using the same sessions or connections for both the Oracle Database Adapter invokes.
GetActiveUnitOfWork
is an advanced JCA property you can set on any DBInteractionSpec
. It causes the invoke to register itself with the two-phase commit callbacks, and all writes to the database are performed as part of the two-phase commit. By setting this property on any failure, the transaction is automatically rolled back, as there is no way to handle a fault at this late stage. Similarly, the same underlying TopLink session is used for both invokes, meaning if you merge the same object twice, it is inserted/updated once. All merge invokes that set GetActiveUnitOfWork
as true are cumulative.
To make two Oracle Database Adapter invokes commit or roll back as a unit requires the following: both Oracle Database Adapter invokes must be configured to participate in global transactions, both invokes must participate in the same global transaction, and the failure of either invoke must cause the global transaction to rollback.
In the deployment descriptor (weblogic-ra.xml), you must set xADataSourceName
. The matching data source entry must be configured for global transaction participation.
True XA: Two-Phase (XA) Versus One-Phase (Emulated) Commit
XA is a two-phase commit protocol, which is more robust than a one-phase commit or emulated protocol. The difference is that with a one-phase protocol, you may very rarely still see message loss or other rollback/commit inconsistency, on the order of one per one thousand generally.
Oracle RAC Configuration
For more information about Oracle RAC configuration, see the Oracle Database High Availability Overview guide.
True XA Configuration with Third Party Drivers
When configuring true XA for third party drivers (that is, Microsoft SQL Server 2008, IBM DB2), see if the driver jars contain a class that implements javax.sql.XADataSource
.
For data direct drivers, the naming happens to be com.oracle.ias.jdbcx.db2.DB2DataSource
, or com.oracle.ias.jdbcx.sqlserver.SQLServerDataSource
.
Finally, even if both invokes participate in the same global transaction, the failure of either invoke may not cause the global transaction to roll back.
The only cases where a failure can actually cause a global roll back are:
bpelx:rollback
fault is thrown from within the BPEL process. GetActiveUnitOfWork="true"
in WSDL. Pure SQL Adapter is an option in the Oracle Database Adapter Wizard that allows you to type the SQL string directly and have an XSD/Web service generated automatically. The database tables are introspected dynamically in the Adapter Configuration Wizard to test the SQL and populate the XSD file better (that is, with valid return types.)
The Pure SQL support allows the Oracle Database Adapter to deal with tables/views as entities and for dealing directly with SQL. You can use Pure SQL:
XMLType
columns and xquery
You can use the Pure SQL Adapter with Oracle XMLTypes
. It is a natural fit for inserting XML into XMLType
tables and columns, and retrieving XML using xquery
selects. Pure SQL is a natural fit for the Oracle Database Adapter that provides a relational-xml mapping that parallels XML DB(XDB) support. So, when using XDB the adapter should be as lightweight and transparent as possible, to let you focus on XDB and XQuery
.
If your data is in XML (unstructured/semi-structured) format, and you have no relational schema at all that you can map your data to, then you could use XDB. The conventional Oracle Database Adapter allows you to import an existing relational schema as an XML schema to be used with Web services. XDBs XML shredding algorithm can generate a relational schema from an existing XML schema for persistent storage.
Note: Use of schema bound |
For more information, see:
Currently a REF CURSOR
by nature can support any arbitrary result set, so the XSD generated at design time allows this and looks like the XSD that Example 9-1 shows.
Note: Oracle Database stored procedures return result sets that are referred to as |
Example 9-1 Weakly Typed XSD
However the XML output from this is hard to use. It is very difficult to write an Xpath expression or XSL based on a weakly typed XSD and column names as attribute values instead of element names.
Although a row set can represent any result set, it is possible to assume for some procedures that it has the same structure each time, and hence can be described with a strongly typed XSD. A strongly typed XSD is almost a necessity to transform the result set to another XSD later on. A strongly typed XSD looks like the XSD that Example 9-2 shows.
Example 9-2 Strongly Typed XSD
You can use the Adapter Configuration Wizard to create a strongly typed XSD for a row set returned by a stored procedure or function REF CURSOR
variable. An Oracle Database function is a special stored procedure that always has one out variable, and can be inlined - for example, inside select statements - and so traditionally does not do updates.
Using this feature, you can select a stored procedure (or stored function), enter its arguments, and perform a test execution to retrieve an actual row set. The Adapter Configuration Wizard then introspects the returned row set and generates a strongly typed XSD. You can enter arguments easily through the wizard. For example, you can enter numbers and strings directly, dates as literals (2009/11/11), and you can even enter structs like MYOBJ('a', 'b')
.
Note: Functions are not supported for IBM DB2 UDB. Only SQL stored procedures are supported. |
The Adapter Configuration Wizard row set support using a strongly typed XSD has the following restrictions:
record
or boolean
types are not supported. varray
is not supported. %rowtype
is not supported. table
types are not supported. IN
only REF CURSOR
parameters are not supported. For an Oracle Database PL/SQL procedure with REF CURSOR
as an IN/OUT
parameter, the Adapter Configuration Wizard ignores the IN
and generates the strongly typed XSD based on the OUT
parameter.
ref
is not supported. The Oracle Database Adapter supports strongly typed XSD for the following third-party databases:
The Oracle Database Adapter does not support strongly typed XSD for the following third-party databases:
For more information, see:
You can connect to your Oracle data store by using Proxy Authentication. On a per-invoke basis, you can set a combination of the following new header properties:
jca.db.ProxyUserName
: to use the OracleConnection.PROXYTYPE_USER_PASSWORD
proxy type, set this property to the proxy user name as a java.lang.String
. jca.db.ProxyPassword
: to use the OracleConnection.PROXYTYPE_USER_PASSWORD
proxy type, set this property to the proxy user password as a java.lang.String
. jca.db.ProxyCertificate
: to use the OracleConnection.PROXYTYPE_CERTIFICATE
proxy type, set this property to a base64Binary
encoded byte[]
array containing a valid certificate. This is a more encrypted way of passing the credentials of the user, who is to be proxied, to the database. The certificate contains the distinguished name encoded in it. One way of generating the certificate is by creating a wallet and then decoding the wallet to get the certificate. The wallet can be created using runutl mkwallet
. It is then necessary to authenticate using the generated certificate.
jca.db.ProxyDistinguishedName
: to use the OracleConnection.PROXYTYPE_DISTINGUISHED_NAME
proxy type, set this property to the proxy distinguished name as a java.lang.String
. This is a global name in lieu of the password of the user being proxied for.
jca.db.ProxyRoles
: regardless of what proxy type you use, you can optionally set this property to define the roles associated with the proxy user as a String[]
array where each java.lang.String
corresponds to a role name. jca.db.ProxyIsThickDriver
: if you are using the OCI driver, set this property to a value of true
to accommodate differences in the JDBC-level API between the thick and thin drivers. To run the invoke, a proxy connection is obtained from the data source.
For more information, see Chapter 10, "Proxy Authentication", in the Oracle Database JDBC Developer's Guide and Reference
To enable support to stream payload, you must select the Enable Streaming check box while specifying polling options, as shown in Figure 9-26. When you enable this feature, the payload is streamed to a database instead of getting manipulated in SOA run time as in a memory DOM. You use this feature while handling large payloads. When you select the Enable Streaming check box, a corresponding Boolean property StreamPayload
is appended to the ActivationSpec properties defined in the respective .jca
file.
The SchemaValidation
[false/true] property is a new activation specification property that has been added, and this can be configured in a .jca
file. When set to true, all XML files produced by the polling Oracle Database Adapter (for Receive activities) is validated against the XSD file. On failure, the XML record is rejected but still marked as processed by the Oracle Database Adapter.
Databases provide structured storage and the XSD file is generated by the Oracle Database Adapter Wizard itself. However, if you edit the auto generated XSD and add your own restrictions, you may want to start validation. For instance, if you import a VARCHAR(50) field, the auto-generated XSD has the max-length 50 restriction. However, if your BPEL process for some reason can only handle values of fixed length 22, it may want to validate the XML file.
The Oracle Database Adapter supports high availability in an active-active setup. In an active-active setup, distributed polling techniques can be used for inbound Database Adapters to ensure that the same data is not retrieved more than once. For more information, see Section 9.3.8.1, "Distributed Polling First Best Practice: SELECT FOR UPDATE (SKIP LOCKED)." Similar to other adapters, an Oracle Database Adapter can also be configured for singleton behavior within an active-passive setup. This allows a high performance multithreaded inbound Oracle Database Adapter instance running in an active-passive setup, to follow a fan out pattern and invoke multiple composite instances across a cluster. The Oracle Database Adapter also supports the high availability feature when there is a database failure or restart. The DB adapter picks up again without any message loss.
The following sections describe best practice for multiple Oracle Database Adapter process instances deployed to multiple Oracle BPEL PM or Mediator nodes, including:
The first best practice for multiple Oracle Database Adapter process instances deployed to multiple Oracle BPEL PM or Mediator nodes is to use the Adapter Configuration Wizard to set both the Distributed Polling check box in the Adapter Configuration Wizard and to set MaxTransactionSize
. Increase concurrency by setting the adapter _db.JCA
property NumberOfThreads
.
On an Oracle database, this automatically uses the syntax SELECT FOR UPDATE SKIP LOCKED
. Concurrent threads each try to select and lock the available rows, but the locks are only obtained on fetch. If an about to be fetched row is locked, the next unlocked row are locked and fetched instead. If many threads all execute the same polling query at the same time, they should all relatively quickly obtain a disjoint subset of unprocessed rows.
On a non-Oracle database the SELECT FOR UPDATE
safely ensures that the same row cannot be processed multiple times, however you may get less scalability. You should consider either using additionally a partition field or the second best practice which is essentially multi-threading on a single node with fan-out (see Section 9.3.8.2, "Distributed Polling Second Best Practice: Tuning on a Single Node First").
Note: A distributed approach is required to insure that multiple activation instances do not process the same rows. |
When configuring this best practice, consider the following:
In a distributed scenario, each polling instance tries to balance the load by not greedily attempting to process all unprocessed rows by itself. What that means is that at a time, an instance only fetches at most MaxTransactionSize
rows.
When using skip locking, if a full MaxTransactionSize
rows are fetched, the next MaxTransactionSize
rows can be immediately fetched continuously. This is because concurrent threads do no block each other when using skip locking, so there is no danger of one instance fetching all the rows.
However, with skip locking disabled, all threads tries to lock the same rows, and only one succeeds. Consequently, once this thread has processed MaxTransactionSize
rows, it pauses until the next polling interval, to allow other threads to also lock and process rows.
Hence, the maximum throughput with distributed polling enabled but uses SkipLocking disabled is:
NumberOfThreads x MaxTransactionSize/PollingInterval
Note: Although you may want to increase |
For load balancing purposes, it is dangerous to set the MaxTransactionSize
too low in a distributed environment with skip locking disabled (where MaxTransactionSize becomes a speed limit). It is best to set the MaxTransactionSize
close to the per CPU throughput of the entire business process. This way, load balancing occurs only when you need it.
Table 9-2 MaxTransactionSize and MaxRaiseSize Values
MaxTransactionSize | MaxRaiseSize | Description |
---|---|---|
10 | 1 | When using sequential routing. For 10 rows you have 10 individual instances and 10 XML records passing through SOA. |
100 | When using parallel routing. | |
>= 100 |
| When using the adapter to stream rows through as fast as possible. |
For load balancing purposes, it is dangerous to set the MaxTransactionSize
too low in a distributed environment (where it becomes a speed limit). It is best to set the MaxTransactionSize
close to the per CPU throughput of the entire business process. This way, load balancing occurs only when you need it.
If distributed polling is not set, then the adapter tries to process all unprocessed rows in a single polling interval.
In a distributed scenario there are polling instances on multiple servers, however, per server there can be multiple threads configured. You can configure these activation instances to cooperate somewhat by processing separate rows, possibly improving scaling.
To so, simply add the property PartitionField
to your db.jca
file:
If you set activationInstances
to 2, then activation instances 1 and 2 (or 0 and 1) would respectively execute:
and
Activation instance 0 still conflicts with other activation instances with this ID on other servers, but at least it does not conflict with other activation instances with ID 1.
Ensure that the partition field is numeric and that applying mod
evenly distribute the rows (that is, in this case make sure all the IDs are not either even or odd).
On Oracle Database, you can set the partition field to be rowid
by setting db.jca
file property PartitionField
as follows:
Then the SQL is in fact converted to:
Because Oracle Database skip locking provides scalability, setting a partition field is not recommended. There is a cost of increased database CPU usage with more complex SQL.
T
The adapter framework level property activationInstances
(configured in composite.xml
) is interchangeable with NumberOfThreads
for distributed scenarios.
Setting activationInstances
to 5 and NumberOfThreads to 5 is equal to setting one to 25 and the other to 1. As the extra work instances are created outside of the DbAdapter, they do not cooperate in any way. Hence, in a multi-threaded single node scenario, always configure NumberOfThreads
only. Without database level concurrency control through enabling distributed polling, duplicates are read.
Note: In a distributed cluster scenario configuring |
For more information, see Section 2.13, "Singleton (Active/Passive) Inbound Endpoint Lifecycle Support Within Adapters".
Try to index (and/or add explicit constraints on the database for) the primary and all foreign keys to joined tables. If using Logical delete polling, try to index the status column. Try to configure a non-null MarkUnreadValue
and MarkReadValue
.
If you have no indexes at all and prefer to have none, you can proceed with the single node multi-threaded approach (see Section 9.3.8.2, "Distributed Polling Second Best Practice: Tuning on a Single Node First"). That way the polling query is executed once, which might be a full table scan, but multiple threads help to exhaust the entire result set until all rows are processed. With a distributed approach all work must be done while the rows are exclusively locked, which means locked in a timed transaction. In a distributed scenario there are many repeated selects, which may harm performance if each one is doing a full table scan.
Note: Performance is very slow if |
Skip locking has been available on Oracle Database since Oracle 8 but is documented in Oracle 11. You rarely come across an incompatible feature and have to disable it. In that case you can set the Oracle Database Adapter connector property usesSkipLocking
to false
in the ra.xml
file you deploy with your application as Example 9-3 shows.
Example 9-3 Configuring usersSkipLocking in ra.xml
For more information on how to configure connector-level properties, see:
If you are using Logical Delete polling and you set MarkReservedValue
, skip locking is not used.
Formerly, the best practice for multiple Oracle Database Adapter process instances deployed to multiple Oracle BPEL Process Manager or Oracle Mediator nodes was essentially using LogicalDeletePollingStrategy
or DeletePollingStrategy
with a unique MarkReservedValue
on each polling node, and setting MaxTransactionSize
.
However with the introduction of skip locking in this release, that approach has now been superseded. If you were using this approach previously, you can simply remove (in db.jca
) or clear (Logical Delete Page of wizard) the MarkReservedValue
, and you automatically get skip locking.
The benefits of using skip locking over a reserved value include:
MarkReservedValue
must be specified. For this to work you had to configure a complex variable like R${weblogic.Name-2}-${IP-2}-${instance}
. This distributed approach works with Delete or Logical Delete based polling strategies.
The work of the sequencing polling based strategies cannot be distributed as records are initially processed in order.
For example, the second row cannot be marked as processed ahead of the first (setting last read ID to 2 means not just that 2 has been processed but 1 also).
However, as the sequencing polling strategies are non-intrusive, requiring no post updates or deletes to the source tables, they are extremely fast.
Use sequencing polling strategies with a single node and with fan-out on a cluster. It is still safe to use in a cluster; however, the select for update is instead applied on accessing the last read ID in the helper table.
The next best practice for multiple Oracle Database Adapter process instances deployed to multiple Oracle BPEL PM or Mediator nodes is to tune on a single node first.
For an Oracle Database Adapter intensive process, such as a database-database integration, performance can be improved by a factor 10 or 100 just by tuning on a single Java Virtual Machine (JVM), scaling |NumberOfThreads|, and setting high values for MaxTransactionSize and MaxRaiseSize.
As Section 9.3.8.1, "Distributed Polling First Best Practice: SELECT FOR UPDATE (SKIP LOCKED)" describes, there may be times where it is best to improve performance on a single node, and then optionally do fan-out to multiple nodes in a cluster. Relying on concurrency control features of the database such as locking can be great, but these are often designed more for preserving data integrity than for high performance scalability.
Cases where it may be best to do polling on a single node in the cluster include using the non-intrusive Sequencing Polling strategy, polling large un-indexed tables, or using a non-Oracle back-end database that does not provide high concurrency locks like skip locks.
Note: For Oracle Database Adapter with polling operation in a clustered environment, you must use the option of distributed polling by selecting the Distributed Polling check box in the Adapter Configuration Wizard. |
You can also refer to Section 2.13, "Singleton (Active/Passive) Inbound Endpoint Lifecycle Support Within Adapters".
For the samples MultiTablesPerformance
and DirectSQLPerformance
that show tuning on a single node, access the Oracle SOA Sample Code site.
The Oracle Database Adapter is preconfigured with many performance optimizations. You can, however, make some changes to reduce the number of round trips to the database by implementing performance tuning.
For information about performance tuning, see:
detectOmissions
FeatureThe following are the features of the detectOmission
feature:
Available Since
Release 10.1.3
Configurable
Yes
Default Value
Design Time: true
, unless explicitly set to false
Use Case
Users may pass incomplete or partial XML to a merge, update, or insert, and see that every column they left unspecified in XML is set to null in the database.
It allows DBAdapter
merge, insert, or update to differentiate between null
value and the absence of a value (omission) in XML documents. On a case by case basis, it determines which information in XML is meaningful and which is not. In this way XML is seen as a partial representation of a database row, as opposed to a complete representation. The following table lists examples for null values, and values that can be omitted.
Element Type | Omission | Null |
---|---|---|
Column |
|
|
1-1 |
|
|
1-M |
|
|
Note: The 1-1 representation |
A value considered omitted is omitted from UPDATE
or INSERT
SQL. For an update operation, existing (meaningful) values on the database are not overwritten. For an insert operation, the default value on the database is used, as no explicit value is provided in the SQL string.
A DBAdapter
receive
is not able to produce XML
with omissions, and makes use of xsi:nil="true"
. If you are unable to produce input XML with xsi:nil="true"
, or are concerned about the difference between <director />
and <director></director>
, then it is best to set DetectOmissions="false"
in the JCA
file.
To treat all null
values as omissions, check out the IgnoreNullsMerge
sample, which comes with a custom TopLink
plugin. The plugin works similar to this feature, but cannot detect subtleties between null
and omission
.
To obtain the IgnoreNullsMerge sample code, access the Oracle SOA Sample Code site.
When you are expecting an update, you can improve performance, by omitting 1-1
and 1-M
relationships. Because the merge
operation can skip considering the detail records completely.
Alternatively, map only those columns that you are interested in, and create separate mappings for different invokes. If two updates should update two different sets of columns, create two separate partnernlinks
.
Performance
By default, XML
is not used as an input to the Oracle Database Adapter containing omissions. Until an XML
with omissions is detected, there is no performance overhead. Once omissions are detected, a TopLink
descriptor
event
listener
is added. This event
listener
has some overhead, and every modifyRow
about to become a SQLUpdate
or SQLInsert
must be iterated over, to check for omissions. Hence, every column value sent to the database is checked. If the input XML
has mostly omissions, then the cost overhead should be more than compensated by sending fewer values to the database.
Incompatible Interactions
DirectSQL="true"
and DetectOmissions="true"
- DetectOmissions
takes precedence. The following are some examples for incompatible interactions:
DetectOmissionsMerge
IgnoreNullsMerge
OptimizeMerge
Note: For migrated old BPEL project, you must re-run the Database Adapter Wizard to regenerate the JCA file. When re-run the Database Adapter Wizard, the |
See the following for more information:
You can also access the forums from Oracle Technology Network at
This site contains over 2,000 topics, such as implementing native sequencing, optimistic locking, and JTA-managed connection pools with TopLink
OutputCompletedXml
FeatureOutputCompletedXml
is a feature of the outbound insert
activity. The following are some of the features of the OutputCompletedXml
feature:
Available Since
Release 10.1.2.0.2
Configurable
OutputCompletedXml
appears in the JCA file only when default is true
.
Default Value
It is true
when TopLink
sequencing is configured to assign primary keys on insert from a database sequence, otherwise it is false
.
Issue
You can have primary keys auto-assigned on insert
from a database sequence. However, the usefulness of this feature is diminished, because insert
/merge
have no output message, so there is no way to tell which primary keys were assigned.
Note: After configuring sequencing (link), run the Adapter Configuration Wizard again so that the |
Performance
An output
XML
is provided only when the output
XML
would be significantly different, so if TopLink
sequencing is not used, then this feature is disabled and there is no performance hit. Further, this feature can be explicitly disabled. Likewise, the original input XML
is updated and returned; a completely new XML
is not built. Also only a shallow update of the XML
is performed; if primary keys were assigned to detail records, then these are not reflected in the output XML
.
Incompatible Interactions
DirectSQL="true"
and "OutputCompletedXml"
- OutputCompletedXml
takes precedence.
You can configure QueryTimeout
from the Adapter Configuration Wizard- Advanced Options page. This feature exposes the java.sql.Statement
level property of the same name. Essentially, QueryTimeout
allows you to configure a timeout on the call.
In this feature, the entire invocation is in a single thread and global transaction. By default, initiation is asynchronous and the BPEL process is invoked in a separate global transaction. With Oracle Mediator, it is generally a synchronous invoke so this is only specific to an Oracle BPEL process.
To enable this feature, click the Do Synchronous Post to BPEL (Allow In-Order Delivery) option in the Adapter Configuration Wizard - Operation page.
This section includes the following topics related to Oracle Database Adapter Concepts:
This section includes the following topics related to Relational-to-XML mapping:
For a flat table or schema, the relational-to-XML mapping is easy to see. Each row in the table becomes a complex XML element. The value for each column becomes a text node in the XML element. Both column values and text elements are primitive types.
Table 9-3 shows the structure of the MOVIES
table. This table is used in the use cases described in this chapter. See Oracle Database Adapter Use Cases for more information.
Table 9-3 MOVIES Table Description
Name | Null? | Type |
---|---|---|
| NOT NULL |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
The corresponding XML schema definition (XSD) is as follows:
As the preceding code example shows, MOVIES
is not just a single CLOB
or XMLTYPE
column containing the entire XML string. Instead, it is an XML complexType
comprising elements, each of which corresponds to a column in the MOVIES
table. For flat tables, the relational-to-XML mapping is straightforward.
Table 9-4 and Table 9-5 show the structure of the EMP
and DEPT
tables, respectively. These tables are used in the MasterDetail
use case. See Oracle Database Adapter Use Cases for more information.
Table 9-4 EMP Table Description
Name | Null? | Type |
---|---|---|
| NOT NULL |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
| -- |
|
Table 9-5 DEPT Table Description
Name | Null? | Type |
---|---|---|
| NOT NULL |
|
| -- |
|
| -- |
|
As the preceding table definitions show, and as is typical of a normalized relational schema, an employee's department number is not stored in the EMP table. Instead, one of the columns of EMP
(DEPTNO
) is a foreign key, which equals the primary key (DEPTNO
) in DEPT
.
However, the XML file equivalent has no similar notion of primary keys and foreign keys. Consequently, in the resulting XML file, the same data is represented in a hierarchy, thereby preserving the relationships by capturing the detail record embedded inside the master.
An XML element can contain elements that are either a primitive type (string
, decimal
), or a complex type, that is, another XML element. Therefore, an employee element can contain a department element.
The corresponding XML shows how the relationship is materialized, or shown inline. DEPTNO
is removed from EMP
, and instead you see the DEPT
itself.
Materializing the relationship makes XML human readable and allows the data to be sent as one packet of information. No cycles are allowed in the XML file; therefore, an element cannot contain itself. This is handled automatically by the Oracle Database Adapter. However, you may see duplication (that is, the same XML detail record appearing more than once under different master records). For example, if a query returned two employees, both of whom work in the same department, then, in the returned XML, you see the same DEPT
record inline in both the EMP
records.
Therefore, when you import tables and map them as XML, it is recommended that you avoid excessive duplication, although the Oracle Database Adapter does not print an element inside itself. The Oracle Database Adapter prints the following:
But not:
To avoid duplication, you can do the following:
EMP
, then DEPT
does not appear. EMP
and DEPT
in the Adapter Configuration Wizard. This removes the relationship, but the foreign key column is put back. In both these cases, the corresponding XML is as follows:
Either preceding solution is feasible only if returning foreign key suffices, as opposed to getting back the complete detail record in its entirety.
Table 9-6 shows how database data types are converted to XML primitive types when you import tables from a database.
Table 9-6 Mapping Database Data Types to XML Primitive Types
Database Type | XML Type (Prefixed with xs:) |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Essentially, NUMBER
goes to DECIMAL
, the most versatile XML data type for numbers, VARCHAR2
and CLOB
to string
, BLOB
to base64Binary
(to meet the plain-text requirement), and date
types to dateTime
.
Any type not mentioned in this discussion defaults to java.lang.String
and xs:string
. Time Stamp support is basic, because only the xs:dateTime
format is supported. The BFILE
type is specifically not supported.
Note: The user-defined |
Because XML is plain text, BLOB
and byte
values are base 64/MIME
encoded so that they can be passed as character data.
The Oracle Database Adapter supports mapping any relational schema on any relational database to an XML schema, although not any XML schema of your choice, because the Adapter Configuration Wizard generates the XML schema with no explicit user control over the layout of the elements. You can control how you map the schema in both the Adapter Configuration Wizard and later in TopLink Workbench. By pairing the Oracle Database Adapter with a transformation step, you can map any relational schema to any XML schema.
When executing a SQL select
statement against multiple related tables there are the following three methods to build the SQL. These ways relate to how to pull in the detail records when the query is against the master record:
The following sections contain an outline of these three methods and their comparison. When selecting rows from a single table there are no issues different from selecting from multiple tables.
Having selected a Master
row, TopLink
can always query separately to get all the details belonging to that Master
table. These hidden queries (relationship queries) are cached in the TopLink
metadata and must be prepared only once.
Consider the SQL statement in following sample scenario:
For each master, the SQL statement is as follows:
It enables you to bring in all the data with 1 + n query executions, where n is the number of master rows returned by the first query.
This approach is safe but slow, as a large number of round trips to the database are required to pull in all the data.
For configuring using the relationship Queries (TopLink default) approach, you must edit or_mappings.xml
outside of JDeveloper. In addition, change the batch-reading elements value to false.
This is a default feature that allows TopLink
to alter the original SQL select
statement to read all the details in a second select
statement, as shown in the following example:
By considering the original select
statement in pulling in the details, a total of two (1 + 1 = 2) query executions must be performed.
Advantages
Batch attribute reading has the following advantages:
Disadvantages
Batch attribute reading has the following disadvantages:
maxTransactionSize
(on polling receive) or maxRows
(on invoke select) to limit the number of rows loaded into memory at a time, these settings do not easily carry over to the batch attribute query. It is easier to work with a cursored result when there is only a single result set. (Multiple cursors can be used with difficulty, if the original query has an order by clause). TopLink
can alter a SQL statement, only when it is in a format it can understand. If you use the hybrid SQL approach and set custom SQL for the root select
, then TopLink
cannot interpret that SQL to build the batch select
. DISTINCT
clause is used on the batch query, to avoid returning the same detail twice if two masters happen to both point to it. The DISTINCT
clause cannot be used when returning LOBs in the resultset. Configuration
Configuration is on a per 1-1
or 1-M
mapping basis. By default, all such mappings since the 10.1.2.0.2 release have this property set. To configure, edit or_mappings.xml
outside JDeveloper and edit the <batch-reading> elements to true (default) or false.
The detail tables are outer-joined to the original SQL select
statement, returning both master and detail in a single result set, as shown in the following example:
This requires one query execution in total.
Advantages
The advantages include the following:
maxTransactionSize
while polling, the benefits of dealing with a single cursor can be great. TopLink
normally uses a series of additional hidden SQL statements to bring in related rows. read
consistency: Enables you to read all related rows at the same time, and not at different instances in time for the different tables. Disadvantages
There are some drawbacks, however, namely the cost of returning duplicate data. For example, consider that you read the Master
and Detail
tables; Master
has 100 columns in each row, and Detail
has 2 columns in each row. Each row in the table, Master
also, typically has 100 related Detail
rows.
With one query in each table, the result sets for the preceding example appears, as shown in the following example:
In this example, 300 column values are returned as shown:
With one query for all tables, the result set appears, as shown in the following example:
When there is one query for all tables, 10,200 column values are returned in a single result set, versus 300 in two result sets, as shown here:
This can have a serious drain on network traffic and computation because 97 percent of the data returned is duplicate data. Also, if the master had two related tables detail1
and detail2
and there were 100 each in each master, then the number of column values returned would be over 10 million per master row.
In general, you can use the following simple formula to estimate the relative cost of returning all rows in a single result set:
For 1-1
relationships, this value is always 1, and if in the same example each master had two columns only and the details had 100 columns instead, and each master had only 3 or 4 details each, then the bloat would be
Another disadvantage is that this setting could distort the meaning of the maxRows
setting on an outbound select.
Configuration
To configure, select Use Outer Joins to return a Single Result Set for both Master and Detail Tables on the Adapter Configuration Wizard - Define Selection Criteria page.
Note: When you create a SQL query such as the following by using the TopLink Expression Builder, the result may not be as expected: SELECT DISTINCT t1.TABLE1_ID, t1.COLUMN_A FROM TABLE2 t0, TABLE1 t1 WHERE ((t0.STATUS = 1) AND (t0.TABLE1_ID = t1. TABLE1_ID)) The expected result for this query is that only rows with Table 1's and their owned Table 2's with status = 1 be returned. However, what this query actually translates to is "table 1's, where any of its table 2's have status = 1," resulting in the return of table 1's that match the selection criteria, and The misunderstanding happens in the way Toplink works. Through the Expression Builder, you can only specify a selection criteria for Table 1 and have no control over the Table 2's they own, this part is automatically done. However, you can get the expected result by using either of the following two approaches: 1.) Query directly for table 2 using the selection criteria of status = 1, that is, do not go through table 1 and get the table 2's they own. 2.) Use direct (custom SELECT TABLE1.TABLE1_ID, TABLE1.COLUMN_A, TABLE2.STATUS FROM TABLE2, TABLE1 WHERE TABLE2.STATUS=1 AND TABLE1. TABLE1_ID = TABLE2.TABLE1_ID |
Superficially, returning a single result set looks best (1 query), followed by batch attribute reading (altering the select
statement: 2 queries), and finally by default relationship reading (n + 1 queries). However, there are several pitfalls to both of the more advanced options, as explained below:
Altering User-Defined SQL
If you specify custom/hybrid
SQL, the TopLink
cannot alter that SQL string to build the details select
. For this reason, you must avoid using hybrid
SQL and build selects
using the wizards' visual expression builder
as often as possible.
Show Me the SQL
The additional queries executed by TopLink
in both, the default and the batch attribute reading cases can be somewhat of a mystery to users. For this reason, the raw
SQL shown to users in the Adapter Configuration Wizard assumes returning a single result set, to make things clearer and also to improve manageability.
Returning Too Many Rows At Once
Databases can store vast quantities of information, and a common pitfall of select
statements which return too much information at once. On a DBAdapter
receive
, a maxTransactionSize
property can be set to limit the number of rows which are read from a cursored result set and processed in memory at a time. A similar max-rows
setting exists for one time invoke select
statements. However, this setting is very risky.
After mapping a relational schema as XML, you must also map basic SQL operations as Web services. Each operation discussed in the following sections has a corresponding tutorial and a readme file. It is recommended that you start with these and try to run one or more as you read this section. As the tutorials demonstrate, some operations translate directly to the SQL equivalent, while others are more complex.
This section includes the following topics:
Data manipulation language (DML) operations align with basic SQL INSERT
, UPDATE
, and SELECT
operations. SQL INSERT
, UPDATE
, DELETE
, and SELECT
are all mapped to Web service operations of the same name. The MERGE
is either an INSERT
or UPDATE
, based on the results of an existence check. A distinction is made between the data manipulation operations—called outbound writes—and the SELECT
operations—called outbound reads. The connection between the Web service and the SQL for merge
(the default for outbound write) and queryByExample
are not as obvious as for basic SQL INSERT
, UPDATE
, and SELECT
.
This section includes the following topics:
Merge
first reads the corresponding records in the database, calculates any changes, and then performs a minimal update. INSERT
, UPDATE
, and MERGE
make the most sense when you are thinking about a single row and a single table. However, your XML can contain complex types and map to multiple rows on multiple tables. Imagine a DEPT
with many EMPS
, each with an ADDRESS
. In this case, you must calculate which of possibly many rows have changed and which to insert, update, or delete. If a specific row did not change or only one field changed, then the DML calls is minimal.
Unlike the SELECT
operation, queryByExample
does not require a selection criteria to be specified at design time. Instead, for each invoke
, a selection criteria is inferred from an exemplary input XML record.
For instance, if the output xmlRecord
is an employee record, and the input is a sample xmlRecord
with lastName = "Smith"
, then on execution, all employees with a last name of Smith are returned.
A subset of queryByExample
is to query by primary key, which can be implemented by passing in sample XML records where only the primary key attributes are set.
Use queryByExample
when you do not want to create a query using the visual query builder and want the flexibility of allowing the input record to share the same XML schema as the output records.
The queryByExample
operation is slightly less performant because a new SELECT
must be prepared for each execution. This is because the attributes that are set in the example XML record can vary each time, and therefore the selection criteria vary.
Input xmlRecord
:
Output xmlRecord
:
Use Cases for Outbound Invoke Operations
Outbound invoke operations are demonstrated in the following tutorial files:
Insert
Update
Delete
Merge
SelectAll
SelectAllByTitle
PureSQLSelect
QueryByExample
To obtain these files, access the Oracle SOA Sample Code site.
A new option in 10.1.3.1 enables you to specify any arbitrary SQL string, and an XML representing the inputs and outputs to the SQL is generated. Pure SQL operations are demonstrated in the following tutorial files:
UpdateAll
SelectCount
SelectGroupBy
SelectStar
To obtain these files, access the Oracle SOA Sample Code site.
Advanced Use Cases for Outbound Invoke Operations
Advanced outbound invoke operations are demonstrated in the following tutorial files:
InsertWithClobs
XAInsert
NativeSequencingInsert
To obtain these files, access the Oracle SOA Sample Code site.
The inbound receive enables you to listen to and detect events and changes in the database, which in turn can be the initiators of a business process. This is not a one-time action, but rather an activation. A polling thread is started, which polls a database table for new rows or events.
Whenever a new row is inserted into the MOVIES
table, the polling operation raises it to the SCA Run Time. The strategy is to poll every record once. The initial SELECT
has to be repeated over time, to receive the rows that exist at the start and all new rows as they are inserted over time. However, a new row once read is not likely to be deleted, and therefore can possibly be read repeatedly with each polling.
The various ways to poll for events, called polling strategies, also known as after-read strategies or publish strategies, range from simple and intrusive to sophisticated and nonintrusive. Each strategy employs a different solution for the problem of what to do after reading a row or event so as not to pick it up again in the next polling interval. The simplest (and most intrusive) solution is to delete the row so that you do not query it again.
This section discusses the following polling operations that you can perform after the data is read from the database. This section also discusses the strategies and factors to help you determine which strategy to employ for a particular situation:
Table_Name
] Table (Logical Delete) Delete the Row(s) that were Read
Choose this operation to employ the physical delete polling strategy. This operation polls the database table for records and deletes them after processing. Use this strategy to capture events related to INSERT
operations and cannot capture database events related to DELETE
and UPDATE
operations on the parent table. This strategy cannot be used to poll child table events. This strategy allows multiple adapter instances to go against the same source table. There is zero data replication.
Preconditions: You must have deletion privileges on the parent and associated child tables to use the delete polling strategy. Table 9-7 describes the requirements for using the delete polling strategy.
Table 9-7 Delete Polling Strategy Preconditions
Requirements Met | Conflicts With |
---|---|
Poll for inserts | No delete on source |
Shallow delete | No updates on source |
Cascading delete | Poll for updates |
Minimal SQL | Poll for deletes |
Zero data replication | Poll for child updates |
Default | -- |
Allows raw SQL | -- |
Concurrent polling | -- |
Note: In Shallow delete and Cascading delete, the delete operation can be configured to delete the top-level row, to cascade all, or to cascade on a case-by-case basis. Concurrent polling can be configured for both delete and logical delete polling strategies. |
Configuration: You can configure the delete polling strategy to delete the top-level row, to cascade all, or to cascade on a case-by-case basis. This strategy enables deleting only the parent rows and not the child rows, cascaded deletes, and optional cascaded deletes, determined on a case-by-case basis. You can configure the polling interval for performing an event publish at design time.
Delete Cascade Policy: The optional advanced configuration is to specify the cascade policy of the DELETE
operation. For instance, after polling for an employee with an address and many phone numbers, the phone numbers are deleted because they are privately owned (default for one-to-many), but not the address (default for one-to-one). This can be altered by configuring or_mappings.xml
, as in the following example:
You can also configure the activation itself to delete only the top level (master row) or to delete everything.
A receive operation appears in an inbound JCA as follows:
Update a Field in the [Table_Name
] Table (Logical Delete)
Choose this operation to employ the logical delete polling strategy. This strategy involves updating a special field on each row processed and updating the WHERE
clause at run time to filter out processed rows. It mimics logical delete, wherein applications rows are rarely deleted but instead a status column isDeleted
is set to true. The status column and the read value must be provided, but the modified WHERE
clause and the post-read update are handled automatically by the Oracle Database Adapter.
Preconditions: You must have the logical delete privilege or a one-time alter schema (add column) privilege on the source table. Table 9-8 describes the requirements for using the logical delete polling strategy.
Table 9-8 Logical Delete Polling Strategy Preconditions
Requirements Met | Conflicts With |
---|---|
Poll for inserts | No updates on source |
No delete on source | Poll for deletes |
Minimal SQL | -- |
Zero data replication | -- |
Minimal configuration | -- |
Allows raw SQL | -- |
Poll for updates | -- |
Poll for child updates | -- |
Concurrent polling | -- |
Note: The requirements of the following are met, as follows:
|
Configuration: The logical delete polling strategy requires minimal configuration. You must specify the mark read column and the value that indicates a processed record.
A receive operation appears in an inbound WSDL as follows:
Given the configuration for logical delete, the Oracle Database Adapter appends the following WHERE
clause to every polling query:
Database Configuration: A status column on the table being polled must exist. If it does not exist already, you can add one to an existing table.
Support for Polling for Updates: Given that rows are not deleted with each read, it is possible to repetitively read a row multiple times. You must add a trigger to reset the mark read field whenever a record is changed, as follows:
Support for Concurrent Access Polling: Just as a single instance should never process an event more than once, the same applies to a collection of instances. Therefore, before processing a record, an instance must reserve that record with a unique value. Again, the status column can be used:
The polling query instead appears, as shown in the following example:
The after-read UPDATE
is faster because it can update all:
Update a Sequencing Table
Choose this operation to employ the sequencing table: last-read Id strategy. This polling strategy involves using a helper table to remember a sequence value. The source table is not modified; instead, rows that have been read in a separate helper table are recorded. A sequence value of 1000
, for example, means that every record with a sequence less than that value have been processed. Because many tables have some counter field that is always increasing and maintained by triggers or the application, this strategy can often be used for noninvasive polling. No field on the processed row must be modified by the Oracle Database Adapter.
Native sequencing with a preallocation size of 1
can ensure that rows are inserted with primary keys that are always increasing over time.
This strategy is also called a nondestructive delete because no updates are made to the source rows, and you can use a sequencing strategy such as the sequence
field to order the rows in a sequence for processing. When the rows are ordered in a line, the Oracle Database Adapter knows which rows are processed and which are not with a single unit of information.
Preconditions: You must have a sequencing table or create table privilege on the source schema. The source table has a column that is monotonically increasing with every INSERT
(an Oracle native sequenced primary key) or UPDATE
(the last-modified timestamp). Table 9-9 describes the requirements for using the sequencing polling strategy.
Table 9-9 Sequencing Polling Strategy Preconditions
Requirements Met | Conflicts With |
---|---|
Poll for inserts | Poll for deletes |
Poll for updates | Allows raw SQL |
No delete on source | Concurrent polling |
No updates on source | -- |
One extra SQL select | -- |
Zero data replication | -- |
Moderate configuration | -- |
Poll for child updates | -- |
Configuration: A separate helper table must be defined. On the source table, you must specify which column is ever increasing.
The sequencing field type can be excluded if it is actually a number.
Database Configuration: A sequencing table must be configured once for a given database. Multiple processes can share the same table. Given the ActivationSpec
specified in the preceding example, the CREATE TABLE
command looks as follows:
Polling for Updates: In the preceding example, the polling is for new objects or updates, because every time an object is changed, the modified time is updated.
A sample trigger to set the modified time on every insert
or update
is as follows:
Using a Sequence Number: A sequence number can be used for either insert or update polling. Native sequencing returns monotonically increasing primary keys, when an increment by 1 is used. You can also use the sequence number of a materialized view log.
Update an External Sequencing Table on a Different Database
Choose this operation to employ the sequencing table: last updated strategy. This polling strategy involves using a helper table to remember a last_updated
value. A last_updated
value of 2005-01-01 12:45:01 000
, for example, means that every record last updated at that time or earlier have been processed. Because many tables have rows with a last_updated
or creation_time
column maintained by triggers or the application, this strategy can often be used for noninvasive polling. Fields on the processed row never require modification by the Oracle Database Adapter.
This strategy is also called a nondestructive delete because no updates are made to the source rows, and you can use a sequencing strategy such as the last_updated
field to order the rows in a sequence for processing. When the rows are ordered in a line, the Oracle Database Adapter knows which rows are processed and which are not with a single unit of information.
See Update a Sequencing Table for information about preconditions and configuration.
Update a Sequencing File
This strategy works similar to Update an External Sequencing Table on a Different Database, the only difference is that the control information is stored in a file instead of a table.
Choose this operation to employ the control table polling strategy. This polling strategy involves using a control table to store the primary key of every row that has yet to be processed. With a natural join between the control table and the source table (by primary key), polling against the control table is practically the same as polling against the source table directly. However, an extra layer of indirection allows the following:
WHERE
clause may not be enough). Streams and materialized view logs make good control tables.
Preconditions: You must have the create/alter triggers privilege on the source table. Table 9-10 describes the requirements for using the control table polling strategy.
Table 9-10 Control Table Polling Strategy Preconditions
Requirements Met | Conflicts With |
---|---|
Poll for inserts | Advanced configuration: the native XML from the database has control header, and triggers are required. |
Poll for updates | -- |
Poll for deletes | -- |
Poll for child updates | Minimal data replication (primary keys are stored in control table) |
No delete on source | -- |
No updates on source | -- |
No extra SQL selects | -- |
Concurrent polling | -- |
Allows raw SQL | -- |
Auditing | -- |
Using triggers, whenever a row is modified, an entry is added to a control table, containing the name of the master table, and the primary keys. At design time, the control table is defined to be the root table, with a one-to-one mapping to the master table, based on the matching primary keys. The control table can contain extra control information, such as a time stamp, and operation type (INSERT
, UPDATE
, and so on).
The delete polling strategy is useful with this setup. It is important to keep the control table small, and if the option shouldDeleteDetailRows="false"
is used, then only the control rows are deleted, giving you a nondestructive delete (the DELETE
is not cascaded to the real tables).
It is possible to reuse the same control table for multiple master tables. In TopLink, you can map the same table to multiple descriptors by mapping the control table as one abstract class with multiple children. Each child has a unique one-to-one mapping to a different master table. The advantage of this approach is that you can specify for each child a class indicator field and value so that you do not need an explicit WHERE
clause for each polling query.
The following are sample triggers for polling for changes both to a department table and any of its child employee rows:
Use Cases for Polling Strategies
Polling strategies are demonstrated in the following tutorials:
PollingLogicalDeleteStrategy
PollingLastUpdatedStrategy
PollingLastReadIdStrategy
PollingControlTableStrategy
MasterDetail
(for physical delete polling strategy To obtain these files, access the Oracle SOA Sample Code site.
Advanced Use Cases for Polling Strategies
Advanced polling strategies are demonstrated in the following tutorials:
DistributedPolling
PollingExternalSequencing
PollingFileSequencingStrategy
PollingForChildUpdates
PollingNoAfterReadStrategy
PollingOracleSCNStrategy
PollingPureSQLOtherTableInsert
PollingPureSQLSysdateLogicalDelete
PollingWithParameters
To obtain these files, access the Oracle SOA Sample Code site.
The Oracle Database Adapter comes deployed to the application server by the install. It contains a single adapter instance entry eis/DB/SOADemo
, which points to the data source jdbc/SOADataSource
. The connection information to the database is inside the data source definition.
When deploying a SOA project that uses the OracleAS Adapter for Databases, you might have to add a new adapter instance and restart the application server first. This could be because you want to point to a database other than the one referred in jdbc/SOADataSource
, or because you chose a name for the adapter instance that does not yet exist. For instance, if you create a connection in JDeveloper named Connection1
, then by default the DB Adapter service points to eis/DB/Connection1
, as shown in Figure 9-7.
You can also check which adapter instance the service is pointing to by looking at the db.jca
file, as shown in the following code snippet:
In the preceding example, the location is the JNDI name of the adapter instance at run time, and UIConnectionName
is the name of the connection used in JDeveloper.
You can create a DB Adapter instance through the Oracle WebLogic Server Administration Console, as mentioned in Section 2.18, "Adding an Adapter Connection Factory" or by directly editing the weblogic-ra.xml
file. Following these steps are screenshots that show how to create an adapter instance through the Oracle WebLogic Administration Console. The following are the steps to edit weblogic-ra.xml
:
fmwhome
/ for DbAdapter.rar
. META-INF
/weblogic-ra.xml
(and possibly ra.xml
.) The following is a sample adapter instance in weblogic-ra.xml
:
The four mandatory properties are: jndi-name
, xADataSourceName
, dataSourceName
, and platformClassName
. The jndi-name
property must match the location attribute in the db.jca
file, and is the name of the adapter instance.
The xADataSourceName
property is the name of the underlying data source (which has the connection information).
The platformClassName
indicates which SQL to generate. For information about PlatformClassName
, see Table 9-11, "Database Platform Names".
The following screenshots show how to edit Database Adapter properties using the Oracle WebLogic Administation Console
The first screenshot shows navigation to the Outbound Connectio Pools within the WebLogic Administration Console. This is the actual Database Adapter Configuration, from where you can go to the subsequent page to edit the Database Adapter properties.
Figure 9-29 The Outbound Connection Pools Tab of the WebLogic Console
The second screenshot shows editing properties from the WebLogic Console that you edit accordingly andas needed. Name, Type and Value are displayed on a per-property basis.
Figure 9-30 Database Adapter Properties in the Oracle WebLogic Administration Console
Most Common Mistakes
The following are the two most common mistakes with deployment:
db.jca
file (or not creating one at all.) db.jca
file to the name of the data source directly. For the latter, there is a level of indirection in that you give the name of the adapter instance (eis/DB/...
), which itself points to the data source pool (jdbc/...
). It is a common mistake to miss this indirection and give the name jdbc/...
directly in the location attribute.
Data Source Configuration
For the relevant Data Source configuration for your application server, see Section 9.6, "JDBC Driver and Database Connection Configuration." When configuring an Oracle data source, ensure that you use the thin XA
option.
Additional Adapter Instance Properties
This section briefly describes additional properties in the DB Adapter instance beyond xADataSourceName
, dataSourceName
, and platformClassName
. When adding a property to weblogic-ra.xml
, you must ensure that the property is also declared in ra.xml
(also in DbAdapter.rar
). For example, the following is a code snippet of the ra.xml
file for the property xADataSourceName
in weblogic-ra.xml
:
For information about the Oracle Database Adapter instance properties, see Appendix A, "Oracle Database Adapter Properties." Apart from the properties mentioned there, you can also add the properties listed in the following table:
Property Name | Type |
---|---|
| Boolean |
| Boolean |
| Boolean |
| Boolean |
| Boolean |
| String |
| Boolean |
| Integer |
| String |
shouldOptimizeDataConversion | Boolean |
| Boolean |
| String |
| Integer |
| String |
| Boolean |
| Boolean |
The preceding properties appear in the oracle.toplink.sessions.DatabaseLogin
object. See TopLink
API reference information on DBConnectionFactory
Javadoc and DatabaseLogin
Javadoc at http://download.oracle.com/docs/cd/B10464_02/web.904/b10491/index.html
.
Table 9-11 lists databases and their advanced properties, which are database platform variables. Set the platformClassName
name to a listed variable. Setting platformClassName
is mandatory if you are using an advanced database.features that are not uniform across databases, such as native sequencing or stored procedures.
As an example, to execute a stored procedure on DB2 versus SQL Server, the DbAdapter must generate and send different SQL.Use the example below for use with the SQLServer Platform :
execute <procedure> @<arg1>=? ...
when using the DB2 Platform:
call <procedure>(?, ...)
The platformClassName
setting indicates which SQL to generate. Since most databases offer non-uniform features (that is, variants on the ANSI SQL 92 language specification), it is safest to configure platformClassName
accurately.The default value is Oracle10Platform
, and should be changed to the appropriate variable if you are connecting to a different database vendor.
Note: Providing the qualified class name with package is not necessary if it starts with org.eclipse.persistence.platform.database |
Table 9-11 Database Platform Names
Database | PlatformClassName |
---|---|
Oracle10+ (including 11g) |
|
Oracle9+ (optional): |
|
Oracle8 |
|
Oracle7 |
|
DB2 |
|
DB2 on AS400e |
|
Informix |
|
SQLServer |
|
MySQL |
|
Any other database |
|
In this release, Oracle JCA Adapters are certified against the following third-party databases using Oracle WebLogic Server Type 4 JDBC drivers:
Note: Only major databases and versions are certified. Working with other databases should be feasible when they provide a working JDBC driver, and you rely on core ANSI SQL relational features, such as Create, Read, Update, and Delete (CRUD) operations on tables and views. Issues tend to be more prevalent due to the fact that not all JDBC drivers implement database metadata introspection the same way. However, it should be possible to import matching tables on a certified database and then point to the uncertified database at runtime. The information provided in this section for uncertified databases is meant as a guide only. |
For more information, see the following topics:
To create a database connection when using a native or bundled Oracle WebLogic Server JDBC driver:
For more information, see:
The New Gallery page is displayed.
A list of the different connections that you can make is displayed in the Items pane on the right side of the New Gallery page.
The Create Database Connection page is displayed.
For example, SQLServer
.
For example, jdbc:sqlserver://
HOST-NAME
:
PORT
;databaseName=
DATABASE-NAME
For more information, see:
weblogic-ra.xml
). To create a database connection when using a third-party JDBC driver:
For more information, see Section 9.6.4, "Location of JDBC Driver JAR Files and Setting the Class Path".
The New Gallery page is displayed.
A list of the different connections that you can make is displayed in the Items pane on the right side of the New Gallery page.
The Create Database Connection page is displayed.
For example, SQLServer
.
The Register JDBC Driver dialog is displayed.
Perform Steps 10, 11 and 19 in the Register JDBC Driver dialog.
Enter the driver name (for example, some
.jdbc.
Driver
) for Driver Class.
For example, com.microsoft.sqlserver.jdbc.SQLServerDriver
.
Click Browse for Library.
The Select Library dialog is displayed.
Click New to create a library.
The Create Library dialog is displayed.
Specify a name in the Library Name field.
For example, SQL Server JDBC
.
The Select Path Entry dialog is displayed.
For example, select sqljdbc.jar
.
Click OK to exit the Create Library dialog.
Click OK to exit the Select Library dialog.
Click OK to exit the Register JDBC Driver dialog.
For example, jdbc:sqlserver://
HOST-NAME
:
PORT
;databaseName=
DATABASE-NAME
For more information, see:
weblogic-ra.xml
). Table 9-12, "Database Driver Selection (from Weblogic Server Console)" summarizes the connection information for common third-party databases.
For information about PlatformClassName
, see Table 9-11, "Database Platform Names".
For more information, see:
Table 9-12 Database Driver Selection (from Weblogic Server Console)
Database | JDBC Driver |
---|---|
Microsoft SQL Server |
|
Sybase |
|
Informix |
|
IBM DB2 |
|
MySQL | MySQL's Driver (Type 4) Versions: using |
You must note the following when connecting to a SQL Server database:
From the sqlcmd
login, you can deduce what your connect string is, as in the following examples:
Example 1:
Example 2:
Example 3:
A full URL is as follows:
If you must explicitly supply the database name, but do not know it, go to
If you see a file named master.mdf
, then one database name is master.
Ensure that SQL Server Browser is running and that your SQL Server service has TCP/IP enabled and is listening on static port 1433. Disable dynamic ports. In SQL Native Client Configuration/Client Protocols, ensure that TCP/IP is enabled and that the default port is 1433.
You must download the JDBC drivers separately. From www.microsoft.com
, click Downloads and search on jdbc. You can also try using the DataDirect driver.
This section includes the following topics:
URL: jdbc:weblogic:sybase://SERVER-NAME:PORT;databaseName=
DATABASE-NAME
Driver Class: weblogic.jdbc.sybase.SybaseDriver
Driver Jar: jConnect-6_0\classes\jconn3.jar
For information about the Sybase JConnect JDBC driver, refer to the following link:
This section includes the following topics:
URL: jdbc:informix-sqli://
HOST-NAME-OR-IP
:
PORT-OR-SERVICE-NAME
/
DATABASE-NAME
:INFORMIXSERVER=
SERVER-NAME
Driver Class: com.informix.jdbc.IfxDriver
Driver Jar: ifxjdbc.jar
For information about the Informix JDBC driver, refer to the following link:
This section includes the following topics:
URL: jdbc:db2:localhost:NAME
Driver Class: com.ibm.db2.jcc.DB2Driver
Driver Jar (v8.1): db2jcc.jar
, db2jcc_javax.jar
, db2jcc_license_cu.jar
For information about DataDirect driver, refer to the following link:
URL: jdbc:as400://
hostname;
translate binary=true
Driver Class: com.ibm.as400.access.AS400JDBCDriver
Driver Jar: jt400.jar
For correct character set translation, use translate binary=true
.
URL: jdbc:db2://
hostname:port
/schemaname
Driver Class: com.ibm.db2.jcc.DB2Driver
Driver Jar: db2jcc.jar
, db2jcc4.jar
and db2java.zip
Use the following information:
URL: jdbc:mysql://
hostname
:3306
/dbname
Driver Class: com.mysql.jdbc.Driver
Driver Jar: mysql-connector-java-3.1.10-bin.jar
This section describes the location of JDBC JAR files and setting the class path at run time and design time.
Run Time
For both Windows and Linux, you must perform the following steps:
user_projects/domains/soainfra/lib
directory. <Weblogic_Home>/server/lib
. <Weblogic_HOME>/common/bin/commEnv.sh
Design Time
For both Windows and Linux, drop the JDBC JAR to the Oracle/Middleware/jdeveloper/jdev/lib/patches
directory.
This section describes how the Oracle Database Adapter supports the use of stored procedures and functions.
This section includes the following topics:
The Adapter Configuration Wizard – Stored Procedures is used to generate an adapter service WSDL and the necessary XSD. The adapter service WSDL encapsulates the underlying stored procedure or function as a Web service with a WSIF JCA binding. The XSD file describes the procedure or function, including all the parameters and their types. This XSD provides the definition used to create instance XML that is submitted to the Oracle Database Adapter at run time.
This section includes the following topics:
This section describes how to use the Adapter Configuration Wizard with APIs that are not defined in PL/SQL packages. You use the Adapter Configuration Wizard – Stored Procedures to select a procedure or function and generate the XSD file. See Section 9.8, "Oracle Database Adapter Use Cases" if you are not familiar with how to start the Adapter Configuration Wizard.
The following are the steps to select a stored procedure or function by using the Adapter Configuration Wizard:
Drag and drop Database Adapter from the Service Adapters list to the Exposed Services swim lane in the composite.xml page.
The Adapter Configuration Wizard is displayed, as shown in Figure 9-31.
Figure 9-31 The Adapter Configuration Wizard
Note: Note that the name of stored procedures or packages that refers to database or user-defined data types must not include the character $ in it. The presence of $ in the name would cause the XSD file generation to fail. |
You associate a connection with the service, as shown in Figure 9-33. A database connection is required to configure the adapter service. Select an existing connection from the list or create a new connection.
Figure 9-33 Setting the Database Connection in the Adapter Configuration Wizard
Figure 9-34 Calling a Stored Procedure or Function in the Adapter Configuration Wizard
Figure 9-35 The Specify Stored Procedure Page
EMPLOYEE.GET_NAME
. If you do not know the schema and procedure names, click Browse to access the Stored Procedures window, as shown in Figure 9-36.
Figure 9-36 Searching for a Procedure or Function
Select a schema from the list or select <Default Schema>. A list of the available procedures is displayed in the left window. To search for a particular API in a long list of APIs, enter search criteria in the Search field. For example, to find all APIs that begin with XX
, enter XX%
and click the Search button. Clicking the Show All button displays all available APIs.
Figure 9-37 shows how you can select the FACTORIAL function. The Arguments tab displays the parameters of the function, including their names, type, mode (IN
, IN/OUT
or OUT
) and the numeric position of the parameter in the definition of the procedure. The return value of a function has no name and is always an OUT
parameter at position zero (0).
Figure 9-37 Viewing the Arguments of a Selected Procedure
Figure 9-38 shows how the Source tab displays the code that implements the function. Text that matches the name of the function is highlighted.
Figure 9-38 Viewing the Source Code of a Selected Procedure
Click OK after selecting a procedure or function. Information about the API is displayed, as shown in Figure 9-39. Click Back or Browse to make revisions.
Figure 9-39 Viewing Procedure or Function Details in the Adapter Configuration Wizard
REF CURSOR
on Oracle Database), as Figure 9-40 shows, you can define a strongly or weakly typed XSD for this ref cursor. Figure 9-40 Viewing Procedure or Function Details in the Adapter Configuration Wizard: Row Set Type
For more information, see:
Click Next. The Advanced Options page is displayed, as shown in Figure 9-41. Enter any advanced options, such as the JDBC QueryTimeout
value. Other options include retry parameters, such as the number of retry attempts and the interval between them.
When you have finished using the Adapter Configuration Wizard, three files are added to the existing project:
servicename
.wsdl
(for example, Factorial.wsdl
) service_name_db
.jca
(for example, Factorial_db.jca
) schema_package_procedurename
.xsd
(for example, SCOTT_FACTORIAL.xsd
) Using APIs defined in packages is similar to using standalone APIs. The only difference is that you can expand the package name to see a list of all the APIs defined within the package, as shown in Figure 9-42.
APIs that have the same name but different parameters are called overloaded APIs. As shown in Figure 9-42, the package called PACKAGE has two overloaded procedures called OVERLOAD.
Figure 9-42 A Package with Two Overloaded Procedures
As Figure 9-43 shows, the code for the entire PL/SQL package is displayed, regardless of which API from the package is selected when you view the Source tab. Text that matches the name of the procedure is highlighted.
Figure 9-43 Viewing the Source Code of an Overloaded Procedure
After you select a procedure or function and click OK, information about the API is displayed, as shown in Figure 9-44. The schema, procedure name, and a list of arguments are displayed. Note how the procedure name is qualified with the name of the package (PACKAGE.OVERLOAD). Click Back or Browse to make revisions, or Next. Enter values for any of the advanced options. Click Next followed by Finish to conclude.
Figure 9-44 Viewing Procedure or Function Details in the Adapter Configuration Wizard
When you have finished using the Adapter Configuration Wizard, the following files are added to the existing project:
Overload.wsdl
, Overload_db.jca
SCOTT_PACKAGE_OVERLOAD_2.xsd
. The _2
appended after the name of the procedure in the XSD filename differentiates the overloaded APIs. Numeric indexes are used to differentiate between overloaded APIs.
For stored procedures the following databases are supported: Oracle, DB2, Informix Dynamic Server, MySQL, Microsoft SQL Server, and Sybase Adaptive Server Enterprise. Contact support for specific versions that have been certified. If your particular version is more recent than one mentioned here it is probably supported.
For more information on Oracle JCA Adapters support for third-party JDBC drivers and databases, see Section 9.6, "JDBC Driver and Database Connection Configuration".
This section includes the following topics:
ProductName
This is the name of the database.
Database Name | Supported Database |
---|---|
IBM DB2 | IBM DB2 v 9.x |
Microsoft SQL Server | SQLServer 2000 or 2005 |
MySQL | MySQL v5.6 |
DriverClassName
This is the name of the JDBC Driver Class.
Database Name | JDBC Driver |
---|---|
IBM DB2 | c |
Microsoft SQL Server |
|
MySQL |
|
ConnectionString
This is the JDBC Connection URL.
Database Name | Connection String |
---|---|
IBM DB2 |
|
Microsoft SQL Server |
|
MySQL |
|
Username
This is the database user name.
Password
This is the password associated with the user name.
ProcedureName
This is the name of the stored procedure or the function.
ServiceName
This is the service name for the desired operation.
DatabaseConnection
This is the JNDI name of the connection. For example, eis/DB/<DatabaseConnection>
.
Destination
This is the destination directory for the generated files. For example, C:\Temp
.
Parameters
The parameters of the stored procedure (for versions of MySQL before 5.2.6 only.)
QueryTimeout
The JDBC query timeout value (in seconds.) The QueryTimeout
property specifies the maximum number of seconds that the JDBC driver should wait for the specified stored procedure or function to execute. When the threshold is exceeded, SQLException
is thrown. If the value is zero, then the driver waits indefinitely.
The Adapter Configuration Wizard supports Oracle Database, IBM DB2, AS/400, Microsoft SQL Server, and MySQL v5.2.6 or higher.
This section includes the following topics:
Table 9-13 lists the supported data types for SQL Server stored procedures and functions:
Table 9-13 Data Types for SQL Server Stored Procedures and Functions
SQL Data Type | XML Schema Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Besides, the data types mentioned in the preceding table, alias data types are also supported. Alias data types are created by using the sp_addtype
database engine stored procedure or the CREATE TYPE
Transact-SQL statement (only for SQL Server 2005.) The use of the Transact-SQL statement is the preferred method for creating alias data types. The use of sp_addtype
is being deprecated.
Table 9-14 lists the supported data types for DB2 SQL stored procedures:
Table 9-14 Data Types for DB2 SQL Stored Procedures
SQL Data Type | XML Schema Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The names of other data types are also supported implicitly. For example, NUMERIC
is equivalent to DECIMAL
(as is DEC
and NUM
as well.)
IBM DB2 supports structured data types (user-defined). However, there is no support for these types in the JDBC drivers. Consequently, a structured data type may not be used as the data type of a parameter in a stored procedure. IBM DB2 also supports user-defined functions. The adapter, however, does not support these functions.
In the Adapter Configuration Wizard, stored procedures are grouped by database user. A schema in IBM DB2 is equivalent to a schema in Oracle. Both represent the name of a database user.
For IBM DB2, <Default Schema> refers to the current database user.
Click <Default Schema> to select a different database user. The stored procedures in the Browse page are those that the database user created in the database specified as <database> in the JDBC Connection URL.
The Adapter Configuration Wizard does not support changing to a different database.
Select the stored procedure in the Stored Procedures dialog, as shown in Figure 9-45. The arguments are shown in the Arguments tab. Click Search to find database stored procedures that the user created in the specified database. For example, 'd%' or 'D%' would both find the DEMO
stored procedure. Clicking Show All reveals all of the procedures that the current user created in the specified database.
You can view the source code of the stored procedure by clicking the Source tab, as shown in Figure 9-46.
Figure 9-46 The Source Code of the Stored Procedure
Table 9-15 lists the supported data types for IBM DB2 AS/400 stored procedures:
Table 9-15 Data Types for IBM DB2 AS/400 Stored Procedures
SQL Data Type | XML Schema Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Distinct types are also supported for data types that are created using the CREATE DISTINCT TYPE
statement. These data types work in the same way as they do in IBM DB2.
The IBM DB2 AS/400 implementation is based on queries from catalog tables in the QSYS2
schema. The adapter tries to determine whether the QSYS2.SCHEMATA
table exists. If it does, then the Adapter Configuration Wizard queries tables in the QSYS2
schema. Therefore, if your IBM DB2 AS/400 database supports the QSYS2
schema, then the Adapter Configuration Wizard and the adapter run time should both work.
The Adapter Configuration Wizard checks the SYSCAT
schema first, and then the QSYS2
schema. The adapter does not support the catalog tables in the SYSIBM
schema.
Use the Adapter Configuration Wizard to access stored procedures on MySQL v5.6 or later using catalog tables in the INFORMATION_SCHEMA
schema. Versions of MySQL before v5.6 lack a PARAMETERS
table in the INFORMATION_SCHEMA
schema.
Without a PARAMETERS
table, the MySQL database does not provide any information about the parameters of a stored procedure. It is therefore necessary to supply this information using a required property in the properties file. The Parameters
property contains the signature of the stored procedure.
Property | Description |
---|---|
| Determines whether the API is a function or a procedure |
| The name of the database where the API is defined |
| The parameters of the stored procedure |
The value of the Parameters
property is a comma-delimited list of parameters, each of which has the following syntax
All three elements of a parameter definition are required.
Consider the following MySQL stored procedure:
The Parameters property must be specified as shown in the following example:
The generated XSD for the stored procedure is invalid unless the parameters are specified correctly in the parameters property. The following is a sample of a properties file for MySQL:
Note: For MySQL, the |
Table 9-16 lists the supported data types for MySQL stored procedures:
Table 9-16 Data Types for MySQL Stored Procedures
SQL Data Type | XML Schema Type |
---|---|
|
|
| boolean |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The character length for any SQL data type that corresponds with STRING
can be specified using the '(#)' notation in the Parameters
property, for example, VARCHAR (20)
. Specifying the length of any other SQL data type does not have any effect.
UNSIGNED
integer data types are treated as though they were SIGNED
integer data types when using the Adapter Configuration Wizard.
Stored procedures in MySQL are grouped by database specified by <database> in the JDBC Connection URL. For MySQL, <Default Schema> refers to the database that the user is connected to (usually specified in the JDBC connection URL.) Click <Default Schema> to select a different database. Click Search to search for specific stored procedures in the current database specified in the JDBC Connection URL. For example, 'd%' or 'D%' would both find stored procedures beginning with 'd' or 'D.' Click Show All to reveal all procedures in the current database.
Database connections must be created in JDeveloper to access catalog tables necessary for the Adapter Configuration Wizard to work.
The following are the steps to create a database connection by using JDeveloper:
The Create Database Connection page is displayed, as shown in Figure 9-47.
Figure 9-47 The Create Database Connection
sqlserver
. Figure 9-48 The Register JDBC Driver Dialog
com.microsoft.sqlserver.jdbc.SQLServerDriver
). The Select Library dialog is displayed, as shown in Figure 9-49.
The Create Library dialog is displayed.
SQL Server JDBC
. Figure 9-50 The Create Database Connection Dialog
The Adapter Configuration Wizard – Stored Procedures is capable of creating a WSDL file and a valid XSD file that describes the signature of a stored procedure or function. The following sections describe the relevant structure and content of both the WSDL and the XSD files, and their relationship with each other.
This section includes the following topics:
In the paragraphs that follow, the operation name, Factorial
, and procedure name, Factorial
, are taken from an example cited previously (see Figure 9-39). The generated WSDL imports the XSD file.
http://www.w3.org/2001/XMLSchema
">http://xmlns.oracle.com/pcbpel/adapter/db/SCOTT/FACTORIAL/
"The namespace is derived from the schema, package, and procedure name, and appears as the targetNamespace
in the generated XSD.
A root element called InputParameters
is created in the XSD file for specifying elements that correspond to the IN
and IN/OUT
parameters of the stored procedure. Another root element called OutputParameters
is also created in the XSD file for specifying elements only if there are any IN/OUT
or OUT
parameters. IN/OUT
parameters appear in both root elements.
These root elements are represented in the XSD file as an unnamed complexType
definition whose sequence includes one element for each parameter. If there are no IN
or IN/OUT
parameters, then the InputParameters
root element is still created; however, complexType
is empty. A comment in the XSD file indicates that there are no such parameters. An example of a root elements follows.
The WSDL defines message types whose parts are defined in terms of these two root elements.
The db
namespace is equal to the targetNamespace
of the generated XSD. The args_in_msg
message type always appears in the WSDL while args_out_msg
is included only if the OutputParameters
root element is generated in the XSD file.
An operation is defined in the WSDL whose name is identical to the adapter service and whose input and output messages are defined in terms of these two message types.
The input message always appears while the output message depends on the existence of the OutputParameters
root element in the XSD file. The tns
namespace is derived from the operation name and is defined in the WSDL as
The root elements in the XSD file define the structure of the parts used in the messages that are passed into and sent out of the Web service encapsulated by the WSDL.
The input message in the WSDL corresponds to the InputParameters
root element from the XSD file. The instance XML supplies values for the IN
and IN/OUT
parameters of the stored procedure. The output message corresponds to the OutputParameters
root element. This is the XML file that gets generated after the stored procedure has executed. It holds the values of any IN/OUT
and OUT
parameters.
The JCA file provides adapter configuration information for the service. A connection factory is specified so that the adapter run time can connect to the database, as shown in the following example. Non-managed connection properties should not be specified directly in the JCA file. Instead you should create a connection factory on the application server, and refer to it by name in the JCA file (<connection-factory location).
The JNDI name, eis/DB/oracle, was earlier specified as the service connection in the Adapter Configuration Wizard.
End point properties for the interaction are also specified. The name of the schema, package, and procedure are specified, as shown in the following example. The operation name ties the JCA file back to the service WSDL.
Note the operation name and procedure name. If an explicit schema had been chosen or if the procedure had been defined in a package, then values for these properties would also be listed here.
Note: Non-managed connection details are not created in the |
Many primitive data types have well-defined mappings and therefore are supported by both the design-time and run-time components. In addition, you can use user-defined types such as VARRAY
, nested tables, and OBJECT
.
Table 9-17 lists the supported data types for Oracle stored procedures and functions.
Table 9-17 Data Types for Oracle Stored Procedures and Functions
SQL or PL/SQL Type | XML Schema Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Table 9-18 lists the attributes used in the generated XSDs.
Table 9-18 Generated XSD Attributes
Attribute | Example | Purpose |
---|---|---|
|
| Name of an element |
|
| XML schema type |
|
| SQL or PL/SQL type |
|
| Position of a parameter |
|
| Has a default clause |
|
| Minimum occurrences |
|
| Maximum occurrences |
|
| Permits null values |
The db
namespace is used to distinguish attributes used during run time from standard XML schema attributes. The db:type
attribute is used to indicate what the database type is so that a suitable JDBC type mapping can be obtained at run time. The db:index
attribute is used as an optimization by both the design-time and run-time components to ensure that the parameters are arranged in the proper order. Parameter indexes begin at 1
for procedures and 0
for functions. The return value of a function is represented as an OutputParameter
element whose name
is the name of the function and whose db:index
is 0
. The db:default
attribute is used to indicate whether or not a parameter has a default clause.
The minOccurs
value is set to 0
to allow for an IN
parameter to be removed from the XML file. This is useful when a parameter has a default clause defining a value for the parameter (for example, X IN INTEGER DEFAULT 0
). At run time, if no element is specified for the parameter in the XML file, the parameter is omitted from the invocation of the stored procedure, thus allowing the default value to be used. Each parameter can appear at most once in the invocation of a stored procedure or function. Therefore, maxOccurs
, whose default value is always 1
, is always omitted from elements representing parameters.
The nillable
attribute is always set to true
to allow the corresponding element in the instance XML to have a null value (for example, <X/>
or <X></X>
). In some cases, however, to pass an element such as this element, which does have a null value, you must state this explicitly (for example, <X xsi:nil="true"/>
). The namespace, xsi
, used for the nillable
attribute, must be declared explicitly in the instance XML (for example, xmlns:xsi="http://www.w3.org/2001/XMLSchema
-instance").
The Adapter Configuration Wizard can also generate valid definitions for user-defined types such as collections (VARRAY
and nested tables) and OBJECT
. These are created as complexType
definitions in the XSD file.
For VARRAY
, the complexType
definition defines a single element in its sequence, called name
_ITEM
, where name
is the name of the VARRAY element. All array elements in the XML file are so named. Given the following VARRAY
type definition,
and a VARRAY
element, X
, whose type is FOO
, the following complexType
is generated:
The minOccurs
value is 0
to allow for an empty collection. The maxOccurs
value is set to the maximum number of items that the collection can hold. The db:index
attribute is not used. Having nillable
set to true
allows individual items in the VARRAY
to be null.
Note the use of the restriction specified on the element of the VARRAY
, FOO
. This is used on types such as CHAR
and VARCHAR2
, whose length is known from the declaration of the VARRAY
(or nested table). It specifies the type and maximum length of the element. An element value that exceeds the specified length causes the instance XML to fail during schema validation.
The attribute values of a parameter declared to be of type FOO
look as follows in the generated XSD:
The type
and db:type
values indicate that the parameter is represented as an array defined by the complexType
called FOO
in the XSD file. The value for db:index
is whatever the position of that parameter is in the stored procedure.
A nested table is treated almost identically to a VARRAY
. The following nested table type definition,
is also generated as a complexType
with a single element in its sequence, called name
_ITEM
. The element has the same attributes as in the VARRAY
example, except that the maxOccurs
value is unbounded because nested tables can be of arbitrary size.
An identical restriction is generated for the X_ITEM
element in the VARRAY
. The attributes of a parameter, X
, declared to be of this type, are the same as in the VARRAY
example.
collections
(Varray
and nested table) are not supported if they are defined inside of a PL/SQL package specification. For example:
If a user selects the test procedure in the Adapter Configuration Wizard for stored procedures, an error occurs stating that the types are not supported. However, if the vary
and ntbl
type definitions were defined at the root level, outside of the package, then choosing the test procedure works without issue. The supported way to use collection types (Varray
and nested table) is shown in the following example:
An OBJECT
definition is also generated as a complexType
. Its sequence holds one element for each attribute in the OBJECT
.
The following OBJECT
,
is represented as a complexType
definition called FOO
with two sequence elements.
The minOccurs
value is 0
to allow for the element to be removed from the XML file. This causes the value of the corresponding attribute in the OBJECT
to be set to null at run time. The nillable value is true
to allow empty elements to appear in the XML file, annotated with the xsi:nil
attribute, to indicate that the value of the element is null. Again, the db:index
attribute is not used.
Note the use of a restriction on the VARCHAR2
attribute. The length is known from the declaration of the attribute in the OBJECT
.
User-defined types can be defined in arbitrarily complex ways. An OBJECT
can contain attributes whose types are defined as any of the user-defined types mentioned in the preceding section. The type of an attribute in an OBJECT
can be another OBJECT
, VARRAY
, or a nested table, and so on. The base type of a VARRAY
or a nested table can also be an OBJECT
. Allowing the base type of a collection to be another collection supports multidimensional collections.
The Adapter Configuration Wizard is capable of generating a valid XSD for parameters whose types are defined using OBJECT
-type inheritance. Given the following type hierarchy,
and a procedure containing a parameter, X
, whose type is B
,
the Adapter Configuration Wizard generates an InputParameters
element for parameter X
as
where the definition of OBJECT
type B
in the XSD file is generated as the following complexType
.
Restrictions on the maximum length of attributes A2
and B1
are added appropriately. Notice how the OBJECT
type hierarchy is flattened into a single sequence of elements that corresponds to all of the attributes in the entire hierarchy.
The Adapter Configuration Wizard can also generate a valid XSD for parameters that are references to OBJECT
types (for example, object references) or are user-defined types that contain an object reference somewhere in their definition. In this example,
the Adapter Configuration Wizard generates complexType
definitions for FOO
and BAR
as indicated, except that for BAR
, the element for the attribute, F,
is generated as
where the type
and db:type
attribute values indicate that F
is a reference to the OBJECT
type FOO
.
For a procedure PROC
, the following elements are generated in the OutputParameters
root element of the XSD file:
For Y
, note the value of the db:type
attribute, Ref
. with the type
attribute, the element definition indicates that Y
is a reference to FOO
.
There is a restriction on the use of object references that limits their parameter mode to OUT
only. Passing an IN
or IN/OUT
parameter into an API that is either directly a REF
or, if the type of the parameter is user-defined, contains a REF
somewhere in the definition of that type, is not permitted.
You can refer to types defined in other schemas if the necessary privileges to access them have been granted. For example, suppose type OBJ
was declared in SCHEMA1
:
The type of a parameter in a stored procedure declared in SCHEMA2
can be type OBJ
from SCHEMA1
:
This is possible only if SCHEMA1
granted permission to SCHEMA2
to access type OBJ
:
If the required privileges are not granted, an error occurs when trying to create procedure PROC
in SCHEMA2
:
Because the privileges have not been granted, type OBJ
from SCHEMA1
is not visible to SCHEMA2
; therefore, SCHEMA2
cannot refer to it in the declaration of parameter O
.
Some user-defined object types can have a very large number of attributes. These attributes can also be defined in terms of other object types that also have many attributes. In short, one object type can become quite large depending on the depth and complexity of its definition.
Depending on the situation, many attributes of a large object type may not even be necessary. It is sometimes desirable to omit these attributes from the object's schema definition. This can be done by physically removing the unwanted XSD elements from the definition of the object type.
See the following example where a stored procedure has a parameter whose type is a complex user-defined type:
The InputParameters
root element contains a single element for the parameter, O
from the API's signature. A complexType
definition is to be added to the generated XSD for the object type, as shown in the following code snippet:
If attributes B and C are not required, then their element in the complexType
definition of OBJ can be removed regardless of its type. Values are not required for these attributes in the instance XML. If parameter O had been an output parameter, then elements corresponding with the pruned attributes are also omitted in the generated XML.
Suppose that the type of parameter A was also a user-defined object type and that the definition of OBJ changed accordingly, as shown in the following example:
In such a case, the API remains unchanged. Elements corresponding to unwanted attributes in the definition of FOO can also be removed regardless of their type. So, for example, if Y is not required, then its element in the complexType
definition of FOO can be removed in the XSD file.
Pruning the XSD file in this fashion improves the run-time performance of the adapter and can significantly reduce memory consumption, as well.
Note: Only attributes in user-defined object types can be pruned. You cannot prune (remove) a parameter of the stored procedure by removing its element from the |
This section discusses important considerations of stored procedure support and a brief overview of some important details regarding what happens before the invocation of a stored procedure or function.
This section includes the following topics:
Consider the extraction of values from the XML file and how the run time works given those values. The possible cases for data in the XML file corresponding to the value of a parameter whose type is a supported primitive data type are as follows:
<X>100</X>
, here X=100.) <X/>
, here X=null.) <X xsi:nil="true"/>
, here X=null.) X = <default value>
). Note: There is one notable difference that distinguishes Microsoft SQL Server from IBM DB2, MySQL, and AS/400. SQL Server supports parameters that can include a default value in the definition of a stored procedure. Because IBM DB2, MySQL, and AS/400 do not support parameter defaults, every parameter must be represented as an element in the instance XML. |
In the first case, the value is taken from the XML file as is and is converted to the appropriate object according to its type. That object is then bound to its corresponding parameter during preparation of the stored procedure invocation.
In the second and third cases, the actual value extracted from the XML file is null. The type converter accepts null and returns it without any conversion. The null value is bound to its corresponding parameter regardless of its type. Essentially, this is equal to passing null for parameter X
.
The fourth case has two possibilities. The parameter either has a default clause or it does not. If the parameter has a default clause, then the parameter can be excluded from the invocation of the stored procedure. This allows the default value to be used for the parameter. If the parameter is included, then the value of the parameter is used, instead. If the parameter does not have a default clause, then the parameter must be included in the invocation of the procedure. Elements for all parameters of a function must be specified. If an element in the instance XML is missing, then the function is invoked with fewer arguments than is expected.
A null value is bound to the parameter by default:
Here, no value is bound to the parameter. In fact, the parameter can be excluded from the invocation of the stored procedure. This allows the value of 0
to default for parameter X
.
To summarize, the following PL/SQL is executed in each of these three cases:
"BEGIN PROC (X=>?); END;" - X = 100
"BEGIN PROC (X=>?); END;" - X = null
"BEGIN PROC (); END;" - X = 0
(X
has a default clause) "BEGIN PROC (X=>?); END;" - X = null
(X
does not have a default clause) With the exception of default clause handling, these general semantics also apply to item values of a collection or attribute values of an OBJECT
whose types are a supported primitive data types. The semantics of <X/>
when the type is user-defined are, however, quite different.
For a collection, whether it is a VARRAY
or a nested table, the following behavior can be expected, given a type definition such as
and XML for a parameter, X
, which has type ARRAY
, that appears as follows:
The first and third elements of the VARRAY
are set to null. The second and fourth are assigned their respective values. No fifth element is specified in the XML file; therefore, the VARRAY
instance has only four elements.
Assume an OBJECT
definition such as
and XML for a parameter, X
, which has type OBJ
, that appears as
The value 100
is assigned to attribute A
, and null is assigned to attributes B
and C
. Because there is no element in the instance XML for attribute B
, a null value is assigned.
The second case, <X/>
, behaves differently if the type of X
is user-defined. Rather than assigning null to X
, an initialized instance of the user-defined type is created and bound instead.
In the preceding VARRAY
example, if <X/>
or <X></X>
is specified, then the value bound to X
is an empty instance of the VARRAY
. In PL/SQL, this is equivalent to calling the type constructor and assigning the value to X
. For example,
Similarly, in the preceding OBJECT
example, an initialized instance of OBJ
, whose attribute values have all been null assigned, is bound to X
. Similar to the VARRAY
case, this is equivalent to calling the type constructor. For example,
To specifically assign a null value to X
when the type of X
is user-defined, add the xsi:nil
attribute to the element in the XML file, as in
This section describes the conversion of data types such as CLOB
, DATE
, TIMESTAMP
, and binary data types including RAW
, LONG
RAW
and BLOB
, and similar data types supported by third-party databases.
Microsoft SQL Server, IBM DB2, AS/400, and MySQL support binding various forms of binary and date data types to parameters of a stored procedure, as summarized in Table 9-19.
Table 9-19 Third-Party Database: Binding Binary and Date Values to Parameters of a Stored Procedure
XML Schema Type | IBM DB2 Data Type | AS/400 Data Type | Microsoft SQL Server Data Type | MySQL Data Type |
---|---|---|---|---|
|
|
|
|
|
|
|
|
|
|
For a CLOB
parameter, if the length of the CLOB
parameter is less than 4 kilobytes, then the text extracted from the XML file is bound to the parameter as a String
type with no further processing. If the length of the CLOB
parameter is greater than 4 kilobytes or if the mode of the parameter is IN/OUT
then a temporary CLOB
parameter is created. The XML file data is then written to the temporary CLOB
before the CLOB
is bound to its corresponding parameter. The temporary CLOB
parameter is freed when the interaction completes. For other character types, such as CHAR
and VARCHAR2
, the data is simply extracted and bound as necessary. It is possible to bind an XML document to a CLOB
parameter (or VARCHAR2
if it is large enough). However, appropriate substitutions for <
, >
, and so on, must first be made (for example, <
for <
and >
for >
).
A few data types require special processing before their values are bound to their corresponding parameters. These include data types represented by the XML Schema types base64Binary
and dateTime
.
The XML schema type, dateTime
, represents TIME
, DATE
, and TIMESTAMP
. The XML values for these data types must adhere to the XML schema representation for dateTime
. Therefore, a simple DATE
string, 01-JAN-05
, is invalid. XML schema defines dateTime
as YYYY-MM-DDTHH:mm:ss
. Therefore, the correct DATE
value is 2005-01-01T00:00:00
. Values for these parameters must be specified using this format in the instance XML.
Data for binary data types must be represented in a human readable manner. The chosen XML schema representation for binary data is base64Binary
. The type converter uses the javax.mail.internet.MimeUtility
encode and decode APIs to process binary data. The encode API must be used to encode all binary data into base64Binary
form so that it can be used in an XML file. The type converter uses the decode API to decode the XML data into a byte array. The decode API is used to convert the base64Binary
data into a byte array.
For a BLOB
parameter, if the length of a byte array containing the decoded value is less than 2 kilobytes, then the byte array is bound to its parameter with no further processing. If the length of the byte array is greater than 2 kilobytes or if the mode of the parameter is IN/OUT
, then a temporary BLOB
is created. The byte array is then written to the BLOB
before it is bound to its corresponding parameter. The temporary BLOB
is freed when the interaction completes. For other binary data types, such as RAW
and LONG
RAW
, the base64Binary
data is decoded into a byte array and bound as necessary.
Conversions for the remaining data types are straightforward and require no additional information.
After the procedure (or function) executes, the values for any IN/OUT
and OUT
parameters are retrieved. These correspond to the values of the elements in the OutputParameters
root element in the generated XSD.
This section includes the following topics:
Conversions of data retrieved are straightforward. However, CLOB
(and other character data), RAW
, LONG
RAW
, and BLOB
conversions, and conversions for similar data types supported by third-party databases, require special attention.
When a CLOB
is retrieved, the entire contents of that CLOB
are written to the corresponding element in the generated XML. Standard DOM APIs are used to construct the XML file. Hence, character data, for types such as CLOB
, CHAR
, and VARCHAR2
, is messaged as needed to make any required substitutions so that the value is valid and can be placed in the XML file for subsequent processing. Therefore, substitutions for <
and>
, for example, in an XML document stored in a CLOB
are made so that the value placed in the element within the generated XML for the associated parameter is valid.
Raw data, such as for RAW
and LONG RAW
data types, is retrieved as a byte array. For BLOB
s, the BLOB
is first retrieved, and then its contents are obtained, also as a byte array. The byte array is then encoded using the javax.mail.internet.MimeUtility
encode API into base64Binary
form. The encoded value is then placed in its entirety in the XML file for the corresponding element. The MimeUtility
decode API must be used to decode this value back into a byte array.
Conversions for the remaining data types are straightforward and require no additional information.
Elements whose values are null appear as empty elements in the generated XML and are annotated with the xsi:nil
attribute. Thus, the xsi
namespace is declared in the XML file that is generated. Generated XML for a procedure PROC
, which has a single OUT
parameter, X
, whose value is null, looks as follows:
http://www.w3.org/2001/XMLSchema-instance
">XML elements for parameters of any type (including user-defined types) appear this way if their value is null.
The return value of a function is treated as an OUT
parameter at position 0
whose name
is the name of the function itself. For example,
An invocation of this function with a value of 5
, for example, results in a value of 120
and appears as <FACTORIAL>120</FACTORIAL>
in the OutputParameters
root element in the generated XML.
The common third-party database functionality at run time includes the following:
All third-party databases share the same functionality for handling ResultSets
. The following is a SQL Server example of an API that returns a ResultSet
:
A RowSet
defined in the generated XSD represents a ResultSet
. A RowSet
consists of zero or more rows, each having one or more columns. A row corresponds with a row returned by the query. A column corresponds with a column item in the query. The generated XML for the API shown in the preceding example after it executes is shown in the following example:
The name
attribute stores the name of the column appearing in the query while the sqltype
attribute stores the SQL datatype of that column, for example INT
. The value is whatever the value is for that column.
It is possible for an API to return multiple ResultSets
. In such cases, there is one RowSet
for each ResultSet
in the generated XML. All RowSets
always appear first in the generated XML.
Some databases support returning an INTEGER
status value using a RETURN
statement in a stored procedure. Microsoft SQL Server and AS/400 both support this feature. In both cases, the Adapter Configuration Wizard cannot determine whether a stored procedure returns a status value. Therefore, you must specify that the stored procedure is returning a value. You can use a check box to make this indication.
After choosing a stored procedure in the Stored Procedures dialog, the Specify Stored Procedure page appears, as shown in Figure 9-51. The check box appears at the bottom of the page. Select the box to indicate that the procedure contains a RETURN
statement. You can view the source code of the procedure to determine whether a RETURN
statement exists.
The check box appears only for stored procedures on databases that support this feature. The check box is not displayed for functions. The value returned by the stored procedure appears as an element in the OutputParameters
root element in the generated XSD. The name of the element is the name of the stored procedure. The value of a return
statement is lost after the execution of the stored procedure if the check box is not selected.
Figure 9-51 The Specify Stored Procedure Page
This section discusses scenarios for types that are not supported directly using the stored procedure functionality that the Oracle Database Adapter provides. The following sections describe workarounds that address the have to use these data types:
Currently a REF CURSOR
by nature can support any arbitrary result set, so the XSD generated at design time is weakly typed.
However the XML output from this is hard to use. It is very difficult to write an Xpath expression or XSL based on a weakly typed XSD and column names as attribute values instead of element names.
Although a row set can represent any result set, it is possible to assume for some procedures that it has the same structure each time, and hence can be described with a strongly typed XSD. A strongly typed XSD is almost a necessity to transform the result set to another XSD later on. You can use the Adapter Configuration Wizard to generate a strongly typed XSD for a REF CURSOR
.
If a weakly typed XSD is sufficient for your use case, see Section 9.7.7.2, "Row Set Support Using a Weakly Typed XSD".
This section includes the following topics:
For more information, see Section 9.3.3, "Row Set Support Using a Strongly or Weakly Typed XSD".
If the stored procedure or function you select contains an output parameter of type RowSet
, you can define a strongly typed XSD for this ref cursor as follows:
RowSet
. See steps 1 through 8 in Section 9.7.1.1, "Using Top-Level Standalone APIs".
By default, the Adapter Configuration Wizard generates a weakly typed XSD for this ref cursor shown in the XSD text field. Example 9-4 shows this default, weakly typed XSD.
Example 9-4 Default Weakly Typed XSD
For each of the stored procedure or function arguments:
Enter numbers and strings directly, dates as literals (for example, 2009/11/11), and structs as say MYOBJ('a', 'b')
.
Note: You must choose values that are valid for the argument type and that exist in the database. Oracle recommends that you specify a value for all arguments to ensure that the correct stored procedure or function signature is executed. |
The Adapter Configuration Wizard executes the stored procedure or function using the arguments you specify:
Figure 9-53 RowSets Page: Successful Introspection
Example 9-5 Strongly Typed XSD
Proceed to step 5.
The Adapter Configuration Wizard generates a weakly typed XSD and displays it in the XSD text field by default, overwriting any edits you may have made to a previous version of the XSD.
Go back to step 3 and enter test argument values that returns a row set with at least 1 row.
The Adapter Configuration Wizard generates a weakly typed XSD and displays it in the XSD text field by default, overwriting any edits you may have made to a previous version of the XSD.
Go back to step 3 and enter test argument values that returns a row set with at least 1 row.
Optionally, fine tune the strongly typed XSD by manually editing the schema shown in the XSD text filed.
Suppose you have the following package:
After using the Adapter Configuration Wizard to define a strongly typed XSD, after the procedure executes, the following XML is generated for parameter, C
:
Using the Oracle Database Adapter, at run time, it does not matter if the XSD describing the strongly typed ref cursor is inline or imported.
The strongly typed XSD is applied by the SOA runtime and is visible in the Oracle Enterprise Manager Console, where appropriate. For example, Figure 9-56 shows the audit trail for an invoke that returns a ref cursor payload using a strongly typed XSD.
Figure 9-56 Audit Trail for Stongly Typed Payload
Currently a REF CURSOR
by nature can support any arbitrary result set, so the XSD generated at design time is weakly typed. By default, the Adapter Configuration Wizard generates a weakly typed XSD for a REF CURSOR
.
However the XML output from this is hard to use. It is very difficult to write an Xpath expression or XSL based on a weakly typed XSD and column names as attribute values instead of element names.
Although a row set can represent any result set, it is possible to assume for some procedures that it has the same structure each time, and hence can be described with a strongly typed XSD. A strongly typed XSD is almost a necessity to transform the result set to another XSD later on.
If a strongly typed XSD is better suited to your use case, see Section 9.7.7.1, "Row Set Support Using a Strongly Typed XSD".
This section includes the following topics:
For more information, see Section 9.3.3, "Row Set Support Using a Strongly or Weakly Typed XSD".
If the stored procedure or function you select contains an output parameter of type ResultSet
, you can define a weakly typed XSD for this ref cursor as follows:
ResultSet
. See steps 1 through 8 in Section 9.7.1.1, "Using Top-Level Standalone APIs".
By default, the Adapter Configuration Wizard generates a weakly typed XSD for this ref cursor shown in the XSD text field.
Suppose you have the following package:
The REF_CURSOR
is a weakly typed cursor variable because the query is not specified. After the procedure executes, the following XML is generated for parameter, C
:
There is a total of four rows, each consisting of two columns, DEPTNO
and DNAME
.
Ref cursors are represented by Java ResultSets
. It is not possible to create a ResultSet
programmatically by using APIs provided by the JDBC driver. Therefore, ref cursors may not be passed IN
to a stored procedure. They can only be passed as IN/OUT
and OUT
parameters with one caveat. An IN/OUT
ref cursor is treated strictly as an OUT
parameter. Because no IN
value can be provided for an IN/OUT
parameter, a null is bound to that parameter when invoking the stored procedure.
The Adapter Configuration Wizard provides a mechanism that detects when these types are used and then invokes Oracle JPublisher to generate the necessary wrappers automatically. Oracle JPublisher generates two SQL files, one to create schema objects, and another to drop them. The SQL that creates the schema objects is automatically executed from within the Adapter Configuration Wizard to create the schema objects in the database schema before the XSD file is generated. For example, suppose the following package specification is declared:
Figure 9-58 shows the step in the Adapter Configuration Wizard that is displayed when PROC
procedure from PKG
package is selected.
Figure 9-58 Specifying a Stored Procedure in the Adapter Configuration Wizard
As Figure 9-58 shows, the original procedure name is fully qualified, PKG.PLSQL
. The type of parameter, R
, is the name of the RECORD
. The type of T
is the name of the TABLE
. The type of B
is Boolean
. The name of the wrapper package that is generated is derived from the service name, bpel_
ServiceName
(for example, bpel_UseJPub
). This is the name of the generated package that contains the wrapper procedure. You can use the check box to force the Adapter Configuration Wizard to overwrite an existing package when the schema objects are created.
Clicking Next twice reveals the Finish page of the Adapter Configuration Wizard, as shown in Figure 9-59.
Figure 9-59 Defining a Database Adapter Service: Finish Page
The contents of this page describe what the Adapter Configuration Wizard has detected and what actions are performed when the Finish button is clicked. The following summarizes the contents of this page:
UseJPub.wsdl
. UseJPub_db.jca
. BPEL_USEJPUB.sql
– Creates the schema objects. BPEL_USEJPUB_drop.sql
– Drops the schema objects. SCOTT_USEJPUB_PKG-24PLSQL.xsd
. When you click Finish, Oracle JPublisher is invoked to generate the SQL files and load the schema objects into the database. The process of generating wrappers may take quite some time to complete. Processing times for wrappers that are generated in the same package usually require less time after an initial wrapper has been generated for another procedure within the same package.
Note: You must execute |
The following user-defined types are generated to replace the PL/SQL types from the original procedure:
The naming convention for these types is OriginalPackageName_OriginalTypeName
. Boolean
is replaced by INTEGER
in the wrapper procedure.
Acceptable values for the original Boolean
parameter, now that it is an INTEGER
are 0
for FALSE
and any nonFzero INTEGER
value for TRUE
. Any value other than 1
is considered false. The generated wrapper procedure uses APIs from the SYS.SQLJUTL
package to convert from INTEGER
to Boolean
and vice-versa.
A new wrapper package called BPEL_USEJPUB
is created that contains the wrapper for procedure PLSQL
, called PKG$PPLSQL
, and conversion APIs that convert from the PL/SQL types to the user-defined types and vice-versa. If the original procedure is a root-level procedure, then the name of the generated wrapper procedure is TOPLEVEL$
OriginalProcedureName
.
The generated XSD represents the signature of wrapper procedure PKG$PLSQL
and not the original procedure. The name of the XSD file is URL-encoded, which replaces $
with -24
.
Note the naming conventions for the generated artifacts:
TOPLEVEL$
is used for root-level procedures. The name of the generated wrapper package is limited to 30 characters. The name of the wrapper procedure is limited to 29 characters. If the names generated by Oracle JPublisher are longer than these limits, then they are truncated.
When the PartnerLink that corresponds with the service associated with the procedure is invoked, then the generated wrapper procedure is executed instead of the original procedure.
If a procedure contains a special type that requires a wrapper to be generated, then the default clauses on any of the parameters are not carried over to the wrapper. For example, consider
Assuming that this is a root-level procedure, the signature of the generated wrapper procedure is
The Boolean
type has been replaced by INTEGER
. The default clauses on both parameters are missing in the generated wrapper. Parameters of generated wrapper procedures never have a default clause even if they did in the original procedure.
In this example, if an element for either parameter is not specified in the instance XML, then an error occurs stating that an incorrect number of arguments have been provided. The default value of the parameter that is specified in the original procedure is not used.
To address this situation, the generated SQL file that creates the wrapper must be edited, restoring the default clauses to the parameters of the wrapper procedure. The wrapper and any additional schema objects must then be reloaded into the database schema. After editing the SQL file, the signature of the wrapper procedure is as follows:
For Boolean
parameters, the default value for true is 1
, and the default value for false is 0
.
As a final step, the XSD file generated for the wrapper must be edited. A special attribute must be added to elements representing parameters that now have default clauses. Add db:default="true"
to each element representing a parameter that now has a default clause. For example,
This attribute is used at run time to indicate that if the element is missing from the instance XML, then the corresponding parameter must be omitted from the procedure call. The remaining attributes of these elements remain exactly the same.
This describes the Oracle Database Adapter and Oracle Database Adapter - stored procedures use cases.
This section includes the following topics:
To obtain Oracle Database Adapter use cases, access the Oracle SOA Sample Code site.
Table 9-20 shows the Oracle Database Adapter samples that are provided with Oracle BPEL PM, and Mediator.
Table 9-20 Oracle Database Adapter Use Cases
Tutorial Name | Description |
---|---|
| Illustrates the outbound |
| Illustrates the use of an input a native (CSV) data file defined in a custom format. The input file is a purchase order, which the file adapter processes and publishes as an XML message to the FIle2Table BPEL process. The message is transformed to another purchase order format and routed to an |
| Illustrates the outbound |
| Illustrates the extra steps (based on the |
| Illustrates a workaround for using PL/SQL |
| Illustrates how to migrate data from one set of tables to another. The sample uses the Oracle Database Adapter to read data from one set of tables, process the data, and write it in to another set of database tables using the adapter. |
| Illustrates the outbound |
| Illustrates an inbound polling operation to poll XML instances from the |
| Illustrates an inbound polling operation to poll XML instances from the |
| Illustrates an inbound polling operation to poll XML instances from the |
| Illustrates an inbound polling operation to poll XML instances from the |
| Illustrates how to poll a table based on a date field. |
| Illustrates how to bypass the JDeveloper BPEL Designer |
| Illustrates the outbound |
| Illustrates how to use a |
| Illustrates a workaround for using a |
| Illustrates the outbound |
| Illustrates the outbound |
| Illustrates the outbound |
See Table 9-3 for the structure of the MOVIES
table, which is used for many of the use cases. The readme.txt
files that are included with most of the samples provide instructions.
This section includes the following use cases:
In addition to the uses cases documented in this section, refer to the sample Oracle Database Adapter use cases available by accessing the Oracle SOA Sample Code site.
Table 9-21 shows the Oracle Database Adapter stored procedure samples that are provided with Oracle BPEL PM, and Mediator.
Table 9-21 Oracle Database Adapter Use Cases - Stored Procedures
Tutorial Name | Description |
---|---|
| Illustrates a workaround for using PL/SQL |
| Illustrates how to use a |
| Illustrates a workaround for using a |
See Table 9-3 for the structure of the MOVIES
table, which is used for many of the use cases. The readme.txt
files that are included with most of the samples provide instructions.
This use case describes how to integrate a stored procedure into BPEL Process Manager with JDeveloper BPEL Designer.
This use case includes of the following sections:
To perform this use case, you must define the following stored procedure in the SCOTT schema:
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The Create Generic Application - Name your application page is displayed.
MyHelloApp
in the Application Name field, and click Next. The Create Generic Application - Name your project page is displayed.
HelloProject
in the Project Name field. The Create Generic Application - Configure SOA Settings page is displayed.
Greet
in the Name field, and then select Synchronous BPEL Process from the Template box. The Greet BPEL process in the HelloProject of MyHelloApp is displayed in the design area, as shown in Figure 9-60.
Figure 9-60 The JDeveloper - Composite.xml
Perform the following steps to create an outbound Oracle Database Adapter service:
The Adapter Configuration Wizard Welcome page is displayed.
The Service Name page is displayed.
Hello
in the Service Name field. The Service Connection page is displayed.
Note: Ensure that you have configured the JNDI name in the For more information, refer to Section 2.18.1, "Creating a Data Source" and Section 2.20, "Recommended Setting for Data Sources Used by Oracle JCA Adapters." |
The Create Database Connection dialog is displayed.
Myconnection
. scott
/tiger
. The Connection field is populated with the MyConnection connection and the JNDI field is populated with eis/DB/MyConnection.
The Operation Type page is displayed.
The Specify Stored Procedure page is displayed.
HELLO
in the Stored Procedures pane. The Arguments tab displays the parameters of the stored procedure and the Source tab displays the source code of the stored procedure.
The Specify Stored Procedure page is displayed. The Procedure field is populated with the HELLO stored procedure and the arguments for the HELLO stored procedure are also displayed.
The Advanced Options page is displayed.
The Adapter Configuration Wizard - Finish page is displayed.
The Create Partner Link dialog box is displayed. The name of the partner link is Hello, which is the same as the service name.
The outbound Oracle Database Adapter is now configured and the Greet BPEL process is displayed.
The following are the steps to add an invoke activity:
receiveInput
activity and the replyOutput
activity. The Edit Invoke dialog is displayed.
Input
in the Name field. The Create Variable dialog is displayed.
The Input Variable field is populated with the default variable name. The Invoke dialog is displayed.
In the Variables section of the Edit Invoke dialog the Input and Output variable names are displayed.
A line with a right arrow is connected to the Hello partner link is displayed, as shown in Figure 9-61.
When the payload of the request matches the InputParameters, then all of the IN parameters is included in the request. The only IN parameter in this example is name.
The following are the steps to change the message part for the GreetRequestMessage
message:
The Edit Message Part - payload dialog is displayed.
The Type Chooser dialog is displayed.
The Edit Message Part - payload dialog is displayed.
When the payload of the response matches the OutputParameters, then all of the OUT parameters is included in the response. The only OUT parameter in this example is greeting.
The steps for the GreetResponseMessage
message part are the same as that of GreetRequestMessage with the following exceptions:
The following are the steps to add an Assign activity for the input variable:
The Assign dialog is displayed.
NAME
in the Name field. The Create Copy Operation dialog is displayed.
You have assigned a value to the input parameter.
The Assign dialog is displayed, as shown in Figure 9-62. This dialog shows the assign from the inputVariable payload to the Input_Hello_InputVariable payload.
Figure 9-62 The Create Copy Operation Dialog
In the second assign activity, you assign a value to the output parameter.
The steps for assigning a value to the output parameter are the same as assigning value to the input parameter with the following exceptions:
The Assign dialog is displayed.
Greeting
in the Name field. The Create Copy Operation dialog is displayed.
Figure 9-63 The Create Copy Operation Dialog
You have assigned a value to the output parameter.
You have completed modeling a BPEL Process. The final BPEL process is displayed, as shown in Figure 9-64.
Figure 9-64 The Final BPEL Process Screen
You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, use the following steps:
Before you can test the HelloProject
you must create a data source using the Oracle WebLogic Server Administration Console.
The following are the steps:
http://<
hostname
>:
<
port
>/console
in your Web browser. The administration console is displayed.
A summary of JDBC Data Sources is displayed.
The Create a New JDBC Data Source page is displayed.
MyDataSource
in the Name field. jdbc/MyDataSource
in the JNDI Name field. Oracle
. Oracle's Driver (Thin XA) for Instance Connections; Versions 9.0.1, 9.2.0, 10, 11
. A message stating that no other transaction configuration options are available is displayed.
The Create a New Data Source page is displayed.
SID
. The default port is 1521
.
SCOTT
TIGER
. TIGER
. A summary of the data source configuration is displayed.
The Messages area indicates that the connection test succeeded.
The summary of JDBC Data Sources now includes the MyDataSource data source that you created in the preceding steps.
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:
portnumber
/em
. A list of SOA composites is displayed, including the HelloProject[1.0] that you created in the preceding steps. Figure 9-65 The Dashboard Tab of the HelloProject[1.0] Project
xsd:string
and then click Invoke. The browser window displays the Test Result.
This use case illustrates the execution of an Oracle stored procedure. The input to the stored procedure is obtained by reading a file using the File Adapter. The stored procedure executes, populating a table with the data from its input parameter.
To obtain the adapter-db-101-file2storedprocedure
use case, access the Oracle SOA Sample Code site.
This use case includes the following topics:
To perform the file to stored procedure use case, the following schema objects and stored procedure must be defined in the SCOTT/TIGER
schema before modeling the BPEL Composite using JDeveloper.
You can define these schema objects and stored procedure using the adapters-db-101-file2storedprocedure/artifacts/sql/customers.sql
file from the adapters-db-101-file2storedprocedure
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. Use the following steps to create a new application, an SOA project:
File2SPApp
in the Application Name field. The Create Generic Application - Name your project page is displayed.
File2SPProject
. You have created a new application, and an SOA project. This automatically creates an SOA composite.
The Create BPEL Process page is displayed.
File2SP
. The File2SP
BPEL process in the File2SPProject
of File2SPApp
is displayed in the design area.
Perform the following steps to create an outbound Oracle Database Adapter service:
File2SPService
in the Service Name field. The Service Connection page is displayed.
The Create Database Connection dialog is displayed.
MyConnection
. scott
/tiger
. The Connection field is populated with the MyConnection connection and the JNDI field is populated with eis/DB/MyConnection.
The Adapter Interface page is displayed.
The Operation Type page is displayed.
The Specify Stored Procedure page is displayed.
Figure 9-67 The Adapter Configuration Wizard - Operation Type Page
ADD_CUSTOMERS
in the Stored Procedures pane. The Arguments tab displays the parameters of the stored procedure and the Source tab displays the source code of the stored procedure.
The Specify Stored Procedure page is displayed.
The Procedure field is populated with the ADD_CUSTOMERS
stored procedure and the arguments for the ADD_CUSTOMERS
stored procedure are also displayed.
The Advanced Options page is displayed.
The Finish page is displayed.
The Create Partner Link dialog is displayed.
The name of the partner link is File2SPService, which is the same as the service name.
The outbound Oracle Database Adapter is now configured and the File2SP BPEL process is displayed.
You must complete the BPEL process by creating an Invoke activity. This creates the input variables.
The following are the steps to create an Invoke activity:
File2SPService
partner link. The Edit Invoke dialog is displayed.
Invoke
in the Name field. The Create Variable dialog is displayed.
The Input variable name is displayed in the Variables area of the Edit Invoke dialog.
A line with a right arrow connecting to the is File2SPService
partner link is displayed.
Perform the following steps to create an inbound File adapter service. This creates the service that reads input XML from a file directory:
The Adapter Configuration Wizard Welcome page is displayed.
ReadCustomers
in the Service Name field. The Adapter Interface page is displayed.
The File Directories page is displayed.
The File Filtering page is displayed.
customers.xml
in the Include Files with Name Pattern field, and then click Next. The File Polling page is displayed.
The Message page is displayed.
The Type Chooser dialog is displayed.
The Messages page is displayed again. The URL is xsd/SCOTT_ADD_CUSTOMERS.xsd
, and the Schema Element is InputParameters
.
The Finish page is displayed.
This terminates the inbound File Adapter service.
The File Adapter Service provides input to the Receive Activity, which then initiates the rest of the BPEL Process.
The following are the steps to add a Receive activity:
ReadCustomers
partner link. The Edit Receive dialog is displayed.
Receive
in the Name field. The Create Variable dialog is displayed.
The Variable field is populated with the default variable name.
After adding the Receive activity, the JDeveloper window appears, as shown in Figure 9-68.
Next, you must assign a value to the input parameter.
The following are the steps to add an Assign activity:
The Assign dialog is displayed.
CUSTOMER
in the Name field. The Assign dialog is displayed, as shown in Figure 9-69.
Figure 9-69 The Assign Dialog - Copy Operation Tab
The Create Copy Operation dialog is displayed.
The JDeveloper File2SP.bpel page is displayed, as shown in Figure 9-71.
Figure 9-71 The JDeveloper - File2SP.bpel
You must assemble or wire the three components that you have created: Inbound adapter service, BPEL process, Outbound adapter reference. Perform the following steps to wire components:
ReadCustomer
in the Exposed Services area to the drop zone that appears as a green triangle in the BPEL process in the Components area. File2SPService
in the External References area. You must deploy the application profile for the SOA project and the application you created in the preceding steps. To deploy the application profile using JDeveloper, use the following steps:
Before you can test the File2SPProject
you must create a data source using the Oracle WebLogic Server Administration Console, by using the following steps:
http://
servername
:
portnumber
/console
. The Home page of the Oracle WebLogic Server Administration Console is displayed, as shown in Figure 9-72.
Figure 9-72 Oracle WebLogic Server Administration Console Home Page
The Summary of JDBC Data Sources page is displayed, as shown Figure 9-73.
Figure 9-73 The Summary of JDBC Data Sources Page
The Create a New JDBC Data Source page is displayed.
MyDataSource
in the Name field. dbc/MyDataSource
in the JNDI Name field. Oracle
for Database Type. Oracle's Driver (Thin XA) for Instance Connections; Versions 9.0.1, 9.2.0, 10, 11
for Database Driver. The Create a New JDBC Data Source - Transaction Options page is displayed. A message stating, "No other transaction configuration options are available." is displayed.
The Create a New JDBC Data Source - Connection Properties page is displayed.
SCOTT
in the Database User Name field. TIGER
in the Password field. TIGER
in the Confirm Password field. The Create a New JDBC Data Source - Select Targets page is displayed.
AdminServer
as target, and then click Finish. The Summary of JDBC Data Sources page is displayed. This page summarizes the JDBC data source objects that have been created in this domain. The Data Source that you created appears in this list.
The database adapter needs an instance entry, which points to a data source.
The following are the steps to add a connection instance:
META-INF/weblogic-ra.xml
(and possibly ra.xml
.), as shown in the following example: xADataSourceName
. You can also create a new database adapter instance using the Oracle WebLogic Server Administration Console.
You must test the BPEL process by providing input file for the File Adapter. The results of the BPEL process are seen using a simple query from a table. The customers.xml
file contains the following input:
The following are the steps for testing the BPEL process you created:
customers.xml
in the input directory that you specified when you created the inbound File Adapter Service. You can monitor the deployed EM Composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername
:portnumber
/em
. A list of SOA composites is displayed, including File2SPProject[1.0]
that you created in the preceding steps.
The Dashboard is displayed. Note your Instance ID in the Recent Instances area.
A Search dialog is displayed. The default search displays all instances by their Instance ID.
A new window opens. It lists any faults (No faults found) and enables you to view the Audit Trail of your instance. Your instance trace is displayed in a new window.
The Audit Trail of your process is displayed.
There is a performance improvement when the Database Adapter is used with Coherence Cache on an Exalogic system. The feature that provides this improvement is called Database Adapter/Coherence Integration.
There are two specific use cases where there is an advantage to using the Database Adapter with Coherence Cache on an Exalogic system. Specifically, performance can be improved when performing the following operations:
Inserts and updates to a database using the Database Adapter and Coherence cache are improved through the internal use of an intermediary Coherence data source, called a Coherence Cache, basically an in-memory database.
In the typical case, you perform insert/delete/update operations directly on the database. To improve performance, these operations can first be performed on this Coherence-fronting in-memory database, called a write-behind map, which enables read-write operations using the Cache.
Using such a Coherence map improves the latency of BPEL/OSB processes performing insert/delete/update operations, as these processes can return immediately to the caller without a trip to the database; the actual and intensive work of updating the database is done instead by the Coherence Cache intermediary.
You can use Coherence in this manner when processing large batches of records, which makes record updating more convenient and efficient.
Note: Database Adapter use cases that do not leverage Coherence Cache include the following operations: inbound polling, pure SQL invokes, stored procedure calls, and general Selects that return multiple rows. |
The second use case that Database Adapter/Coherence Integration improves is query performance, specifically in optimizing Select statement use cases. Database Adapter/Coherence Integration provides benefits to the query performance by caching data that might be accessed frequently by many different process instances.
When select optimization is used, to optimize queries, the Database Adapter/Coherence Integration uses a read-only Coherence Cache (also called an L2-read cache), which the Database Adapter checks first for a cache hit before proceeding to the database. In other words, queries are optimized by checking to see if the data being queried against is in the Coherence Cache first; if not found there, the database is checked for the same data.
When a Coherence miss occurs, the data is read from the database and loaded into the Coherence Cache. The presumption is that checking the Coherence Cache is faster than executing a query on the database, as the ratio of cache visits to cache misses is typically high.
Not all queries can benefit from cache visits and hence Coherence Database Adapter Integration.There is no indication if there was a Coherence cache hit on all records that meet a specified query criterion, or if there are additional database records that could have been hit but which were not in cache.
For this reason, the query optimization feature includes a new kind of Database Adapter operation, which is a Select by Primary Key. Unlike the existing Select and queryByExample operations, when using Select by Primary Key you can only return a single row. With the primary key selected to return a single row, you are in effect requesting more specific records to be returned from the Coherence Cache, thus improving the performance of the feature against the Cache.
You can choose whether to use Database Adapter/Coherence Integration by making a simple choice among none
, read
, or read-write
in the Operation Type screen of the Database Adapter Wizard. However, it is useful to know some of the background related to the architecture of the Database Adapter/Coherence Integration, as detailed in the following subsections.
For more information on Eclipselink, see http://www.oracle.com/technetwork/middleware/toplink/documentation/index.html
Some background on Coherence can be found at http://www.oracle.com/technetwork/middleware/coherence/overview/index.html
With the current design of the Database Adapter, the Adapter performs selects and inserts to the EclipseLink layer, which directly communicates with the data sourcees without the Coherence Cache.
When you choose none
in the Cache Usage dropdown on the Operations Type screen in the Database Configuration Wizard, you indicate you do not want to use cache.
You can choose to use read-write cache by choosing read-write
from the Cache-Usage dropdown of the Operation Type screen of the Database Adapter Wizard
Eclipselink is in two layers, with Coherence Cache (a Coherence Cache Store) between the two layers. There is actually only one Eclipselink project, but two copies of that project.
A Select you execute in the read-write scenario might not uniquely identify the rows to retrieve.
Such a case could be a SELECT *
or SELECT
where total gross > ?
The write-behind Coherence Cache can only receive requests to load a record by ID. Thus, in either of these cases, if all queries were directed to Coherence Cache, no results would be returned. In this case, the query proceeds to the data source directly, and then the Coherence Cache is updated.
You can choose to use read cache by choosing read
from the Cache Usage dropdown on the Operation Type screen of the Database Adapter Wizard.
With Read Cache, when the Database Adapter inserts a record to the Database or selects a record from the database, the Coherence Cache is updated. Any query that identifies a row (that is, by specifying primary key) first checks the Coherence cache, possibly saving a trip to the database.) As the Coherence Cache is distributed and can be simply thought of as a hash map, selecting by a specific primary key enables faster lookups through the Coherence Cache Map.
Figure 9-76 shows the No Caching option as it appears on the Operations type screen of the Database Adapter Wizard, with none
selected.
Figure 9-76 The Database Adapter Configuration Wizzrd Operation Type Screen, with No Caching Selected
All outbound operations are enabled on this screen with the none
option selected. Once you select this option, and choose Next
or Finish
, none of the selected operations contain the property CacheUsage
. This absence of a property is equivalent to the JCA activation property CacheUsage
being equal to the value none
.
The following options are the only operations pre-selected when you choose the none
option as the cache usage:
Merge
Insert Only
Select
You can choose to enable read-write caching through the Operation Type screen. See Figure 9-77. Once you select this option and press Next
or Finish
, the JCA property CacheUsage
value is set to read-write
.
Figure 9-77 Enabling Read-Write Caching Using the Operation Type Screen
Refer to the following list of operations to understand how they are used on this screen when you choose the read-write
option from the Cache Usage
dropdown:
Insert or Update (Merge)
are enabled and have the string uses cache
appended to their label. Insert only
is disabled, as the underlying cache store always performs a merge. Update Only
is disabled, as the underlying cache store always performs a merge. Delete
is selectable but not pre-selected and has the string uses cache
appended to it when it is selected. Select
is disabled, as this query is converted into a Coherence filter executed on a Coherence map. Query by Example
is diabled, as the Database Adapter/Coherence Integration query is converted into a Coherence filter executed on a Coherence map. Select by Primary Key
has the string uses cache
appended to the label. You can enable read caching using the Cache Usage
option on the Operation Type screen. See Figure 9-78. Once you select this option on the screen and press Next
or Finish
, the JCA property CacheUsage
value is set to read
.
Figure 9-78 Enabling Read-Write Caching Using the Operation Type Screen
For the read cache option, only the Select by Primary Key
operation is pre-selected. Select by Primary Key
is the only operation that can be meaningfully executed by the Coherence Database Adapter Integration feature through the cache, although other operations can update cache. Because read cache is not intrusive on the cache, any of the operations on the Operation Type on this screen are disabled.
Select
and Query By Example
are not disabled, although they do not directly update the cache. The Database Adapter/Coherence Integration feature executes the Select
against the database, but updates the Coherence Cache with any rows that are returned.
The general operation of read caching is that if any objects returned exist in the Coherence Cache, the objects in the cache are returned, rather than the Database Adapter/Coherence Integration feature building a new copy from the result set.
This operation improves performance where the master database record has several details; a query on the details does not have to be executed again.
A query behaves the same as a Select
. This is true, for example with XML data where the primary key is set (and it does not get a cache hit).
When using Database Adapter/Coherence Integration, you cannot use XA transactions with read-write operations. This is because the Database Adapter, with Coherence Integration, performs inserts to the Coherence Cache and subsequently to the database, a sequence which breaks the XA transaction contract.
However, you can use XA transactions with read operations using Database Adapter/Coherence Integration.
Database transactions using the Database Adapter that do not use Database Adapter/Coherence Integration can still use the XA transaction model.
This chapter describes how to use the Oracle JCA Adapter for MQ Series (Oracle MQ Series Adapter), which works with Oracle BPEL Process Manager (Oracle BPEL PM) and Oracle Mediator (Mediator) as an external service. The chapter describes JCA Adapter for MQ Series concepts, features, configuration and use cases.
This chapter includes the following sections:
Message queuing is a technique for asynchronous program-to-program communication. It enables application integration by allowing independent applications on a distributed system to communicate with each other. One application sends messages to a queue owned by a queue manager, and another application retrieves the messages from the queue. The communication between applications is maintained even if the applications run at different times or are temporarily unavailable.
The basic concepts of message queuing are described in the following list:
Messaging is the mechanism that allows two entities to communicate by sending and receiving messages. Messaging can be of two types, synchronous and asynchronous. In synchronous messaging, the sender of the message places a message on a message queue and then waits for a reply to its message before resuming its own processing. In asynchronous messaging, the sender of the message proceeds with its own processing without waiting for a reply.
Messages are structured data sent by one program and intended for another program.
Message queues are objects that store messages in an application. Applications can put messages to the queues and get messages from the queues. A queue is managed by a queue manager.
A queue manager provides messaging and queuing services to applications through an application programming interface. It provides you with access to the queues and also transfers messages to other queue managers through message channels.
A message channel provides a communication path between two queue managers. It connects queue managers. A message channel can transmit messages in one direction only.
A transmission queue is used to temporarily store messages that are destined for a remote queue manager.
If a message is very large, then it can be divided into multiple small messages, called segments. Each segment has a group ID and an offset. All segments of a message have the same group ID. The last segment of the message is marked with a flag.
A message group consists of a set of related messages with the same group ID. Each message in a message group has a message sequence number. The last message in a message group is marked with a flag.
A cluster is a group of queue managers that are logically associated.
To enqueue is to put a message in a queue whereas to dequeue is to get a message from a queue, as shown in Figure 10-1.
In a request/response interaction, a program sends a message to another program asking for a reply. The request message contains information about where the reply should be sent. The receiving program sends a reply message in response to the request message. The request/response interaction is shown in Figure 10-2.
For more information about the interaction scenarios supported by the Oracle MQ Series Adapter, see Section 10.4.1.2, "Dequeue Message".
Messaging and Queuing Series (MQ Series) is a set of products and standards developed by IBM. MQ Series provides a queuing infrastructure that provides guaranteed message delivery, security, and priority-based messaging.
Note: The Oracle MQ Series Adapter is certified on IBM WebSphere MQ V7.0. |
The communication process between an MQ Series application and an MQ Series server is shown in Figure 10-3. An MQ Series client enables an application to connect to a queue manager on a remote computer.
Figure 10-3 The MQ Series Communication Process
Every queue in MQ Series belongs to a queue manager. A queue manager has a unique name and provides messaging and queuing services to applications through a Message Queue Interface (MQI) channel. A queue manager also provides access to the queues created on it and transfers messages to other queue managers through message channels.
In MQ Series, data is sent in the form of messages. The sending application constructs a message and sends it to a queue by using API calls. The message remains in the queue until the receiving application is ready to receive it. The receiving application gets the messages from the queue by using API calls.
For sending messages to a remote queue, the remote queue definition must be defined locally. The remote queue definition consists of the destination queue name and the transmission queue name.
Figure 10-4 displays the message structure of an MQ Series message.
An MQ Series message consists of the following parts, as shown in Figure 10-4:
The message header contains information such as unique message ID, message type, message priority, and routing information. Every MQ Series message must have a message header.
The optional header is required for communication with specific applications, such as the CICS application.
For more information, see Section 10.4.8, "Integration with CICS".
This contains the actual data, for example, a record from an indexed or flat file or a row or column from a DB2 table.
Oracle BPEL Process Manager and Mediator include the Oracle MQ Series Adapter. The Oracle MQ Series Adapter enables applications to connect to MQ Series queue managers and place MQ Series messages on queues or to remove MQ Series messages from queues.
This section contains the following topics:
The Oracle MQ Series Adapter provides all native MQ Series functionalities. Although you can configure the Oracle JCA Adapter for JMS (Oracle JMS Adapter) with MQ Series provider, it provides only the JMS functionalities provided by MQ Series and not the native MQ Series functionalities. The following list explains the advantages of Oracle MQ Series Adapter over the Oracle JMS Adapter:
Note: MQ Series version that the Oracle MQ Series Adapter is certified is 6.0.0.0 version, both on Windows and Linux. |
The Oracle MQ Series Adapter is automatically integrated with Oracle BPEL Process Manager. When you create a partner link or an MQ adapter service in Oracle JDeveloper (JDeveloper), the Adapter Configuration Wizard is started.
This wizard enables you to select and configure the Oracle MQ Series Adapter or other Oracle JCA Adapters. The Adapter Configuration Wizard then prompts you to enter a service name, as shown in Figure 10-5.
When the configuration is complete, a WSDL file of the same name is created in the Application Navigator section of JDeveloper. This WSDL file contains the configuration information you specify with the Adapter Configuration Wizard.
The Operations page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information.
Table 10-1 lists the available operations and provides references to sections that describe the information about these operations.
Table 10-1 Supported Operations for Oracle BPEL Process Manager
The Oracle MQ Series Adapter is automatically integrated with Mediator. When you create an MQ adapter service in JDeveloper Mediator Designer, the Adapter Configuration Wizard is started.
This wizard enables you to select and configure the Oracle MQ Series Adapter. When the configuration is complete, a WSDL file of the same name is created in the Application Navigator section of JDeveloper. This WSDL file contains the configuration information you specify in the Adapter Configuration Wizard.
The Operations page of the Adapter Configuration Wizard prompts you to select an operation to perform. Based on your selection, different Adapter Configuration Wizard pages appear and prompt you for configuration information. Table 10-2 lists the available operations and provides references to sections that describe the configuration information you must provide.
Table 10-2 Supported Operations for Oracle Mediator
Operation | See Section... |
---|---|
Enqueue Message | Section 10.4.1.1, "Enqueue Message" |
Dequeue Message | Section 10.4.1.2, "Dequeue Message" |
Request-Response | Section 10.4.1.6, "Synchronous Request-Response (Mediator As Server)" Section 10.4.1.8, "Synchronous Request-Response (Oracle Mediator as Client)" Section 10.4.1.9, "Asynchronous Request-Response (Oracle Mediator As Client)" |
Outbound Dequeue | Section 10.4.1.10, "Outbound Dequeue Scenario" |
This section explains the following features of the Oracle MQ Series Adapter:
The RFH2 header is an extensible header. The RFH2 header enables you to add more header properties to the payload. The RFH2 header carries JMS-specific data that is associated with the message content and can also carry additional information that is not directly associated with JMS.
The RFH2 header consists of two parts, a fixed portion and a variable portion.
The fixed portion is modeled on the standard
WebSphere MQ header pattern and consists of the following fields:
StrucId (MQCHAR4)
Structure identifier.
Must be MQRFH_STRUC_ID (value: "RFH ") (initial value).
MQRFH_STRUC_ID_ARRAY (value: "R","F","H"," ") is also defined in the usual way.
Version (MQLONG)
Structure version number.
Must be MQRFH_VERSION_2 (value: 2) (initial value).
StrucLength (MQLONG)
Total length of MQRFH2, including the NameValueData fields.
The value set into StrucLength must be a multiple of 4 (the data in the NameValueData fields may be padded with space characters to achieve this).
Encoding (MQLONG)
Data encoding.
Encoding of any numeric data in the portion of the message following MQRFH2 (the next header, or the message data following this header).
CodedCharSetId (MQLONG)
Coded character set identifier.
Representation of any character data in the portion of the message following MQRFH2 (the next header, or the message data following this header).
Format (MQCHAR8)
Format name.
Format name for the portion of the message following MQRFH2.
Flags (MQLONG)
Flags.
MQRFH_NO_FLAGS =0. No flags set.
NameValueCCSID (MQLONG)
The coded character set identifier (CCSID) for the NameValueData character strings contained in this header. The NameValueData may be coded in a character set that differs from the other character strings that are contained in the header (StrucID and Format).
If the NameValueCCSID field is a 2-byte Unicode CCSID (1200, 13488, or 17584), then the byte order of the Unicode CCSID is the same as the byte ordering of the numeric fields in MQRFH2. (For example, Version, StrucLength, and NameValueCCSID itself.)
The NameValueCCSID field may take only values from Table 10-3:
The variable portion follows the fixed portion. The variable portion contains a variable number of MQRFH2 folders. Each folder contains a variable number of elements or properties. The related properties are grouped together. The MQRFH2 header can contain the following message service folders:
The <mcd> folder
This contains properties that describe the shape or format of the message. For example, the Msd property identifies the message as being Text, Bytes, Stream. Map, Object, or Null. This folder is always present in JMS MQRFH2.
The <jms> folder
This is used to transport JMS header fields, and JMSX properties that cannot be fully expressed in the MQMD. This folder is always present in a JMS MQRFH2.
The <usr> folder
This is used to transport any application-defined properties associated with the message. This folder is only present if the application has set some application-defined properties.
The <psc> folder
This is used to convey publish/subscribe command messages to the broker. Only one psc folder is allowed in the NameValueData field.
The <pscr> folder
This is used to contain information from the broker, in response to publish/subscribe command messages. Only one pscr folder is present in a response message.
Table 10-4 shows a full list of property names.
Table 10-4 MQRFH2 Folders and Properties Used by JMS
JMS Field Name | Java Type | MQRFH2 Folder name | Property Name | Type/values |
---|---|---|---|---|
JMSDestination | Destination | jms | Dst | string |
JMSExpiration | long | jms | Exp | i8 |
JMSPriority | int | jms | Pri | i4 |
JMSDeliveryMode | int | jms | Dlv | i4 |
JMSCorrelationID | String | jms | Cid | string |
JMSReplyTo | Destination | jms | Rto | string |
JMSTimestamp | long | jms | Tms | i8 |
JMSType | String | mcd | Type, Set, Fmt | string |
JMSXGroupID | String | jms | Gid | string |
JMSXGroupSeq | int | jms | Seq | i4 |
xxx (User Defined) | Any | usr | xxx | any |
mcd | Msd | jms_none jms_text jms_bytes jms_map jms_stream jms_object |
The syntax used to express the properties in the variable portion is as follows:
NameValueLength (MQLONG)
Length, in bytes, of the NameValueData string that immediately follows this length field. It does not include its own length. The value set into NameValueLength is always a multiple of 4. The NameValueData field is padded with space characters to achieve this.
NameValueData (MQCHARn)
A single character string, whose length in bytes is given by the preceding NameValueLength field. It contains a folder holding a sequence of properties. Each property is a name/type/value triplet, contained within an XML element whose name is the folder name, as follows:
<foldername> triplet1 triplet2 tripletn </foldername>
Secure Sockets Layer (SSL) is a protocol for transmitting encrypted data over the Internet or an internal network. SSL works by using public and private keys to encrypt data that is transferred over the SSL connection. Data that has been encrypted with a public key can be decrypted only with the corresponding private key. Conversely, data that has been encrypted with a private key can be decrypted only with the corresponding public key.
MQ Series supports secure communication, with MQ Series clients using SSL. As a part of this functionality, the adapter would provide support to put a message on queue using SSL. To enable Oracle MQ Series Adapter for SSL, the following properties must be provided:
SVRCONN
channel. If set to null (default), then no SSL encryption is performed. sslCipherSuite
is null. Oracle MQ Series Adapter enables transaction support, which along with the inherent data processing, ensures that each modification has a clearly defined outcome, resulting in either success or failure, thus preventing potential corruption of data, executes independently from other changes, and, after completion, leaves underlying data in the same state until another transaction takes place.
The Oracle MQ Series Adapter supports both inbound and outbound XA transaction. You must set the XATransaction
property in the Oracle WebLogic Server Administration Console to enable the XA transaction. To enable XA transaction, perform the following steps:
Note: Click Lock & Edit to enable the options in the console. |
true
in the text field, as shown in Figure 10-6, and click Save. Figure 10-6 Outbound Connection Properties Page
javax.resource.cci.ConnectionFactory
page is displayed. You have successfully enabled XA transaction for the Oracle MQ Series Adapter.
In order to use the XA transaction feature for MQ Series with BPEL for synchronous inbound request-reply scenario, you must set the bpel.config.transaction
parameter to required. If this parameter is not set, then it causes the transaction to split at the BPEL boundary and MQ returns MQRC_SYNCPOINT_NOT_AVAILABLE
error code.
In a scenario involving fail over, such as when the prepare phase
completes successfully before a middleware fails, messages must be recovered within the adapter without restarting the MQSeries server. You must manually resolve the in-doubt transactions.
To view all in-doubt transactions for a Queue Manager, you must execute the following command at the command prompt:
To backout the messages, use the following command:
To commit the messages, use the following command :
Note: You can use the |
The Oracle MQ Series Adapter supports the high availability feature for the active-active topology with Oracle BPEL Process Manager (Oracle BPEL PM) and Mediator service engines. It supports this feature for both inbound and outbound operations.
Before you configure the Oracle MQ Series Adapter for high availability, you must ensure that the following prerequisites are met:
The Oracle MQ Series Adapter must ensure that it participates in the XA transaction. For more information about the XA transaction, see Section 10.3.3, "XA Transactions".
The Oracle MQ Series Adapter supports the scalability feature for inbound operations only. Oracle MQ Series Adapter provides the parameter to control the number of threads that dequeue the messages from the inbound queue.You must specify the following property in the.jca
file:
InboundThreadCoun
t='N
'
where, N is the number of threads to span to dequeue the messages from the inbound queue. The default setting is 2.
The Oracle MQ adapter creates the back-endconnections at deployment time, that is, at that time the adapter endpoint starts polling. You can have the application server prewarm the connection pool, which would provide a small marginal advantage, although connection creation does not otherwise delay the overall deployment task itself.
The example syntax for using InboundThreadCount in the .jca file is:
The Oracle MQ Series Adapter supports securing of the Enterprise Information System (EIS) credentials such as the user name and password, whenever it establishes an outbound connection with EIS. You can secure the user name and password for Oracle MQ Series Adapter by using Oracle WebLogic Server container-managed sign-on.
For more information, see Section 4.2.22, "Securing Enterprise Information System Credentials".
A fault policy file defines fault conditions and their corresponding fault recovery actions. Each fault condition specifies a particular fault or group of faults, which it attempts to handle, and the corresponding action for it. A set of actions is identified by an ID in the fault policy file.
The Oracle MQ Series Adapter supports defining rejection handlers by using fault policies.
For more information about fault policies, see Section 2.21.1.1, "Configuring Rejection Handlers".
The Oracle MQ Series Adapter supports inbound message rejection handling. You can configure the message rejection handler to process translation errors, take corrective action.
For more information about rejection handlers, Section 2.21.1.1, "Configuring Rejection Handlers".
The Oracle MQ Series Adapter supports the following two mechanisms for inbound retry:
The JCA inbound retry mechanism is commonly used by all adapters, in general, whereas the message backout queue mechanism is used only by the Oracle MQ Series Adapter. If you specify the BackoutQueueName
property in the .jca file, only then the Oracle MQ Series Adapter uses the message backout queue mechanism to retry. By default, the JCA inbound retry mechanism is used for retry.
Note: Both these methods of retry in the Oracle MQ Series Adapter are mutually exclusive operations; the adapter uses one mechanism at a time. If you specify both options, then the Backout Queue option takes precedence. |
The Oracle MQ Series Adapter supports a pull model for connecting to the back-end application for receiving events. Connection-related issues are considered recoverable and most inbound adapters keep retrying until the adapters are able to establish connection with the EIS.
In case of Oracle MQ Series Adapter, a message not being able to put to a queue is also retriable.
For more information about retry mechanism, see Section 2.21, "Error Handling".
Backout Queue is a queue for putting rejected messages from an inbound queue. The inbound adapter checks for the backout count of the messages and if this count exceeds the MaximumBcakoutCount
value, then the adapter puts the messages to the specified Backout Queue. This mechanism is used by the Oracle MQ Series Adapter to handle inbound retries for the rejected messages.
If you specify the BackoutQueueName
property in the .jca
file, then Oracle MQ Series Adapter uses the message backout count for retries. You can specify the maximum retries using the MaximumBackoutCount
property. The default value for this property is infinite. If you do not specify the MaximumBackoutCount
value along with the BackoutQueueName
, then the adapter retries infinitely. The adapter does not consider JCA
retries (specified in composite.xml) when the BackOut Queue properties are specified.
The BackoutRetries
property must be set to specify the number of retries for delivering the message to the Backout Queue with retry interval set using the BackoutRetryInterval
property. The default value for BackoutRetries
is 3
and BackoutInterval
is 5
sec.
If a message gets rejected even after the MaximumBackoutCount
value is reached, then the adapter puts the message to Backout Queue. If Oracle MQ Series Adapter is cannot put the message to Backout Queue, then the adapter tries till the BackoutRetries
count with the BackoutInterval
time delay. If even after the BackoutRetries the adapter cannot put the message to Backout Queue, then the adapter deactivates the endpoint.
You must also specify the name of the Queue Manager of the Backout Queue in the BackoutQueueManagerName
property. You must not use this property if the BackoutQueue resides on the inbound queue QueueManager.
Note: When using the Backout Queue, consider the following:
|
For more information about configuring Backout Queues, see Section 10.6.7, "Configuring a Backout Queue."
The Oracle MQ Series Adapter supports performance tuning options.
For more information, see "Oracle MQ Adapter Tuning" in the Oracle Fusion Middleware Performance and Tuning Guide.
This section explains the following concepts of the Oracle MQ Series Adapter:
The Oracle MQ Series Adapter supports the following messaging scenarios:
In this scenario, the Oracle MQ Series Adapter connects to a specific queue managed by a queue manager and then writes the message to the queue. For outbound messages sent from Oracle BPEL PM or Mediator, the Oracle MQ Series Adapter performs the following operations:
For more information about message properties, see Section 10.4.2.1, "Messages Types".
Figure 10-7 displays the operation type that you must select in the Adapter Configuration Wizard.
Figure 10-7 The Adapter Configuration Wizard: Produce Message Selection
The page that appears after selecting the Put Message into MQ operation type is shown in Figure 10-8.
You can specify the following properties in this page:
true
or false
. If assigned true
, then even if the delivery of message fails for some queues, it would still go and put the message to the rest of the queues specified in the distribution list. If assigned false
, it means even if one message fails, then the message is not put to any queue. Note: When enqueuing a message, ensure that the various mandatory values, required for a specific format, are specified correctly. |
For more information about these properties, see Section 10.4.2, "Message Properties".
The next Adapter Configuration Wizard page that appears is the Messages page, as shown in Figure 10-9. This page enables you to select the XML Schema Definition (XSD) file for translation.
If native format translation is not required (for example, a JPG or GIF image is being processed), then select the Native format translation is not required check box. The file is passed through in base-64 encoding.
XSD files are required for translation. To define a new schema or convert an existing data type description (DTD) or COBOL Copybook, select Define Schema for Native Format. This starts the Native Format Builder wizard. This wizard guides you through the creation of a native schema file from file formats, such as delimited by special characters, comma-delimited value (CSV), fixed-length, DTD, and COBOL Copybook. After the native schema file is created, you are returned to this Messages page with the Schema File URL and Schema Element fields filled in.
For more information, see Section 6.1, "Creating Native Schema Files with the Native Format Builder Wizard".
In this scenario, the Oracle MQ Series Adapter connects to a specific queue managed by a queue manager and then removes the message from the queue. For inbound messages sent to Oracle BPEL PM or Mediator, the Oracle MQ Series Adapter performs the following operations:
Figure 10-10 displays the operation type that you must select in the Adapter Configuration Wizard.
Figure 10-10 The Adapter Configuration Wizard: Consume Message Selection
The page that appears after selecting the Get Message from MQ operation type is shown in Figure 10-11.
You can specify the following properties in this page:
The next Adapter Configuration Wizard that appears is the Messages page, as shown in Figure 10-9. This page enables you to select the XSD schema file for translation.
As with specifying the schema for the produce message operation, you can perform the following tasks in this page:
For more information about the Messages page, see Section 10.4.1.1, "Enqueue Message".
In this scenario, the Oracle BPEL PM sends a request message and receives the corresponding response using a non-initiating receive activity. The invoke activity initiates the outbound invocation of the adapter to send the request. The Oracle MQ Series Adapter performs the following operations:
replyTo
queue specified in the request message. The Correlation ID and Message ID of the response message are generated based on the correlation schema specified in the request message. replyTo
queue. Figure 10-12 displays the operation type that you must select in the Adapter Configuration Wizard.
The page that appears after selecting the Send Message to MQ and Get Reply/Reports operation type is shown in Figure 10-13.
Figure 10-13 Send Message to MQ and Get Reply/Reports Page
You can specify the following properties in this page:
For more information about these properties, see Section 10.4.2, "Message Properties" and Section 10.4.5, "Report Messages".
The page that is displayed when you click Next in the Send Message to MQ and Get Reply/Reports page can be a Reports page (shown in Figure 10-14) or a Response page (shown in Figure 10-15).
The Reports page, shown in Figure 10-14, is displayed only if you have selected the Get Reports option in the Send Message to MQ and Get Reply/Reports page, as shown in Figure 10-13.
You can select the following types of reports in this page:
For information about these report types, see Section 10.4.5, "Report Messages".
The Response page shown in Figure 10-15 is displayed when you click Next in the Reports page.
You can specify the following properties in the Response page:
For information about correlation schemas, see Section 10.4.3, "Correlation Schemas".
Note: For Oracle MQ Series Adapter in an asynchronous outbound request/reply scenario, properties are differentiated by an When using Oracle Enterprise Manager Console to edit Oracle MQ Series Adapter properties in this scenario, note the following:
|
When you click Next in the Response page, a Messages page, shown in Figure 10-16, is displayed. This page enables you to select the XSD schema file for translation for request and as response message.
You can perform the following tasks in this page:
For more information about the Messages page, see Section 10.4.1.1, "Enqueue Message".
In the solicit-request-response scenario, the reply message is expected in the reply queue specified with some correlation scheme that is provided through the request message. This reply queue, which is used by a particular process (BPEL/Mediator), should not be used by any other process.
If the same reply queue is used by some other application, then the message might be picked, irrespective of whether the reply message had the proper correlation or not, and eventually the message becomes lost.
In this scenario, the Oracle BPEL PM receives a request, processes it, and sends the response synchronously by using a reply activity. The Oracle MQ Series Adapter performs the following operations:
Figure 10-17 shows a sample BPEL process for this scenario.
Figure 10-17 Synchronous Request-Response Oracle BPEL PM As Server Sample
Figure 10-18 displays the operation type that you must select in the Adapter Configuration Wizard.
Figure 10-18 Operation Type Page Selection for Request-Response Synchronous Interaction
The page that appears after you select the Get Message from MQ and Send Reply/Reports operation type is shown in Figure 10-19. Specify the queue name from which the Oracle MQ Series Adapter dequeues the message in this page.
Figure 10-19 Get Message from MQ and Send Reply/Reports Page
When you click Next in the Get Message from MQ and send Reply/Reports page, the Response page shown in Figure 10-20 is displayed.
Figure 10-20 Response Page for Synchronous Request-Response
You can specify the following properties in the Response page:
For more information about these properties, see Section 10.4.2, "Message Properties".
Click Next in the Response page, the Messages page is displayed, as shown in Figure 10-16. You can perform the following tasks in this page:
For more information about the Messages page, see Section 10.4.1.1, "Enqueue Message".
In Oracle BPEL PM initiated request-response interaction, a BPEL process receives a request as an inbound message, processes it, and then sends the response through an invoke activity. For asynchronous request-reply scenario, the Oracle MQ Series Adapter performs the following operations:
Figure 10-21 shows a sample BPEL process for this scenario.
Figure 10-21 Asynchronous Request-Response Oracle BPEL PM As Server Sample
Figure 10-22 displays the operation type that you must select in the Adapter Configuration Wizard.
Figure 10-22 Operation Type Page Selection for Request-Response Asynchronous Interaction
The page that appears after selecting the Get Message from MQ and send Reply/Reports operation type is shown in Figure 10-19. Specify the queue name from which the Oracle MQ Series Adapter dequeues the message in this page.
When you click Next in the Get Message from MQ and send Reply/Reports page, the Response page shown in Figure 10-20 is displayed.
You can specify the following properties in the Response page:
For more information about these properties, see Section 10.4.2, "Message Properties".
The page that is displayed when you click Next in the Get Message to MQ and Send Reply/Reports page is a Response page (shown in Figure 10-23 and Figure 10-24) but with two different set of options.
Figure 10-23 Response Page (Request Message Type Selected)
The Response page shown in Figure 10-24 is displayed only if you have selected the Normal option in Message Type field in the Get Message to MQ and Send Reply/Reports page.
Figure 10-24 Response Page (Normal Message Type Selected)
You can specify the following properties in the Response page:
To specify the other properties in this Response page, see properties mentioned for Figure 10-23.
When you click Next in the Response page, the Messages page shown in Figure 10-25 is displayed. You can perform the following tasks in this page:
For more information about the Messages page, see Section 10.4.1.1, "Enqueue Message".
In asynchronous request-reply interaction, you must map the following properties from the inbound message header to the outbound message header:
MsgID
: Refers to the message ID. CorrelID
: Refers to the correlation ID of a message. CorrelationScheme
: Refers to a combination of both the msgid and the correlid of the request message. For more information, see Section 10.4.3, "Correlation Schemas".
ReplyToQ
: Refers to the name of the response queue name. ReplyToQueueManager
: Refers to the name of the response queue manager. You can use the Assign activity to map these properties.
In this scenario, the Mediator receives a request, processes it, and sends the response synchronously. The Oracle MQ Series Adapter performs the following operations:
Figure 10-19 displays the operation type that you must select in the Adapter Configuration Wizard.
From this page onwards, all the pages are similar to the pages explained in Section 10.4.1.4, "Synchronous Request-Response (Oracle BPEL PM As Server)".
Note: The asynchronous request-response pattern is not supported for Mediator. |
The Oracle MQ Series Adapter supports the outbound synchronous-solicit-request-response scenario. In this scenario, the adapter enqueues a normal/request message in a queue and expects the report/reply synchronously. The report/reply message arrives in the ReplyToQueueName
queue of the normal/request message.
Note: Outbound synchronous-solicit-responses must be executed in non-XA modes as the request message does not get enqueued when it is participating in a global transaction. |
Figure 10-29 displays the operation type that you must select in the Adapter Configuration Wizard.
The page that appears after selecting the Send Message to MQ and Get Reply/Reports operation type is shown in Figure 10-13.
You can specify the following properties in this page:
Click Next in the Send Message to MQ and Get Reply/Reports page, the Response page, as shown in Figure 10-30, is displayed.
For the Synchronous Request-Response scenario, you must also edit the following properties in the Response page:
For more information about correlation schemas, see Section 10.4.3, "Correlation Schemas".
replyToQueueName
. By default, the value of this property is 0 milliseconds. You can change this value, but the value must be less than that of the timeout interval for the outbound activity. If the report/reply message does not arrive in the stipulated time, then the adapter throws an exception. This property is not mandatory. Note: The |
The Oracle MQ Series Adapter also supports the outbound synchronous-solicit-request-response scenario. In this scenario, the adapter enqueues a normal/request message in a queue and expects the report/reply synchronously. The report/reply message arrives in the Reply to Queue Name queue of the normal/request message.
The Synchronous Request-Response scenario for Oracle Mediator as client is same as the Synchronous Request-Response for Oracle BPEL as client. For more information about the Synchronous Request-Response scenario, see Section 10.4.1.7, "Synchronous Request-Response (Oracle BPEL PM As Client)".
In this scenario, Oracle Mediator sends a request message and receives the corresponding response from the Mediator callback handler. Oracle Mediator sends an outbound invocation to send the request. The Oracle MQ Series Adapter performs the following operations:
replyTo
queue specified in the request message. The Correlation ID and Message ID of the response message is generated based on the correlation schema specified in the request message. replyTo
queue. Figure 10-12 displays the operation type that you must select in the Adapter Configuration Wizard.
The page that appears after selecting the Send Message to MQ and Get Reply/Reports operation type is shown in Figure 10-13.
You can specify the following properties in this page:
For more information about these properties, see Section 10.4.2, "Message Properties" and Section 10.4.5, "Report Messages".
The page that is displayed when you click Next in the Send Message to MQ and Get Reply/Reports page can be a Reports page (shown in Figure 10-14) or a Response page (shown in Figure 10-15).
The Reports page shown in Figure 10-14 is displayed only if you have selected the Get Reports option in the Send Message to MQ and Get Reply/Reports page shown in Figure 10-13.
The Response page shown in Figure 10-15 is displayed, irrespective of whether you select the Request or Normal option. The only difference is that if you select the Request option, then REPLY
is displayed in the Message Type field of the Response page. On the other hand, if you select the Normal option, then REPORTS
is displayed in the Message Type field of the Response page.
You can select the following types of reports in Figure 10-14:
For information about these report types, see Section 10.4.5, "Report Messages".
The Response page, shown in Figure 10-15, is displayed when you click Next in the Reports page.
You can specify the following properties in the Response page:
For information about correlation schemas, see Section 10.4.3, "Correlation Schemas".
Note: For Oracle MQ Series Adapter in an asynchronous outbound request/reply scenario, properties are differentiated by an When using Oracle Enterprise Manager Console to edit Oracle MQ Series Adapter properties in this scenario, note the following:
|
When you click Next in the Response page, a Messages page shown in Figure 10-16 is displayed. This page enables you to select the XSD schema file for translation for request and as response message.
For more information about the Messages page, see Section 10.4.1.1, "Enqueue Message".
The outbound dequeue scenario dequeues a single message from a queue using the outbound Oracle MQ Series Adapter by using the Get Message from MQ option in the Operation Type page of the Adapter Configuration Wizard. To enable the outbound dequeue option, you must select the Synchronous option, as shown in Figure 10-29.
Click Next in the Send Message to MQ and Get Reply/Reports page, the Response page, as shown in Figure 10-30, is displayed. You must set the following properties in the Response page:
Note: The |
messageId
. This property is not mandatory. The value provided for this property must be a hexadecimal-encoded value for some messageId
. correlationId
. This property is not mandatory. The value provided for this property must be a hexadecimal-encoded value for some correlationId
. Note: You can filter messages based on the Message Id and Correlation Id property through headers. |
The Oracle MQ Series Adapter supports the following message properties:
The Oracle MQ Series Adapter supports the following four types of messages:
A normal message is sent by one program to another program without expecting any response.
A request message is sent by one program to another program requesting a response.
A reply message is sent by a program in response to a request message.
A report message is sent by a receiving program to a sending program as confirmation of successful or unsuccessful delivery of a message. A report message can be generated for any of the message types, normal message, request message, or reply message.
For more information about acknowledgment messages supported by the Oracle MQ Series Adapter, see Section 10.4.5, "Report Messages".
You can specify the format for an outgoing message through the Adapter Configuration Wizard, as shown in Figure 10-8. The following message formats are supported:
You can specify the expiry time for an outgoing message by using the Adapter Configuration Wizard, as shown in Figure 10-8. The queue manager discards the message after the expiry time of a message has elapsed.
If a message has expiration notification set, then a notification is generated when the message is discarded. The notification is sent to the queue specified in the replyToQueue
parameter. By default, NEVER
is set for the expiry field.
You can specify the priority of an outgoing message through the Adapter Configuration Wizard, as shown in Figure 10-8. A priority can be in the range of 0 (low) to 9 (high). You can also specify the priority of the message to be taken from the default priority attribute, as defined by the destination queue. By default, AS_Q_DEF
is set as message priority.
You can specify the persistence of an outgoing message through the Adapter Configuration Wizard, as shown in Figure 10-8. If message persistence is not set, then a message is lost when the queue manager restarts or there is a system failure. If you set persistence for a message to true
, then it means that the message does not get lost even if there is system failure or the queue manager is restarted. You can also specify the persistence of the message to be taken from the default priority attribute, as defined by the destination queue. The Adapter writes persistent messages to log files and queue data files. If a queue manager is restarted after a failure, it recovers these persistent messages from these files.
Note: You can specify all these message properties at run time through message headers. You can use the assign activity to assign values to these properties. |
Mapping a response to a request in a request-reply interaction requires correlation. Each MQ Series request message contains a message ID and a correlation ID. When an application receives a request message from Oracle BPEL PM, it checks for the correlation schema defined for the response message. Based on the correlation schema, the application generates the message ID and correlation ID of the response message.
The response page of the Adapter Configuration Wizard shown in Figure 10-15 enables you to specify the correlation schema for the response message.
The Message ID box shown in Figure 10-15 provides the following options for the message ID of the response message:
Similarly, the Correlation ID box shown in Figure 10-15 provides the following options for the correlation ID of the response message:
The Oracle MQ Series Adapter enables you to enqueue a message to multiple queues.
When you select the Put Message Into MQ option in the Operation Type page and multiple queues, then the DistributionList
parameter is automatically added to the JCA file.
The Oracle MQ Series Adapter enables you to set various types of acknowledgment messages on an outgoing message. These acknowledgment messages are known as report messages. A report message is generated, only if the criteria for generating that report message is met. When enqueuing a message on a queue, you can request for more than one type of report message. When you request for a report message, you must specify the queue name to which the report message is sent. This queue is known as replyTo
queue. A report message can be generated by a queue manager, a message channel, or an application.
The Oracle MQ Series Adapter supports the following message reports:
The Confirmation on Arrival (COA) message indicates that the message has been delivered to the target queue manager. A COA message is generated by the queue manager. This message report can be selected in the Reports page of the Adapter Configuration page shown in Figure 10-14.
A Confirmation on Delivery (COD) message indicates that the message has been retrieved by the receiving application. A COD message is generated by the queue manager. This message report can be selected in the Reports page shown in Figure 10-14.
An exception report is generated when a message cannot be delivered to the specified destination queue. Exception reports are generated by the message channel. This message report can be selected in the Reports page of the Adapter Configuration page shown in Figure 10-14.
An expiry report indicates that the message was discarded because the expiry time specified for the message elapsed before the message was retrieved. An expiry report is generated by a queue manager. This message report can be selected in the Reports page of the Adapter Configuration page shown in Figure 10-14.
A Positive Action Notification (PAN) indicates that a request has been successfully processed. It means that the action requested in the message has been performed successfully. This type of report is generated by the application.
A Negative Action Notification (NAN) indicates that a request has not been successfully serviced. It means that the action requested in the message has not been performed successfully. This type of report is generated by the application.
You can specify whether all these report messages except PAN and NAN should contain the complete original message, a part of the original message, or no part of the original message. You can select any of the following options in the Adapter Configuration Wizard:
The Message Delivery Failure options are supported only for remote queues and not for normal queues. The Oracle MQ Series Adapter enables you to specify the action that should be taken in case a message could not be delivered to the destination queue. You can specify any of:
This is the default action. A message is placed on a dead-letter queue if it cannot be delivered to the destination queue. A report message is generated if requested by the sender.
This indicates that the message should be discarded if it cannot be delivered to the destination queue. A report message is generated if requested by the sender.
You can specify these options by selecting the Put Message To MQ option in the Adapter Configuration Wizard.
The Oracle MQ Series Adapter supports message segmentation for both inbound and outbound interactions. Segmentation is required when the size of a message is greater than the message size allowed for a queue. A physical message is divided into two or more logical messages. All logical messages have the same group ID and a sequence number, and an offset.
In the inbound interaction, the segmentation is inherently supported by the Oracle MQ Series Adapter. The Oracle MQ Series Adapter dequeues all logical messages in the order of sequence number and then publishes the single message as XML to Oracle BPEL PM or Mediator.
The Allow Messages to Be Segmented When Necessary option enables you to segment messages for outbound interactions. This option appears in the Response page of the Adapter Configuration Wizard.
The message is segmented based on whether the size of the message is larger than the maximum limit set on the queue.
The Oracle MQ Series Adapter provides support for sending and receiving messages from the CICS server. In the inbound direction, an inbound message from the CICS server is dequeued in the same way as a normal message. In the outbound direction, the message should be in the CICS format. A sample schema file for the outbound CICS message format is shown in the following example:
By default, Oracle MQ Series Adapter supports a list of encodings. It displays a list of MQ Series message encodings and Java encoding, and also the mapping between the MQ Series message encoding and Java encoding. The list of supported encodings for Oracle MQ Series Adapter is as follows:
You can add support for the other standard Java encodings that are not provided in above list, as follows:
MQSeriesAdapter.jar
file from the MQSeriesAdapter.rar
file. mq.properties
file from the MQSeriesAdapter.jar
file. mq.properties
file. For each new encoding, you must add two lines (properties) to the mq.properties
file. One line for the MQ Series encoding to the corresponding Java encoding and other line for the Java encoding to the corresponding MQ Series encoding. For example, to add support for the following ibm037
Java encoding:ibm037 (Java encoding)<->37 (MQ Series message encoding), you must add the following two lines to the mq.properties
file:
oracle.tip.adapter.mq.encoding.37=ibm037
oracle.tip.adapter.mq.encoding.ibm037=37
The prerequisites for using the Oracle MQ Series Adapter are:
Note: You must create queues based on the requirement of the application. |
To configure the Oracle MQ Series Adapter, perform the following:
The steps in this section should be performed once, before using the Oracle MQ Series Adapter. To add the com.ibm.mq.jar
property to the classpath for the Oracle MQ Series Adapter, copy the com.ibm.mq.jar
file to the <DOMAIN_HOME>/lib folder.
The steps in this section should be performed once, before using the Oracle MQ Series Adapter.
To add correct jar properties to the classpath for the Oracle MQ Series 6 Adapter, copy the following jars to <DOMAIN_HOME>/lib folder
com.ibm.mq.jar
com.ibm.mqetclient.jar
(for use with XA) To add correct jar properties to the classpath for the Oracle MQ Series 7 Adapter, copy the following jars to <DOMAIN_HOME>/lib folder
com.ibm.mq.commonservices.jar
com.ibm.mq.jar
com.ibm.mq.pcf.jar
com.ibm.mq.headers.jar
com.ibm.mq.jmqi.jar
com.ibm.mqetclient.jar
(for use with XA) In addition, if you are using the Oracle MQ Series 7 Adapter , the new Sharing Conversation property of the Server Connection Channel has to be to set to zero.
You can add a new jndi entry in the Oracle WebLogic Server Administration Console by following these steps:
http://<localhost>:port/console
The Home page is displayed, as shown in Figure 10-31.
Figure 10-31 Oracle WebLogic Administration Console Home Page
Figure 10-32 Settings of MQSeriesAdapter Page
Figure 10-33 Settings of MQSeriesAdapter Page - Configuration Submenu Options
Figure 10-34 Outbound Connection Pool Configuration Table
Figure 10-35 Create a New Outbound Connection Page
eis/MQ/MQAdapter
, as shown in Figure 10-36. Figure 10-36 Create a New Outbound Connection Page - JNDI Name
You can enable binding mode for connections for the Oracle MQ Series Adapter by modifying a few properties in the Oracle WebLogic Server Administration Console:
To enable binding mode, perform the following steps:
Figure 10-37 Outbound Connection Properties Page
You have enabled the binding mode for connections for the Oracle MQ Series Adapter.
This section contains the following topics:
This use case is the end-to-end demonstration of how MQ Adapter dequeues a message and enqueues the same message after transformation from the MQ Series queue. This section contains the following topics:
To perform the dequeue enqueue use case, you need the following files from the artifacts.zip
file contained in the Adapters-101MQAdapterDequeueEnqueue
sample:
artifacts/schemas/address-csv.xsd
artifacts/schemas/address-fixedLength.xsd
artifacts/input/data.txt
You can obtain the Adapters-101MQAdapterDequeueEnqueue
sample by accessing the Oracle SOA Sample Code site.
You must also create the following queues:
test_in
test_out
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
De-queueEn-queue
in the Application Name field, as shown in Figure 10-38, and then click Next. The Name Your Project screen is displayed. Figure 10-38 The Name Your Application Page
De-queueEn-queueComposite
and from the Available list, select SOA and click the right-arrow button, as shown in Figure 10-39. Figure 10-40 The Configure SOA Settings Page
BPELdequeueenqueue
in the Name field, and select Define Service Later from the Template box, as shown in Figure 10-41. Figure 10-41 The Create BPEL Process Dialog
Figure 10-42 The JDeveloper - Composite.xml
address-csv.xsd
and address-fixedLength.xsd
files to the xsd folder in your project (see Section 10.6.1.1, "Prerequisites" for the location of these files). Perform the following steps to create an adapter service that dequeues the message from a queue:
InboundService
in the Service Name field, as shown in Figure 10-43, and click OK. The MQ Series Connection page is displayed. Figure 10-44 The MQ Series Connection Page
test_in
in the Queue Name field, as shown in Figure 10-47, and click Next. The Messages page is displayed. Figure 10-47 The Get Message From MQ Page
Figure 10-50 The JDeveloper Page - Composite.xml Page
Perform the following steps to create an adapter service that enqueues the messages.
OutboundService
in the Service Name field, and click OK. The MQ Series Connection page is displayed. test_out
in the Queue Name field, and click Next. The Advanced Options page is displayed, as shown in Figure 10-51. Figure 10-52 The JDeveloper Page - Composite.xml Page
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 10-53.
Figure 10-53 The JDeveloper - Composite.xml
The JDeveloper BPELdequeueenqueue.bpel page is displayed, as shown in Figure 10-54.
Figure 10-54 The BPELdequeueenqueue.bpel Page
The BPELdequeueenqueue.bpel page appears, as shown in Figure 10-56.
Figure 10-56 The BPELdequeueenqueue.bpel Page
You must deploy the application profile for the SOA project and application you created in the earlier steps.
For more information about deploying the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
In this use case, the inbound Oracle MQ Series Adapter dequeues the request message from MQ Series inbound queue test_in
and publishes it to the BPEL process. The Oracle MQ Series Adapter waits for the response from the BPEL process. When the Oracle MQ Series Adapter receives the response, it enqueues the response message to the MQ Series queue specified in the replyToQueueName
queue of the request message. This use case consists of the following sections:
This example assumes that you are familiar with basic BPEL constructs, such as activities and partner links, and JDeveloper environment for creating and deploying BPEL Process.
The Oracle MQ Series Adapter must be configured as specified in Section 10.5, "Configuring the Oracle MQ Series Adapter" and a queue test_in
should be created.
To perform the inbound synchronous request-reply use case, you require the following files from the artifacts.zip
file contained in the Adapters-101MQAdapterDequeueEnqueue
sample:
artifacts/schemas/address-csv.xsd
artifacts/schemas/address-fixedLength.xsd
artifacts/input/data.txt
You can obtain the Adapters-101MQAdapterDequeueEnqueue
sample by accessing the Oracle SOA Sample Code site.
You must also create the following queues:
test_in
test_reply
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
SyncReqRes
in the Application Name field, and then click Next. The Name Your Project screen is displayed. Sync_ReqRes
and from the Available list, select SOA and click the right-arrow button. The Application Navigator of JDeveloper is updated with the new application and project and the Design tab contains, a blank palette.
BPELsyncreqres
in the Name field, select Define Service Later from the Template box. Figure 10-57 The JDeveloper - Composite.xml
Perform the following steps to create an adapter service that dequeues the message from a queue:
inbound_reqres
in the Service Name field, and click Next. The MQ Series Connection page is displayed. test_in
in the Queue Name field. Figure 10-58 The JDeveloper Page - Composite.xml Page
Perform the following steps to wire components:
inbound_reqres
adapter service to the BPELsyncreqres
BPEL process. inbound_reqres
adapter service. The Receive dialog is displayed. ReadMsg
in the Name field. inbound_reqres
adapter service. The Reply dialog is displayed. ReplyMsg
in the Name field. Figure 10-60 The BPELsyncreqres.bpel Page
You must deploy the application profile for the SOA project and application you created in the earlier steps.
To deploy the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
data.txt
file and set replyToQueueName to test_reply
. Put this message in the test_in
queue. This use case is the end-to-end demonstration of the Synchronous Solicit Request-Reply scenario for MQ Adapter. In this use case, the composite dequeues the message from an inbound queue. Then, it enqueues a reply message to the replyToQueue queue as specified in the inbound message. This section contains the following topics:
To perform the inbound synchronous request-reply use case, you require the following files from the artifacts.zip
file contained in the Adapters-101MQAdapterDequeueEnqueue
sample:
artifacts/schemas/address-csv.xsd
artifacts/schemas/address-fixedLength.xsd
You must also create queues named:
test_in
test1
ReplyQ
test_reply
You can obtain the Adapters-101MQAdapterDequeueEnqueue
sample by accessing the Oracle SOA Sample Code site.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
Sync-Req-Rep
in the Application Name field, and then click Next. The Name Your Project screen is displayed. Sync-Req-RepComposite
and from the Available list, select SOA and click the right-arrow button. BPELSyncreqrep
in the Name field, select Define Service Later from the Template box. Figure 10-61 The JDeveloper - Composite.xml
Perform the following steps to create an adapter service that dequeues the message from a queue:
InboundReqRepService
in the Service Name field, and click Next. The MQ Series Connection page is displayed. test_in
in the Queue Name field and select Choose Other Schema in the Schema Options box, and click Next. The Response page is displayed. Figure 10-62 The JDeveloper Page - Composite.xml Page
Perform the following steps to create an adapter service that enqueues the request messages and dequeue the corresponding response messages (report) from a queue:
OutboundReqRepService
in the Service Name field, and click OK. The MQ Series Connection page is displayed. test1
in the Queue Name field and click Next. The Response page is displayed. ReplyQ
, select the Response Wait Interval option and enter a value, and select the Empty Response Message Allowed option. Figure 10-63 The JDeveloper Page - Composite.xml Page
You have to assemble or wire the three components that you have created: InboundReqRepService, BPELSyncreqrep, and OutboundReqRepService. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 10-64.
Figure 10-64 The JDeveloper - Composite.xml
Figure 10-65 The BPELSyncreqrep.bpel Page
InboundReqRepService
. The Receive dialog is displayed. Figure 10-70 The Transformation.xsl Page with Mappings
Figure 10-71 The Create Copy Operation Dialog
Figure 10-72 The BPELSyncreqrep.bpel Page
You must deploy the application profile for the SOA project and application you created in the earlier steps.
For more information about deploying the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
data.txt
file and set replyToQueueName to test_reply
. Put this message in the test_in
queue. This use case is the end-to-end demonstration of the Asynchronous-Request-Reply scenario. In this use case, first, the composite dequeues the message from an inbound queue. Then, it enqueues a request message and dequeues the reply message. Finally, the composite enqueues the reply message to the other queue. This section contains the following topics:
The Oracle MQ Series Adapter must be configured as specified in Section 10.5, "Configuring the Oracle MQ Series Adapter" and create the following queues: test_in, test_out, and test_demo queues.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
AsynchronousRequestReply
in the Application Name field, and then click Next. The Name Your Project screen is displayed. Async-Req-RepComposite
and from the Available list, select SOA and click the right-arrow button. BPELAsyncreqrep
in the Name field, select Define Service Later from the Template box. Figure 10-73 The JDeveloper - Composite.xml
Perform the following steps to create an adapter service that dequeues the message from a queue:
InboundService
in the Service Name field, and click Next. The MQ Series Connection page is displayed. test_in
in the Queue Name field and click Next. The Messages page is displayed. Figure 10-74 The JDeveloper Page - Composite.xml Page
Perform the following steps to create an adapter service that enqueues the request messages and dequeue the corresponding response messages (report) from a queue:
asyn-Req-Res
in the Service Name field, and click OK. The MQ Series Connection page is displayed. test_out
in the Queue Name field, and then select the Get Reports check box, and click Next. The Reports page is displayed. Figure 10-75 The Adapter Configuration Wizard Reports Page
test_out
in the Reply To Queue Name field, and click Next. The Advanced Options page is displayed. Figure 10-76 The JDeveloper Page - Composite.xml Page
Perform the following steps to create an adapter service that enqueues the response (report) messages.
OutboundService
in the Service Name field, and click OK. The MQ Series Connection page is displayed. test_demo
in the Queue Name field, and click Next. The Advanced Options page is displayed. Figure 10-77 The JDeveloper Page - Composite.xml Page
You have to assemble or wire the four components that you have created: Inbound adapter service, BPEL process, async-Req-Res, and Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 10-78.
Figure 10-78 The JDeveloper - Composite.xml
Figure 10-79 The BPELAsyncreqrep.bpel Page
Note: Do not check the Create Instance box. |
Figure 10-80 The Create Copy Operation Dialog
Figure 10-81 The Create Copy Operation Dialog
Figure 10-82 The BPELAsyncreqrep.bpel Page
You must deploy the application profile for the SOA project and application you created in the earlier steps.
For more information about deploying the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
This use case is the end-to-end demonstration of how MQ Adapter dequeues a single message at a time. This section contains the following topics:
To perform the outbound dequeue use case, you require the following files from the Adapters-101MQAdapterDequeueEnqueue
sample:
De-queueEn-queue/De-queueEn-queueComposite/xsd/singleString.xsd
You also require the following files from the artifacts.zip
file contained in the Adapters-101MQAdapterDequeueEnqueue
sample:
artifacts/input/data.txt
You can onbtain the Adapters-101MQAdapterDequeueEnqueue
sample by accessing the Oracle SOA Sample Code site.
You must also create a queue named test_out
.
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
OutboundDequeue
in the Application Name field, and then click Next. The Name Your Project screen is displayed. OutboundDequeueComposite
and from the Available list, select SOA and click the right-arrow button. BPELOutboundDequeue
in the Name field, select Synchronous BPEL Process in the Template box. Figure 10-83 The JDeveloper - Composite.xml
Perform the following steps to create an adapter service that dequeues the message to a queue:
OutboundDequeueService
in the Service Name field, and click OK. The MQ Series Connection page is displayed. test_out
in the Queue Name field and enter 10
in the Wait Interval field, and then click Next. The Messages page is displayed. Figure 10-84 The JDeveloper Page - Composite.xml Page
You have to assemble or wire the three components that you have created: Client, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:
The composite.xml page is displayed, as shown in Figure 10-85.
Figure 10-85 The JDeveloper - Composite.xml Page
The JDeveloper BPELOutboundDequeue.bpel page is displayed, as shown in Figure 10-86.
Figure 10-86 The BPELOutboundDequeue.bpel Page
Figure 10-87 Create Copy Operation Dialog
The BPELOutboundDequeue.bpel page appears, as shown in Figure 10-88.
Figure 10-88 The BPELOutboundDequeue.bpel Page
You must deploy the application profile for the SOA project and application you created in the earlier steps.
For more information about deploying the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
Test Outbound Dequeue
in the Input field, and then click the Test Web Service button. This use case demonstrates how to set the RFH2 header properties for a message to be added to a MQ Series queue. This is applicable only for outbound references. You must ensure that the format of the message is RFH2 and also set the fixed portions of the header properties. This section contains the following topics:
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
Figure 10-90 The JDeveloper - Composite.xml
Perform the following steps to create an adapter service that dequeues the message from a queue:
Figure 10-91 The JDeveloper Page - Composite.xml Page
Perform the following steps to create an adapter service that enqueues the messages.
Note: You can also specify a sample schema that you must use if native format translation is required. |
Figure 10-92 The JDeveloper Page - Composite.xml Page
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 10-93.
Figure 10-93 The JDeveloper - Composite.xml
The JDeveloper BPELprocess.bpel page is displayed, as shown in Figure 10-54.
Create temporary variables to store the RFH2 header portions. Additionally, you must create a messageFormat
variable, a JMSFolder
variable, and an MCDFolder
variable.
Click the Variables... icon represented by (x). The Variables dialog is displayed.
Click OK. A variable of type Simple Type is added to the Variables list in the variable dialog, as shown in Figure 10-95.
Double-click the assign activity. The Assign dialog is displayed.
Click the Copy Operation tab. The Assign dialog is displayed.
In the Create Copy Operation dialog, select Expression from Type and specify the value and select the variable in the To pane to which the copy operation is being created, as shown in Figure 10-96.
Figure 10-96 The Create Copy Operation Dialog
The following is a code snippet from the BPELProcess_JMSFolder.bpel file, with the copy operation defined:
Note: The values for |
For example, select the jca.mq.MQMD.Format
property from the Properties column and set the Value as MessageFormat
. Ensure that the Type column is set to input
, as shown in Figure 10-98.
Note: if you want to create a user folder, then you must first assign the value to a |
You must deploy the application profile for the SOA project and application you created in the earlier steps.
For more information about deploying the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
This use case demonstrates how a backout queue must be configured for Oracle MQ Series Adapter. Oracle MQ Series Adapter dequeues a message and enqueues the same message after transformation from the MQ Series queue. During this process, a failure can occur either during an invoke activity or when a response is being sent. You must configure a Backout Queue to send the rejected messages to a Backout Queue instead of the default rejected messages folder. This section contains the following topics:
To perform the use case for configuring a backout queue, you must ensure that the adapter JNDI is configured for XA. Also, you require the singleString.xsd
file, which you can create using the following code:
You must create a JDeveloper application to contain the SOA composite. To create an application and a project for the use case, perform the following:
The New Gallery dialog is displayed.
MQ_BackoutQ_Retry
in the Application Name field, and then click Next. The Name Your Project screen is displayed. SOA_BackoutQ_Retry
and from the Available list, select SOA and click the right-arrow button. BPELProcess_BackoutQ_Retry
in the Name field, and select Define Service Later from the Template box. Perform the following steps to create an adapter service that dequeues the message and put the message to a queue:
InboundService
in the Service Name field, and click Next. The MQ Series Connection page is displayed. INBOUND_QUEUE
in the Queue Name field, and click Next. The Response page is displayed. JCA
file (ReqReply_mq.jca
), as shown in the following sample: Perform the following steps to create an adapter service that enqueues the messages.
EQ
in the Service Name field, and click Next. The MQ Series Connection page is displayed. test_out
in the Queue Name field, and click Next. The Advanced Options page is displayed. Figure 10-99 The JDeveloper Page - Composite.xml Page
You have to assemble or wire the three components that you have created: Inbound adapter service, BPEL process, and Outbound adapter reference. Perform the following steps to wire the components:
The JDeveloper Composite.xml appears, as shown in Figure 10-100.
Figure 10-100 The JDeveloper - Composite.xml
ReplyOutput
in the Name field. receiveInput_DequeueEnqueue_InputVariable
as the From Type and select the variable in the To pane to which the copy operation is being created. The following is a code snippet from the BPELProcess_BackoutQ_Retry.bpel file, with the copy operation defined:
Figure 10-101 The BPELProcess_BackoutQ_Retry.bpel Page
You must deploy the application profile for the SOA project and application you created in the earlier steps.
For more information about deploying the application profile using JDeveloper, see Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".
You must also create an application server connection. For more information about creating an application server connection, see Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters".
You can monitor the deployed SOA composite using the Fusion Middleware Control Console. Perform the following steps:
http://
servername:portnumber
/em
. The composite you deployed appears in the application navigator. INBOUND_QUEUE
. Note: The number of instances that are triggered must be equal to |
The script content on this page is for navigation purposes only and does not alter the content in any way.
This appendix lists and describes the JCA and binding properties applicable Oracle JCA Adapters, and is meant to be used with the chapters in this book on the specific JCA Adapters, to assist in the configuration of the Adapters.
This appendix includes the following sections:
For more information, see Chapter 33, "Configuring Service and Reference Binding Components", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This section describes the properties applicable to the Oracle File and FTP Adapters, including:
For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle JCA Adapter Properties".
For more information, see:
Table A-1 JCA Properties for Oracle File and FTP Adapters
Property | Description |
---|---|
| If this property is set to The file name can either be specified in the |
| If set to |
| Set it to the batch size for the batching transformation. |
| Set it to the character set for the attachment. This parameter is not used internally by the Oracle File and FTP Adapters, and it is meant for third party applications that process the attachments published by the Oracle File and FTP Adapters. |
| Set it to the chunk size for the chunked interaction operation. |
| The maximum number of translation activities that can be allowed to execute in parallel for a particular outbound scenario. The translation step during the outbound operation is CPU-intensive and must be guarded because it might cause other applications or threads to starve. The maximum value is |
| Set it to the mime-type of the attachment. This parameter is not used internally by the Oracle File and FTP Adapters, and it is meant for third party applications that process the attachments published by the Oracle File or FTP Adapter. |
| If set to |
| When you choose multiple directories, the generated JCA files use semicolon (|
| This property is used for outbound batching. When the time specified elapses, the outgoing file is created. The parameter is of type |
| Set it to the encoding used for the attachment. This parameter is not used internally by the Oracle File and FTP Adapters, and it is meant for third party applications that process the attachments published by the Oracle File and FTP Adapters. |
| This property specifies the pattern for types of files to be excluded during polling. The property is of type |
| Use this parameter to specify a static single file name during the write operation. |
| This property is used for the naming convention for the outbound write operation file. |
| This property is used for outbound batching. The outgoing file is created when the file size condition is met. The parameter is of type |
| This property specifies the pattern for types of files to pick up during polling. The parameter is of type |
| If set to |
| This property specifies the sorter that the Oracle File and FTP Adapters use to sort files in inbound. You can set this parameter to:
|
| This property specifies the logical directory in which to archive successfully processed files. The property is of type |
| This parameter specifies the logical input directory to be polled. The parameter is of type |
| This property specifies the maximum number of files that the Oracle File or FTP Adapter submits for processing in each polling cycle. For example, if the inbound directory has 1000 files and |
| This parameter specifies the minimum age of files to be retrieved. This specification enables a large file to be completely copied into the input directory before it is retrieved for processing. The age is determined by the last modified time stamp. For example, if you know that it takes three to four minutes for a file to be written, then set the minimum age of pollable files to five minutes. If a file is detected in the input directory and its modification time is within five minutes of the current time, then the file is not retrieved because it is still potentially being written to. |
| This property is used for outbound batching. The outgoing file is created when the number of messages condition is met. The parameter is of type |
| This property specifies where to archive successfully processed files. The property is of type |
| This property specifies the physical input directory or directories to be polled. The parameter is of type |
| This parameter specifies how often to poll a given input directory for new files. The parameter is of type |
| This property indicates whether the file contains multiple messages and how many messages to publish to the BPEL process at a time. The parameter is of type For example, if a certain file has 11 records and this parameter is set to 2, then the file processes 2 records at a time and the final record is processed in the sixth iteration. |
| If this property is set to |
| Specifies the Oracle database sequence name to be used if you have configured the outbound Oracle File or FTP Adapter for High Availability. |
| If the value is |
| The source file for the File I/O operation. |
| The source directory for the File I/O operation. |
| Set to the schema for the source file. |
| Set to the root element name for the source file. |
| Set this to |
| The target file for the File I/O operation. |
| The target directory for the File I/O operation. |
| Set it to the schema for the target file. |
| Set it to the root element name for the target file. |
| Set this to |
| If this property is available, then the adapter creates its own processor threads rather than depend on the global thread pool processor threads (by deafult, 4 of them). In other words, this parameter partitions the in-memory queue and each composite application gets its own in-memory queue.
|
| The name of the trigger file that activates the inbound Oracle File or FTP Adapter. |
| The directory path where the Oracle File or FTP Adapter looks for the trigger files. |
| This property defines the strategy that the Oracle File or FTP Adapter uses to look for the specified trigger file in the trigger file directory. The acceptable values are |
| Set it to |
| This property defines where an error is archived during an Inbound Read. During an Inbound Read operation, if a malformed XML file is read, the malformed file results in an error. The errored file is by default sent to the remote file system for archival. The errored file can be archived at a local file system by specifying the useRemoteErrorArchive property in the jca file and setting that property to false. The default value for this property is true. |
| This parameter can be set to This is typically used in large payload scenarios where the inbound adapter is used as a notifier. |
| If set to |
| Set it to the |
Table A-2 JCA Properties Specific to Oracle FTP Adapter
Property | Description |
---|---|
| Set this property to either |
| Set this property to |
| Set this property to |
| Set this property to |
| Set this property to |
Table A-3 Binding Properties for Oracle File and FTP Adapters
Property | Description |
---|---|
| Lets you control the behavior of the inbound Oracle File Adapter during the polling operation. If set to |
| Set it to |
| This property is applicable only if |
| This property is used to override the encoding specified in the NXSD schema for inbound Oracle File and FTP Adapters. |
| Setting to |
| This property lets you control the size of rejected messages for inbound Oracle File or FTP Adapter partner link. For example, if you set it to |
| Number of times that inbound Oracle File and FTP Adapters retry to establish a database connection in distributed polling scenarios. |
| Number of milliseconds after which inbound Oracle File and FTP Adapters retry to establish a database connection in distributed polling scenarios. |
| Set it to the class name that specifies the mutex for the outbound write operation. This class must extend the |
| Setting to |
| This property is used by the inbound highly available adapter when using |
| This property is used by the inbound highly available adapter when using |
| This property is used by the inbound adapter to configure the recovery interval in case of errors. For example, if the physical directory is nonexistent, then the adapter uses this value to perform periodic sleep or wakeup checks to check whether the physical directory has been created and is accessible. |
| If set to |
| This property is used by inbound Oracle File or FTP Adapter during read-only polling in a clustered environment. Setting it to |
Table A-4 Binding Properties Specific to Oracle FTP Adapter
Property | Description |
---|---|
| This property is used by the Oracle FTP Adapter to handle time zone issues, typically to convert the time difference between the FTP server and the system on which the Oracle FTP Adapter is running to millisecond. |
Table A-5 JCA Properties for Oracle File Adapter: Normalized Properties
Property | Description |
---|---|
| This property specifies the name of the file read from the inbound directory or written to the outbound directory. |
| This property specifies the name of the directory from which file is read from or written to. |
| This property specifies the size of the file published from the inbound Oracle File Adapter. |
| This property is used to specify a unique identifier for the file being published from the inbound adapter. |
| If a file has multiple messages and de-batching is used, then this normalized property specifies the message (record) number from the same batch. In this case, the |
Table A-6 JCA Properties for Oracle FTP Adapter: Normalized Properties
Property | Description |
---|---|
| This property specifies the name of the file read from the inbound directory or written to the outbound directory. |
| This property specifies the name of the directory from which file is read from or written to. |
| This property specifies the size of the file published from the inbound Oracle File Adapter. The size can be zero. |
| This property is used to specify a unique identifier for the file being published from the inbound Oracle FTP Adapter. |
| If a file has multiple messages and de-batching is used, then this normalized property specifies the message (record) number from the match batch. In this case, the |
This section describes the properties applicable to the Oracle Socket Adapter, including:
For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle JCA Adapter Properties".
For more information, see Section 33.1.2.7, "Oracle Socket Adapter", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Table A-7 JCA Properties for Oracle Socket Adapter
Property | Description |
---|---|
| Byte order of the remote computer being communicated with. |
| If |
| Character encoding used by the remote computer. |
| In case of outbound, the computer name on which the socket server is running, to which you want to connect. In case of inbound, it is always |
| In case of outbound, it is the port number on which a socket server is running, to which the adapter is connecting. In case of inbound, it is the port number on which the socket adapter listens for incoming connections. |
| If |
| Mechanism for defining the protocol. Set to |
| If |
This section describes the properties applicable to the Oracle AQ Adapter, including:
For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle JCA Adapter Properties".
For more information, see Section 33.1.2.1, "Oracle AQ Adapter", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Table A-8 JCA Properties for Oracle AQ Adapter
Property | Description |
---|---|
| The name of the AQ Queue being read from or written to. |
| The schema where the queue resides. If not specified, the schema of the current connection is used. |
| When this property is set to |
| When this property is set to |
| Specify the consumer name or names that are the intended recipients for the messages enqueued by the adapter. The message remains in the queue until all recipients have dequeued the message. If the field is left empty, then all the currently active consumers are recipients. |
| Applicable only for multiconsumer queues. If specified, only the messages targeted for the particular consumer are made available for processing. |
| This property is used to identify the field containing the business payload if the queue is an ADT queue. You can specify an attribute of ADT to constitute a payload or an entire ADT to represent payload. In former case the 'ObjectFieldName' should be same as the attribute name of the ADT. In latter case this property is not specified. |
| Only applicable if the |
| When a dequeue is performed from a multiconsumer queue, it is sometimes necessary to screen the messages and accept only those that meet certain conditions. These conditions can be based on payload or queue header values and is specified using |
| This property is valid for dequeue operations only. Enter a Boolean expression similar to the |
| You can assign an identifier to each message, thus providing a means to retrieve specific messages at a later time. The value to enter is agreed upon between the enqueuing sender and the dequeuing receiver for asynchronous conversations. This can be overridden on a per message basis through the normalized message property, |
| This property exposes a configurable control mechanism through which you can specify the payload size threshold in the adapter layer. The messages that have sizes beyond the configured threshold limit are rejected. If this property is not configured, it does not impose any restriction on the size of messages. |
Table A-9 JCA Properties for Oracle AQ Adapter: Normalized Properties
Property | Description |
---|---|
| The number of failed attempts at dequeuing the message. |
| User-assigned correlation ID. |
| The number of seconds after which the message is available for dequeuing. |
| The time at which the message was enqueued. |
| The exception queue name. |
| The number of seconds before the message expires. This parameter is an offset from the |
| The hexadecimal representation of the message ID for the dequeued message. |
| The hexadecimal representation of the original message ID. |
| Priority of the message. A smaller number indicates a higher priority. The priority can be any number. The default value is zero. |
| The list of recipients for this message, separated by commas. This overrides |
| Contains string or DOM of current headers (XML DOM representation of payload headers.) |
Table A-10 Binding Properties for Oracle AQ Adapter
Property | Description |
---|---|
| The time for which the Oracle AQ Adapter waits before trying to re-create a connection after a connection is lost. The default value is 15s. |
| It is the interval after which the |
| Specifies the number of poller threads that are created when an endpoint is activated. The default value is 1. |
This section describes the properties applicable to the Oracle JMS Adapter, including:
For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle JCA Adapter Properties".
For more information, see Section 33.1.2.5, "Oracle JMS Adapter", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite
Table A-11 JCA Properties for Oracle JMS Adapter
Property | Description |
---|---|
DestinationName | The name of the queue or topic being read from or written to. |
| The only value of this property supported in the current version is false. A value of |
| This property specifies the type of JMS message that is being dequeued or enqueued by the adapter. For Map messages the value is |
DurableSubscriber | Name used to identify a durable subscription. When working with durable subscriptions ensure that ClientID is also specified in addition to |
MessageSelector | A string whose syntax is based on a subset of the SQL92 conditional expression syntax and lets you specify the messages adapter is interested in, by using header field references and property references. Only messages whose header and property values match the selector are delivered. |
PayloadEntry | Only applicable when dealing with messages of type |
AttachmentList | Only applicable when dealing with message of type |
| This property is applicable for a synchronous request-reply scenario and specify the name of destination for sending a message. |
ReplyDestinationName | This property is applicable for a synchronous request-reply scenario and specify the name of destination for receiving a reply. |
AllowTemporaryReplyDestination | This property is applicable for a synchronous request-reply scenario. When set to |
EnableStreaming | When this property is set to |
DeliveryMode | Represents the delivery mode to use. The message producer's default delivery mode is |
TimeToLive | Represents the message's lifetime (in milliseconds). The message producer's default time to live is unlimited; the message never expires. A value of |
PayloadSizeThreshold | This property exposes a configurable control mechanism through which you can specify the payload size threshold in the adapter layer. The messages that have sizes beyond the configured threshold limit are rejected. If this property is not configured, it does not impose any restriction on the size of messages |
Priority | Represents priority for this message. The message producer's default priority is 4. This can be overridden on a per message basis using normalized message property |
Table A-12 JCA Properties for Oracle JMS Adapter: Normalized Properties
Property | Description |
---|---|
| This property specifies the destination to which the message is sent, and is set by the JMS producer. |
| This property represents the properties that define the context used to look up the destination object to which the message must be sent |
| This property is set by both producers and consumers for linking the response message with the request message. This is an optional attribute. |
| This property specifies the JMS message type. |
| This is an optional attribute that indicates the destination to which a message reply must be sent. |
| This property is used by the consumer to set a priority number between 0 and 9. Larger numbers represent a higher priority. |
| This property specifies the duration of the message before the expiration. When a message's expiration time is reached, the JMS provider should discard it. |
| This property is set to |
| This property is used to specify a unique message identifier. The exact scope of uniqueness is provider-defined. |
| This property is used as an indication of whether a message is being re-delivered. If a client receives a message with the JMSRedelivered field set, it is likely, but not guaranteed, that this message was delivered earlier but that its receipt was not acknowledged at that time. |
| This property is used to specify the time when the message was handed off to the JMS provider to be sent. |
| This property represents any custom (application-specific) properties of the message. The supported properties conforms to the one allowed according to JMS specification. If an invalid property value is specified, the adapter warns the user (captured in the log files) and ignore the invalid property. |
| This property represents any MapMessage element that is not transferred as payload. |
Table A-13 Binding Properties for Oracle JMS Adapter
Property | Description |
---|---|
| Used to encode inbound text messages. This property is superseded by the newly supported property called |
| Specifies the number of poller threads that are created when an endpoint is activated. The default is 1. |
| Timeout value used for the synchronous receive call. It is the time after which receive() API times out if no message is received on the inbound queue. The default value is 1s. |
| This property is not supported anymore. |
| Used by the inbound connection retry layer. The time for which the Oracle JMS Adapter waits before trying to re-create a connection after a connection is lost. The default value is 30s. |
| Declaratively impose custom property settings on Destination objects received during inbound request/reply scenarios. |
| Used to specify whether you want to use a correlation Id for correlation. Valid values are |
| Used to specify whether message Id for correlation. Valid values are |
| The boolean property specifies if the reply message TTL is set to 0 (message never expires) or some specified value related to message expiration. The default value is false. |
| If the same small number of JMS receivers are used for the same request destination repeatedly, then set this property to |
| Applicable for a synchronous request-reply scenario. If set to |
| Used to bypass headers. For scenarios in which a composite does not use or produce the headers, the value of |
This section describes the properties applicable to the Oracle Database Adapter, including:
For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle JCA Adapter Properties".
For more information, see:
Table A-14 JCA Properties for Oracle Database Adapter: Instance Properties
Property | Description |
---|---|
| Either this property or xADataSource name is a mandatory property, or both. Refers to the JNDI name (|
| The default value is |
| This is a mandatory property. This points to the type of database being connected to. The suggested values for this property are:
You also can give the full package and class name of a subclass of |
| The default value is |
| The default value is |
| The default value is |
| This is a mandatory property. It specifies the JNDI name (|
Table A-15 JCA Properties for Oracle Database Adapter: Normalized Message Properties
Property | Description |
---|---|
| Inbound/Outbound. |
| Outbound. |
| Outbound. You cannot assign values to the |
| Outbound. When set, specifies |
| Outbound. When set, specifies |
| Outbound. Valid values are |
| Outbound. When set, specifies |
| Outbound. Set to define the roles associated with the proxy user. The value should be a |
| Outbound. When set, specifies |
| Outbound. You cannot assign values to the |
| Outbound. |
Footnote 1 For more information, see Section 9.3.4, "Proxy Authentication Support".
This section describes the properties applicable to the Oracle MQ Series Adapter, including:
For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle JCA Adapter Properties".
For more information, see Section 33.1.2.6, "Oracle MQ Adapter", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Table A-16 JCA Properties for Oracle MQ Series Adapter
Property | Description |
---|---|
| This property specifies the name of the MQ Queue for sending or retrieving messages. |
| This property specifies the type of message: Normal, Request, Reply, or Report |
| This property specifies the type of MQ message format, such as Default, and Request/Reply. |
| This property specifies the message priority. Its value ranges from |
| This property is used to set the message persistence. The message persists when this property is set to |
| This property is used when message delivery fails. The default value is |
| This property is used for partial delivery to a distribution list. The default value is |
| This property is used when the size of the message is larger than the maximum limit set on the queue. |
| This property specifies the time after which the message would be removed by the Queue Manager. The default value is |
| This property specifies the name of the queue to which the reply or report must be sent. |
| If this property is set, a confirmation on arrival report is sent to the |
| If this property is set, a confirmation on delivery report is sent to the replyto queue on arrival of a message in the destination queue. The default value is |
| If this property is set, an exception report is sent to the replyto queue when message delivery to the destination queue fails. The default value is |
| If this property is set, an expiry report is sent to the replyto queue when a message sent to the destination queue expires. The default value is |
| This property specifies the waiting interval for dequeuing the message in outbound MQ queue. |
| This property is used to generate a Message Id for a reply or a report message. By default a new Message Id is generated. |
| This property is used to generate a correlation Id for a reply or a report message. By default the message Id of the request message is used as the correlation Id. |
| This property specifies the queue open options to use while accessing the queue. |
| This property specifies the queue manager for the enqueue queue. Use this property only when the outbound enqueue queue resides outside the inbound queue manager. |
| This property is used to specify a backout queue to which rejected messages from an inbound queue are to be sent. |
| This property is used to specify the queue manager for the backout queue. Use this property only when the Backout Queue resides outside the inbound queue manager. |
| This property is used to specify the maximum backout retry count after which rejected message is sent to the backout queue. |
| This property is used to specify intervel between the backout retries. The default value is 5 seconds. |
| This property is used to specify the number of backout retries. The default value is 3. |
| This property is used for sending the report to the Normal Message Queue. |
| This property is used when the Primary Queue Manager specified in JNDI connection cannot access the queue. |
| This property is used to specify the elements of the distribution list for enqueuing the message. |
Table A-17 JCA Properties for Oracle MQ Series Adapter: Normalized Properties
Property | Description |
---|---|
| Inbound/Outbound. Accounting token information of the message. A hexadecimal-encoded string. |
| Inbound/Outbound. Provides additional information about the Identity of the message or its originator. Accepts any string. |
| Inbound/Outbound. Provides additional information about the origin of this message. Accepts any string. |
| Inbound/Outbound.Count of the number of times the message has previously been returned by an MQQueue.get() call as part of a unit of work, and subsequently backed out. Accepts zero and positive integer values. |
| Inbound/Outbound. Correlation identifier of the message to be retrieved/ to be put. Accepts a hexadecimal-encoded string. |
j | Inbound/Outbound. Representation used for numeric values in the application message data. Accepts NORMAL and REVERSED. |
j | Inbound/Outbound. representation used for numeric values in the application message data. Accepts NORMAL, REVERSED and S390 |
| Inbound/Outbound. A message's expiry time has elapsed, and it is eligible to be discarded by the queue manager. Accepts NEVER or a non- Inbound/Outbound.negative integer value |
| Inbound/Outbound. Used with a message of type MQC.MQMT_REPORT to indicate the nature of the report. Accepts any string. |
| Inbound/Outbound. application defined feedback.Accepts any string. |
| Inbound/Outbound. Format name used by the sender of the message to indicate the nature of the data in the message to the receiver.Accepts following formats NONE, ADMIN, CHANNEL_COMPLETED, CICS, CMD1, CMD2, DEAD_LETTER_HDR, DIST_HDR, EVENT, IMS, IMS_VAR_STRING, MD_EXTN, PCF, REF_MSG_HDR, RF_HDR_1, RF_HDR_2, STRING, TRIGGER, WORK_INFO_HDR, XMIT_Q_HDR |
| Inbound/Outbound. Byte string that identifies the message group to which the physical message belongs. Accepts hexadecimal-encoded string. |
| Inbound/Outbound. Specifies if the message belongs to a group. Accepts true, false. |
| Inbound/Outbound. Specifies if the message is the last message of the group. Accepts true, false |
| Inbound/Outbound. Specifies if the message is a segment. Accepts true, false |
| Inbound/Outbound. Specifies if message is the last segment. Accepts true, false |
| Inbound/Outbound. Message identifier of the message to be retrieved/ to be put. Accepts hexadecimal encoded string |
| Inbound/Outbound. Sequence number of a logical message within a group. Accepts non- Inbound/Outbound.negative integer value |
| Inbound/Outbound. Indicates the type of the message. Accepts any string. |
| Inbound/Outbound. Application -defined message type. Accepts any string. |
| Inbound/Outbound. The offset of data in a physical message from the start of a logical message. Accepts non- Inbound/Outbound.Negative integer value. |
| Inbound/Outbound. Original length of a segmented message. Accepts non-Negative integer value Inbound/Outbound |
| Inbound/Outbound. message persistence. Accepts true, false, AS_Q_DEF |
| Inbound/Outbound. Message priority. Accepts 0- Inbound/Outbound.9, AS_Q_DEF |
| Inbound/Outbound. Name of the application that Put the message. Accepts any string |
| Inbound/Outbound. Type of application that Put the message. Accepts any string. |
| Inbound/Outbound. User-defined Put application type. Accepts any string. |
| Inbound/Outbound. Time and date that the message was Put. Accepts year:month:date, year:month:date:hour:minute, year:month:date:hour:minute:second |
| Inbound/Outbound. Name of the queue manager to which reply or report messages should be sent. Accepts any sting. |
| Inbound/Outbound. Name of the queue to which reply or report messages should be sent. Accepts any string |
| Inbound/Outbound. scheme to generate the CorrelationId of reply or report message. Accepts PASS_CORREL_ID, COPY_MSG_ID |
| Inbound/Outbound. Scheme to generate the MessageId of reply or report message. Accepts NEW_MSG_ID, PASS_MSG_ID |
| Inbound/Outbound. Specifies the content of COA report. Accepts WITH_NO_DATA, WITH_PARTIAL_DATA, WITH_FULL_DATA |
| Inbound/Outbound. Specifies the content of COD report. Accepts WITH_NO_DATA, WITH_PARTIAL_DATA, WITH_FULL_DATA |
| Inbound/Outbound. Specifies the content of the Exception report. Accepts WITH_NO_DATA, WITH_PARTIAL_DATA, WITH_FULL_DATA |
| Inbound/Outbound. Specifies the content of the Expiry report. Accepts WITH_NO_DATA, WITH_PARTIAL_DATA, WITH_FULL_DATA |
| Inbound/Outbound. Specifies if the incoming/outgoing message is NAN or not. Accepts true, false |
| Inbound/Outbound. specify if incoming/outgoing message is PAN or not. Accepts true, false |
| Inbound/Outbound. |
| Accepts DISCARD, DEADLETTERQUEUE |
| Inbound/Outbound. Struct id of MQMD. Accepts any string |
| Inbound/Outbound. User who originated this message. Accepts any string. |
| Inbound/Outbound. Version of MQMD. Accepts VERSION_1, VERSION_2 |
| Outbound. Correlation identifier of the message retrieved in Async req-reply scenario. Accepts hexadecimal encoded string |
| Outbound. Message identifier of the messageretrieved in Async req-reply scenario. Accepts hexadecimal-encoded string. |
| Outbound. Message Type of the message retrieved in Async req-reply scenario. Accepts any string. |
| Outbound. NAN report option of the message retrieved in the Async req-reply scenario. Aceepts true, false |
| Outbound. PAN report option of the message retrieved in the Async req-reply scenario. Accepts true, false |
| Outbound. ReplyToQueueManager of the message retrieved in the Async req-reply scenario. Accepts any string. |
| Outbound. ReplyToQueue of the message retrieved in the Async req-reply scenario. Accepts any string. |
| Outbound. Correlation scheme, for generation of CorrelationId, of the message retrieved in Async req-reply scenario. Accepts PASS_CORREL_ID, COPY_MSG_ID |
| Outbound. Correlation scheme, for generation of MessageId, of the message retrieved in Async req-reply scenario. Accepts NEW_MSG_ID, PASS_MSG_ID |
| Outbound. Queue Manager for outbound queue. Accepts any string |
| Outbound. Queue name of outbound queue. Accepts any string. |
Table A-18 Connection Properties for Oracle MQ Series Adapter
Property | Description |
---|---|
| Name of the host computer. |
| Port number to be used. |
| Set it to the server connection channel to be used. |
| A valid queue manager name. |
| Set |
| Character encoding used by the client. |
| Location of the connection factory. |
| Operating system used by the host computer. |
| Algorithm used by the key store. |
| This value is the keystore where Oracle MQ Series Adapter has its private keys. This is required when an adapter must authenticate itself to the MQ Series server. |
| This value is the password that is required to access keystore. |
| The name of the keystore provider. |
| This is the location where the adapter keeps its trusted certificates information. This information is required when an adapter must authenticate to the MQ Series server. |
| This property specifies the password of the Trust Store location. |
| This property specifies the type of the key store. |
| Key Management Algorithm. |
| A distinguished name pattern. If |
| The true or false value for this property means that the Oracle MQ Series Adapter is SSL enabled or SSL disabled. |
| This property is used if credential mapping is not set. |
| This is the password to connect to the queue manager. This property is used if credential mapping is not set. |
| This property is used to enable or disable XA transactions. If set to |
| This is the |
| This is the |
| This is the |
Table A-19 Binding Properties for Oracle MQ Series Adapter
Property | Description |
---|---|
| This property is used to specify the name of the inbound MQ queue. |
| This property is used for dequeuing the messages with binary zero value. The default value for this property is |
This section describes the properties applicable to all Oracle JCA Adapters, including:
For properties specific to each of the Oracle JCA Adapters, see:
For more information, see Section 33.1.2.8, "Oracle JCA Adapters Endpoint Properties", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Table A-20 JCA Properties for all Oracle JCA Adapters
This appendix includes sample valves used by Oracle File and FTP Adapters. A valve is the primary component of execution in an FTP or File Adapter processing pipeline. A valve processes the content it receives and forwards the processed content to the next valve.
This chapter contains the following sections:
The following sample is a simple Unzip Valve:
The following is a sample decryption valve that uses a staging file:
The following is a simple encryption valve that extends AbstractValve
.
The following is the sample of an unzip valve for processing multiple files:
 Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved. |