ORACLE

Oracle® Database
Concepts

11gRelease 2 (11.2)
E25789-01

September 2011

Oracle Database Concepts, 11g Release 2 (11.2)

E25789-01

Copyright © 1993, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Lance Ashdown, Tom Kyte

Contributors: Drew Adams, David Austin, Vladimir Barriere, Hermann Baer, David Brower, Jonathan
Creighton, Bjern Engsig, Steve Fogel, Bill Habeck , Bill Hodak, Yong Hu, Pat Huey, Vikram Kapoor, Feroz
Khan, Jonathan Klein, Sachin Kulkarni, Paul Lane, Adam Lee, Yunrui Li , Bryn Llewellyn, Rich Long, Barb
Lundhild, Neil Macnaughton, Vineet Marwah, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal
Mulagund, Paul Needham, Gregory Pongracz, John Russell, Vivian Schupmann, Shrikanth Shankar, Cathy
Shea, Susan Shepard, Jim Stenoish, Juan Tellez, Lawrence To, Randy Urbano, Badhri Varanasi, Simon Watt,
Steve Wertheimer, Daniel Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

PlEIACE ...ttt XV
AN S Lo T V< T TORRRTRRTRRRR XV
Documentation AcCesSIDIlity ..o XV
Related DOCUIMENTATIONc.veiievieeiieceieeeecetee ettt ettt eeaeeeaaeeaeseaeesateeeseeenseesseeeseseseessesenseeseeans XVi
CONMVEILIONS ..ooitvieiieeieeitieee ettt eeett et e e e e et e e e e e e saae e e e s eesataeeeeesasbeaseessesbasseessessaseseesesnaaseeseesssssseessnsseeeeeesns XVi

1 Introduction to Oracle Database

About Relational Databases..............ccccovviiiiiiiiiiiii s 1-1
Database Management System (DBMS)ccccovoiiiiiiiiiniiiice e 1-1
Relational Modelcccoiiiiiiiiiieeeee e 1-2
Relational Database Management System (RDBMS)..........c.ccoooiiiiiiiiiiicc, 1-2
Brief History of Oracle Databasecccccocciiiiiiiiiiiiiiiiiiiinceec e 1-3

Schema ODjJectS........ccooiviiiiiiiiiii 1-4
TADLES ... 1-4
INAEXES ... 1-4

Daata ACCESS ..ot 1-5
Structured Query Language (SQL).....c.c.ooiiiiiiiice e 1-5
PL/SQL QNA JAVA 1eertetieiiriieiietieiiiistiieietestetetestsetssessessessessessessessessessesseseasesssssassessessensessessessesessensens 1-5

Transaction Management ... 1-6
TTANSACHONS ...t 1-6
Data CONCUITENCY ...cvovviiiiiiiiiiiiicc s 1-6
Data CONSISTENCYcucviieiiiiiiiiieieieie s 1-6

Oracle Database ArchiteCturecccoeiiiiniiiiiiiiiccre et 1-7
Database and INStANCEc.cccceuiuiiiiiiiiiiiiecce e 1-7
Database Storage StruCtUIES ..ot 1-8
Database INStance StructUIEs..........cccccciiiiciiiriiiiiiiciiii e 1-9
Application and Networking ArchiteCtureccccccvvviirrrnnicrrceerrreeeeeee s 1-10

Oracle Database Documentation Roadmap ..., 1-12
BaSiC GIOUP ..ot 1-12
Intermediate GIOUP ..o s 1-12
AdVANCEd GIOUPcooviiiiiiiiiii s 1-13

Part | Oracle Relational Data Structures

2 Tables and Table Clusters

Introduction to Schema ODbjects.............cccooiiiiiiiiiiiii s 2-1
Schema ODBJECt TYPEScucviuimemiciiicicieieiieiee ettt 2-2
Schema Object STOTageccoviiueieiiiicie e 2-3
Schema Object Dependencies............cceuiiiieiiiiiicie e 2-4
SYS and SYSTEM SCREMIAScc.ccvevieieeieiierieiieisrisrestestestessessessessessestessssessessessessessessessessessessssassessens 2-5
Sample SChEMAScuciiiic 2-6

OVEIVIEW Of TADIEScviiiiiiiieieeeceee ettt ettt et ete e st e eae e seesaesbeessesbeessasseensenseenns 2-6
COlUMNS ANA ROWS ..ecuiiiieiiieiieiieiiete sttt sttt et e s e e stesseesesseessessaesessaessesssenseassensesssesesssessesnees 2-7
Example: CREATE TABLE and ALTER TABLE Statementsccccccooiriiiiiniicicee, 2-7
Oracle Data TYPESccviiiiiiiiiiiiiiccit s 2-9
Integrity CONSEIAINTS.......ceviviieiiiiiiiiccee s 2-14
ODJeCt TADIES ...t 2-15
Temporary Tables ... s 2-15
EXEEINAL TADIESveveeeiieiieiieieeteetee ettt ettt et ste et e s te st e sbeesaesaeessasseessesseessesseessesseessenses 2-16
Table SEOTAGE....cucviieceeiece e 2-18
Table COMPTESSIONcveviiiiiiiiiciiicic s 2-19

OVerview Of Table CIUSLEISccoeiiviieieicceeteeteeete ettt ettt a e sre e s e s e esessse s e ssesseessensennes 2-22
Overview Of INdeXed CIUSLETS......cc.cccveviiiieitieeeiieteee ettt ettt e e e be s e e beessesreesaesaeernas 2-23
OVerview Of Hash CIUSLETIS........cuiouiiiiiiciccieeeeteeteete ettt ettt et be et ereeeseenneeaeennas 2-25

3 Indexes and Index-Organized Tables

OVerview Of INAEXES.........cciiiiiiiiiiiiiiic s 3-1
Index CharacteristiCs ... 3-2
B-Tree INA@XESovviiiiiiiiiiccc s 3-5
Bitmap INAEXESc.cviviiiiiiiiiiiici s 3-13
Function-Based INAEXESccooviuiiiiiiiiiiiiiiic s 3-17
Application Domain INAeXes............couiimiiiiiiiiiiii 3-19
INAEX SEOTAZEovviiiiiici s 3-20

Overview of Index-Organized Tables ... 3-20
Index-Organized Table Characteristics...........coceuiiiiiriiiiiiiiciicci e 3-21
Index-Organized Tables with Row Overflow Area ... 3-23
Secondary Indexes on Index-Organized Tables ... 3-23

4 Partitions, Views, and Other Schema Objects

OVErvIEeW Of PArtitionscc.oooieiieieiieieeiceetes ettt e sa e st e s e s e e sseess e s eessensaensenseenes 4-1
Partition CharaCteriStiCScovieieiiieiestieiere ettt ettt e e ste et e ereeae s e e saesseessesseesaessasssensessaesseeneas 4-2
Partitioned TabLeSc.ccveiuieiiiiieiieie ettt ettt et ettt e ta et e etaeabeereeseerseereenneereeneas 4-7
PartitioNed INAEXESc.coveieeieiieiieiieieeisict ettt e et be e st e e eseesassassessessassessessessasassensens 4-7
Partitioned Index-Organized Tablescccooiiiiiiii e, 4-12

OVEIVIEW Of VICWS.....oouiiiiiiieieieieietete ettt sttt et et e st et e seeseesesse st essessessassensessessesseseaseaseasessessens 4-12
CharacteriStiCS Of VIEWS ...c..cicuieiiieiieiiieititcteiete et et rteeee e estestesbesbesbessessestesaessasseseesassessessenses 4-13
Updatable Join VIEWS ...t 4-15
ODJECE VIEWS ...ttt 4-16

Overview of MaterialiZed VICWScccoeviiiiiniiiieeceeeet ettt sa e sessa e seens 4-16
Characteristics of Materialized VIEWS........ccevvieuveiiieiiriieieteeeeste ettt sve e v eeeas 4-17

vi

Refresh Methods for MaterialiZed VIEWSooouviiiieiiieeeeeeeeeeeeeee e 4-18

QUETY REWTIte. ..o 4-19
OVEIVIEW Of SEQUEIICES.......c.oiiiiiiiieiiieiireeereeeretre ettt a ettt saenen 4-20
Sequence CharacteristiCs. ... 4-20
Concurrent Access t0 SEQUENCES..........coiuiuriiiiiiiiiiicieiciceteteet s 4-20
OVerview Of DImMeNSIONSc..ccooueiriiiriiiriciricerterte ettt saenen 4-21
Hierarchical Structure of @ DIMeNSION.........ccccccviviiiiiiiiiiiiiiccie s 4-21
Creation Of DIMENSIONS.......cc.civieiriirieieitc ettt ettt ettt 4-21
OVerview of SYNONYMSccccoiiiiiiiiiiii s 4-22

5 Data Integrity

Introduction to Data Integrity ..o 5-1
Techniques for Guaranteeing Data Integritycccooeeuiiiiiriiiiiicc e, 5-1
Advantages of Integrity Constraints...........ccoooeueieiiiiiiiic e 5-1

Types of Integrity Constraints ... 5-2
NOT NULL Integrity CONStraints...........ccooeueieiiiieieiiiicieeece i 5-3
Unique CONSTIAINtScoviviiiiiiiiii e 5-3
Primary Key COonstraints. ... 5-5
Foreign Key CONStraints..........coocueioiiiiiiiiiic e 5-6
Check CONSLTAINEScvoviviiiiiiiii s 5-9

States of Integrity COnstraints ... 5-10
Checks for Modified and Existing Data...........cccouoioimiiiiiiiii e, 5-10
Deferrable CONSIAINtS.......c.ccceuiuiiiiiiiiiiiiiicc s 5-11
Examples of Constraint Checking ... 5-12

6 Data Dictionary and Dynamic Performance Views

Overview of the Data Dictionary ... 6-1
Contents of the Data DictiONaryc.ccooiiuiioiiiiiiciice 6-2
Storage of the Data DiCtioNaryccueioiiiiiiiiiccic 6-4
How Oracle Database Uses the Data Dictionaryccccccoeervrnnnnnnnnrrnerrceeseeseeccenne 6-4

Overview of the Dynamic Performance VIewsccccocoviiiiiniiiiiinniiccs 6-5
Contents of the Dynamic Performance VIEWS............cccoeuevviiiiiiiciciniiieceec e, 6-6
Storage of the Dynamic Performance VIEWS.........ccccovveviririnrrrennnrrrr e 6-6

Database Object Metadata............c.ccccoviviiiiiiiiiiiiiiii 6-6

Part Il Oracle Data Access

7 SOL
INtroduction t0 SQL........ccooiiiieieeeeceeee ettt ettt et et e sre e s e e st e aeeraesbeesb e beessenraensenseenes 7-1
SOL Data ACCESS. . ueeeueeeeiieirieeieeiteeeteecteesteesteesteeeteessteeteessseasseeseesssaassassseasaeassessseesssesssesssesssensseeans 7-1
SQL StANAAIAS ...ecvveveeieereeeeeteee ettt ettt ettt ettt e ete e e ereeaeereebe st eseebeeateerseteereereereebeeaeenreeneen 7-2
Overview of SQL Statements...........c.occviviiiiiiiiiiceeeeeeee ettt re e s re s e be e s e s reessenseens 7-3
Data Definition Language (DDL) Statementscccocuvuviiriririiiiiiinnininiiiinicsceeeeeeeeeeeeenes 7-3
Data Manipulation Language (DML) Statements ..., 7-4
Transaction Control StAtEMENLS..........ccecieriiiieiieieeeeet ettt re e s e saesbeeraesseennas 7-8
SesSION CONEIOl SEAtEIMENTS. ...c.eiviviiiieieieieieteiee ettt e st stesse st e s essesaeseeseesessessesensensens 7-8

Vii

System Control Statement...........cccvviiiiiiiiiiiiii s 7-9

Embedded SQL StateIMENLtScceieeiiiiieiecieceieieeeete ettt sae e b veesesreessesreeaesreessessnenseennas 7-9
Overview of the OPtIMUEZETcccoooiiiiiriiiiiicc et 7-10
Use Of the OPtiMIZer........coiiiiiiiiiiiiiicic s 7-10
Optimizer COMPONENES.........cooviiiuiiiiciciiicee e 7-11
ACCESS PATNS ..ottt ettt s sttt e e te et e et be b e b e st et e st eseeteeseereesaereeseerenras 7-12
Optimizer StatiStiCScuoviiieeieieiicicee 7-13
Optimizer HINES. ..ot 7-14
Overview of SQL Processing ..ot 7-15
Stages Of SQL PIOCESSINGc.cuiiuriiiiiicicie ettt 7-15
How Oracle Database Processes DML.........ccoieiiiriiriinienienieieeeee ettt eseenes 7-22
How Oracle Database Processes DDL.........ccoeeieiiieieniieieiieeesieeeere et eveste et esse e sesneennas 7-23

8 Server-Side Programming: PL/SQL and Java

Introduction to Server-Side Programming.............ccccccocooiviiiiiiniiiiiinis 8-1
OVErview Of PL/SQLL..........oo ittt ete sttt e s e et este et e e e e bessaessesssessesssessesssesseessansanssanseenes 8-2
PL/SQL SUDPIOZIAINScocvviiiiiiiiiiiiiiinn s 8-3
PL/SQL PACKAGES -....ovviiiiiicicieicieieieiete et 8-6
PL/SQL Anonymous BIOCKSccccoviiiiiiiiiiiiiiiic 8-9
PL/SQL Language CONSLIUCESccoviriiiiiiiiiiiiiiiiiiiinsn s 8-9
PL/SQL Collections and RECOTASccveveiuieeiiriereeteeeeete et eeee et eereeteeeveeveeeveeseeseeseeeseersesseeneen 8-10
HOW PL/SQL RUNS ...ttt ettt ettt et eteeeete et eeteeeteeeeveeetaeeaseesteeesseeeseseaseeessenssseessenseeenres 8-11
Overview of Java in Oracle Database............cccoeoirieiriininieniniiniiceereerteese ettt 8-12
Overview of the Java Virtual Machine (JVM)ccoouviiriieinieineeieieeste et 8-13
Java Programming Environment.............cccocooiiiiiiiis 8-14
OVerview Of TFIGZTSocoiiiiiiiiiiic e 8-16
Advantages Of TIIZGETS ..o 8-17
TYPes Of TIIgGOTS.....oiuiiiiiecee s 8-17
Timing fOr TIIGZETSc.ciuiiiiiiiiiiiiiiiiicicc s 8-18
Creation of TIIGZeTS ...c.cuoviieiieiiici 8-18
Execution Of TIigZerS. ..ot 8-21
SEOTAgE Of TTIGZETSeviiiiiiiiiiicicicteec ettt 8-21

Part Il Oracle Transaction Management

9 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistencyccccccceeiiiiiiiiciiciiccccce 9-1
Multiversion Read CONSISLEINCYccceueuiueuiiiiiiiiiieieieicieiceeieicieeerereeee e 9-2
Locking MeChANISINSccuiiiiiiieieiicte ettt 9-5
ANSI/ISO Transaction ISOLation LeVElScc.uvoeeiiiieieeeeieeeeeee ettt eeaeeeeeaaeeseaeeeseeeeees 9-5

Overview of Oracle Database Transaction Isolation Levelscccccccocvniiiniiin, 9-6
Read Committed Isolation Level ... 9-6
Serializable Isolation Level ... 9-8
Read-Only Isolation Level ... 9-11

Overview of the Oracle Database Locking Mechanismccccoooiiiiiiiiiin 9-11
Summary of Locking BEhavior.........cccccceiiiiiiiiiiiiiiiiccccccccceeeeee s 9-12

viii

| TN o) e Yol <= TSR 9-12

LOCK MOAES ...ttt sttt ettt ettt ve et eveesbeeraebesssesbessaesbeessansesssaseessanseensesrsensenseas 9-15
Lock Conversion and ESCalation........c.ccecieiiiririiriesieieieieeeceteste sttt esesesaesse e esaesaesessessesnas 9-15
LOCK DUTLAHION ...ttt ettt ettt ettt ettt e et e sbeesbesbeesaesbeessassessesseassesseessesssessensens 9-16
LOCKS and DEAIOCKSccovieuiiiieiiiiieticie ettt ettt ettt et eve s s te e aesteessesssebesssenseesseseersenseennas 9-16
Overview of AUtomatic LOCKScoooveiirieiieeeiicteeeteeeee ettt st a e e se e s e eseenenns 9-17
DML LOCKS .ttt ettt ettt ete st eete st e st e e te e te e sesseesbeesaessesssesseessesseessanseessenseassesseessesseessesseas 9-18
DL LLOCKS .. cutteteeeeeteeieete ettt et ettt et st esteete et e e ae e beers e beesbesbeessesseestesbeessessensesssansesseensesssenseeneas 9-24
SYSEEIM LOCKS. ...oiiiiiiiiiiiiici s 9-25
Overview of Manual Data LoCKS.........c.oocieviiiiiiiiieceeeieeteeee ettt eeae s e s e esaesneens 9-26
Overview of User-Defined LOCKS.............cccooiiiiiiiiiicicieeeeeeeete ettt v e 9-27

10 Transactions

Introduction t0 TraNSACHIONScccoocviiiiiiieieciecteceee ettt et e besre e b e s rae b e ereesseeraenseens 10-1
Sample Transaction: Account Debit and Creditcccccoeecciiiiinniiiirecrreeerae 10-2
Structure Of @ TTaNSACIONccveiieieiiee ettt ettt e ae s e e s e ssebesseessesseessesseessenseas 10-2
Statement-Level AtOmMICItYcooviuiiiiiiieiecie e 10-4
System Change NUMDETS (SCINS)c.c.ccuiuiuiuiuiuimiieieieieieieeieieieeieieieie et nesesese s neseaens 10-5

Overview of Transaction COntrol............ccccooiiiiiiiiieicieeeeeeeeee e seeeae e ens 10-6
TranSaCtioN INAIMIEScocviiiieiiieeieeceeete et erte et et e s teesteesaesbeesabeesbeestaeesbaeseesssaessaesssesssaesssennses 10-7
ACHVE TrANSACHIONS.veeiereeeieiieteeteetestete st e et et e st e st e st essesseessesseessesseessaseessenseessesseessesssensensen 10-7
SAVEPOINLS ...ttt 10-8
RoOIIback Of TIANSACIONScveevievieiietieieete ettt ettt ere et sreereesbe e e e sbeess e beebesbeesseseessesseenns 10-10
Committing Transactions.........ccceeeiiiiiiiiiiiii 10-10

Overview of Autonomous TranSacCtionsccceevveiieiiiiecieiecieeeee et sa e e e saeeanens 10-11

Overview of Distributed TransSactions...............cccoevueivieieiieciiieceeeee et e e eenens 10-12
TWO-Phase COMUIMILecieiiriieieseeieeeete st ete e etes e et et eestesseesaesseeseessesseesseessesseessesseessansenssensennes 10-13
IN-DOUDt TTaNSACIONSccveeuiiiieiieticieeie ettt te e e te et e e te e s e e reeaesreessessaessesssessasaessesseenes 10-13

Part IV Oracle Database Storage Structures

11 Physical Storage Structures

Introduction to Physical Storage Structures ..o 11-1
Mechanisms for Storing Database Filescccooooiiiiiiiiiicc e, 11-2
Oracle Automatic Storage Management (Oracle ASM)cccocovvvvrnrnnnennnrrreeeeenes 11-3
Oracle Managed Files and User-Managed Files...............coooouiiiriiiiiiiiiicce, 11-6

Overview of Data Files...........ccoooiiiiiiiiiiiiccceeee e 11-7
Use of Data Files ... 11-7
Permanent and Temporary Data Filescccoooiiiiii 11-8
Online and Offline Data Files...........cocoiiiiiiiiiiiiiiccc e 11-9
Data File SEIUCTULE «....coovviviiiii s 11-9

Overview of Control Files ... 11-10
Use of CONLTOI FALES ..o 11-10
Multiple COntrol Filesccooiiiiiiiiiiiiiiiiiiiiicc 11-11
Control File Structure ..o 11-11

Overview of the Online Redo Log...........ccccocoiviiiiiiiiiiies 11-12

Use of the Online Redo LOg.......cccceviiriiiiiii 11-12
How Oracle Database Writes to the Online Redo Logc.coooriiiiiiii, 11-12
Structure of the Online Red0 LOgc.couvviiiiiiiii e 11-15

12 Logical Storage Structures

Introduction to Logical Storage Structures ... 12-1
Logical Storage Hierarchy...........cooooiiiiicic 12-2
Logical Space Managementccouieieiiirieieiiiceee et 12-2

Overview of Data BIOCKS ... 12-6
Data Blocks and Operating System BIOCKS...........c.coocueiiiiiiiiiiiccc 12-6
Data BloCK FOIMaAt......c.cciiiiiiiiiiiiciiiicci et 12-7
Data Block COMPTESSIONcucuiiiiiiiiiiiiiiiiiiic e 12-11
Space Management in Data BLOCKS.........c..c.oooiiieiiiiiiii e, 12-11

OVervIiew Of EXENLS.........cccooiiiiiiiiiiiiic e 12-18
Allocation Of EXENEScccoiiiiiiiiiiiiiiic s 12-18
Deallocation of EXtENtSccccoeuiiiiiiiiiiiiiiiiiiiiiii e 12-19
Storage Parameters for EXENtS ... 12-20

Overview of SEGMENtSccccociiiiiiiiiii s 12-21
USETI SEZMENESoviiiiiiciii s 12-21
Temporary SEZMENTS ..ot 12-23
UNdO SEGMENLS.......cooviiiiiciitt s 12-24
Segment Space and the High Water Markccccoooiii 12-27

Overview Of TaDIESPACEScccciuimiiiiiiiiiiiiiicce et 12-30
Permanent Tablespaces ... 12-31
Temporary TableSpaces..........cccciiiiiiiiiiiiniiiii s 12-34
TableSpace MOAES ... 12-34
Tablespace File SiZe ... 12-35

Part V Oracle Instance Architecture

13 Oracle Database Instance

Introduction to the Oracle Database Instanceccccocooeiiiniiiinniniii 131
Database INStance StructUre ... s 13-1
Database Instance Configurations.........cccoeceiieiiiiiniiceie e 13-2

Overview of Instance Startup and Shutdowncccoccoiiiiiiiniincceeee 13-5
Overview of Instance and Database Startup ... 13-5
Overview of Database and Instance Shutdowncccccccceriviniiiinniiiiiicccrccees 13-8

OVerview Of ChecKPOINtSccoocviiiriiiniiiineccrere e 13-11
Purpose of CheckpOintscoiiiiiiiiii 13-11
When Oracle Database Initiates Checkpoints...........coccciiiiiiiiiciiciccccccceeceeees 13-11

Overview of Instance RECOVETY ..o 13-12
Purpose of Instance RECOVEIYcoiiiiiiiiiiiicici e 13-12
When Oracle Database Performs Instance RECOVETrY ... 13-12
Importance of Checkpoints for Instance ReCOVErYcccovviiviiiiiiniiniiiin, 13-13
Instance Recovery Phases ... 13-14

Overview of Parameter Files.............cccooiiiiiica 13-15

14

15

16

INitialiZation ParameterScc.oooveuviiieieieeeee ettt e e e s eaaee s eateeeeaaeeeennes 13-15

Server Parameter FILES.........cuiiuiiiiiiiiiieceeie ettt ettt a e st be e st ab b e na e reens 13-16
Text Initialization Parameter FIlES........ccciiiiiiierieicicecceceeeee et 13-16
Modification of Initialization Parameter Valuescccccvecvevieiinincieseciereeeseeveeveeve e 13-17
Overview of Diagnostic Files............ccooiiiiiien 13-18
Automatic Diagnostic ReEpOsitory ... 13-19
AJRTE LOG ottt 13-21
TLACE FILES ..ottt et e e s te st e be e e e sbeers e baesbesbeessebeesaeereenes 13-22

Memory Architecture

Introduction to Oracle Database Memory Structures ..o, 14-1
Basic MemOry SrUCLUTES ..o 14-1
Oracle Database Memory Managementccoocueueiiicieiiiiicie e 14-3

Overview of the User Global Area............ccooiiiiiiiiiiiiiicc e 14-3

Overview of the Program Global Area ... 14-4
Contents of the PGAcccoiiii s 14-5
PGA Usage in Dedicated and Shared Server Modes...........cccccceuriiiiiininiiiiininniiiiine 14-7

Overview of the System Global Area.............cccccooiiiniiiiiiiii 14-8
Database Buffer Cache..........cccoiiiiiiiiiiiiii s 14-9
Redo Log BUSFET ... 14-14
Shared POOL ... 14-15
Large POOL........oie s 14-21
JAVA POOL ..ttt ettt sttt a bttt et et et e te b e st enteneeneeneas 14-22
SErEaMS POOL.......ciiiiiiiii s 14-23
FIXEA SGA. ..o s 14-23

Overview of SOftWare Code ATas...........cccuvivirueuiiririiiciiiieeet ettt 14-23

Process Architecture

INtrodUCHiON 10 PrOCESSESccuoivieeiiticeietieee ettt ettt e a et e esre e b e e raesbesseenseesaeseens 15-1
Multiple-Process Oracle Database SyStemsccccivccuiiiiceiicieieececeeeceeeeeeeeeeeeees 15-1
TYPES Of PrOCESSES.....oveviieiitt s 15-2

OVErVIieW Of CLIENTE PrOCESSEScoooveiiierieiieticieetteieete ettt et eteeaesteeteeteessesrsesseeraesseesseseenseseens 15-3
Client and SEIVET PrOCESSESc.cveieiririetieiisiesiesiestestestestetesteseeseesessessessessessessessessessessessssessenses 15-4
CoNNECIONS ANA SESSIONSvicvieeiierieiietieteseeteeteteeeereereesteereessessaesseessesseessessesssessesssessesssessenses 15-4

OVEIVIEW Of SEIVEI PTOCESSEScceeuievieeieiieiietiiiteieietetetetest et ssesesteetessessessessessessesseseasesseesassensens 15-6
Dedicated SErver PIOCESSEScccevieierieieriieiesieieseetesseetesseesesseessesseessesssessesssessesssessesssessesses 15-6
SNATed SEIVET PrOCESSESvicvveiieiieiietieiteetesie et ettete st et e et eteereesessaesaeessesseessessaessesseessesseessessenses 15-6

Overview of Background ProCesses...........c.cccovueeirninierinininieicininnerecseereeesereseeessese et saesenenees 15-7
Mandatory Background Processescoovieueieiiiiiiiiieiiiiieieiciceeeeee s 15-7
Optional Background ProCeSSesccceuiuiirieiiiiiciciec e 15-11
SLAVE PTOCESSES ...ouvevvevieeieiieeieiteiietietiste e et estestestests e etessessessessessessessessessasesseasessessessessessassessesensenns 15-13

Application and Networking Architecture

Overview of Oracle Application Architecture..................ccccooviiiiiiiiiiea, 16-1
Overview Of Client/Server ATCIItECTUTEvvveeeeeeeee ettt eeeeeeeeeeeeeeeeesereeeesereesenees 16-1
Overview of MUltitier ArChitOCTULC......ccvviiieeiieeeeeeee et eaaees 16-3

xi

Overview of Grid ArchiteCturecccooviviiiiiiiiiiiiiiiiicc s
Overview of Oracle Networking Architecture ...
How Oracle Net Services WOTKS.........cccocviiiiiiiiiiiii s
The Oracle Net LIStENeT.........cccccvvviiiiiiiiiiiiii s
Dedicated Server ArchiteCture ..o s
Shared Server ArChiteCture ..o
Database Resident Connection POOING ..ot
Overview of the Program Interface..............cccoooiiiiiiiiiiiiicccas
Program INterface SEIUCLUTEc.ccoociuiiiiiiiicccceeee e
Program Interface DIIVETS ..o
Communications Software for the Operating System............ccoooeiviiiiiiini,

Part VI Oracle Database Administration and Development

17 Topics for Database Administrators and Developers

Overview of Database Securitycccocoviiiiiiiiiiii e
USEI ACCOUNES ..ottt
AUthentiCatIONc.cviviiiiii s
ENCIYPHON .ottt
ACCESS CONLIOL...oviiiiittce s
IMONIEOTING ovvieiiititeieictettte bbb

Overview of High Availability ...
High Availability and Unplanned DOWNtmecccccceuiiiiiiieiiieiieieeceeeeeeeeeeeeeeeeeeees
High Availability and Planned Downtimecooouoiiiiiiiiccic e,

Overview of Grid COmMPUInG...........ccocooiiiiiiiiiii e
Database Server GIid........oiiiiiiii
Database Storage Grid ..o

Overview of Data Warehousing and Business Intelligenceccccooooiiiiiiinn.
Data Warehousing and OLTP ...
Data Warehouse Architecture...........cccovvviviiiiiiiiiiiii e
Overview of Extraction, Transformation, and Loading (ETL)cccccccoevvnnrnnnnrcnccnnes
Business INtelligence...........cocucviiiuiiiiiici e

Overview of Oracle Information Integrationccccocoiiiiiiii,
Federated ACCESScvviiiiiiiiiiiiiicc s
Information ShaTing.........coceueiiiiiiiic s

18 Concepts for Database Administrators

Duties of Database Administratorsccoooiiiiiiiiiiicccc e
Tools for Database Administratorscccccoviiiiiiiiiiiii s
Oracle Enterprise Managercccccciuiiiiririiiiininiiiieiieececee s
SOLFPIUS ..ttt ettt ettt et ee e et et e et eebe et eabeeas e teeaseeseerbeebeenseebeerseeteerseeteenbeeteenseeaeeneensereenen
Tools for Database Installation and Configuration...........ccceeeeirieiiiiciciiiccec e,
Tools for Oracle Net Configuration and Administration...........cccccceeeiiiiinniivcninciene,
Tools for Data Movement and ANalysiscccccoevrriiiernnrnrereeeereeeesesses s
Topics for Database Administrators ...
Backup and RECOVETYccccuiiiiiiiiiiiiiiiiciice e

Xii

Memory Managementccooueiiiiiiiiii s 18-15
Resource Management and Task Schedulingccoooiiiii 18-18
Performance Diagnostics and TUNINGcccouvvviririririririrer e 18-20

19 Concepts for Database Developers

Duties of Database DeVelOPersc.cccociriiriiiniiiniiireeeneeeeeeree e 19-1
Tools for Database Developers..............cccccoviiiiiiiiiiiiiiiiic s 19-1
SOQL DEVEIOPETcviiiiiiiiiiiiiiiiicrii s 19-2
Oracle Application EXPIess ... 19-2
Oracle JDEVEIOPETcciuimiiiiiiiiiiiiicicic s 19-2
OTaCLE JPUDIISNET ...ttt ettt sttt et se bt se b besbesteaas 19-3
Oracle Developer Tools for Visual Studio INETcccccccoiiiiiiiiiiiiiieeecceceeeeeneees 19-3
Topics for Database Developers ..o 19-3
Principles of Application Design and TUNINgccccceuviviiiviniiiiiiiiiiiiiice 19-4
Client-Side Database Programimingcccocoeereeiiiiiiiniieieeceeee s 19-5
Globalization SUPPOTTvieiiiiici 19-8
UnStructured Data ...t 19-11
Glossary
Index

Xiii

Xiv

Audience

Preface

This manual provides an architectural and conceptual overview of the Oracle database
server, which is an object-relational database management system. It describes how the
Oracle database server functions, and it lays a conceptual foundation for much of the
practical information contained in other manuals. Information in this manual applies
to the Oracle database server running on all operating systems.

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documentation

s Conventions

Oracle Database Concepts is intended for technical users, primarily database
administrators and database application developers, who are new to Oracle Database.
Typically, the reader of this manual has had experience managing or developing
applications for other relational databases.

To use this manual, you must know the following:
= Relational database concepts in general
= Concepts and terminology in Chapter 1, "Introduction to Oracle Database"

s The operating system environment under which you are running Oracle

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://ww. oracl e. conm pl s/topic/lookup?ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit ht t p: / / www. or acl e. cont pl s/t opi ¢/ | ookup?ct x=acc& d=i nfo or
visit htt p: // ww. or acl e. conl pl s/t opi ¢/ | ookup?ct x=accé& d=trs if you are hearing
impaired.

XV

Related Documentation
This manual is intended to be read with the following manuals:
s Oracle Database 2 Day DBA
» Oracle Database 2 Day Developer’s Guide

For more related documentation, see "Oracle Database Documentation Roadmap" on
page 1-12.

Many manuals in the Oracle Database documentation set use the sample schemas of
the seed database, which is installed by default when you install Oracle Database.
Refer to Oracle Database Sample Schemas for information on how these schemas were
created and how you can use them.

Conventions

The following text conventions are used in this manual:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates manual titles, emphasis, or placeholder variables
for which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVi

1

Introduction to Oracle Database

This chapter provides an overview of Oracle Database and contains the following
sections:

s About Relational Databases

= Schema Objects

s Data Access

s Transaction Management

» Oracle Database Architecture

s Oracle Database Documentation Roadmap

About Relational Databases

Every organization has information that it must store and manage to meet its
requirements. For example, a corporation must collect and maintain human resources
records for its employees. This information must be available to those who need it. An
information system is a formal system for storing and processing information.

An information system could be a set of cardboard boxes containing manila folders
along with rules for how to store and retrieve the folders. However, most companies
today use a database to automate their information systems. A database is an
organized collection of information treated as a unit. The purpose of a database is to
collect, store, and retrieve related information for use by database applications.

Database Management System (DBMS)

A database management system (DBMS) is software that controls the storage,
organization, and retrieval of data. Typically, a DBMS has the following elements:

= Kernel code

This code manages memory and storage for the DBMS.
= Repository of metadata

This repository is usually called a data dictionary.
s Query language

This language enables applications to access the data.

A database application is a software program that interacts with a database to access
and manipulate data.

The first generation of database management systems included the following types:

Introduction to Oracle Database 1-1

About Relational Databases

s Hierarchical

A hierarchical database organizes data in a tree structure. Each parent record has
one or more child records, similar to the structure of a file system.

s Network

A network database is similar to a hierarchical database, except records have a
many-to-many rather than a one-to-many relationship.

The preceding database management systems stored data in rigid, predetermined
relationships. Because no data definition language existed, changing the structure of
the data was difficult. Also, these systems lacked a simple query language, which
hindered application development.

Relational Model

In his seminal 1970 paper "A Relational Model of Data for Large Shared Data Banks,"
E. F. Codd defined a relational model based on mathematical set theory. Today, the
most widely accepted database model is the relational model.

A relational database is a database that conforms to the relational model. The
relational model has the following major aspects:

= Structures
Well-defined objects store or access the data of a database.
= Operations

Clearly defined actions enable applications to manipulate the data and structures
of a database.

= Integrity rules
Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of
tuples. A tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples)
and columns (attributes). Each row in a table has the same set of columns. A relational
database is a database that stores data in relations (tables). For example, a relational
database could store information about company employees in an employee table, a
department table, and a salary table.

See Also: http://portal.acmorg/citation.cfnPi d=362685 for an
abstract and link to Codd's paper

Relational Database Management System (RDBMS)

The relational model is the basis for a relational database management system
(RDBMS). Essentially, an RDBMS moves data into a database, stores the data, and
retrieves it so that it can be manipulated by applications. An RDBMS distinguishes
between the following types of operations:

= Logical operations

In this case, an application specifies what content is required. For example, an
application requests an employee name or adds an employee record to a table.

= Physical operations

1-2 Oracle Database Concepts

About Relational Databases

In this case, the RDBMS determines how things should be done and carries out the
operation. For example, after an application queries a table, the database may use
an index to find the requested rows, read the data into memory, and perform
many other steps before returning a result to the user. The RDBMS stores and
retrieves data so that physical operations are transparent to database applications.

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features
such as user-defined types, inheritance, and polymorphism is called an
object-relational database management system (ORDBMS). Oracle Database has
extended the relational model to an object-relational model, making it possible to store
complex business models in a relational database.

Brief History of Oracle Database

The current version of Oracle Database is the result of over 30 years of innovative
development. Highlights in the evolution of Oracle Database include the following:

Founding of Oracle

In 1977, Larry Ellison, Bob Miner, and Ed Oates started the consultancy Software
Development Laboratories, which became Relational Software, Inc. (RSI). In 1983,
RSI became Oracle Systems Corporation and then later Oracle Corporation.

First commercially available RDBMS

In 1979, RSI introduced Oracle V2 (Version 2) as the first commercially available
SQL-based RDBMS, a landmark event in the history of relational databases.

Portable version of Oracle Database

Oracle Version 3, released in 1983, was the first relational database to run on
mainframes, minicomputers, and PCs. The database was written in C, enabling the
database to be ported to multiple platforms.

Enhancements to concurrency control, data distribution, and scalability

Version 4 introduced multiversion read consistency. Version 5, released in 1985,
supported client/server computing and distributed database systems. Version 6
brought enhancements to disk I/O, row locking, scalability, and backup and
recovery. Also, Version 6 introduced the first version of the PL/SQL language, a
proprietary procedural extension to SQL.

PL/SQL stored program units
Oracle?, released in 1992, introduced PL/SQL stored procedures and triggers.
Objects and partitioning

Oracle8 was released in 1997 as the object-relational database, supporting many
new data types. Additionally, Oracle8 supported partitioning of large tables.

Internet computing

Oracle8i Database, released in 1999, provided native support for internet protocols
and server-side support for Java. Oracle8i was designed for internet computing,
enabling the database to be deployed in a multitier environment.

Oracle Real Application Clusters (Oracle RAC)

Oracle9i Database introduced Oracle RAC in 2001, enabling multiple instances to
access a single database simultaneously. Additionally, Oracle XML Database
(Oracle XML DB) introduced the ability to store and query XML.

Grid computing

Introduction to Oracle Database 1-3

Schema Objects

Oracle Database 10g introduced grid computing in 2003. This release enabled
organizations to virtualize computing resources by building a grid infrastructure
based on low-cost commodity servers. A key goal was to make the database
self-managing and self-tuning. Oracle Automatic Storage Management (Oracle
ASM) helped achieve this goal by virtualizing and simplifying database storage
management.

= Manageability, diagnosability, and availability

Oracle Database 11g, released in 2007, introduced a host of new features that
enable administrators and developers to adapt quickly to changing business
requirements. The key to adaptability is simplifying the information infrastructure
by consolidating information and using automation wherever possible.

See Also:

http://ww. oracl e. conl t echnet wor k/ i ssue-ar chi ve/ 2007/ 07-j ul /
04730-090772. ht ml for an article summarizing the evolution of Oracle
Database

Schema Objects

Tables

Indexes

One characteristic of an RDBMS is the independence of physical data storage from
logical data structures. In Oracle Database, a database schema is a collection of logical
data structures, or schema objects. A database schema is owned by a database user
and has the same name as the user name.

Schema objects are user-created structures that directly refer to the data in the
database. The database supports many types of schema objects, the most important of
which are tables and indexes.

See Also: "Introduction to Schema Objects" on page 2-1

A table describes an entity such as employees. You define a table with a table name,
such as enpl oyees, and set of columns. In general, you give each column a name, a
data type, and a width when you create the table.

A table is a set of rows. A column identifies an attribute of the entity described by the
table, whereas a row identifies an instance of the entity. For example, attributes of the
employees entity correspond to columns for employee ID and last name. A row
identifies a specific employee.

You can optionally specify rules for each column of a table. These rules are called
integrity constraints. One example is a NOT NULL integrity constraint. This constraint
forces the column to contain a value in every row.

See Also:
= "Overview of Tables" on page 2-6

» Chapter 5, "Data Integrity"

An index is an optional data structure that you can create on one or more columns of a
table. Indexes can increase the performance of data retrieval. When processing a
request, the database can use available indexes to locate the requested rows efficiently.
Indexes are useful when applications often query a specific row or range of rows.

1-4 Oracle Database Concepts

Data Access

Indexes are logically and physically independent of the data. Thus, you can drop and
create indexes with no effect on the tables or other indexes. All applications continue
to function after you drop an index.

See Also: "Overview of Indexes" on page 3-1

Data Access

A general requirement for a DBMS is to adhere to accepted industry standards for a
data access language.

Structured Query Language (SQL)

SQL is a set-based declarative language that provides an interface to an RDBMS such
as Oracle Database. In contrast to procedural languages such as C, which describe how
things should be done, SQL is nonprocedural and describes what should be done.
Users specify the result that they want (for example, the names of current employees),
not how to derive it. SQL is the ANSI standard language for relational databases.

All operations on the data in an Oracle database are performed using SQL statements.
For example, you use SQL to create tables and query and modify data in tables. A SQL
statement can be thought of as a very simple, but powerful, computer program or
instruction. A SQL statement is a string of SQL text such as the following:

SELECT first_name, |ast_name FROM enpl oyees;

SQL statements enable you to perform the following tasks:
s Query data

= Insert, update, and delete rows in a table

» Create, replace, alter, and drop objects

= Control access to the database and its objects

» Guarantee database consistency and integrity

SQL unifies the preceding tasks in one consistent language. Oracle SQL is an
implementation of the ANSI standard. Oracle SQL supports numerous features that
extend beyond standard SQL.

See Also: Chapter 7, "SQL"

PL/SQL and Java

PL/SQL is a procedural extension to Oracle SQL. PL/SQL is integrated with Oracle
Database, enabling you to use all of the Oracle Database SQL statements, functions,
and data types. You can use PL/SQL to control the flow of a SQL program, use
variables, and write error-handling procedures.

A primary benefit of PL/SQL is the ability to store application logic in the database
itself. A procedure or function is a schema object that consists of a set of SQL
statements and other PL/SQL constructs, grouped together, stored in the database,
and run as a unit to solve a specific problem or to perform a set of related tasks. The
principal benefit of server-side programming is that built-in functionality can be
deployed anywhere.

Oracle Database can also store program units written in Java. A Java stored procedure
is a Java method published to SQL and stored in the database for general use. You can
call existing PL/SQL programs from Java and Java programs from PL/SQL.

Introduction to Oracle Database 1-5

Transaction Management

See Also: Chapter 8, "Server-Side Programming: PL/SQL and Java"
and "Client-Side Database Programming" on page 19-5

Transaction Management

Transactions

Oracle Database is designed as a multiuser database. The database must ensure that
multiple users can work concurrently without corrupting one another's data.

An RDBMS must be able to group SQL statements so that they are either all
committed, which means they are applied to the database, or all rolled back, which
means they are undone. A transaction is a logical, atomic unit of work that contains
one or more SQL statements.

An illustration of the need for transactions is a funds transfer from a savings account
to a checking account. The transfer consists of the following separate operations:

1. Decrease the savings account.
2. Increase the checking account.
3. Record the transaction in the transaction journal.

Oracle Database guarantees that all three operations succeed or fail as a unit. For
example, if a hardware failure prevents a statement in the transaction from executing,
then the other statements must be rolled back.

Transactions are one of the features that sets Oracle Database apart from a file system.
If you perform an atomic operation that updates several files, and if the system fails
halfway through, then the files will not be consistent. In contrast, a transaction moves
an Oracle database from one consistent state to another. The basic principle of a
transaction is "all or nothing": an atomic operation succeeds or fails as a whole.

See Also: Chapter 10, "Transactions"

Data Concurrency

A requirement of a multiuser RDBMS is the control of concurrency, which is the
simultaneous access of the same data by multiple users. Without concurrency controls,
users could change data improperly, compromising data integrity. For example, one
user could update a row while a different user simultaneously updates it.

If multiple users access the same data, then one way of managing concurrency is to
make users wait. However, the goal of a DBMS is to reduce wait time so it is either
nonexistent or negligible. All SQL statements that modify data must proceed with as
little interference as possible. Destructive interactions, which are interactions that
incorrectly update data or alter underlying data structures, must be avoided.

Oracle Database uses locks to control concurrent access to data. A lock is a mechanism
that prevents destructive interaction between transactions accessing a shared resource.
Locks help ensure data integrity while allowing maximum concurrent access to data.

See Also: "Overview of the Oracle Database Locking Mechanism"
on page 9-11

Data Consistency

In Oracle Database, each user must see a consistent view of the data, including visible
changes made by a user's own transactions and committed transactions of other users.

1-6 Oracle Database Concepts

Oracle Database Architecture

For example, the database must prevent dirty reads, which occur when one transaction
sees uncommitted changes made by another concurrent transaction.

Oracle Database always enforces statement-level read consistency, which guarantees
that the data returned by a single query is committed and consistent with respect to a
single point in time. Depending on the transaction isolation level, this point is the time
at which the statement was opened or the time the transaction began. The Flashback
Query feature enables you to specify this point in time explicitly.

The database can also provide read consistency to all queries in a transaction, known
as transaction-level read consistency. In this case, each statement in a transaction sees
data from the same point in time, which is the time at which the transaction began.

See Also:

s Chapter 9, "Data Concurrency and Consistency”

» Oracle Database Advanced Application Developer’s Guide to learn
about Flashback Query

Oracle Database Architecture

A database server is the key to information management. In general, a server reliably
manages a large amount of data in a multiuser environment so that users can
concurrently access the same data. A database server also prevents unauthorized
access and provides efficient solutions for failure recovery.

Database and Instance

An Oracle database server consists of a database and at least one database instance
(commonly referred to as simply an instance). Because an instance and a database are
so closely connected, the term Oracle database is sometimes used to refer to both
instance and database. In the strictest sense the terms have the following meanings:

s Database

A database is a set of files, located on disk, that store data. These files can exist
independently of a database instance.

s Database instance

An instance is a set of memory structures that manage database files. The instance
consists of a shared memory area, called the system global area (SGA), and a set
of background processes. An instance can exist independently of database files.

Figure 1-1 shows a database and its instance. For each user connection to the instance,
the application is run by a client process. Each client process is associated with its own
server process. The server process has its own private session memory, known as the
program global area (PGA).

Introduction to Oracle Database 1-7

Oracle Database Architecture

Figure 1-1 Oracle Instance and Database

Instance

System Global Area (SGA) o ey

Shared Pool Large Pool I/0 Buffer Area

Library Cache UGA

Shared SQL Area | |Private O [- [| y

"SELECT * FROM (Ss%r/égea ag ®o0@ , > [Prion

| _ _eI’_Tp|_0_ye_ES_ il Server On|y) -] 0 0O m

O
<4—p | SMON

Data Server | |Other | |Reserved Response Request
Dictionary | | Result Pool Queue Queue
Cache Cache 4P| RECO

Database
Buffer Cache

uE

<4—) | MMON
Fixed Java Streams

SGA Pool Pool <_>
£ > [oes]
HeHH R

A Background

1 Processes
PGA A4 v

DBWn| | CKPT LGWR| | ARCn | |RVWR

1

T T
SQL Work Areas Server
! ' Process

“F
Session Memory FPrivate %kQL Area
N "

TA

'Database| | T [T 7]
1Data V¥ V¥ Control_ V¥
1 Files Files
. 1
Client | 10101}/ 10101}/

Process | Iq 1 1
1
1

A database can be considered from both a physical and logical perspective. Physical
data is data viewable at the operating system level. For example, operating system
utilities such as the Linux | s and ps can list database files and processes. Logical data
such as a table is meaningful only for the database. A SQL statement can list the tables
in an Oracle database, but an operating system utility cannot.

The database has physical structures and logical structures. Because the physical and
logical structures are separate, the physical storage of data can be managed without
affecting access to logical storage structures. For example, renaming a physical
database file does not rename the tables whose data is stored in this file.

See Also: Chapter 13, "Oracle Database Instance"

Database Storage Structures

An essential task of a relational database is data storage. This section briefly describes
the physical and logical storage structures used by Oracle Database.

1-8 Oracle Database Concepts

Oracle Database Architecture

Physical Storage Structures

The physical database structures are the files that store the data. When you execute the
SQL command CREATE DATABASE, the following files are created:

s Data files

Every Oracle database has one or more physical data files, which contain all the
database data. The data of logical database structures, such as tables and indexes,
is physically stored in the data files.

s Control files

Every Oracle database has a control file. A control file contains metadata
specifying the physical structure of the database, including the database name and
the names and locations of the database files.

= Online redo log files

Every Oracle Database has an online redo log, which is a set of two or more
online redo log files. An online redo log is made up of redo entries (also called
redo records), which record all changes made to data.

Many other files are important for the functioning of an Oracle database server. These
files include parameter files and diagnostic files. Backup files and archived redo log
files are offline files important for backup and recovery.

See Also: Chapter 11, "Physical Storage Structures”

Logical Storage Structures

This section discusses logical storage structures. The following logical storage
structures enable Oracle Database to have fine-grained control of disk space use:

s Data blocks

At the finest level of granularity, Oracle Database data is stored in data blocks.
One data block corresponds to a specific number of bytes on disk.

s Extents

An extent is a specific number of logically contiguous data blocks, obtained in a
single allocation, used to store a specific type of information.

= Segments

A segment is a set of extents allocated for a user object (for example, a table or
index), undo data, or temporary data.

= Tablespaces
A database is divided into logical storage units called tablespaces. A tablespace is

the logical container for a segment. Each tablespace contains at least one data file.

See Also: Chapter 12, "Logical Storage Structures”

Database Instance Structures

An Oracle database uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the RDBMS.

When applications connect to an Oracle database, they are connected to a database
instance. The instance services applications by allocating other memory areas in
addition to the SGA, and starting other processes in addition to background processes.

Introduction to Oracle Database 1-9

Oracle Database Architecture

Oracle Database Processes

A process is a mechanism in an operating system that can run a series of steps. Some
operating systems use the terms job, task, or thread. For the purpose of this discussion, a
thread is equivalent to a process. An Oracle database instance has the following types
of processes:

= Client processes

These processes are created and maintained to run the software code of an
application program or an Oracle tool. Most environments have separate
computers for client processes.

= Background processes

These processes consolidate functions that would otherwise be handled by
multiple Oracle Database programs running for each client process. Background
processes asynchronously perform I/O and monitor other Oracle Database
processes to provide increased parallelism for better performance and reliability.

] Server processes

These processes communicate with client processes and interact with Oracle
Database to fulfill requests.

Oracle processes include server processes and background processes. In most
environments, Oracle processes and client processes run on separate computers.

See Also: Chapter 15, "Process Architecture”

Instance Memory Structures

Oracle Database creates and uses memory structures for purposes such as memory for
program code, data shared among users, and private data areas for each connected
user. The following memory structures are associated with an instance:

= System Global Area (SGA)

The SGA is a group of shared memory structures that contain data and control
information for one database instance. Examples of SGA components include
cached data blocks and shared SQL areas.

= Program Global Areas (PGA)

A PGA is a memory region that contain data and control information for a server
or background process. Access to the PGA is exclusive to the process. Each server
process and background process has its own PGA.

See Also: Chapter 14, "Memory Architecture”

Application and Networking Architecture

To take full advantage of a given computer system or network, Oracle Database
enables processing to be split between the database server and the client programs.
The computer running the RDBMS handles the database server responsibilities while
the computers running the applications handle the interpretation and display of data.

Application Architecture

The application architecture refers to the computing environment in which a database
application connects to an Oracle database. The two most common database
architectures are client/server and multitier.

1-10 Oracle Database Concepts

Oracle Database Architecture

In a client/server architecture, the client application initiates a request for an operation
to be performed on the database server. The server runs Oracle Database software and
handles the functions required for concurrent, shared data access. The server receives
and processes requests that originate from clients.

In a traditional multitier architecture, one or more application servers perform parts
of the operation. An application server contains a large part of the application logic,
provides access to the data for the client, and performs some query processing, thus
lessening the load on the database. The application server can serve as an interface
between clients and multiple databases and provide an additional level of security.

Service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as
Web services. Web services are accessible through HTTP and are based on XML-based
standards such as Web Services Description Language (WSDL) and SOAP.

Oracle Database can act as a Web service provider in a traditional multitier or SOA
environment.

See Also:
= "Overview of Multitier Architecture” on page 16-3

» Oracle XML DB Developer’s Guide for more information about
using Web services with the database

Networking Architecture

Oracle Net Services is the interface between the database and the network
communication protocols that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. Oracle Net Services supports communications on all major
network protocols, including TCP/IP, HTTP, FIP, and WebDAV.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to a database server. After a network session is
established, Oracle Net acts as the data courier for both the client application and the
database server, exchanging messages between them. Oracle Net can perform these
jobs because it is located on each computer in the network.

An important component of Net Services is the Oracle Net Listener (called the
listener), which is a separate process that runs on the database server or elsewhere in
the network. Client applications can send connection requests to the listener, which
manages the traffic of these requests to the database server. When a connection is
established, the client and database communicate directly.

The most common ways to configure an Oracle database to service client requests are:
s Dedicated server architecture

Each client process connects to a dedicated server process. The server process is
not shared by any other client for the duration of the client's session. Each new
session is assigned a dedicated server process.

m Shared server architecture

The database uses a pool of shared processes for multiple sessions. A client
process communicates with a dispatcher, which is a process that enables many
clients to connect to the same database instance without the need for a dedicated
server process for each client.

Introduction to Oracle Database 1-11

Oracle Database Documentation Roadmap

See Also:
= "Overview of Oracle Networking Architecture" on page 16-5

m Oracle Database Net Services Administrator’s Guide to learn more
about Oracle Net architecture

s Oracle XML DB Developer’s Guide for information about using
WebDAYV with the database

Oracle Database Documentation Roadmap

Basic Group

This section explains how this manual should be read and where it fits into the Oracle
Database documentation set as a whole.

To a new user, the Oracle Database documentation library can seem daunting. Not
only are there are over 175 manuals, but many of these manuals are several hundred
pages long. However, the documentation is designed with specific access paths to
ensure that users are able to find the information they need as efficiently as possible.

The documentation set is divided into three layers or groups: basic, intermediate, and
advanced. Users begin with the manuals in the basic group (Oracle Database 2 Day
DBA, Oracle Database 2 Day Developer’s Guide, or this manual), proceed to the manuals
in the intermediate group (the 2 Day + series), and finally to the advanced manuals,
which include the remainder of the documentation set.

Technical users who are new to Oracle Database begin by reading one or more
manuals in the basic group from cover to cover. Each manual in this group is designed
to be read in two days. In addition to this manual, the basic group includes:

» Oracle Database 2 Day DBA

This manual is a task-based DBA quick start that teaches you how to perform
day-to-day database administrative tasks. It teaches you how to perform all
common administrative tasks needed to keep the database operational, including
how to perform basic troubleshooting and performance monitoring activities.

» Oracle Database 2 Day Developer’s Guide

This manual is a task-based database developer quick start guide that explains
how to use the basic features of Oracle Database through SQL and PL/SQL.

The manuals in the basic group are closely related, which is reflected in the number of
cross-references. For example, Oracle Database Concepts frequently sends users to a 2
Day manual to learn how to perform a task based on a concept. The 2 Day manuals
frequently references Oracle Database Concepts for conceptual background about a task.

Intermediate Group

The next step up from the basic group is the intermediate group. The manuals in this
group are prefixed with the word 2 Day + because they expand on and assume
information contained in the 2 Day manuals. These manuals cover topics in more
depth than was possible in the basic manuals, or cover topics of special interest. As
shown in Table 1-1, the 2 Day + manuals are divided into manuals for DBAs and
developers.

1-12 Oracle Database Concepts

Oracle Database Documentation Roadmap

Table 1-1 Intermediate Group: 2 Day + Guides

Database Administrators Database Developers

Oracle Database 2 Day + Performance Tuning Oracle Database 2 Day + Application Express
Guide Developer’s Guide

Oracle Database 2 Day + Real Application Oracle Database 2 Day + Java Developer’s Guide

Clusters Guide

Oracle Database 2 Day + Data Warehousing Oracle Database 2 Day + .NET Developer’s Guide
Guide for Microsoft Windows

Oracle Database 2 Day + Data Replication and | Oracle Database 2 Day + PHP Developer’s Guide
Integration Guide

Oracle Database 2 Day + Security Guide

Advanced Group

The next step up from the intermediate group is the advanced group. These manuals
are intended for expert users who require more detailed information about a particular
topic than can be provided by the 2 Day + manuals. Essential reference manuals in the
advanced group include:

» Oracle Database SQL Language Reference
This manual is the definitive source of information about Oracle SQL.
» Oracle Database Reference

The manual is the definitive source of information about initialization parameters,
data dictionary views, and dynamic performance views.

The advanced guides are too numerous to list in this section. Table 1-2 lists guides that
are used by the majority of expert DBAs and developers at one time or another.

Table 1-2 Advanced Group

Database Administrators Database Developers

Oracle Database Administrator’s Guide Oracle Database Advanced Application Developer’s
Guide

Oracle Database Performance Tuning Guide Oracle Database PL/SQL Language Reference

Oracle Database Backup and Recovery User's Oracle Database PL/SQL Packages and Types
Guide Reference

Oracle Real Application Clusters Administration
and Deployment Guide

Other advanced guides required by a particular user depend on the area of
responsibility of this user. For example, a security officer will naturally refer to the
Oracle Database Security Guide.

Introduction to Oracle Database 1-13

Oracle Database Documentation Roadmap

1-14 Oracle Database Concepts

Part |

Oracle Relational Data Structures

This part describes the basic data structures of an Oracle database, including data
integrity rules, and the structures that store metadata.

This part contains the following chapters:

» Chapter 2, "Tables and Table Clusters"

s Chapter 3, "Indexes and Index-Organized Tables"

» Chapter 4, "Partitions, Views, and Other Schema Objects"
s Chapter 5, "Data Integrity"

s Chapter 6, "Data Dictionary and Dynamic Performance Views"

2

Tables and Table Clusters

This chapter provides an introduction to schema objects and discusses tables, which
are the most common types of schema objects.

This chapter contains the following sections:
s Introduction to Schema Objects
» Overview of Tables

m Overview of Table Clusters

Introduction to Schema Objects

A database schema is a logical container for data structures, called schema objects.
Examples of schema objects are tables and indexes. Schema objects are created and
manipulated with SQL.

A database user has a password and various database privileges. Each user owns a
single schema, which has the same name as the user. The schema contains the data for
the user owning the schema. For example, the hr user owns the hr schema, which
contains schema objects such as the enpl oyees table. In a production database, the
schema owner usually represents a database application rather than a person.

Within a schema, each schema object of a particular type has a unique name. For
example, hr. enpl oyees refers to the table enpl oyees in the hr schema. Figure 2-1
depicts a schema owner named hr and schema objects within the hr schema.

Figure 2-1 HR Schema

HR Schema

Tables Indexes

I 1 —1 1= |

g BUY

* W ..
81T inn

| voyUuv

Schema
Objects

Tables and Table Clusters 2-1

Introduction to Schema Objects

See Also: "Overview of Database Security" on page 17-1 to learn
more about users and privileges

Schema Object Types

The most important schema objects in a relational database are tables. A table stores
data in rows.

Oracle SQL enables you to create and manipulate many other types of schema objects,
including the following:

Indexes

Indexes are schema objects that contains an entry for each indexed row of the table
or table cluster and provide direct, fast access to rows. Oracle Database supports
several types of index. An index-organized table is a table in which the data is
stored in an index structure. See Chapter 3, "Indexes and Index-Organized Tables".

Partitions

Partitions are pieces of large tables and indexes. Each partition has its own name
and may optionally have its own storage characteristics. See "Overview of
Partitions" on page 4-1.

Views

Views are customized presentations of data in one or more tables or other views.
You can think of them as stored queries. Views do not actually contain data. See
"Overview of Views" on page 4-12.

Sequences

A sequence is a user-created object that can be shared by multiple users to
generate integers. Typically, sequences are used to generate primary key values.
See "Overview of Sequences" on page 4-20.

Dimensions

A dimension defines a parent-child relationship between pairs of column sets,
where all the columns of a column set must come from the same table. Dimensions
are commonly used to categorize data such as customers, products, and time. See
"Overview of Dimensions" on page 2-22.

Synonyms

A synonym is an alias for another schema object. Because a synonym is simply an
alias, it requires no storage other than its definition in the data dictionary. See
"Overview of Synonyms" on page 4-22.

PL/SQL subprograms and packages

PL/SQL is the Oracle procedural extension of SQL. A PL/SQL subprogram is a
named PL/SQL block that can be invoked with a set of parameters. A PL/SQL
package groups logically related PL/SQL types, variables, and subprograms. See
"PL/SQL Subprograms" on page 8-3 and "PL/SQL Packages" on page 8-6.

Other types of objects are also stored in the database and can be created and
manipulated with SQL statements but are not contained in a schema. These objects
include database users, roles, contexts, and directory objects.

2-2 Oracle Database Concepts

Introduction to Schema Objects

See Also:

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage schema objects

» Oracle Database SQL Language Reference for more about schema
objects and database objects

Schema Object Storage

Some schema objects store data in logical storage structures called segments. For
example, a nonpartitioned heap-organized table or an index creates a segment. Other
schema objects, such as views and sequences, consist of metadata only. This section

describes only schema objects that have segments.

Oracle Database stores a schema object logically within a tablespace. There is no
relationship between schemas and tablespaces: a tablespace can contain objects from
different schemas, and the objects for a schema can be contained in different
tablespaces. The data of each object is physically contained in one or more data files.

Figure 2-2 shows a possible configuration of table and index segments, tablespaces,
and data files. The data segment for one table spans two data files, which are both part
of the same tablespace. A segment cannot span multiple tablespaces.

Figure 2-2 Segments, Tablespaces, and Data Files

S | S

000

L0

vouuv

[]

HIL

LI

voouUuU

|:q|:r

L]

50

Index

I:II:I%I:I

C
C
C

B

Data Files

(physical structures associated

with only one tablespace)

Table Table
Index Index Index

vouuv

000

LI

L]

&%

UUU

00

Table

Segments
(stored in tablespaces-

may span several data files)

Tables and Table Clusters 2-3

Introduction to Schema Objects

See Also:

s Chapter 12, "Logical Storage Structures" to learn about tablespaces
and segments

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage storage for schema objects

Schema Object Dependencies

Some schema objects reference other objects, creating schema object dependencies.
For example, a view contains a query that references tables or other views, while a
PL/SQL subprogram invokes other subprograms. If the definition of object A
references object B, then A is a dependent object with respect to Band Bis a
referenced object with respect to A.

Oracle Database provides an automatic mechanism to ensure that a dependent object
is always up to date with respect to its referenced objects. When a dependent object is
created, the database tracks dependencies between the dependent object and its
referenced objects. When a referenced object changes in a way that might affect a
dependent object, the dependent object is marked invalid. For example, if a user drops
a table, no view based on the dropped table is usable.

An invalid dependent object must be recompiled against the new definition of a
referenced object before the dependent object is usable. Recompilation occurs
automatically when the invalid dependent object is referenced.

As an illustration of how schema objects can create dependencies, the following
sample script creates a table t est _t abl e and then a procedure that queries this table:

CREATE TABLE test_table (coll INTEGER col2 INTEGER);

CREATE OR REPLACE PROCEDURE test _proc
AS
BEG N
FOR x IN (SELECT col 1, col2 FROMtest table)
LOoP
- process data
NULL;
END LOOP;
END;
/

The following query of the status of procedure t est _pr oc shows that it is valid:

SQL> SELECT OBJECT_NAME, STATUS FROM USER _OBJECTS WHERE OBJECT_NAME = ' TEST_PRCC ;
CBJECT_NAME STATUS

TEST_PRCC VALID

After adding the col 3 column to t est _t abl e, the procedure is still valid because the
procedure has no dependencies on this column:

SQ.> ALTER TABLE test table ADD col 3 NUMBER,
Tabl e al tered.
SQL> SELECT OBJECT_NAME, STATUS FROM USER OBJECTS WHERE OBJECT_NAME = ' TEST_PRCC ;

OBJECT_NAME STATUS

2-4 Oracle Database Concepts

Introduction to Schema Objects

TEST_PROCC VALID

However, changing the data type of the col 1 column, which the t est _proc procedure
depends on in, invalidates the procedure:

SQL> ALTER TABLE test_table MDD FY col 1 VARCHAR2(20);
Tabl e al tered.
SQ.> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT _NAME = ' TEST PRCC ;

OBJECT_NAME STATUS

TEST_PRCC INVALID

Running or recompiling the procedure makes it valid again, as shown in the following
example:

SQL> EXECUTE test_proc
PL/ SQL procedure successfully conpl et ed.
SQL> SELECT OBJECT_NAME, STATUS FROM USER _OBJECTS WHERE OBJECT_NAME = ' TEST_PRCC ;

OBJECT_NAME STATUS

TEST_PRCC VALID

See Also: Oracle Database Administrator’s Guide and Oracle Database
Advanced Application Developer’s Guide to learn how to manage schema
object dependencies

SYS and SYSTEM Schemas

All Oracle databases include default administrative accounts. Administrative accounts
are highly privileged and are intended only for DBAs authorized to perform tasks
such as starting and stopping the database, managing memory and storage, creating
and managing database users, and so on.

The administrative account SYS is automatically created when a database is created.
This account can perform all database administrative functions. The SYS schema stores
the base tables and views for the data dictionary. These base tables and views are
critical for the operation of Oracle Database. Tables in the SYS schema are manipulated
only by the database and must never be modified by any user.

The SYSTEMaccount is also automatically created when a database is created. The
SYSTEMschema stores additional tables and views that display administrative
information, and internal tables and views used by various Oracle Database options
and tools. Never use the SYSTEMschema to store tables of interest to nonadministrative
users.

See Also:

s "User Accounts” on page 17-1 and "Connection with
Administrator Privileges" on page 13-6

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn about SYS, SYSTEM and other administrative
accounts

Tables and Table Clusters 2-5

Overview of Tables

Sample Schemas

An Oracle database may include sample schemas, which are a set of interlinked
schemas that enable Oracle documentation and Oracle instructional materials to
illustrate common database tasks. The hr schema is a sample schema that contains
information about employees, departments and locations, work histories, and so on.

Figure 2-3 is an entity-relationship diagram of the tables in the hr schema. Most
examples in this manual use objects from this schema.

Figure 2-3 HR Schema

DEPARTMENTS LOCATIONS
HR] department_id location_id
department_name street_address
manager_id postal_code
AN location_id city
state_province
JOB_HISTORY country_id
employee_id g
startdate .. | EMPLOYEES =
job_id employee id >1 | COUNTRIES
department_id | i . last name |- country_id
email country_name
< phone_number region_id
h|_re6d_3te N
JOBS Jsoala_lry l
-{)%bﬁlt?e _____ commission_pct REGIONS
mJin galary manager_id re_gion_id
max__ salary department_id region_name
See Also: Oracle Database Sample Schemas
Overview of Tables

A table is the basic unit of data organization in an Oracle database. A table describes
an entity, which is something of significance about which information must be
recorded. For example, an employee could be an entity.

Oracle Database tables fall into the following basic categories:
= Relational tables

Relational tables have simple columns and are the most common table type.
Example 2-1 on page 2-8 shows a CREATE TABLE statement for a relational table.

= Object tables

The columns correspond to the top-level attributes of an object type. See "Object
Tables" on page 2-15.

You can create a relational table with the following organizational characteristics:

= A heap-organized table does not store rows in any particular order. The CREATE
TABLE statement creates a heap-organized table by default.

= Anindex-organized table orders rows according to the primary key values. For
some applications, index-organized tables enhance performance and use disk
space more efficiently. See "Overview of Index-Organized Tables" on page 3-20.

2-6 Oracle Database Concepts

Overview of Tables

= An external table is a read-only table whose metadata is stored in the database but
whose data in stored outside the database. See "External Tables" on page 2-16.

A table is either permanent or temporary. A permanent table definition and data
persist across sessions. A temporary table definition persists in the same way as a
permanent table definition, but the data exists only for the duration of a transaction or
session. Temporary tables are useful in applications where a result set must be held
temporarily, perhaps because the result is constructed by running multiple operations.

This section contains the following topics:

s Columns and Rows

= Example: CREATE TABLE and ALTER TABLE Statements
» Oracle Data Types

s Integrity Constraints

s Object Tables

s Temporary Tables

= External Tables

= Table Storage

n Table Compression

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator’s Guide to learn how to manage tables

Columns and Rows

A table definition includes a table name and set of columns. A column identifies an
attribute of the entity described by the table. For example, the column enpl oyee_i d in
the enpl oyees table refers to the employee ID attribute of an employee entity.

In general, you give each column a column name, a data type, and a width when you
create a table. For example, the data type for enpl oyee_i d is NUMBER(6) , indicating that
this column can only contain numeric data up to 6 digits in width. The width can be
predetermined by the data type, as with DATE.

A table can contain a virtual column, which unlike a nonvirtual column does not
consume disk space. The database derives the values in a virtual column on demand
by computing a set of user-specified expressions or functions. For example, the virtual
column i ncone could be a function of the sal ary and comi ssi on_pct columns.

After you create a table, you can insert, query, delete, and update rows using SQL. A
row is a collection of column information corresponding to a record in a table. For
example, a row in the enpl oyees table describes the attributes of a specific employee.

See Also: Oracle Database Administrator’s Guide to learn how to
manage virtual columns

Example: CREATE TABLE and ALTER TABLE Statements

The Oracle SQL command to create a table is CREATE TABLE. Example 2-1 shows the
CREATE TABLE statement for the enpl oyees table in the hr sample schema. The
statement specifies columns such as enpl oyee_i d, fi r st _name, and so on, specifying a
data type such as NUMBER or DATE for each column.

Tables and Table Clusters 2-7

Overview of Tables

Example 2-1 CREATE TABLE employees
CREATE TABLE enpl oyees

(enployee_id NUMBER(6)
, first_name VARCHAR2(20)
, last_nane VARCHAR2(25)
CONSTRAI NT enp_|l ast_nanme_nn NOT NULL

, email VARCHAR2(25)

CONSTRAI NT enp_enmai |l _nn NOT NULL
, phone_nunber VARCHAR2(20)
, hire_date DATE

CONSTRAI NT enp_hire_date_nn NOT NULL
, job_id VARCHAR2(10)

CONSTRAI NT enp_job_nn NOT NULL
, salary NUMBER(8, 2)
, comi ssi on_pct NUMBER(2, 2)
, manager_id NUVBER(6)
, department _id NUVBER(4)
, CONSTRAI NT enp_salary_min

CHECK (salary > 0)

, CONSTRAI NT enp_emai | _uk

UNI QUE (email)
)

Example 2-2 shows an ALTER TABLE statement that adds integrity constraints to the
enpl oyees table. Integrity constraints enforce business rules and prevent the entry of

invalid information into tables.

Example 2-2 ALTER TABLE employees

ALTER TABLE enpl oyees

ADD (CONSTRAI NT enp_enp_i d_pk

PRI MARY KEY (enpl oyee_i d)

, CONSTRAI NT enp_dept _fk
FOREI GN KEY (departnent _id)
REFERENCES depart ment s
, CONSTRAI NT enp_j ob_fk
FOREI GN KEY (j ob_i d)
REFERENCES | obs (j ob_i d)
, CONSTRAI NT enp_nanager _fk

FOREI GN KEY (manager _i d)
REFERENCES enpl oyees

)

Example 2-3 shows 8 rows and 6 columns of the hr. enpl oyees table.

Example 2-3 Rows in the employees Table

EMPLOYEE_| D FI RST_NAME LAST_NAMVE

100 Steven Ki ng
101 Neena Kochhar
102 Lex De Haan
103 Al exander Hunol d
107 Di ana Lorentz
149 El eni Zl ot key
174 Ellen Abel
178 Kinberely Gant

The output in Example 2-3 illustrates some of the following important characteristics

of tables, columns, and rows:

2-8 Oracle Database Concepts

SALARY COWM SSI ON_PCT DEPARTMENT_I D

24000 90
17000 90
17000 90
9000 60
4200 60
10500 .2 80
11000 .3 80
7000 .15

Overview of Tables

= Arow of the table describes the attributes of one employee: name, salary,
department, and so on. For example, the first row in the output shows the record
for the employee named Steven King.

= A column describes an attribute of the employee. In the example, the enpl oyee_i d
column is the primary key, which means that every employee is uniquely
identified by employee ID. Any two employees are guaranteed not to have the
same employee ID.

= A non-key column can contain rows with identical values. In the example, the
salary value for employees 101 and 102 is the same: 17000.

= A foreign key column refers to a primary or unique key in the same table or a
different table. In this example, the value of 90 in depart ment _i d corresponds to
the depart ment _i d column of the depart nent s table.

= A field is the intersection of a row and column. It can contain only one value. For
example, the field for the department ID of employee 104 contains the value 60.

s A field can lack a value. In this case, the field is said to contain a null value. The
value of the commi ssi on_pct column for employee 100 is null, whereas the value
in the field for employee 149 is . 2. A column allows nulls unless a NOT NULL or
primary key integrity constraint has been defined on this column, in which case no
row can be inserted without a value for this column.

See Also: Oracle Database SQL Language Reference for CREATE TABLE
syntax and semantics

Oracle Data Types

Each column has a data type, which is associated with a specific storage format,
constraints, and valid range of values. The data type of a value associates a fixed set of
properties with the value. These properties cause Oracle Database to treat values of
one data type differently from values of another. For example, you can multiply values
of the NUMBER data type, but not values of the RAWdata type.

When you create a table, you must specify a data type for each of its columns. Each
value subsequently inserted in a column assumes the column data type.

Oracle Database provides several built-in data types. The most commonly used data
types fall into the following categories:

» Character Data Types

= Numeric Data Types

s Datetime Data Types

= Rowid Data Types

= Format Models and Data Types

Other important categories of built-in types include raw, large objects (LOBs), and
collections. PL/SQL has data types for constants and variables, which include
BOOLEAN, reference types, composite types (records), and user-defined types.

Tables and Table Clusters 2-9

Overview of Tables

See Also:
s "Overview of LOBs" on page 19-12

» Oracle Database SQL Language Reference to learn about built-in SQL
data types

» Oracle Database PL/SQL Language Reference to learn about PL/SQL
data types

» Oracle Database Advanced Application Developer’s Guide for
information about how to use the built-in data types

Character Data Types

Character data types store character (alphanumeric) data in strings. The most
commonly used character data type is VARCHAR2, which is the most efficient option for
storing character data.

The byte values correspond to the character encoding scheme, generally called a
character set or code page. The database character set is established at database
creation. Examples of character sets are 7-bit ASCII, EBCDIC, and Unicode UTF-8.

The length semantics of character data types can be measured in bytes or characters.
Byte semantics treat strings as a sequence of bytes. This is the default for character
data types. Character semantics treat strings as a sequence of characters. A character is
technically a code point of the database character set.

See Also:
s "Character Sets" on page 19-9

» Oracle Database 2 Day Developer’s Guide and Oracle Database
Advanced Application Developer’s Guide and to learn how to
select a character data type

VARCHAR2 and CHAR Data Types The VARCHAR2 data type stores variable-length character
literals. The terms literal and constant value are synonymous and refer to a fixed data
value. For example, ' LILA'," St. CGeorge Island' ,and' 101" are all character literals;
5001 is a numeric literal. Character literals are enclosed in single quotation marks so
that the database can distinguish them from schema object names.

Note: This manual uses the terms text literal, character literal, and
string interchangeably.

When you create a table with a VARCHAR2 column, you specify a maximum string
length. In Example 21, the | ast _nane column has a data type of VARCHAR2(25) , which
means that any name stored in the column can have a maximum of 25 bytes.

For each row, Oracle Database stores each value in the column as a variable-length
field unless a value exceeds the maximum length, in which case the database returns
an error. For example, in a single-byte character set, if you enter 10 characters for the
| ast _name column value in a row, then the column in the row piece stores only 10
characters (10 bytes), not 25. Using VARCHAR2 reduces space consumption.

In contrast to VARCHARZ, CHAR stores fixed-length character strings. When you create a
table with a CHAR column, the column requires a string length. The default is 1 byte.
The database uses blanks to pad the value to the specified length.

2-10 Oracle Database Concepts

Overview of Tables

Oracle Database compares VARCHAR? values using nonpadded comparison semantics
and compares CHAR values using blank-padded comparison semantics.

See Also: Oracle Database SQL Language Reference for details about
blank-padded and nonpadded comparison semantics

NCHAR and NVARCHAR2 Data Types The NCHAR and NVARCHAR2 data types store Unicode
character data. Unicode is a universal encoded character set that can store information
in any language using a single character set. NCHAR stores fixed-length character strings
that correspond to the national character set, whereas NVARCHARZ stores variable length
character strings.

You specify a national character set when creating a database. The character set of
NCHAR and NVARCHAR? data types must be either ALI6UTF16 or UTF8. Both character sets
use Unicode encoding.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size is
always in character length semantics. Character length semantics is the default and
only length semantics for NCHAR or NVARCHARZ2.

See Also: Oracle Database Globalization Support Guide for information
about Oracle's globalization support feature

Numeric Data Types

The Oracle Database numeric data types store fixed and floating-point numbers, zero,
and infinity. Some numeric types also store values that are the undefined result of an
operation, which is known as "not a number" or NAN.

Oracle Database stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent. The database uses up to 20

bytes to store the mantissa, which is the part of a floating-point number that contains

its significant digits. Oracle Database does not store leading and trailing zeros.

NUMBER Data Type The NUMBER data type stores fixed and floating-point numbers. The
database can store numbers of virtually any magnitude. This data is guaranteed to be
portable among different operating systems running Oracle Database. The NUMBER data
type is recommended for most cases in which you must store numeric data.

You specify a fixed-point number in the form NUVBER(p, S) , where p and s refer to the
following characteristics:

s Precision

The precision specifies the total number of digits. If a precision is not specified,
then the column stores the values exactly as provided by the application without
any rounding.

s Scale

The scale specifies the number of digits from the decimal point to the least
significant digit. Positive scale counts digits to the right of the decimal point up to
and including the least significant digit. Negative scale counts digits to the left of
the decimal point up to but not including the least significant digit. If you specify a
precision without a scale, as in NUMBER(6) , then the scale is 0.

In Example 2-1, the sal ary column is type NUMBER(8, 2) , so the precision is 8 and the
scale is 2. Thus, the database stores a salary of 100,000 as 100000. 00.

Tables and Table Clusters 2-11

Overview of Tables

Floating-Point Numbers Oracle Database provides two numeric data types exclusively
for floating-point numbers: Bl NARY_FLOAT and Bl NARY_DOUBLE. These types support all
of the basic functionality provided by the NUMBER data type. However, while NUVBER
uses decimal precision, Bl NARY_FLOAT and BI NARY_DOUBLE use binary precision, which
enables faster arithmetic calculations and usually reduces storage requirements.

Bl NARY_FLOAT and Bl NARY_DOUBLE are approximate numeric data types. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either Bl NARY_DOUBLE or

Bl NARY_FLOAT. They are frequently used for scientific computations. Their behavior is
similar to the data types FLOAT and DOUBLE in Java and XMLSchema.

See Also: Oracle Database SQL Language Reference to learn about
precision, scale, and other characteristics of numeric types

Datetime Data Types

The datetime data types are DATE and Tl MESTAMWP. Oracle Database provides
comprehensive time zone support for time stamps.

DATE Data Type The DATE data type stores date and time. Although datetimes can be
represented in character or number data types, DATE has special associated properties.
The hi r e_dat e column in Example 2-1 has a DATE data type.

The database stores dates internally as numbers. Dates are stored in fixed-length fields
of 7 bytes each, corresponding to century, year, month, day, hour, minute, and second.

Note: Dates fully support arithmetic operations, so you add to and
subtract from dates just as you can with numbers. See Oracle Database
Advanced Application Developer’s Guide.

The database displays dates according to the specified format model. A format model
is a character literal that describes the format of a datetime in a character string. The
standard date format is DD- MON- RR, which displays dates in the form 01- JAN- 09.

RRis similar to YY (the last two digits of the year), but the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. Assume that in 1999 the database displays 01- JAN- 09. If the date format uses RR,
then 09 specifies 2009, whereas if the format uses YY, then 09 specifies 1909. You can
change the default date format at both the instance and the session level.

Oracle Database stores time in 24-hour format—HH: M : SS. If no time portion is
entered, then by default the time in a date field is 00: 00: 00 A. M In a time-only entry,
the date portion defaults to the first day of the current month.

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about centuries and date format masks

» Oracle Database SQL Language Reference for information about
datetime format codes

TIMESTAMP Data Type The TI MESTAMP data type is an extension of the DATE data type. It
stores fractional seconds in addition to the information stored in the DATE data type.
The TI MESTAWP data type is useful for storing precise time values, such as in
applications that must track event order.

2-12 Oracle Database Concepts

Overview of Tables

The DATETI ME data types TI MESTAMP W TH TI ME ZONE and Tl MESTAMP W TH LOCAL

TI ME ZONE are time-zone aware. When a user selects the data, the value is adjusted to
the time zone of the user session. This data type is useful for collecting and evaluating
date information across geographic regions.

See Also: Oracle Database SQL Language Reference for details about
the syntax of creating and entering data in time stamp columns

Rowid Data Types

Every row stored in the database has an address. Oracle Database uses a ROW D data
type to store the address (rowid) of every row in the database. Rowids fall into the
following categories:

= Physical rowids store the addresses of rows in heap-organized tables, table
clusters, and table and index partitions.

= Logical rowids store the addresses of rows in index-organized tables.

= Foreign rowids are identifiers in foreign tables, such as DB2 tables accessed
through a gateway. They are not standard Oracle Database rowids.

A data type called the universal rowid, or UROW D, supports all kinds of rowids.

Use of Rowids Oracle Database uses rowids internally for the construction of indexes. A
B-tree index, which is the most common type, contains an ordered list of keys divided
into ranges. Each key is associated with a rowid that points to the associated row's
address for fast access. End users and application developers can also use rowids for
several important functions:

= Rowids are the fastest means of accessing particular rows.
= Rowids provide the ability to see how a table is organized.
= Rowids are unique identifiers for rows in a given table.

You can also create tables with columns defined using the RON D data type. For
example, you can define an exception table with a column of data type RON D to store
the rowids of rows that violate integrity constraints. Columns defined using the RON D
data type behave like other table columns: values can be updated, and so on.

ROWID Pseudocolumn Every table in an Oracle database has a pseudocolumn named
ROW D. A pseudocolumn behaves like a table column, but is not actually stored in the
table. You can select from pseudocolumns, but you cannot insert, update, or delete
their values. A pseudocolumn is also similar to a SQL function without arguments.
Functions without arguments typically return the same value for every row in the
result set, whereas pseudocolumns typically return a different value for each row.

Values of the ROW D pseudocolumn are strings representing the address of each row.
These strings have the data type RON D. This pseudocolumn is not evident when listing
the structure of a table by executing SELECT or DESCRI BE, nor does the pseudocolumn
consume space. However, the rowid of each row can be retrieved with a SQL query
using the reserved word RON D as a column name.

Example 2—4 queries the RON D pseudocolumn to show the rowid of the row in the
enpl oyees table for employee 100.

Example 2-4 ROWID Pseudocolumn
SQL> SELECT RON D FROM enpl oyees WHERE enpl oyee_id = 100;

ROW D

Tables and Table Clusters 2-13

Overview of Tables

AAAPec AAFAAAABSAAA

See Also:
= "Rowid Format" on page 12-10

» Oracle Database Advanced Application Developer’s Guide to learn
how to identify rows by address

» Oracle Database SQL Language Reference to learn about rowid types

Format Models and Data Types

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database.

When you convert a character string into a date or number, a format model determines
how the database interprets the string. In SQL, you can use a format model as an
argument of the TO_CHARand TO_DATE functions to format a value to be returned from
the database or to format a value to be stored in the database.

The following statement selects the salaries of the employees in Department 80 and
uses the TO _CHAR function to convert these salaries into character values with the
format specified by the number format model ' $99, 990. 99' :

SQ.> SELECT | ast_name enpl oyee, TO CHAR(sal ary, '$99, 990.99'")
2 FROM enpl oyees
3 WHERE departnent_id = 80 AND | ast_name = 'Russell';

EMPLOYEE TO_CHAR(SAL

Russel | $14, 000. 00

The following example updates a hire date using the TO_DATE function with the format
mask ' YYYY MM DD to convert the string ' 1998 05 20' to a DATE value:

SQL> UPDATE enpl oyees
2 SET hire_date = TO DATE(' 1998 05 20',' YYYY MM DD)
3 WHERE | ast _nanme = 'Hunol d';

See Also: Oracle Database SQL Language Reference to learn more
about format models

Integrity Constraints

Integrity constraints are named rules that restrict the values for one or more columns
in a table. These rules prevent invalid data entry into tables. Also, constraints can
prevent the deletion of a table when certain dependencies exist.

If a constraint is enabled, then the database checks data as it is entered or updated.
Data that does not conform to the constraint is prevented from being entered. If a
constraint is disabled, then data that does not conform to the constraint can be allowed
to enter the database.

In Example 2-1 on page 2-8, the CREATE TABLE statement specifies NOT NULL
constraints for the | ast _nane, enai | , hire_date, and j ob_i d columns. The constraint
clauses identify the columns and the conditions of the constraint. These constraints
ensure that the specified columns contain no null values. For example, an attempt to
insert a new employee without a job ID generates an error.

2-14 Oracle Database Concepts

Overview of Tables

You can create a constraint when or after you create a table. Constraints can be
temporarily disabled if needed. The database stores constraints in the data dictionary.

See Also:
» Chapter 5, "Data Integrity" to learn about integrity constraints

» Oracle Database SQL Language Reference to learn about SQL
constraint clauses

Object Tables

An Oracle object type is a user-defined type with a name, attributes, and methods.
Object types make it possible to model real-world entities such as customers and
purchase orders as objects in the database.

An object type defines a logical structure, but does not create storage. Example 2-5
creates an object type named depart ment _t yp.

Example 2-5 Object Type

CREATE TYPE departnent _typ AS OBJECT
(d_nane VARCHAR2(100),
d_address VARCHAR2(200));
/

An object table is a special kind of table in which each row represents an object. The
CREATE TABLE statement in Example 2-6 creates an object table named depart ment s_
obj _t of the object type depar t ment _t yp. The attributes (columns) of this table are
derived from the definition of the object type. The | NSERT statement inserts a row into
this table.

Example 2-6 Object Table

CREATE TABLE departnents_obj t OF departnent_typ;
I NSERT | NTO departments_obj _t
VALUES (' hr', '"10 Main St, Sonmetown, CA');

Like a relational column, an object table can contain rows of just one kind of thing,
namely, object instances of the same declared type as the table. By default, every row
object in an object table has an associated logical object identifier (OID) that uniquely
identifies it in an object table. The OID column of an object table is a hidden column.

See Also:

» Oracle Database Object-Relational Developer’s Guide to learn about
object-relational features in Oracle Database

» Oracle Database SQL Language Reference for CREATE TYPE syntax
and semantics

Temporary Tables

Oracle Database temporary tables hold data that exists only for the duration of a
transaction or session. Data in a temporary table is private to the session, which means
that each session can only see and modify its own data.

Temporary tables are useful in applications where a result set must be buffered. For
example, a scheduling application enables college students to create optional semester

Tables and Table Clusters 2-15

Overview of Tables

course schedules. Each schedule is represented by a row in a temporary table. During
the session, the schedule data is private. When the student decides on a schedule, the
application moves the row for the chosen schedule to a permanent table. At the end of
the session, the schedule data in the temporary data is automatically dropped.

Temporary Table Creation

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table. The ON
COW T clause specifies whether the table data is transaction-specific (default) or
session-specific.

Unlike temporary tables in some other relational databases, when you create a
temporary table in an Oracle database, you create a static table definition. The
temporary table is a persistent object described in the data dictionary, but appears
empty until your session inserts data into the table. You create a temporary table for
the database itself, not for every PL/SQL stored procedure.

Because temporary tables are statically defined, you can create indexes for them with
the CREATE | NDEX statement. Indexes created on temporary tables are also temporary.
The data in the index has the same session or transaction scope as the data in the
temporary table. You can also create a view or trigger on a temporary table.

See Also:

» Oracle Database Administrator’s Guide to learn how create and
manage temporary tables

» Oracle Database SQL Language Reference for CREATE GLOBAL
TEMPCRARY TABLE syntax and semantics

s "Overview of Views" on page 4-12 and "Overview of Triggers" on
page 8-16

Segment Allocation in Temporary Tables

Like permanent tables, temporary tables are defined in the data dictionary. Temporary
segments are allocated when data is first inserted. Until data is loaded in a session the
table appears empty. Temporary segments are deallocated at the end of the transaction
for transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

See Also: "Temporary Segments" on page 12-23

External Tables

An external table accesses data in external sources as if this data were in a table in the
database. You can use SQL, PL/SQL, and Java to query the external data.

External tables are useful for querying flat files. For example, a SQL-based application
may need to access records in a text file. The records are in the following form:

100, St even, Ki ng, SKI NG 515. 123. 4567, 17- JUN- 03, AD_PRES, 31944, 150, 90
101, Neena, Kochhar, NKOCHHAR, 515. 123. 4568, 21- SEP- 05, AD_VP, 17000, 100, 90
102, Lex, De Haan, LDEHAAN, 515. 123. 4569, 13- JAN-01, AD VP, 17000, 100, 90

You could create an external table, copy the file to the location specified in the external
table definition, and use SQL to query the records in the text file.

External tables are also valuable for performing ETL tasks common in data warehouse
environments. For example, external tables enable the pipelining of the data loading
phase with the transformation phase, eliminating the need to stage data inside the

2-16 Oracle Database Concepts

Overview of Tables

database in preparation for further processing inside the database. See "Overview of
Data Warehousing and Business Intelligence" on page 17-14.

External Table Creation

Internally, creating an external table means creating metadata in the data dictionary.
Unlike an ordinary table, an external table does not describe data stored in the
database, nor does it describe how data is stored externally. Rather, external table
metadata describes how the external table layer must present data to the database.

A CREATE TABLE ... ORGAN ZATI ON EXTERNAL statement has two parts. The external
table definition describes the column types. This definition is like a view that enables
SQL to query external data without loading it into the database. The second part of the
statement maps the external data to the columns.

External tables are read-only unless created with CREATE TABLE AS SELECT with the
ORACLE_DATAPUNP access driver. Restrictions for external tables include no support for
indexed columns, virtual columns, and column objects.

External Table Access Drivers

An access driver is an API that interprets the external data for the database. The access
driver runs inside the database, which uses the driver to read the data in the external
table. The access driver and the external table layer are responsible for performing the
transformations required on the data in the data file so that it matches the external
table definition. Figure 2—4 represents how external data is accessed.

Figure 2—-4 External Tables

TN

Database

N

External Table

Metadata

External

Files \ 7 Queries of

/ ueri

— = b / External o .
1—=F \ Data’ Table "
q1—>» <—> ala 4—

- Access D/lctlonary

Driver y

~—_

Oracle provides the ORACLE_LOADER (default) and ORACLE_DATAPUMP access drivers for
external tables. For both drivers, the external files are not Oracle data files.

ORACLE_LOADER enables read-only access to external files using SQL*Loader. You
cannot create, update, or append to an external file using the ORACLE_LOADER driver.

The CRACLE_DATAPUWP driver enables you to unload external data. This operation
involves reading data from the database and inserting the data into an external table,
represented by one or more external files. After external files are created, the database
cannot update or append data to them. The driver also enables you to load external
data, which involves reading an external table and loading its data into a database.

Tables and Table Clusters 2-17

Overview of Tables

Table Storage

See Also:

s Oracle Database Administrator’s Guide to learn about managing
external tables, external connections, and directory objects

n Oracle Database Utilities to learn about external tables

» Oracle Database SQL Language Reference for information about
creating and querying external tables

Oracle Database uses a data segment in a tablespace to hold table data. As explained
in "User Segments" on page 12-21, a segment contains extents made up of data blocks.

The data segment for a table (or cluster data segment, when dealing with a table
cluster) is located in either the default tablespace of the table owner or in a tablespace
named in the CREATE TABLE statement.

Table Organization

By default, a table is organized as a heap, which means that the database places rows
where they fit best rather than in a user-specified order. Thus, a heap-organized table
is an unordered collection of rows. As users add rows, the database places the rows in
the first available free space in the data segment. Rows are not guaranteed to be
retrieved in the order in which they were inserted.

Note: Index-organized tables use a different principle of
organization. See "Overview of Index-Organized Tables" on page 3-20.

The hr. depar t ment s table is a heap-organized table. It has columns for department ID,
name, manager ID, and location ID. As rows are inserted, the database stores them
wherever they fit. A data block in the table segment might contain the unordered rows
shown in Example 2-7.

Example 2-7 Rows in Departments Table
50, Shi ppi ng, 121, 1500

120, Treasury,, 1700

70, Publi ¢ Rel ations, 204, 2700

30, Pur chasi ng, 114, 1700

130, Cor por ate Tax,, 1700

10, Adni ni stration, 200, 1700

110, Account i ng, 205, 1700

The column order is the same for all rows in a table. The database usually stores
columns in the order in which they were listed in the CREATE TABLE statement, but this
order is not guaranteed. For example, if a table has a column of type LONG, then Oracle
Database always stores this column last in the row. Also, if you add a new column to a
table, then the new column becomes the last column stored.

A table can contain a virtual column, which unlike normal columns does not consume
space on disk. The database derives the values in a virtual column on demand by
computing a set of user-specified expressions or functions. You can index virtual
columns, collect statistics on them, and create integrity constraints. Thus, virtual
columns are much like nonvirtual columns.

2-18 Oracle Database Concepts

Overview of Tables

See Also: Oracle Database SQL Language Reference to learn about
virtual columns

Row Storage

The database stores rows in data blocks. Each row of a table containing data for less
than 256 columns is contained in one or more row pieces.

If possible, Oracle Database stores each row as one row piece. However, if all of the
row data cannot be inserted into a single data block, or if an update to an existing row
causes the row to outgrow its data block, then the database stores the row using
multiple row pieces (see "Data Block Format" on page 12-7).

Rows in a table cluster contain the same information as rows in nonclustered tables.
Additionally, rows in a table cluster contain information that references the cluster key
to which they belong.

Rowids of Row Pieces

A rowid is effectively a 10-byte physical address of a row. As explained in "Rowid
Data Types" on page 2-13, every row in a heap-organized table has a rowid unique to
this table that corresponds to the physical address of a row piece. For table clusters,
rows in different tables that are in the same data block can have the same rowid.

Oracle Database uses rowids internally for the construction of indexes. For example,
each key in a B-tree index is associated with a rowid that points to the address of the
associated row for fast access (see "B-Tree Indexes" on page 3-5). Physical rowids
provide the fastest possible access to a table row, enabling the database to retrieve a
row in as little as a single I/O.

See Also: "Rowid Format" on page 12-10

Storage of Null Values

A null is the absence of a value in a column. Nulls indicate missing, unknown, or
inapplicable data.

Nulls are stored in the database if they fall between columns with data values. In these
cases, they require 1 byte to store the length of the column (zero). Trailing nulls in a
row require no storage because a new row header signals that the remaining columns
in the previous row are null. For example, if the last three columns of a table are null,
then no data is stored for these columns.

See Also: Oracle Database SQL Language Reference to learn more
about null values

Table Compression

The database can use table compression to reduce the amount of storage required for
the table. Compression saves disk space, reduces memory use in the database buffer
cache, and in some cases speeds query execution. Table compression is transparent to
database applications.

Basic and OLTP Table Compression

Dictionary-based table compression provides good compression ratios for
heap-organized tables. Oracle Database supports the following types of
dictionary-based table compression:

= Basic table compression

Tables and Table Clusters 2-19

Overview of Tables

This type of compression is intended for bulk load operations. The database does
not compress data modified using conventional DML. You must use direct path
loads, ALTER TABLE . . . ME operations, or online table redefinition to achieve
basic compression.

s OLTP table compression

This type of compression is intended for OLTP applications and compresses data
manipulated by any SQL operation.

For basic and OLTP table compression, the database stores compressed rows in
row-major format. All columns of one row are stored together, followed by all
columns of the next row, and so on (see Figure 12-7 on page 12-9). Duplicate values
are replaced with a short reference to a symbol table stored at the beginning of the
block. Thus, information needed to re-create the uncompressed data is stored in the
data block itself.

Compressed data blocks look much like normal data blocks. Most database features
and functions that work on regular data blocks also work on compressed blocks.

You can declare compression at the tablespace, table, partition, or subpartition level. If
specified at the tablespace level, then all tables created in the tablespace are
compressed by default.

The following statement applies OLTP compression to the or der s table:
ALTER TABLE oe. orders COVPRESS FOR OLTP;

The following example of a partial CREATE TABLE statement specifies OLTP
compression for one partition and basic compression for the other partition:

CREATE TABLE sal es (
prod_id NUMBER NOT NULL,
cust_id NUMBER NOT NULL, ...)

PCTFREE 5 NOLOGG NG NOCOWPRESS

PARTI TI ON BY RANGE (time_id)

(partition sales_2008 VALUES LESS THAN(TO DATE(...)) COWPRESS BASIC,
partition sal es_2009 VALUES LESS THAN (MAXVALUE) COWPRESS FOR OLTP);

See Also:

= "Data Block Compression" on page 12-11 to learn about the format
of compressed data blocks

» Oracle Database Administrator's Guide and Oracle Database
Performance Tuning Guide to learn about table compression

s "SQL*Loader" on page 18-5 to learn about using SQL*Loader for
direct path loads

Hybrid Columnar Compression

With Hybrid Columnar Compression, the database stores the same column for a group
of rows together. The data block does not store data in row-major format, but uses a
combination of both row and columnar methods.

Storing column data together, with the same data type and similar characteristics,
dramatically increases the storage savings achieved from compression. The database
compresses data manipulated by any SQL operation, although compression levels are
higher for direct path loads. Database operations work transparently against
compressed objects, so no application changes are required.

2-20 Oracle Database Concepts

Overview of Tables

Types of Hybrid Columnar Compression If your underlying storage supports Hybrid
Columnar Compression, then you can specify the following compression types,
depending on your requirements:

= Warehouse compression

This type of compression is optimized to save storage space, and is intended for
data warehouse applications.

= Online archival compression

This type of compression is optimized for maximum compression levels, and is
intended for historical data and data that does not change.

To achieve warehouse or online archival compression, you must use direct path loads,
ALTER TABLE . . . MOVEoperations, or online table redefinition.

Hybrid Columnar Compression is optimized for Data Warehousing and decision
support applications on Exadata storage. Exadata maximizes the performance of
queries on tables that are compressed using Hybrid Columnar Compression, taking
advantage of the processing power, memory, and Infiniband network bandwidth that
are integral to the Exadata storage server.

Other Oracle storage systems support Hybrid Columnar Compression, and deliver the
same space savings as on Exadata storage, but do not deliver the same level of query
performance. For these storage systems, Hybrid Columnar Compression is ideal for
in-database archiving of older data that is infrequently accessed.

Compression Units Hybrid Columnar Compression uses a logical construct called a
compression unit to store a set of rows. When you load data into a table, the database
stores groups of rows in columnar format, with the values for each column stored and
compressed together. After the database has compressed the column data for a set of
rows, the database fits the data into the compression unit.

For example, you apply Hybrid Columnar Compression to a dai | y_sal es table. At the
end of every day, you populate the table with items and the number sold, with the
item ID and date forming a composite primary key. Table 2-1 shows a subset of the
rows in dai | y_sal es.

Table 2-1 Sample Table daily_sales

Item_ID Date Num_Sold Shipped_From Restock
1000 01-JUN-11 2 WAREHOUSE1 Y
1001 01-JUN-11 0 WAREHOUSE3 N
1002 01-JUN-11 1 WAREHOUSE3 N
1003 01-JUN-11 0 WAREHOUSE2 N
1004 01-JUN-11 2 WAREHOUSE1 N
1005 01-JUN-11 1 WAREHOUSE2 N

Assume that the rows in Table 2-1 are stored in one compression unit. Hybrid
Columnar Compression stores the values for each column together, and then uses
multiple algorithms to compress each column. The database chooses the algorithms
based on a variety of factors, including the data type of the column, the cardinality of
the actual values in the column, and the compression level chosen by the user.

As shown in Figure 2-5, each compression unit can span multiple data blocks. The
values for a particular column may or may not span multiple blocks.

Tables and Table Clusters 2-21

Overview of Table Clusters

Figure 2-5 Compression Unit

Column 1

Column 2

Column 3

Column 4

Column 5

T T =
-
N
-
~

Data Block 1 Data Block 2 Data Block 3 Data Block 4

Hybrid Columnar Compression has implications for row locking (see "Row Locks
(TX)" on page 9-18). When an update occurs for a row in an uncompressed data block,
only the updated row is locked. In contrast, the database must lock all rows in the
compression unit if an update is made to any row in the unit. Updates to rows using
Hybrid Columnar Compression cause rowids to change.

Note: When tables use Hybrid Columnar Compression, Oracle DML
locks larger blocks of data (compression units), which may reduce
concurrency.

See Also:

» Oracle Database Licensing Information to learn about licensing
requirements for Hybrid Columnar Compression

» Oracle Database Administrator’s Guide to learn how to use Hybrid
Columnar Compression

Overview of Table Clusters

A table cluster is a group of tables that share common columns and store related data
in the same blocks. When tables are clustered, a single data block can contain rows
from multiple tables. For example, a block can store rows from both the enpl oyees and
depart nent s tables rather than from only a single table.

The cluster key is the column or columns that the clustered tables have in common.
For example, the enpl oyees and depart nent s tables share the depart ment _i d column.
You specify the cluster key when creating the table cluster and when creating every
table added to the table cluster.

The cluster key value is the value of the cluster key columns for a particular set of
rows. All data that contains the same cluster key value, such as depart nent _i d=20, is
physically stored together. Each cluster key value is stored only once in the cluster and
the cluster index, no matter how many rows of different tables contain the value.

For an analogy, suppose an HR manager has two book cases: one with boxes of
employees folders and the other with boxes of departments folders. Users often ask for
the folders for all employees in a particular department. To make retrieval easier, the
manager rearranges all the boxes in a single book case. She divides the boxes by

2-22 Oracle Database Concepts

Overview of Table Clusters

department ID. Thus, all folders for employees in department 20 and the folder for
department 20 itself are in one box; the folders for employees in department 100 and
the folder for department 100 are in a different box, and so on.

You can consider clustering tables when they are primarily queried (but not modified)
and records from the tables are frequently queried together or joined. Because table
clusters store related rows of different tables in the same data blocks, properly used
table clusters offer the following benefits over nonclustered tables:

» DiskI/Ois reduced for joins of clustered tables.
= Access time improves for joins of clustered tables.

= Less storage is required to store related table and index data because the cluster
key value is not stored repeatedly for each row.

Typically, clustering tables is not appropriate in the following situations:
= The tables are frequently updated.
s The tables frequently require a full table scan.

s The tables require truncating.

See Also: Oracle Database Performance Tuning Guide for guidelines on
when to use table clusters

Overview of Indexed Clusters

An indexed cluster is a table cluster that uses an index to locate data. The cluster
index is a B-tree index on the cluster key. A cluster index must be created before any
rows can be inserted into clustered tables.

Assume that you create the cluster enpl oyees_depart ment s_cl ust er with the cluster
key depart nent _i d, as shown in Example 2-8. Because the HASHKEYS clause is not
specified, this cluster is an indexed cluster. Afterward, you create an index named i dx_
enp_dept _cl ust er on this cluster key.

Example 2-8 Indexed Cluster

CREATE CLUSTER enpl oyees_departments_cl uster
(department _i d NUVBER(4))
SI ZE 512,

CREATE | NDEX i dx_enp_dept _cl uster ON CLUSTER enpl oyees_departments_cl uster;

You then create the enpl oyees and depart nent s tables in the cluster, specifying the
depart ment _i d column as the cluster key, as follows (the ellipses mark the place where
the column specification goes):

CREATE TABLE enpl oyees (...)
CLUSTER enpl oyees_depart nents_cl uster (department _id);

CREATE TABLE departnents (...)
CLUSTER enpl oyees_depart nents_cl uster (department_id);

Finally, you add rows to the enpl oyees and depar t ment s tables. The database
physically stores all rows for each department from the enpl oyees and depart nent s
tables in the same data blocks. The database stores the rows in a heap and locates them
with the index.

Tables and Table Clusters 2-23

Overview of Table Clusters

Figure 2-6 shows the enpl oyees_depart ment s_cl ust er table cluster, which contains

enpl oyees and depar t ment s. The database stores rows for employees in department 20

together, department 110 together, and so on. If the tables are not clustered, then the
database does not ensure that the related rows are stored together.

Figure 2-6 Clustered Table Data

employees_departments_cluster employees
employee_id last_name department_id
20 department_name | location_id 201 Hartstein 20
) 202 Fay 20
marketing 1800 203 Mavris 20
204 Baer 70
_ ovee id | | 205 Higgins 110 .
Cluster Key is employee_j ast_name C 206 Gietz 110 o
department_id
epariment_t 201 Hartstein C
' departments
110 | department_name | location_id .
accounting 1700 . department_id department_namel location_id
| 20 Marketing 1800
N 110 Accounting 1700
employee_id last_name C .
205 Higgins - N ; ,
206 Gietz S . J '

(¢ Clustered Tables

by ,
N ’
N 7

Tables

_'7

The B-tree cluster index associates the cluster key value with the database block
address (DBA) of the block containing the data. For example, the index entry for key
20 shows the address of the block that contains data for employees in department 20:
20, AADAAAAYd

The cluster index is separately managed, just like an index on a nonclustered table,
and can exist in a separate tablespace from the table cluster.

See Also:

"Overview of Indexes" on page 3-1
]

Oracle Database Administrator’s Guide to learn how to create and
manage indexed clusters

Oracle Database SQL Language Reference for CREATE CLUSTER
syntax and semantics

2-24 Oracle Database Concepts

Overview of Table Clusters

Overview of Hash Clusters

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index.

With an indexed table or indexed cluster, Oracle Database locates table rows using key
values stored in a separate index. To find or store a row in an indexed table or table
cluster, the database must perform at least two 1/Os:

= One or more I/Os to find or store the key value in the index
s Another I/O to read or write the row in the table or table cluster

To find or store a row in a hash cluster, Oracle Database applies the hash function to
the cluster key value of the row. The resulting hash value corresponds to a data block
in the cluster, which the database reads or writes on behalf of the issued statement.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. Hash clusters may be beneficial when the following conditions are met:

= A table is queried much more often than modified.

s The hash key column is queried frequently with equality conditions, for example,
VHERE depar t ment _i d=20. For such queries, the cluster key value is hashed. The
hash key value points directly to the disk area that stores the rows.

= You can reasonably guess the number of hash keys and the size of the data stored
with each key value.

Hash Cluster Creation

The cluster key, like the key of an indexed cluster, is a single column or composite key
shared by the tables in the cluster. The hash key values are actual or possible values
inserted into the cluster key column. For example, if the cluster key is depart ment _i d,
then hash key values could be 10, 20, 30, and so on.

Oracle Database uses a hash function that accepts an infinite number of hash key
values as input and sorts them into a finite number of buckets. Each bucket has a
unique numeric ID known as a hash value. Each hash value maps to the database
block address for the block that stores the rows corresponding to the hash key value
(department 10, 20, 30, and so on).

To create a hash cluster, you use the same CREATE CLUSTER statement as for an indexed
cluster, with the addition of a hash key. The number of hash values for the cluster
depends on the hash key. In Example 2-9, the number of departments that are likely to
exist is 100, so HASHKEYS is set to 100.

Example 2-9 Hash Cluster

CREATE CLUSTER enpl oyees_departments_cl uster
(department _i d NUVBER(4))
SI ZE 8192 HASHKEYS 100;

After you create enpl oyees_depart ment s_cl ust er, you can create the enpl oyees and
depart ment s tables in the cluster. You can then load data into the hash cluster just as in

the indexed cluster described in Example 2-8.

See Also: Oracle Database Administrator’s Guide to learn how to create
and manage hash clusters

Tables and Table Clusters 2-25

Overview of Table Clusters

Hash Cluster Queries

The database, not the user, determines how to hash the key values input by the user.
For example, assume that users frequently execute queries such as the following,
entering different department ID numbers for p_i d:

SELECT *
FROM enpl oyees

WHERE departrment _id = :p_id;
SELECT *

FROM departnents

WHERE departnent _id = :p_id;

SELECT *

FROM enpl oyees e, departnents d

WHERE e.departnent_id = d.departnent _id
AND d.departnent_id = :p_id;

If a user queries employees in depar t ment _i d=20, then the database might hash this
value to bucket 77. If a user queries employees in depart nent _i d=10, then the
database might hash this value to bucket 15. The database uses the internally
generated hash value to locate the block that contains the employee rows for the
requested department.

Figure 2-7 depicts a hash cluster segment as a horizontal row of blocks. As shown in
the graphic, a query can retrieve data in a single I/O.
Figure 2-7 Retrieving Data from a Hash Cluster

SELECT * FROM enpl oyees
WHERE departnent _id = 20

Hash(20) — Hash Val ue 77

!

. Block
Data Blocks in Cluster Segment 100

A limitation of hash clusters is the unavailability of range scans on nonindexed cluster
keys (see "Index Range Scan" on page 3-7). Assume that no separate index exists for
the hash cluster created in Example 2-9. A query for departments with IDs between 20
and 100 cannot use the hashing algorithm because it cannot hash every possible value
between 20 and 100. Because no index exists, the database must perform a full scan.

Hash Cluster Variations

A single-table hash cluster is an optimized version of a hash cluster that supports
only one table at a time. A one-to-one mapping exists between hash keys and rows. A
single-table hash cluster can be beneficial when users require rapid access to a table by
primary key. For example, users often look up an employee record in the enpl oyees
table by enpl oyee_i d.

2-26 Oracle Database Concepts

Overview of Table Clusters

A sorted hash cluster stores the rows corresponding to each value of the hash function
in such a way that the database can efficiently return them in sorted order. The
database performs the optimized sort internally. For applications that always consume
data in sorted order, this technique can mean faster retrieval of data. For example, an
application might always sort on the or der _dat e column of the or der s table.

See Also: Oracle Database Administrator’s Guide to learn how to create
single-table and sorted hash clusters

Hash Cluster Storage

Oracle Database allocates space for a hash cluster differently from an indexed cluster.
In Example 2-9, HASHKEYS specifies the number of departments likely to exist, whereas
S| ZE specifies the size of the data associated with each department. The database
computes a storage space value based on the following formula:

HASHKEYS * SI ZE / dat abase_bl ock_si ze

Thus, if the block size is 4096 bytes in Example 2-9, then the database allocates at least
200 blocks to the hash cluster.

Oracle Database does not limit the number of hash key values that you can insert into
the cluster. For example, even though HASHKEYS is 100, nothing prevents you from
inserting 200 unique departments in the depar t nent s table. However, the efficiency of
the hash cluster retrieval diminishes when the number of hash values exceeds the
number of hash keys.

To illustrate the retrieval issues, assume that block 100 in Figure 2-7 is completely full
with rows for department 20. A user inserts a new department with depart ment _i d 43
into the depart ment s table. The number of departments exceeds the HASHKEYS value,
so the database hashes depart nent _i d 43 to hash value 77, which is the same hash
value used for depar t ment _i d 20. Hashing multiple input values to the same output
value is called a hash collision.

When users insert rows into the cluster for department 43, the database cannot store
these rows in block 100, which is full. The database links block 100 to a new overflow
block, say block 200, and stores the inserted rows in the new block. Both block 100 and
200 are now eligible to store data for either department. As shown in Figure 2-8, a
query of either department 20 or 43 now requires two I/Os to retrieve the data: block
100 and its associated block 200. You can solve this problem by re-creating the cluster
with a different HASHKEYS value.

Tables and Table Clusters 2-27

Overview of Table Clusters

Figure 2-8 Retrieving Data from a Hash Cluster When a Hash Collision Occurs

SELECT * FROM enpl oyees SELECT * FROM enpl oyees
WHERE departnent _id = 20 WHERE departnent _id = 43

!

Hash(20) —> Hash Val ue 77 <—— Hash(43)

. Block
Data Blocks in Cluster Segment 100

Block
200

See Also: Oracle Database Administrator’s Guide to learn how to
manage space in hash clusters

2-28 Oracle Database Concepts

3

Indexes and Index-Organized Tables

This chapter discusses indexes, which are schema objects that can speed access to table
rows, and index-organized tables, which are tables stored in an index structure.

This chapter contains the following sections:
s Overview of Indexes

= Overview of Index-Organized Tables

Overview of Indexes

An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access. By creating an index on one or more columns of a table,
you gain the ability in some cases to retrieve a small set of randomly distributed rows
from the table. Indexes are one of many means of reducing disk I/O.

If a heap-organized table has no indexes, then the database must perform a full table
scan to find a value. For example, without an index, a query of location 2700 in the
hr. depart nent s table requires the database to search every row in every table block
for this value. This approach does not scale well as data volumes increase.

For an analogy, suppose an HR manager has a shelf of cardboard boxes. Folders
containing employee information are inserted randomly in the boxes. The folder for
employee Whalen (ID 200) is 10 folders up from the bottom of box 1, whereas the
folder for King (ID 100) is at the bottom of box 3. To locate a folder, the manager looks
at every folder in box 1 from bottom to top, and then moves from box to box until the
folder is found. To speed access, the manager could create an index that sequentially
lists every employee ID with its folder location:

I D 100: Box 3, position 1 (bottom
ID 101: Box 7, position 8
ID 200: Box 1, position 10

Similarly, the manager could create separate indexes for employee last names,
department IDs, and so on.

In general, consider creating an index on a column in any of the following situations:

s The indexed columns are queried frequently and return a small percentage of the
total number of rows in the table.

= A referential integrity constraint exists on the indexed column or columns. The
index is a means to avoid a full table lock that would otherwise be required if you

Indexes and Index-Organized Tables 3-1

Overview of Indexes

update the parent table primary key, merge into the parent table, or delete from
the parent table.

= A unique key constraint will be placed on the table and you want to manually
specify the index and all index options.

See Also: Chapter 5, "Data Integrity"

Index Characteristics

Indexes are schema objects that are logically and physically independent of the data in
the objects with which they are associated. Thus, an index can be dropped or created
without physically affecting the table for the index.

Note: If you drop an index, then applications still work. However,
access of previously indexed data can be slower.

The absence or presence of an index does not require a change in the wording of any
SQL statement. An index is a fast access path to a single row of data. It affects only the
speed of execution. Given a data value that has been indexed, the index points directly
to the location of the rows containing that value.

The database automatically maintains and uses indexes after they are created. The
database also automatically reflects changes to data, such as adding, updating, and
deleting rows, in all relevant indexes with no additional actions required by users.
Retrieval performance of indexed data remains almost constant, even as rows are
inserted. However, the presence of many indexes on a table degrades DML
performance because the database must also update the indexes.

Indexes have the following properties:
= Usability

Indexes are usable (default) or unusable. An unusable index is not maintained by
DML operations and is ignored by the optimizer. An unusable index can improve
the performance of bulk loads. Instead of dropping an index and later re-creating
it, you can make the index unusable and then rebuild it. Unusable indexes and
index partitions do not consume space. When you make a usable index unusable,
the database drops its index segment.

= Visibility
Indexes are visible (default) or invisible. An invisible index is maintained by DML
operations and is not used by default by the optimizer. Making an index invisible
is an alternative to making it unusable or dropping it. Invisible indexes are

especially useful for testing the removal of an index before dropping it or using
indexes temporarily without affecting the overall application.

See Also:
s "Overview of the Optimizer" on page 7-10

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage indexes

» Oracle Database Performance Tuning Guide to learn how to tune
indexes

3-2 Oracle Database Concepts

Overview of Indexes

Keys and Columns

A key is a set of columns or expressions on which you can build an index. Although
the terms are often used interchangeably, indexes and keys are different. Indexes are
structures stored in the database that users manage using SQL statements. Keys are
strictly a logical concept.

The following statement creates an index on the cust oner _i d column of the sample
table oe. or ders:

CREATE | NDEX ord_customer _i x ON orders (customner_id);

In the preceding statement, the cust omer _i d column is the index key. The index itself
is named or d_cust omer _i x.

Note: Primary and unique keys automatically have indexes, but you
might want to create an index on a foreign key.

See Also: Oracle Database SQL Language Reference CREATE | NDEX
syntax and semantics

Composite Indexes

A composite index, also called a concatenated index, is an index on multiple columns
in a table. Columns in a composite index should appear in the order that makes the
most sense for the queries that will retrieve data and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
VWHERE clause references all or the leading portion of the columns in the composite
index. Therefore, the order of the columns used in the definition is important. In
general, the most commonly accessed columns go first.

For example, suppose an application frequently queries the | ast _nane, j ob_i d, and
sal ary columns in the enpl oyees table. Also assume that | ast _name has high
cardinality, which means that the number of distinct values is large compared to the
number of table rows. You create an index with the following column order:

CREATE | NDEX enpl oyees_i x
ON enpl oyees (last_nanme, job_id, salary);

Queries that access all three columns, only the | ast _name column, or only the | ast _
nane and j ob_i d columns use this index. In this example, queries that do not access
the | ast _name column do not use the index.

Note: In some cases, such as when the leading column has very low
cardinality, the database may use a skip scan of this index (see "Index
Skip Scan" on page 3-8).

Multiple indexes can exist for the same table if the permutation of columns differs for
each index. You can create multiple indexes using the same columns if you specify
distinctly different permutations of the columns. For example, the following SQL
statements specify valid permutations:

CREATE | NDEX enpl oyee_i dx1 ON enpl oyees (| ast_nane, job_id);
CREATE | NDEX enpl oyee_i dx2 ON enpl oyees (job_id, |ast_nane);

Indexes and Index-Organized Tables 3-3

Overview of Indexes

See Also: Oracle Database Performance Tuning Guide for more
information about using composite indexes

Unique and Nonunique Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column or column. For example, no two
employees can have the same employee ID. Thus, in a unique index, one rowid exists
for each data value. The data in the leaf blocks is sorted only by key.

Nonunique indexes permit duplicates values in the indexed column or columns. For
example, the fi r st _name column of the enpl oyees table may contain multiple M ke
values. For a nonunique index, the rowid is included in the key in sorted order, so
nonunique indexes are sorted by the index key and rowid (ascending).

Oracle Database does not index table rows in which all key columns are null, except
for bitmap indexes or when the cluster key column value is null.

Types of Indexes

Oracle Database provides several indexing schemes, which provide complementary
performance functionality. The indexes can be categorized as follows:

m B-tree indexes

These indexes are the standard index type. They are excellent for primary key and
highly-selective indexes. Used as concatenated indexes, B-tree indexes can retrieve
data sorted by the indexed columns. B-tree indexes have the following subtypes:

- Index-organized tables

An index-organized table differs from a heap-organized because the data is
itself the index. See "Overview of Index-Organized Tables" on page 3-20.

- Reverse key indexes

In this type of indeX, the bytes of the index key are reversed, for example, 103
is stored as 301. The reversal of bytes spreads out inserts into the index over
many blocks. See "Reverse Key Indexes" on page 3-11.

— Descending indexes

This type of index stores data on a particular column or columns in
descending order. See "Ascending and Descending Indexes" on page 3-11.

— B-tree cluster indexes

This type of index is used to index a table cluster key. Instead of pointing to a
row, the key points to the block that contains rows related to the cluster key.
See "Overview of Indexed Clusters" on page 2-23.

» Bitmap and bitmap join indexes

In a bitmap index, an index entry uses a bitmap to point to multiple rows. In
contrast, a B-tree index entry points to a single row. A bitmap join index is a
bitmap index for the join of two or more tables. See "Bitmap Indexes" on page 3-13.

s Function-based indexes

This type of index includes columns that are either transformed by a function,
such as the UPPER function, or included in an expression. B-tree or bitmap indexes
can be function-based. See "Function-Based Indexes" on page 3-17.

= Application domain indexes

3-4 Oracle Database Concepts

Overview of Indexes

This type of index is created by a user for data in an application-specific domain.
The physical index need not use a traditional index structure and can be stored
either in the Oracle database as tables or externally as a file. See "Application
Domain Indexes" on page 3-19.

See Also: Oracle Database Performance Tuning Guide to learn about
different index types

B-Tree Indexes

B-trees, short for balanced trees, are the most common type of database index. A
B-tree index is an ordered list of values divided into ranges. By associating a key with
a row or range of rows, B-trees provide excellent retrieval performance for a wide
range of queries, including exact match and range searches.

Figure 3-1 illustrates the structure of a B-tree index. The example shows an index on
the depart nent _i d column, which is a foreign key column in the enpl oyees table.

Figure 3-1 Internal Structure of a B-tree Index

Branch Blocks

0..40
41..80
81..120
200..250
v
== 0..10 41..48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
A4 v v
0,rowid 11,rowid 221,rowid 246,rowid
0,rowid 11,rowid 222,rowid 248, rowid
12,rowid 223,rowid 248, rowid
10,rowid
19,rowid . 228,rowid . 250,rowid

RS AU U

Branch Blocks and Leaf Blocks

A B-tree index has two types of blocks: branch blocks for searching and leaf blocks
that store values. The upper-level branch blocks of a B-tree index contain index data
that points to lower-level index blocks. In Figure 3-1, the root branch block has an
entry 0- 40, which points to the leftmost block in the next branch level. This branch
block contains entries such as 0- 10 and 11- 19. Each of these entries points to a leaf
block that contains key values that fall in the range.

Indexes and Index-Organized Tables 3-5

Overview of Indexes

A B-tree index is balanced because all leaf blocks automatically stay at the same depth.
Thus, retrieval of any record from anywhere in the index takes approximately the
same amount of time. The height of the index is the number of blocks required to go
from the root block to a leaf block. The branch level is the height minus 1. In

Figure 3-1, the index has a height of 3 and a branch level of 2.

Branch blocks store the minimum key prefix needed to make a branching decision
between two keys. This technique enables the database to fit as much data as possible
on each branch block. The branch blocks contain a pointer to the child block
containing the key. The number of keys and pointers is limited by the block size.

The leaf blocks contain every indexed data value and a corresponding rowid used to
locate the actual row. Each entry is sorted by (key, rowid). Within a leaf block, a key
and rowid is linked to its left and right sibling entries. The leaf blocks themselves are
also doubly linked. In Figure 3-1 the leftmost leaf block (0- 10) is linked to the second
leaf block (11- 19).

Note: Indexes in columns with character data are based on the
binary values of the characters in the database character set.

Index Scans

In an index scan, the database retrieves a row by traversing the index, using the
indexed column values specified by the statement. If the database scans the index for a
value, then it will find this value in n I/Os where # is the height of the B-tree index.
This is the basic principle behind Oracle Database indexes.

If a SQL statement accesses only indexed columns, then the database reads values
directly from the index rather than from the table. If the statement accesses columns in
addition to the indexed columns, then the database uses rowids to find the rows in the
table. Typically, the database retrieves table data by alternately reading an index block
and then a table block.

See Also: Oracle Database Performance Tuning Guide for detailed
information about index scans

Full Index Scan In a full index scan, the database reads the entire index in order. A full
index scan is available if a predicate (WHERE clause) in the SQL statement references a
column in the index, and in some circumstances when no predicate is specified. A full
scan can eliminate sorting because the data is ordered by index key.

Suppose that an application runs the following query:

SELECT departnent _id, |ast_nane, salary
FROM enpl oyees

WHERE sal ary > 5000

ORDER BY departnent _id, |ast_nane;

Also assume that depart nent _i d, | ast _nane, and sal ary are a composite key in an
index. Oracle Database performs a full scan of the index, reading it in sorted order
(ordered by department ID and last name) and filtering on the salary attribute. In this
way, the database scans a set of data smaller than the enpl oyees table, which contains
more columns than are included in the query, and avoids sorting the data.

For example, the full scan could read the index entries as follows:

50, At ki nson, 2800, row d
60, Austin, 4800, row d
70, Baer, 10000, row d

3-6 Oracle Database Concepts

Overview of Indexes

80, Abel , 11000, r owi d
80, Ande, 6400, r owi d
110, Austin, 7200, rowi d

Fast Full Index Scan A fast full index scan is a full index scan in which the database
accesses the data in the index itself without accessing the table, and the database reads
the index blocks in no particular order.

Fast full index scans are an alternative to a full table scan when both of the following
conditions are met:

s The index must contain all columns needed for the query.

= A row containing all nulls must notappear in the query result set. For this result to
be guaranteed, at least one column in the index must have either:

— A NOT NULL constraint

- A predicate applied to it that prevents nulls from being considered in the
query result set

For example, an application issues the following query, which does not include an
ORDER BY clause:

SELECT | ast _nane, salary
FROM enpl oyees;

The | ast _nane column has a not null constraint. If the last name and salary are a
composite key in an index, then a fast full index scan can read the index entries to
obtain the requested information:

Bai da, 2900, rowi d

Z| ot key, 10500, r owi d
Austin, 7200, row d
Baer, 10000, r owi d

At ki nson, 2800, rowi d
Aust i n, 4800, rowi d

Index Range Scan An index range scan is an ordered scan of an index that has the
following characteristics:

= One or more leading columns of an index are specified in conditions. A condition
specifies a combination of one or more expressions and logical (Boolean) operators
and returns a value of TRUE, FALSE, or UNKNOWN.

= 0, 1, or more values are possible for an index key.

The database commonly uses an index range scan to access selective data. The
selectivity is the percentage of rows in the table that the query selects, with 0 meaning
no rows and 1 meaning all rows. Selectivity is tied to a query predicate, such as WHERE
| ast _name LIKE ' A%, or a combination of predicates. A predicate becomes more
selective as the value approaches 0 and less selective (or more unselective) as the value
approaches 1.

For example, a user queries employees whose last names begin with A. Assume that
the | ast _nanme column is indexed, with entries as follows:

Indexes and Index-Organized Tables 3-7

Overview of Indexes

Abel , row d
Ande, rowi d

At ki nson, rowi d
Austin, rowd
Austin, row d
Baer,row d

The database could use a range scan because the | ast _nane column is specified in the
predicate and multiples rowids are possible for each index key. For example, two
employees are named Austin, so two rowids are associated with the key Austi n.

An index range scan can be bounded on both sides, as in a query for departments with
IDs between 10 and 40, or bounded on only one side, as in a query for IDs over 40. To
scan the index, the database moves backward or forward through the leaf blocks. For
example, a scan for IDs between 10 and 40 locates the first index leaf block that
contains the lowest key value that is 10 or greater. The scan then proceeds horizontally
through the linked list of leaf nodes until it locates a value greater than 40.

Index Unique Scan In contrast to an index range scan, an index unique scan must have
either 0 or 1 rowid associated with an index key. The database performs a unique scan
when a predicate references all of the columns in a UNI QUE index key using an equality
operator. An index unique scan stops processing as soon as it finds the first record
because no second record is possible.

As an illustration, suppose that a user runs the following query:

SELECT *
FROM enpl oyees
WHERE enpl oyee_id = 5;

Assume that the enpl oyee_i d column is the primary key and is indexed with entries
as follows:

1,rowd
2,rowid
4,rowd
5 rowd
6, row d

In this case, the database can use an index unique scan to locate the rowid for the
employee whose 1D is 5.

Index Skip Scan An index skip scan uses logical subindexes of a composite index. The
database "skips" through a single index as if it were searching separate indexes. Skip
scanning is beneficial if there are few distinct values in the leading column of a
composite index and many distinct values in the nonleading key of the index.

The database may choose an index skip scan when the leading column of the
composite index is not specified in a query predicate. For example, assume that you
run the following query for a customer in the sh. cust oner s table:

SELECT * FROM sh. customers WHERE cust _enail = ' Abbey@onpany. coni ;

3-8 Oracle Database Concepts

Overview of Indexes

The cust oner s table has a column cust _gender whose values are either Mor F.
Assume that a composite index exists on the columns (cust _gender, cust _emai |).
Example 3-1 shows a portion of the index entries.

Example 3-1 Composite Index Entries
F, Wl f @onpany. com row d

F, Wl sey@onpany. com r ow d

F, Wod@onpany. com row d

F, Wodman@onpany. com row d

F, Yang@onpany. com row d

F, Zi mrer man@onpany. com row d

M Abbassi @onpany. com row d

M Abbey @onpany. com row d

The database can use a skip scan of this index even though cust _gender is not
specified in the WHERE clause.

In a skip scan, the number of logical subindexes is determined by the number of
distinct values in the leading column. In Example 3-1, the leading column has two
possible values. The database logically splits the index into one subindex with the key
F and a second subindex with the key M

When searching for the record for the customer whose email is Abbey @onpany. com
the database searches the subindex with the value F first and then searches the
subindex with the value M Conceptually, the database processes the query as follows:

SELECT * FROM sh. custoners WHERE cust_gender = 'F
AND cust _enmi| = ' Abbey@onpany. con

UNI ON ALL

SELECT * FROM sh. cust omers WHERE cust_gender = 'M
AND cust _enmai| = ' Abbey@onpany. com ;

See Also: Oracle Database Performance Tuning Guide to learn more
about skip scans

Index Clustering Factor The index clustering factor measures row order in relation to an
indexed value such as employee last name. The more order that exists in row storage
for this value, the lower the clustering factor.

The clustering factor is useful as a rough measure of the number of I/Os required to
read an entire table by means of an index:

= If the clustering factor is high, then Oracle Database performs a relatively high
number of I/Os during a large index range scan. The index entries point to
random table blocks, so the database may have to read and reread the same blocks
over and over again to retrieve the data pointed to by the index.

s If the clustering factor is low, then Oracle Database performs a relatively low
number of I/Os during a large index range scan. The index keys in a range tend to
point to the same data block, so the database does not have to read and reread the
same blocks over and over.

The clustering factor is relevant for index scans because it can show:
s Whether the database will use an index for large range scans
s The degree of table organization in relation to the index key

= Whether you should consider using an index-organized table, partitioning, or
table cluster if rows must be ordered by the index key

Indexes and Index-Organized Tables 3-9

Overview of Indexes

For example, assume that the enpl oyees table fits into two data blocks. Table 3-1
depicts the rows in the two data blocks (the ellipses indicate data that is not shown).

Table 3-1 Contents of Two Data Blocks in the Employees Table

Data Block 1 Data Block 2
100 Steven Ki ng SKI NG
156 Janette King JKI NG
115 Al exander Khoo AKHOO

149 E eni Zl ot key EZLOTKEY
. 200 Jennifer Walen JVWHALEN
116 Shel | Bai da SBAI DA
204 Hermann Baer HBAER
105 David Austin DAUSTI N .
130 Mozhe Atkinson MATKINSO ... | 137 Renske Ladwi g RLADW G
166 Sundar Ande SANDE ... 173 Sundita Kumar SKUMAR
174 Elen Abel EABEL ... 101 Neena Kochar NKOCHHAR . . .

Rows are stored in the blocks in order of last name (shown in bold). For example, the
bottom row in data block 1 describes Abel, the next row up describes Ande, and so on
alphabetically until the top row in block 1 for Steven King. The bottom row in block 2
describes Kochar, the next row up describes Kumar, and so on alphabetically until the
last row in the block for Zlotkey.

Assume that an index exists on the last name column. Each name entry corresponds to
a rowid. Conceptually, the index entries would look as follows:

Abel , bl ocklr owl
Ande, bl ocklr ow2

At ki nson, bl ock1row3d
Austin, bl ocklrow
Baer, bl ockl1r owb

Assume that a separate index exists on the employee ID column. Conceptually, the
index entries might look as follows, with employee IDs distributed in almost random
locations throughout the two blocks:

100, bl ock1r ows0
101, bl ock2r owl
102, bl ocklr owd
103, bl ock2r ow19
104, bl ock2r ow39
105, bl ock1r ow4

Example 3-2 queries the ALL_| NDEXES view for the clustering factor for these two
indexes. The clustering factor for EMP_NAME_| X is low, which means that adjacent index
entries in a single leaf block tend to point to rows in the same data blocks. The
clustering factor for EMP_EMP_| D_PKis high, which means that adjacent index entries in
the same leaf block are much less likely to point to rows in the same data blocks.

Example 3-2 Clustering Factor

SQL> SELECT | NDEX_NAME, CLUSTERI NG_FACTCR
2 FROM ALL_| NDEXES

3-10 Oracle Database Concepts

Overview of Indexes

3 WHERE | NDEX_NAME I N (' EMP_NAME | X' ,' EWP_EMP_ID PK');

| NDEX_NANE CLUSTERI NG_FACTCR
EMP_EMP_I D_PK 19
EMP_NAME | X 2

See Also: Oracle Database Reference to learn about ALL_| NDEXES

Reverse Key Indexes

A reverse key index is a type of B-tree index that physically reverses the bytes of each
index key while keeping the column order. For example, if the index key is 20, and if
the two bytes stored for this key in hexadecimal are Cl, 15 in a standard B-tree index,
then a reverse key index stores the bytes as 15, Cl.

Reversing the key solves the problem of contention for leaf blocks in the right side of a
B-tree index. This problem can be especially acute in an Oracle Real Application
Clusters (Oracle RAC) database in which multiple instances repeatedly modify the
same block. For example, in an or der s table the primary keys for orders are sequential.
One instance in the cluster adds order 20, while another adds 21, with each instance
writing its key to the same leaf block on the right-hand side of the index.

In a reverse key index, the reversal of the byte order distributes inserts across all leaf
keys in the index. For example, keys such as 20 and 21 that would have been adjacent
in a standard key index are now stored far apart in separate blocks. Thus, I/O for
insertions of sequential keys is more evenly distributed.

Because the data in the index is not sorted by column key when it is stored, the reverse
key arrangement eliminates the ability to run an index range scanning query in some
cases. For example, if a user issues a query for order IDs greater than 20, then the
database cannot start with the block containing this ID and proceed horizontally
through the leaf blocks.

See Also: Oracle Database Performance Tuning Guide to learn about
design considerations for reverse key indexes

Ascending and Descending Indexes

In an ascending index, Oracle Database stores data in ascending order. By default,
character data is ordered by the binary values contained in each byte of the value,
numeric data from smallest to largest number, and date from earliest to latest value.

For an example of an ascending index, consider the following SQL statement:

CREATE | NDEX enp_deptid_i x ON hr.enpl oyees(department _id);

Oracle Database sorts the hr. enpl oyees table on the depart ment _i d column. It loads
the ascending index with the depar t ment _i d and corresponding rowid values in
ascending order, starting with 0. When it uses the index, Oracle Database searches the
sorted depar t ment _i d values and uses the associated rowids to locate rows having the
requested depar t nent _i d value.

By specifying the DESC keyword in the CREATE | NDEX statement, you can create a
descending index. In this case, the index stores data on a specified column or columns
in descending order. If the index in Figure 3-1 on the enpl oyees. depar t ment _i d
column were descending, then the leaf blocking containing 250 would be on the left
side of the tree and block with 0 on the right. The default search through a descending
index is from highest to lowest value.

Indexes and Index-Organized Tables 3-11

Overview of Indexes

Descending indexes are useful when a query sorts some columns ascending and others
descending. For an example, assume that you create a composite index on the | ast _
name and depart nent _i d columns as follows:

CREATE | NDEX enp_nane_dpt _i x ON hr. enpl oyees(l ast _name ASC, department_id DESC);

If a user queries hr. enpl oyees for last names in ascending order (A to Z) and
department IDs in descending order (high to low), then the database can use this index
to retrieve the data and avoid the extra step of sorting it.

See Also:

» Oracle Database Performance Tuning Guide to learn more about
ascending and descending index searches

» Oracle Database SQL Language Reference for descriptions of the ASC
and DESC options of CREATE | NDEX

Key Compression

Oracle Database can use key compression to compress portions of the primary key
column values in a B-tree index or an index-organized table. Key compression can
greatly reduce the space consumed by the index.

In general, index keys have two pieces, a grouping piece and a unique piece. Key
compression breaks the index key into a prefix entry, which is the grouping piece, and
a suffix entry, which is the unique or nearly unique piece. The database achieves
compression by sharing the prefix entries among the suffix entries in an index block.

Note: If a key is not defined to have a unique piece, then the
database provides one by appending a rowid to the grouping piece.

By default, the prefix of a unique index consists of all key columns excluding the last
one, whereas the prefix of a nonunique index consists of all key columns. For example,
suppose that you create a composite index on the oe. or der s table as follows:

CREATE | NDEX orders_nod_stat_ix ON orders (order_node, order_status);

Many repeated values occur in the or der _nbde and or der _st at us columns. An index
block may have entries as shown in Example 3-3.

Example 3-3 Index Entries in Orders Table

onl i ne, 0, AAAPv CAAFAAAAFaAAa
onl i ne, 0, AAAPv CAAFAAAAFaAAg
onl i ne, 0, AAAPy CAAFAAAAFaAAI
onl i ne, 2, AAAPv CAAFAAAAFaAAM
onl i ne, 3, AAAPv CAAFAAAAFaAAq
onl i ne, 3, AAAPv CAAFAAAAFaAAt

In Example 3-3, the key prefix would consist of a concatenation of the or der _node and
order _st at us values. If this index were created with default key compression, then
duplicate key prefixes such as onl i ne,0 and onl i ne,2 would be compressed.
Conceptually, the database achieves compression as shown in the following example:

online, 0

AAAPvV CAAFAAAAFaAAa
AAAPv CAAFAAAAFaAAg
AAAPy CAAFAAAAFaAAI

3-12 Oracle Database Concepts

Overview of Indexes

online, 2
AAAPy CAAFAAAAFaAAM
online, 3
AAAPv CAAFAAAAFaAAq
AAAPY CAAFAAAAFaAAL

Suffix entries form the compressed version of index rows. Each suffix entry references
a prefix entry, which is stored in the same index block as the suffix entry.

Alternatively, you could specify a prefix length when creating a compressed index. For
example, if you specified prefix length 1, then the prefix would be or der _node and the
suffix would be or der _st at us, r owi d. For the values in Example 3-3, the index would
factor out duplicate occurrences of onl i ne as follows:

online

0, AAAPv CAAFAAAAFaAAa
0, AAAPv CAAFAAAAFaAAg
0, AAAPv CAAFAAAAFaAAI
2, AAAPy CAAFAAAAFaAAM
3, AAAPv CAAFAAAAFaAAQ
3, AAAPv CAAFAAAAFaAAL

The index stores a specific prefix once per leaf block at most. Only keys in the leaf
blocks of a B-tree index are compressed. In the branch blocks the key suffix can be
truncated, but the key is not compressed.

See Also:

m Oracle Database Administrator’s Guide to learn how to use
compressed indexes

» Oracle Database VLDB and Partitioning Guide to learn how to use
key compression for partitioned indexes

» Oracle Database SQL Language Reference for descriptions of the key_
conpr essi on clause of CREATE | NDEX

Bitmap Indexes

In a bitmap index, the database stores a bitmap for each index key. In a conventional
B-tree index, one index entry points to a single row. In a bitmap index, each index key
stores pointers to multiple rows.

Bitmap indexes are primarily designed for data warehousing or environments in
which queries reference many columns in an ad hoc fashion. Situations that may call
for a bitmap index include:

s The indexed columns have low cardinality, that is, the number of distinct values is
small compared to the number of table rows.

s The indexed table is either read-only or not subject to significant modification by
DML statements.

For a data warehouse example, the sh. cust oner table has a cust _gender column with
only two possible values: Mand F. Suppose that queries for the number of customers of
a particular gender are common. In this case, the cust omer. cust _gender column
would be a candidate for a bitmap index.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then the row
with the corresponding rowid contains the key value. A mapping function converts
the bit position to an actual rowid, so the bitmap index provides the same functionality
as a B-tree index although it uses a different internal representation.

Indexes and Index-Organized Tables 3-13

Overview of Indexes

If the indexed column in a single row is updated, then the database locks the index
key entry (for example, Mor F) and not the individual bit mapped to the updated row.
Because a key points to many rows, DML on indexed data typically locks all of these
rows. For this reason, bitmap indexes are not appropriate for many OLTP applications.

See Also:

» Oracle Database Performance Tuning Guide to learn how to use
bitmap indexes for performance

» Oracle Database Data Warehousing Guide to learn how to use bitmap
indexes in a data warehouse

Bitmap Indexes on a Single Table

Example 3—4 shows a query of the sh. cust oner s table. Some columns in this table are
candidates for a bitmap index.

Example 3-4 Query of customers Table
SQL> SELECT cust_id, cust_|ast_name, cust_narital status, cust_gender

2 FROM sh.custoners
3 WHERE ROMWNUM < 8 ORDER BY cust _id;

CUST I D CUST LAST_ CUST_MAR C

1 Kessel M
2 Koch F
3 Emmerson M
4 Hardy M
5 CGowen M
6 Charles single F
7 Ingram single F

7 rows sel ected.

The cust _marital _status and cust _gender columns have low cardinality, whereas
cust _i d and cust _| ast _name do not. Thus, bitmap indexes may be appropriate on
cust _marital _status and cust_gender. A bitmap index is probably not useful for the
other columns. Instead, a unique B-tree index on these columns would likely provide
the most efficient representation and retrieval.

Table 3-2 illustrates the bitmap index for the cust _gender column output shown in
Example 3-4. It consists of two separate bitmaps, one for each gender.

Table 3-2 Sample Bitmap

Value Rowl |[Row2 |Row3 |Row4 | Row5 | Row 6 | Row 7
M 1 0 1 1 1 0 0
F 0 1 0 0 0 1 1

A mapping function converts each bit in the bitmap to a rowid of the cust omer s table.
Each bit value depends on the values of the corresponding row in the table. For
example, the bitmap for the Mvalue contains a 1 as its first bit because the gender is M
in the first row of the cust oner s table. The bitmap cust _gender ="M has a 0 for its the
bits in rows 2, 6, and 7 because these rows do not contain Mas their value.

3-14 Oracle Database Concepts

Overview of Indexes

Note: Bitmap indexes can include keys that consist entirely of null
values, unlike B-tree indexes. Indexing nulls can be useful for some
SQL statements, such as queries with the aggregate function COUNT.

An analyst investigating demographic trends of the customers may ask, "How many
of our female customers are single or divorced?" This question corresponds to the
following SQL query:

SELECT COUNT(*)

FROM custoners

WHERE cust_gender = 'F

AND cust_marital status IN ('single', 'divorced);

Bitmap indexes can process this query efficiently by counting the number of 1 values
in the resulting bitmap, as illustrated in Table 3-3. To identify the customers who

satisfy the criteria, Oracle Database can use the resulting bitmap to access the table.

Table 3-3 Sample Bitmap

Value Row 1l |Row 2 | Row3 |Row 4 | Row 5 | Row 6 | Row 7
M 1 0 1 1 1 0 0

F 0 1 0 0 0 1 1
single 0 0 0 0 0 1 1

di vor ced 0 0 0 0 0 0 0
singl e or 0 0 0 0 0 1 1

di vorced, and F

Bitmap indexing efficiently merges indexes that correspond to several conditions in a
VHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This technique improves response time, often dramatically.

Bitmap Join Indexes

A bitmap join index is a bitmap index for the join of two or more tables. For each
value in a table column, the index stores the rowid of the corresponding row in the
indexed table. In contrast, a standard bitmap index is created on a single table.

A bitmap join index is an efficient means of reducing the volume of data that must be
joined by performing restrictions in advance. For an example of when a bitmap join
index would be useful, assume that users often query the number of employees with a
particular job type. A typical query might look as follows:

SELECT COUNT(*)

FROM enpl oyees, jobs

WHERE enpl oyees.job_id = jobs.job_id
AND jobs.job_title = 'Accountant';

The preceding query would typically use an index on j obs. j ob_ti t| e to retrieve the
rows for Account ant and then the job ID, and an index on enpl oyees. j ob_i d to find
the matching rows. To retrieve the data from the index itself rather than from a scan of
the tables, you could create a bitmap join index as follows:

CREATE BI TMAP | NDEX enpl oyees_bm i dx
N enpl oyees (jobs.job_title)
FROM enpl oyees, jobs

WHERE enpl oyees.job_id = jobs.job_id;

Indexes and Index-Organized Tables 3-15

Overview of Indexes

As illustrated in Figure 3-2, the index key is j obs. j ob_ti t| e and the indexed table is
enpl oyees.

Figure 3-2 Bitmap Join Index

employees
employee_id last_name | job_id manager_id | hire_date salary department_id
203 marvis hr_rep 101 07-Jun—-94 6500 40
204 baer pr_rep 101 07-Jun—-94 10000 70
205 higgins ac_rep 101 07-Jun-94 12000 110
206 gietz ac_account | 205 07-Jun-94 8300 110

jobs

job_id | job_title | min_salary | max_salary

MK_REP | Marketing Representative 4000 9000

HR_REP | Human Resources Representative | 4000 9000

PR_REP | Public Relations Representative 4500 10500

SA_REP | Sales Representative 6000 12008

Index key isjobs.job_title

CREATE Bl TMAP | NDEX enpl oyees_bm i dx
>enpl oyees (jobs.job_titl e) —
FRC]\/I

enpl oyees, jobs
WHERE | enpl oyees.job_id = jobs.job_id

Indexed table is enpl oyees —

Conceptually, enpl oyees_bm i dx is an index of the j obs. tit| e column in the SQL
query shown in Example 3-5 (sample output included). The j ob_ti t| e key in the
index points to rows in the enpl oyees table. A query of the number of accountants can
use the index to avoid accessing the enpl oyees and j obs tables because the index itself
contains the requested information.

Example 3-5 Join of employees and jobs Tables
SELECT jobs.job_title AS "jobs.job_title",
FROM enpl oyees, jobs

WHERE enpl oyees.job_id = jobs.job_id
ORDER BY job_title;

enpl oyees. rowi d AS "enpl oyees. r ow d"

jobs.job_title enpl oyees. row d

Account ant AAAQNKAAFAAAABSAAL
Account ant AAAQNKAAFAAAABSAAN
Account ant AAAQNKAAFAAAABSAAM
Account ant AAAQNKAAFAAAABSAA]
Account ant AAAQNKAAFAAAABSAAK
Account i ng Manager AAAQNKAAFAAAABTAAH
Adni ni stration Assistant AAAQNKAAFAAAABTAAC
Admi ni stration Vice President AAAQNKAAFAAAABSAAC
Adnini stration Vice President AAAQNKAAFAAAABSAAB

3-16 Oracle Database Concepts

Overview of Indexes

In a data warehouse, the join condition is an equijoin (it uses the equality operator)
between the primary key columns of the dimension tables and the foreign key
columns in the fact table. Bitmap join indexes are sometimes much more efficient in
storage than materialized join views, an alternative for materializing joins in advance.

See Also: Oracle Database Data Warehousing Guide for more
information on bitmap join indexes

Bitmap Storage Structure

Oracle Database uses a B-tree index structure to store bitmaps for each indexed key.
For example, if j obs. job_ti t| e is the key column of a bitmap index, then the index
data is stored in one B-tree. The individual bitmaps are stored in the leaf blocks.

Assume that the j obs.job_titl| e column has unique values Shi ppi ng C erk, St ock
C erk, and several others. A bitmap index entry for this index has the following
components:

= The job title as the index key

= Alow rowid and high rowid for a range of rowids

= A bitmap for specific rowids in the range

Conceptually, an index leaf block in this index could contain entries as follows:

Shi ppi ng d er k, AAAPz RAAFAAAABSABQ, AAAPz RAAFAAAABSABZ, 0010000100
Shi ppi ng d er k, AAAPz RAAFAAAABSABa, AAAPz RAAFAAAABSABh, 010010
Stock O erk, AAAPz RAAFAAAABSAAa, AAAPz RAAFAAAABSAAC, 1001001100
Stock d erk, AAAPz RAAFAAAABSAAd, AAAPz RAAFAAAABSAAL , 0101001001
Stock d erk, AAAPz RAAFAAAABSAAU, AAAPz RAAFAAAABSABZ, 100001

The same job title appears in multiple entries because the rowid range differs.

Assume that a session updates the job ID of one employee from Shi ppi ng C erk to
Stock C erk. In this case, the session requires exclusive access to the index key entry
for the old value (Shi ppi ng O erk) and the new value (St ock O erk). Oracle Database
locks the rows pointed to by these two entries—but not the rows pointed to by
Account ant or any other key—until the UPDATE commits.

The data for a bitmap index is stored in one segment. Oracle Database stores each

bitmap in one or more pieces. Each piece occupies part of a single data block.

See Also: "User Segments" on page 12-21

Function-Based Indexes

You can create indexes on functions and expressions that involve one or more columns
in the table being indexed. A function-based index computes the value of a function
or expression involving one or more columns and stores it in the index. A
function-based index can be either a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a SQL function, user-defined PL/SQL function, package
function, or C callout. For example, a function could add the values in two columns.

Indexes and Index-Organized Tables 3-17

Overview of Indexes

See Also:

m Oracle Database Administrator’s Guide to learn how to create
function-based indexes

» Oracle Database Performance Tuning Guide for more information
about using function-based indexes

» Oracle Database SQL Language Reference for restrictions and
usage notes for function-based indexes

Uses of Function-Based Indexes

Function-based indexes are efficient for evaluating statements that contain functions in
their WHERE clauses. The database only uses the function-based index when the
function is included in a query. When the database processes | NSERT and UPDATE
statements, however, it must still evaluate the function to process the statement.

For example, suppose you create the following function-based index:

CREATE | NDEX enp_total _sal _i dx
ON enpl oyees (12 * salary * commi ssion_pct, salary, commission_pct);

The database can use the preceding index when processing queries such as
Example 3-6 (partial sample output included).

Example 3-6 Query Containing an Arithmetic Expression

SELECT enpl oyee_id, last_nane, first_nanme,
12*sal ary*commi ssi on_pct AS "ANNUAL SAL"

FROM enpl oyees

\HERE (12 * salary * comm ssion_pct) < 30000

ORDER BY "ANNUAL SAL" DESC,

EMPLOYEE_| D LAST_NAME FI RST_NAME ANNUAL SAL
159 Smth Li ndsey 28800
151 Bernstein Davi d 28500
152 Hal | Pet er 27000
160 Doran Loui se 27000
175 Hutton Alyssa 26400
149 ZI ot key El eni 25200
169 Bl oom Harri son 24000

Function-based indexes defined on the SQL functions UPPER(col unm_name) or

LOVER(col unm_narne) facilitate case-insensitive searches. For example, suppose that the
first_nane column in enpl oyees contains mixed-case characters. You create the
following function-based index on the hr. enpl oyees table:

CREATE | NDEX enp_f name_upper case_i dx
ON enpl oyees (UPPER(first_nane));

The enp_f name_upper case_i dx index can facilitate queries such as the following;:

SELECT *
FROM enpl oyees
VWHERE UPPER(first_nane) = 'AUDREY ;

A function-based index is also useful for indexing only specific rows in a table. For
example, the cust _val i d column in the sh. cust onmer s table has either | or Aas a value.
Toindex only the Arows, you could write a function that returns a null value for any
rows other than the Arows. You could create the index as follows:

3-18 Oracle Database Concepts

Overview of Indexes

CREATE | NDEX cust _val i d_i dx
ON custoners (CASE cust_valid WHEN 'A" THEN ' A" END);

See Also:

» Oracle Database Globalization Support Guide for information about
linguistic indexes

» Oracle Database SQL Language Reference to learn more about SQL
functions

Optimization with Function-Based Indexes

The optimizer can use an index range scan on a function-based index for queries with
expressions in WHERE clause. The range scan access path is especially beneficial when
the predicate (WHERE clause) has low selectivity. In Example 3-6 the optimizer can use
an index range scan if an index is built on the expression 12*sal ar y* conmi ssi on_pct.

A virtual column is useful for speeding access to data derived from expressions. For
example, you could define virtual column annual _sal as 12*sal ary* conmi ssi on_pct
and create a function-based index on annual _sal .

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

See Also:

= "Overview of the Optimizer" on page 7-10

» Oracle Database Performance Tuning Guide for more information
about gathering statistics

n Oracle Database Administrator’s Guide to learn how to add virtual
columns to a table

Application Domain Indexes

An application domain index is a customized index specific to an application. Oracle
Database provides extensible indexing to do the following:

= Accommodate indexes on customized, complex data types such as documents,
spatial data, images, and video clips (see "Unstructured Data" on page 19-11)

= Make use of specialized indexing techniques

You can encapsulate application-specific index management routines as an indextype
schema object and define a domain index on table columns or attributes of an object
type. Extensible indexing can efficiently process application-specific operators.

The application software, called the cartridge, controls the structure and content of a
domain index. The database interacts with the application to build, maintain, and
search the domain index. The index structure itself can be stored in the database as an
index-organized table or externally as a file.

See Also: Oracle Database Data Cartridge Developer's Guide for
information about using data cartridges within the Oracle Database
extensibility architecture

Indexes and Index-Organized Tables 3-19

Overview of Index-Organized Tables

Index Storage

Oracle Database stores index data in an index segment. Space available for index data
in a data block is the data block size minus block overhead, entry overhead, rowid,
and one length byte for each value indexed.

The tablespace of an index segment is either the default tablespace of the owner or a
tablespace specifically named in the CREATE | NDEX statement. For ease of
administration you can store an index in a separate tablespace from its table. For
example, you may choose not to back up tablespaces containing only indexes, which
can be rebuilt, and so decrease the time and storage required for backups.

See Also: Chapter 12, "Logical Storage Structures”

Overview of Index-Organized Tables

An index-organized table is a table stored in a variation of a B-tree index structure. In
a heap-organized table, rows are inserted where they fit. In an index-organized table,
rows are stored in an index defined on the primary key for the table. Each index entry
in the B-tree also stores the non-key column values. Thus, the index is the data, and the
data is the index. Applications manipulate index-organized tables just like
heap-organized tables, using SQL statements.

For an analogy of an index-organized table, suppose a human resources manager has a
book case of cardboard boxes. Each box is labeled with a number—1, 2, 3, 4, and so
on—but the boxes do not sit on the shelves in sequential order. Instead, each box
contains a pointer to the shelf location of the next box in the sequence.

Folders containing employee records are stored in each box. The folders are sorted by
employee ID. Employee King has ID 100, which is the lowest ID, so his folder is at the
bottom of box 1. The folder for employee 101 is on top of 100, 102 is on top of 101, and
so on until box 1 is full. The next folder in the sequence is at the bottom of box 2.

In this analogy, ordering folders by employee ID makes it possible to search efficiently
for folders without having to maintain a separate index. Suppose a user requests the
records for employees 107, 120, and 122. Instead of searching an index in one step and
retrieving the folders in a separate step, the manager can search the folders in
sequential order and retrieve each folder as found.

Index-organized tables provide faster access to table rows by primary key or a valid
prefix of the key. The presence of non-key columns of a row in the leaf block avoids an
additional data block I/O. For example, the salary of employee 100 is stored in the
index row itself. Also, because rows are stored in primary key order, range access by
the primary key or prefix involves minimal block I/Os. Another benefit is the
avoidance of the space overhead of a separate primary key index.

Index-organized tables are useful when related pieces of data must be stored together
or data must be physically stored in a specific order. This type of table is often used for
information retrieval, spatial (see "Overview of Oracle Spatial" on page 19-14), and
OLAP applications (see "OLAP" on page 17-19).

3-20 Oracle Database Concepts

Overview of Index-Organized Tables

See Also:

s Oracle Database Administrator’s Guide to learn how to manage

index-organized tables

» Oracle Database Performance Tuning Guide to learn how to use
index-organized tables to improve performance

» Oracle Database SQL Language Reference for CREATE TABLE . ..
ORGANI ZATI ON | NDEX syntax and semantics

Index-Organized Table Characteristics

The database system performs all operations on index-organized tables by
manipulating the B-tree index structure. Table 3-4 summarizes the differences between
index-organized tables and heap-organized tables.

Table 3-4 Comparison of Heap-Organized Tables with Index-Organized Tables

Heap-Organized Table

Index-Organized Table

The rowid uniquely identifies a row. Primary
key constraint may optionally be defined.

Physical rowid in RON D pseudocolumn
allows building secondary indexes.

Individual rows may be accessed directly by
rowid.

Sequential full table scan returns all rows in
some order.

Can be stored in a table cluster with other
tables.

Can contain a column of the LONG data type
and columns of LOB data types.

Can contain virtual columns (only relational
heap tables are supported).

Primary key uniquely identifies a row.
Primary key constraint must be defined.

Logical rowid in RON D pseudocolumn allows
building secondary indexes.

Access to individual rows may be achieved
indirectly by primary key.

A full index scan or fast full index scan
returns all rows in some order.

Cannot be stored in a table cluster.

Can contain LOB columns but not LONG
columns.

Cannot contain virtual columns.

Figure 3-3 illustrates the structure of an index-organized depar t ment s table. The leaf
blocks contain the rows of the table, ordered sequentially by primary key. For example,
the first value in the first leaf block shows a department ID of 20, department name of
Mar ket i ng, manager ID of 201, and location ID of 1800.

Indexes and Index-Organized Tables 3-21

Overview of Index-Organized Tables

Figure 3-3 Index-Organized Table

Branch Blocks

0..60
61..100
101..160
200..270
v \4
= 0..30 61..68 200..220
31..60 ey 69..73 221..230
74..85
260..270
98..100
Leaf Blocks
A4 v v
20,Marketing,201,1800 50,Shipping,121,1500 200,0perations,, 1700 260,Recruiting,,1700
30,Purchasing,114,1700 60,IT,103,1400 210,IT Support,,1700 270,Payroll,, 1700

220,NOC,,1700

U U U U

An index-organized table stores all data in the same structure and does not need to
store the rowid. As shown in Figure 3-3, leaf block 1 in an index-organized table might
contain entries as follows, ordered by primary key:

20, Mar ket i ng, 201, 1800

30, Pur chasi ng, 114, 1700

Leaf block 2 in an index-organized table might contain entries as follows:
50, Shi ppi ng, 121, 1500

60, 1T, 103, 1400

A scan of the index-organized table rows in primary key order reads the blocks in the
following sequence:

1. Block1
2. Block 2

To contrast data access in a heap-organized table to an index-organized table, suppose
block 1 of a heap-organized depar t ment s table segment contains rows as follows:

50, Shi ppi ng, 121, 1500
20, Mar ket i ng, 201, 1800
Block 2 contains rows for the same table as follows:

30, Pur chasi ng, 114, 1700
60, I T, 103, 1400

3-22 Oracle Database Concepts

Overview of Index-Organized Tables

A B-tree index leaf block for this heap-organized table contains the following entries,
where the first value is the primary key and the second is the rowid:

20, AAAPe XAAFAAAAAY AAD
30, AAAPe XAAFAAAAAY AAA
50, AAAPe XAAFAAAAAY AAC
60, AAAPe XAAFAAAAAY AAB

A scan of the table rows in primary key order reads the table segment blocks in the
following sequence:

1. Block1
2. Block 2
3. Block1
4. Block2

Thus, the number of block I/Os in this example is double the number in the
index-organized example.

See Also:
» 'Table Organization" on page 2-18

s "Introduction to Logical Storage Structures” on page 12-1

Index-Organized Tables with Row Overflow Area

When creating an index-organized table, you can specify a separate segment as a row
overflow area. In index-organized tables, B-tree index entries can be large because
they contain an entire row, so a separate segment to contain the entries is useful. In
contrast, B-tree entries are usually small because they consist of the key and rowid.

If a row overflow area is specified, then the database can divide a row in an
index-organized table into the following parts:

s Theindex entry

This part contains column values for all the primary key columns, a physical
rowid that points to the overflow part of the row, and optionally a few of the
non-key columns. This part is stored in the index segment.

s The overflow part

This part contains column values for the remaining non-key columns. This part is
stored in the overflow storage area segment.

See Also:

n Oracle Database Administrator’s Guide to learn how to use the
OVERFLOWclause of CREATE TABLE to set a row overflow area

» Oracle Database SQL Language Reference for CREATE TABLE . ..
OVERFLOWsyntax and semantics

Secondary Indexes on Index-Organized Tables

A secondary index is an index on an index-organized table. In a sense, it is an index on
an index. The secondary index is an independent schema object and is stored
separately from the index-organized table.

Indexes and Index-Organized Tables 3-23

Overview of Index-Organized Tables

As explained in "Rowid Data Types" on page 2-13, Oracle Database uses row
identifiers called logical rowids for index-organized tables. A logical rowid is a
base64-encoded representation of the table primary key. The logical rowid length
depends on the primary key length.

Rows in index leaf blocks can move within or between blocks because of insertions.
Rows in index-organized tables do not migrate as heap-organized rows do (see
"Chained and Migrated Rows" on page 12-16). Because rows in index-organized tables
do not have permanent physical addresses, the database uses logical rowids based on
primary key.

For example, assume that the depart nent s table is index-organized. The | ocati on_i d
column stores the ID of each department. The table stores rows as follows, with the
last value as the location ID:

10, Admi ni stration, 200, 1700
20, Mar ket i ng, 201, 1800

30, Pur chasi ng, 114, 1700

40, Human Resour ces, 203, 2400

A secondary index on the | ocat i on_i d column might have index entries as follows,
where the value following the comma is the logical rowid:

1700, * BAFAJGOOWR/ +
1700, * BAFAJgoOnQv +
1800, * BAFAJ g0 OWRX+
2400, * BAFAJgoOaSn+

Secondary indexes provide fast and efficient access to index-organized tables using
columns that are neither the primary key nor a prefix of the primary key. For example,
a query of the names of departments whose ID is greater than 1700 could use the
secondary index to speed data access.

See Also:

s Oracle Database Administrator’s Guide to learn how to create
secondary indexes on an index-organized table

» Oracle Database VLDB and Partitioning Guide to learn about
creating secondary indexes on indexed-organized table partitions

Logical Rowids and Physical Guesses

Secondary indexes use the logical rowids to locate table rows. A logical rowid includes
a physical guess, which is the physical rowid of the index entry when it was first
made. Oracle Database can use physical guesses to probe directly into the leaf block of
the index-organized table, bypassing the primary key search. When the physical
location of a row changes, the logical rowid remains valid even if it contains a physical
guess that is stale.

For a heap-organized table, access by a secondary index involves a scan of the
secondary index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use and
accuracy of physical guesses:

= Without physical guesses, access involves two index scans: a scan of the secondary
index followed by a scan of the primary key index.

= With physical guesses, access depends on their accuracy:

- With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

3-24 Oracle Database Concepts

Overview of Index-Organized Tables

- With inaccurate physical guesses, access involves a secondary index scan and
an I/0O to fetch the wrong data block (as indicated by the guess), followed by
an index unique scan of the index organized table by primary key value.

Bitmap Indexes on Index-Organized Tables

A secondary index on an index-organized table can be a bitmap index. As explained
in "Bitmap Indexes" on page 3-13, a bitmap index stores a bitmap for each index key.

When bitmap indexes exist on an index-organized table, all the bitmap indexes use a
heap-organized mapping table. The mapping table stores the logical rowids of the
index-organized table. Each mapping table row stores one logical rowid for the
corresponding index-organized table row.

The database accesses a bitmap index using a search key. If the database finds the key,
then the bitmap entry is converted to a physical rowid. With heap-organized tables,
the database uses the physical rowid to access the base table. With index-organized
tables, the database uses the physical rowid to access the mapping table, which in turn
yields a logical rowid that the database uses to access the index-organized table.
Figure 3—4 illustrates index access for a query of the depart ment s_i ot table.

Figure 3—4 Bitmap Index on Index-Organized Table

Select * from departments_iot
where location_id = 1800

Index of Mapping Table Mapping Table
location id, physical rowid in mapping table logical rowid in IOT
1800, AAAPeXAAFAAAAAYAAD *BAFAJQOCWRX+
1900, AABPeXAAFAAAAAYAAE *BAGAJqOCWRX+

Index-Organized Table

|:| |:| I:;O, Marketing, 201, 1800 /

vooU U |

Note: Movement of rows in an index-organized table does not leave
the bitmap indexes built on that index-organized table unusable.

See Also: "Rowids of Row Pieces" on page 2-19

Indexes and Index-Organized Tables 3-25

Overview of Index-Organized Tables

3-26 Oracle Database Concepts

A

Partitions, Views, and Other Schema Objects

Although tables and indexes are the most important and commonly used schema
objects, the database supports many other types of schema objects, the most common
of which are discussed in this chapter.

This chapter contains the following sections:
s Overview of Partitions

s Overview of Views

s Overview of Materialized Views

= Overview of Sequences

s Overview of Dimensions

s Overview of Synonyms

Overview of Partitions

Partitioning enables you to decompose very large tables and indexes into smaller and
more manageable pieces called partitions. Each partition is an independent object with
its own name and optionally its own storage characteristics.

For an analogy that illustrates partitioning, suppose an HR manager has one big box
that contains employee folders. Each folder lists the employee hire date. Queries are
often made for employees hired in a particular month. One approach to satisfying
such requests is to create an index on employee hire date that specifies the locations of
the folders scattered throughout the box. In contrast, a partitioning strategy uses many
smaller boxes, with each box containing folders for employees hired in a given month.

Using smaller boxes has several advantages. When asked to retrieve the folders for
employees hired in June, the HR manager can retrieve the June box. Furthermore, if
any small box is temporarily damaged, the other small boxes remain available.
Moving offices also becomes easier because instead of moving a single heavy box, the
manager can move several small boxes.

From the perspective of an application, only one schema object exists. DML statements
require no modification to access partitioned tables. Partitioning is useful for many
different types of database applications, particularly those that manage large volumes
of data. Benefits include:

s Increased availability

The unavailability of a partition does not entail the unavailability of the object. The
query optimizer automatically removes unreferenced partitions from the query
plan so queries are not affected when the partitions are unavailable.

Partitions, Views, and Other Schema Objects 4-1

Overview of Partitions

» Easier administration of schema objects

A partitioned object has pieces that can be managed either collectively or
individually. DDL statements can manipulate partitions rather than entire tables
or indexes. Thus, you can break up resource-intensive tasks such as rebuilding an
index or table. For example, you can move one table partition at a time. If a
problem occurs, then only the partition move must be redone, not the table move.
Also, dropping a partition avoids executing numerous DELETE statements.

= Reduced contention for shared resources in OLTP systems

In some OLTP systems, partitions can decrease contention for a shared resource.
For example, DML is distributed over many segments rather than one segment.

= Enhanced query performance in data warehouses

In a data warehouse, partitioning can speed processing of ad hoc queries. For
example, a sales table containing a million rows can be partitioned by quarter.

See Also: Oracle Database VLDB and Partitioning Guide for an
introduction to partitioning

Partition Characteristics

Each partition of a table or index must have the same logical attributes, such as
column names, data types, and constraints. For example, all partitions in a table share
the same column and constraint definitions, and all partitions in an index share the
same indexed columns. However, each partition can have separate physical attributes,
such as the tablespace to which it belongs.

Partition Key

The partition key is a set of one or more columns that determines the partition in
which each row in a partitioned table should go. Each row is unambiguously assigned
to a single partition.

In the sal es table, you could specify the ti ne_i d column as the key of a range
partition. The database assigns rows to partitions based on whether the date in this
column falls in a specified range. Oracle Database automatically directs insert, update,
and delete operations to the appropriate partition by using the partition key.

Partitioning Strategies

Oracle Partitioning offers several partitioning strategies that control how the database
places data into partitions. The basic strategies are range, list, and hash partitioning.

A single-level partitioning strategy uses only one method of data distribution, for
example, only list partitioning or only range partitioning. In composite partitioning, a
table is partitioned by one data distribution method and then each partition is further
divided into subpartitions using a second data distribution method. For example, you
could use a list partition for channel _i d and a range subpartition for ti me_i d.

Range Partitioning In range partitioning, the database maps rows to partitions based on
ranges of values of the partitioning key. Range partitioning is the most common type
of partitioning and is often used with dates.

Suppose that you want to populate a partitioned table with the sal es rows shown in
Example 4-1.

4-2 Oracle Database Concepts

Overview of Partitions

Example 4-1 Sample Row Set for Partitioned Table
CUST_ID TIME_ID CHANNEL_ID PROMO | D QUANTI TY_SOLD AMOUNT_SOLD

45

11393
100530
133
9450
4523
9417
170
11899
2606
9491

05- JUN-99 2 999 1 12.18
30- NOv- 98 9 33 1 44.99
06- JUN-01 2 999 1 17.12
01- DEC- 00 2 999 1 31.28
27- JAN-99 3 999 1 53. 89
04- FEB- 98 3 999 1 16. 86
23-FEB-01 2 999 1 8.8
26- JUN-99 4 999 1 43.04
17- FEB- 00 3 999 1 54.94
28- AUG 98 4 350 1 47. 45

Youcreate ti me_range_sal es as a partitioned table using the statement in
Example 4-2. The ti me_i d column is the partition key.

Example 4-2 Range-Partitioned Table
CREATE TABLE time_range_sal es

(prod_id
, cust_id
, time_id

, channel _

, prono_id
, quantity
, amunt _s

id

_sold

old

NUMBER(6)
NUMBER

DATE

CHAR(1)
NUNBER(6)
NUNBER(3)
NUMBER(10, 2)

PARTI TI ON BY RANGE (time_id)

(PARTI TI ON SALES 1998 VALUES LESS THAN
PARTI TI ON SALES_1999 VALUES LESS THAN

TO DATE(' 01- JAN-1999', ' DD- MON- YYYY')),
TO DATE(' 01- JAN-2000", ' DD- MON- YYYY')),

(
(

PARTI TI ON SALES 2000 VALUES LESS THAN (TO DATE(' 01- JAN-2001',' DD- MON- YYYY')),
(

)

PARTI TI ON SALES 2001 VALUES LESS THAN (MAXVALUE)

Afterward, you load ti me_r ange_sal es with the rows from Example 4-1. Figure 4-1
shows the row distributions in the four partitions. The database chooses the partition
for each row based on the ti me_i d value according to the rules specified in the

PARTI TI ON BY RANGE clause.

Partitions, Views, and Other Schema Objects 4-3

Overview of Partitions

Figure 4-1 Range Partitions

Table Partition SALES_1998

PROD_ID | cusTID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 | 30-NOV-98 9 33 1 44.99
125 9417 | 04-FEB-98 3 999 1 16.86
45 9491 | 28-AUG-98 4 350 1 47.45

Table Partition SALES_1999

PROD_ID | cusTID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 | 05-JUN-99 2 999 1 12.18
36 4523 | 27-3AN-99 3 999 1 53.89
24 11899 | 26-JUN-99 4 999 1 43.04

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
133 9450 01-DEC-00 2 999 1 31.28
35 2606 17-FEB-00 3 999 1 54.94

Table Partition SALES_2001

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
118 133 06-JUN-01 2 999 1 17.12
30 170 23-FEB-01 2 999 1 8.8

The range partition key value determines the high value of the range partitions, which
is called the transition point. In Figure 4-1, the SALES 1998 partition contains rows
with partitioning key ti me_i d values less than the transition point 01- JAN- 1999.

The database creates interval partitions for data beyond that transition point. Interval
partitions extend range partitioning by instructing the database to create partitions of
the specified range or interval automatically when data inserted into the table exceeds
all of the range partitions. In Figure 4-1, the SALES 2001 partition contains rows with
partitioning key ti me_i d values greater than or equal to 01- JAN- 2001.

List Partitioning In list partitioning, the database uses a list of discrete values as the
partition key for each partition. You can use list partitioning to control how individual
rows map to specific partitions. By using lists, you can group and organize related sets
of data when the key used to identify them is not conveniently ordered.

Assume that you create | i st _sal es as a list-partitioned table using the statement in
Example 4-3. The channel _i d column is the partition key.

4-4 Oracle Database Concepts

Overview of Partitions

Example 4-3 List-Partitioned Table
CREATE TABLE |ist_sales

(prod_id NUMBER(6)

, cust_id NUVBER

, time_id DATE

, channel _id CHAR(1)

, prono_id NUMVBER(6)

, quantity_sold NUMVBER(3)

, anount _sol d NUMBER(10, 2)

PARTI TI ON BY LI ST (channel _i d)
(PARTI TI ON even_channel s VALUES (2, 4),
PARTI TI ON odd_channel s VALUES (3, 9)

)

Afterward, you load the table with the rows from Example 4-1. Figure 4-2 shows the
row distribution in the two partitions. The database chooses the partition for each row
based on the channel _i d value according to the rules specified in the PARTI TI ON BY

LI ST clause. Rows with a channel _i d value of 2 or 4 are stored in the EVEN_CHANNELS
partitions, while rows with a channel _i d value of 3 or 9 are stored in the CDD_
CHANNELS partition.

Figure 4-2 List Partitions

Table Partition EVEN_CHANNELS

PROD_ID CUST_ID TIME_ID CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT SOLD
116 11393 | 05-JUN-99 2 999 1 12.18

118 133 | 06-JUN-01 2 999 1 17.12

133 9450 | 01-DEC-00 2 999 1 31.28

30 170 | 23-FEB-01 2 999 1 8.8

24 11899 | 26-JUN-99 4 999 1 43.04

45 9491 | 28-AUG-98 4 350 1 47.45

Table Partition ODD_CHANNELS

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
36 4523 27-JAN-99 3 999 1 53.89
125 9417 04-FEB-98 3 999 1 16.86
35 2606 17-FEB-00 3 999 1 54.94

Hash Partitioning In hash partitioning, the database maps rows to partitions based on a
hashing algorithm that the database applies to the user-specified partitioning key. The
destination of a row is determined by the internal hash function applied to the row by
the database. The hashing algorithm is designed to evenly distributes rows across
devices so that each partition contains about the same number of rows.

Hash partitioning is useful for dividing large tables to increase manageability. Instead
of one large table to manage, you have several smaller pieces. The loss of a single hash
partition does not affect the remaining partitions and can be recovered independently.
Hash partitioning is also useful in OLTP systems with high update contention. For

Partitions, Views, and Other Schema Objects 4-5

Overview of Partitions

example, a segment is divided into several pieces, each of which is updated, instead of
a single segment that experiences contention.

Assume that you create the partitioned hash_sal es table using the statement in
Example 4—4. The prod_i d column is the partition key.

Example 4-4 Hash-Partitioned Table
CREATE TABLE hash_sal es

(prod_id NUMVBER(6)
, cust_id NUVBER

, time_id DATE

, Channel _id CHAR(1)

, promo_id NUMBER(6)

, quantity_sold NUMBER(3)
, amount _sol d NUMBER(10, 2)

PARTI TI ON BY HASH (prod_i d)
PARTI TIONS 2;

Afterward, you load the table with the rows from Example 4-1. Figure 4-3 shows a
possible row distribution in the two partitions. Note that the names of these partitions
are system-generated.

As you insert rows, the database attempts to randomly and evenly distribute them
across partitions. You cannot specify the partition into which a row is placed. The
database applies the hash function, whose outcome determines which partition
contains the row. If you change the number of partitions, then the database
redistributes the data over all of the partitions.

Figure 4-3 Hash Partitions

Table Partition SYS_P33

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
118 133 06-JUN-01 2 999 1 17.12
36 4523 27-JAN-99 3 999 1 53.89
30 170 23-FEB-01 2 999 1 8.8
35 2606 17-FEB-00 3 999 1 54.94

Table Partition SYS_P34

PROD_ID CUST_ID TIME_ID CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18
133 9450 01-DEC-00 2 999 1 31.28
125 9417 04-FEB-98 3 999 1 16.86
24 11899 26-JUN-99 4 999 1 43.04
45 9491 28-AUG-98 4 350 1 47.45

4-6 Oracle Database Concepts

Overview of Partitions

See Also:

» Oracle Database VLDB and Partitioning Guide to learn how to create
partitions

» Oracle Database SQL Language Reference for CREATE TABLE . ..
PARTI TI ON BY examples

Partitioned Tables

A partitioned table consists of one or more partitions, which are managed
individually and can operate independently of the other partitions. A table is either
partitioned or nonpartitioned. Even if a partitioned table consists of only one partition,
this table is different from a nonpartitioned table, which cannot have partitions added
to it. "Partition Characteristics" on page 4-2 gives examples of partitioned tables.

A partitioned table is made up of one or more table partition segments. If you create a
partitioned table named hash_pr oduct s, then no table segment is allocated for this
table. Instead, the database stores data for each table partition in its own partition
segment. Each table partition segment contains a portion of the table data.

Some or all partitions of a heap-organized table can be stored in a compressed format.
Compression saves space and can speed query execution. Thus, compression can be
useful in environments such as data warehouses, where the amount of insert and
update operations is small, and in OLTP environments.

The attributes for table compression can be declared for a tablespace, table, or table
partition. If declared at the tablespace level, then tables created in the tablespace are
compressed by default. You can alter the compression attribute for a table, in which
case the change only applies to new data going into that table. Consequently, a single
table or partition may contain compressed and uncompressed blocks, which
guarantees that data size will not increase because of compression. If compression
could increase the size of a block, then the database does not apply it to the block.

See Also:

» '"Table Compression” on page 2-19 and "Overview of Segments"
on page 12-21

» Oracle Database Data Warehousing Guide to learn about table
compression in a data warehouse

Partitioned Indexes

A partitioned index is an index that, like a partitioned table, has been decomposed
into smaller and more manageable pieces. Global indexes are partitioned
independently of the table on which they are created, whereas local indexes are
automatically linked to the partitioning method for a table. Like partitioned tables,
partitioned indexes improve manageability, availability, performance, and scalability.

The following graphic shows index partitioning options.

Partitions, Views, and Other Schema Objects 4-7

Overview of Partitions

Local Prefixed Index

Local Partitioned Index

Partitioned Index Local Nonprefixed Index

Global Partitioned Index

Nonpartitioned Index

See Also:
= "Overview of Indexes" on page 3-1

» Oracle Database VLDB and Partitioning Guide and Oracle Database
Performance Tuning Guide for more information about partitioned
indexes and how to decide which type to use

Local Partitioned Indexes

In a local partitioned index, the index is partitioned on the same columns, with the
same number of partitions and the same partition bounds as its table. Each index
partition is associated with exactly one partition of the underlying table, so that all
keys in an index partition refer only to rows stored in a single table partition. In this
way, the database automatically synchronizes index partitions with their associated
table partitions, making each table-index pair independent.

Local partitioned indexes are common in data warehousing environments. Local
indexes offer the following advantages:

= Availability is increased because actions that make data invalid or unavailable in a
partition affect this partition only.

» Partition maintenance is simplified. When moving a table partition, or when data
ages out of a partition, only the associated local index partition must be rebuilt or
maintained. In a global index, all index partitions must be rebuilt or maintained.

» If point-in-time recovery of a partition occurs, then the indexes can be recovered
to the recovery time (see "Data File Recovery" on page 18-14). The entire index
does not need to be rebuilt.

Example 4-4 shows the creation statement for the partitioned hash_sal es table, using
the prod_i d column as partition key. Example 4-5 creates a local partitioned index on
theti me_i d column of the hash_sal es table.

Example 4-5 Local Partitioned Index
CREATE | NDEX hash_sal es_i dx ON hash_sal es(tinme_i d) LOCAL;

In Figure 44, the hash_pr oduct s table has two partitions, so hash_sal es_i dx has two
partitions. Each index partition is associated with a different table partition. Index
partition SYS_P38 indexes rows in table partition SYS_P33, whereas index partition
SYS_P39 indexes rows in table partition SYS_P34.

4-8 Oracle Database Concepts

Overview of Partitions

Figure 4-4

Local Index Partitions

Index hash_sales_idx

[
e

Local Index Partition SYS_P38 Local Index Partition SYS_P39

U U U U U
Table Partition SYS_P33
v

PROD_ID | CUST_ID TIME_ID CHANNEL_ID | PROMO_ID | JQUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
118 133 06-JUN-01 2 999 1 17.12
36 4523 27-JAN-99 3 999 1 53.89
30 170 23-FEB-01 2 999 1 8.8
35 2606 17-FEB-00 3 999 1 54.94

Table Partition SYS_P34

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18
133 9450 01-DEC-00 2 999 1 31.28
125 9417 04-FEB-98 3 999 1 16.86
24 11899 26-JUN-99 4 999 1 43.04
45 9491 28-AUG-98 4 350 1 47.45

You cannot explicitly add a partition to alocal index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

Like other indexes, you can create a bitmap index on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot be
global indexes. Global bitmap indexes are supported only on nonpartitioned tables.

Local Prefixed and Nonprefixed Indexes Local partitioned indexes are divided into the
following subcategories:
s Local prefixed indexes

In this case, the partition keys are on the leading edge of the index definition. In
Example 4-2 on page 4-3, the table is partitioned by range on ti me_i d. A local
prefixed index on this table would have ti me_i d as the first column in its list.

= Local nonprefixed indexes

In this case, the partition keys are not on the leading edge of the indexed column
list and need not be in the list at all. In Example 4-5 on page 4-8, the index is local
nonprefixed because the partition key product _i d is not on the leading edge.

Partitions, Views, and Other Schema Objects 4-9

Overview of Partitions

Both types of indexes can take advantage of partition elimination (also called
partition pruning), which occurs when the optimizer speeds data access by excluding
partitions from consideration. Whether a query can eliminate partitions depends on
the query predicate. A query that uses a local prefixed index always allows for index
partition elimination, whereas a query that uses a local nonprefixed index might not.

See Also: Oracle Database VLDB and Partitioning Guide to learn how
to use prefixed and nonprefixed indexes

Local Partitioned Index Storage Like a table partition, a local index partition is stored in
its own segment. Each segment contains a portion of the total index data. Thus, a local
index made up of four partitions is not stored in a single index segment, but in four
separate segments.

See Also: Oracle Database SQL Language Reference for CREATE | NDEX
LOCAL examples

Global Partitioned Indexes

A global partitioned index is a B-tree index that is partitioned independently of the
underlying table on which it is created. A single index partition can point to any or all
table partitions, whereas in a locally partitioned index, a one-to-one parity exists
between index partitions and table partitions.

In general, global indexes are useful for OLTP applications, where rapid access, data
integrity, and availability are important. In an OLTP system, a table may be partitioned
by one key, for example, the enpl oyees. depart ment _i d column, but an application
may need to access the data with many different keys, for example, by enpl oyee_i d or
j ob_i d. Global indexes can be useful in this scenario.

You can partition a global index by range or by hash. If partitioned by range, then the
database partitions the global index on the ranges of values from the table columns
you specify in the column list. If partitioned by hash, then the database assigns rows to
the partitions using a hash function on values in the partitioning key columns.

As an illustration, suppose that you create a global partitioned index on the ti me_
range_sal es table from Example 4-2. In this table, rows for sales from 1998 are stored
in one partition, rows for sales from 1999 are in another, and so on. Example 4-6
creates a global index partitioned by range on the channel _i d column.

Example 4-6 Global Partitioned Index

CREATE | NDEX time_channel _sales_idx ON time_range_sal es (channel _id)
GLOBAL PARTI TI ON BY RANGE (channel _i d)
(PARTI TION pl VALUES LESS THAN (3),
PARTI TI ON p2 VALUES LESS THAN (4),
PARTI TI ON p3 VALUES LESS THAN (MAXVALUE));

As shown in Figure 4-5, a global index partition can contain entries that point to
multiple table partitions. Index partition pl points to the rows with a channel _i d of 2,
index partition p2 points to the rows with a channel _i d of 3, and index partition p3
points to the rows with a channel _i d of 4 or 9.

4-10 Oracle Database Concepts

Overview of Partitions

Figure 4-5 Global Partitioned Index

e Global Index
@ Partition p3

Global Index [index
Partition p2 @

Table Partition SALES_1998

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

> 40 100530 | 30-NOV-98 9 33 1 44.99
125 9417 | 04-FEB-98 3 999 1 16.86 =
> 45 9491 | 28-AUG-98 4 350 1 47.45

//\/\

Table Partition SALES_1999

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»116 11393 | 05-JUN-99 2 999 1 12.18
36 4523 | 27-JAN-99 3 999 1 53.89 =
> 24 11899 | 26-JUN-99 4 999 1 43.04

/\/\

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»133 9450 | 01-DEC-00 2 999 1 31.28

35 2606 | 17-FEB-00 3 999 1 54.94 <

//\/\

Table Partition SALES_2001

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

Index %

»118 133 | 06-JUN-01 2 999 1 17.12
30 170 | 23-FEB-01 2 999 1 8.8

//\/\

Global Index
Partition p1

See Also:

» Oracle Database VLDB and Partitioning Guide to learn how to use
global partitioned indexes

» Oracle Database SQL Language Reference for CREATE | NDEX . ..
GLOBAL examples

Partitions, Views, and Other Schema Objects 4-11

Overview of Views

Partitioned Index-Organized Tables

You can partition an index-organized table (IOT) by range, list, or hash. Partitioning is
useful for providing improved manageability, availability, and performance for IOTs.
In addition, data cartridges that use IOTs can take advantage of the ability to partition
their stored data.

Note the following characteristics of partitioned IO0Ts:

= Partition columns must be a subset of primary key columns.

= Secondary indexes can be partitioned locally and globally.

= OVERFLOWdata segments are always equipartitioned with the table partitions.

Oracle Database supports bitmap indexes on partitioned and nonpartitioned
index-organized tables. A mapping table is required for creating bitmap indexes on an
index-organized table.

See Also: "Overview of Index-Organized Tables" on page 3-20

Overview of Views

A view is a logical representation of one or more tables. In essence, a view is a stored
query. A view derives its data from the tables on which it is based, called base tables.
Base tables can be tables or other views. All operations performed on a view actually
affect the base tables. You can use views in most places where tables are used.

Note: Materialized views use a different data structure from
standard views. See "Overview of Materialized Views" on page 4-16.

Views enable you to tailor the presentation of data to different types of users. Views
are often used to:

= Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 4-6 shows how the st af f view does not show the sal ary or
commi ssi on_pct columns of the base table enpl oyees.

» Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables. A query might also
perform extensive calculations with table information. Thus, users can query a
view without knowing how to perform a join or calculations.

= Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables on
which the view is based.

= Isolate applications from changes in definitions of base tables

For example, if the defining query of a view references three columns of a four
column table, and a fifth column is added to the table, then the definition of the
view is not affected, and all applications using the view are not affected.

4-12 Oracle Database Concepts

Overview of Views

Figure 4-6 View

For an example of the use of views, consider the hr. enpl oyees table, which has
several columns and numerous rows. To allow users to see only five of these columns
or only specific rows, you could create a view as follows:

CREATE VIEWstaff AS
SELECT enpl oyee_id, last_name, job_id, nanager_id, departnent_id
FROM enpl oyees;

As with all subqueries, the query that defines a view cannot contain the FOR UPDATE
clause. Figure 4-6 graphically illustrates the view named st af f . Notice that the view
shows only five of the columns in the base table.

Base
Table employees
employee_id ||ast_name |job_id | manager_id | hire_date |salary | department_id
203 marvis hr_rep 101 07-Jun-94 6500 40
204 baer pr_rep 101 07-Jun—94 10000 70
205 higgins ac_rep 101 07-Jun—94 12000 110
206 gietz ac_account | 205 07-Jun—-94 8300 110
View staff ‘
employee_id | last_name | job_id | manager_id | department_id
203 marvis hr_rep 101 40
204 baer pr_rep 101 70
205 higgins ac_rep 101 110
206 gietz ac_account | 205 110

See Also:

» Oracle Database Administrator's Guide to learn how to manage
views

» Oracle Database SQL Language Reference for CREATE VI EWsyntax
and semantics

Characteristics of Views

Unlike a table, a view is not allocated storage space, nor does a view contain data.
Rather, a view is defined by a query that extracts or derives data from the base tables
referenced by the view. Because a view is based on other objects, it requires no storage
other than storage for the query that defines the view in the data dictionary.

A view has dependencies on its referenced objects, which are automatically handled
by the database. For example, if you drop and re-create a base table of a view, then the
database determines whether the new base table is acceptable to the view definition.

Data Manipulation in Views

Because views are derived from tables, they have many similarities. For example, a
view can contain up to 1000 columns, just like a table. Users can query views, and with
some restrictions they can perform DML on views. Operations performed on a view

Partitions, Views, and Other Schema Objects 4-13

Overview of Views

affect data in some base table of the view and are subject to the integrity constraints
and triggers of the base tables.

The following example creates a view of the hr. enpl oyees table:

CREATE VIEW st af f _dept _10 AS
SELECT enpl oyee_id, |ast_nane, job_id,
manager _i d, departnent _id
FROM enpl oyees
WHERE department _id = 10
W TH CHECK OPTI ON CONSTRAI NT staff _dept _10 cnst;

The defining query references only rows for department 10. The CHECK OPTI ON creates
the view with a constraint so that | NSERT and UPDATE statements issued against the
view cannot result in rows that the view cannot select. Thus, rows for employees in
department 10 can be inserted, but not rows for department 30.

See Also: Oracle Database SQL Language Reference to learn about
subquery restrictions in CREATE VI EWstatements

How Data Is Accessed in Views

Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view. When you reference a view in a SQL statement, Oracle Database
performs the following tasks:

1. Merges a query (whenever possible) against a view with the queries that define
the view and any underlying views

Oracle Database optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle Database can use indexes on any
referenced base table columns, whether the columns are referenced in the view
definition or in the user query against the view.

Sometimes Oracle Database cannot merge the view definition with the user query.
In such cases, Oracle Database may not use all indexes on referenced columns.

2. Parses the merged statement in a shared SQL area

Oracle Database parses a statement that references a view in a new shared SQL
area only if no existing shared SQL area contains a similar statement. Thus, views
provide the benefit of reduced memory use associated with shared SQL.

3. Executes the SQL statement

The following example illustrates data access when a view is queried. Assume that
you create enpl oyees_vi ewbased on the enpl oyees and depart nent s tables:

CREATE VI EW enpl oyees_vi ew AS
SELECT enpl oyee_id, last_nane, salary, location_id
FROM enpl oyees JO N departments USI NG (departnent _i d)
VWHERE departnents. departnment _id = 10;

A user executes the following query of enpl oyees_vi ew:

SELECT | ast_nane
FROM enpl oyees_vi ew
WHERE enpl oyee_id = 9876;

Oracle Database merges the view and the user query to construct the following query,
which it then executes to retrieve the data:

SELECT | ast _nane

4-14 Oracle Database Concepts

Overview of Views

FROM enpl oyees, departnents

WHERE enpl oyees. departnent _id = departments. departnent _id
AND departnents. departnent _id = 10

AND enpl oyees. enpl oyee_id = 9876;

See Also:

= "Overview of the Optimizer" on page 7-10 and Oracle Database
Performance Tuning Guide to learn about query optimization

= "Shared SQL Areas" on page 14-16

Updatable Join Views

A join view is defined as a view that has multiple tables or views in its FROMclause. In
Example 4-7, the st af f _dept _10_30 view joins the enpl oyees and depart ment s tables,
including only employees in departments 10 or 30.

Example 4-7 Join View

CREATE VIEW st aff_dept _10_30 AS

SELECT enpl oyee_id, |ast_nanme, job_id, e.departnent_id
FROM enpl oyees e, departnents d

WHERE e.departnent _id IN (10, 30)

AND e.departnent _id = d.departnent_id,;

An updatable join view, also called a modifiable join view, involves two or more
base tables or views and permits DML operations. An updatable view contains
multiple tables in the top-level FROMclause of the SELECT statement and is not
restricted by the W TH READ ONLY clause.

To be inherently updatable, a view must meet several criteria. For example, a general
rule is that an | NSERT, UPDATE, or DELETE operation on a join view can modify only one
base table at a time. The following query of the USER_UPDATABLE_COLUWNS data
dictionary view shows that the view created in Example 4-7 is updatable:

SQL> SELECT TABLE_NAME, COLUWN NAVE, UPDATABLE
2 FROM USER UPDATABLE COLUWNS
3 VHERE TABLE NAME = ' STAFF DEPT 10 30';

TABLE_NAME COLUWN_NAVE UPD
STAFF_DEPT_10_30 EMPLOYEE_| D YES
STAFF_DEPT_10_30 LAST_NAME YES
STAFF_DEPT_10_30 JOBID YES
STAFF_DEPT_10_30 DEPARTMENT | D YES

All updatable columns of a join view must map to columns of a key-preserved table. A
key-preserved table in a join query is a table in which each row of the underlying
table appears at most one time in the output of the query. In Example 4-7,

depart ment _i d is the primary key of the depar t nent s table, so each row from the

enpl oyees table appears at most once in the result set, making the enpl oyees table
key-preserved. The depart nent s table is not key-preserved because each of its rows
may appear many times in the result set.

See Also: Oracle Database Administrator’s Guide to learn how to
update join views

Partitions, Views, and Other Schema Objects 4-15

Overview of Materialized Views

Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object, which is an instance of an object type. An object type is a
user-defined data type.

You can retrieve, update, insert, and delete relational data as if it was stored as an
object type. You can also define views with columns that are object data types, such as
objects, REFs, and collections (nested tables and VARRAYs).

Like relational views, object views can present only the data that you want users to
see. For example, an object view could present data about IT programmers but omit
sensitive data about salaries. The following example creates an enpl oyee_t ype object
and then the view i t _prog_vi ewbased on this object:

CREATE TYPE enpl oyee_type AS OBJECT

(

enpl oyee_id NUMBER (6),

| ast _name VARCHAR2 (25),

job_id VARCHAR2 (10)
);
/

CREATE VIEWit _prog_vi ew OF enpl oyee_type

W TH OBJECT | DENTI FI ER (enpl oyee_i d) AS
SELECT e.enployee_id, e.last_nane, e.job_id
FROM enpl oyees e
WHERE job_id = "I T_PROG ;

Object views are useful in prototyping or transitioning to object-oriented applications
because the data in the view can be taken from relational tables and accessed as if the
table were defined as an object table. You can run object-oriented applications without
converting existing tables to a different physical structure.

See Also:

» Oracle Database Object-Relational Developer’s Guide to learn about
object types and object views

» Oracle Database SQL Language Reference to learn about the
CREATE TYPE command

Overview of Materialized Views

Materialized views are query results that have been stored or "materialized” in
advance as schema objects. The FROMclause of the query can name tables, views, and
materialized views. Collectively these objects are called master tables (a replication
term) or detail tables (a data warehousing term).

Materialized views are used to summarize, compute, replicate, and distribute data.
They are suitable in various computing environments, such as the following:

» In data warehouses, you can use materialized views to compute and store data
generated from aggregate functions such as sums and averages.

A summary is an aggregate view that reduces query time by precalculating joins
and aggregation operations and storing the results in a table. Materialized views
are equivalent to summaries (see "Data Warehouse Architecture (Basic)" on

page 17-16). You can also use materialized views to compute joins with or without
aggregations. If compatibility is set to Oracle9i or higher, then materialized views
are usable for queries that include filter selections.

4-16 Oracle Database Concepts

Overview of Materialized Views

s Inmaterialized view replication, the view contains a complete or partial copy of a
table from a single point in time. Materialized views replicate data at distributed
sites and synchronize updates performed at several sites. This form of replication
is suitable for environments such as field sales when databases are not always
connected to the network.

= In mobile computing environments, you can use materialized views to download
a data subset from central servers to mobile clients, with periodic refreshes from
the central servers and propagation of updates by clients to the central servers.

In a replication environment, a materialized view shares data with a table in a different
database, called a master database. The table associated with the materialized view at
the master site is the master table. Figure 4-7 illustrates a materialized view in one
database based on a master table in another database. Updates to the master table
replicate to the materialized view database.

Figure 4—7 Materialized View

Client Applications

|:. Remote Update

Local
Query

Materialized View Master Table

Materialized
View
Database

Replicate Table Data
Refresh

Master
Database

See Also:

s "Information Sharing" on page 17-21 to learn about replication
with Oracle Streams

» Oracle Database 2 Day + Data Replication and Integration Guide and
Oracle Database Advanced Replication to learn how to use
materialized views

» Oracle Database SQL Language Reference to learn about the CREATE
MATERI ALI ZED VI EWstatement

Characteristics of Materialized Views

Materialized views share some characteristics of nonmaterialized views and indexes.
Materialized views are similar to indexes in the following ways:

= They contain actual data and consume storage space.

s They can be refreshed when the data in their master tables changes.

Partitions, Views, and Other Schema Objects 4-17

Overview of Materialized Views

= They can improve performance of SQL execution when used for query rewrite
operations.

s Their existence is transparent to SQL applications and users.

A materialized view is similar to a nonmaterialized view because it represents data in
other tables and views. Unlike indexes, users can query materialized views directly
using SELECT statements. Depending on the types of refresh that are required, the
views can also be updated with DML statements.

The following example creates and populates a materialized aggregate view based on
three master tables in the sh sample schema:

CREATE MATERI ALI ZED VI EW sal es_nv AS
SELECT t. cal endar _year, p.prod_id, SUMs.anount_sol d) AS sum sal es
FROM tines t, products p, sales s
VWHERE t.time_id = s.tine_id
AND p.prod_id = s.prod_id
GROUP BY t.cal endar_year, p.prod_id;

The following example drops table sal es, which is a master table for sal es_nv, and
then queries sal es_nv. The query selects data because the rows are stored
(materialized) separately from the data in the master tables.

SQ.> DROP TABLE sal es;
Tabl e dropped.
SQ> SELECT * FROM sal es_nv WHERE ROMUM < 4;

CALENDAR_YEAR PROD_ID SUM SALES

1998 13 936197.53
1998 26 567533. 83
1998 27 107968. 24

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

See Also: Oracle Database Data Warehousing Guide to learn how to use
materialized views in a data warehouse

Refresh Methods for Materialized Views

The database maintains data in materialized views by refreshing them after changes to
their master tables. The refresh method can be incremental, known as fast refresh, or a
complete refresh.

A complete refresh occurs when the materialized view is initially defined as BUI LD

| MVEDI ATE, unless the materialized view references a prebuilt table. The refresh
involves executing the query that defines the materialized view. This process can be
slow, especially if the database must read and process huge amounts of data.

A fast refresh eliminates the need to rebuild materialized views from scratch. Thus,
processing only the changes can result in a very fast refresh time. Materialized views
can be refreshed either on demand or at regular time intervals. Alternatively,
materialized views in the same database as their master tables can be refreshed
whenever a transaction commits its changes to the master tables.

For materialized views that use the fast refresh method, a materialized view log or
direct loader log keeps a record of changes to the master tables. A materialized view

4-18 Oracle Database Concepts

Overview of Materialized Views

log is a schema object that records changes to master table data so that a materialized
view defined on the master table can be refreshed incrementally. Each materialized
view log is associated with a single master table. The materialized view log resides in
the same database and schema as its master table.

See Also:

» Oracle Database Data Warehousing Guide to learn how to refresh
materialized views

» Oracle Database Advanced Replication to learn about materialized
view logs

Query Rewrite

Query rewrite is an optimization technique that transforms a user request written in
terms of master tables into a semantically equivalent request that includes
materialized views. When base tables contain large amounts of data, computing an
aggregate or join is expensive and time-consuming. Because materialized views
contain precomputed aggregates and joins, query rewrite can quickly answer queries
using materialized views.

The optimizer query transformer transparently rewrites the request to use the
materialized view, requiring no user intervention and no reference to the materialized
view in the SQL statement. Because query rewrite is transparent, materialized views
can be added or dropped without invalidating the SQL in the application code.

In general, rewriting queries to use materialized views rather than detail tables
improves response time. Figure 4-8 shows the database generating an execution plan
for the original and rewritten query and choosing the lowest-cost plan.

Figure 4-8 Query Rewrite

Oracle Database

Query is
rewritten

_l
® ! A
g’u_— T — | QueryResults

User enters Compare plan cost
query v and pick the best

Generate Plan T

Generate Plan

See Also:
= "Overview of the Optimizer" on page 7-10

» Oracle Database Data Warehousing Guide to learn how to use query
rewrite

Partitions, Views, and Other Schema Objects 4-19

Overview of Sequences

Overview of Sequences

A sequence is a schema object from which multiple users can generate unique
integers. A sequence generator provides a highly scalable and well-performing
method to generate surrogate keys for a number data type.

Sequence Characteristics
A sequence definition indicates general information, such as the following:
= The name of the sequence
» Whether the sequence ascends or descends
= The interval between numbers

= Whether the database should cache sets of generated sequence numbers in
memory

= Whether the sequence should cycle when a limit is reached

The following example creates the sequence cust omer s_seq in the sample schema oe.
An application could use this sequence to provide customer ID numbers when rows
are added to the cust oner s table.

CREATE SEQUENCE cust onmers_seq

START WTH 1000
| NCREMENT BY 1
NOCACHE

NCCYCLE;

The first reference to cust omer s_seq. next val returns 1000. The second returns 1001.
Each subsequent reference returns a value 1 greater than the previous reference.

See Also:

» Oracle Database 2 Day Developer’s Guide and Oracle Database
Administrator’s Guide to learn how to manage sequences

» Oracle Database SQL Language Reference for CREATE SEQUENCE
syntax and semantics

Concurrent Access to Sequences

The same sequence generator can generate numbers for multiple tables. In this way,
the database can generate primary keys automatically and coordinate keys across
multiple rows or tables. For example, a sequence can generate primary keys for an
or ders table and a cust oner s table.

The sequence generator is useful in multiuser environments for generating unique
numbers without the overhead of disk I/O or transaction locking. For example, two
users simultaneously insert new rows into the or der s table. By using a sequence to
generate unique numbers for the or der _i d column, neither user has to wait for the
other to enter the next available order number. The sequence automatically generates
the correct values for each user.

Each user that references a sequence has access to his or her current sequence number,
which is the last sequence generated in the session. A user can issue a statement to
generate a new sequence number or use the current number last generated by the
session. After a statement in a session generates a sequence number, it is available only
to this session. Individual sequence numbers can be skipped if they were generated
and used in a transaction that was ultimately rolled back.

4-20 Oracle Database Concepts

Overview of Dimensions

Caution: If your application requires a gap-free set of numbers,
then you cannot use Oracle sequences. You must serialize activities
in the database using your own developed code.

See Also: Chapter 9, "Data Concurrency and Consistency"

Overview of Dimensions

A typical data warehouse has two important components: dimensions and facts. A
dimension is any category used in specifying business questions, for example, time,
geography, product, department, and distribution channel. A fact is an event or entity
associated with a particular set of dimension values, for example, units sold or profits.

Examples of multidimensional requests include the following:

= Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 2007 and 2008.

» Create a cross-tabular analysis of our operations showing expenses by territory in
South America for 2007 and 2008. Include all possible subtotals.

= List the top 10 sales representatives in Asia according to 2008 sales revenue for
automotive products, and rank their commissions.

Many multidimensional questions require aggregated data and comparisons of data
sets, often across time, geography or budgets.

Creating a dimension permits the broader use of the query rewrite feature. By
transparently rewriting queries to use materialized views, the database can improve
query performance.

See Also: "Overview of Data Warehousing and Business
Intelligence" on page 17-14

Hierarchical Structure of a Dimension

A dimension table is a logical structure that defines hierarchical relationships between
pairs of columns or column sets. A dimension has no data storage assigned to it.
Dimensional information is stored in dimension tables, whereas fact information is
stored in a fact table.

Within a customer dimension, customers could roll up to city, state, country,
subregion, and region. Data analysis typically starts at higher levels in the dimensional
hierarchy and gradually drills down if the situation warrants such analysis.

Each value at the child level is associated with one and only one value at the parent
level. A hierarchical relationship is a functional dependency from one level of a
hierarchy to the next level in the hierarchy.

See Also:
» Oracle Database Data Warehousing Guide to learn about dimensions

m Oracle OLAP User’s Guide to learn how to create dimensions

Creation of Dimensions

Dimensions are created with SQL statements. The CREATE DI MENSI ON statement
specifies:

Partitions, Views, and Other Schema Objects 4-21

Overview of Synonyms

= Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

= One or more H ERARCHY clauses that specify the parent/child relationships
between adjacent levels

= Optional ATTRI BUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The following statement was used to create the cust omer s_di mdimension in the
sample schema sh:

CREATE DI MENSI ON cust omers_di m
LEVEL customer IS (custoners.cust_id)
LEVEL city I'S (custoners.cust_city)
LEVEL state I'S (custoners. cust_state_province)
LEVEL country I'S (countries.country_id)
LEVEL subregion IS (countries.country_subregion)

—_— o~ —~ —

LEVEL region I'S (countries.country_region)
HI ERARCHY geog_rol [up (

cust omer CH LD OF

city CHI LD COF

state CH LD COF

country CHI LD OF

subregi on CH LD OF

regi on

JO N KEY (custoners.country_id) REFERENCES country)
ATTRI BUTE cust oner DETERM NES
(cust _first_nane, cust_last_name, cust_gender,
cust_marital _status, cust_year_of hirth,
cust _inconme_l evel, cust_credit_limt)
ATTRI BUTE country DETERM NES (countries.country_nanme);

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). For example, a normalized time
dimension can include a date table, a month table, and a year table, with join
conditions that connect each date row to a month row, and each month row to a year
row. In a fully denormalized time dimension, the date, month, and year columns are in
the same table. Whether normalized or denormalized, the hierarchical relationships
among the columns must be specified in the CREATE DI MENS| ON statement.

See Also:

» Oracle Warehouse Builder Data Modeling, ETL, and Data Quality
Guide for information about how dimensions are used in a
warehousing environment

» Oracle Database SQL Language Reference for CREATE DI MENS| ON
syntax and semantics

Overview of Synonyms

A synonym is an alias for a schema object. For example, you can create a synonym for
a table or view, sequence, PL/SQL program unit, user-defined object type, or another
synonym. Because a synonym is simply an alias, it requires no storage other than its
definition in the data dictionary.

Synonyms can simplify SQL statements for database users. Synonyms are also useful
for hiding the identity and location of an underlying schema object. If the underlying

4-22 Oracle Database Concepts

Overview of Synonyms

object must be renamed or moved, then only the synonym must be redefined.
Applications based on the synonym continue to work without modification.

You can create both private and public synonyms. A private synonym is in the schema
of a specific user who has control over its availability to others. A public synonym is
owned by the user group named PUBLI Cand is accessible by every database user.

In Example 4-9, a database administrator creates a public synonym named peopl e for
the hr. enpl oyees table. The user then connects to the oe schema and counts the
number of rows in the table referenced by the synonym.

Example 4-8 Public Synonym
SQL> CREATE PUBLI C SYNONYM peopl e FOR hr. enpl oyees;

Synonym cr eat ed.

SQL> CONNECT oe
Enter password: password
Connect ed.

SQL> SELECT COUNT(*) FROM peopl e;

Use public synonyms sparingly because they make database consolidation more
difficult. As shown in Example 4-9, if another administrator attempts to create the
public synonym peopl e, then the creation fails because only one public synonym
peopl e can exist in the database. Overuse of public synonyms causes namespace
conflicts between applications.

Example 4-9 Public Synonym

SQL> CREATE PUBLI C SYNONYM peopl e FOR oe. cust oners;
CREATE PUBLI C SYNONYM peopl e FOR oe. cust omer s
*

ERROR at line 1:
ORA-00955: nane is already used by an existing object

SQL> SELECT OMNER, SYNONYM NAME, TABLE OMER, TABLE _NAME
2 FROM DBA_SYNONYMS
3 WHERE SYNONYM NAME = ' PECPLE';

OMER SYNONYM_NAME TABLE_OWNER TABLE_NAME

PUBLI C PECPLE HR EMPLOYEES

Synonyms themselves are not securable. When you grant object privileges on a
synonym, you are really granting privileges on the underlying object. The synonym is
acting only as an alias for the object in the GRANT statement.

See Also:

» Oracle Database Administrator's Guide to learn how to manage
synonyms

» Oracle Database SQL Language Reference for CREATE SYNONYMsyntax
and semantics

Partitions, Views, and Other Schema Objects 4-23

Overview of Synonyms

4-24 Oracle Database Concepts

D

Data Integrity

This chapter explains how integrity constraints enforce the business rules associated
with a database and prevent the entry of invalid information into tables.

This chapter contains the following sections:
s Introduction to Data Integrity
» Types of Integrity Constraints

» States of Integrity Constraints

See Also: "Overview of Tables" on page 2-6

Introduction to Data Integrity

Business rules specify conditions and relationships that must always be true or must
always be false. For example, each company defines its own policies about salaries,
employee numbers, inventory tracking, and so on. It is important that data maintain
data integrity, which is adherence to these rules, as determined by the database
administrator or application developer.

Techniques for Guaranteeing Data Integrity

When designing a database application, developers have various options for
guaranteeing the integrity of data stored in the database. These options include:

= Enforcing business rules with triggered stored database procedures, as described
in "Overview of Triggers" on page 8-16

= Using stored procedures to completely control access to data, as described in
"Introduction to Server-Side Programming" on page 8-1

= Enforcing business rules in the code of a database application

= Using Oracle Database integrity constraints, which are rules defined at the
column or object level that restrict values in the database

This chapter explains the basic concepts of integrity constraints.

Advantages of Integrity Constraints

An integrity constraint is a schema object that is created and dropped using SQL. To
enforce data integrity, use integrity constraints unless it is not possible. Advantages of
integrity constraints over alternatives for enforcing data integrity include:

s Declarative ease

Data Integrity 5-1

Types of Integrity Constraints

Because you define integrity constraints using SQL statements, no additional
programming is required when you define or alter a table. The SQL statements are
easy to write and eliminate programming errors.

s Centralized rules

Integrity constraints are defined for tables and are stored in the data dictionary
(see "Overview of the Data Dictionary” on page 6-1). Thus, data entered by all
applications must adhere to the same integrity constraints. If the rules change at
the table level, then applications need not change. Also, applications can use
metadata in the data dictionary to immediately inform users of violations, even

before the database checks the SQL statement.

s Flexibility when loading data

You can disable integrity constraints temporarily to avoid performance overhead
when loading large amounts of data. When the data load is complete, you can

re-enable the integrity constraints.

See Also:

» Oracle Database 2 Day Developer’s Guide and Oracle Database 2 Day
Developer’s Guide to learn how to maintain data integrity

» Oracle Database 2 Day DBAand Oracle Database Administrator’s
Guide to learn how to manage integrity constraints

Types of Integrity Constraints

Oracle Database enables you to apply constraints both at the table and column level. A
constraint specified as part of the definition of a column or attribute is called an inline
specification. A constraint specified as part of the table definition is called an

out-of-line specification.

The term key is used in the definitions of several types of integrity constraints. A key
is the column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the tables and columns of a
relational database. Individual values in a key are called key values.

Table 5-1 describes the types of constraints. Each can be specified either inline or
out-of-line, except for NOT NULL, which must be inline.

Table 5-1 Types of Constraints

Constraint Type

Description

See Also

constraint. It prohibits multiple rows from having the
same value in the same column or combination of
columns and prohibits values from being null.

NOT NULL Allows or disallows inserts or updates of rows "NOT NULL Integrity Constraints"
containing a null in a specified column. on page 5-3

Unique key Prohibits multiple rows from having the same value in | "Unique Constraints" on page 5-3
the same column or combination of columns but allows
some values to be null.

Primary key Combines a NOT NULL constraint and a unique "Primary Key Constraints" on

page 5-5

5-2 Oracle Database Concepts

Types of Integrity Constraints

Table 5-1 (Cont.) Types of Constraints

Constraint Type | Description See Also

Foreign key Designates a column as the foreign key and establishes | "Foreign Key Constraints" on
a relationship between the foreign key and a primary or | page 5-6
unique key, called the referenced key.

Check Requires a database value to obey a specified condition. | "Check Constraints" on page 5-9
REF Dictates types of data manipulation allowed on values | Oracle Database Object-Relational
in a REF column and how these actions affect Developer’s Guide to learn about REF
dependent values. In an object-relational database, a constraints

built-in data type called a REF encapsulates a reference
to a row object of a specified object type. Referential
integrity constraints on REF columns ensure that there
is a row object for the REF.

See Also:
s "Overview of Tables" on page 2-6

» Oracle Database SQL Language Reference to learn more about the
types of constraints

NOT NULL Integrity Constraints

A NOT NULL constraint requires that a column of a table contain no null values. A null is
the absence of a value. By default, all columns in a table allow nulls.

NOT NULL constraints are intended for columns that must not lack values. For example,
the hr. enpl oyees table requires a value in the | ast _name column. An attempt to insert
an employee row without a last name generates an error:

SQL> I NSERT I NTO hr. enpl oyees (enpl oyee_id, |ast_nanme) values (999, 'Snmith');

ERROR at |ine 1:
ORA-01400: cannot insert NULL into ("HR'."EVPLOYEES"."LAST NAME")

You can only add a column with a NOT NULL constraint if the table does not contain
any rows or if you specify a default value.
See Also:

» Oracle Database 2 Day Developer’s Guide for examples of adding NOT
NULL constraints to a table

» Oracle Database SQL Language Reference for restrictions on using
NOT NULL constraints

» Oracle Database Advanced Application Developer’s Guide to learn
when to use the NOT NULL constraint

Unique Constraints

A unique key constraint requires that every value in a column or set of columns be
unique. No rows of a table may have duplicate values in a column (the unique key) or
set of columns (the composite unique key) with a unique key constraint.

Data Integrity 5-3

Types of Integrity Constraints

Note: The term key refers only to the columns defined in the
integrity constraint. Because the database enforces a unique constraint
by implicitly creating or reusing an index on the key columns, the
term unique key is sometimes incorrectly used as a synonym for
unique key constraint or unique index.

Unique key constraints are appropriate for any column where duplicate values are not
allowed. Unique constraints differ from primary key constraints, whose purpose is to
identify each table row uniquely, and typically contain values that have no significance
other than being unique. Examples of unique keys include:

= A customer phone number, where the primary key is the customer number
= A department name, where the primary key is the department number

As shown in Example 2-1 on page 2-8, a unique key constraint exists on the ensi |
column of the hr. enpl oyees table. The relevant part of the statement is as follows:

CREATE TABLE enpl oyees

(...
, emil VARCHAR2(25)

CONSTRAINT enp_email _nn NOT NULL ...
, CONSTRAI NT enp_email _uk UNIQUE (email) ...);

The enp_emai | _uk constraint ensures that no two employees have the same email
address, as shown in Example 5-1.

Example 5-1 Unique Constraint

SQL> SELECT enpl oyee_id, |ast_nane, email FROM enpl oyees WHERE emai|l = 'PFAY';
EMPLOYEE_| D LAST_NAME EMAI L
202 Fay PFAY

SQL> I NSERT | NTO enpl oyees (enpl oyee_id, |ast_name, email, hire_date, job_id)
1 VALUES (999,' Fay','PFAY', SYSDATE, ' ST _CLERK');

ERROR at line 1:
ORA-00001: unique constraint (HR EMP_EMAIL_UK) viol ated

Unless a NOT NULL constraint is also defined, a null always satisfies a unique key
constraint. Thus, columns with both unique key constraints and NOT NULL constraints
are typical. This combination forces the user to enter values in the unique key and
eliminates the possibility that new row data conflicts with existing row data.

Note: Because of the search mechanism for unique key constraints
on multiple columns, you cannot have identical values in the non-null
columns of a partially null composite unique key constraint.

5-4 Oracle Database Concepts

Types of Integrity Constraints

See Also:
s "Unique and Nonunique Indexes" on page 3-4

» Oracle Database 2 Day Developer’s Guide for examples of adding
UNI QUE constraints to a table

Primary Key Constraints

In a primary key constraint, the values in the group of one or more columns subject to
the constraint uniquely identify the row. Each table can have one primary key, which
in effect names the row and ensures that no duplicate rows exist.

A primary key can be natural or a surrogate. A natural key is a meaningful identifier
made of existing attributes in a table. For example, a natural key could be a postal code
in a lookup table. In contrast, a surrogate key is a system-generated incrementing
identifier that ensures uniqueness within a table. Typically, surrogate keys are
generated by a sequence.

The Oracle Database implementation of the primary key constraint guarantees that the
following statements are true:

= No two rows have duplicate values in the specified column or set of columns.
s The primary key columns do not allow nulls.

A typical situation calling for a primary key is the numeric identifier for an employee.
Each employee must have a unique ID. A employee must be described by one and
only one row in the enpl oyees table.

Example 5-1 indicates that an existing employee has the employee ID of 202, where
the employee ID is the primary key. The following example shows an attempt to add
an employee with the same employee ID and an employee with no ID:

SQL> | NSERT I NTO enpl oyees (enpl oyee_id, |ast_name, email, hire_date, job_id)
1 VALUES (202,' Chan','|CHAN , SYSDATE, ' ST_CLERK);

ERRCR at line 1:
ORA- 00001: uni que constraint (HR EMP_EMP_ID PK) viol ated

SQL> I NSERT I NTO enpl oyees (last_nanme) VALUES (' Chan');

ERROR at |ine 1:
ORA- 01400: cannot insert NULL into ("HR'."EMPLOYEES'."EMPLOYEE | D")

The database enforces primary key constraints with an index. Usually, a primary key
constraint created for a column implicitly creates a unique index and a NOT NULL
constraint. Note the following exceptions to this rule:

= In some cases, as when you create a primary key with a deferrable constraint, the
generated index is not unique.

Note: You can explicitly create a unique index with the CREATE
UNI QUE | NDEX statement.

Data Integrity 5-5

Types of Integrity Constraints

= If a usable index exists when a primary key constraint is created, then the
constraint reuses this index and does not implicitly create a new one.

By default the name of the implicitly created index is the name of the primary key
constraint. You can also specify a user-defined name for an index. You can specify
storage options for the index by including the ENABLE clause in the CREATE TABLE or
ALTER TABLE statement used to create the constraint.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
Advanced Application Developer’s Guide to learn how to add primary
key constraints to a table

Foreign Key Constraints

Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a foreign key constraint, also
called a referential integrity constraint. The constraint requires that for each value in
the column on which the constraint is defined, the value in the other specified other
table and column must match. An example of a referential integrity rule is an
employee can work for only an existing department.

Table 5-2 lists terms associated with referential integrity constraints.

Table 5-2 Referential Integrity Constraint Terms

Term Definition

Foreign key The column or set of columns included in the definition of the constraint
that reference a referenced key. For example, the depar t ment _i d column in
enpl oyees is a foreign key that references the depart ment _i d column in
departnents.

Foreign keys may be defined as multiple columns. However, a composite
foreign key must reference a composite primary or unique key with the
same number of columns and the same data types.

The value of foreign keys can match either the referenced primary or
unique key value, or be null. If any column of a composite foreign key is
null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.

Referenced key =~ The unique key or primary key of the table referenced by a foreign key. For
example, the depart ment _i d column in depar t ment s is the referenced key
for the depar t ment _i d column in enpl oyees.

Dependent or The table that includes the foreign key. This table is dependent on the
child table values present in the referenced unique or primary key. For example, the
enpl oyees table is a child of depart ment s.

Referenced or The table that is referenced by the foreign key of the child table. It is this

parent table table's referenced key that determines whether specific inserts or updates
are allowed in the child table. For example, the depart ment s table is a
parent of enpl oyees.

Figure 5-1 shows a foreign key on the enpl oyees. depart ment _i d column. It
guarantees that every value in this column must match a value in the

depart ment s. depar t ment _i d column. Thus, no erroneous department numbers can
exist in the enpl oyees. departnment i d column.

5-6 Oracle Database Concepts

Types of Integrity Constraints

Figure 5-1 Referential Integrity Constraints

Parent Key
Primary key of
referenced table

Referenced or Parent Table

Table DEPARTMENTS
DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_IDl LOCATION_ID

90 | Executive 100 1700

60 | IT | 103 | 1400

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of

| referenced table)
1
Dependent or Child Table 1
Ll
Table EMPLOYEES : ‘
EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID | DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG 102 60

This row violates the referential
constraint because "99" is not
present in the referenced table's

primary key; therefore, the row

:N-SFSRT is not allowed in the table.

207 Ashdown AASHDOWN 17-DEC-07 MK_MAN 100 99 ——,
208 Green BGREEN 17-DEC-07 AC_MGR 101 _—\

This row is allowed in the table
because a null value is entered

in the DEPARTMENT_ID column;
however, if a not null constraint

is also defined for this column,
this row is not allowed.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database

Advanced Application Developer’s Guide to learn how to add foreign key
constraints to a table

Self-Referential Integrity Constraints

Figure 5-2 shows a self-referential integrity constraint. In this case, a foreign key
references a parent key in the same table.

In Figure 5-2, the referential integrity constraint ensures that every value in the
enpl oyees. manager _i d column corresponds to an existing value in the

enpl oyees. enpl oyee_i d column. For example, the manager for employee 102 must
exist in the enpl oyees table. This constraint eliminates the possibility of erroneous
employee numbers in the manager _i d column.

Data Integrity 5-7

Types of Integrity Constraints

Figure 5-2 Single Table Referential Constraints

Primary Key

of referenced table

Referenced or Parent Table -~

Foreign Key

(values in dependent table must match
a value in unique key or primary key of
referenced table)

Dependent or Child Table

Table EMPLOYEES

—EMPLOYEE_ID LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | VANAGER_ID | DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG 102 60
—— This row violates the referential
constraint, because "400" is
not present in the referenced
INSERT table's primary key; therefore,
INTO it is not allowed in the table.
207 Ashdown AASHDOWN 01-DEC-07 IT_PROG 400 60

Nulls and Foreign Keys

The relational model permits the value of foreign keys to match either the referenced
primary or unique key value, or be null. For example, a user could insert a row into
hr. enpl oyees without specifying a department ID.

If any column of a composite foreign key is null, then the non-null portions of the key
do not have to match any corresponding portion of a parent key.

Parent Key Modifications and Foreign Keys

The relationship between foreign key and parent key has implications for deletion of
parent keys. For example, if a user attempts to delete the record for this department,
then what happens to the records for employees in this department?

When a parent key is modified, referential integrity constraints can specify the
following actions to be performed on dependent rows in a child table:

= No action on deletion or update

In the normal case, users cannot modify referenced key values if the results would
violate referential integrity. For example, if enpl oyees. depart ment _i d is a foreign
key to depar t nent s, and if employees belong to a particular department, then an
attempt to delete the row for this department violates the constraint.

= Cascading deletions

A deletion cascades (DELETE CASCADE) when rows containing referenced key
values are deleted, causing all rows in child tables with dependent foreign key
values to also be deleted. For example, the deletion of a row in depart nent s causes
rows for all employees in this department to be deleted.

» Deletions that set null

A deletion sets null (DELETE SET NULL) when rows containing referenced key
values are deleted, causing all rows in child tables with dependent foreign key

5-8 Oracle Database Concepts

Types of Integrity Constraints

values to set those values to null. For example, the deletion of a department row
sets the depart nent _i d column value to null for employees in this department.

Table 5-3 outlines the DML statements allowed by the different referential actions on
the key values in the parent table, and the foreign key values in the child table.

Table 5-3 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table
| NSERT Always OK if the parent key valueis ~ OK only if the foreign key value
unique exists in the parent key or is
partially or all null
UPDATE NOACTION Allowed if the statement does not Allowed if the new foreign key
leave any rows in the child table value still references a

without a referenced parent key value referenced key value

DELETE NOACTI ON Allowed if no rows in the child table ~ Always OK
reference the parent key value

DELETE CASCADE Always OK Always OK
DELETE SET NULL Always OK Always OK

Note: Other referential actions not supported by FOREI GN KEY
integrity constraints of Oracle Database can be enforced using
database triggers. See "Overview of Triggers" on page 8-16.

See Also: Oracle Database SQL Language Reference to learn about the
ON DELETE clause

Indexes and Foreign Keys

As a rule, foreign keys should be indexed. The only exception is when the matching
unique or primary key is never updated or deleted. Indexing the foreign keys in child
tables provides the following benefits:

» Prevents a full table lock on the child table. Instead, the database acquires a row
lock on the index.

s Removes the need for a full table scan of the child table. As an illustration,
assume that a user removes the record for department 10 from the depart ment s
table. If enpl oyees. depart ment _i d is not indexed, then the database must scan
enpl oyees to see if any employees exist in department 10.

See Also: "Locks and Foreign Keys" on page 9-21 and "Overview of
Indexes" on page 3-1

Check Constraints

A check constraint on a column or set of columns requires that a specified condition
be true or unknown for every row. If DML results in the condition of the constraint
evaluating to false, then the SQL statement is rolled back.

The chief benefit of check constraints is the ability to enforce very specific integrity
rules. For example, you could use check constraints to enforce the following rules in
the hr . enpl oyees table:

s The sal ary column must not have a value greater than 10000.

Data Integrity 5-9

States of Integrity Constraints

s The commi ssi on column must have a value that is not greater than the salary.

The following example creates a maximum salary constraint on enpl oyees and
demonstrates what happens when a statement attempts to insert a row containing a
salary that exceeds the maximum:

SQL> ALTER TABLE enpl oyees ADD CONSTRAI NT max_enp_sal CHECK (sal ary < 10001);
SQL> I NSERT I NTO enpl oyees (enpl oyee_id,|ast_nane,email,hire_date,job_id, salary)
1 VALUES (999,' Green',' BGREEN , SYSDATE, ' ST_CLERK' , 20000) ;

ERRCR at line 1:
ORA- 02290: check constraint (HR MAX_EMP_SAL) vi ol at ed

A single column can have multiple check constraints that reference the column in its
definition. For example, the sal ary column could have one constraint that prevents
values over 10000 and a separate constraint that prevents values less than 500.

If multiple check constraints exist for a column, then they must be designed so their
purposes do not conflict. No order of evaluation of the conditions can be assumed. The
database does not verify that check conditions are not mutually exclusive.

See Also: Oracle Database SQL Language Reference to learn about
restrictions for check constraints

States of Integrity Constraints

As part of constraint definition, you can specify how and when Oracle Database
should enforce the constraint, thereby determining the constraint state.

Checks for Modified and Existing Data

The database enables you to specify whether a constraint applies to existing data or
future data. If a constraint is enabled, then the database checks new data as it is
entered or updated. Data that does not conform to the constraint cannot enter the
database. For example, enabling a NOT NULL constraint on enpl oyees. depart ment _i d
guarantees that every future row has a department ID. If a constraint is disabled, then
the table can contain rows that violate the constraint.

You can set constraints to validate (VALI DATE) or not validate (NOVALI DATE) existing
data. If VALI DATE is specified, then existing data must conform to the constraint. For
example, enabling a NOT NULL constraint on enpl oyees. depart ment _i d and setting it
to VALI DATE checks that every existing row has a department ID. If NOVALI DATE is
specified, then existing data need not conform to the constraint.

The behavior of VALI DATE and NOVALI DATE always depends on whether the constraint
is enabled or disabled. Table 5-4 summarizes the relationships.

Table 5-4 Checks on Modified and Existing Data

Modified Data | Existing Data | Summary

ENABLE VALI DATE Existing and future data must obey the constraint. An
attempt to apply a new constraint to a populated table
results in an error if existing rows violate the constraint.

ENABLE NOVALI DATE The database checks the constraint, but it need not be true
for all rows. Thus, existing rows can violate the constraint,
but new or modified rows must conform to the rules.

5-10 Oracle Database Concepts

States of Integrity Constraints

Table 5-4 (Cont.) Checks on Modified and Existing Data

Modified Data | Existing Data | Summary

DI SABLE VALI DATE The database disables the constraint, drops its index, and
prevents modification of the constrained columns.

DI SABLE NOVALI DATE The constraint is not checked and is not necessarily true.

See Also: Oracle Database SQL Language Reference to learn about
constraint states

Deferrable Constraints

Every constraint is either in a not deferrable (default) or deferrable state. This state
determines when Oracle Database checks the constraint for validity. The following
graphic depicts the options for deferrable constraints.

Initially Immediate

Deferrable

Initially Deferred

Nondeferrable and Initially Immediate

Nondeferrable Constraints

If a constraint is not deferrable, then Oracle Database never defers the validity check of
the constraint to the end of the transaction. Instead, the database checks the constraint
at the end of each statement. If the constraint is violated, then the statement rolls back.

For example, assume that you create a nondeferrable NOT NULL constraint for the
enpl oyees. | ast _nane column. If a user attempts to insert a row with no last name,
then the database immediately rolls back the statement because the NOT NULL
constraint is violated. No row is inserted.

Deferrable Constraints

A deferrable constraint permits a transaction to use the SET CONSTRAI NT clause to
defer checking of this constraint until a COWM T statement is issued. If you make
changes to the database that might violate the constraint, then this setting effectively
lets you disable the constraint until all the changes are complete.

You can set the default behavior for when the database checks the deferrable
constraint. You can specify either of the following attributes:

= | NITIALLY | MVEDI ATE

The database checks the constraint immediately after each statement executes. If
the constraint is violated, then the database rolls back the statement.

= | NITIALLY DEFERRED

The database checks the constraint when a COW T is issued. If the constraint is
violated, then the database rolls back the transaction.

Assume that a deferrable NOT NULL constraint on enpl oyees. | ast _nane is set to
I NI TI ALLY DEFERRED. A user creates a transaction with 100 | NSERT statements, some of

Data Integrity 5-11

States of Integrity Constraints

which have null values for | ast _nanme. When the user attempts to commit, the
database rolls back all 100 statements. However, if this constraint were set to
I NI TIALLY | MVEDI ATE, then the database would not roll back the transaction.

If a constraint causes an action, then the database considers this action as part of the
statement that caused it, whether the constraint is deferred or immediate. For example,
deleting a row in depart nent s causes the deletion of all rows in enpl oyees that
reference the deleted department row. In this case, the deletion from enpl oyees is
considered part of the DELETE statement executed against depar t nent s.

See Also: Oracle Database SQL Language Reference for information
about constraint attributes and their default values

Examples of Constraint Checking

Some examples may help illustrate when Oracle Database performs the checking of
constraints. Assume the following:

= The enpl oyees table has the structure shown in Figure 5-2 on page 5-8.

» The self-referential constraint makes entries in the manager _i d column dependent
on the values of the enpl oyee_i d column.

Insertion of a Value in a Foreign Key Column When No Parent Key Value Exists

Consider the insertion of the first row into the enpl oyees table. No rows currently
exist, so how can a row be entered if the value in the manager _i d column cannot
reference any existing value in the enpl oyee_i d column? Some possibilities are:

s A null can be entered for the manager _i d column of the first row, if the nanager _i d
column does not have a NOT NULL constraint defined on it.

Because nulls are allowed in foreign keys, this row is inserted into the table.

s The same value can be entered in the enpl oyee_i d and manager _i d columns,
specifying that the employee is his or her own manager.

This case reveals that Oracle Database performs its constraint checking after the
statement has been completely run. To allow a row to be entered with the same
values in the parent key and the foreign key, the database must first run the
statement (that is, insert the new row) and then determine whether any row in the
table has an enpl oyee_i d that corresponds to the manager _i d of the new row.

= A multiple row | NSERT statement, such as an | NSERT statement with nested SELECT
statement, can insert rows that reference one another.

For example, the first row might have 200 for employee ID and 300 for manager
ID, while the second row has 300 for employee ID and 200 for manager. Constraint
checking is deferred until the complete execution of the statement. All rows are
inserted first, and then all rows are checked for constraint violations.

Default values are included as part of an | NSERT statement before the statement is
parsed. Thus, default column values are subject to all integrity constraint checking.

An Update of All Foreign Key and Parent Key Values

Consider the same self-referential integrity constraint in a different scenario. The
company has been sold. Because of this sale, all employee numbers must be updated
to be the current value plus 5000 to coordinate with the employee numbers of the new
company. Because manager numbers are really employee numbers (see Figure 5-3),
the manager numbers must also increase by 5000.

5-12 Oracle Database Concepts

States of Integrity Constraints

Figure 5-3 The employees Table Before Updates

EMPLOYEE_ID | MANAGER_ID

210
211 210
212 211

You could execute the following SQL statement to update the values:

UPDATE enpl oyees SET enpl oyee_id = enpl oyee_id + 5000,
manager _id = manager _id + 5000;

Although a constraint is defined to verify that each manager _i d value matches an
enpl oyee_i d value, the preceding statement is legal because the database effectively
checks constraints after the statement completes. Figure 5-4 shows that the database
performs the actions of the entire SQL statement before checking constraints.

Figure 5-4 Constraint Checking

EMPLOYEE_ID MANAGER_ID

EMPLOYEE_ID |MANAGER_ID EMPLOYEE_ID |MANAGER_ID

5210
5211 5210
212 211

5210
5211 5210
5212 5211

5210
211 210
212 211

Update to Update to Update to Constraints
first row second row third row checked

The examples in this section illustrate the constraint checking mechanism during

| NSERT and UPDATE statements, but the database uses the same mechanism for all types
of DML statements. The same mechanism is used for all types of constraints, not just
self-referential constraints.

Note: Operations on a view or synonym are subject to the
integrity constraints defined on the base tables.

Data Integrity 5-13

States of Integrity Constraints

5-14 Oracle Database Concepts

S

Data Dictionary and Dynamic Performance
Views

This chapter describes the central set of read-only reference tables and views of each
Oracle database, known collectively as the data dictionary. The chapter also describes
the dynamic performance views, which are special views that are continuously
updated while a database is open and in use.

This chapter contains the following sections:
= Overview of the Data Dictionary
s Overview of the Dynamic Performance Views

= Database Object Metadata

Overview of the Data Dictionary

An important part of an Oracle database is its data dictionary, which is a read-only set
of tables that provides administrative metadata about the database. A data dictionary
contains information such as the following;:

= The definitions of every schema object in the database, including default values
for columns and integrity constraint information

s The amount of space allocated for and currently used by the schema objects

= The names of Oracle Database users, privileges and roles granted to users, and
auditing information related to users (see "User Accounts” on page 17-1)

The data dictionary is a central part of data management for every Oracle database.
For example, the database performs the following actions:

» Accesses the data dictionary to find information about users, schema objects, and
storage structures

= Modifies the data dictionary every time that a DDL statement is issued (see "Data
Definition Language (DDL) Statements" on page 7-3)

Because Oracle Database stores data dictionary data in tables, just like other data,
users can query the data with SQL. For example, users can run SELECT statements to
determine their privileges, which tables exist in their schema, which columns are in
these tables, whether indexes are built on these columns, and so on.

See Also: "Introduction to Schema Objects" on page 2-1

Data Dictionary and Dynamic Performance Views 6-1

Overview of the Data Dictionary

Contents of the Data Dictionary
The data dictionary consists of the following types of objects:

s Base tables

These underlying tables store information about the database. Only Oracle
Database should write to and read these tables. Users rarely access the base tables
directly because they are normalized and most data is stored in a cryptic format.

s Views

These views decode the base table data into useful information, such as user or
table names, using joins and WHERE clauses to simplify the information. These
views contain the names and description of all objects in the data dictionary. Some
views are accessible to all database users, whereas others are intended for
administrators only.

Typically, data dictionary views are grouped in sets. In many cases, a set consists of
three views containing similar information and distinguished from each other by their
prefixes, as shown in Table 6-1. By querying the appropriate views, you can access
only the information relevant for you.

Table 6-1 Data Dictionary View Sets

Prefix User Access Contents Notes
DBA_ Database All objects Some DBA_ views have additional columns
administrators containing information useful to the
administrator.

ALL_ All users Objects to which Includes objects owned by user. These views
user has privileges obey the current set of enabled roles.

USER_ All users Objects owned by Views with the prefix USER_ usually exclude the
user column OWNER. This column is implied in the

USER _ views to be the user issuing the query.

Not all views sets have three members. For example, the data dictionary contains a
DBA LOCK view but no ALL_LOCK view.

The system-supplied DI CTI ONARY view contains the names and abbreviated
descriptions of all data dictionary views. The following query of this view includes
partial sample output:

SQL> SELECT * FROM DI CTI ONARY
2 CORDER BY TABLE_NAME;

TABLE_NAVE COVMENTS

ALL_ALL_TABLES Description of all object and relational
tabl es accessible to the user

ALL_APPLY Detail s about each apply process that

dequeues fromthe queue visible to the
current user

6-2 Oracle Database Concepts

Overview of the Data Dictionary

See Also:

» Oracle Database Reference for a complete list of data dictionary
views and their columns

= "Overview of Views" on page 4-12

Views with the Prefix DBA_

Views with the prefix DBA_show all relevant information in the entire database. DBA_
views are intended only for administrators.

For example, the following query shows information about all objects in the database:

SELECT OWNER, OBJECT_NAME, OBJECT_TYPE
FROM DBA_OBJECTS
CRDER BY OMNER, OBJECT_NAME;

See Also: Oracle Database Administrator’s Guide for detailed
information on administrative privileges

Views with the Prefix ALL _

Views with the prefix ALL_ refer to the user's overall perspective of the database. These
views return information about schema objects to which the user has access through
public or explicit grants of privileges and roles, in addition to schema objects that the
user owns.

For example, the following query returns information about all the objects to which
you have access:

SELECT OWKER, OBJECT NAME, OBJECT TYPE
FROM ALL_OBJECTS
ORDER BY OMER OBJECT NAME;

Because the ALL_ views obey the current set of enabled roles, query results depend on
which roles are enabled, as shown in the following example:

SQL> SET ROLE ALL;
Rol e set.

SQL> SELECT COUNT(*) FROM ALL_OBJECTS;

SQL> SET ROLE NONE;
Rol e set.

SQL> SELECT COUNT(*) FROM ALL_OBJECTS;

Application developers should be cognizant of the effect of roles when using ALL _
views in a stored procedure, where roles are not enabled by default.

See Also: "PL/SQL Subprograms" on page 8-3

Data Dictionary and Dynamic Performance Views 6-3

Overview of the Data Dictionary

Views with the Prefix USER_

The views most likely to be of interest to typical database users are those with the
prefix USER_. These views:

= Refer to the user's private environment in the database, including metadata about
schema objects created by the user, grants made by the user, and so on

= Display only rows pertinent to the user, returning a subset of the information in
the ALL_ views

= Has columns identical to the other views, except that the column OMER is implied
= Can have abbreviated PUBLI C synonyms for convenience
For example, the following query returns all the objects contained in your schema:

SELECT OBJECT NAME, OBJECT TYPE
FROM USER OBJECTS
ORDER BY OBJECT NAME:

The DUAL Table

DUAL is a small table in the data dictionary that Oracle Database and user-written
programs can reference to guarantee a known result. The dual table is useful when a
value must be returned only once, for example, the current date and time. All database
users have access to DUAL.

The DUAL table has one column called DUMMY and one row containing the value X. The
following example queries DUAL to perform an arithmetical operation:

SQL> SELECT ((3*4)+5)/3 FROM DUAL:

5. 66666667

See Also: Oracle Database SQL Language Reference for more
information about the DUAL table

Storage of the Data Dictionary

The data dictionary base tables are the first objects created in any Oracle database. All
data dictionary tables and views for a database are stored in the SYSTEMtablespace.
Because the SYSTEMtablespace is always online when the database is open, the data
dictionary is always available when the database is open.

See Also: "The SYSTEM Tablespace" on page 12-32 for more
information about the SYSTEMtablespace

How Oracle Database Uses the Data Dictionary

The Oracle Database user SYS owns all base tables and user-accessible views of the
data dictionary. Data in the base tables of the data dictionary is necessary for Oracle
Database to function. Therefore, only Oracle Database should write or change data
dictionary information. No Oracle Database user should ever alter rows or schema
objects contained in the SYS schema because such activity can compromise data
integrity. The security administrator must keep strict control of this central account.

Caution: Altering or manipulating the data in data dictionary
tables can permanently and detrimentally affect database operation.

6-4 Oracle Database Concepts

Overview of the Dynamic Performance Views

During database operation, Oracle Database reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle Database also
updates the data dictionary continuously to reflect changes in database structures,
auditing, grants, and data.

For example, if user hr creates a table named i nt er ns, then new rows are added to the
data dictionary that reflect the new table, columns, segment, extents, and the
privileges that hr has on the table. This new information is visible the next time the
dictionary views are queried.

See Also: "SYS and SYSTEM Schemas" on page 2-5

Public Synonyms for Data Dictionary Views

Oracle Database creates public synonyms for many data dictionary views so users can
access them conveniently. The security administrator can also create additional public
synonyms for schema objects that are used systemwide. Users should avoid naming
their own schema objects with the same names as those used for public synonyms.

See Also: "Overview of Synonyms" on page 4-22

Cache the Data Dictionary for Fast Access

Much of the data dictionary information is in the data dictionary cache because the
database constantly requires the information to validate user access and verify the
state of schema objects. Parsing information is typically kept in the caches. The
COWMENTS columns describing the tables and their columns are not cached in the
dictionary cache, but may be cached in the database buffer cache.

See Also: "Data Dictionary Cache" on page 14-19

Other Programs and the Data Dictionary

Other Oracle Database products can reference existing views and create additional
data dictionary tables or views of their own. Application developers who write
programs that refer to the data dictionary should refer to the public synonyms rather
than the underlying tables. Synonyms are less likely to change between releases.

Overview of the Dynamic Performance Views

Throughout its operation, Oracle Database maintains a set of virtual tables that record
current database activity. These views are called dynamic performance views because
they are continuously updated while a database is open and in use. The views, also
sometimes called V$ views, contain information such as the following:

= System and session parameters

= Memory usage and allocation

» File states (including RMAN backup files)

= Progress of jobs and tasks

s SQL execution

= Statistics and metrics

The dynamic performance views have the following primary uses:

= Oracle Enterprise Manager uses the views to obtain information about the
database (see "Oracle Enterprise Manager" on page 18-2).

Data Dictionary and Dynamic Performance Views 6-5

Database Object Metadata

= Administrators can use the views for performance monitoring and debugging.

See Also: Oracle Database Reference for a complete list of the
dynamic performance views

Contents of the Dynamic Performance Views

Dynamic performance views are sometimes called fixed views because they cannot be
altered or removed by a database administrator. However, database administrators can
query and create views on the tables and grant access to these views to other users.

SYS owns the dynamic performance tables, whose names begin with V_$. Views are
created on these tables, and then public synonyms prefixed with V8. For example, the
V$DATAFI LE view contains information about data files. The V$FI XED TABLE view
contains information about all of the dynamic performance tables and views.

For almost every V$ view, a corresponding GV$ view exists. In Oracle Real Application
Clusters (Oracle RAC), querying a GV$ view retrieves the V$ view information from all
qualified database instances (see "Database Server Grid" on page 17-12).

When you use the Database Configuration Assistant (DBCA) to create a database,
Oracle automatically creates the data dictionary. Oracle Database automatically runs
the cat al 0g. sgl script, which contains definitions of the views and public synonyms
for the dynamic performance views. You must run cat al 0g. sql to create these views
and synonyms.

See Also:

= "Tools for Database Installation and Configuration” on page 18-4
to learn about DBCA

m Oracle Database Administrator’s Guide to learn how to run
cat al 0og. sql manually

» Oracle Real Application Clusters Administration and Deployment
Guide to learn about using performance views in Oracle RAC

Storage of the Dynamic Performance Views

Dynamic performance views are based on virtual tables built from database memory
structures. Thus, they are not conventional tables stored in the database. Read
consistency is not guaranteed for the views because the data is updated dynamically.

Because the dynamic performance views are not true tables, the data is dependent on
the state of the database and instance. For example, you can query V$| NSTANCE and
V$BGPROCESS when the database is started but not mounted. However, you cannot
query V$DATAFI LE until the database has been mounted.

See Also: Chapter 9, "Data Concurrency and Consistency"

Database Object Metadata

The DBMS_METADATA package provides interfaces for extracting complete definitions of
database objects. The definitions can be expressed either as XML or as SQL DDL. Two
styles of interface are provided: a flexible, sophisticated interface for programmatic
control, and a simplified interface for ad hoc querying.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about DBMS_METADATA

Oracle Database Concepts

Part I

Oracle Data Access

This part contains the following chapters:
» Chapter 7, "SQL"
» Chapter 8, "Server-Side Programming: PL/SQL and Java"

v

SOL

This chapter provides an overview of the Structured Query Language (SQL) and how
Oracle Database processes SQL statements.

This chapter includes the following topics:
s Introduction to SQL

s Overview of SQL Statements

s Overview of the Optimizer

s Overview of SQL Processing

Introduction to SQL

SQL (pronounced sequel) is the set-based, high-level declarative computer language
with which all programs and users access data in an Oracle database. Although some
Oracle tools and applications mask SQL use, all database operations are performed
using SQL. Any other data access method circumvents the security built into Oracle
Database and potentially compromises data security and integrity.

SQL provides an interface to a relational database such as Oracle Database. SQL
unifies tasks such as the following in one consistent language:

s Creating, replacing, altering, and dropping objects
= Inserting, updating, and deleting table rows

= Querying data

= Controlling access to the database and its objects

= Guaranteeing database consistency and integrity

SQL can be used interactively, which means that statements are entered manually into
a program. SQL statements can also be embedded within a program written in a
different language such as C or Java.

See Also:
» Oracle Database SQL Language Reference for an introduction to SQL

s "Introduction to Server-Side Programming" on page 8-1 and
"Client-Side Database Programming" on page 19-5

SQL Data Access

There are two broad families of computer languages: declarative languages that are
nonprocedural and describe what should be done, and procedural languages such as

sQL 7-1

Introduction to SQL

C++ and Java that describe how things should be done. SQL is declarative in the sense
that users specify the result that they want, not how to derive it. The SQL language
compiler performs the work of generating a procedure to navigate the database and
perform the desired task.

SQL enables you to work with data at the logical level. You need be concerned with
implementation details only when you want to manipulate the data. For example, the
following statement queries records for employees whose last name begins with K:

SELECT last_nane, first_name
FROM hr. enpl oyees

WHERE | ast _name LIKE ' K%
ORDER BY | ast_nane, first_nang;

The database retrieves all rows satisfying the WHERE condition, also called the
predicate, in a single step. These rows can be passed as a unit to the user, to another
SQL statement, or to an application. You do not need to process the rows one by one,
nor are you required to know how the rows are physically stored or retrieved.

All SQL statements use the optimizer, a part of Oracle Database that determines the
most efficient means of accessing the specified data. Oracle Database also supports
techniques that you can use to make the optimizer perform its job better.

See Also: Oracle Database SQL Language Reference for detailed
information about SQL statements and other parts of SQL (such as
operators, functions, and format models)

SQL Standards

Oracle strives to follow industry-accepted standards and participates actively in SQL
standards committees. Industry-accepted committees are the American National
Standards Institute (ANSI) and the International Organization for Standardization
(ISO). Both ANSI and the ISO/IEC have accepted SQL as the standard language for
relational databases.

The latest SQL standard was adopted in July 2003 and is often called SQL:2003. One
part of the SQL standard, Part 14, SQL/XML (ISO/IEC 9075-14) was revised in 2006
and is often referred to as SQL/XML:2006.

Oracle SQL includes many extensions to the ANSI/ISO standard SQL language, and
Oracle Database tools and applications provide additional statements. The tools
SQL*Plus, SQL Developer, and Oracle Enterprise Manager enable you to run any
ANSI/ISO standard SQL statement against an Oracle database and any additional
statements or functions available for those tools.

See Also:

» Oracle Database SQL Language Reference for an explanation of the
differences between Oracle SQL and standard SQL

s SQL*Plus User's Guide and Reference for SQL*Plus commands,
including their distinction from SQL statements

= "Tools for Database Administrators" on page 18-2 and "Tools for
Database Developers" on page 19-1

7-2 Oracle Database Concepts

Overview of SQL Statements

Overview of SQL Statements

All operations performed on the information in an Oracle database are run using SQL
statements. A SQL statement is a computer program or instruction that consists of
identifiers, parameters, variables, names, data types, and SQL reserved words.

Note: SQL reserved words have special meaning in SQL and should
not be used for any other purpose. For example, SELECT and UPDATE
are reserved words and should not be used as table names.

A SQL statement must be the equivalent of a complete SQL sentence, such as:

SELECT | ast _nane, departnent_id FROM enpl oyees

Oracle Database only runs complete SQL statements. A fragment such as the following
generates an error indicating that more text is required:

SELECT | ast _nang;

Oracle SQL statements are divided into the following categories:
= Data Definition Language (DDL) Statements

= Data Manipulation Language (DML) Statements

s Transaction Control Statements

= Session Control Statements

= System Control Statement

s Embedded SQL Statements

Data Definition Language (DDL) Statements

Data definition language (DDL) statements define, structurally change, and drop
schema objects. For example, DDL statements enable you to:

» Create, alter, and drop schema objects and other database structures, including the
database itself and database users. Most DDL statements start with the keywords
CREATE, ALTER, or DRCP.

» Delete all the data in schema objects without removing the structure of these
objects (TRUNCATE).

Note: Unlike DELETE, TRUNCATE generates no undo data, which
makes it faster than DELETE. Also, TRUNCATE does not invoke delete
triggers.

= Grant and revoke privileges and roles (GRANT, REVCKE).
s Turn auditing options on and off (AUDI T, NCAUDI T).
s Add a comment to the data dictionary (COVVENT).

DDL enables you to alter attributes of an object without altering the applications that
access the object. For example, you can add a column to a table accessed by a human
resources application without rewriting the application. You can also use DDL to alter
the structure of objects while database users are performing work in the database.

SQL 7-3

Overview of SQL Statements

Example 7-1 uses DDL statements to create the pl ant s table and then uses DML to
insert two rows in the table. The example then uses DDL to alter the table structure,
grant and revoke privileges on this table to a user, and then drop the table.

Example 7-1 DDL Statements

CREATE TABLE pl ants
(plant_id NUMBER PRI MARY KEY,
common_nanme VARCHAR2(15));

I NSERT | NTO plants VALUES (1, 'African Violet'); # DV statenent
INSERT INTO plants VALUES (2, 'Amaryllis'); # DM statenent

ALTER TABLE pl ants ADD
(latin_name VARCHAR2(40));

GRANT SELECT ON plants TO scott;
REVOKE SELECT ON pl ants FROM scott;
DROP TABLE pl ants;

An implicit COM T occurs immediately before the database executes a DDL statement
and a COW T or ROLLBACK occurs immediately afterward. In Example 7-1, two | NSERT
statements are followed by an ALTER TABLE statement, so the database commits the
two | NSERT statements. If the ALTER TABLE statement succeeds, then the database
commits this statement; otherwise, the database rolls back this statement. In either case
the two | NSERT statements have already been committed.

See Also:

= "Overview of Database Security" on page 17-1 to learn about
privileges and roles

» Oracle Database 2 Day Developer’s Guide and Oracle Database
Administrator’s Guide to learn how to create schema objects

» Oracle Database SQL Language Reference for a list of DDL
statements

Data Manipulation Language (DML) Statements

Data manipulation language (DML) statements query or manipulate data in existing
schema objects. Whereas DDL statements enable you to change the structure of the
database, DML statements enable you to query or change the contents. For example,
ALTER TABLE changes the structure of a table, whereas | NSERT adds one or more rows
to the table.

DML statements are the most frequently used SQL statements and enable you to:
» Retrieve or fetch data from one or more tables or views (SELECT).

= Add new rows of data into a table or view (I NSERT) by specifying a list of column
values or using a subquery to select and manipulate existing data.

s Change column values in existing rows of a table or view (UPDATE).
= Update or insert rows conditionally into a table or view (MERGE).

s Remove rows from tables or views (DELETE).

7-4 Oracle Database Concepts

Overview of SQL Statements

» View the execution plan for a SQL statement (EXPLAI N PLAN). See "How Oracle
Database Processes DML" on page 7-22.

= Lock a table or view, temporarily limiting access by other users (LOCK TABLE).

The following example uses DML to query the enpl oyees table. The example uses
DML to insert a row into enpl oyees, update this row, and then delete it:

SELECT * FROM enpl oyees;

I NSERT | NTO enpl oyees (enpl oyee_id, |ast_nane, email, job_id, hire_date, salary)
VALUES (1234, 'Mascis', "JMASCIS, 'IT_PROG, '14-FEB-2008', 9000);

UPDATE enpl oyees SET sal ary=9100 WHERE enpl oyee_i d=1234;
DELETE FROM enpl oyees WHERE enpl oyee_i d=1234;

A collection of DML statements that forms a logical unit of work is called a
transaction. For example, a transaction to transfer money could involve three discrete
operations: decreasing the savings account balance, increasing the checking account
balance, and recording the transfer in an account history table. Unlike DDL
statements, DML statements do not implicitly commit the current transaction.

See Also:
s "Introduction to Transactions" on page 10-1

» Oracle Database 2 Day Developer’s Guide to learn how to query and
manipulate data

» Oracle Database SQL Language Reference for a list of DML
statements

SELECT Statements

A query is an operation that retrieves data from a table or view. SELECT is the only SQL
statement that you can use to query data. The set of data retrieved from execution of a
SELECT statement is known as a result set.

Table 7-1 shows two required keywords and two keywords that are commonly found
in a SELECT statement. The table also associates capabilities of a SELECT statement with
the keywords.

Table 7-1 Keywords in a SQL Statement

Keyword | Required? | Description Capability
SELECT Yes Specifies which columns should be shown in the Projection
result. Projection produces a subset of the columns in
the table.

An expression is a combination of one or more values,
operators, and SQL functions that resolves to a value.
The list of expressions that appears after the SELECT
keyword and before the FROMclause is called the select
list.

FROM Yes Specifies the tables or views from which the data Joining
should be retrieved.

VHERE No Specifies a condition to filter rows, producing a subset | Selection
of the rows in the table. A condition specifies a
combination of one or more expressions and logical
(Boolean) operators and returns a value of TRUE, FALSE,
or UNKNOM.

sSQL 75

Overview of SQL Statements

Table 7-1 (Cont.) Keywords in a SQL Statement

Keyword | Required? | Description Capability
ORDER BY | No Specifies the order in which the rows should be
shown.

See Also: Oracle Database SQL Language Reference for SELECT syntax
and semantics

Joins

A join is a query that combines rows from two or more tables, views, or materialized
views. Example 7-2 joins the enpl oyees and depart ment s tables (FROMclause), selects
only rows that meet specified criteria (WHERE clause), and uses projection to retrieve

data from two columns (SELECT). Sample output follows the SQL statement.

Example 7-2 Sample Join

SELECT emai |, department_nane
FROM enpl oyees JO N departnents

N enpl oyees. departnent _id = departnents. departnent _id
WHERE enpl oyee_id IN (100, 103)

ORDER BY emi | ;

ENVAI L DEPARTMENT _NAVE

AHUNOLD I'T

SKI NG Executive

Figure 7-1 graphically represents the operations of projection and selection in the join

shown in Example 7-2.

Figure 7-1 Projection and Selection

Table DEPARTMENTS Projection
DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID| LOCATION_ID Selection

60 | IT | 103 | 1400

1700 SELECT emi |, depart nent _nane
FROM enpl oyees JO N
departments

ON enpl oyees. departnent _id =
departnents. department _id
WHERE enpl oyee_id I N (100, 103)

90 | Executive 100

ORDER BY enmi |
Table EMPLOYEES
EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID | DEPARTMENT_ID
100 King SKING AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD IT_PROG | 102 60

Most joins have at least one join condition, either in the FROMclause or in the WHERE
clause, that compares two columns, each from a different table. The database combines
pairs of rows, each containing one row from each table, for which the join condition

7-6 Oracle Database Concepts

Overview of SQL Statements

evaluates to TRUE. The optimizer determines the order in which the database joins
tables based on the join conditions, indexes, and any available statistics for the tables.

Join types include the following:
s Innerjoins

An inner join is a join of two or more tables that returns only rows that satisfy the
join condition. For example, if the join condition is enpl oyees. depar t ment _

i d=depart nents. depart ment _i d, then rows that do not satisfy this condition are
not returned.

= Outer joins

An outer join returns all rows that satisfy the join condition and also returns rows
from one table for which no rows from the other table satisfy the condition. For
example, a left outer join of enpl oyees and depar t nent s retrieves all rows in the
enpl oyees table even if there is no match in depar t ment s. A right outer join
retrieves all rows in depart nent s even if there is no match in enpl oyees.

s Cartesian products

If two tables in a join query have no join condition, then the database returns their
Cartesian product. Each row of one table combines with each row of the other. For
example, if enpl oyees has 107 rows and depar t ment s has 27, then the Cartesian
product contains 107*27 rows. A Cartesian product is rarely useful.

See Also: Oracle Database SQL Language Reference for detailed
descriptions and examples of joins

Subqueries and Implicit Queries

A subquery is a SELECT statement nested within another SQL statement. Subqueries
are useful when you must execute multiple queries to solve a single problem.

Each query portion of a statement is called a query block. In Example 7-3, the
subquery in parentheses is the inner query block. The inner SELECT statement
retrieves the IDs of departments with location ID 1800. These department IDs are
needed by the outer query block, which retrieves names of employees in the
departments whose IDs were supplied by the subquery.

Example 7-3 Subquery

SELECT first_name, |ast_nane

FROM enpl oyees

WHERE departnent _id

IN (SELECT departnent _i d FROM departments WHERE | ocation_id = 1800);

The structure of the SQL statement does not force the database to execute the inner
query first. For example, the database could rewrite the entire query as a join of

enpl oyees and depart nent s, so that the subquery never executes by itself. As another
example, the Virtual Private Database (VPD) feature could restrict the query of
employees using a WHERE clause, so that the database decides to query the employees
first and then obtain the department IDs. The optimizer determines the best sequence
of steps to retrieve the requested rows.

An implicit query is a component of a DML statement that retrieves data without
using a subquery. An UPDATE, DELETE, or MERGE statement that does not explicitly
include a SELECT statement uses an implicit query to retrieve rows to be modified. For
example, the following statement includes an implicit query for the Baer record:

UPDATE enpl oyees

sQL 7-7

Overview of SQL Statements

SET salary = salary*1.1
WHERE | ast _nane = 'Baer';

The only DML statement that does not necessarily include a query component is an
| NSERT statement with a VALUES clause. For example, an | NSERT | NTO TABLE nyt abl e
VALUES (1) statement does not retrieve rows before inserting a row.

See Also: "Virtual Private Database (VPD)" on page 17-4

Transaction Control Statements

Transaction control statements manage the changes made by DML statements and
group DML statements into transactions. These statements enable you to:

= Make changes to a transaction permanent (COW T).

= Undo the changes in a transaction, since the transaction started (ROLLBACK) or since
a savepoint (ROLLBACK TO SAVEPQ NT). A savepoint is a user-declared
intermediate marker within the context of a transaction.

Note: The ROLLBACK command ends a transaction, but ROLLBACK TO
SAVEPQ NT does not.

= Set a point to which you can roll back (SAVEPQO NT).
= Establish properties for a transaction (SET TRANSACTI ON).

» Specify whether a deferrable integrity constraint is checked following each DML
statement or when the transaction is committed (SET CONSTRAI NT).

The following example starts a transaction named Updat e sal ari es. The example
creates a savepoint, updates an employee salary, and then rolls back the transaction to
the savepoint. The example updates the salary to a different value and commits.

SET TRANSACTI ON NAME ' Update sal aries';

SAVEPQ NT bef ore_sal ary_updat e;

UPDATE enpl oyees SET sal ary=9100 WHERE enpl oyee_i d=1234 # DM
ROLLBACK TO SAVEPO NT bef ore_sal ary_updat e;

UPDATE enpl oyees SET sal ary=9200 WHERE enpl oyee_i d=1234 # DM
COW T COWENT ' Updated sal aries';

See Also:
= "Introduction to Transactions" on page 10-1
s "Deferrable Constraints" on page 5-11

» Oracle Database SQL Language Reference

Session Control Statements

Session control statements dynamically manage the properties of a user session. As
explained in "Connections and Sessions" on page 15-4, a session is a logical entity in
the database instance memory that represents the state of a current user login to a

7-8 Oracle Database Concepts

Overview of SQL Statements

database. A session lasts from the time the user is authenticated by the database until
the user disconnects or exits the database application.

Session control statements enable you to:

= Alter the current session by performing a specialized function, such as enabling
and disabling SQL tracing (ALTER SESSI ON).

= Enable and disable roles, which are groups of privileges, for the current session
(SET ROLE).

The following example turns on SQL tracing for the session and then enables all roles
granted in the current session except dw_nanager :

ALTER SESSI ON SET SQL_TRACE = TRUE
SET ROLE ALL EXCEPT dw_manager;
Session control statements do not implicitly commit the current transaction.

See Also: Oracle Database SQL Language Reference for ALTER SESS| ON
syntax and semantics

System Control Statement

System control statements change the properties of the database instance. The only
system control statement is ALTER SYSTEM It enables you to change settings such as the
minimum number of shared servers, terminate a session, and perform other
system-level tasks.

Following are examples of system control statements:

ALTER SYSTEM SW TCH LOGFI LE;
ALTER SYSTEM KILL SESSION ' 39, 23';
The ALTER SYSTEMstatement does not implicitly commit the current transaction.

See Also: Oracle Database SQL Language Reference for ALTER SYSTEM
syntax and semantics

Embedded SQL Statements

Embedded SQL statements incorporate DDL, DML, and transaction control statements
within a procedural language program. They are used with the Oracle precompilers.
Embedded SQL is one approach to incorporating SQL in your procedural language
applications. Another approach is to use a procedural API such as Open Database
Connectivity (ODBC) or Java Database Connectivity (JDBC).

Embedded SQL statements enable you to:

» Define, allocate, and release cursors (DECLARE CURSOR, OPEN, CLOSE).

= Specify a database and connect to it (OECLARE DATABASE, CONNECT).

» Assign variable names (DECLARE STATEMENT).

» Initialize descriptors (DESCRI BE).

» Specify how error and warning conditions are handled (WHENEVER).

= Parse and run SQL statements (PREPARE, EXECUTE, EXECUTE | MVEDI ATE).
= Retrieve data from the database (FETCH).

SQL 7-9

Overview of the Optimizer

See Also: "Introduction to Server-Side Programming" on page 8-1
and "Client-Side APIs" on page 19-7

Overview of the Optimizer

To understand how Oracle Database processes SQL statements, it is necessary to
understand the part of the database called the optimizer (also known as the query
optimizer or cost-based optimizer). All SQL statements use the optimizer to
determine the most efficient means of accessing the specified data.

Use of the Optimizer

To execute a DML statement, Oracle Database may have to perform many steps. Each
step either retrieves rows of data physically from the database or prepares them for the
user issuing the statement.

Many different ways of processing a DML statement are often possible. For example,
the order in which tables or indexes are accessed can vary. The steps that the database
uses to execute a statement greatly affect how quickly the statement runs. The
optimizer generates execution plans describing possible methods of execution.

The optimizer determines which execution plan is most efficient by considering
several sources of information, including query conditions, available access paths,
statistics gathered for the system, and hints. For any SQL statement processed by
Oracle, the optimizer performs the following operations:

= Evaluation of expressions and conditions

= Inspection of integrity constraints to learn more about the data and optimize based
on this metadata

= Statement transformation
s Choice of optimizer goals
s Choice of access paths

s Choice of join orders

The optimizer generates most of the possible ways of processing a query and assigns a
cost to each step in the generated execution plan. The plan with the lowest cost is
chosen as the query plan to be executed.

Note: You can obtain an execution plan for a SQL statement without
executing the plan. Only an execution plan that the database actually
uses to execute a query is correctly termed a query plan.

You can influence optimizer choices by setting the optimizer goal and by gathering
representative statistics for the optimizer. For example, you may set the optimizer goal
to either of the following:

» Total throughput

The ALL_ROWS hint instructs the optimizer to get the last row of the result to the
client application as fast as possible.

» Initial response time

The FI RST_ROWE hint instructs the optimizer to get the first row to the client as fast
as possible.

7-10 Oracle Database Concepts

Overview of the Optimizer

A typical end-user, interactive application would benefit from initial response time
optimization, whereas a batch-mode, non-interactive application would benefit from
total throughput optimization.

See Also:

» Oracle Database PL/SQL Packages and Types Reference for
information about using DBM5S_STATS

» Oracle Database Performance Tuning Guide for more information
about the optimizer and using hints

Optimizer Components

The optimizer contains three main components, which are shown in Figure 7-2.

Figure 7-2 Optimizer Components

Parsed Query
(from Parser)

Query
Transformer

lTransformed query

Estimat statistics Data
:---- stimator 4— Dictionary
i =
1 9555
: w lQuery + estimates
1
1
1
: Plan
mEmmmm— Generator

Query Plan

(to Row Source Generator)

The input to the optimizer is a parsed query (see "SQL Parsing" on page 7-16). The
optimizer performs the following operations:

1. The optimizer receives the parsed query and generates a set of potential plans for
the SQL statement based on available access paths and hints.

2. The optimizer estimates the cost of each plan based on statistics in the data
dictionary. The cost is an estimated value proportional to the expected resource
use needed to execute the statement with a particular plan.

3. The optimizer compares the costs of plans and chooses the lowest-cost plan,
known as the query plan, to pass to the row source generator (see "SQL Row
Source Generation" on page 7-19).

Query Transformer

The query transformer determines whether it is helpful to change the form of the
query so that the optimizer can generate a better execution plan. The input to the
query transformer is a parsed query, which is represented by a set of query blocks.

sQL 7-11

Overview of the Optimizer

Access Paths

See Also: "Query Rewrite" on page 4-19

Estimator

The estimator determines the overall cost of a given execution plan. The estimator
generates three different types of measures to achieve this goal:

» Selectivity

This measure represents a fraction of rows from a row set. The selectivity is tied to
a query predicate, such as | ast _name='Smith', or a combination of predicates.

s Cardinality
This measure represents the number of rows in a row set.
s Cost

This measure represents units of work or resource used. The query optimizer uses
disk I/O, CPU usage, and memory usage as units of work.

If statistics are available, then the estimator uses them to compute the measures. The
statistics improve the degree of accuracy of the measures.

Plan Generator

The plan generator tries out different plans for a submitted query and picks the plan
with the lowest cost. The optimizer generates subplans for each of the nested
subqueries and unmerged views, which is represented by a separate query block. The
plan generator explores various plans for a query block by trying out different access
paths, join methods, and join orders.

The optimizer automatically manages plans and ensures that only verified plans are
used. SQL Plan Management (SPM) allows controlled plan evolution by only using a
new plan after it has been verified to be perform better than the current plan.

Diagnostic tools such as the EXPLAI N PLAN statement enable you to view execution
plans chosen by the optimizer. EXPLAI N PLAN shows the query plan for the specified
SQL query if it were executed now in the current session. Other diagnostic tools are
Oracle Enterprise Manager and the SQL*Plus AUTOTRACE command. Example 7-6 on
page 7-20 shows the execution plan of a query when AUTOTRACE is enabled.

See Also:

= "Tools for Database Administrators” on page 18-2

» Oracle Database SQL Language Reference to learn about EXPLAI N
PLAN

» Oracle Database Performance Tuning Guide to learn about the
optimizer components

An access path is the way in which data is retrieved from the database. For example, a
query that uses an index has a different access path from a query that does not. In
general, index access paths are best for statements that retrieve a small subset of table
rows. Full scans are more efficient for accessing a large portion of a table.

The database can use several different access paths to retrieve data from a table. The
following is a representative list:

» Full table scans

7-12 Oracle Database Concepts

Overview of the Optimizer

This type of scan reads all rows from a table and filters out those that do not meet
the selection criteria. The database sequentially scans all data blocks in the
segment, including those under the high water mark that separates used from
unused space (see "Segment Space and the High Water Mark" on page 12-27).

Rowid scans

The rowid of a row specifies the data file and data block containing the row and
the location of the row in that block. The database first obtains the rowids of the
selected rows, either from the statement WHERE clause or through an index scan,
and then locates each selected row based on its rowid.

Index scans

This scan searches an index for the indexed column values accessed by the SQL
statement (see "Index Scans" on page 3-6). If the statement accesses only columns
of the index, then Oracle Database reads the indexed column values directly from
the index.

Cluster scans

A cluster scan is used to retrieve data from a table stored in an indexed table
cluster, where all rows with the same cluster key value are stored in the same data
block (see "Overview of Indexed Clusters" on page 2-23). The database first
obtains the rowid of a selected row by scanning the cluster index. Oracle Database
locates the rows based on this rowid.

Hash scans

A hash scan is used to locate rows in a hash cluster, where all rows with the same
hash value are stored in the same data block (see "Overview of Hash Clusters" on
page 2-25. The database first obtains the hash value by applying a hash function
to a cluster key value specified by the statement. Oracle Database then scans the
data blocks containing rows with this hash value.

The optimizer chooses an access path based on the available access paths for the
statement and the estimated cost of using each access path or combination of paths.

See Also: Oracle Database 2 Day + Performance Tuning Guide and
Oracle Database Performance Tuning Guide to learn about access paths

Optimizer Statistics

Optimizer statistics are a collection of data that describe details about the database
and the objects in the database. The statistics provide a statistically correct picture of
data storage and distribution usable by the optimizer when evaluating access paths.

Optimizer statistics include the following:

Table statistics
These include the number of rows, number of blocks, and average row length.
Column statistics

These include the number of distinct values and nulls in a column and the
distribution of data.

Index statistics
These include the number of leaf blocks and index levels.
System statistics

These include CPU and I/0O performance and utilization.

SQL 7-13

Overview of the Optimizer

Oracle Database gathers optimizer statistics on all database objects automatically and
maintains these statistics as an automated maintenance task. You can also gather
statistics manually using the DBM5_STATS package. This PL/SQL package can modify,
view, export, import, and delete statistics.

Optimizer statistics are created for the purposes of query optimization and are stored
in the data dictionary. These statistics should not be confused with performance
statistics visible through dynamic performance views.

See Also:

» Oracle Database 2 Day + Performance Tuning Guide and Oracle
Database Performance Tuning Guide to learn how to gather and
manage statistics

» Oracle Database PL/SQL Packages and Types Reference to learn about
DBMVE_STATS

Optimizer Hints

A hint is a comment in a SQL statement that acts as an instruction to the optimizer.
Sometimes the application designer, who has more information about a particular
application's data than is available to the optimizer, can choose a more effective way to
run a SQL statement. The application designer can use hints in SQL statements to
specify how the statement should be run.

For example, suppose that your interactive application runs a query that returns 50
rows. This application initially fetches only the first 25 rows of the query to present to
the end user. You want the optimizer to generate a plan that gets the first 25 records as
quickly as possible so that the user is not forced to wait. You can use a hint to pass this
instruction to the optimizer as shown in the SELECT statement and AUTCTRACE output in
Example 7-4.

Example 7-4 Execution Plan for SELECT with FIRST_ROWS Hint

SELECT /*+ FI RST_ROA5(25) */ enployee_id, departnent_id
FROM hr. enpl oyees
WHERE department _id > 50;

| I'd | Operation | Nane | Rows | Bytes
| 0| SELECT STATEMENT | | 26 | 182
| 1| TABLE ACCESS BY | NDEX ROWD | EMPLOYEES | 26 | 182
[* 2 | | NDEX RANGE SCAN | EMP_DEPARTMENT_I X | |

The execution plan in Example 7—4 shows that the optimizer chooses an index on the
enpl oyees. depart ment _i d column to find the first 25 rows of enpl oyees whose
department ID is over 50. The optimizer uses the rowid retrieved from the index to
retrieve the record from the enpl oyees table and return it to the client. Retrieval of the
first record is typically almost instantaneous.

Example 7-5 shows the same statement, but without the optimizer hint.

Example 7-5 Execution Plan for SELECT with No Hint

SELECT enpl oyee_id, departnent_id
FROM hr. enpl oyees
WHERE department _id > 50;

7-14 Oracle Database Concepts

Overview of SQL Processing

| 1d | Operation | Name | Rows | Bytes | Cos
| 0| SELECT STATEMENT | | 50 | 350 |
[* 1] WVIEW | index$ join$ 001 | 50 | 350 |
[* 2| HASH JON | | | |
[* 3| | NDEX RANGE SCAN | EMP_DEPARTMENT IX | 50 | 350 |
| 4| | NDEX FAST FULL SCAN| EMP_EMP_I D PK | 50 | 350 |

The execution plan in Example 7-5 joins two indexes to return the requested records as
fast as possible. Rather than repeatedly going from index to table as in Example 74,
the optimizer chooses a range scan of EMP_DEPARTMENT_| X to find all rows where the
department ID is over 50 and place these rows in a hash table. The optimizer then
chooses to read the EMP_EMP_| D_PK index. For each row in this index, it probes the hash
table to find the department ID.

In this case, the database cannot return the first row to the client until the index range
scan of EMP_DEPARTMENT_I X completes. Thus, this generated plan would take longer to
return the first record. Unlike the plan in Example 7-4, which accesses the table by
index rowid, the plan in Example 7-5 uses multiblock I/O, resulting in large reads.
The reads enable the last row of the entire result set to be returned more rapidly.

See Also: Oracle Database Performance Tuning Guide to learn how to
use optimizer hints

Overview of SQL Processing

This section explains how Oracle Database processes SQL statements. Specifically, the
section explains the way in which the database processes DDL statements to create
objects, DML to modify data, and queries to retrieve data.

Stages of SQL Processing

Figure 7-3 depicts the general stages of SQL processing: parsing, optimization, row
source generation, and execution. Depending on the statement, the database may omit
some of these steps.

SQL 7-15

Overview of SQL Processing

Figure 7-3 Stages of SQL Processing

SQL Statement

FETSTTTR] T == 1

| Parsing

Syntax
Check

v

|
|
|
|
|
|
|
|
|
Semantic |
|
|
|
|
|
|
|
|
|

Check

v

Shared Pool
Check

Soft Parse

Hard Parse

Generation of o
multiple Optimization

execution plans

_ v

Generation of Row Source
query plan Generation

R v

Execution D

SQL Parsing

As shown in Figure 7-3, the first stage of SQL processing is parsing. This stage
involves separating the pieces of a SQL statement into a data structure that can be
processed by other routines. The database parses a statement when instructed by the
application, which means that only the application, and not the database itself, can
reduce the number of parses.

When an application issues a SQL statement, the application makes a parse call to the
database to prepare the statement for execution. The parse call opens or creates a
cursor, which is a handle for the session-specific private SQL area that holds a parsed
SQL statement and other processing information. The cursor and private SQL area are
in the PGA.

During the parse call, the database performs the following checks:
= Syntax Check

= Semantic Check

= Shared Pool Check

The preceding checks identify the errors that can be found before statement execution.
Some errors cannot be caught by parsing. For example, the database can encounter

7-16 Oracle Database Concepts

Overview of SQL Processing

deadlocks or errors in data conversion only during statement execution (see "Locks
and Deadlocks" on page 9-16).

Syntax Check Oracle Database must check each SQL statement for syntactic validity. A
statement that breaks a rule for well-formed SQL syntax fails the check. For example,
the following statement fails because the keyword FROMis misspelled as FORM

SQL> SELECT * FORM enpl oyees;
SELECT * FORM enpl oyees
*

ERROR at line 1:
ORA- 00923: FROM keyword not found where expected

Semantic Check The semantics of a statement are its meaning. Thus, a semantic check
determines whether a statement is meaningful, for example, whether the objects and
columns in the statement exist. A syntactically correct statement can fail a semantic
check, as shown in the following example of a query of a nonexistent table:

SQL> SELECT * FROM nonexi stent _tabl e;
SELECT * FROM nonexi stent _table

*

ERROR at |ine 1:
ORA-00942: table or view does not exist

Shared Pool Check During the parse, the database performs a shared pool check to
determine whether it can skip resource-intensive steps of statement processing. To this
end, the database uses a hashing algorithm to generate a hash value for every SQL
statement. The statement hash value is the SQL ID shown in V$SQL. SQL_I D.

When a user submits a SQL statement, the database searches the shared SQL area to
see if an existing parsed statement has the same hash value. The hash value of a SQL
statement is distinct from the following values:

= Memory address for the statement

Oracle Database uses the SQL ID to perform a keyed read in a lookup table. In this
way, the database obtains possible memory addresses of the statement.

= Hash value of an execution plan for the statement

A SQL statement can have multiple plans in the shared pool. Each plan has a
different hash value. If the same SQL ID has multiple plan hash values, then the
database knows that multiple plans exist for this SQL ID.

Parse operations fall into the following categories, depending on the type of statement
submitted and the result of the hash check:

= Hard parse

If Oracle Database cannot reuse existing code, then it must build a new executable
version of the application code. This operation is known as a hard parse, or a
library cache miss. The database always perform a hard parse of DDL.

During the hard parse, the database accesses the library cache and data dictionary
cache numerous times to check the data dictionary. When the database accesses
these areas, it uses a serialization device called a latch on required objects so that
their definition does not change (see "Latches" on page 9-25). Latch contention
increases statement execution time and decreases concurrency.

= Soft parse

sSQL 7-17

Overview of SQL Processing

A soft parse is any parse that is not a hard parse. If the submitted statement is the
same as a reusable SQL statement in the shared pool, then Oracle Database reuses
the existing code. This reuse of code is also called a library cache hit.

Soft parses can vary in the amount of work they perform. For example,
configuring the session shared SQL area can sometimes reduce the amount of
latching in the soft parses, making them "softer."

In general, a soft parse is preferable to a hard parse because the database skips the
optimization and row source generation steps, proceeding straight to execution.

Figure 7—4 is a simplified representation of a shared pool check of an UPDATE statement
in a dedicated server architecture.

Figure 7-4 Shared Pool Check

System Global Area (SGA)

Shared Pool
Library Cache

Shared SQL Area Private

3667723989 SQL Area
» 3967354608
2190280494

Data Server | |Other Reserved
Dictionary | | Result Pool
Cache Cache

Comparison of hash values

PGA
S:QL Work Are;’;\s

. 1
‘! Client Server
\ = process [P| Process

Session Memory ||39673:54608 -

|
User |)
Private SQL Area

If a check determines that a statement in the shared pool has the same hash value, then
the database performs semantic and environment checks to determine whether the
statements mean the same. Identical syntax is not sufficient. For example, suppose two
different users log in to the database and issue the following SQL statements:

CREATE TABLE ny_table (sonme_col |NTEGER);
SELECT * FROM ny_t abl e;

The SELECT statements for the two users are syntactically identical, but two separate
schema objects are named ny_t abl e. This semantic difference means that the second
statement cannot reuse the code for the first statement.

Even if two statements are semantically identical, an environmental difference can
force a hard parse. In this case, the environment is the totality of session settings that
can affect execution plan generation, such as the work area size or optimizer settings.
Consider the following series of SQL statements executed by a single user:

ALTER SYSTEM FLUSH SHARED POQL;
SELECT * FROM ny_t abl e;

7-18 Oracle Database Concepts

Overview of SQL Processing

ALTER SESSI ON SET OPTI M ZER_MODE=FI RST_RO/S;
SELECT * FROM ny_t abl e;

ALTER SESSI ON SET SQL_TRACE=TRUE;
SELECT * FROM ny_t abl e;

In the preceding example, the same SELECT statement is executed in three different
optimizer environments. Consequently, the database creates three separate shared SQL
areas for these statements and forces a hard parse of each statement.

See Also:
= "Private SQL Area" on page 14-5 and "Shared SQL Areas" on
page 14-16

» Oracle Database Performance Tuning Guide to learn how to
configure the shared pool

SQL Optimization

As explained in "Overview of the Optimizer" on page 7-10, query optimization is the
process of choosing the most efficient means of executing a SQL statement. The
database optimizes queries based on statistics collected about the actual data being
accessed. The optimizer uses the number of rows, the size of the data set, and other
factors to generate possible execution plans, assigning a numeric cost to each plan. The
database uses the plan with the lowest cost.

The database must perform a hard parse at least once for every unique DML statement
and performs optimization during this parse. DDL is never optimized unless it
includes a DML component such as a subquery that requires optimization.

See Also: Oracle Database Performance Tuning Guide for detailed
information about the query optimizer

SQL Row Source Generation

The row source generator is software that receives the optimal execution plan from the
optimizer and produces an iterative plan, called the query plan, that is usable by the
rest of the database. The iterative plan is a binary program that, when executed by the
SQL virtual machine, produces the result set.

The query plan takes the form of a combination of steps. Each step returns a row set.
The rows in this set are either used by the next step oz, in the last step, are returned to
the application issuing the SQL statement.

A row source is a row set returned by a step in the execution plan along with a control
structure that can iteratively process the rows. The row source can be a table, view, or
result of a join or grouping operation.

The row source generator produces a row source tree, which is a collection of row
sources. The row source tree shows the following information:

= An ordering of the tables referenced by the statement

= An access method for each table mentioned in the statement

= A join method for tables affected by join operations in the statement
» Data operations such as filter, sort, or aggregation

Example 7-6 shows the execution plan of a SELECT statement when AUTOTRACE is
enabled. The statement selects the last name, job title, and department name for all

SQL 7-19

Overview of SQL Processing

employees whose last names begin with the letter A. The execution plan for this
statement is the output of the row source generator.

Example 7-6 Execution Plan

SELECT e.last_nane, j.job_title, d.departnent_nane
FROM hr.enployees e, hr.departnments d, hr.jobs j
WHERE e.departnent_id = d.departnent _id

AND e.job_id =j.job_id

AND e.last_name LIKE 'A% ;

Execution Plan

1d	Operation	Nane	Rows	Bytes	Cost (%CPU)	Tinme
0	SELECT STATEMENT		3	189	7 (15)] 00:00:01	
* 1	HASHJIAN		3	189	7 (15)] 00:00:01	
[* 2] HASH JO' N		3] 141 5 (20)] 00:00:01				
3] TABLE ACCESS BY	NDEX RON D EMPLOYEES	3 60	2 (0)] 00:00:01			
* 4]	NDEX RANGE SCAN	EMP_NAME_I X	3	1 (0)] 00:00:01		
51 TABLE ACCESS FULL	JOBS	19	513	2 (0)] 00:00:01		
6	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01

1 - access("E'." DEPARTMENT | D'="D'. " DEPARTMENT | D')

2 - access("E'."JOB_ID'="J"."JOB_ID")

4 - access("E'."LAST_NAVE' LIKE 'A%)
filter("E'."LAST_NAVE' LIKE 'A%)

SQL Execution

During execution, the SQL engine executes each row source in the tree produced by
the row source generator. This step is the only mandatory step in DML processing.

Figure 7-5 is an execution tree, also called a parse tree, that shows the flow of row
sources from one step to another. In general, the order of the steps in execution is the
reverse of the order in the plan, so you read the plan from the bottom up. Initial spaces
in the Oper at i on column indicate hierarchical relationships. For example, if the name
of an operation is preceded by two spaces, then this operation is a child of an
operation preceded by one space. Operations preceded by one space are children of
the SELECT statement itself.

7-20 Oracle Database Concepts

Overview of SQL Processing

Figure 7-5 Row Source Tree

1

HASH JOIN

2 6

HASH JOIN TABLE ACCESS
FULL
departments

TABLE ACCESS TABLE ACCESS
FULL BY INDEX ROWID
jobs employees

INDEX RANGE
SCAN
emp_name_ix

In Figure 7-5, each node of the tree acts as a row source, which means that each step of
the execution plan either retrieves rows from the database or accepts rows from one or
more row sources as input. The SQL engine executes each row source as follows:

= Steps indicated by the black boxes physically retrieve data from an object in the
database. These steps are the access paths, or techniques for retrieving data from
the database.

— Step 6 uses a full table scan to retrieve all rows from the depart nent s table.
— Step 5 uses a full table scan to retrieve all rows from the j obs table.

- Step 4 scans the enp_nane_i x index in order, looking for each key that begins
with the letter A and retrieving the corresponding rowid (see "Index Range
Scan" on page 3-7). For example, the rowid corresponding to At ki nson is
AAAPz RAAFAAAABSAAe.

— Step 3 retrieves from the enpl oyees table the rows whose rowids were
returned by Step 4. For example, the database uses rowid AAAPz RAAFAAAABSAAe
to retrieve the row for At ki nson.

= Steps indicated by the clear boxes operate on row sources.

- Step 2 performs a hash join, accepting row sources from Steps 3 and 5, joining
each row from the Step 5 row source to its corresponding row in Step 3, and
returning the resulting rows to Step 1.

SQL 7-21

Overview of SQL Processing

For example, the row for employee At ki nson is associated with the job name
Stock O erk.

- Step 1 performs another hash join, accepting row sources from Steps 2 and 6,
joining each row from the Step 6 source to its corresponding row in Step 2, and
returning the result to the client.

For example, the row for employee At ki nson is associated with the
department named Shi ppi ng.

In some execution plans the steps are iterative and in others sequential. The plan
shown in Example 7-6 is iterative because the SQL engine moves from index to table
to client and then repeats the steps.

During execution, the database reads the data from disk into memory if the data is not
in memory. The database also takes out any locks and latches necessary to ensure data
integrity and logs any changes made during the SQL execution. The final stage of
processing a SQL statement is closing the cursor.

See Also: Oracle Database Performance Tuning Guide for detailed
information about execution plans and the EXPLAI N PLAN statement

How Oracle Database Processes DML

Most DML statements have a query component. In a query, execution of a cursor
places the results of the query into a set of rows called the result set.

Result set rows can be fetched either a row at a time or in groups. In the fetch stage,
the database selects rows and, if requested by the query, orders the rows. Each
successive fetch retrieves another row of the result until the last row has been fetched.

In general, the database cannot determine for certain the number of rows to be
retrieved by a query until the last row is fetched. Oracle Database retrieves the data in
response to fetch calls, so that the more rows the database reads, the more work it
performs. For some queries the database returns the first row as quickly as possible,
whereas for others it creates the entire result set before returning the first row.

Read Consistency

In general, a query retrieves data by using the Oracle Database read consistency
mechanism. This mechanism, which uses undo data to show past versions of data,
guarantees that all data blocks read by a query are consistent to a single point in time.

For an example of read consistency, suppose a query must read 100 data blocks in a
full table scan. The query processes the first 10 blocks while DML in a different
session modifies block 75. When the first session reaches block 75, it realizes the
change and uses undo data to retrieve the old, unmodified version of the data and
construct a noncurrent version of block 75 in memory.

See Also: "Multiversion Read Consistency" on page 9-2

Data Changes

DML statements that must change data use the read consistency mechanism to retrieve
only the data that matched the search criteria when the modification began.
Afterward, these statements retrieve the data blocks as they exist in their current state
and make the required modifications. The database must perform other actions related
to the modification of the data such as generating redo and undo data.

See Also: "Overview of the Online Redo Log" on page 11-12

7-22 Oracle Database Concepts

Overview of SQL Processing

How Oracle Database Processes DDL

Oracle Database processes DDL differently from DML. For example, when you create
a table, the database does not optimize the CREATE TABLE statement. Instead, Oracle
Database parses the DDL statement and carries out the command.

The database process DDL differently because it is a means of defining an object in the
data dictionary. Typically, Oracle Database must parse and execute many recursive
SQL statements to execute a DDL command. Suppose you create a table as follows:

CREATE TABLE nytabl e (mycol um | NTEGER);

Typically, the database would run dozens of recursive statements to execute the
preceding statement. The recursive SQL would perform actions such as the following:

» Issue a COW T before executing the CREATE TABLE statement
= Verify that user privileges are sufficient to create the table

= Determine which tablespace the table should reside in

= Ensure that the tablespace quota has not been exceeded

= Ensure that no object in the schema has the same name

= Insert rows that define the table into the data dictionary

s Issue a COW T if the DDL statement succeeded or a ROLLBACK if it did not

See Also: Oracle Database Advanced Application Developer’s Guide to
learn about SQL processing for application developers

SQL 7-23

Overview of SQL Processing

7-24 Oracle Database Concepts

8

Server-Side Programming: PL/SQL and Java

Chapter 7, "SQL" explains the Structured Query Language (SQL) language and how
the database processes SQL statements. This chapter explains how Procedural
Language/SQL (PL/SQL) or Java programs stored in the database can use SQL.

This chapter includes the following topics:

s Introduction to Server-Side Programming
s Overview of PL/SQL

s Overview of Java in Oracle Database

s Overview of Triggers

See Also: Chapter 7, "SQL"

Introduction to Server-Side Programming

In a nonprocedural language such as SQL, the set of data to be operated on is
specified, but not the operations to be performed or the manner in which they are to be
carried out. In a procedural language program, most statement execution depends on
previous or subsequent statements and on control structures, such as loops or
conditional branches, that are not available in SQL.

For an illustration of the difference between procedural and nonprocedural languages,
suppose that the following SQL statement queries the enpl oyees table:

SELECT enpl oyee_id, department _id, |ast_nane, salary FROM enpl oyees;

The preceding statement requests data, but does not apply logic to the data. However,
suppose you want an application to determine whether each employee in the data set
deserves a raise based on salary and department performance. A necessary condition
of a raise is that the employee did not receive more than three raises in the last five
years. If a raise is called for, then the application must adjust the salary and email the
manager; otherwise, the application must update a report.

The problem is how procedural database applications requiring conditional logic and
program flow control can use SQL. The basic development approaches are as follows:

= Use client-side programming to embed SQL statements in applications written in
procedural languages such as C, C++, or Java

You can place SQL statements in source code and submit it to a precompiler or
Java translator before compilation. Alternatively, you can eliminate the
precompilation step and use an API such as Java Database Connectivity (JDBC) or
Oracle Call Interface (OCI) to enable the application to interact with the database.

Server-Side Programming: PL/SQL and Java 8-1

Overview of PL/SQL

= Use server-side programming to develop data logic that resides in the database

An application can explicitly invoke stored subprograms (procedures and
functions), written in PL/SQL (pronounced P L sequel) or Java. You can also create
a trigger, which is named program unit that is stored in the database and invoked
in response to a specified event.

This chapter explains the second approach. The principal benefit of server-side
programming is that functionality built into the database can be deployed anywhere.
The database and not the application determines the best way to perform tasks on a
given operating system. Also, subprograms increase scalability by centralizing
application processing on the server, enabling clients to reuse code. Because
subprogram calls are quick and efficient, a single call can start a compute-intensive
stored subprogram, reducing network traffic.

You can use the following languages to store data logic in Oracle Database:
= PL/SQL

PL/SQL is the Oracle Database procedural extension to SQL. PL/SQL is
integrated with the database, supporting all Oracle SQL statements, functions, and
data types. Applications written in database APIs can invoke PL/SQL stored
subprograms and send PL/SQL code blocks to the database for execution.

= Java

Oracle Database also provides support for developing, storing, and deploying Java
applications. Java stored subprograms run in the database and are independent of
programs that run in the middle tier. Java stored subprograms interface with SQL

using a similar execution model to PL/SQL.

See Also:

= 'Client-Side Database Programming" on page 19-5 to learn
about embedding SQL with precompilers and APIs

» Oracle Database 2 Day Developer’s Guide for an introduction to
Oracle Database application development

» Oracle Database Advanced Application Developer’s Guide to learn
how to choose a programming environment

Overview of PL/SQL

PL/SQL provides a server-side, stored procedural language that is easy-to-use,
seamless with SQL, robust, portable, and secure. You can access and manipulate
database data using procedural schema objects called PL/SQL program units.

PL/SQL program units generally are categorized as follows:

= A subprogram is a PL/SQL block that is stored in the database and can be called
by name from an application. When you create a subprogram, the database parses
the subprogram and stores its parsed representation in the database. You can
declare a subprogram as a procedure or a function.

= Ananonymous block is a PL/SQL block that appears in your application and is
not named or stored in the database. In many applications, PL/SQL blocks can
appear wherever SQL statements can appear.

The PL/SQL compiler and interpreter are embedded in Oracle SQL Developer, giving
developers a consistent and leveraged development model on both client and server.

8-2 Oracle Database Concepts

Overview of PL/SQL

Also, PL/SQL stored procedures can be called from several database clients, such as
Pro*C, JDBC, ODBC, or OCI, and from Oracle Reports and Oracle Forms.

See Also:
= "Tools for Database Developers" on page 19-1

» Oracle Database PL/SQL Language Reference for complete
information about PL/SQL, including packages

PL/SQL Subprograms

A PL/SQL subprogram is a named PL/SQL block that permits the caller to supply
parameters that can be input only, output only, or input and output values. A
subprogram solves a specific problem or performs related tasks and serves as a
building block for modular, maintainable database applications.

A subprogram is either a procedure or a function. Procedures and functions are
identical except that functions always return a single value to the caller, whereas
procedures do not. The term procedure in this chapter means procedure or function.

See Also:

» Pro*C/C++ Programmer’s Guide and Pro*COBOL Programmer’s
Guide to learn about stored procedures in these languages

» Oracle Database PL/SQL Language Reference

Advantages of PL/SQL Subprograms

As explained in "Introduction to Server-Side Programming" on page 8-1, server-side
programming has many advantages over client-side programming. PL/SQL
subprograms provide the following advantages:

= Improved performance

— The amount of information that an application must send over a network is
small compared with issuing individual SQL statements or sending the text of
an entire PL/SQL block to Oracle Database, because the information is sent
only once and thereafter invoked when it is used.

— The compiled form of a procedure is readily available in the database, so no
compilation is required at execution time.

— If the procedure is present in the shared pool of the SGA, then the database
need not retrieve it from disk and can begin execution immediately.

= Memory allocation

Because stored procedures take advantage of the shared memory capabilities of
Oracle Database, it must load only a single copy of the procedure into memory for
execution by multiple users. Sharing code among users results in a substantial
reduction in database memory requirements for applications.

= Improved productivity

Stored procedures increase development productivity. By designing applications
around a common set of procedures, you can avoid redundant coding. For
example, you can write procedures to manipulate rows in the enpl oyees table.
Any application can call these procedures without requiring SQL statements to be
rewritten. If the methods of data management change, then only the procedures
must be modified, not the applications that use the procedures.

Server-Side Programming: PL/SQL and Java 8-3

Overview of PL/SQL

Stored procedures are perhaps the best way to achieve code reuse. Because any
client application written in any language that connects to the database can invoke
stored procedures, they provide maximum code reuse in all environments.

Integrity

Stored procedures improve the integrity and consistency of your applications. By
developing applications around a common group of procedures, you reduce the
likelihood of coding errors.

For example, you can test a subprogram to guarantee that it returns an accurate
result and, after it is verified, reuse it in any number of applications without
retesting. If the data structures referenced by the procedure are altered, then you
must only recompile the procedure. Applications that call the procedure do not
necessarily require modifications.

Security with definer's rights procedures

Stored procedures can help enforce data security (see "Overview of Database
Security" on page 17-1). A definer's rights procedure executes with the privileges
of its owner, not its current user. Thus, you can restrict the database operations
that users perform by allowing them to access data only through procedures and
functions that run with the definer's privileges.

For example, you can grant users access to a procedure that updates a table but
not grant access to the table itself. When a user invokes the procedure, it runs with
the privileges of its owner. Users who have only the privilege to run the procedure
(but not privileges to query, update, or delete from the underlying tables) can
invoke the procedure but not manipulate table data in any other way.

Inherited privileges and schema context with invoker's rights procedures

An invoker's rights procedure executes in the current user's schema with the
current user's privileges. In other words, an invoker's rights procedure is not tied
to a particular user or schema. Invoker's rights procedures make it easy for
application developers to centralize application logic, even when the underlying
data is divided among user schemas.

For example, an hr _nmanager user who runs an update procedure on the
hr. enpl oyees table can update salaries, whereas an hr _cl er k who runs the same
procedure is restricted to updating address data.

See Also:

» Oracle Database PL/SQL Language Reference for an overview of
PL/SQL subprograms

» Oracle Database Security Guide to learn more about definer's and
invoker's rights

Creation of PL/SQL Subprograms

A subprogram created at the schema level with the CREATE PROCEDURE or CREATE
FUNCTI ON statement is a standalone stored subprogram. Subprograms defined in a
package are called package subprograms and are considered a part of the package.
The database stores subprograms in the data dictionary as schema objects.

A subprogram has a specification, which includes descriptions of any parameters, and
a body. Example 8-1 shows part of a creation statement for the standalone PL/SQL
procedure hi re_enpl oyees. The procedure inserts a row into the enpl oyees table.

8-4 Oracle Database Concepts

Overview of PL/SQL

Example 8-1 PL/SQL Procedure

CREATE PROCEDURE hi re_enpl oyees
(p_l ast _name VARCHAR2, p_job_id VARCHAR2, p_manager _id NUMBER, p_hire_date DATE,
p_sal ary NUMBER, p_conmi ssion_pct NUMBER, p_departmnent_id NUVBER)

IS

BEG N

I NSERT | NTO enpl oyees (enpl oyee_id, last_nane, job_id, manager_id, hire_date,
sal ary, conm ssion_pct, department_id)

VALUES (enp_sequence. NEXTVAL, p_l ast_nanme, p_job_id, p_manager_id, p_hire_date,
p_sal ary, p_comm ssion_pct, p_departnent_id);

END;

See Also:

» Oracle Database 2 Day Developer’s Guide to learn how to create
subprograms

» Oracle Database PL/SQL Language Reference to learn about the
CREATE PROCEDURE command

Execution of PL/SQL Subprograms

Users can execute a subprogram interactively by:

= Using an Oracle tool, such as SQL*Plus or SQL Developer (see "Tools for Database
Developers" on page 19-1)

s Calling it explicitly in the code of a database application, such as an Oracle Forms
or precompiler application (see "Client-Side Database Programming" on page 19-5)

s Calling it explicitly in the code of another procedure or trigger

Figure 8-1 shows different database applications calling hi r e_enpl oyees.

Server-Side Programming: PL/SQL and Java 8-5

Overview of PL/SQL

Figure 8-1 Calling a PL/SQL Stored Procedure

Database Applications

Program code

Pr ogram code

Stored Procedure

hi re_enpl oyees(...);

Pr ogram code
de

Pr ogram code

hi re_enpl oyees(...);

Progr al Pr ogram code

Pr ogr alr<goac

>
p—) hire _employees(...)
—

BEG N

END;

hi re_enpl oyees(...);

Pr ogram code

Database

Alternatively, a privileged user can use Oracle Enterprise Manager or SQL*Plus to run
the hi re_enpl oyees procedure using a statement such as the following:

EXECUTE hire_enpl oyees (' TSMTH, 'CLERK , 1037, SYSDATE, 500, NULL, 20);

The preceding statement inserts a new record for TSM THin the enpl oyees table.

A stored procedure depends on the objects referenced in its body. The database
automatically tracks and manages these dependencies. For example, if you alter the
definition of the enpl oyees table referenced by the hi r e_enpl oyees procedure in a
manner that would affect this procedure, then the procedure must be recompiled to
validate that it still works as designed. Usually, the database automatically administers
such dependency management.

See Also:

» Oracle Database PL/SQL Language Reference to learn how to use
PL/SQL subprograms

s SQL*Plus User’s Guide and Reference to learn about the EXECUTE

command

PL/SQL Packages

A PL/SQL package is a group of related subprograms, along with the cursors and
variables they use, stored together in the database for continued use as a unit.
Packaged subprograms can be called explicitly by applications or users.

Oracle Database includes many supplied packages that extend database functionality
and provide PL/SQL access to SQL features. For example, the UTL_HTTP package
enables HTTP callouts from PL/SQL and SQL to access data on the Internet or to call
Oracle Web Server Cartridges. You can use the supplied packages when creating
applications or as a source of ideas when creating your own stored procedures.

Advantages of PL/SQL Packages
PL/SQL packages provide the following advantages:

8-6 Oracle Database Concepts

Overview of PL/SQL

= Encapsulation

Packages enable you to encapsulate or group stored procedures, variables, data
types, and so on in a named, stored unit. Encapsulation provides better
organization during development and also more flexibility. You can create
specifications and reference public procedures without actually creating the
package body. Encapsulation simplifies privilege management. Granting the
privilege for a package makes package constructs accessible to the grantee.

= Data security

The methods of package definition enable you to specify which variables, cursors,
and procedures are public and private. Public means that it is directly accessible to
the user of a package. Private means that it is hidden from the user of a package.

For example, a package can contain 10 procedures. You can define the package so
that only three procedures are public and therefore available for execution by a
user of the package. The remaining procedures are private and can only be
accessed by the procedures within the package. Do not confuse public and private
package variables with grants to PUBLI C.

= Better performance

An entire package is loaded into memory in small chunks when a procedure in the
package is called for the first time. This load is completed in one operation, as
opposed to the separate loads required for standalone procedures. When calls to
related packaged procedures occur, no disk I/O is needed to run the compiled
code in memory.

A package body can be replaced and recompiled without affecting the
specification. As a result, schema objects that reference a package's constructs
(always through the specification) need not be recompiled unless the package
specification is also replaced. By using packages, unnecessary recompilations can
be minimized, resulting in less impact on overall database performance.

Creation of PL/SQL Packages

You create a package in two parts: the specification and the body. The package
specification declares all public constructs of the package, whereas the body defines
all constructs (public and private) of the package.

Example 8-1 shows part of a statement that creates the package specification for
enpl oyees_managenent , which encapsulates several subprograms used to manage an
employee database. Each part of the package is created with a different statement.

Example 8-2 PL/SQL Package
CREATE PACKAGE enpl oyees_managenment AS
FUNCTI ON hire_enpl oyees (last_name VARCHAR2, job_id VARCHAR2, manager _id NUMBER
sal ary NUMBER, commission_pct NUVBER, departnent_id NUVMBER) RETURN NUMBER;
PROCEDURE fire_enpl oyees(enpl oyee_i d NUMBER);
PROCEDURE sal ary_rai se(enpl oyee_i d NUMBER, sal ary_i ncr NUMBER);

no_sal EXCEPTI ON,;
END enpl oyees_managenent ;

The specification declares the function hi r e_enpl oyees, the proceduresfire_

enpl oyees and sal ary_rai se, and the exception no_sal . All of these public program
objects are available to users who have access to the package.

Server-Side Programming: PL/SQL and Java 8-7

Overview of PL/SQL

The CREATE PACKAGE BODY command defines objects declared in the specification. The
package body must be created in the same schema as the package. After creating the

package, you can develop applications that call any of these public procedures or
functions or raise any of the public exceptions of the package.

See Also: Oracle Database PL/SQL Language Reference to learn
about the CREATE PACKAGE command

Execution of PL/SQL Package Subprograms

You can reference package contents from database triggers, stored subprograms, 3GL
application programs, and Oracle tools. Figure 8-2 shows database applications
invoking procedures and functions in the enpl oyees_managenent package.

Figure 8-2 Calling Subprograms in a PL/SQL Package

Database Applications

Program code

: P fire_employees(... '
enpl oyees_nanagenent. fire_enpl oyees(...); —_— —employees(... \

Progr am code

Pr ogram code

érrpl oyees_managenent . hi re_enpl oyees(...); '

Pr ogram code

Program code

employees_management |

BEG N Y

END; '

>, D
>hwe_employees(...)

BEG N

Database

END;

énpl oyees_managenent . hi re_enpl oyees(. ..) ; s ' !

Progr am code

Pr ogram code

) ——Pp-salary_raise(...) '
enpl oyees_nanagenent . sal ary_raise(...); _I_ '

Pr ogram code

BEG N J

END; .

Database applications explicitly call packaged procedures as necessary. After being
granted the privileges for the enpl oyees_managenent package, a user can explicitly run
any of the procedures contained in it. For example, SQL*Plus can issue the following
statement to run the hi r e_enpl oyees package procedure:

EXECUTE enpl oyees_nanagenent . hire_enpl oyees (' TSMTH , ' CLERK , 1037, SYSDATE,
500, NULL, 20);

See Also:

» Oracle Database PL/SQL Language Reference for an introduction
to PL/SQL packages

» Oracle Database Advanced Application Developer’s Guide to learn
how to code PL/SQL packages

8-8 Oracle Database Concepts

Overview of PL/SQL

PL/SQL Anonymous Blocks

An anonymous block is an unnamed, nonpersistent PL/SQL unit. Typical uses for
anonymous blocks include:

= Initiating calls to subprograms and package constructs

= Isolating exception handling

= Managing control by nesting code within other PL/SQL blocks

Anonymous blocks do not have the code reuse advantages of stored subprograms.

Table 8-1 summarizes the differences between the two types of program units.

Table 8-1 Differences Between Anonymous Blocks and Subprograms

Is the PL/SQL Unit ... Anonymous Blocks | Subprograms
Specified with a name? No Yes
Compiled with every reuse? No No
Stored in the database? No Yes
Invocable by other applications? No Yes
Capable of returning bind variable values? | Yes Yes
Capable of returning function values? No Yes
Capable of accepting parameters? No Yes

An anonymous block consists of an optional declarative part, an executable part, and
one or more optional exception handlers. The following sample anonymous block
selects an employee last name into a variable and prints the name:

DECLARE
v_| nane VARCHAR2(25) ;

BEG N
SELECT | ast _nanme I NTO v_| nane
FROM enpl oyees

VWHERE enpl oyee_id = 101;
DBVS_QUTPUT. PUT_LI NE(" Enpl oyee | ast name is '||v_I name);
END;

Oracle Database compiles the PL/SQL block and places it in the shared pool of the
SGA, but it does not store the source code or compiled version in the database for
reuse beyond the current instance. Unlike triggers, an anonymous block is compiled
each time it is loaded into memory. Shared SQL allows anonymous PL/SQL blocks in
the shared pool to be reused and shared until they are flushed out of the shared pool.

See Also: Oracle Database Advanced Application Developer’s Guide to
learn more about anonymous PL/SQL blocks

PL/SQL Language Constructs

PL/SQL blocks can include a variety of different PL/SQL language constructs. These
constructs including the following:

m Variables and constants

You can declare these constructs within a procedure, function, or package. You can
use a variable or constant in a SQL or PL/SQL statement to capture or provide a
value when one is needed.

Server-Side Programming: PL/SQL and Java 8-9

Overview of PL/SQL

s Cursors

You can declare a cursor explicitly within a procedure, function, or package to
facilitate record-oriented processing of Oracle Database data. The PL/SQL engine
can also declare cursors implicitly.

= Exceptions

PL/SQL lets you explicitly handle internal and user-defined error conditions,
called exceptions, that arise during processing of PL/SQL code.

PL/SQL can run dynamic SQL statements whose complete text is not known until run
time. Dynamic SQL statements are stored in character strings that are entered into, or
built by, the program at run time. This technique enables you to create general purpose
procedures. For example, you can create a procedure that operates on a table whose
name is not known until run time.

See Also:

» Oracle Database PL/SQL Language Reference for details about
dynamic SQL

» Oracle Database PL/SQL Packages and Types Reference to learn how
to use dynamic SQL in the DBMS_SQL package

PL/SQL Collections and Records

Many programming techniques use collection types such as arrays, bags, lists, nested
tables, sets, and trees. To support these techniques in database applications, PL/SQL
provides the data types TABLE and VARRAY, which enable you to declare associative
arrays, nested tables, and variable-size arrays.

Collections

A collection is an ordered group of elements, all of the same type. Each element has a
unique subscript that determines its position in the collection. To create a collection,
you first define a collection type, and then declare a variable of that type.

Collections work like the arrays found in most third-generation programming
languages. Also, collections can be passed as parameters. So, you can use them to
move columns of data into and out of database tables or between client-side
applications and stored subprograms.

Records
A record is a composite variable that can store data values of different types, similar to

a struct type in C, C++, or Java. Records are useful for holding data from table rows, or
certain columns from table rows.

Suppose you have data about an employee such as name, salary, and hire date. These
items are dissimilar in type but logically related. A record containing a field for each
item lets you treat the data as a logical unit.

You can use the “ROMYPE attribute to declare a record that represents a table row or
row fetched from a cursor. With user-defined records, you can declare your own fields.

See Also: Oracle Database PL/SQL Language Reference for detailed
information on using collections and records

8-10 Oracle Database Concepts

Overview of PL/SQL

How PL/SQL Runs

PL/SQL supports both native execution and interpreted execution. In interpreted
execution, PL/SQL source code is compiled into a so-called bytecode representation,
which is run by a portable virtual computer implemented as part of Oracle Database.
In native execution, which offers the best performance on computationally intensive
program units, the source code of PL/SQL program units is compiled directly to object
code for the given platform. This object code is linked into Oracle Database.

The PL/SQL engine is the tool used to define, compile, and run PL/SQL program
units. This engine is a special component of many Oracle products, including Oracle
Database. While many Oracle products have PL/SQL components, this section
specifically covers the program units that can be stored in Oracle Database and
processed using Oracle Database PL/SQL engine. The PL/SQL capabilities of each
Oracle tool are described in the documentation for this tool.

Figure 8-3 illustrates the PL/SQL engine contained in Oracle Database.

Figure 8-3 The PL/SQL Engine and Oracle Database

Instance

System Global Area

Database Application (SGA)
Procedural
Program code Statement
) Procedure Executor
P —tp BEG N
. rogram code Procedural SQL
hire_enpl oyees(...); Procedural SQL
. Procedural SQL
Program code END;
SQL
Statement
Executor

Database

The program unit is stored in a database. When an application calls a stored
procedure, the database loads the compiled program unit into the shared pool in the
system global area (SGA) (see "Shared Pool" on page 14-15). The PL/SQL and SQL
statement executors work together to process the statements in the procedure.

You can call a stored procedure from another PL/SQL block, which can be either an
anonymous block or another stored procedure. For example, you can call a stored
procedure from Oracle Forms.

A PL/SQL procedure executing on Oracle Database can call an external procedure or
function written in the C programming language and stored in a shared library. The C
routine runs in a separate address space from that of Oracle Database.

Server-Side Programming: PL/SQL and Java 8-11

Overview of Java in Oracle Database

See Also:

» Oracle Database PL/SQL Language Reference to learn about
PL/SQL architecture

» Oracle Database Advanced Application Developer’s Guide to learn
more about external procedures

Overview of Java in Oracle Database

Java has emerged as the object-oriented programming language of choice. Java
includes the following features:

= A Java Virtual Machine (JVM), which provides the basis for platform
independence

= Automated storage management techniques, such as garbage collection

» Language syntax that borrows from C and enforces strong typing

Note: This chapter assumes that you have some familiarity with the
Java language.

The database provides Java programs with a dynamic data-processing engine that
supports complex queries and multiple views of data. Client requests are assembled as
data queries for immediate processing. Query results are generated dynamically.

The combination of Java and Oracle Database helps you create component-based,
network-centric applications that can be easily updated as business needs change. In
addition, you can move applications and data stores off the desktop and onto
intelligent networks and network-centric servers. More importantly, you can access
these applications and data stores from any client device.

Figure 8—4 shows a traditional two-tier, client/server configuration in which clients
call Java stored procedures in the same way that they call PL/SQL subprograms.

Figure 8-4 Two-Tier Client/Server Configuration

Oracle Net \ /
Client
Relational Data
= cin
Oracle Net
Client
Java Stored
Procedures
Oracle Net
Client Z
PL/SQL Stored
Procedures

a4

8-12 Oracle Database Concepts

Overview of Java in Oracle Database

See Also: Oracle Database 2 Day + Java Developer’s Guide for an
introduction to using Java with Oracle Database

Overview of the Java Virtual Machine (JVM)

A JVM is a virtual processor that runs compiled Java code. Java source code compiles
to low-level machine instructions, known as bytecodes, that are platform independent.
The Java bytecodes are interpreted through the JVM into platform-dependent actions.

Overview of Oracle JVM

Oracle JVM is a complete, Java2-compliant environment for running pure Java
applications. It is compatible with the JLS and the JVM specifications. It supports the
standard Java binary format and APIs. In addition, Oracle Database adheres to
standard Java language semantics, including dynamic class loading at run time.

Figure 8-5 illustrates how Oracle Java applications reside on top of the Java core class
libraries, which reside on top of the Oracle JVM. Because the Oracle Java support
system is located within the database, the JVM interacts with database libraries,
instead of directly interacting with the operating system.

Figure 8-5 Java Component Structure

Data / Persistence Logic

JDBC

Java Core Class Libraries

Oracle Database JVM

Oracle Database Libraries

Operating System

Unlike other Java environments, Oracle JVM is embedded within Oracle Database.
Some important differences exist between Oracle JVM and typical client JVMs. For
example, in a standard Java environment, you run a Java application through the
interpreter by issuing the following command on the command line, where cl assname
is the name of the class that you want the JVM to interpret first:

java classnane

The preceding command causes the application to run within a process on your
operating system. However, if you are not using the command-line interface, then you

Server-Side Programming: PL/SQL and Java 8-13

Overview of Java in Oracle Database

must load the application into the database, publish the interface, and then run the
application within a database data dictionary.

See Also: See Oracle Database Java Developer’s Guide for a description
of other differences between the Oracle JVM and typical client JVMs

Main Components of Oracle JVM

Oracle JVM runs in the same process space and address space as the database kernel
by sharing its memory heaps and directly accessing its relational data. This design
optimizes memory use and increases throughput.

Oracle JVM provides a run-time environment for Java objects. It fully supports Java
data structures, method dispatch, exception handling, and language-level threads. It
also supports all the core Java class libraries, including j ava. | ang, j ava. i o, j ava. net,
java. math,andjava. util.

Figure 8-6 shows the main components of Oracle JVM.

Figure 8-6 Main Components of Oracle JVM

Oracle JVM
Interpreter &
Run-Time System
Memory
Natively
Compiled Code
SQL Calls > Class Loader Garbage Collector
loadjava Utility ~ RDBMS RDBMS
CREATE JAVA Statement — Library Manager Memory Manager

Oracle JVM embeds the standard Java namespace in the database schemas. This
feature lets Java programs access Java objects stored in Oracle Database and
application servers across the enterprise.

In addition, Oracle JVM is tightly integrated with the scalable, shared memory
architecture of the database. Java programs use call, session, and object lifetimes
efficiently without user intervention. As a result, Oracle JVM and middle-tier Java
business objects can be scaled, even when they have session-long state.

See Also: Oracle Database Java Developer’s Guide for a description of
the main components of Oracle JVM

Java Programming Environment

Oracle furnishes enterprise application developers with an end-to-end Java solution
for creating, deploying, and managing Java applications. The solution consists of
client-side and server-side programmatic interfaces, tools to support Java
development, and a Java Virtual Machine integrated with Oracle Database. All these
products are compatible with Java standards.

The Java programming environment consists of the following additional features:

8-14 Oracle Database Concepts

Overview of Java in Oracle Database

= Java stored procedures as the Java equivalent and companion for PL/SQL. Java
stored procedures are tightly integrated with PL/SQL. You can call Java stored
procedures from PL/SQL packages and procedures from Java stored procedures.

s The JDBC and SQLJ programming interfaces for accessing SQL data.

= Tools and scripts that assist in developing, loading, and managing classes.

Java Stored Procedures

A Java stored procedure is a Java method published to SQL and stored in the
database. Like a PL/SQL subprogram, a Java procedure can be invoked directly with
products like SQL*Plus or indirectly with a trigger. You can access it from any Oracle
Net client—OClI, precompiler, or JDBC.

To publish Java methods, you write call specifications, which map Java method
names, parameter types, and return types to their SQL counterparts. When called by
client applications, a Java stored procedure can accept arguments, reference Java
classes, and return Java result values.

Applications calling the Java method by referencing the name of the call specification.
The run-time system looks up the call specification definition in the Oracle data
dictionary and runs the corresponding Java method.

In addition, you can use Java to develop powerful programs independently of
PL/SQL. Oracle Database provides a fully compliant implementation of the Java
programming language and JVM.

See Also: Oracle Database Java Developer’s Guide explains how to
write stored procedures in Java, how to access them from PL/SQL,
and how to access PL/SQL functionality from Java

Java and PL/SQL Integration

You can call existing PL/SQL programs from Java and Java programs from PL/SQL.
This solution protects and leverages your PL/SQL and Java code.

Oracle Database offers two different approaches for accessing SQL data from Java,
JDBC and SQLJ. Both approaches are available on the client and server. As a result,
you can deploy applications on the client and server without modifying the code.

JDBC Drivers JDBC is a database access protocol that enables you to connect to a
database and run SQL statements and queries to the database. The core Java class
libraries provide only one JDBC AP], j ava. sql . However, JDBC is designed to enable
vendors to supply drivers that offer the necessary specialization for a particular
database. Oracle provides the distinct JDBC drivers shown in the following table.

Driver Description

JDBC Thin driver You can use the JDBC Thin driver to write pure Java applications and
applets that access Oracle SQL data. The JDBC Thin driver is especially
well-suited for Web-based applications and applets, because you can
dynamically download it from a Web page, similar to any other Java applet.

JDBC OCI driver The JDBC OCI driver accesses Oracle-specific native code, that is, non-Java
code, and libraries on the client or middle tier, providing a performance
boost compared to the JDBC Thin driver, at the cost of significantly larger
size and client-side installation.

Server-Side Programming: PL/SQL and Java 8-15

Overview of Triggers

Overview of

Driver Description

JDBC server-side Oracle Database uses the server-side internal driver when the Java code

internal driver runs on the server. It allows Java applications running in Oracle JVM on the
server to access locally defined data, that is, data on the same system and in
the same process, with JDBC. It provides a performance boost, because of its
ability to use the underlying Oracle RDBMS libraries directly, without the
overhead of an intervening network connection between the Java code and
SQL data. By supporting the same Java-SQL interface on the server, Oracle
Database does not require you to rework code when deploying it.

See Also:
= "ODBC and JDBC" on page 19-8

» Oracle Database 2 Day + Java Developer’s Guide and Oracle Database
JDBC Developer’s Guide

SQLJ SQLJ is an ANSI standard for embedding SQL statements in Java programs.
You can use SQLJ in stored procedures, triggers, and methods within the Oracle
Database environment. In addition, you can combine SQLJ programs with JDBC.

SQLJ provides a simple, but powerful, way to develop client-side and middle-tier
applications that access databases from Java (see "SQLJ" on page 19-6). A developer
writes a program using SQL]J and then uses the SQLJ translator to translate embedded
SQL to pure JDBC-based Java code. At run time, the program can communicate with
multi-vendor databases using standard JDBC drivers.

The following example shows a simple SQL]J executable statement:

String name;
#sql { SELECT first_nanme INTO :name FROM enpl oyees WHERE enpl oyee_i d=112 };
Systemout.printin("Name is " + name + ", enployee nunmber = " + enployee_id);

Because Oracle Database provides a complete Java environment, you cannot compile
SQLJ programs on a client that will run on the database. Instead, you can compile
them directly on the server.

See Also: Oracle Database SQL] Developer’s Guide

Triggers

A database trigger is a compiled stored program unit, written in either PL/SQL or
Java, that Oracle Database invokes ("fires") automatically whenever one of the
following operations occurs:

1. DML statements on a particular table or view, issued by any user

DML statements modify data in schema objects. For example, inserting and
deleting rows are DML operations.

2. DDL statements issued either by a particular user or any user

DDL statements define schema objects. For example, creating a table and adding a
column are DDL operations.

3. Database events

User login or logoff, errors, and database startup or shutdown are events that can
invoke triggers.

8-16 Oracle Database Concepts

Overview of Triggers

Triggers are schema objects that are similar to subprograms but differ in the way they
are invoked. A subprogram is explicitly run by a user, application, or trigger. Triggers
are implicitly invoked by the database when a triggering event occurs.

See Also:

= "Overview of SQL Statements" on page 7-3 to learn about DML
and DDL

= "Overview of Instance Startup and Shutdown" on page 13-5

Advantages of Triggers

The correct use of triggers enables you to build and deploy applications that are more
robust and that use the database more effectively. You can use triggers to:

= Automatically generate derived column values
= Prevent invalid transactions

s Provide auditing and event logging

= Record information about table access

You can use triggers to enforce low-level business rules common for all client
applications. For example, several applications may access the enpl oyees table. If a
trigger on this table ensures the format of inserted data, then this business logic does
not need to be reproduced in every client. Because the trigger cannot be circumvented
by the application, the business logic in the trigger is used automatically.

You can use both triggers and integrity constraints to define and enforce any type of
integrity rule. However, Oracle strongly recommends that you only use triggers to
enforce complex business rules not definable using an integrity constraint (see
"Introduction to Data Integrity" on page 5-1).

Excessive use of triggers can result in complex interdependencies that can be difficult
to maintain in a large application. For example, when a trigger is invoked, a SQL
statement within its trigger action potentially can fire other triggers, resulting in
cascading triggers that can produce unintended effects.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
PL/SQL Language Reference for guidelines and restrictions when
planning triggers for your application

Types of Triggers

Triggers can be categorized according to their means of invocation and the type of
actions they perform. Oracle Database supports the following types of triggers:

= Row triggers

A row trigger fires each time the table is affected by the triggering statement. For
example, if a statement updates multiple rows, then a row trigger fires once for
each row affected by the UPDATE. If a triggering statement affects no rows, then a
row trigger is not run. Row triggers are useful if the code in the trigger action
depends on data provided by the triggering statement or rows that are affected.

= Statement triggers

A statement trigger is fired once on behalf of the triggering statement, regardless
of the number of rows affected by the triggering statement. For example, if a
statement deletes 100 rows from a table, a statement-level DELETE trigger is fired

Server-Side Programming: PL/SQL and Java 8-17

Overview of Triggers

only once. Statement triggers are useful if the code in the trigger action does not
depend on the data provided by the triggering statement or the rows affected.

= | NSTEAD CF triggers

An | NSTEAD CF trigger is fired by Oracle Database instead of executing the
triggering statement. These triggers are useful for transparently modifying views
that cannot be modified directly through DML statements.

= Event triggers

You can use triggers to publish information about database events to subscribers.
Event triggers are divided into the following categories:

- A system event trigger can be caused by events such as database instance
startup and shutdown or error messages.

— A user event trigger is fired because of events related to user logon and logoff,
DDL statements, and DML statements.
See Also:
» Oracle Database 2 Day Developer’s Guide
» Oracle Database PL/SQL Language Reference

Timing for Triggers

You can define the trigger timing—whether the trigger action is to be run before or
after the triggering statement. A simple trigger is a single trigger on a table that
enables you to specify actions for exactly one of the following timing points:

= Before the firing statement

= Before each row affected by the firing statement
» After each row affected by the firing statement
= After the firing statement

For statement and row triggers, a BEFORE trigger can enhance security and enable
business rules before making changes to the database. The AFTER trigger is ideal for
logging actions.

A compound trigger can fire at multiple timing points. Compound triggers help
program an approach in which the actions that you implement for various timing
points share common data.

See Also: Oracle Database PL/SQL Language Reference to learn about
compound triggers

Creation of Triggers

The CREATE TRI GGER statement creates or replaces a database trigger. A PL/SQL
trigger has the following general syntactic form:

CREATE TRI GGER tri gger _name
triggering_statenment
[trigger_restriction]

BEG N

triggered_action;
END;

A PL/SQL trigger has the following basic components:

8-18 Oracle Database Concepts

Overview of Triggers

s Trigger name

The name must be unique with respect to other triggers in the same schema. For
example, the name may be part _reorder _trigger.

s The trigger event or statement

A triggering event or statement is the SQL statement, database event, or user event
that causes a trigger to be invoked. For example, a user updates a table.

» Trigger restriction

A trigger restriction specifies a Boolean expression that must be t r ue for the
trigger to fire. For example, the trigger is not invoked unless the number of
available parts is less than a present reorder amount.

s Triggered action

A triggered action is the procedure that contains the SQL statements and code to
be run when a triggering statement is issued and the trigger restriction evaluates
to true. For example, a user inserts a row into a pending orders table.

Suppose that you create the orders and | i nei t ens tables as follows:

CREATE TABLE orders

(order_id NUMBER PRI MARY KEY,
/* other attributes */
line_items_count NUVBER DEFAULT 0);

CREATE TABLE |ineitens
(order_id REFERENCES orders,
seq_no NUMBER,
/* other attributes */
CONSTRAINT |ineitens PRI MARY KEY(order _id, seq_no));

The or der s table contains a row for each unique order, whereas the | i nei t ens table
contains a row for each item in an order. Example 8-3 shows a sample trigger that
automatically updates the or der s table with the number of items in an order.

Example 8-3 lineitems_trigger

CREATE OR REPLACE TRIGGER lineitens_trigger
AFTER | NSERT OR UPDATE OR DELETE ON lineitens
FOR EACH ROW
BEG N
I'F (I NSERTI NG OR UPDATI NG
THEN
UPDATE orders SET line_itens_count = NVL(line_itens_count,0)+1
WHERE order_id = :new order_id;
END | F;
| F (DELETI NG CR UPDATI NG
THEN
UPDATE orders SET line_items_count = NVL(line_itens_count,0)-1
WHERE order_id = :old.order_id;
END | F;
END;
/

In Example 8-3, the triggering statement is an | NSERT, UPDATE, or DELETE on the
l'i nei t ems table. No triggering restriction exists. The trigger is invoked for each row
changed. The trigger has access to the old and new column values of the current row

Server-Side Programming: PL/SQL and Java 8-19

Overview of Triggers

affected by the triggering statement. Two correlation names exist for every column of
the table being modified: the old value (: ol d), and the new value (: new).

If rows in | i nei t ens are inserted or updated for an order, then after the action the

trigger calculates the number of items in this order and updates the or der s table with
the count. Table 8-2 illustrates a scenario in which a customer initiates two orders and
adds and removes line items from the orders.

Table 8-2

Row-Level Trigger Scenario

SQL Statement

Triggered SQL Statement

Description

SQL> | NSERT I NTO orders
(order_id) VALUES (78);

1 row created.

The customer creates an order with ID 78. At
this point the customer has no items in the
order.

Because no action is performed on the
|'i nei t ens table, the trigger is not invoked.

SQ> I NSERT | NTO orders
(order_id) VALUES (92);

1 row created.

The customer creates a separate order with
ID 92. At this point the customer has no
items in the order.

Because no action is performed on the
I'i nei t ens table, the trigger is not invoked.

SQ.> | NSERT INTO lineitenms

(order_id, seq_no) VALUES (78,1);

1 row created.

UPDATE orders SET
line_items_count = NVL(NULL, 0)+1
VWHERE order_id = 78;

The customer adds an item to order 78.

The | NSERT invokes the trigger. The
triggered statement increases the line item
count for order 78 from 0 to 1.

SQL> INSERT INTO |ineitenms

(order_id, seq_no) VALUES (78,2);

1 row created.

UPDATE orders SET
line_items_count = NVL(1,0)+1
WHERE order_id = 78;

The customer adds an additional item to
order 78.

The | NSERT invokes the trigger. The
triggered statement increases the line item
count for order 78 from 1 to 2.

SQL> SELECT * FROM orders;

ORDER | D LI NE_| TEMS_COUNT

The customer queries the status of the two
orders. Order 78 contains two items. Order
92 contains no items.

SQL> SELECT * FROM lineitens;

ORDER_| D SEQ NO
78 1
78 2

The customer queries the status of the line
items. Each item is uniquely identified by
the order ID and the sequence number.

SQL> UPDATE Ilineitens SET order_id

= 92;

2 rows updat ed.

UPDATE orders SET
line_items_count = NVL(NULL, 0)+1
WHERE order _id = 92;

UPDATE orders SET
line_items_count = NVL(2,0)-1
WHERE order_id = 78;

UPDATE orders SET
line_items_count = NVL(1,0)+1
VWHERE order _id = 92;

UPDATE orders SET
line_items_count = NVL(1,0)-1
WHERE order_id = 78;

The customer moves the line items that were
in order 78 to order 92.

The UPDATE statement changes 2 rows in the
I'i nei t ems tables, which invokes the trigger
once for each row.

Each time the trigger is invoked, both | F
conditions in the trigger are met. The first
condition increments the count for order 92,
whereas the second condition decreases the
count for order 78. Thus, four total UPDATE
statements are run.

8-20 Oracle Database Concepts

Overview of Triggers

Table 8-2 (Cont.) Row-Level Trigger Scenario

SQL Statement Triggered SQL Statement Description
SQL> SELECT * FROM orders; The customer queries the status of the two
orders. The net effect is that the line item
ORDER I D LI NE | TEMS COUNT count for order 92 has increased from 0 to 2,
______ T whereas the count for order 78 has
decreased from 2 to 0.
78 0
92 2
SQL> SELECT * FROM i nei t ens; The customer queries the status of the line
items. Each item is uniquely identified by
ORDER | D SEQ NO the order ID and the sequence number.
92 1
92 2
SQ.> DELETE FROM | i nei t ens; UPDATE orders SET The customer now removes all line items
line_items_count = NVL(2,0)-1 from all orders.
2 rows deleted. WHERE order_id = 92; The DELETE statement changes 2 rows in the
I'i nei t ems tables, which invokes the trigger
UPDATE orders SET once for each row. For each trigger
line_items_count = NVL(1,0)-1 invocation, only one | F condition in the
WHERE order id = 92 trigger is met. Each time the condition
- decreases the count for order 92 by 1. Thus,
two total UPDATE statements are run.
SQL> SELECT * FROM orders; The customer queries the status of the two
orders. Neither order contains line items.
ORDER | D LI NE_I TEMS_COUNT The customer also queries the status of the
""""""""""""" line items. No items exist.
78 0
92 0
SQ.> SELECT * FROM | ineitens;
no rows selected

See Also:

» Oracle Database 2 Day Developer’s Guide and Oracle Database
PL/SQL Language Reference to learn how to create triggers

» Oracle Database PL/SQL Language Reference to learn about the
CREATE TRI GGER command

Execution of Triggers

Oracle Database executes a trigger internally using the same steps as for subprogram
execution. The only subtle difference is that a user has the right to fire a trigger if he or
she has the privilege to run the triggering statement. With this exception, the database
validates and runs triggers the same way as stored subprograms.

See Also: Oracle Database PL/SQL Language Reference to learn more
about trigger execution

Storage of Triggers

Oracle Database stores PL/SQL triggers in compiled form in a database schema, just
like PL/SQL stored procedures. When a CREATE TRI GGER statement commits, the
compiled PL/SQL code is stored in the database and the source code of the PL/SQL
trigger is removed from the shared pool.

Server-Side Programming: PL/SQL and Java 8-21

Overview of Triggers

Figure 8-7 shows a database application with SQL statements that implicitly invoke
PL/SQL triggers. The triggers are stored separately from their associated tables.

Figure 87 Triggers

T
D

Oracle Database

Data Dictionary
Database Application

Table t Update Trigger
Program code
’ Ly BEG N
l] —p| . .. Insert Trigger
UPDATE t SET ...; 99
' BEG N
INSERT INTO t ...; | - - - | Delete Trigger
' BEG N
DELETE FROM t ...; |

\ //

Java triggers are stored in the same manner as PL/SQL triggers. However, a Java
trigger references Java code that was separately compiled with a CALL statement. Thus,

creating a Java trigger involves creating Java code and creating the trigger that
references this Java code.

See Also: Oracle Database PL/SQL Language Reference to learn
about compiling and storing triggers

8-22 Oracle Database Concepts

Part Il

Oracle Transaction Management

This part contains the following chapters:
s Chapter 10, "Transactions"

s Chapter 9, "Data Concurrency and Consistency”

9

Data Concurrency and Consistency

This chapter explains how Oracle Database maintains consistent data in a multiuser
database environment.

This chapter contains the following sections:

» Introduction to Data Concurrency and Consistency

s Overview of Oracle Database Transaction Isolation Levels
= Overview of the Oracle Database Locking Mechanism

s Overview of Automatic Locks

s Overview of Manual Data Locks

m Overview of User-Defined Locks

Introduction to Data Concurrency and Consistency

In a single-user database, a user can modify data without concern for other users
modifying the same data at the same time. However, in a multiuser database,
statements within multiple simultaneous transactions can update the same data.
Transactions executing simultaneously must produce meaningful and consistent
results. Therefore, a multiuser database must provide the following;:

= Data concurrency, which ensures that users can access data at the same time

= Data consistency, which ensures that each user sees a consistent view of the data,
including visible changes made by the user's own transactions and committed
transactions of other users

To describe consistent transaction behavior when transactions run concurrently,
database researchers have defined a transaction isolation model called serializability.
A serializable transaction operates in an environment that makes it appear as if no
other users were modifying data in the database.

While this degree of isolation between transactions is generally desirable, running
many applications in serializable mode can seriously compromise application
throughput. Complete isolation of concurrently running transactions could mean that
one transaction cannot perform an insertion into a table being queried by another
transaction. In short, real-world considerations usually require a compromise between
perfect transaction isolation and performance.

Oracle Database maintains data consistency by using a multiversion consistency
model and various types of locks and transactions. In this way, the database can
present a view of data to multiple concurrent users, with each view consistent to a
point in time. Because different versions of data blocks can exist simultaneously,

Data Concurrency and Consistency 9-1

Introduction to Data Concurrency and Consistency

transactions can read the version of data committed at the point in time required by a
query and return results that are consistent to a single point in time.

See Also: Chapter 5, "Data Integrity” and Chapter 10,
"Transactions"

Multiversion Read Consistency

In Oracle Database, multiversioning is the ability to simultaneously materialize
multiple versions of data. Oracle Database maintains multiversion read consistency,
which means that database queries have the following characteristics:

Read-consistent queries

The data returned by a query is committed and consistent with respect to a single
point in time.

Important: Oracle Database never permits dirty reads, which occur
when a transaction reads uncommitted data in another transaction.

To illustrate the problem with dirty reads, suppose one transaction updates a
column value without committing. A second transaction reads the updated and
dirty (uncommitted) value. The first session rolls back the transaction so that the
column has its old value, but the second transaction proceeds using the updated
value, corrupting the database. Dirty reads compromise data integrity, violate
foreign keys, and ignore unique constraints.

Nonblocking queries

Readers and writers of data do not block one another (see "Summary of Locking
Behavior" on page 9-12).

Statement-Level Read Consistency

Oracle Database always enforces statement-level read consistency, which guarantees
that data returned by a single query is committed and consistent with respect to a
single point in time. The point in time to which a single SQL statement is consistent
depends on the transaction isolation level and the nature of the query:

In the read committed isolation level, this point is the time at which the statement
was opened. For example, if a SELECT statement opens at SCN 1000, then this
statement is consistent to SCN 1000.

In a serializable or read-only transaction this point is the time the transaction
began. For example, if a transaction begins at SCN 1000, and if multiple SELECT
statements occur in this transaction, then each statement is consistent to SCN 1000.

In a Flashback Query operation (SELECT ... AS OF), the SELECT statement
explicitly specifies the point in time. For example, you can query a table as it
appeared last Thursday at 2 p.m.

See Also: Oracle Database Advanced Application Developer’s Guide to
learn about Flashback Query

Transaction-Level Read Consistency

Oracle Database can also provide read consistency to all queries in a transaction,
known as transaction-level read consistency. In this case, each statement in a

9-2 Oracle Database Concepts

Introduction to Data Concurrency and Consistency

transaction sees data from the same point in time, which is the time at which the
transaction began.

Queries made by a serializable transaction see changes made by the transaction itself.
For example, a transaction that updates enpl oyees and then queries enpl oyees will
see the updates. Transaction-level read consistency produces repeatable reads and
does not expose a query to phantom reads.

Read Consistency and Undo Segments

To manage the multiversion read consistency model, the database must create a
read-consistent set of data when a table is simultaneously queried and updated. Oracle
Database achieves this goal through undo data.

Whenever a user modifies data, Oracle Database creates undo entries, which it writes
to undo segments ("Undo Segments" on page 12-24). The undo segments contain the
old values of data that have been changed by uncommitted or recently committed
transactions. Thus, multiple versions of the same data, all at different points in time,
can exist in the database. The database can use snapshots of data at different points in
time to provide read-consistent views of the data and enable nonblocking queries.

Read consistency is guaranteed in single-instance and Oracle Real Application
Clusters (Oracle RAC) environments. Oracle RAC uses a cache-to-cache block transfer
mechanism known as Cache Fusion to transfer read-consistent images of data blocks
from one database instance to another.

See Also:

= 'Internal LOBs" on page 19-12 to learn about read consistency
mechanisms for LOBs

» Oracle Database 2 Day + Real Application Clusters Guide to learn
about Cache Fusion

Read Consistency: Example Figure 9-1 shows a query that uses undo data to provide
statement-level read consistency in the read committed isolation level.

Data Concurrency and Consistency 9-3

Introduction to Data Concurrency and Consistency

Figure 9-1 Read Consistency in the Read Committed Isolation Level

Undo
Segment

SCN 10006 SCN 10021

SCN 10021 SCN 10024 SCN 10024 SCN 10021

SELECT...
(SCN 10023) SCN 10021 SCN 10008 SCN 10011

As the database retrieves data blocks on behalf of a query, the database ensures that
the data in each block reflects the contents of the block when the query began. The
database rolls back changes to the block as needed to reconstruct the block to the point
in time the query started processing.

The database uses a mechanism called an SCN to guarantee the order of transactions.
As the SELECT statement enters the execution phase, the database determines the SCN
recorded at the time the query began executing. In Figure 9-1, this SCN is 10023. The
query only sees committed data with respect to SCN 10023.

In Figure 9-1, blocks with SCNs after 10023 indicate changed data, as shown by the
two blocks with SCN 10024. The SELECT statement requires a version of the block that
is consistent with committed changes. The database copies current data blocks to a
new buffer and applies undo data to reconstruct previous versions of the blocks. These
reconstructed data blocks are called consistent read (CR) clones.

In Figure 9-1, the database creates two CR clones: one block consistent to SCN 10006
and the other block consistent to SCN 10021. The database returns the reconstructed
data for the query. In this way, Oracle Database prevents dirty reads.

See Also: "Database Buffer Cache" on page 14-9 and "System
Change Numbers (SCNs)" on page 10-5

9-4 Oracle Database Concepts

Introduction to Data Concurrency and Consistency

Read Consistency and Transaction Tables The database uses a transaction table, also
called an interested transaction list (ITL), to determine if a transaction was
uncommitted when the database began modifying the block. The block header of
every segment block contains a transaction table.

Entries in the transaction table describe which transactions have rows locked and
which rows in the block contain committed and uncommitted changes. The
transaction table points to the undo segment, which provides information about the
timing of changes made to the database.

In a sense, the block header contains a recent history of transactions that affected each
row in the block. The | NI TRANS parameter of the CREATE TABLE and ALTER TABLE
statements controls the amount of transaction history that is kept.

See Also: Oracle Database SQL Language Reference to learn about the
I NI TRANS parameter

Locking Mechanisms

In general, multiuser databases use some form of data locking to solve the problems
associated with data concurrency, consistency, and integrity. Locks are mechanisms
that prevent destructive interaction between transactions accessing the same resource.

See Also: "Overview of the Oracle Database Locking Mechanism"
on page 9-11

ANSI/ISO Transaction Isolation Levels

The SQL standard, which has been adopted by both ANSI and ISO/IEC, defines four
levels of transaction isolation. These levels have differing degrees of impact on
transaction processing throughput.

These isolation levels are defined in terms of phenomena that must be prevented
between concurrently executing transactions. The preventable phenomena are:

s Dirty reads

A transaction reads data that has been written by another transaction that has not
been committed yet.

= Nonrepeatable (fuzzy) reads

A transaction rereads data it has previously read and finds that another committed
transaction has modified or deleted the data. For example, a user queries a row
and then later queries the same row, only to discover that the data has changed.

s Phantom reads

A transaction reruns a query returning a set of rows that satisfies a search
condition and finds that another committed transaction has inserted additional
rows that satisfy the condition.

For example, a transaction queries the number of employees. Five minutes later it
performs the same query, but now the number has increased by one because
another user inserted a record for a new hire. More data satisfies the query criteria
than before, but unlike in a fuzzy read the previously read data is unchanged.

The SQL standard defines four levels of isolation in terms of the phenomena that a
transaction running at a particular isolation level is permitted to experience. Table 9-1
shows the levels.

Data Concurrency and Consistency 9-5

Overview of Oracle Database Transaction Isolation Levels

Table 9-1 Preventable Read Phenomena by Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Read
Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

Oracle Database offers the read committed (default) and serializable isolation levels.
Also, the database offers a read-only mode.

See Also:

= "Overview of Oracle Database Transaction Isolation Levels" on
page 9-6 to learn about read committed, serializable, and
read-only isolation levels

» Oracle Database SQL Language Reference for a discussion of Oracle
Database conformance to SQL standards

Overview of Oracle Database Transaction Isolation Levels

Table 9-1 summarizes the ANSI standard for transaction isolation levels. The standard
is defined in terms of the phenomena that are either permitted or prevented for each
isolation level. Oracle Database provides the transaction isolation levels:

s Read Committed Isolation Level
s Serializable Isolation Level

= Read-Only Isolation Level

See Also:

» Oracle Database Advanced Application Developer’s Guide to learn
more about transaction isolation levels

» Oracle Database SQL Language Reference and Oracle Database
PL/SQL Language Reference to learn about SET TRANSACTI ON
| SOLATI ON LEVEL

Read Committed Isolation Level

In the read committed isolation level, which is the default, every query executed by a
transaction sees only data committed before the query—mnot the transaction—began.
This level of isolation is appropriate for database environments in which few
transactions are likely to conflict.

A query in a read committed transaction avoids reading data that commits while the
query is in progress. For example, if a query is halfway through a scan of a million-row
table, and if a different transaction commits an update to row 950,000, then the query
does not see this change when it reads row 950,000. However, because the database
does not prevent other transactions from modifying data read by a query, other
transactions may change data between query executions. Thus, a transaction that runs
the same query twice may experience fuzzy reads and phantoms.

9-6 Oracle Database Concepts

Overview of Oracle Database Transaction Isolation Levels

Read Consistency in the Read Committed Isolation Level

A consistent result set is provided for every query, guaranteeing data consistency, with
no action by the user. An implicit query, such as a query implied by a WHERE clause in
an UPDATE statement, is guaranteed a consistent set of results. However, each statement
in an implicit query does not see the changes made by the DML statement itself, but
sees the data as it existed before changes were made.

If a SELECT list contains a PL/SQL function, then the database applies statement-level
read consistency at the statement level for SQL run within the PL/SQL function code,
rather than at the parent SQL level. For example, a function could access a table whose
data is changed and committed by another user. For each execution of the SELECT in
the function, a new read-consistent snapshot is established.

See Also: "Subqueries and Implicit Queries" on page 7-7

Conflicting Writes in Read Committed Transactions

In a read committed transaction, a conflicting write occurs when the transaction
attempts to change a row updated by an uncommitted concurrent transaction,
sometimes called a blocking transaction. The read committed transaction waits for the
blocking transaction to end and release its row lock. The options are as follows:

» If the blocking transaction rolls back, then the waiting transaction proceeds to
change the previously locked row as if the other transaction never existed.

= If the blocking transaction commits and releases its locks, then the waiting
transaction proceeds with its intended update to the newly changed row.

Table 9-2 shows how transaction 1, which can be either serializable or read committed,
interacts with read committed transaction 2. Table 9-2 shows a classic situation known
as a lost update (see "Use of Locks" on page 9-12). The update made by transaction 1 is
not in the table even though transaction 1 committed it. Devising a strategy to handle lost
updates is an important part of application development.

Table 9-2 Conflicting Writes and Lost Updates in a READ COMMITTED Transaction

Session 1

Session 2

Explanation

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Greene', ' Hntz');

LAST_NAME SALARY
Banda 6200
G eene 9500

Session 1 queries the salaries for Banda,
Greene, and Hintz. No employee named
Hintz is found.

SQL> UPDATE enpl oyees SET sal ary
= 7000 WHERE | ast _name = 'Banda';

Session 1 begins a transaction by updating
the Banda salary. The default isolation level
for transaction 1 is READ COW TTED.

SQL> SET TRANSACTI ON | SCLATI ON
LEVEL READ COW TTED;

Session 2 begins transaction 2 and sets the
isolation level explicitly to READ COW TTED.

SQ.> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nanme IN
('Banda',' Greene','Hntz');

LAST_NAME SALARY
Banda 6200
G eene 9500

Transaction 2 queries the salaries for
Banda, Greene, and Hintz. Oracle Database
uses read consistency to show the salary for
Banda before the uncommitted update
made by transaction 1.

Data Concurrency and Consistency 9-7

Overview of Oracle Database Transaction Isolation Levels

Table 9-2 (Cont.) Conflicting Writes and Lost Updates in a READ COMMITTED Transaction

Session 1

Session 2

Explanation

SQL> UPDATE enpl oyees SET salary =
9900 WHERE | ast _nane = ' Greene';

Transaction 2 updates the salary for Greene
successfully because transaction 1 locked
only the Banda row (see "Row Locks (TX)"
on page 9-18).

SQL> I NSERT I NTO enpl oyees
(enpl oyee_id, |ast_name, enail,
hire_date, job_id) VALUES (210,
"Hntz', "JHNTZ, SYSDATE,

" SH CLERK');

Transaction 1 inserts a row for employee
Hintz, but does not commit.

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nanme IN
('Banda',' Greene',"'Hntz');

LAST_NAME SALARY
Banda 6200
G eene 9900

Transaction 2 queries the salaries for
employees Banda, Greene, and Hintz.

Transaction 2 sees its own update to the
salary for Greene. Transaction 2 does not
see the uncommitted update to the salary
for Banda or the insertion for Hintz made
by transaction 1.

SQ.> UPDATE enpl oyees SET salary =
6300 WHERE | ast _name = 'Banda';

-- pronpt does not return

Transaction 2 attempts to update the row
for Banda, which is currently locked by
transaction 1, creating a conflicting write.
Transaction 2 waits until transaction 1 ends.

SQL> COWMT;

Transaction 1 commits its work, ending the
transaction.

1 row updat ed.

sqL>

The lock on the Banda row is now released,
so transaction 2 proceeds with its update to
the salary for Banda.

SQ> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane IN
('Banda',' Greene','Hntz');

Transaction 2 queries the salaries for
employees Banda, Greene, and Hintz. The
Hintz insert committed by transaction 1 is
now visible to transaction 2. Transaction 2
sees its own update to the Banda salary.

LAST_NAME SALARY

Banda 6300

G eene 9900

Hintz

COWM T; Transaction 2 commits its work, ending the

transaction.

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Greene',"'Hntz');

LAST_NAME SALARY
Banda 6300
G eene 9900
Hintz

Session 1 queries the rows for Banda,
Greene, and Hintz. The salary for Banda is
6300, which is the update made by
transaction 2. The update of Banda's salary
to 7000 made by transaction 1 is now "lost."

Serializable Isolation Level

In the serialization isolation level, a transaction sees only changes committed at the
time the transaction—not the query—began and changes made by the transaction
itself. A serializable transaction operates in an environment that makes it appear as if
no other users were modifying data in the database.

Serializable isolation is suitable for environments:

= With large databases and short transactions that update only a few rows

9-8 Oracle Database Concepts

Overview of Oracle Database Transaction Isolation Levels

= Where the chance that two concurrent transactions will modify the same rows is
relatively low

= Where relatively long-running transactions are primarily read only

In serializable isolation, the read consistency normally obtained at the statement level
extends to the entire transaction. Any row read by the transaction is assured to be the
same when reread. Any query is guaranteed to return the same results for the duration
of the transaction, so changes made by other transactions are not visible to the query
regardless of how long it has been running. Serializable transactions do not experience
dirty reads, fuzzy reads, or phantom reads.

Oracle Database permits a serializable transaction to modify a row only if changes to
the row made by other transactions were already committed when the serializable
transaction began. The database generates an error when a serializable transaction
tries to update or delete data changed by a different transaction that committed after
the serializable transaction began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the ORA- 08177 error, an application can take
several actions, including the following:

s Commit the work executed to that point

= Execute additional (but different) statements, perhaps after rolling back to a
savepoint established earlier in the transaction

= Roll back the entire transaction

Table 9-3 shows how a serializable transaction interacts with other transactions. If the
serializable transaction does not try to change a row committed by another transaction

after the serializable transaction began, then a serialized access problem is avoided.

Table 9-3 Read Consistency and Serialized Access Problems in Serializable Transactions

Session 1

Session 2

Explanation

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Greene','Hntz');

LAST_NAME SALARY
Banda 6200
G eene 9500

Session 1 queries the salaries for Banda,
Greene, and Hintz. No employee named
Hintz is found.

SQL> UPDATE enpl oyees SET sal ary
= 7000 WHERE | ast _nanme = 'Banda';

Session 1 begins transaction 1 by updating
the Banda salary. The default isolation level
for is READ COWM TTED.

SQL> SET TRANSACTI ON | SCLATI ON
LEVEL SERI ALI ZABLE;

Session 2 begins transaction 2 and sets it to
the SERI ALl ZABLE isolation level.

SQ.> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Geene',"Hntz");

LAST_NAME SALARY
Banda 6200
G eene 9500

Transaction 2 queries the salaries for
Banda, Greene, and Hintz. Oracle Database
uses read consistency to show the salary for
Banda before the uncommitted update made
by transaction 1.

SQL> UPDATE enpl oyees SET salary =

9900 WHERE | ast_nane = ' G eene';

Transaction 2 updates the Greene salary
successfully because only the Banda row is
locked.

Data Concurrency and Consistency 9-9

Overview of Oracle Database Transaction Isolation Levels

Table 9-3 (Cont.) Read Consistency and Serialized Access Problems in Serializable Transactions

Session 1

Session 2

Explanation

SQL> I NSERT I NTO enpl oyees
(enpl oyee_id, |ast_name, enail,
hire_date, job_id) VALUES (210,
"Hntz', "JHNTZ, SYSDATE,

" SH CLERK');

Transaction 1 inserts a row for employee
Hintz.

SQL> COWM T

Transaction 1 commits its work, ending the
transaction.

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Greene', ' Hntz');

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nanme IN
('Banda',' Greene','Hntz');

Session 1 queries the salaries for employees
Banda, Greene, and Hintz and sees changes
committed by transaction 1. Session 1 does
not see the uncommitted Greene update
made by transaction 2.

LAST_NAME SALARY LAST_NAME SALARY

.. Transaction 2 queries the salaries for

Banda 7000 Banda 6200 employees Banda, Greene, and Hintz.

G eene 9500 @ eene 9900 Oracle Database read consistency ensures

Hint z that the Hintz insert and Banda update
committed by transaction 1 are not visible
to transaction 2. Transaction 2 sees its own
update to the Banda salary.

COWM T; Transaction 2 commits its work, ending the

transaction.

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Greene','Hntz');

LAST_NAME SALARY
Banda 7000
G eene 9900
Hintz

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nanme
IN ('Banda',' Geene',"'Hntz");

LAST_NAME SALARY
Banda 7000
G eene 9900
Hintz

Both sessions query the salaries for Banda,
Greene, and Hintz. Each session sees all
committed changes made by transaction 1
and transaction 2.

SQL> UPDATE enpl oyees SET sal ary
= 7100 WHERE | ast _name = "Hntz';

Session 1 begins transaction 3 by updating
the Hintz salary. The default isolation level
for transaction 3 is READ COMM TTED.

SQL> SET TRANSACTI ON | SCLATI ON
LEVEL SERI ALI ZABLE;

Session 2 begins transaction 4 and sets it to
the SERI ALI ZABLE isolation level.

SQ.> UPDATE enpl oyees SET salary =
7200 WHERE | ast _name = 'Hntz';

-- pronpt does not return

Transaction 4 attempts to update the salary
for Hintz, but is blocked because
transaction 3 locked the Hintz row (see
"Row Locks (TX)" on page 9-18).
Transaction 4 queues behind transaction 3.

SQL> COWMT;

Transaction 3 commits its update of the
Hintz salary, ending the transaction.

UPDATE enpl oyees SET salary = 7200
VWHERE | ast_nanme = 'Hntz'

*

ERROR at line 1:

ORA-08177: can't serialize access
for this transaction

The commit that ends transaction 3 causes
the Hintz update in transaction 4 to fail
with the ORA- 08177 error. The problem
error occurs because transaction 3
committed the Hintz update after
transaction 4 began.

SQ.> ROLLBACK;

Session 2 rolls back transaction 4, which
ends the transaction.

SQL> SET TRANSACTI ON | SCLATI ON
LEVEL SERI ALI ZABLE;

Session 2 begins transaction 5 and sets it to
the SERI ALl ZABLE isolation level.

9-10 Oracle Database Concepts

Overview of the Oracle Database Locking Mechanism

Table 9-3 (Cont.) Read Consistency and Serialized Access Problems in Serializable Transactions

Session 1

Session 2

Explanation

SQL> SELECT | ast_nane, salary
FROM enpl oyees WHERE | ast _nane
IN ('Banda',' Geene','Hntz');

Transaction 5 queries the salaries for
Banda, Greene, and Hintz. The Hintz salary
update committed by transaction 3 is

visible.
LAST_NAME SALARY
Banda 7100
G eene 9500
Hntz 7100
SQ.> UPDATE enpl oyees SET salary = | Transaction 5 updates the Hintz salary to a

different value. Because the Hintz update
made by transaction 3 committed before the
start of transaction 5, the serialized access
problem is avoided.

7200 WHERE |l ast_name = 'Hntz';

1 row updat ed.

Note: If a different transaction updated and
committed the Hintz row after transaction
transaction 5 began, then the serialized
access problem would occur again.

SQ> COWM T, Session 2 commits the update without any

problems, ending the transaction.

See Also: "Overview of Transaction Control" on page 10-6

Read-Only Isolation Level

The read-only isolation level is similar to the serializable isolation level, but read-only
transactions do not permit data to be modified in the transaction unless the user is SYS.
Thus, read-only transactions are not susceptible to the ORA- 08177 error. Read-only
transactions are useful for generating reports in which the contents must be consistent
with respect to the time when the transaction began.

Oracle Database achieves read consistency by reconstructing data as needed from the
undo segments. Because undo segments are used in a circular fashion, the database
can overwrite undo data. Long-running reports run the risk that undo data required
for read consistency may have been reused by a different transaction, raising a
snapshot too ol d error. Setting an undo retention period, which is the minimum
amount of time that the database attempts to retain old undo data before overwriting
it, appropriately avoids this problem.

See Also:
s "Undo Segments" on page 12-24

» Oracle Database Administrator’s Guide to learn how to set the undo
retention period

Overview of the Oracle Database Locking Mechanism

A lock is a mechanism that prevents destructive interactions, which are interactions
that incorrectly update data or incorrectly alter underlying data structures, between
transactions accessing shared data. Locks play a crucial row in maintaining database
concurrency and consistency.

Data Concurrency and Consistency 9-11

Overview of the Oracle Database Locking Mechanism

Summary of Locking Behavior

Use of Locks

The database maintains several different types of locks, depending on the operation
that acquired the lock. In general, the database uses two types of locks: exclusive locks
and share locks. Only one exclusive lock can be obtained on a resource such as a row
or a table, but many share locks can be obtained on a single resource.

Locks affect the interaction of readers and writers. A reader is a query of a resource,
whereas a writer is a statement modifying a resource. The following rules summarize
the locking behavior of Oracle Database for readers and writers:

= Arow is locked only when modified by a writer.

When a statement updates one row, the transaction acquires a lock for this row
only. By locking table data at the row level, the database minimizes contention for
the same data. Under normal circumstances' the database does not escalate a row
lock to the block or table level.

s A writer of a row blocks a concurrent writer of the same row.

If one transaction is modifying a row, then a row lock prevents a different
transaction from modifying the same row simultaneously.

m A reader never blocks a writer.

Because a reader of a row does not lock it, a writer can modify this row. The only
exception isa SELECT ... FOR UPDATE statement, which is a special type of SELECT
statement that does lock the row that it is reading.

m A writer never blocks a reader.

When a row is being changed by a writer, the database uses undo data data to
provide readers with a consistent view of the row.

Note: Readers of data may have to wait for writers of the same data
blocks in very special cases of pending distributed transactions.

See Also:

» Oracle Database SQL Language Reference to learn about SELECT . . .
FOR UPDATE

m Oracle Database Administrator’s Guide to learn about waits
associated with in-doubt distributed transactions

In a single-user database, locks are not necessary because only one user is modifying
information. However, when multiple users are accessing and modifying data, the
database must provide a way to prevent concurrent modification of the same data.
Locks achieve the following important database requirements:

= Consistency

The data a session is viewing or changing must not be changed by other sessions
until the user is finished.

1 When processing a distributed two-phase commit, the database may briefly prevent read
access in special circumstances. Specifically, if a query starts between the prepare and commit
hases an attem%ts to read the data before the commit, then the database may escalate a lock
rom row-level to block-level to guarantee read consistency.

9-12 Oracle Database Concepts

Overview of the Oracle Database Locking Mechanism

= Integrity

The data and structures must reflect all changes made to them in the correct
sequence.

Oracle Database provides data concurrency, consistency, and integrity among
transactions through its locking mechanisms. Locking is performed automatically and
requires no user action.

The need for locks can be illustrated by a concurrent update of a single row. In the
following example, a simple web-based application presents the end user with an
employee email and phone number. The application uses an UPDATE statement such as
the following to modify the data:

UPDATE enpl oyees

SET emai|l = ?, phone_nunber = ?
WHERE enpl oyee_id = ?

AND email =7?

AND phone_nunber = ?

In the preceding UPDATE statement, the email and phone number values in the WHERE
clause are the original, unmodified values for the specified employee. This update
ensures that the row that the application modifies was not changed after the
application last read and displayed it to the user. In this way, the application avoids
the lost update database problem in which one user overwrites changes made by
another user, effectively losing the update by the second user (Table 9-2 on page 9-7
shows an example of a lost update).

Table 9—4 shows the sequence of events when two sessions attempt to modify the same
row in the enpl oyees table at roughly the same time.

Table 9-4 Row Locking Example

Time | Session 1 Session 2 Explanation
t0 SELECT enpl oyee_id, email, In session 1, the hr 1 user queries
phone_number hr. enpl oyees for the Himuro record
FROM hr. enpl oyees and displays the employee_id (118),
VWHERE |ast name = 'H muro' email (GH MURO), and phone number
- ' (515. 127. 4565) attributes.
EMPLOYEE_ | D EMAIL PHONE_NUMBER
118 GH MURO 515. 127. 4565
t1 SELECT enpl oyee_id, email, In session 2, the hr 2 user queries
phone_nurber hr. enpl oyees for the Himuro record
FROM hr. enpl oyees and displays the employee_id (118),
WHERE | ast name = 'H mro' - email (GH MURO), and phone number
- ' (515. 127. 4565) attributes.
EMPLOYEE_ | D EMAIL PHONE_NUMBER
118 GH MURO 515. 127. 4565
t2 UPDATE hr . enpl oyees In session 1, the hr 1 user updates the
SET phone_nunber =' 515. 555. 1234' phone number in the row to
VHERE enpl oyee_i d=118 515. 555. 1234, which acquires a lock on
AND enmi | =' GHI K/URO the GH MUROrow.

AND phone_nunber =' 515. 127. 4565' ;

1 row updat ed.

Data Concurrency and Consistency 9-13

Overview of the Oracle Database Locking Mechanism

Table 9-4 (Cont.) Row Locking Example

Commi t conpl ete.

Time | Session 1 Session 2 Explanation
t3 UPDATE hr . enpl oyees In session 2, the hr 2 user attempts to
SET phone_nunber =' 515. 555. 1235' update the same row, but is blocked
VHERE enpl oyee i d=118 because hr 1 is currently processing the
AND emai | =" GH MURO row.
AND phone_nunber =' 515. 127. 4565' ; | The attempted update by hr 2 occurs
almost simultaneously with the hr 1
-- SQL*Plus does not show update.
-- a row updated message or
-- return the pronpt.
t4 COWMT; In session 1, the hr 1 user commits the
transaction.

Commit conpl ete. The commit makes the change for
Himuro permanent and unblocks
session 2, which has been waiting.

t5 0 rows updat ed. In session 2, the hr 2 user discovers that
the GH MUROrow was modified in such a
way that it no longer matches its
predicate.
Because the predicates do not match,
session 2 updates no records.

t6 UPDATE hr. enpl oyees In session 1, the hr 1 user realizes that it

SET phone_nunber =' 515. 555. 1235' updated the GH MUROrow with the

VHERE enpl oyee_i d=118 wrong phone number. The user starts a

AND ermai | = GH MURO new transaction and updates the phone

_ ' number in the row to 515. 555. 1235,

AND phone_nunber =" 515. 555. 1234" ; which locks the GH MROTow.

1 row updat ed.

t7 SELECT enpl oyee_id, email, In session 2, the hr 2 user queries
phone_nunber hr. enpl oyees for the Himuro record.
FROM hr. enpl oyees The record shows the phone number
VWHERE |ast nane = ' H muro' update committed by session 1 at t4.
- ' Oracle Database read consistency
ensures that session 2 does not see the
EMPLOYEE_ID BMAIL - PHONE_NUMBER |\, committed change made at t6.
118 GH MJRO 515. 555. 1234
t8 UPDATE hr . enpl oyees In session 2, the hr 2 user attempts to
SET phone_nunber =' 515. 555. 1235' update the same row, but is blocked
VHERE enpl oyee_i d=118 because hr 1 is currently processing the
AND emai | =" GH MURO row.
AND phone_nunber =' 515. 555. 1234" ;
-- SQ.*Plus does not show
-- a row updated nessage or
-- return the pronpt.
t9 ROLLBACK; In session 1, the hr 1 user rolls back the
transaction, which ends it.

Rol I back conpl ete.

t10 1 row updat ed. In session 2, the update of the phone
number succeeds because the session 1
update was rolled back. The GH MURO
row matches its predicate, so the update
succeeds.

t11 COWM T, Session 2 commits the update, ending

the transaction.

Oracle Database automatically obtains necessary locks when executing SQL
statements. For example, before the database permits a session to modify data, the

9-14 Oracle Database Concepts

Overview of the Oracle Database Locking Mechanism

Lock Modes

session must first lock the data. The lock gives the session exclusive control over the
data so that no other transaction can modify the locked data until the lock is released.

Because the locking mechanisms of Oracle Database are tied closely to transaction
control, application designers need only define transactions properly, and Oracle
Database automatically manages locking. Users never need to lock any resource
explicitly, although Oracle Database also enables users to lock data manually.

The following sections explain concepts that are important for understanding how
Oracle Database achieves data concurrency.

See Also: Oracle Database PL/SQL Packages and Types Reference to
learn about the OM_OPT_LOCK package, which contains subprograms
that can help prevent lost updates

Oracle Database automatically uses the lowest applicable level of restrictiveness to
provide the highest degree of data concurrency yet also provide fail-safe data integrity.
The less restrictive the level, the more available the data is for access by other users.
Conversely, the more restrictive the level, the more limited other transactions are in the
types of locks that they can acquire.

Oracle Database uses two modes of locking in a multiuser database:
s Exclusive lock mode

This mode prevents the associated resource from being shared. A transaction
obtains an exclusive lock when it modifies data. The first transaction to lock a
resource exclusively is the only transaction that can alter the resource until the
exclusive lock is released.

m Share lock mode

This mode allows the associated resource to be shared, depending on the
operations involved. Multiple users reading data can share the data, holding share
locks to prevent concurrent access by a writer who needs an exclusive lock.
Several transactions can acquire share locks on the same resource.

Assume that a transaction uses a SELECT ... FORUPDATE statement to select a single
table row. The transaction acquires an exclusive row lock and a row share table lock.
The row lock allows other sessions to modify any rows other than the locked row, while
the table lock prevents sessions from altering the structure of the table. Thus, the
database permits as many statements as possible to execute.

Lock Conversion and Escalation

Oracle Database performs lock conversion as necessary. In lock conversion, the
database automatically converts a table lock of lower restrictiveness to one of higher
restrictiveness.

For example, suppose a transaction issues a SELECT ... FORUPDATE for an employee
and later updates the locked row. In this case, the database automatically converts the
row share table lock to a row exclusive table lock. A transaction holds exclusive row
locks for all rows inserted, updated, or deleted within the transaction. Because row
locks are acquired at the highest degree of restrictiveness, no lock conversion is
required or performed.

Lock conversion is different from lock escalation, which occurs when numerous locks
are held at one level of granularity (for example, rows) and a database raises the locks
to a higher level of granularity (for example, table). If a user locks many rows in a

Data Concurrency and Consistency 9-15

Overview of the Oracle Database Locking Mechanism

Lock Duration

table, then some databases automatically escalate the row locks to a single table. The
number of locks decreases, but the restrictiveness of what is locked increases.

Oracle Database never escalates locks. Lock escalation greatly increases the likelihood of
deadlocks. Assume that a system is trying to escalate locks on behalf of transaction 1
but cannot because of the locks held by transaction 2. A deadlock is created if
transaction 2 also requires lock escalation of the same data before it can proceed.

Oracle Database automatically releases a lock when some event occurs so that the
transaction no longer requires the resource. In most cases, the database holds locks
acquired by statements within a transaction for the duration of the transaction. These
locks prevent destructive interference such as dirty reads, lost updates, and destructive
DDL from concurrent transactions.

Note: A table lock taken on a child table because of an unindexed
foreign key is held for the duration of the statement, not the
transaction. Also, as explained in "Overview of User-Defined Locks"
on page 9-27, the DBM5_LOCK package enables user-defined locks to be
released and allocated at will and even held over transaction
boundaries.

Oracle Database releases all locks acquired by the statements within a transaction
when it commits or rolls back. Oracle Database also releases locks acquired after a
savepoint when rolling back to the savepoint. However, only transactions not waiting
for the previously locked resources can acquire locks on the now available resources.
Waiting transactions continue to wait until after the original transaction commits or
rolls back completely (see Table 10-2 on page 10-9 for an example).

See Also: "Rollback to Savepoint” on page 10-8

Locks and Deadlocks

A deadlock is a situation in which two or more users are waiting for data locked by
each other. Deadlocks prevent some transactions from continuing to work.

Oracle Database automatically detects deadlocks and resolves them by rolling back
one statement involved in the deadlock, releasing one set of the conflicting row locks.
The database returns a corresponding message to the transaction that undergoes
statement-level rollback. The statement rolled back belongs to the transaction that
detects the deadlock. Usually, the signalled transaction should be rolled back explicitly,
but it can retry the rolled-back statement after waiting.

Table 9-5 illustrates two transactions in a deadlock.

Table 9-5 Deadlock Example

Time

Session 1

Session 2

Explanation

t0

SQL> UPDATE enpl oyees
SET salary = salary*1.1

VWHERE enpl oyee_id = 100;

1 row updat ed.

SQL> UPDATE enpl oyees
SET salary = salary*1.1
WHERE enpl oyee_id = 200;

1 row updat ed.

Session 1 starts transaction 1 and updates
the salary for employee 100. Session 2 starts
transaction 2 and updates the salary for
employee 200. No problem exists because
each transaction locks only the row that it
attempts to update.

9-16 Oracle Database Concepts

Overview of Automatic Locks

Table 9-5 (Cont.) Deadlock Example

Time

Session 1

Session 2

Explanation

t1

SQL> UPDATE enpl oyees
SET salary = salary*1.1
WHERE enpl oyee_id = 200;

- pronpt does not return

SQL> UPDATE enpl oyees
salary = salary*1.1
WHERE enpl oyee_id = 100;

- pronpt does not return

Transaction 1 attempts to update the
employee 200 row, which is currently locked
by transaction 2. Transaction 2 attempts to
update the employee 100 row, which is
currently locked by transaction 1.

A deadlock results because neither
transaction can obtain the resource it needs
to proceed or terminate. No matter how long
each transaction waits, the conflicting locks
are held.

t2

UPDATE enpl oyees
*
ERROR at line 1:

ORA- 00060: deadl ock detected
while waiting for resource

SQL>

Transaction 1 signals the deadlock and rolls
back the UPDATE statement issued at t1.
However, the update made at t0 is not rolled
back. The prompt is returned in session 1.

Note: Only one session in the deadlock
actually gets the deadlock error, but either
session could get the error.

t3

SQL> COWI T

Commit conpl ete.

Session 1 commits the update made at t0,
ending transaction 1. The update
unsuccessfully attempted at t1 is not
committed.

t4

1 row updat ed.

sQL>

The update at t1 in transaction 2, which was
being blocked by transaction 1, is executed.
The prompt is returned.

t5

SQL> COM T;

Commi t conpl ete.

Session 2 commits the updates made at t0
and t1, which ends transaction 2.

Deadlocks most often occur when transactions explicitly override the default locking
of Oracle Database. Because Oracle Database does not escalate locks and does not use
read locks for queries, but does use row-level (rather than page-level) locking,

deadlocks occur infrequently.

See Also:

= "Overview of Manual Data Locks" on page 9-26

» Oracle Database Advanced Application Developer’s Guide to learn
how to handle deadlocks when you lock tables explicitly

Overview of Automatic Locks

Oracle Database automatically locks a resource on behalf of a transaction to prevent
other transactions from doing something that requires exclusive access to the same
resource. The database automatically acquires different types of locks at different
levels of restrictiveness depending on the resource and the operation being performed.

Note:

The database never locks rows when performing simple reads.

Oracle Database locks are divided into the following categories.

Lock

Description

DML Locks

Protect data. For example, table locks lock entire tables, while
row locks lock selected rows. See "DML Locks" on page 9-18.

Data Concurrency and Consistency 9-17

Overview of Automatic Locks

DML Locks

Lock Description

DDL Locks Protect the structure of schema objects—for example, the
dictionary definitions of tables and views. See "DDL Locks" on
page 9-24.

System Locks Protect internal database structures such as data files. Latches,

mutexes, and internal locks are entirely automatic. See "System
Locks" on page 9-25.

A DML lock, also called a data lock, guarantees the integrity of data accessed
concurrently by multiple users. For example, a DML lock prevents two customers
from buying the last copy of a book available from an online bookseller. DML locks
prevent destructive interference of simultaneous conflicting DML or DDL operations.

DML statements automatically acquire the following types of locks:
s Row Locks (TX)
s TableLocks (TM)

In the following sections, the acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Oracle Enterprise Manager
(Enterprise Manager). Enterprise Manager might display TM for any table lock, rather
than indicate the mode of table lock (such as RS or SRX).

See Also: "Oracle Enterprise Manager" on page 18-2

Row Locks (TX)

A row lock, also called a TX lock, is a lock on a single row of table. A transaction
acquires a row lock for each row modified by an | NSERT, UPDATE, DELETE, MERGE, or
SELECT ... FORUPDATE statement. The row lock exists until the transaction commits or
rolls back.

Row locks primarily serve as a queuing mechanism to prevent two transactions from
modifying the same row. The database always locks a modified row in exclusive mode
so that other transactions cannot modify the row until the transaction holding the lock
commits or rolls back. Row locking provides the finest grain locking possible and so
provides the best possible concurrency and throughput.

Note: If a transaction terminates because of database instance
failure, then block-level recovery makes a row available before the
entire transaction is recovered.

If a transaction obtains a lock for a row, then the transaction also acquires a lock for the
table containing the row. The table lock prevents conflicting DDL operations that
would override data changes in a current transaction. Figure 9-2 illustrates an update
of the third row in a table. Oracle Database automatically places an exclusive lock on
the updated row and a subexclusive lock on the table.

9-18 Oracle Database Concepts

Overview of Automatic Locks

Figure 9-2 Row and Table Locks

Table EMPLOYEES

EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID | DEPARTMENT_ID

glOO King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG | 102 60

Table lock acquired
é Exclusive row lock (TX) acquired

Row being updated

Row Locks and Concurrency Table 9-6 illustrates how Oracle Database uses row locks for
concurrency. Three sessions query the same rows simultaneously. Session 1 and 2
proceed to make uncommitted updates to different rows, while session 3 makes no
updates. Each session sees its own uncommitted updates but not the uncommitted
updates of any other session.

Table 9-6 Data Concurrency Example

Time | Session 1

Session 2

Session 3

Explanation

t0 SELECT enpl oyee_i d,
sal ary FROM enpl oyees
WHERE enpl oyee_i d
IN (100, 101);

EWMPLOYEE | D SALARY

SELECT enpl oyee_i d,
sal ary FROM enpl oyees
VWHERE enpl oyee_i d
IN (100, 101);

EVMPLOYEE_ | D SALARY

SELECT enpl oyee_id,
sal ary FROM enpl oyees
WHERE enpl oyee_i d
IN (100, 101);

EWPLOYEE | D SALARY

Three different sessions
simultaneously query the ID and
salary of employees 100 and 101.
The results returned by each
query are identical.

t1 UPDATE hr . enpl oyees
SET sal ary=sal ary+100
WHERE enpl oyee_i d=100;

Session 1 updates the salary of
employee 100, but does not
commit. In the update, the writer
acquires a row-level lock for the
updated row only, thereby
preventing other writers from
modifying this row.

Data Concurrency and Consistency 9-19

Overview of Automatic Locks

Table 9-6 (Cont.) Data Concurrency Example

sal ary FROM enpl oyees
WHERE enpl oyee_i d
IN (100, 101);

EWPLOYEE | D SALARY

sal ar yFROM enpl oyees
WHERE enpl oyee_i d
IN (100, 101);

EMPLOYEE_ID SALARY

sal ary FROM enpl oyees
WHERE enpl oyee_i d
IN (100, 101);

EMPLOYEE ID SALARY

Time | Session 1 Session 2 Session 3 Explanation
2 SELECT enpl oyee_id, SELECT enpl oyee_i d, SELECT enpl oyee_id, Each session simultaneously
sal ary FROM enpl oyees | salary FROM enpl oyees | sal ary FROM enpl oyees issues the original query. Session
VHERE enpl oyee i d VHERE enpl oyee_id WHERE enpl oyee_i d 1 shows the salary of 612
I'N (100» 101) : I'N (100Y 101) : I'N (100» 101) : resultmg from.the tl update. The
readers in session 2 and 3 return
EMPLOYEE ID SALARY EMPLOYEE ID SALARY EMPLOYEE ID SALARY rows immediately and do not
wait for session 1 to end its
""""""""""""""""""""""""""" transaction. The database uses
100 612 100 512 100 512 multiversion read consistency to
101 600 101 600 101 600 show the salary as it existed
before the update in session 1.
t3 UPDATE hr. enpl oyees Session 2 updates the salary of
SET sal ary=sal ary+100 employee 101, but does not
VHERE enpl oyee_i d=101; commit the transaction. In the
B update, the writer acquires a
row-level lock for the updated
row only, preventing other
writers from modifying this row.
t4 SELECT enpl oyee_id, SELECT enpl oyee_i d, SELECT enpl oyee_id, Each session simultaneously

issues the original query. Session
1 shows the salary of 612
resulting from the t1 update, but
not the salary update for
employee 101 made in session 2.
The reader in session 2 shows the
salary update made in session 2,

100 612 100 512 100 512 but not the salary update made in
101 600 101 700 101 600 session 1. The reader in session 3
uses read consistency to show the
salaries before modification by
session 1 and 2.
See Also:

» Oracle Database SQL Language Reference
» Oracle Database Reference to learn about VSLOCK

Storage of Row Locks Unlike some databases, which use a lock manager to maintain a
list of locks in memory, Oracle Database stores lock information in the data block that
contains the locked row.

The database uses a queuing mechanism for acquisition of row locks. If a transaction
requires a lock for an unlocked row, then the transaction places a lock in the data
block. Each row modified by this transaction points to a copy of the transaction ID
stored in the block header (see "Overview of Data Blocks" on page 12-6).

When a transaction ends, the transaction ID remains in the block header. If a different
transaction wants to modify a row, then it uses the transaction ID to determine
whether the lock is active. If the lock is active, then the session asks to be notified
when the lock is released. Otherwise, the transaction acquires the lock.

See Also: Oracle Database Reference to learn about VETRANSACTI CN

Table Locks (TM)

A table lock, also called a TM lock, is acquired by a transaction when a table is
modified by an | NSERT, UPDATE, DELETE, MERGE, SELECT with the FOR UPDATE clause, or
LOCK TABLE statement. DML operations require table locks to reserve DML access to
the table on behalf of a transaction and to prevent DDL operations that would conflict
with the transaction.

9-20 Oracle Database Concepts

Overview of Automatic Locks

A table lock can be held in any of the following modes:
s Row Share (RS)

This lock, also called a subshare table lock (SS), indicates that the transaction
holding the lock on the table has locked rows in the table and intends to update
them. A row share lock is the least restrictive mode of table lock, offering the
highest degree of concurrency for a table.

s Row Exclusive Table Lock (RX)

This lock, also called a subexclusive table lock (SX), generally indicates that the
transaction holding the lock has updated table rows or issued SELECT ... FCR
UPDATE. An SX lock allows other transactions to query, insert, update, delete, or
lock rows concurrently in the same table. Therefore, SX locks allow multiple
transactions to obtain simultaneous SX and subshare table locks for the same table.

s Share Table Lock (S)

A share table lock held by a transaction allows other transactions to query the
table (without using SELECT ... FOR UPDATE), but updates are allowed only if a
single transaction holds the share table lock. Because multiple transactions may
hold a share table lock concurrently, holding this lock is not sufficient to ensure
that a transaction can modify the table.

s Share Row Exclusive Table Lock (SRX)

This lock, also called a share-subexclusive table lock (SSX), is more restrictive
than a share table lock. Only one transaction at a time can acquire an SSX lock on a
given table. An SSX lock held by a transaction allows other transactions to query
the table (except for SELECT ... FOR UPDATE) but not to update the table.

s Exclusive Table Lock (X)
This lock is the most restrictive, prohibiting other transactions from performing
any type of DML statement or placing any type of lock on the table.
See Also:
» Oracle Database SQL Language Reference

» Oracle Database Advanced Application Developer’s Guide to learn
more about table locks

Locks and Foreign Keys

Oracle Database maximizes the concurrency control of parent keys in relation to
dependent foreign keys. Locking behavior depends on whether foreign key columns
are indexed. If foreign keys are not indexed, then the child table will probably be
locked more frequently, deadlocks will occur, and concurrency will be decreased. For
this reason foreign keys should almost always be indexed. The only exception is when
the matching unique or primary key is never updated or deleted.

Locks and Unindexed Foreign Keys When both of the following conditions are true, the
database acquires a full table lock on the child table:
= No index exists on the foreign key column of the child table.

= A session modifies a primary key in the parent table (for example, deletes a row or
modifies primary key attributes) or merges rows into the parent table. Inserts into
the parent table do not acquire table locks on the child table.

Data Concurrency and Consistency 9-21

Overview of Automatic Locks

Suppose that hr . depar t ment s table is a parent of hr. enpl oyees, which contains
the unindexed foreign key depar t ment _i d. Figure 9-3 shows a session modifying
the primary key attributes of department 60 in the depart ment s table.

Figure 9-3 Locking Mechanisms with Unindexed Foreign Key

Parent Key
Primary key of
referenced table

Referenced or Parent Table

Table DEPARTMENTS

— DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID| LOCATION_ID

QGO

90

/\/\

Dependent or Child Table

1400 ¢ ====== Unindexed

1700 Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

IT 103
Executive 100

Table EMPLOYEES

Full table lock acquired
é Exclusive row lock (TX) acquired

Primary key modified

EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID I| DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG | 102 60

>

Index Leaf Block

10,rowid
20,rowid

60,rOWid = mte - -

In Figure 9-3, the database acquires a full table lock on enpl oyees during the primary
key modification of department 60. This lock enables other sessions to query but not
update the enpl oyees table. For example, employee phone numbers cannot be
updated. The table lock on enpl oyees releases immediately after the primary key
modification on the depart ment s table completes. If multiple rows in depar t ment s
undergo primary key modifications, then a table lock on enpl oyees is obtained and
released once for each row that is modified in depart nent s.

Note: DML on a child table does not acquire a table lock on the
parent table.

Locks and Indexed Foreign Keys When both of the following conditions are true, the
database does not acquire a full table lock on the child table:

= A foreign key column in the child table is indexed.

9-22 Oracle Database Concepts

Overview of Automatic Locks

= A session modifies a primary key in the parent table (for example, deletes a row or
modifies primary key attributes) or merges rows into the parent table.

A lock on the parent table prevents transactions from acquiring exclusive table locks,
but does not prevent DML on the parent or child table during the primary key
modification. This situation is preferable if primary key modifications occur on the
parent table while updates occur on the child table.

Figure 9—4 shows child table enpl oyees with an indexed depar t ment _i d column. A
transaction deletes department 280 from depar t ment s. This deletion does not cause the
database to acquire a full table lock on the enpl oyees table as in the scenario described
in "Locks and Unindexed Foreign Keys" on page 9-21.

Figure 9-4 Locking Mechanisms with Indexed Foreign Key

Parent Key
Primary key of
referenced table

Referenced or Parent Table

Table DEPARTMENTS

— DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID| LOCATION_ID

60 | IT 103 1400
90 | Executive 100 1700
280 | Event Planning 1700 ¢ ====== Indexed

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of
referenced table)

M

Dependent or Child Table

Table EMPLOYEES

EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID I| DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG 102 60

>

Index Leaf Block

Full table lock acquired %gigm
% Exclusive row lock (TX) acquired éélsb.rowid

Row being deleted

If the child table specifies ON DELETE CASCADE, then deletions from the parent table can
result in deletions from the child table. For example, the deletion of department 280
can cause the deletion of records from enpl oyees for employees in the deleted
department. In this case, waiting and locking rules are the same as if you deleted rows
from the child table after deleting rows from the parent table.

Data Concurrency and Consistency 9-23

Overview of Automatic Locks

DDL Locks

See Also:
= "Foreign Key Constraints" on page 5-6

= "Overview of Indexes" on page 3-1

A data dictionary (DDL) lock protects the definition of a schema object while an
ongoing DDL operation acts on or refers to the object. Only individual schema objects
that are modified or referenced are locked during DDL operations. The database never
locks the whole data dictionary.

Oracle Database acquires a DDL lock automatically on behalf of any DDL transaction
requiring it. Users cannot explicitly request DDL locks. For example, if a user creates a
stored procedure, then Oracle Database automatically acquires DDL locks for all
schema objects referenced in the procedure definition. The DDL locks prevent these
objects from being altered or dropped before procedure compilation is complete.

Exclusive DDL Locks

An exclusive DDL lock prevents other sessions from obtaining a DDL or DML lock.
Most DDL operations, except for those described in "Share DDL Locks" on page 9-24,
require exclusive DDL locks for a resource to prevent destructive interference with
other DDL operations that might modify or reference the same schema object. For
example, DROP TABLE is not allowed to drop a table while ALTER TABLE is adding a
column to it, and vice versa.

Exclusive DDL locks last for the duration of DDL statement execution and automatic
commit. During the acquisition of an exclusive DDL lock, if another DDL lock is held
on the schema object by another operation, then the acquisition waits until the older
DDL lock is released and then proceeds.

Share DDL Locks

A share DDL lock for a resource prevents destructive interference with conflicting
DDL operations, but allows data concurrency for similar DDL operations.

For example, when a CREATE PROCEDURE statement is run, the containing transaction
acquires share DDL locks for all referenced tables. Other transactions can concurrently
create procedures that reference the same tables and acquire concurrent share DDL
locks on the same tables, but no transaction can acquire an exclusive DDL lock on any
referenced table.

A share DDL lock lasts for the duration of DDL statement execution and automatic
commit. Thus, a transaction holding a share DDL lock is guaranteed that the definition
of the referenced schema object remains constant during the transaction.

Breakable Parse Locks

A parse lock is held by a SQL statement or PL/SQL program unit for each schema
object that it references. Parse locks are acquired so that the associated shared SQL
area can be invalidated if a referenced object is altered or dropped. A parse lock is
called a breakable parse lock because it does not disallow any DDL operation and can
be broken to allow conflicting DDL operations.

A parse lock is acquired in the shared pool during the parse phase of SQL statement
execution. The lock is held as long as the shared SQL area for that statement remains in
the shared pool.

9-24 Oracle Database Concepts

Overview of Automatic Locks

See Also: "Shared Pool" on page 14-15

System Locks

Oracle Database uses various types of system locks to protect internal database and
memory structures. These mechanisms are inaccessible to users because users have no
control over their occurrence or duration.

Latches

Latches are simple, low-level serialization mechanisms that coordinate multiuser
access to shared data structures, objects, and files. Latches protect shared memory
resources from corruption when accessed by multiple processes. Specifically, latches
protect data structures from the following situations:

= Concurrent modification by multiple sessions
= Being read by one session while being modified by another session
= Deallocation (aging out) of memory while being accessed

Typically, a single latch protects multiple objects in the SGA. For example, background
processes such as DBWn and LGWR allocate memory from the shared pool to create
data structures. To allocate this memory, these processes use a shared pool latch that
serializes access to prevent two processes from trying to inspect or modify the shared
pool simultaneously. After the memory is allocated, other processes may need to
access shared pool areas such as the library cache, which is required for parsing. In
this case, processes latch only the library cache, not the entire shared pool.

Unlike enqueue latches such as row locks, latches do not permit sessions to queue.
When a latch becomes available, the first session to request the latch obtains exclusive
access to it. Latch spinning occurs when a process repeatedly requests a latch in a
loop, whereas latch sleeping occurs when a process releases the CPU before renewing
the latch request.

Typically, an Oracle process acquires a latch for an extremely short time while
manipulating or looking at a data structure. For example, while processing a salary
update of a single employee, the database may obtain and release thousands of
latches. The implementation of latches is operating system-dependent, especially in
respect to whether and how long a process waits for a latch.

An increase in latching means a decrease in concurrency. For example, excessive hard
parse operations create contention for the library cache latch. The VSLATCH view
contains detailed latch usage statistics for each latch, including the number of times
each latch was requested and waited for.

See Also:
= "SQL Parsing" on page 7-16
» Oracle Database Reference to learn about VELATCH

» Oracle Database Performance Tuning Guide to learn about wait event
statistics

Mutexes

A mutual exclusion object (mutex) is a low-level mechanism that prevents an object in
memory from aging out or from being corrupted when accessed by concurrent
processes. A mutex is similar to a latch, but whereas a latch typically protects a group
of objects, a mutex protects a single object.

Data Concurrency and Consistency 9-25

Overview of Manual Data Locks

Mutexes provide several benefits:
= A mutex can reduce the possibility of contention.

Because a latch protects multiple objects, it can become a bottleneck when
processes attempt to access any of these objects concurrently. By serializing access
to an individual object rather than a group, a mutex increases availability.

= A mutex consumes less memory than a latch.

= When in shared mode, a mutex permits concurrent reference by multiple sessions.

Internal Locks

Internal locks are higher-level, more complex mechanisms than latches and mutexes
and serve various purposes. The database uses the following types of internal locks:

= Dictionary cache locks

These locks are of very short duration and are held on entries in dictionary caches
while the entries are being modified or used. They guarantee that statements being
parsed do not see inconsistent object definitions. Dictionary cache locks can be
shared or exclusive. Shared locks are released when the parse is complete, whereas
exclusive locks are released when the DDL operation is complete.

= File and log management locks

These locks protect various files. For example, an internal lock protects the control
file so that only one process at a time can change it. Another lock coordinates the
use and archiving of the online redo log files. Data files are locked to ensure that
multiple instances mount a database in shared mode or that one instance mounts
it in exclusive mode. Because file and log locks indicate the status of files, these
locks are necessarily held for a long time.

s Tablespace and undo segment locks

These locks protect tablespaces and undo segments. For example, all instances
accessing a database must agree on whether a tablespace is online or offline. Undo
segments are locked so that only one database instance can write to a segment.

See Also: "Data Dictionary Cache" on page 14-19

Overview of Manual Data Locks

Oracle Database performs locking automatically to ensure data concurrency, data
integrity, and statement-level read consistency. However, you can manually override
the Oracle Database default locking mechanisms. Overriding the default locking is
useful in situations such as the following:

= Applications require transaction-level read consistency or repeatable reads.

In this case, queries must produce consistent data for the duration of the
transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only transactions,
serializable transactions, or by overriding default locking.

= Applications require that a transaction have exclusive access to a resource so that
the transaction does not have to wait for other transactions to complete.

You can override Oracle Database automatic locking at the session or transaction level.
At the session level, a session can set the required transaction isolation level with the
ALTER SESS| ON statement. At the transaction level, transactions that include the
following SQL statements override Oracle Database default locking;:

9-26 Oracle Database Concepts

Overview of User-Defined Locks

» The SET TRANSACTI ON| SOLATI ONLEVEL statement

s The LOCK TABLE statement (which locks either a table or, when used with views,
the base tables)

s The SELECT... FORUPDATE statement

Locks acquired by the preceding statements are released after the transaction ends or a
rollback to savepoint releases them.

If Oracle Database default locking is overridden at any level, then the database
administrator or application developer should ensure that the overriding locking
procedures operate correctly. The locking procedures must satisfy the following
criteria: data integrity is guaranteed, data concurrency is acceptable, and deadlocks are
not possible or are appropriately handled.

See Also:

» Oracle Database SQL Language Reference for descriptions of LOCK
TABLE and SELECT ... FOR UPDATE

» Oracle Database Advanced Application Developer’s Guide to learn
how to manually lock tables

Overview of User-Defined Locks

With Oracle Database Lock Management services, you can define your own locks for a
specific application. For example, you might create a lock to serialize access to a
message log on the file system. Because a reserved user lock is the same as an Oracle
Database lock, it has all the Oracle Database lock functionality including deadlock
detection. User locks never conflict with Oracle Database locks, because they are
identified with the prefix UL.

The Oracle Database Lock Management services are available through procedures in
the DBM5_LOCK package. You can include statements in PL/SQL blocks that:

= Request a lock of a specific type

= Give the lock a unique name recognizable in another procedure in the same or in
another instance

s Change the lock type

m Release the lock

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about Oracle Database Lock Management services

» Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_LOCK

Data Concurrency and Consistency 9-27

Overview of User-Defined Locks

9-28 Oracle Database Concepts

10

Transactions

This chapter defines a transaction and describes how the database processes
transactions.

This chapter contains the following sections:
s Introduction to Transactions

s Overview of Transaction Control

s Overview of Autonomous Transactions

s Overview of Distributed Transactions

Introduction to Transactions

A transaction is a logical, atomic unit of work that contains one or more SQL
statements. A transaction groups SQL statements so that they are either all committed,
which means they are applied to the database, or all rolled back, which means they
are undone from the database. Oracle Database assigns every transaction a unique
identifier called a transaction ID.

All Oracle transactions comply with the basic properties of a database transaction,
known as ACID properties. ACID is an acronym for the following:

= Atomicity

All tasks of a transaction are performed or none of them are. There are no partial
transactions. For example, if a transaction starts updating 100 rows, but the system
fails after 20 updates, then the database rolls back the changes to these 20 rows.

s Consistency

The transaction takes the database from one consistent state to another consistent
state. For example, in a banking transaction that debits a savings account and
credits a checking account, a failure must not cause the database to credit only one
account, which would lead to inconsistent data.

s Isolation

The effect of a transaction is not visible to other transactions until the transaction is
committed. For example, one user updating the hr. enpl oyees table does not see
the uncommitted changes to enpl oyees made concurrently by another user. Thus,
it appears to users as if transactions are executing serially.

s Durability

Transactions 10-1

Introduction to Transactions

Changes made by committed transactions are permanent. After a transaction
completes, the database ensures through its recovery mechanisms that changes
from the transaction are not lost.

The use of transactions is one of the mostimportant ways that a database management
system differs from a file system.

Sample Transaction: Account Debit and Credit

To illustrate the concept of a transaction, consider a banking database. When a
customer transfers money from a savings account to a checking account, the
transaction must consist of three separate operations:

= Decrement the savings account
s Increment the checking account
= Record the transaction in the transaction journal

Oracle Database must allow for two situations. If all three SQL statements maintain
the accounts in proper balance, then the effects of the transaction can be applied to the
database. However, if a problem such as insufficient funds, invalid account number, or
a hardware failure prevents one or two of the statements in the transaction from
completing, then the database must roll back the entire transaction so that the balance
of all accounts is correct.

Figure 10-1 illustrates a banking transaction. The first statement subtracts $500 from
savings account 3209. The second statement adds $500 to checking account 3208. The
third statement inserts a record of the transfer into the journal table. The final
statement commits the transaction.

Figure 10-1 A Banking Transaction

[] Transaction 1 Dbecrement
Begins UPDATE savi ngs_account s Savings
SET bal ance = bal ance - 500 Account
VWHERE account = 3209;
) —— Increment
UPDATE checki ng_account s Checking
SET bal ance = bal ance + 500 Account
WHERE account = 3208;
. —— Recordin
I NSERT | NTO j our nal VALUES Transaction
(journal _seq. NEXTVAL, ' 1B Journal
3209, 3208, 500);
) —+— End
Transaction Transaction
Ends COMM T WORK;

Structure of a Transaction

A database transaction consists of one or more statements. Specifically, a transaction
consists of one of the following:

10-2 Oracle Database Concepts

Introduction to Transactions

= One or more data manipulation language (DML) statements that together
constitute an atomic change to the database

= One data definition language (DDL) statement

A transaction has a beginning and an end.

See Also: "Overview of SQL Statements" on page 7-3

Beginning of a Transaction
A transaction begins when the first executable SQL statement is encountered. An

executable SQL statement is a SQL statement that generates calls to a database
instance, including DML and DDL statements and the SET TRANSACTI ON statement.

When a transaction begins, Oracle Database assigns the transaction to an available
undo data segment to record the undo entries for the new transaction. A transaction
ID is not allocated until an undo segment and transaction table slot are allocated,
which occurs during the first DML statement. A transaction ID is unique to a
transaction and represents the undo segment number, slot, and sequence number.

The following example execute an UPDATE statement to begin a transaction and queries
VSTRANSACTI ON for details about the transaction:

SQL> UPDATE hr. enpl oyees SET sal ary=sal ary;
107 rows updat ed.

SQL> SELECT XID AS "txn id", XIDUSN AS "undo seg", XIDSLOT AS "slot",
2 XIDSQN AS "seq", STATUS AS "txn status"
3 FROM V$TRANSACTI ON,

txn id undo seg sl ot seq txn status

0600060037000000 6 6 55 ACTI VE

See Also: "Undo Segments" on page 12-24

End of a Transaction
A transaction ends when any of the following actions occurs:

m A userissues a COWM T or ROLLBACK statement without a SAVEPO NT clause.

In a commit, a user explicitly or implicitly requested that the changes in the
transaction be made permanent. Changes made by the transaction are permanent
and visible to other users only after a transaction commits. The transaction shown
in Figure 10-1 ends with a commit.

» A user runs a DDL command such as CREATE, DROP, RENAME, or ALTER.

The database issues an implicit COM T statement before and after every DDL
statement. If the current transaction contains DML statements, then Oracle
Database first commits the transaction and then runs and commits the DDL
statement as a new, single-statement transaction.

= A user exits normally from most Oracle Database utilities and tools, causing the
current transaction to be implicitly committed. The commit behavior when a user
disconnects is application-dependent and configurable.

Transactions 10-3

Introduction to Transactions

Note: Applications should always explicitly commit or undo
transactions before program termination.

= A client process terminates abnormally, causing the transaction to be implicitly
rolled back using metadata stored in the transaction table and the undo segment.

After one transaction ends, the next executable SQL statement automatically starts the
following transaction. The following example executes an UPDATE to start a transaction,
ends the transaction with a ROLLBACK statement, and then executes an UPDATE to start a
new transaction (note that the transaction IDs are different):

SQL> UPDATE hr. enpl oyees SET sal ary=sal ary;
107 rows updat ed.

SQ> SELECT XID, STATUS FROM V$TRANSACTI O\;

0800090033000000 ACTI VE

SQ> ROLLBACK;

Rol I back conpl et e.

SQL> SELECT XI D FROM V$TRANSACTI ON,

no rows selected

SQL> UPDATE hr. enpl oyees SET | ast_name=| ast _nane;
107 rows updat ed.

SQ.> SELECT XI D, STATUS FROM V$TRANSACTI ON,

0900050033000000 ACTI VE

See Also:

s "Tools for Database Administrators" on page 18-2 and "Tools for
Database Developers" on page 19-1

» Oracle Database SQL Language Reference to learn about COWM T

Statement-Level Atomicity

Oracle Database supports statement-level atomicity, which means that a SQL
statement is an atomic unit of work and either completely succeeds or completely fails.

A successful statement is different from a committed transaction. A single SQL
statement executes successfully if the database parses and runs it without error as an
atomic unit, as when all rows are changed in a multirow update.

If a SQL statement causes an error during execution, then it is not successful and so all
effects of the statement are rolled back. This operation is a statement-level rollback.
This operation has the following characteristics:

= A SQL statement that does not succeed causes the loss only of work it would have
performed itself.

10-4 Oracle Database Concepts

Introduction to Transactions

The unsuccessful statement does not cause the loss of any work that preceded it in
the current transaction. For example, if the execution of the second UPDATE
statement in Figure 10-1 causes an error and is rolled back, then the work
performed by the first UPDATE statement is not rolled back. The first UPDATE
statement can be committed or rolled back explicitly by the user.

m The effect of the rollback is as if the statement had never been run.

Any side effects of an atomic statement, for example, triggers invoked upon
execution of the statement, are considered part of the atomic statement. Either all
work generated as part of the atomic statement succeeds or none does.

An example of an error causing a statement-level rollback is an attempt to insert a
duplicate primary key. Single SQL statements involved in a deadlock, which is
competition for the same data, can also cause a statement-level rollback. However,
errors discovered during SQL statement parsing, such as a syntax error, have not yet
been run and so do not cause a statement-level rollback.

See Also:
= "SQL Parsing" on page 7-16
= "Locks and Deadlocks" on page 9-16

= "Overview of Triggers" on page 8-16

System Change Numbers (SCNs)

A system change number (SCN) is a logical, internal time stamp used by Oracle
Database. SCNs order events that occur within the database, which is necessary to
satisfy the ACID properties of a transaction. Oracle Database uses SCNs to mark the
SCN before which all changes are known to be on disk so that recovery avoids
applying unnecessary redo. The database also uses SCNs to mark the point at which
no redo exists for a set of data so that recovery can stop.

SCNs occur in a monotonically increasing sequence. Oracle Database can use an SCN
like a clock because an observed SCN indicates a logical point in time and repeated
observations return equal or greater values. If one event has a lower SCN than another
event, then it occurred at an earlier time with respect to the database. Several events
may share the same SCN, which means that they occurred at the same time with
respect to the database.

Every transaction has an SCN. For example, if a transaction updates a row, then the
database records the SCN at which this update occurred. Other modifications in this
transaction have the same SCN. When a transaction commits, the database records an
SCN for this commit.

Oracle Database increments SCNs in the system global area (SGA). When a
transaction modifies data, the database writes a new SCN to the undo data segment
assigned to the transaction. The log writer process then writes the commit record of
the transaction immediately to the online redo log. The commit record has the unique
SCN of the transaction. Oracle Database also uses SCNs as part of its instance
recovery and media recovery mechanisms.

See Also: "Overview of Instance Recovery" on page 13-12 and
"Backup and Recovery" on page 18-9

Transactions 10-5

Overview of Transaction Control

Overview of Transaction Control

Transaction control is the management of changes made by DML statements and the
grouping of DML statements into transactions. In general, application designers are
concerned with transaction control so that work is accomplished in logical units and
data is kept consistent.

Transaction control involves using the following statements, as described in

"Transaction Control Statements" on page 7-8:

The COW T statement ends the current transaction and makes all changes
performed in the transaction permanent. COMM T also erases all savepoints in the

transaction and releases transaction locks.

The ROLLBACK statement reverses the work done in the current transaction; it
causes all data changes since the last COW T or ROLLBACK to be discarded. The
ROLLBACK TO SAVEPQO NT statement undoes the changes since the last savepoint but

does not end the entire transaction.

The SAVEPQ NT statement identifies a point in a transaction to which you can later

roll back.

The session in Table 10-1 illustrates the basic concepts of transaction control.

Table 10-1 Transaction Control
Time | Session Explanation
t0 COWM T; This statement ends any existing transaction
in the session.
tl SET TRANSACTI ON NAME ' sal _update'; This statement begins a transaction and
names it sal _updat e.
t2 UPDATE enpl oyees This statement updates the salary for Banda
SET salary = 7000 to 7000.
WHERE | ast _nane = 'Banda';
t3 SAVEPO NT after_banda_sal ; This statement creates a savepoint named
after _banda_sal , enabling changes in this
transaction to be rolled back to this point.
t4 UPDATE enpl oyees This statement updates the salary for
SET sal ary = 12000 Greene to 12000.
WHERE | ast_name = ' Greene';
t5 SAVEPO NT after_greene_sal; This statement creates a savepoint named
af t er _greene_sal , enabling changes in this
transaction to be rolled back to this point.
t6 ROLLBACK TO SAVEPQO NT This statement rolls back the transaction to
af ter _banda_sal ; t3, undoing the update to Greene's salary at
t4. The sal _updat e transaction has not
ended.
t7 UPDATE enpl oyees This statement updates the salary for
SET salary = 11000 Greene to 11000 in transaction sal _updat e.
WHERE | ast _name = ' Greene';
t8 ROLLBACK; This statement rolls back all changes in
transaction sal _updat e, ending the
transaction.
t9 SET TRANSACTI ON NAME 'sal _update2'; | This statement begins a new transaction in
the session and names it sal _updat e2.

10-6 Oracle Database Concepts

Overview of Transaction Control

Table 10-1 (Cont.) Transaction Control

Time | Session Explanation

t10 | UPDATE enpl oyees This statement updates the salary for Banda
SET sal ary = 7050 to 7050.
WHERE | ast _name = 'Banda';

t11 UPDATE enpl oyees This statement updates the salary for
SET sal ary = 10950 Greene to 10950.

WHERE | ast _nane = ' Greene';

t12 COWM T, This statement commits all changes made in
transaction sal _updat e2, ending the
transaction. The commit guarantees that the
changes are saved in the online redo log
files.

See Also: Oracle Database SQL Language Reference to learn about
transaction control statements

Transaction Names

A transaction name is an optional, user-specified tag that serves as a reminder of the
work that the transaction is performing. You name a transaction with the SET
TRANSACTI ON. . . NAME statement, which if used must be first statement of the
transaction. In Table 10-1 on page 10-6, the first transaction was named sal _updat e
and the second was named sal _updat e2.

Transaction names provide the following advantages:

= Itis easier to monitor long-running transactions and to resolve in-doubt
distributed transactions.

= You can view transaction names along with transaction IDs in applications. For
example, a database administrator can view transaction names in Oracle
Enterprise Manager (Enterprise Manager) when monitoring system activity.

» The database writes transaction names to the transaction auditing redo record, so
you can use LogMiner to search for a specific transaction in the redo log.

= You can use transaction names to find a specific transaction in data dictionary
views such as VETRANSACTI ON.

See Also:
s "Oracle Enterprise Manager" on page 18-2
» Oracle Database Reference to learn about VETRANSACTI ON

» Oracle Database SQL Language Reference to learn about SET
TRANSACTI ON

Active Transactions

An active transaction has started but not yet committed or rolled back. In Table 10-1
on page 10-6, the first statement to modify data in the sal _updat e transaction is the
update to Banda's salary. From the successful execution of this update until the
ROLLBACK statement ends the transaction, the sal _updat e transaction is active.

Data changes made by a transaction are temporary until the transaction is committed
or rolled back. Before the transaction ends, the state of the data is as follows:

Transactions 10-7

Overview of Transaction Control

Savepoints

s Oracle Database has generated undo data information in the system global area
(SGA).

The undo data contains the old data values changed by the SQL statements of the
transaction. See "Read Consistency in the Read Committed Isolation Level" on
page 9-7.

s Oracle Database has generated redo in the online redo log buffer of the SGA.

The redo log record contains the change to the data block and the change to the
undo block. See "Redo Log Buffer" on page 14-14.

= Changes have been made to the database buffers of the SGA.

The data changes for a committed transaction, stored in the database buffers of the
SGA, are not necessarily written immediately to the data files by the database
writer (DBWn). The disk write can happen before or after the commit. See
"Database Buffer Cache" on page 14-9.

s The rows affected by the data change are locked.

Other users cannot change the data in the affected rows, nor can they see the
uncommitted changes. See "Summary of Locking Behavior" on page 9-12.

A savepoint is a user-declared intermediate marker within the context of a transaction.
Internally, this marker resolves to an SCN. Savepoints divide a long transaction into
smaller parts.

If you use savepoints in a long transaction, then you have the option later of rolling
back work performed before the current point in the transaction but after a declared
savepoint within the transaction. Thus, if you make an error, you do not need to
resubmit every statement. Table 10-1 on page 10-6 creates savepoint af t er _banda_sal
so that the update to the Greene salary can be rolled back to this savepoint.

Rollback to Savepoint

A rollback to a savepoint in an uncommitted transaction means undoing any changes
made after the specified savepoint, but it does not mean a rollback of the transaction
itself. When a transaction is rolled back to a savepoint, as when the ROLLBACK TO
SAVEPQ NT after_banda_sal is run in Table 10-1 on page 10-6, the following occurs:

1. Oracle Database rolls back only the statements run after the savepoint.

In Table 10-1 on page 10-6, the ROLLBACK TO SAVEPQ NT causes the UPDATE for
Greene to be rolled back, but not the UPDATE for Banda.

2. Oracle Database preserves the savepoint specified in the ROLLBACK TO SAVEPQO NT
statement, but all subsequent savepoints are lost.

In Table 10-1 on page 10-6, the ROLLBACK TO SAVEPQ NT causes the af t er _greene_
sal savepoint to be lost.

3. Oracle Database releases all table and row locks acquired after the specified
savepoint but retains all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.

10-8 Oracle Database Concepts

Overview of Transaction Control

See Also:

Oracle Database SQL Language Reference to learn about the

ROLLBACK and SAVEPQO NT statements

Oracle Database PL/SQL Language Reference to learn about
transaction processing and control

Enqueued Transactions

Depending on the scenario, transactions waiting for previously locked resources may
still be blocked after a rollback to savepoint. When a transaction is blocked by another
transaction it enqueues on the blocking transaction itself, so that the entire blocking
transaction must commit or roll back for the blocked transaction to continue.

In the scenario shown in Table 10-2, session 1 rolls back to a savepoint created before it
executed a DML statement. However, session 2 is still blocked because it is waiting for

the session 1 transaction to complete.

Table 10-2 Rollback to Savepoint Example
Time | Session 1 Session 2 Session 3 Explanation
t0 UPDATE enpl oyees Session 1 begins a transaction. The

SET salary = 7000
WHERE | ast _nane =
' Banda' ;

session places an exclusive lock on the
Banda row (TX) and a subexclusive table
lock (SX) on the table.

tl

SAVEPO NT
after_banda_sal ;

Session 1 creates a savepoint named
after_banda_sal .

t2

UPDATE enpl oyees
SET salary = 12000
WHERE | ast _nane =
' Greene';

Session 1 locks the Gr eene row.

t3

UPDATE enpl oyees
SET sal ary = 14000
WHERE | ast _name =
'Greene';

Session 2 attempts to update the G- eene
row, but fails to acquire a lock because
session 1 has a lock on this row. No
transaction has begun in session 2.

t4

ROLLBACK
TO SAVEPQO NT
after_banda_sal ;

Session 1 rolls back the update to the
salary for G eene, which releases the
row lock for Gr eene. The table lock
acquired at t0 is not released.

At this point, session 2 is still blocked
by session 1 because session 2 enqueues
on the session 1 transaction, which has
not yet completed.

t5

UPDATE enpl oyees
SET sal ary = 11000
WHERE | ast _name =
'Greene';

The G eene row is currently unlocked,
so session 3 acquires a lock for an
update to the G eene row. This
statement begins a transaction in
session 3.

t6

COWM T;

Session 1 commits, ending its
transaction. Session 2 is now enqueued
for its update to the G eene row behind
the transaction in session 3.

See Also:

Oracle Database releases locks

"Lock Duration" on page 9-16 to learn more about when

Transactions 10-9

Overview of Transaction Control

Rollback of Transactions

A rollback of an uncommitted transaction undoes any changes to data that have been
performed by SQL statements within the transaction. After a transaction has been
rolled back, the effects of the work done in the transaction no longer exist.

In rolling back an entire transaction, without referencing any savepoints, Oracle
Database performs the following actions:

= Undoes all changes made by all the SQL statements in the transaction by using the
corresponding undo segments

The transaction table entry for every active transaction contains a pointer to all the
undo data (in reverse order of application) for the transaction. The database reads
the data from the undo segment, reverses the operation, and then marks the undo
entry as applied. Thus, if a transaction inserts a row, then a rollback deletes it. If a
transaction updates a row, then a rollback reverses the update. If a transaction
deletes a row, then a rollback reinserts it. In Table 10-1 on page 10-6, the ROLLBACK
reverses the updates to the salaries of Greene and Banda.

= Releases all the locks of data held by the transaction
= Erases all savepoints in the transaction

In Table 10-1 on page 10-6, the ROLLBACK deletes the savepoint af t er _banda_sal .
The af t er _greene_sal savepoint was removed by the ROLLBACK TO SAVEPQO NT
statement.

s Ends the transaction

In Table 10-1 on page 10-6, the ROLLBACK leaves the database in the same state as it
was after the initial COMM T was executed.

The duration of a rollback is a function of the amount of data modified.

See Also: "Undo Segments" on page 12-24

Committing Transactions

A commit ends the current transaction and makes permanent all changes performed
in the transaction. In Table 10-1 on page 10-6, a second transaction begins with sal _
updat €2 and ends with an explicit COW T statement. The changes that resulted from
the two UPDATE statements are now made permanent.

When a transaction commits, the following actions occur:
= A system change number (SCN) is generated for the COWM T.

The internal transaction table for the associated undo tablespace records that the
transaction has committed. The corresponding unique SCN of the transaction is
assigned and recorded in the transaction table. See "Serializable Isolation Level" on
page 9-8.

» The log writer (LGWR) process writes remaining redo log entries in the redo log
buffers to the online redo log and writes the transaction SCN to the online redo
log. This atomic event constitutes the commit of the transaction.

s Oracle Database releases locks held on rows and tables.

Users who were enqueued waiting on locks held by the uncommitted transaction
are allowed to proceed with their work.

» Oracle Database deletes savepoints.

10-10 Oracle Database Concepts

Overview of Autonomous Transactions

In Table 10-1 on page 10-6, no savepoints existed in the sal _updat e transaction so
no savepoints were erased.

s Oracle Database performs a commit cleanout.

If modified blocks containing data from the committed transaction are still in the
SGA, and if no other session is modifying them, then the database removes
lock-related transaction information from the blocks. Ideally, the COW T cleans out
the blocks so that a subsequent SELECT does not have to perform this task.

Note: Because a block cleanout generates redo, a query may generate
redo and thus cause blocks to be written during the next checkpoint.

= Oracle Database marks the transaction complete.
After a transaction commits, users can view the changes.

Typically, a commit is a fast operation, regardless of the transaction size. The speed of a
commit does not increase with the size of the data modified in the transaction. The
lengthiest part of the commit is the physical disk I/O performed by LGWR. However,
the amount of time spent by LGWR is reduced because it has been incrementally
writing the contents of the redo log buffer in the background.

The default behavior is for LGWR to write redo to the online redo log synchronously
and for transactions to wait for the buffered redo to be on disk before returning a
commit to the user. However, for lower transaction commit latency, application
developers can specify that redo be written asynchronously so that transactions need
not wait for the redo to be on disk and can return from the COW T call immediately.

See Also:

» Oracle Database PL/SQL Language Reference for more information
on asynchronous commit

= "Locking Mechanisms" on page 9-5

= "Overview of Background Processes" on page 15-7 for more
information about LGWR

Overview of Autonomous Transactions

An autonomous transaction is an independent transaction that can be called from
another transaction, called the main transaction. You can suspend the calling
transaction, perform SQL operations and commit or undo them in the autonomous
transaction, and then resume the calling transaction.

Autonomous transactions are useful for actions that must be performed
independently, regardless of whether the calling transaction commits or rolls back. For
example, in a stock purchase transaction, you want to commit customer data
regardless of whether the overall stock purchase goes through. Additionally, you want
to log error messages to a debug table even if the overall transaction rolls back.

Autonomous transactions have the following characteristics:

s The autonomous transaction does not see uncommitted changes made by the main
transaction and does not share locks or resources with the main transaction.

= Changes in an autonomous transaction are visible to other transactions upon
commit of the autonomous transactions. Thus, users can access the updated
information without having to wait for the main transaction to commit.

Transactions 10-11

Overview of Distributed Transactions

s Autonomous transactions can start other autonomous transactions. There are no
limits, other than resource limits, on how many levels of autonomous transactions
can be called.

In PL/SQL, an autonomous transaction executes within an autonomous scope, which
is a routine marked with the pragma AUTONOMOUS_TRANSACTI CN. In this context,
routines include top-level anonymous PL/SQL blocks and PL/SQL subprograms and
triggers. A pragma is a directive that instructs the compiler to perform a compilation
option. The pragma AUTONOMOUS_TRANSACTI ON instructs the database that this
procedure, when executed, is to be executed as a new autonomous transaction that is
independent of its parent transaction.

Figure 10-2 shows how control flows from the main routine (MT) to an autonomous
routine and back again. The main routine is procl and the autonomous routine is
proc2. The autonomous routine can commit multiple transactions (AT1 and AT2)
before control returns to the main routine.

Figure 10-2 Transaction Control Flow

Main Transaction Autonomous Transaction
PROCEDURE procl IS PROCEDURE proc2 IS
emp_i d NUVBER; PRAGVA AUTON. . .
BEG N dept _i d NUMBER;
enp_id := 7788; BEG N MT suspends
| NSERT ... — MT begins dept _i d:= 20,
SELECT ... UPDATE ... — | AT1 begins
proc2; > I NSERT . ..
DELETE . .. UPDATE . ..
COMT, 1 MTends COM T, —— 1 ATlends
END; INSERT ... L A2 begins
I NSERT . ..
COWMT, —— AT2ends
END; MT resumes

When you enter the executable section of an autonomous routine, the main routine
suspends. When you exit the autonomous routine, the main routine resumes.

In Figure 10-2, the COWM T inside pr oc1 makes permanent not only its own work but
any outstanding work performed in its session. However, a COM T in pr oc2 makes
permanent only the work performed in the proc2 transaction. Thus, the COWM T
statements in transactions AT1 and AT2 have no effect on the MT transaction.

See Also: Oracle Database Advanced Application Developer’s Guide
and Oracle Database PL/SQL Language Reference to learn how to use
autonomous transactions

Overview of Distributed Transactions

A distributed database is a set of databases in a distributed system that can appear to
applications as a single data source. A distributed transaction is a transaction that
includes one or more statements that update data on two or more distinct nodes of a
distributed database, using a schema object called a database link. A database link
describes how one database instance can log in to another database instance.

Unlike a transaction on a local database, a distributed transaction alters data on
multiple databases. Consequently, distributed transaction processing is more
complicated because the database must coordinate the committing or rolling back of
the changes in a transaction as an atomic unit. The entire transaction must commit or

10-12 Oracle Database Concepts

Overview of Distributed Transactions

roll back. Oracle Database must coordinate transaction control over a network and
maintain data consistency, even if a network or system failure occurs.

See Also: Oracle Database Administrator’s Guide

Two-Phase Commit

The two-phase commit mechanism guarantees that all databases participating in a
distributed transaction either all commit or all undo the statements in the transaction.
The mechanism also protects implicit DML performed by integrity constraints, remote
procedure calls, and triggers.

In a two-phase commit among multiple databases, one database coordinates the
distributed transaction. The initiating node is called the global coordinator. The
coordinator asks the other databases if they are prepared to commit. If any database
responds with a no, then the entire transaction is rolled back. If all databases vote yes,
then the coordinator broadcasts a message to make the commit permanent on each of
the databases.

The two-phase commit mechanism is transparent to users who issue distributed
transactions. In fact, users need not even know the transaction is distributed. A COWM T
statement denoting the end of a transaction automatically triggers the two-phase
commit mechanism. No coding or complex statement syntax is required to include
distributed transactions within the body of a database application.

See Also: Oracle Database Administrator’s Guide to learn about the
two-phase commit mechanism

In-Doubt Transactions

An in-doubt distributed transaction occurs when a two-phase commit was
interrupted by any type of system or network failure. For example, two databases
report to the coordinating database that they were prepared to commit, but the
coordinating database instance fails immediately after receiving the messages. The two
databases who are prepared to commit are now left hanging while they await
notification of the outcome.

The recoverer (RECO) background process automatically resolves the outcome of
in-doubt distributed transactions. After the failure is repaired and communication is
reestablished, the RECOprocess of each local Oracle database automatically commits or
rolls back any in-doubt distributed transactions consistently on all involved nodes.

In the event of a long-term failure, Oracle Database enables each local administrator to
manually commit or undo any distributed transactions that are in doubt because of the
failure. This option enables the local database administrator to free any locked
resources that are held indefinitely because of the long-term failure.

If a database must be recovered to a past time, then database recovery facilities enable
database administrators at other sites to return their databases to the earlier point in
time. This operation ensures that the global database remains consistent.

See Also:
» "Recoverer Process (RECO)” on page 15-11

s Oracle Database Administrator’s Guide to learn how to manage
in-doubt transactions

Transactions 10-13

Overview of Distributed Transactions

10-14 Oracle Database Concepts

Part IV

Oracle Database Storage Structures

This part describes the basic structural architecture of the Oracle database, including
logical and physical storage structures.

This part contains the following chapters:
s Chapter 11, "Physical Storage Structures”
» Chapter 12, "Logical Storage Structures"

11

Physical Storage Structures

This chapter describes the primary physical database structures of an Oracle database.
Physical structures are viewable at the operating system level.

This chapter contains the following sections:

s Introduction to Physical Storage Structures
= Opverview of Data Files

= Overview of Control Files

s Overview of the Online Redo Log

Introduction to Physical Storage Structures

One characteristic of an RDBMS is the independence of logical data structures such as
tables, views, and indexes from physical storage structures. Because physical and
logical structures are separate, you can manage physical storage of data without
affecting access to logical structures. For example, renaming a database file does not
rename the tables stored in it.

An Oracle database is a set of files that store Oracle data in persistent disk storage.
This section discusses the database files generated when you issue a CREATE DATABASE
statement:

s Data files and temp files

A data file is a physical file on disk that was created by Oracle Database and
contains data structures such as tables and indexes. A temp file is a data file that
belongs to a temporary tablespace. The data is written to these files in an Oracle
proprietary format that cannot be read by other programs.

= Control files

A control file is a root file that tracks the physical components of the database.
s Online redo log files

The online redo log is a set of files containing records of changes made to data.

A database instance is a set of memory structures that manage database files.
Figure 11-1 shows the relationship between the instance and the files that it manages.

Physical Storage Structures 11-1

Introduction to Physical Storage Structures

Figure 11-1 Database Instance and Database Files

Database Instance

Memory
Disk
Data Control
Files Files
10101Ol 101
See Also:

n Oracle Database Administrator’s Guide to learn how to create a
database

» Oracle Database SQL Language Reference for CREATE DATABASE
semantics and syntax

Mechanisms for Storing Database Files

Several mechanisms are available for allocating and managing the storage of these
files. The most common mechanisms include:

= Oracle Automatic Storage Management (Oracle ASM)

Oracle ASM includes a file system designed exclusively for use by Oracle
Database. "Oracle Automatic Storage Management (Oracle ASM)" on page 11-3
describes Oracle ASM.

= Operating system file system

Most Oracle databases store files in a file system, which is a data structure built
inside a contiguous disk address space. All operating systems have file managers
that allocate and deallocate disk space into files within a file system.

A file system enables disk space to be allocated to many files. Each file has a name
and is made to appear as a contiguous address space to applications such as
Oracle Database. The database can create, read, write, resize, and delete files.

A file system is commonly built on top of a logical volume constructed by a
software package called a logical volume manager (LVM). The LVM enables
pieces of multiple physical disks to be combined into a single contiguous address
space that appears as one disk to higher layers of software.

s Raw device

Raw devices are disk partitions or logical volumes not formatted with a file
system. The primary benefit of raw devices is the ability to perform direct I/O and
to write larger buffers. In direct I/O, applications write to and read from the
storage device directly, bypassing the operating system buffer cache.

Note: Many file systems now support direct I/O for databases and
other applications that manage their own caches. Historically, raw
devices were the only means of implementing direct I/O.

» Cluster file system

11-2 Oracle Database Concepts

Introduction to Physical Storage Structures

A cluster file system is software that enables multiple computers to share file
storage while maintaining consistent space allocation and file content. In an Oracle
RAC environment, a cluster file system makes shared storage appears as a file
system shared by many computers in a clustered environment. With a cluster file
system, the failure of a computer in the cluster does not make the file system
unavailable. In an operating system file system, however, if a computer sharing
files through NFS or other means fails, then the file system is unavailable.

A database employs a combination of the preceding storage mechanisms. For example,
a database could store the control files and online redo log files in a traditional file
system, some user data files on raw partitions, the remaining data files in Oracle ASM,
and archived the redo log files to a cluster file system.

See Also:

» Oracle Database 2 Day DBA to learn how to view database storage
structures with Oracle Enterprise Manager (Enterprise Manager)

» Oracle Database Administrator’s Guide to view database storage
structures by querying database views

Oracle Automatic Storage Management (Oracle ASM)

Oracle ASM is a high-performance, ease-of-management storage solution for Oracle
Database files. Oracle ASM is a volume manager and provides a file system designed
exclusively for use by the database.

Oracle ASM provides several advantages over conventional file systems and storage
managers, including the following;:

= Simplifies storage-related tasks such as creating and laying out databases and
managing disk space

» Distributes data across physical disks to eliminate hot spots and to provide
uniform performance across the disks

= Rebalances data automatically after storage configuration changes

To use Oracle ASM, you allocate partitioned disks for Oracle Database with
preferences for striping and mirroring. Oracle ASM manages the disk space,
distributing the I/O load across all available resources to optimize performance while
removing the need for manual I/O tuning. For example, you can increase the size of
the disk for the database or move parts of the database to new devices without having
to shut down the database.

Oracle ASM Storage Components

Oracle Database can store a data file as an Oracle ASM file in an Oracle ASM disk
group, which is a collection of disks that Oracle ASM manages as a unit. Within a disk
group, Oracle ASM exposes a file system interface for database files.

Figure 11-2 shows the relationships between storage components in a database that
uses Oracle ASM. The diagram depicts the relationship between an Oracle ASM file
and a data file, although Oracle ASM can store other types of files. The crow's foot
notation represents a one-to-many relationship.

Physical Storage Structures 11-3

Introduction to Physical Storage Structures

Figure 11-2 Oracle ASM Components

Oracle ASM
- . N\ | ASM Disk
Data File ASM File 7 Group
N\ N\
) ASM Allocation [\,)
File System Unit 74 ASM Disk
N
ASM Extent

Figure 11-2 illustrates the following Oracle ASM concepts:

Oracle ASM Disks

An Oracle ASM disk is a storage device that is provisioned to an Oracle ASM disk
group. An Oracle ASM disk can be a physical disk or partition, a Logical Unit
Number (LUN) from a storage array, a logical volume, or a network-attached file.

Oracle ASM disks can be added or dropped from a disk group while the database
is running. When you add a disk to a disk group, you either assign a disk name or
the disk is given an Oracle ASM disk name automatically.

Oracle ASM Disk Groups

An Oracle ASM disk group is a collection of Oracle ASM disks managed as a
logical unit. The data structures in a disk group are self-contained and consume
some disk space in a disk group.

Within a disk group, Oracle ASM exposes a file system interface for Oracle
database files. The content of files that are stored in a disk group are evenly
distributed, or striped, to eliminate hot spots and to provide uniform performance
across the disks. The performance is comparable to the performance of raw
devices.

Oracle ASM Files

An Oracle ASM file is a file stored in an Oracle ASM disk group. Oracle Database
communicates with Oracle ASM in terms of files. The database can store data files,
control files, online redo log files, and other types of files as Oracle ASM files.
When requested by the database, Oracle ASM creates an Oracle ASM file and
assigns it a fully qualified name beginning with a plus sign (+) followed by a disk
group name, as in +Dl SK1.

Note: Oracle ASM files can coexist with other storage management
options such as raw disks and third-party file systems. This capability
simplifies the integration of Oracle ASM into pre-existing
environments.

Oracle ASM Extents

An Oracle ASM extent is the raw storage used to hold the contents of an Oracle
ASM file. An Oracle ASM file consists of one or more file extents. Each Oracle
ASM extent consists of one or more allocation units on a specific disk.

11-4 Oracle Database Concepts

Introduction to Physical Storage Structures

Note: An Oracle ASM extent is different from the extent used to
store data in a segment.

s Oracle ASM Allocation Units

An allocation unit is the fundamental unit of allocation within a disk group. An
allocation unit is the smallest contiguous disk space that Oracle ASM allocates.
One or more allocation units form an Oracle ASM extent.

See Also:

» Oracle Database 2 Day DBA to learn how to administer Oracle
ASM disks with Oracle Enterprise Manager (Enterprise
Manager)

» Oracle Automatic Storage Management Administrator's Guide to
learn more about Oracle ASM

Oracle ASM Instances

An Oracle ASM instance is a special Oracle instance that manages Oracle ASM disks.
Both the ASM and the database instances require shared access to the disks in an ASM
disk group. ASM instances manage the metadata of the disk group and provide file
layout information to the database instances. Database instances direct I/O to ASM
disks without going through an ASM instance.

An ASM instance is built on the same technology as a database instance. For example,
an ASM instance has a system global area (SGA) and background processes that are
similar to those of a database instance. However, an ASM instance cannot mount a
database and performs fewer tasks than a database instance.

Figure 11-3 shows a single-node configuration with one Oracle ASM instance and two
database instances, each associated with a different single-instance database. The ASM
instance manages the metadata and provides space allocation for the ASM files storing
the data for the two databases. One ASM disk group has four ASM disks and the other
has two disks. Both database instances can access the disk groups.

Physical Storage Structures 11-5

Introduction to Physical Storage Structures

Figure 11-3 Oracle ASM Instance and Database Instances

Database Database
Instance Instance
DB1 DB2
Metadata
Requests
ASM

110 Instance 110

ASM Disk Groups

JJC

Disk Group A

3

Disk Group B

See Also:

s Oracle Database 2 Day DBA to learn how to administer Oracle
ASM disks with Oracle Enterprise Manager (Enterprise
Manager)

» Oracle Automatic Storage Management Administrator's Guide to
learn more about Oracle ASM

Oracle Managed Files and User-Managed Files

Oracle Managed Files is a file naming strategy that enables you to specify operations
in terms of database objects rather than file names. For example, you can create a
tablespace without specifying the names of its data files. In this way, Oracle Managed
Files eliminates the need for administrators to directly manage the operating system
files in a database. Oracle ASM requires Oracle Managed Files.

Note: This feature does not affect the creation or naming of
administrative files such as trace files, audit files, and alert logs (see
"Overview of Diagnostic Files" on page 13-18).

With user-managed files, you directly manage the operating system files in the
database. You make the decisions regarding file structure and naming. For example,
when you create a tablespace you set the name and path of the tablespace data files.

11-6 Oracle Database Concepts

Overview of Data Files

Through initialization parameters, you specify the file system directory for a specific
type of file. The Oracle Managed Files feature ensures that the database creates a
unique file and deletes it when no longer needed. The database internally uses
standard file system interfaces to create and delete files for data files and temp files,
control files, and recovery-related files stored in the fast recovery area.

Oracle Managed Files does not eliminate existing functionality. You can create new
files while manually administering old files. Thus, a database can have a mixture of
Oracle Managed Files and user-managed files.

See Also: Oracle Database Administrator’s Guide to learn how to
use Oracle Managed Files

Overview of Data Files

At the operating system level, Oracle Database stores database data in data files.
Every database must have at least one data file.

Use of Data Files

Part I, "Oracle Relational Data Structures” explains the logical structures in which
users store data, the most important of which are tables. Each nonpartitioned schema
object and each partition of an object is stored in its own segment.

For ease of administration, Oracle Database allocates space for user data in
tablespaces, which like segments are logical storage structures. Each segment belongs
to only one tablespace. For example, the data for a nonpartitioned table is stored in a
single segment, which is turn is stored in one tablespace.

Oracle Database physically stores tablespace data in data files. Tablespaces and data
files are closely related, but have important differences:

= Each tablespace consists of one or more data files, which conform to the operating
system in which Oracle Database is running.

= The data for a database is collectively stored in the data files located in each
tablespace of the database.

= A segment can span one or more data files, but it cannot span multiple
tablespaces.

= A database must have the SYSTEMand SYSAUX tablespaces. Oracle Database
automatically allocates the first data files of any database for the SYSTEMtablespace
during database creation.

The SYSTEMtablespace contains the data dictionary, a set of tables that contains
database metadata. Typically, a database also has an undo tablespace and a
temporary tablespace (usually named TEMP).

Figure 11-4 shows the relationship between tablespaces, data files, and segments.

Physical Storage Structures 11-7

Overview of Data Files

Figure 11-4 Data Files and Tablespaces

Tablespace
(one or more data files)

>

Table Table Index

Index | Index | \I\ Index | | Index |
Table

Index | Index | In _/

Data Files Segments
(physical structures associated (stored in tablespaces-
with only one tablespace) may span several data files)

See Also:
s "Overview of Tablespaces" on page 12-30

» Oracle Database Administrator's Guide and Oracle Database 2 Day
DBA to learn how to manage data files

Permanent and Temporary Data Files

A permanent tablespace contains persistent schema objects. Objects in permanent
tablespaces are stored in data files.

A temporary tablespace contains schema objects only for the duration of a session.
Locally managed temporary tablespaces have temporary files (temp files), which are
special files designed to store data in hash, sort, and other operations. Temp files also
store result set data when insufficient space exists in memory.

Temp files are similar to permanent data files, with the following exceptions:
= Permanent database objects such as tables are never stored in temp files.

s Temp files are always set to NOLOGA NGmode, which means that they never have
redo generated for them. Media recovery does not recognize temp files.

= You cannot make a temp file read-only.
= You cannot create a temp file with the ALTER DATABASE statement.

= When you create or resize temp files, they are not always guaranteed allocation of
disk space for the file size specified. On file systems such as Linux and UNIX,
temp files are created as sparse files. In this case, disk blocks are allocated not at
file creation or resizing, but as the blocks are accessed for the first time.

11-8 Oracle Database Concepts

Overview of Data Files

Caution: Sparse files enable fast temp file creation and resizing;
however, the disk could run out of space later when the temp files are
accessed.

s Temp file information is shown in the data dictionary view DBA_TEMP_FI LES and
the dynamic performance view VETEMPFI LE, but not in DBA DATA_FI LES or the
V$DATAFI LE view.

See Also:
s "Temporary Tablespaces" on page 12-34

» Oracle Database Administrator’s Guide to learn how to manage temp
files

Online and Offline Data Files

Every data file is either online (available) or offline (unavailable). You can alter the
availability of individual data files or temp files by taking them offline or bringing
them online. Offline data files cannot be accessed until they are brought back online.

Administrators may take data files offline for many reasons, including performing
offline backups, renaming a data file, or block corruption. The database takes a data
file offline automatically if the database cannot write to it.

Like a data file, a tablespace itself is offline or online. When you take a data file offline
in an online tablespace, the tablespace itself remains online. You can make all data files
of a tablespace temporarily unavailable by taking the tablespace itself offline

See Also:
= "Online and Offline Tablespaces" on page 12-35

n Oracle Database Administrator’s Guide to learn how to alter data file
availability

Data File Structure

Oracle Database creates a data file for a tablespace by allocating the specified amount
of disk space plus the overhead for the data file header. The operating system under
which Oracle Database runs is responsible for clearing old information and
authorizations from a file before allocating it to the database.

The data file header contains metadata about the data file such as its size and
checkpoint SCN. Each header contains an absolute file number and a relative file
number. The absolute file number uniquely identifies the data file within the database.
The relative file number uniquely identifies a data file within a tablespace.

When Oracle Database first creates a data file, the allocated disk space is formatted but
contains no user data. However, the database reserves the space to hold the data for
future segments of the associated tablespace. As the data grows in a tablespace, Oracle
Database uses the free space in the data files to allocate extents for the segment.

Figure 11-5 illustrates the different types of space in a data file. Extents are either used,
which means they contain segment data, or free, which means they are available for
reuse. Over time, updates and deletions of objects within a tablespace can create
pockets of empty space that individually are not large enough to be reused for new
data. This type of empty space is referred to as fragmented free space.

Physical Storage Structures 11-9

Overview of Control Files

Figure 11-5 Space in a Data File

_ - -

- Used

| | Free (Formatted, Never Used)

| | Free (Previously Used, Currently Unused)

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator’s Guide to learn how to view data file information

Overview of Control Files

The database control file is a small binary file associated with only one database. Each
database has one unique control file, although it may maintain identical copies of it.

Use of Control Files

The control file is the root file that Oracle Database uses to find database files and to
manage the state of the database generally. A control file contains information such as
the following:

The database name and database unique identifier (DBID)

The time stamp of database creation

Information about data files, online redo log files, and archived redo log files
Tablespace information

RMAN backups

The control file serves the following purposes:

It contains information about data files, online redo log files, and so on that are
required to open the database.

The control file tracks structural changes to the database. For example, when an
administrator adds, renames, or drops a data file or online redo log file, the
database updates the control file to reflect this change.

It contains metadata that must be accessible when the database is not open.

For example, the control file contains information required to recover the database,
including checkpoints. A checkpoint indicates the SCN in the redo stream where
instance recovery would be required to begin (see "Overview of Instance
Recovery" on page 13-12). Every committed change before a checkpoint SCN is
guaranteed to be saved on disk in the data files. At least every three seconds the
checkpoint process records information in the control file about the checkpoint
position in the online redo log.

Oracle Database reads and writes to the control file continuously during database use
and must be available for writing whenever the database is open. For example,
recovering a database involves reading from the control file the names of all the data

11-10 Oracle Database Concepts

Overview of Control Files

files contained in the database. Other operations, such as adding a data file, update the
information stored in the control file.

See Also:

s "Checkpoint Process (CKPT)" on page 15-10

s Oracle Database Administrator's Guide to learn how to manage the
control file

Multiple Control Files

Oracle Database enables multiple, identical control files to be open concurrently and
written for the same database. By multiplexing a control file on different disks, the
database can achieve redundancy and thereby avoid a single point of failure.

Note: Oracle recommends that you maintain multiple control file
copies, each on a different disk.

If a control file becomes unusable, then the database instance fails when it attempts to
access the damaged control file. When other current control file copies exist, the
database can be remounted and opened without media recovery. If all control files of a
database are lost, however, then the instance fails and media recovery is required.
Media recovery is not straightforward if an older backup of a control file must be used
because a current copy is not available.

See Also:

m Oracle Database Administrator’s Guide to learn how to maintain
multiple control files

» Oracle Database Backup and Recovery User's Guide to learn how to
back up and restore control files

Control File Structure

Information about the database is stored in different sections of the control file. Each
section is a set of records about an aspect of the database. For example, one section in
the control file tracks data files and contains a set of records, one for each data file.
Each section is stored in multiple logical control file blocks. Records can span blocks
within a section.

The control file contains the following types of records:
s Circular reuse records

These records contain noncritical information that is eligible to be overwritten if
needed. When all available record slots are full, the database either expands the
control file to make room for a new record or overwrites the oldest record.
Examples include records about archived redo log files and RMAN backups.

s Noncircular reuse records

These records contain critical information that does not change often and cannot
be overwritten. Examples of information include tablespaces, data files, online
redo log files, and redo threads. Oracle Database never reuses these records unless
the corresponding object is dropped from the tablespace.

As explained in "Overview of the Dynamic Performance Views" on page 6-5, you can
query the dynamic performance views, also known as V$ views, to view the

Physical Storage Structures 11-11

Overview of the Online Redo Log

information stored in the control file. For example, you can query VSDATABASE to
obtain the database name and DBID. However, only the database can modify the
information in the control file.

Reading and writing the control file blocks is different from reading and writing data
blocks. For the control file, Oracle Database reads and writes directly from the disk to
the program global area (PGA). Each process allocates a certain amount of its PGA
memory for control file blocks.

See Also:

» Oracle Database Reference to learn about the VECONTROLFI LE_
RECORD_SECTI ON view

» Oracle Database Reference to learn about the CONTROL_FI LE_RECCRD
KEEP_TI ME initialization parameter

Overview of the Online Redo Log

The most crucial structure for recovery is the online redo log, which consists of two or
more preallocated files that store changes to the database as they occur. The online
redo log records changes to the data files.

Use of the Online Redo Log

The database maintains online redo log files to protect against data loss. Specifically,
after an instance failure the online redo log files enable Oracle Database to recover
committed data not yet written to the data files.

Oracle Database writes every transaction synchronously to the redo log buffer, which
is then written to the online redo logs. The contents of the log include uncommitted
transactions, undo data, and schema and object management statements.

Oracle Database uses the online redo log only for recovery. However, administrators
can query online redo log files through a SQL interface in the Oracle LogMiner utility
(see "Oracle LogMiner" on page 18-8). Redo log files are a useful source of historical
information about database activity.

See Also: "Overview of Instance Recovery" on page 13-12

How Oracle Database Writes to the Online Redo Log

The online redo log for a database instance is called a redo thread. In single-instance
configurations, only one instance accesses a database, so only one redo thread is
present. In an Oracle Real Application Clusters (Oracle RAC) configuration, however,
two or more instances concurrently access a database, with each instance having its
own redo thread. A separate redo thread for each instance avoids contention for a
single set of online redo log files.

An online redo log consists of two or more online redo log files. Oracle Database
requires a minimum of two files to guarantee that one is always available for writing
while the other is being archived (if the database is in ARCHIVELOG mode).

See Also: Oracle Database 2 Day + Real Application Clusters Guide and

Oracle Real Application Clusters Administration and Deployment Guide to
learn about online redo log groups in Oracle RAC

11-12 Oracle Database Concepts

Overview of the Online Redo Log

Online Redo Log Switches

Oracle Database uses only one online redo log file at a time to store records written
from the redo log buffer. The online redo log file to which the log writer (LGWR)
process is actively writing is called the current online redo log file.

A log switch occurs when the database stops writing to one online redo log file and
begins writing to another. Normally, a switch occurs when the current online redo log
file is full and writing must continue. However, you can configure log switches to
occur at regular intervals, regardless of whether the current online redo log file is
filled, and force log switches manually.

Log writer writes to online redo log files circularly. When log writer fills the last
available online redo log file, the process writes to the first log file, restarting the cycle.
Figure 11-6 illustrates the circular writing of the redo log.

Figure 11-6 Reuse of Online Redo Log Files

Online Redo 1,4,7,...
Log File

#1

LGWR

Online Redo 2,5,8,...
Log File
#2

Online Redo
Log File
#3

3,6,9,...

The numbers in Figure 11-6 shows the sequence in which LGWR writes to each online
redo log file. The database assigns each file a new log sequence number when a log
switches and log writers begins writing to it. When the database reuses an online redo
log file, this file receives the next available log sequence number.

Filled online redo log files are available for reuse depending on the archiving mode:

s If archiving is disabled, which means that the database is in NOARCH VELOGmode,
then a filled online redo log file is available after the changes recorded in it have
been checkpointed (written) to disk by database writer (DBWn).

s If archiving is enabled, which means that the database is in ARCHIVELOG mode,
then a filled online redo log file is available to log writer after the changes have
been written to the data files and the file has been archived.

In some circumstances, log writer may be prevented from reusing an existing online
redo log file. For example, an online redo log file may be active (required for instance

Physical Storage Structures 11-13

Overview of the Online Redo Log

recovery) rather than inactive (not required for instance recovery). Also, an online

redo log file may be in the process of being cleared.

See Also:

= "Overview of Background Processes" on page 15-7

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage the online redo log

Multiple Copies of Online Redo Log Files

Oracle Database can automatically maintain two or more identical copies of the online
redo log in separate locations. An online redo log group consists of an online redo log
file and its redundant copies. Each identical copy is a member of the online redo log
group. Each group is defined by a number, such as group 1, group 2, and so on.

Maintaining multiple members of an online redo log group protects against the loss of
the redo log. Ideally, the locations of the members should be on separate disks so that

the failure of one disk does not cause the loss of the entire online redo log.

In Figure 11-7, A_LOGL and B_LOGl are identical members of group 1, while A LOG and
B_LOR are identical members of group 2. Each member in a group must be the same
size. LGWR writes concurrently to group 1 (members A LOGL and B_LOGL), then writes
concurrently to group 2 (members A LOG and B_LOG2), then writes to group 1, and so

on. LGWR never writes concurrently to members of different groups.

Figure 11-7 Multiple Copies of Online Redo Log Files

System Global Area (SGA)

redo0la.log\ A

redo02a.log e

N\ 1.35...

LGWR

\9

/ 2.4.,..

“ NS A, redo01b.log

N redo02b.log

Q/

Group 1
Members

Group 2
Members

Note: Oracle recommends that you multiplex the online redo log.
The loss of log files can be catastrophic if recovery is required.

When you multiplex the online redo log, the database must

increase the amount of I/O it performs. Depending on your system,
this additional I/O may impact overall database performance.

11-14 Oracle Database Concepts

Overview of the Online Redo Log

See Also: Oracle Database Administrator’s Guide to learn how to
maintain multiple copies of the online redo log files

Archived Redo Log Files

An archived redo log file is a copy of a filled member of an online redo log group.
This file is not considered part of the database, but is an offline copy of an online redo
log file created by the database and written to a user-specified location.

Archived redo log files are a crucial part of a backup and recovery strategy. You can
use archived redo log files to:

= Recover a database backup
= Update a standby database (see "Computer Failures" on page 17-7)

= Obtain information about the history of a database using the LogMiner utility (see
"Oracle LogMiner" on page 18-8)

Archiving is the operation of generating an archived redo log file. Archiving is either
automatic or manual and is only possible when the database is in ARCH VELOGmode.

An archived redo log file includes the redo entries and the log sequence number of the
identical member of the online redo log group. In Figure 11-7, files A_LOGL and B_LOGL
are identical members of Group 1. If the database is in ARCHl VELOGmode, and if
automatic archiving is enabled, then the archiver process (ARCn) will archive one of
these files. If A_LOGL is corrupted, then the process can archive B_LOGL. The archived
redo log contains a copy of every group created since you enabled archiving.

See Also:

= "Data File Recovery" on page 18-14

» Oracle Database Administrator's Guide to learn how to manage the
archived redo log

Structure of the Online Redo Log

Online redo log files contain redo records. A redo record is made up of a group of
change vectors, each of which describes a change to a data block. For example, an
update to a salary in the enpl oyees table generates a redo record that describes
changes to the data segment block for the table, the undo segment data block, and the
transaction table of the undo segments.

The redo records have all relevant metadata for the change, including the following:
= SCN and time stamp of the change

s Transaction ID of the transaction that generated the change

= SCN and time stamp when the transaction committed (if it committed)

= Type of operation that made the change

= Name and type of the modified data segment

See Also: "Overview of Data Blocks" on page 12-6

Physical Storage Structures 11-15

Overview of the Online Redo Log

11-16 Oracle Database Concepts

12

Logical Storage Structures

This chapter describes the nature of and relationships among logical storage
structures. These structures are created and recognized by Oracle Database and are not
known to the operating system.

This chapter contains the following sections:

s Introduction to Logical Storage Structures
s Overview of Data Blocks

s Overview of Extents

= Overview of Segments

» Overview of Tablespaces

Introduction to Logical Storage Structures

Oracle Database allocates logical space for all data in the database. The logical units of
database space allocation are data blocks, extents, segments, and tablespaces. At a
physical level, the data is stored in data files on disk (see Chapter 11, "Physical Storage
Structures"). The data in the data files is stored in operating system blocks.

Figure 121 is an entity-relationship diagram for physical and logical storage. The
crow's foot notation represents a one-to-many relationship.

Figure 12-1 Logical and Physical Storage

Logical Physical

Tablespace Data File

A

Segment

I\

m
x
=
@
2
N

PN PN

Oracle data
block

OS block

I\

Logical Storage Structures 12-1

Introduction to Logical Storage Structures

Logical Storage Hierarchy

Figure 12-2 shows the relationships among data blocks, extents, and segments within
a tablespace. In this example, a segment has two extents stored in different data files.

Figure 12-2 Segments, Extents, and Data Blocks Within a Tablespace

Data Blocks /’ ‘\ Data Blocks
2KB [\ K N |2kB|2kB|2KB
\ \ 1
2KB|) \ , [2kB[2KB[2KB
\ / Segment \ !
2 KB \ \ 2KB|2KB|2KB
\ K 96Kb . /
2 KB \\ / \ J 2KB|2KB|2KB
/ ! / \ I
2 KB m 7i / 2KB|2KB|2KB
‘\ / Data | / Data ‘\
2 KB \/\FII(;I/ File <1 2KB|2KB|2KB
2 KB 2KB|2KB|2KB
2 KB 2KB|2KB|2KB
2 KB 2KB|2KB|2KB
2 KB 2KB|2KB|2KB
Extent Extent
2 KB 24 KB 72 KB 2KkB|2KB|2KB

2k8| _ S T ~_|2kB|2KB|2KB

At the finest level of granularity, Oracle Database stores data in data blocks. One
logical data block corresponds to a specific number of bytes of physical disk space, for
example, 2 KB. Data blocks are the smallest units of storage that Oracle Database can
use or allocate.

An extent is a set of logically contiguous data blocks allocated for storing a specific
type of information. In Figure 12-2, the 24 KB extent has 12 data blocks, while the 72
KB extent has 36 data blocks.

A segment is a set of extents allocated for a specific database object, such as a table.
For example, the data for the enpl oyees table is stored in its own data segment,
whereas each index for enpl oyees is stored in its own index segment. Every database
object that consumes storage consists of a single segment.

Each segment belongs to one and only one tablespace. Thus, all extents for a segment
are stored in the same tablespace. Within a tablespace, a segment can include extents
from multiple data files, as shown in Figure 12-2. For example, one extent for a
segment may be stored in user s01. dbf , while another is stored in user s02. dbf . A
single extent can never span data files.

See Also: "Overview of Data Files" on page 11-7

Logical Space Management

Oracle Database must use logical space management to track and allocate the extents
in a tablespace. When a database object requires an extent, the database must have a
method of finding and providing it. Similarly, when an object no longer requires an
extent, the database must have a method of making the free extent available.

Oracle Database manages space within a tablespace based on the type that you create.
You can create either of the following types of tablespaces:

12-2 Oracle Database Concepts

Introduction to Logical Storage Structures

= Locally managed tablespaces (default)

The database uses bitmaps in the tablespaces themselves to manage extents. Thus,
locally managed tablespaces have a part of the tablespace set aside for a bitmap.
Within a tablespace, the database can manage segments with automatic segment
space management (ASSM) or manual segment space management (MSSM).

= Dictionary-managed tablespaces

The database uses the data dictionary to manage extents (see "Overview of the
Data Dictionary" on page 6-1).

Figure 12-3 shows the alternatives for logical space management in a tablespace.

Figure 12-3 Logical Space Management

Automatic Segment Space Management

Locally Managed Tablespace

Manual Segment Space Management

Dictionary-Managed Tablespace

Locally Managed Tablespaces

A locally managed tablespace maintains a bitmap in the data file header to track free
and used space in the data file body. Each bit corresponds to a group of blocks. When
space is allocated or freed, Oracle Database changes the bitmap values to reflect the
new status of the blocks.

The following graphic is a conceptual representation of bitmap-managed storage. A 1
in the header refers to used space, whereas a 0 refers to free space.

TN ata File Header

—— Data File Body

[[JUsed Space

[Free Space

A locally managed tablespace has the following advantages:

Logical Storage Structures 12-3

Introduction to Logical Storage Structures

= Avoids using the data dictionary to manage extents

Recursive operations can occur in dictionary-managed tablespaces if consuming or
releasing space in an extent results in another operation that consumes or releases
space in a data dictionary table or undo segment.

s Tracks adjacent free space automatically
In this way, the database eliminates the need to coalesce free extents.
= Determines the size of locally managed extents automatically

Alternatively, all extents can have the same size in a locally managed tablespace
and override object storage options.

Note: Oracle strongly recommends the use of locally managed
tablespaces with Automatic Segment Space Management.

Segment space management is an attribute inherited from the tablespace that contains
the segment. Within a locally managed tablespace, the database can manage segments
automatically or manually. For example, segments in tablespace user s can be
managed automatically while segments in tablespace t 00l s are managed manually.

Automatic Segment Space Management The ASSM method uses bitmaps to manage space.
Bitmaps provide the following advantages:

= Simplified administration

ASSM avoids the need to manually determine correct settings for many storage
parameters. Only one crucial SQL parameter controls space allocation: PCTFREE.
This parameter specifies the percentage of space to be reserved in a block for
future updates (see "Percentage of Free Space in Data Blocks" on page 12-12).

= Increased concurrency

Multiple transactions can search separate lists of free data blocks, thereby
reducing contention and waits. For many standard workloads, application
performance with ASSM is better than the performance of a well-tuned
application that uses MSSM.

= Dynamic affinity of space to instances in an Oracle Real Application Clusters
(Oracle RAC) environment

ASSM is more efficient and is the default for permanent, locally managed tablespaces.

Note: This chapter assumes the use of ASSM in all of its discussions
of logical storage space.

Manual Segment Space Management The legacy MSSM method uses a linked list called a
free list to manage free space in the segment. For a database object that has free space,
a free list keeps track of blocks under the high water mark (HWM), which is the
dividing line between segment space that is used and not yet used. As blocks are used,
the database puts blocks on or removes blocks from the free list as needed.

In addition to PCTFREE, MSSM requires you to control space allocation with SQL
parameters such as PCTUSED, FREELI STS, and FREELI ST GROUPS. PCTUSED sets the
percentage of free space that must exist in a currently used block for the database to
put it on the free list. For example, if you set PCTUSED to 40 in a CREATE TABLE

12-4 Oracle Database Concepts

Introduction to Logical Storage Structures

statement, then you cannot insert rows into a block in the segment until less than 40%
of the block space is used.

As an illustration, suppose you insert a row into a table. The database checks a free list
of the table for the first available block. If the row cannot fit in the block, and if the
used space in the block is greater than or equal to PCTUSED, then the database takes the
block off the list and searches for another block. If you delete rows from the block, then
the database checks whether used space in the block is now less than PCTUSED. If so,
then the database places the block at the beginning of the free list.

An object may have multiple free lists. In this way, multiple sessions performing DML
on a table can use different lists, which can reduce contention. Each database session
uses only one free list for the duration of its session.

As shown in Figure 12—4, you can also create an object with one or more free list
groups, which are collections of free lists. Each group has a master free list that
manages the individual process free lists in the group. Space overhead for free lists,
especially for free list groups, can be significant.

Figure 12-4 Free List Groups

1 Free List Group

[1
1 LI 1
1 | Master ' 1 —| Master !
1 — | Free ' —| Free !
| — | List oy — | List !
1 L 1
1 LI 1
1 : 1 :
: [Process Free Lists | 1 : [Process Free Lists | 1
P ey 1 ey 1 sy P (R ey [sy o p—
===y ===
V= == " i |=|=||=]| !
1 ! _:

Table Segment

Managing segment space manually can be complex. You must adjust PCTFREE and
PCTUSED to reduce row migration (see "Chained and Migrated Rows" on page 12-16)
and avoid wasting space. For example, if every used block in a segment is half full,
and if PCTUSED is 40, then the database does not permit inserts into any of these blocks.
Because of the difficulty of fine-tuning space allocation parameters, Oracle strongly
recommends ASSM. In ASSM, PCTFREE determines whether a new row can be inserted
into a block, but it does not use free lists and ignores PCTUSED.

See Also:

s Oracle Database Administrator’s Guide to learn about locally
managed tablespaces

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn more about automatic segment space management

» Oracle Database SQL Language Reference to learn about storage
parameters such as PCTFREE and PCTUSED

Logical Storage Structures 12-5

Overview of Data Blocks

Dictionary-Managed Tablespaces

A dictionary-managed tablespace uses the data dictionary to manage its extents.
Oracle Database updates tables in the data dictionary whenever an extent is allocated
or freed for reuse. For example, when a table needs an extent, the database queries the
data dictionary tables, and searches for free extents. If the database finds space, then it
modifies one data dictionary table and inserts a row into another. In this way, the
database manages space by modifying and moving data.

The SQL that the database executes in the background to obtain space for database
objects is recursive SQL. Frequent use of recursive SQL can have a negative impact on
performance because updates to the data dictionary must be serialized. Locally
managed tablespaces, which are the default, avoid this performance problem.

See Also: Oracle Database Administrator’s Guide to learn how to
migrate tablespaces from dictionary-managed to locally managed

Overview of Data Bloc